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Chapter 1

Introduction

1.1 Background

The last four decades have witnessed a fundamental change in macroeconomic

modeling. This development has its origins in the 1970s when the existing conven-

tional quantitative macroeconomic models, rooted in Keynesian economic theory,

were heavily criticized on both theoretical and empirical grounds (see, for exam-

ple, Lucas, 1976; Sims, 1980; Sargent, 1981). Existing mainstream macroeconomic

models, including the Wharton Econometric Forecasting Model and the Brook-

ings Model, showed a poor forecast performance, missing the economic reality of

stagflation (see Gaĺı and Gertler, 2007). As a result, the general applicability of

these models for forecasting and policy analysis was questioned. In his famous

critique of econometric policy evaluation, Lucas (1976) emphasized the lack of

structural invariance of the current macroeconomic models making them unfit to

predict the effects of alternative policies:

“. . . [T]he ability to forecast the consequences of “arbitrary”, unan-

nounced sequences of policy decisions, currently claimed (at least im-

plicitly) by the theory of economic policy, appears to be beyond the

capability not only of the current-generation models, but of conceiv-

able future models as well” (Lucas, 1976, p. 41).

A response to this critique emerged in the form of the first generation of

dynamic stochastic general equilibrium (DSGE) models. The development of

these models was a merit of the real business cycle (RBC) approach initiated by

the seminal work of Kydland and Prescott (1982) and Long and Plosser (1983).

1
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“For the first time, macroeconomists had a small and coherent dy-

namic model of the economy, built from first principles with optimizing

agents, rational expectations, and market clearing, that could gener-

ate data that resembled observed variables to a remarkable degree”

(Fernández-Villaverde, 2010, p. 4).

Based on the frictionless neoclassical growth model, the RBC approach aimed

to explain economic fluctuations as an optimal response of rational agents to

real disturbances, particularly technology shocks (see Rebelo, 2005). From this

paradigm, a distinct school of thought evolved becoming known as New Keynesian

macroeconomics. Originally derived as an extension to the standard real business

cycle framework, which features monetary neutrality due to the presence of flexible

prices and wages, New Keynesian economics evolved into a progressive research

program, accounting for the real effects of monetary policy.

“... [New Keynesian] models integrate Keynesian elements (imperfect

competition, and nominal rigidities) into a dynamic general equilib-

rium framework that until recently was largely associated with the

Real Business Cycle (RBC) paradigm. They can be used (and are be-

ing used) to analyze the connection between money, inflation, and the

business cycle, and to assess the desirability of alternative monetary

policies” (Gaĺı, 2002, p. 1).

DSGE models rapidly became a standard tool for quantitative policy analysis

in macroeconomics. While, as outlined in An and Schorfheide (2007), the quan-

titative evaluation of the early DSGE models was typically conducted without

formal statistical methods and instead relied on parameter calibration, i.e., the

choice of parameter values on the basis of microeconomic evidence or long-run

data properties (see Karagedikli et al., 2010), the predominance of calibration in

empirical DSGE analysis decreased considerably in the 1990s when advances in

computational power and the development of new econometric methods made the

estimation of DSGE models more accessible.

“There has been tremendous improvement over the last twenty years

in the mathematical, probabilistic, and computational tools available

to applied macroeconomists. This extended set of tools has changed
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the way researchers have approached the problem of estimating pa-

rameters, validating theories, or simply identifying regularities in the

data” (Canova, 2007, p. xi).

As a result, DSGE models not only became widely used for empirical research

in macroeconomics, but also for policy analysis and forecasting at policy-making

institutions.

“DSGE models are powerful tools that provide a coherent framework

for policy discussion and analysis. In principle, they can help to iden-

tify sources of fluctuations; answer questions about structural changes;

forecast and predict the effect of policy changes, and perform counter-

factual experiments” (Tovar, 2009, p. 1).

This thesis contributes to the evolving field of applied macroeconomic research,

strengthening the idea of a fruitful symbiosis between theoretical models and

advanced econometric techniques.

1.2 Outline of the Thesis

The core of the dissertation consists of three chapters. Chapter 2 provides a graph-

ical and formal representation of a basic dynamic stochastic general equilibrium

economy and discusses the prerequisites needed for an empirical implementation.

The aim of this chapter is to present the core features of the models used in chap-

ter 3 and 4 of this work and to introduce the estimation techniques employed in

the remainder of the thesis.

In chapter 3 we estimate a New Keynesian DSGE model on French, German,

Italian, and Spanish data to check for the respective sets of parameters that are

stable over time, implementing the ESS procedure (“Estimate of Set of Stable

parameters”) developed by Inoue and Rossi (2011). This econometric technique

allows to identify the respective parameters of a DSGE model that have changed

at an unknown break date. In the case of France, Germany, and Italy our results

point to structural breaks after the beginning of the second stage of EMU in

the mid-1990s, while the estimates for Spain show a significant break just before

the start of the third stage in 1998. Specifically, we find significant changes in
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monetary policy behavior for France, Italy, and Spain, while we detect monetary

policy to be stable over time in Germany.

The incorporation of convex adjustment costs of capital accumulation into

dynamic stochastic general equilibrium models has become standard practice in

the literature, since these frictions improve the ability of sticky-price models with

endogenous investment to match the key features of the data considerably. In

chapter 4, we use a Bayesian approach to investigate empirically how different

ad-hoc specifications of adjustment costs affect the fit and the dynamics of a New

Keynesian dynamic stochastic general equilibrium model with real and nominal

frictions featuring several exogenous stochastic disturbances. We consider three

different forms of quadratic adjustment costs: an investment adjustment cost spec-

ification and two versions of capital adjustment costs. Using both euro area and

US data, we detect in part marked differences between the estimated structural

parameters across the three model specifications. Further, the implementation of

either investment or capital adjustment costs affects the empirical fit and the dy-

namics of the respective model specifications substantially. Concerning the overall

empirical fit, the model specifications with capital adjustment costs outperform

the model version featuring investment adjustment costs, although only the latter

is able to produce data-consistent hump-shaped investment dynamics in response

to exogenous shocks.

Chapter 5 concludes by summarizing the main results of this dissertation.



Chapter 2

DSGE Models: Basic Structure

and Empirical Implementation

2.1 Introduction

DSGE models have become the workhorse in modern macroeconomics, receiving

wide support not only among researchers, but also from policy making circles,

supporting, for instance, the monetary policy decision-making process at central

banks around the world (see Kremer et al., 2006; Tovar, 2009). The term DSGE

thereby refers to a special class of dynamic stochastic macroeconomic models

which feature a sound micro-founded general equilibrium framework, character-

ized by the optimizing behavior of rational agents subject to technology, budget,

and institutional constraints (see Smets et al., 2010). As outlined in Fernández-

Villaverde (2010), a crucial part of the recent popularity of DSGE models stems

from the ability to fit these structural models to the data.

In this chapter, we present the general structure of DSGE models and discuss

prerequisites needed for an empirical implementation. We focus on a standard

New Keynesian model and describe basic procedures for constructing and solving

this prototype model. Further, we consider three empirical methods for DSGE

models. The purpose of this chapter, on the one hand, is to highlight the core

features of the models used in chapter 3 and 4 of this work. On the other hand,

we introduce the estimation methods employed in the remainder of the thesis.

Chapter 2 is organized as follows: Section 2.2 provides a graphical and formal

presentation of a standard DSGE framework. The formal description comprises of

5
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the theoretical setup, the log-linear approximation, and the solution of a standard

New Keynesian model. Section 2.3 discusses three common strategies used in the

empirical analysis of DSGE models: calibration, maximum likelihood estimation,

and Bayesian estimation. Technical details concerning the theoretical setup, the

log-linear approximation, and the model solution appear in the appendices.

2.2 The Basic Structure of DSGE Models

2.2.1 A Graphical Exposition

In presenting a general DSGE framework, we closely follow Sbordone et al. (2010)

and use a simplified diagram to illustrate the interactions among the different

agents in a basic dynamic stochastic general equilibrium economy (see figure 2.1).

Demand Shocks
Mark-up Shocks
Cost-push Shocks

Productivity Shocks

Expectations

Policy Shocks

Demand Supply

Monetary Policy

Y e, πe

Y = fY (Y e, i− πe, ...) π = fπ(πe, Y, ...)

i = f i(π − π∗, Y − Y ∗, ...)
Monetary

Figure 2.1: A basic DSGE framework.

The model economy can be characterized by three interrelated blocks: a de-

mand block arising from the optimal behavior of households, a supply block de-

scribing the optimal behavior of firms, and a monetary policy equation. Each of

these blocks is defined by equations derived from the underlying microeconomic

structure of the model, i.e., explicit assumptions on the specific behavior of agents

as well as the technological, budget, and institutional constraints in the economy.
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As outlined in Sbordone et al. (2010), the demand block determines the real

activity Y as a function of the expected future real activity Y e and the real interest

rate, which, according to the Fisherian equation, equals the difference between

nominal interest rate r and the expected inflation rate πe. The demand block

exhibits a negative relationship between the real interest rate and real activity,

since a rise in the real interest rate increases savings and lowers consumption

(and investment). In contrast, the functional relation between real activity and

its expected value is assumed to be positive, capturing the willingness of people

to spend more in anticipation of thriving days.

The arrow pointing from the demand block to the supply block emphasizes

the importance of the real activity Y emerging from demand, since it is, together

with expected inflation πe, a key input for determining the inflation rate π. The

supply block captures a positive relationship between the rate of inflation and the

level of real activity, implicitly expressing the pressure of factor prices on producer

prices stemming from increased competition for scarce production factors. Fur-

ther, the supply block accounts for a positive relation between current inflation

and expected inflation.

Following Sbordone et al. (2010), the values of real activity and inflation

determined by the demand and supply block enter into the monetary policy block.

Monetary policy itself is often described by a central bank, which sets the short-

term nominal interest rate according to a Taylor-type policy rule (see Taylor,

1993). The monetary authority adjusts the nominal interest rate r in response to

deviations of current inflation π and real activity Y from their respective target

values π∗ and Y ∗. The effects of monetary policy on real activity and inflation

are stressed by the arrow running from the monetary policy block to the demand

block and then on to the supply block. Thus, the policy reaction function of the

monetary authority closes the model allowing for a complete description of the

relationship between the key variables: output Y , inflation π, and the nominal

interest rate r.

Note that the incorporation of expectations about future outcomes provides

the source of (forward-looking) dynamic interactions between the three interre-

lated blocks. To take into account the role of expectations, figure 2.1 explicitly

highlights the influence of expectations on real activity and inflation, especially

emphasizing the expectations channel of monetary policy.

The stochastic nature of DSGE models originates from exogenous processes,
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commonly called shocks. These shocks amount to fluctuations of the model around

its deterministic steady state equilibrium, a perfectly predictable path, with nei-

ther booms nor busts. Although recent micro-founded DSGE models include

various types of shocks, figure 2.1 only contains some of the most common spec-

ifications (represented as triangles, with arrows pointing to the blocks that are

directly affected by a specific driving process).

2.2.2 A Formal Exposition

According to Clarida et al. (2002), Ambler (2007), Blanchard and Gaĺı (2007),

and Gaĺı (2008), New Keynesian models have become a fundamental tool for mon-

etary policy analysis by academic economists and central banks. As outlined in

Goodfriend and King (1997) and Goodfriend (2002), these models extend the neo-

classical RBC setup by introducing Keynesian features like imperfect competition

and sticky prices and hence provide a setting that allows monetary policy to be

central to macroeconomic fluctuations.

We subsequently present the micro-foundations of a standard, closed-economy

New Keynesian model in the spirit of Clarida et al. (1999), Gaĺı (2002), Wood-

ford (2003), or Ireland (2004). We select this standard framework for two reasons.

First, it closely mimics the basic structure outlined in the previous section. Sec-

ond, the model clearly outlines the core features of the more elaborated versions

applied in chapter 3 and 4 of this work.

2.2.2.1 Overview

The economy consists of a representative household, a representative finished

goods-producing firm, a continuum of intermediate goods-producing firms indexed

by i ∈ [0, 1] and a monetary authority. The representative household consumes,

saves, and supplies labor to the intermediate goods-producing firms. Final output

is produced by a representative finished goods-producing firm acting in a perfectly

competitive market. The finished goods-producing firm bundles the continuum

of intermediate goods manufactured by monopolistic competitors and sells it to

the household, who uses the final good for consumption. The intermediate goods-

producing firms are owned by the household and each of them produces a distinct,

perishable intermediate good, also indexed by i ∈ [0, 1] during each period t =

0, 1, 2, .... The assumption of monopoly power of intermediate goods-producing
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firms allows to introduce nominal rigidities in the form of quadratic nominal price

adjustment costs. Finally, there is a monetary authority that conducts monetary

policy by setting the nominal interest rate according to a Taylor-type rule.

2.2.2.2 Households

The representative household of the economy enters period t holding Bt−1 one-

period bonds. During period t the household receives Wtlt total nominal factor

payments from supplying lt(i) units of labor at the nominal wage rate Wt to each

intermediate goods-producing firm i ∈ [0, 1]. For all t = 0, 1, 2, ..., the household’s

choices of lt(i) must satisfy

lt =

∫ 1

0

lt(i)di,

where lt denotes total hours worked. Further, the household receives nominal

dividends from each intermediate goods producing firm i ∈ [0, 1] aggregating to

Dt =

∫ 1

0

Dt(i)di.

The household uses its funds to purchase new bonds at the nominal cost Bt/rt,

where rt denotes the gross nominal interest rate between time periods, and output

for consumption purposes from the final goods sector at price Pt. We follow

Woodford (2003) and assume that prices are measured in terms of a unit of account

called “money”, but that the economy is cashless otherwise. Therefore, the budget

constraint of the representative household is given by

Bt−1 +Wtlt +Dt

Pt
≥ ct +

Bt/rt
Pt

.

Furthermore, we impose a no-Ponzi-game condition preventing the household from

excessive borrowing. Subject to these constraints, the household seeks to maxi-

mize the stream of expected utility

E
∞∑
t=0

βt
(
c1−σt

1− σ
− χ

l1+ηt

1 + η

)
,

where 0 < β < 1 is a discount factor and χ > 0 measures the relative weight of

the disutility of labor. The parameter σ ≥ 0 denotes the inverse of the elasticity
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of intertemporal substitution for consumption while η ≥ 0 is the inverse of the

Frisch elasticity of labor supply.1

To solve this optimization problem, we form the Lagrangian

max
ct,lt,Bt

Λ = E
∞∑
t=0

[
βt

(
c1−σt

1− σ
− χ

l1+ηt

1 + η

)
−βtλt

(
ct +

Bt/rt
Pt

− Bt−1

Pt
− Wtlt

Pt
− Dt

Pt

)]
,

obtaining the first-order conditions

Λct = c−σt − λt = 0,

Λlt = −χlηt + λt
Wt

Pt
= 0,

ΛBt =
λt
Pt

− βrtEt

(
λt+1

Pt+1

)
= 0,

Λλt = ct +
Bt/rt
Pt

− Bt−1

Pt
− Wtlt

Pt
− Dt

Pt
= 0,

and a standard transversality condition for bonds. By rearranging the first-order

conditions of the household’s decision problem concerning the choice of consump-

tion, labor supply, and bond holding we yield the following standard optimality

conditions:
Wt

Pt
= χ

lηt
c−σt

and

c−σt = βrtEt

(
c−σt+1

πt+1

)
,

where πt+1 = Pt+1

Pt
. While the former equation describes the intratemporal op-

timality condition, setting the real wage equal to marginal rate of substitution

between leisure and consumption, the latter represents the Euler equation for the

optimal intertemporal allocation of consumption.

1Note that σ = 1 implies a log utility for consumption, so that the model would be consistent
with a balanced growth path if secular technical progress was introduced (see King et al., 1988;
Gaĺı, 2002).
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2.2.2.3 Firms

The final good yt is produced by a firm that acts in a perfectly competitive

environment, bundling the intermediate goods yt(i) subject to the constant returns

to scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

,

where θ > 1 represents the elasticity of substitution between intermediate goods

yt(i). Profit maximization leads to the demand function for intermediate goods

yt(i) =

[
Pt(i)

Pt

]−θ
yt,

with Pt(i) denoting the price of intermediate good i and

Pt =

[∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

Each intermediate good i is produced by a single monopolistically competitive

firm according to the constant returns to scale technology

yt(i) ≤ ztlt(i),

where the technology shock zt is assumed to follow the autoregressive process

ln(zt) = ρz ln(zt−1) + εzt

with 1 > ρz > 0 and εzt ∼ N(0, σ2
z). Although each firm i exerts some market

power, it acts as a price taker in the factor markets. Moreover, the adjustment

of the firm’s nominal price Pt(i) is assumed to be costly, where the cost function

is convex in the size of the price adjustment. Following Rotemberg (1982), these

costs are defined as
φP
2

[
Pt(i)

πPt−1(i)
− 1

]2

yt,

where φP ≥ 0 governs the size of price adjustment costs and π denotes the gross

steady state rate of inflation targeted by the monetary authority. As outlined in

Ireland (1997), this specification can be interpreted as the negative effects of price
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changes on customer-firm relationships.2

The typical intermediate goods-producing firm’s optimization problem can be

split into two steps. First, each firm wants to minimize its costs Wtlt(i) subject

to the production technology yt(i) = ztlt(i). The Lagrangian of this problem can

be written in real terms as

min
lt(i)

Λ =

(
Wt

Pt

)
lt(i)− ϕt[ztlt(i)− yt(i)].

The first-order conditions of the firm’s problem are

Λlt(i) = Wt/Pt − ϕtzt = 0

and

Λϕt = ztlt(i)− yt(i) = 0,

where the Lagrange multiplier ϕt has the interpretation of the firm’s real marginal

costs. Second, since the convex adjustment costs make the firm’s optimization

problem dynamic (see Ireland, 2003), each firm chooses yt(i) and Pt(i) to maximize

its total market value

E

∞∑
t=0

βtλt[Dt(i)/Pt]

subject to the demand function for intermediate goods, where λt measures the

period tmarginal utility to the representative household provided by an additional

unit of profits. The firm’s profits distributed to the household as dividends are

defined in real terms by

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)− ϕtyt(i)− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt.

2Alternative specifications of nominal price rigidities in the recent New Keynesian literature
include Taylor’s (1980) pricing contracts and Calvo’s (1983) random probability of price adjust-
ment (for an overview see Roberts, 1995). A detailed analysis of Rotemberg (1982) and Calvo
(1983) price setting mechanisms can be found in Lombardo and Vestin (2008) and Ascari et al.
(2011).
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The optimization problem of each firm takes the form

max
Pt(i)

E

∞∑
t=0

(
βtλt

{[
Pt(i)

Pt

]1−θ
yt − ϕt

[
Pt(i)

Pt

]−θ
yt

−φ
2

[
Pt(i)

πPt−1(i)
− 1

]2
yt

})
,

where
[
Pt(i)
Pt

]1−θ
yt denotes revenues and ϕt

[
Pt(i)
Pt

]−θ
yt +

φ
2

[
Pt(i)

πPt−1(i)
− 1

]2
yt refers

to costs.

The first-order condition of this problem is

λt

{
(1− θ)

[
Pt(i)

Pt

]−θ
yt
Pt

+ ϕtθ

[
Pt(i)

Pt

]−θ−1
yt
Pt

− φp

[
Pt(i)

πPt−1(i)
− 1

]
yt

πPt−1(i)

}

+βEt

{
λt+1φp

[
Pt+1(i)

πPt(i)
− 1

] [
Pt+1(i)

πPt(i)2

]
yt+1

}
= 0.

If φP = 0, the above expression reduces to

Pt(i) =
θ

θ − 1
ϕtPt,

which points out, that in the case of costless price adjustment, a representative

intermediate goods-producing firm sets its markup of price Pt(i) over (nominal)

marginal cost ϕtPt equal to θ/(θ − 1).

2.2.2.4 Monetary Authority

Following Clarida et al. (2000), Ireland (2000), Canova (2009), and Fernández-

Villaverde et al. (2010), monetary policy can be described by a modified Taylor

rule of the form:

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt).

The monetary authority gradually adjusts the short-term nominal interest rate

in response to deviations of current gross inflation πt =
Pt

Pt−1
and output yt from

their steady state values, where ρr, ωπ, and ωy are the parameters of the monetary
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policy rule.3 The monetary policy shock υt follows the autoregressive process

ln(υt) = ρυ ln(υt−1) + ευt,

where 0 < ρυ < 1 and ευt ∼ N(0, σ2
υ).

2.2.3 Approximating and Solving the Model

Empirical investigations using DSGE models require to find a solution to the

dynamic system. Since most dynamic models do not have an exact analytical

closed-form solution, a tractable approximation needs to be derived (see Aruoba et

al., 2006). To reduce the computational burden, the majority of studies involving

either simulation or estimation use linear approximations of the original model

(see Iskrev, 2010), which then can be solved by various solution methods for

linear difference models under rational expectations.4 An extensive coverage of

approximation techniques and solution methods for DSGE models can be found in

Canova (2007), DeJong and Dave (2007), and McCandless (2008). In the following

sections we give a short presentation of the linearized standard New Keynesian

model and its solution, while a detailed description is provided in the appendices

A and B.

2.2.3.1 Log-linear Approximation

As outlined in Zietz (2008), log-linearization allows to transform a system of

nonlinear equations into a system that is linear in terms of the log-deviations of the

underlying variables from their steady state values. To log-linearize the standard

New Keynesian model we use a first-order Taylor approximation of the model

around its steady state values.5 Letting v̂art = log
(
vart
var

)
denote the log-deviation

3Note that the gross steady state level of inflation π is determined by the inflation target of
the monetary authority.

4 Although, as outlined in Kim et al. (2008), linear approximations might be sufficiently
accurate for a wide variety of purposes, using a linear approximation to the model economy
can be inappropriate. Examples include welfare comparisons across policies that do not have
first-order effects on the model’s deterministic steady state (see Kim and Kim, 2003; An 2007;
Kim et al., 2008). DeJong and Dave (2011) provide an overview of recent nonlinear solution
methods and their use in empirical applications.

5For the ease of exposition, we assume that the inflation target is zero, implying a gross
steady state inflation rate π equal to one.
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of some variable vart from its steady state var the model can be expressed as:

ŷt = Etŷt+1 − 1

σ
(r̂t − Etπ̂t+1) ,

π̂t = βEtπ̂t+1 +
θ − 1

φP
(η + σ)ŷt − θ − 1

φP
(1 + η)ẑt,

r̂t = ρrr̂t−1 + (1− ρr)(ωππ̂t + ωyŷt) + v̂t,

ẑt = ρz ẑt−1 + εzt,

and

v̂t = ρv v̂t−1 + εvt.

The first equation is a so-called dynamic IS curve, capturing the features of ag-

gregate demand outlined in section 2.2.1, whereas the properties of aggregate

supply are described by the second equation, usually termed as New Keynesian

Phillips curve.6 Monetary policy is characterized by the third equation, which

is a Taylor-type policy reaction function. While these equations are often re-

ferred to as “three equation New Keynesian DSGE framework” (see, for example,

Schorfheide, 2008; Woodford, 2008; Christiano et al., 2010), the last two equa-

tions complete the model, describing the first-order autoregressive structure of the

exogenous shocks.

2.2.3.2 Solution

Since the early work of Blanchard and Kahn (1980), several techniques for solving

linear difference models under rational expectations have emerged, including the

approaches of Anderson and Moore (1985), Uhlig (1999), Klein (2000), and Sims

(2002). Although these procedures differ with respect to their specific methodol-

ogy, they all allow the solution of the underlying model to be written in state space

form, which enables the use of the Kalman filter to perform a likelihood-based

analysis of DSGE models.

Employing the approach of Klein (2000) on our standard New Keynesian model

6As shown in appendix A, the dynamic IS curve can be derived from the Euler equation of
the representative household (see section 2.2.2.2), while the New Keynesian Phillips curve is
obtained from solving the monopolistically competitive firm’s optimization problem under price
adjustment costs (see section 2.2.2.3).
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leads to a solution in state space form, characterized by a state equation

st+1 = Γ0(μ)st + Γ1(μ)εt+1

and an observation equation

ft = Γ2(μ)st,

where

st =
[
r̂t−1 ẑt v̂t

]′
contains the model’s state variables, including endogenous predetermined and

exogenous variables7,

εt+1 =
[
εzt+1 εvt+1

]′
consists of the serially and mutually uncorrelated innovations of the shocks, and

ft =
[
ŷt π̂t

]′
comprises the model’s flow variables. The matrices Γ0(μ),Γ1(μ), and Γ2(μ) con-

tain (functions of) the model’s parameters μ.

2.3 Taking DSGE Models to the Data

An appealing feature of DSGE models is their applicability for empirical analysis,

making them a widely used tool for empirical research in macroeconomics as

well as quantitative policy analysis and forecasting at central banks all over the

world (see Schorfheide, 2011). In this section, we briefly describe three common

empirical strategies for taking DSGE models to the data: calibration, maximum

likelihood estimation, and Bayesian estimation. For a more detailed description

of empirical methods for DSGE models, we refer to Canova (2007) and DeJong

and Dave (2007).

2.3.1 Calibration

Pioneered by Kydland and Prescott (1982), calibration was the most popular

method for empirical analysis based on DSGE models until the late 1990s (see

7See appendix B for details.
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Karagedikli et al., 2010). According to Kydland and Prescott (1996), “basic”

calibration in the sense of an empirical methodology involves the following five

steps:8

1. Pose an economic question. Such a question can either deal with policy

evaluation issues or with the testing and development of theory.

2. Use a “well-tested theory”, i.e., an explicit set of instructions for building a

mechanical imitation system to answer the question.

3. Construct a model economy that is appropriate to address the question.

4. Calibrate the model economy by choosing values for certain key parameters

of the underlying preferences and technologies using evidence from other

empirical studies (see also Plosser, 1989).

5. Run the experiment. For this, the state space representation derived in

the previous section can be employed to assess theoretical implications of

changes in policy or the ability of a specific model to mimic features of the

real world.

Although, as outlined in Ruge-Murcia (2007), calibration is, in general, a

useful tool for understanding the dynamic properties of DSGE models, the ini-

tial predominance of the calibration approach in the quantitative evaluation of

DSGE models was partly due to the fact that “. . . macroeconomists were unsure

about how to compute their models efficiently, a necessary condition to perform

likelihood-based inference. Moreover, even if economists had known how to do so,

most of the techniques required for estimating DSGE models using a likelihood

approach did not exist” (Fernández-Villaverde and Rubio-Ramı́rez, 2006, p. 1).

Calibration offered a solution to this problem.

2.3.2 Estimation

According to Fernández-Villaverde and Rubio-Ramı́rez (2006), the predominance

of calibration in empirical DSGE analysis decreased considerably in the late 1990s.

8More advanced types of calibration are, for example, based on Bayesian Monte Carlo tech-
niques, taking into account the degree of uncertainty in parameter values (see DeJong et al.,
1996).
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Advances in computer power and the development of new econometric techniques

have facilitated the estimation of DSGE models, and henceforth, as described in

Ruge-Murcia (2007, p. 2622), lead to several benefits compared to calibration:

• Rather than relying on (potentially inconsistent) estimates from micro-

studies to calibrate the model, parameter estimates can be obtained by

imposing the restrictions of the full model under consideration on the data.

• Bootstrapped confidence bands can be computed to quantify the degree of

estimation uncertainty of impulse-responses.

• “. . . [S]tandard tools of model selection and evaluation can be readily ap-

plied.”

As outlined in An and Schorfheide (2007) and Tovar (2009), the empirical lit-

erature features various econometric techniques for estimating DSGE models,

including generalized method of moments (GMM) estimation of equilibrium re-

lationships (see Christiano and Eichenbaum, 1992; Burnside et al., 1993), mini-

mum distance estimation based on minimizing a weighted distance between struc-

tural vector autoregressive (SVAR) and DSGE model impulse-response functions

(see Rotemberg and Woodford, 1997; Christiano et al., 2005), maximum like-

lihood (see Altug, 1989; Leeper and Sims, 1994; Ireland, 1997), and Bayesian

estimation (see DeJong et al., 2000b; Schorfheide, 2000; Otrok, 2001). Accord-

ing to Canova (2007), a key feature distinguishing these different approaches is

the amount of information processed. While limited-information procedures like

GMM only exploit part of the information contained in a subset of the model’s

equilibrium conditions, full-information likelihood-based methods aim at estimat-

ing the entire DSGE model simultaneously. Tovar (2009, p. 14) points out, that

“[i]t is for this reason that the most important strand of the literature has focused

on estimation methods built around the implied likelihood function derived from

the DSGE model.” According to DeJong et al. (2000b), the distinction between

maximum likelihood and Bayesian estimation given a specific model hinges crit-

ically on whether the data or the model parameters are interpreted as random

variables.

Under the classical maximum likelihood approach to inference, “. . . the param-

eters are treated as fixed and the data are treated as unknown in the sense that

their probability distribution (the likelihood) is the center of focus. The question
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is whether the observed data could plausibly have come from the model under a

particular parameterization” (DeJong et al., 2000b, p. 210). Therefore, maximum

likelihood estimation seeks to determine the parameter values that maximize the

likelihood of the observed data given a specific model, where “. . . the uncertainty

regarding the specific values estimated for the parameters is conveyed by report-

ing associated standard errors” (DeJong and Dave, 2007, p. 180). To test for

the empirical plausibility of a specific model, formal hypothesis procedures can be

applied within a maximum likelihood framework (see, for example, Ireland, 2003).

Bayesian analysis takes a different point of view, since the observed data are

treated as fixed whereas the unknown parameters are regarded as random vari-

ables. According to DeJong and Dave (2007), this probabilistic interpretation of

the model parameters allows for the formal incorporation of a priori information in

form of prior distributions specified for the parameters. These prior distributions

“. . . either reflect subjective opinions or summarize information derived from data

sets not included in the estimation sample” (Del Negro and Schorfheide, 2008, p.

1). Therefore, Bayesian estimation is sometimes described as a bridge between

estimation and calibration (see, for example, Kremer et al., 2006; Walsh, 2010),

since it combines the likelihood function, formed by the structure of the model

and the data, with the prior distributions (by employing Bayes’s theorem) to con-

struct a posterior distribution for the parameters of interest. Once the posterior

distribution of the parameters is derived, inference like point estimation or model

comparison can be performed (see Fernández-Villaverde, 2010).

2.4 Conclusion

DSGEmodels have become a standard tool of modern macroeconomics, capable to

bridge the gap between micro-founded macroeconomic theory and the data. This

appealing feature of DSGE models made them a widely used tool for empirical

research in macroeconomics as well as policy analysis and forecasting in central

banking (see Schorfheide, 2011).

In this chapter we describe the general structure of DSGE models and appro-

priate steps to take these models to the data. In particular, we consider a standard

New Keynesian model and expound the basic procedure for setting up and solv-

ing such a prototype DSGE model. Finally, we briefly discuss three common
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strategies used in the empirical analysis of DSGE models: calibration, maximum

likelihood estimation, and Bayesian estimation.
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Appendix A

Equilibrium Conditions

The appendix presents the equation system of the standard New Keynesian DSGE

model.

A.1 The Economic Environment

• Households:

The representative household chooses {ct, lt, Bt}∞t=0 to maximize utility

E

∞∑
t=0

βt
(
c1−σt

1− σ
− χ

l1+ηt

1 + η

)
,

subject to the budget constraint

Bt−1 +Wtlt +Dt

Pt
≥ ct +

Bt/rt
Pt

.

Further, following Buiter and Sibert (2007), we prevent the household from

excessive borrowing by imposing the no-Ponzi-game condition

lim
t→∞

Bt

t∏
s=0

1

rs
≥ 0.

23
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Accordingly, the Lagrangian can be written as follows:

max
ct,lt,Bt

Λ = E

∞∑
t=0

[
βt

(
c1−σt

1− σ
− χ

l1+ηt

1 + η

)
−βtλt

(
ct +

Bt/rt
Pt

− Bt−1

Pt
− Wtlt

Pt
− Dt

Pt

)]
.

The first-order conditions are obtained by setting the partial derivatives of

Λ with respect to ct, lt, Bt, and λt equal to zero, yielding

Λct = c−σt − λt = 0, (2.1)

Λlt = −χlηt + λt
Wt

Pt
= 0, (2.2)

ΛBt =
λt
Pt

− βrtEt

(
λt+1

Pt+1

)
= 0, (2.3)

and

Λλt = ct +
Bt/rt
Pt

− Bt−1

Pt
− Wtlt

Pt
− Dt

Pt
= 0. (2.4)

Finally, we impose the standard transversality conditions to guarantee that

bonds do not grow too quickly:

lim
t→∞

βtλt
Bt

Pt
= 0.

• Finished goods-producing firms:

The representative finished goods-producing firm seeks to maximize its prof-

its

Ptyt −
∫ 1

0

Pt(i)yt(i)di

subject to the constant returns to scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

.

Therefore, the firm’s problem can be written as

max
yt(i)

Πt = Pt

[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

−
∫ 1

0

Pt(i)yt(i)di,
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which leads to the following first-order condition characterizing the demand

for intermediate goods:

∂Πt

∂yt(i)
= yt(i)−

[
Pt(i)

Pt

]−θ
yt = 0.

By plugging this expression into the constant elasticity of scale (CES) ag-

gregator for intermediate goods we obtain the price aggregator

Pt =

[ ∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

• Intermediate goods-producing firms:

The typical intermediate goods-producing firm optimizes along two dimen-

sions. First, each firm wants to minimize its costs subject to the production

technology. The Lagrangian of this problem can be written in real terms as

min
lt(i)

Λ =

(
Wt

Pt

)
lt(i)− ϕt[ztlt(i)− yt(i)],

where

ln(zt) = ρz ln(zt−1) + εzt. (2.5)

Therefore, we have the first-order conditions

Λlt(i) =
Wt

Pt
− ϕtzt = 0 (2.6)

and

Λϕt = ztlt(i)− yt(i) = 0. (2.7)

Second, each intermediate goods-producing firm seeks to maximize its present

discounted value of profits

E

∞∑
t=0

βtλt[Dt(i)/Pt],
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by choosing {yt(i), Pt(i)}∞t=0 subject to the demand for intermediate goods

yt(i) =

[
Pt(i)

Pt

]−θ
yt.

We can use the latter expression to rewrite the real value of dividends

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)− ϕtyt(i)− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt (2.8)

as

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θ
yt − ϕt

[
Pt(i)

Pt

]−θ
yt − φP

2

[
Pt(i)

πPt−1(i)
− 1

]2

yt. (2.8′)

Therefore, the firms’ intertemporal optimization problem can be written as

max
Pt(i)

E
∞∑
t=0

(
βtλt

{[
Pt(i)

Pt

]1−θ
yt − ϕt

[
Pt(i)

Pt

]−θ
yt

−φ
2

[
Pt(i)

πPt−1(i)
− 1

]2

yt

})
,

leading to the following first-order condition:

λt

{
(1− θ)

[
Pt(i)

Pt

]−θ
yt
Pt

+ ϕtθ

[
Pt(i)

Pt

]−θ−1
yt
Pt

− φp

[
Pt(i)

πPt−1(i)
− 1

]
yt

πPt−1(i)

}

+βEt

{
λt+1φp

[
Pt+1(i)

πPt(i)
− 1

] [
Pt+1(i)

πPt(i)2

]
yt+1

}
= 0.

(2.9)

• The monetary authority sets the gross nominal interest rate according to

the modified Taylor rule

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+(1−ρr)

[
ωπ ln

(
πt
π

)
+ωy ln

(
yt
y

)]
+ln(υt), (2.10)

where

ln(υt) = ρυ ln(υt−1) + ευt. (2.11)
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A.2 The Nonlinear System

A.2.1 Symmetric Equilibrium

The model is characterized by the nonlinear difference equations (2.1) − (2.7),

(2.8′), (2.9)− (2.11). To close the model, two additional steps are required. First,

we focus on a symmetric equilibrium, where all intermediate goods-producing

firms make identical decisions. This implies Pt(i) = Pt, yt(i) = yt, lt(i) = lt,

and Dt(i) = Dt for all i ∈ [0, 1] and t = 0, 1, 2, .... Second, the market clearing

condition for the bond market, Bt = Bt−1 = 0 must hold for all t = 0, 1, 2, .... By

substituting these conditions into (2.1)− (2.11) we obtain:

c−σt = λt, (2.1)

χlηt = λt
Wt

Pt
, (2.2)

λt
Pt

= βrtEt

(
λt+1

Pt+1

)
, (2.3)

ct =
Wtlt
Pt

+
Dt

Pt
, (2.4)

ln(zt) = ρz ln(zt−1) + εzt, (2.5)

Wt

Pt
= ϕtzt, (2.6)

yt = ztlt, (2.7)

Dt

Pt
= yt − ϕtyt − φP

2

[
Pt

πPt−1
− 1

]2

yt, (2.8′)

λt

[
(1− θ)yt + ϕtθyt − φp

(
Pt

πPt−1

− 1

)
Pt

πPt−1

yt

]
= −βEt

[
λt+1φp

(
Pt+1

πPt
− 1

)[
Pt+1

πPt

]
yt+1

]
,

(2.9)

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt), (2.10)

and

ln(υt) = ρυ ln(υt−1) + ευt. (2.11)
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A.2.2 Change of Variables and System Reduction

We can rewrite the nonlinear system by defining πt =
Pt

Pt−1
, wt =

Wt

Pt
, and dt =

Dt

Pt
.

In terms of these re-defined variables (2.1), (2.2), (2.3), (2.4), (2.5)− (2.7), (2.8′),

and (2.9)− (2.11) become:

c−σt = λt, (2.1)

χlηt = λtwt, (2.2)

λt = βrtEt

(
λt+1

πt+1

)
, (2.3)

ct = wtlt + dt, (2.4)

ln(zt) = ρz ln(zt−1) + εzt, (2.5)

wt = ϕtzt, (2.6)

yt = ztlt, (2.7)

dt = yt − ϕtyt − φP
2

[πt
π

− 1
]2
yt, (2.8′)

λt

[
(1− θ)yt + ϕtθyt − φp

(πt
π

− 1
)(πt

π

)
yt

]
= −βEt

[
λt+1φp

(πt+1

π
− 1

) [πt+1

π

]
yt+1

]
,

(2.9)

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt), (2.10)

and

ln(υt) = ρυ ln(υt−1) + ευt. (2.11)

Following King and Watson (2002), we apply a system reduction and use

equation (2.1), (2.2), (2.6), (2.7), and (2.8′) to eliminate lt, wt, dt, and ϕt. The

reduced system can be written as

c−σt = βrtEt

(
c−σt+1

πt+1

)
, (2.3′)

yt = ct +
φP
2

[πt
π

− 1
]2
yt, (2.4′)

ln(zt) = ρz ln(zt−1) + εzt, (2.5)
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c−σt

[
(1− θ)yt + χ

(
yt
zt

)1+η

cσt θ − φp

(πt
π

− 1
)(πt

π

)
yt

]
= −βEt

[
c−σt+1φp

(πt+1

π
− 1

) [πt+1

π

]
yt+1

]
,

(2.9′)

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt), (2.10)

and

ln(υt) = ρυ ln(υt−1) + ευt. (2.11)

A.3 Steady States

In absence of the two shocks, i.e., εzt = εvt = 0 for all t = 0, 1, 2..., the economy

converges to a steady state in which each of the six variables of the reduced system

is constant. We use (2.5) and (2.11) to solve for

z = 1,

v = 1.

By assuming that the monetary authority targets zero inflation, implying a gross

steady state inflation rate π equal to one, (2.3′) can be used to solve for

r =
1

β
.

Use (2.4′) to solve for

c = y.

Finally use (2.4′), (2.5), and (2.9′) to solve for

y =

[
1

χ

(
θ − 1

θ

)] 1
η+σ

.

A.4 The Linearized System

The nonlinear system (2.3′), (2.4′), (2.5), (2.9′), (2.10), and (2.11) can be linearized

by taking a log-linear approximation of the model at steady state values. For a

detailed description of logarithmic approximations, we refer to Canova (2007),
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DeJong and Dave (2007), and Zietz (2008). Let v̂art ≡ log
(
vart
var

)
denote the

log-deviation of some variable vart from its steady state var, where log
(
vart
var

) ≈
vart−var

var
. A first-order Taylor approximation of equation (2.3′) − (2.11) at the

steady state gives:

ĉt = Etĉt+1 − 1

σ
(r̂t − Etπ̂t+1) , (2.3′)

ŷt = ĉt, (2.4′)

ẑt = ρz ẑt−1 + εzt, (2.5)

π̂t = βEtπ̂t+1 +

(
θ − 1

φP

)
(σĉt + ηŷt)− (θ − 1)(1 + η)

φP
ẑt, (2.9′)

r̂t = ρrr̂t−1 + (1− ρr)(ωππ̂t + ωyŷt) + v̂t, (2.10)

and

v̂t = ρvv̂t−1 + εvt. (2.11)

By using (2.4′) we can rewrite the linearized system as

ŷt = Etŷt+1 − 1

σ
(r̂t − Etπ̂t+1) , (2.3′′)

ẑt = ρz ẑt−1 + εzt, (2.5)

π̂t = βEtπ̂t+1 +
θ − 1

φP
(η + σ)ŷt − θ − 1

φP
(1 + η)ẑt, (2.9′′)

r̂t = ρrr̂t−1 + (1− ρr)(ωππ̂t + ωyŷt) + v̂t, (2.10)

and

v̂t = ρvv̂t−1 + εvt. (2.11)
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Solving the Model

B.1 Klein’s method

A solution of the model can be obtained by applying the approach of Klein (2000)

for solving linear difference models under rational expectations. Therefore, the

model is brought into the form:

AEts
0
t+1 = Bs0t + Cζt (2.12)

ζt = Pζt−1 + εt, (2.13)

where A, B, and C are coefficient matrices, P contains the persistence param-

eters of the shocks, ζt consists of the model’s exogenous forcing variables while

the serially and mutually uncorrelated innovations are included in εt (see DeJong

and Dave, 2007). Similar to the approach of Blanchard and Kahn (1980) s0t can

be separated into

s0t = [s01t s
0
2t]

′,

letting s01t denote a vector of predetermined and s02t a vector of non-predetermined

variables, which implies that:

Etst+1 = [s01t+1 Ets
0
2t+1]

′.

The solution method relies on decoupling the system into unstable and stable

portions, using a complex generalized Schur decomposition, and then solving the

two components in turn. If the number of unstable generalized eigenvalues of

31
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A and B is equal to the number of non-predetermined variables, the system is

said to be saddle-path stable and a unique solution exists. In contrast to the

method of Blanchard and Kahn (1980), which relies on a Jordan decomposition,

Klein’s procedure does not require invertibility of matrix A. The subsequent

sections follow the expositions in Klein (2000), DeJong and Dave (2007), and the

technical notes of Ireland (2011).1

B.2 Solution

Let

s0t =
[
r̂t−1 ŷt π̂t

]′
,

ζt =
[
ẑt v̂t

]′
,

P =

[
ρz 0

0 ρv

]
,

and

εt =
[
εzt εvt

]′
.

Then the coefficient matrices A, B, and C of the model are:

A =

⎡⎢⎣ − 1
σ

1 1
σ

0 0 −β
1 0 0

⎤⎥⎦ ,

B =

⎡⎢⎣ 0 1 0

0 θ−1
φP

(η + σ) −1

ρr (1− ρr)ωy (1− ρr)ωπ

⎤⎥⎦ ,
and

C =

⎡⎢⎣ 0 0

−θ−1
φP

(1 + η) 0

0 1

⎤⎥⎦ .
Following Klein (2000), we apply the complex generalized Schur decomposition

1The technical notes of Ireland (2011) are available at
http://www.irelandp.com/progs/nkp.zip.
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of A and B, which is given by

QAZ = S

and

QBZ = T

where Q and Z are unitary and S and T are upper triangular matrices. The

generalized eigenvalues of B and A can be recovered as the ratios of the diagonal

elements of T and S:

λ(B,A) = {tii/sii|i = 1, 2, 3}.

The matrices Q,Z, S, and T can always be arranged so that the generalized

eigenvalues are ordered in increasing value in moving from left to right. Note

that one variable in the vector s0t is predetermined and two variables are non-

predetermined. Given this setup, Blanchard and Kahn (1980) prove the following

three propositions.

• PROPOSITION 1: If the number of eigenvalues outside the unit circle is

equal to the number of non-predetermined variables, then there is a unique

solution to the system.

• PROPOSITION 2: If the number of eigenvalues outside the unit circle is

greater than the number of non-predetermined variables, then there is no

solution to the system.

• PROPOSITION 3: If the number of eigenvalues outside the unit circle is less

than the number of non-predetermined variables, then there is an infinite

number of solutions.

We proceed under the case of saddle-path stability, assuming exactly two gener-

alized eigenvalues to lie outside the unit circle and therefore allow for a unique

solution. The matrices Q,Z, S, and T are portioned, so that

Q =

[
Q1

Q2

]
,
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where Q1 is 1× 3 and Q2 is 2× 3 and

Z =

[
Z11 Z12

Z21 Z22

]
,

S =

[
S11 S12

0(2×1) S22

]
,

T =

[
T11 T12

0(2×1) T22

]
,

where Z11, S11, and T11 are 1× 1 and Z12, S12, and T12 are 1× 2, Z21 is 2× 1,

and Z22, S22, and T22 are 2× 2. To “triangularize” the system we first define the

vector of auxiliary variables as

s1t = ZHs0t ,

letting ZH denote the conjugate transpose of matrix Z, so that

s1t =

[
s11t

s12t

]
,

where

s11t = ZH
11r̂t−1 + ZH

21

[
ŷt

π̂t

]
(2.14)

is 1× 1 and

s12t = ZH
12r̂t−1 + ZH

22

[
ŷt

π̂t

]
(2.15)

is 2 × 1. Since Z is unitary, ZHZ = I or ZH = Z−1 and hence s0t = Zs1t . We

use this property to rewrite (2.12) as

AZEts
1
t+1 = BZs1t + Cζt.

Premultiplying this equation by Q gives[
S11 S12

0 S22

]
Et

[
s11t+1

s12t+1

]
=

[
T11 T12

0 T22

][
s11t
s12t

]
+

[
Q1

Q2

]
Cζt,
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or in matrix partitions,

S11Ets
1
1t+1 + S12Ets

1
2t+1 = T11s

1
1t + T12s

1
2t +Q1Cζt (2.16)

and

S22Ets
1
2t+1 = T22s

1
2t +Q2Cζt. (2.17)

Since the generalized eigenvalues of A and B corresponding to the diagonal ele-

ments of S22 and T22 all lie outside the unit circle, (2.17) can be solved forward

to obtain

s12t = −T−1
22 Rζt,

where the 2× 2 matrix R is given by “reshaping”2

vec(R) = vec
∞∑
j=0

(S22T
−1
22 )jQ2CP

j =
∞∑
j=0

vec[(S22T
−1
22 )jQ2CP

j]

=

∞∑
j=0

[P j ⊗ (S22T
−1
22 )j ]vec(Q2C) =

∞∑
j=0

[P ⊗ (S22T
−1
22 )]jvec(Q2C)

= [I(4×4) − P ⊗ (S22T
−1
22 )]−1vec(Q2C).

Using this result together with equation (2.15) allows to solve for[
ŷt

π̂t

]
= −(ZH

22)
−1ZH

12r̂t−1 − (ZH
22)

−1T−1
22 Rζt. (2.18)

Under the assumption that Z is unitary, i.e.,[
ZH

11 ZH
21

ZH
12 ZH

22

]
︸ ︷︷ ︸

ZH

[
Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Z

=

[
I(1×1) 0(1×22)

0(2×1) I(2×2)

]
︸ ︷︷ ︸

I

,

we find

ZH
12Z11 + ZH

22Z21 = 0,

2As outlined in Hamilton (1994a) and DeJong and Dave (2007) the appearance of the vec
operator accommodates the VAR specification for ζt. We use the relationship between vec
operator and Kronecker product: vec[(S22T

−1
22 )jQ2CP j ] = [(P j)′ ⊗ (S22T

−1
22 )j ]vec(Q2C). Note

that P ′ = P , since P is a diagonal matrix.
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−(ZH
22)

−1ZH
12 = Z21Z

−1
11 ,

ZH
12Z12 + ZH

22Z22 = I,

and

(ZH
22)

−1 = Z22 + (ZH
22)

−1ZH
12Z12 = Z22 − Z21Z

−1
11 Z12,

which allows to rewrite (2.18) as[
ŷt

π̂t

]
=M1r̂t−1 +M2ζt, (2.18′)

with

M1 = Z21Z
−1
11

and

M2 = −[Z22 − Z21Z
−1
11 Z12]T

−1
22 R.

Now we can solve (2.14) for s11t

s11t = (ZH
11 + ZH

21Z21Z
−1
11 )r̂t−1 − ZH

21[Z22 − Z21Z
−1
11 Z12]T

−1
22 Rζt,

using

ZH
11Z11 + ZH

21Z21 = I,

ZH
11 + ZH

21Z21Z
−1
11 = Z−1

11 ,

and

ZH
21[Z22 − Z21Z

−1
11 Z12] = ZH

21Z22 − ZH
21Z21Z

−1
11 Z12 = −Z−1

11 Z12,

so that

s11t = Z−1
11 r̂t−1 + Z−1

11 Z12T
−1
22 Rζt.

If we plug this expression result into equation (2.16) we get

r̂t =M3r̂t−1 +M4ζt, (2.19)
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where

M3 = Z11S
−1
11 T11Z

−1
11

and

M4 = Z11S
−1
11 (T11Z

−1
11 Z12T

−1
22 R+Q1C + S12T

−1
22 RP − T12T

−1
22 R)− Z12T

−1
22 RP.

Hence, the model’s solution can be written compactly in state space form by

combining (2.13), (2.18′), and (2.19) as

st+1 = Γ0st + Γ1εt+1, (2.20)

and

ft = Γ2st, (2.21)

where

st =
[
r̂t−1 ẑt v̂t

]′
,

ft =
[
ŷt π̂t

]′
,

εt =
[
εzt εvt

]′
,

Γ0 =

[
M3 M4

0(2×1) P

]
,

Γ1 =

[
0(1×2)

I(2×2)

]
,

and

Γ2 =
[
M1 M2

]
.
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Chapter 3

Testing for Parameter Stability in

DSGE Models. The Cases of

France, Germany, Italy, and

Spain

This chapter is joint work with Jürgen Jerger. It presents an extended version

of Jerger and Röhe (2012). We expand the model presented in chapter 2 by

adding endogenous capital formation, capital adjustment costs, as well as prefer-

ence shocks and a shock to the marginal efficiency of investment. Furthermore, we

introduce real money balances into the household’s utility function, to generate

an explicit role for money other than that of a pure unit of account.

3.1 Introduction

DSGE models emerged as a standard tool of modern macroeconometrics. The

attractiveness of this class of models lies in the symbiosis of theoretical macroe-

conomic models with the recent developments in macroeconometric analysis (see

DeJong and Dave, 2007). As outlined in Fernández-Villaverde (2010), consid-

erable advances made in both theoretical and empirical DSGE research led to

a progressive discipline, reshaping our thinking about macroeconomic modeling

and economic policy advise. We contribute to this area of research by employing

an econometric technique, recently introduced by Inoue and Rossi (2011), to test

39
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for parameter stability in a New Keynesian model estimated for the four largest

countries of the European Monetary Union (EMU): France, Germany, Italy, and

Spain. Therefore, we add to a vast literature that developed around the topic of

economic integration within Europe. One of the important aspects of this ongoing,

gradual integration process was the introduction of a common monetary policy

in the EMU. Evaluating the overall macroeconomic performance in 2008, the Eu-

ropean Commission (2008) summarizes that the record after almost one decade

of the EMU looks quite favorable. More detailed analyses of European economic

integration can be grouped into four distinct strands of literature. The first looks

at the implications of a common currency for other economic institutions like

regulation or wage setting (see, for example, von Hagen, 1999; Cukierman and

Lippi, 2001; Jerger, 2002; Fratzscher and Stracca, 2009). A second one analyzes

the (change of) different transmission channels of monetary policy (Angeloni and

Ehrmann, 2006; Hughes Hallett and Richter, 2009; Jarocinski, 2010). Thirdly,

the availability of micro-data, especially for loans and prices, led to a large lit-

erature studying the economically convergence across countries due to monetary

union (Fischer, 2012; Popov and Ongena, 2011). A fourth and relatively re-

cent literature uses DSGE models to characterize the euro area or the economies

in this region within some well-defined theoretical framework (see, for example,

Smets and Wouters, 2003; Coenen and Wieland, 2005; Casares, 2007; Sahuc and

Smets, 2008).

In this chapter we contribute to the last strand and add the dimensions pa-

rameter stability over time and cross country comparisons. Therefore we employ

the ESS procedure (“Estimate of Set of Stable parameters”) introduced by Inoue

and Rossi (2011). The ESS procedure allows to pin down the subset of parameters

of a model that are stable for an unknown break date. Following Inoue and Rossi

(2011, p. 9), “. . . our analysis focuses on the situation in which there is a single,

unanticipated and once for all shift in some of the parameters of the structural

model at an unknown time, and in which there is an immediate convergence to a

rational-expectations equilibrium after the regime change.”

In the case of France, Germany, and Italy our results point to structural breaks

after the beginning of the second stage of EMU in the mid-1990s, while the esti-

mates for Spain show a significant break just before the start of the third stage

in 1998. We identify significant changes in monetary policy behavior for France,

Italy, and Spain, whereas monetary policy in Germany appears to be stable over
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time. We also find significant declines in capital and price adjustment costs in

France, Italy, and Spain.

The rest of the chapter is structured as follows. Section 3.2 describes the

model. Section 3.3 discusses data issues. Section 3.4 outlines the ESS procedure.

Section 3.5 presents the results. Section 3.6 concludes. Technical details of the

model setup, its solution, and the construction of the likelihood appear in the

appendices.

3.2 The Model

3.2.1 Overview

The model we use for France, Germany, Italy, and Spain is similar to the stan-

dard closed-economy New Keynesian framework developed in Ireland (2003). The

model economy features a representative household, a representative finished

goods-producing firm, a continuum of intermediate goods-producing firms indexed

by i ∈ [0, 1], and a monetary policy authority. During each period t = 0, 1, 2, ...,

the intermediate goods-producing firms owned by the household produce a dis-

tinct, perishable intermediate good, also indexed by i ∈ [0, 1]. The solution

requires these firms to be treated symmetrically.

We choose a closed-economy approach, since openness complicates the mod-

eling of a capital formation process, which is a central part of the present model

(see also the discussion by DiCecio and Nelson, 2007, who apply a closed-economy

model to the UK, as well as the remarks of Obstfeld, 2002, and Neiss and Nelson,

2003 concerning the choice of closed-economy models).

We next characterize the decisions taken by households and firms before look-

ing at the behavior of the monetary authority and sketching the solution of the

model.1

3.2.2 Households

The representative household enters period t holding Mt−1, Bt−1, and kt units of

money, one-period bonds and physical capital. In addition to this endowment,

the household receives a lump sum transfer Tt from the monetary authority at

1 Appendices C and D provide a summary of the complete model and its solution.
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the beginning of period t. The household receives Wtlt + Qtkt total nominal

factor payments from supplying lt(i) units of labor and kt(i) units of capital to

each intermediate goods-producing firm i ∈ [0, 1], letting Wt and Qt denote the

nominal wage rate for labor and the nominal rental rate for capital, respectively.

For all t = 0, 1, 2, ..., the household’s choices of lt(i) and kt(i) must satisfy

lt =

∫ 1

0

lt(i)di,

where lt denotes total hours worked
2, and

kt =

∫ 1

0

kt(i)di.

Finally, the household earns nominal dividends

Dt =

∫ 1

0

Dt(i)di

from the ownership of the intermediate goods-producing firms. Each source of

income is measured in units of money.

The household uses its funds to purchase new bonds at the nominal cost Bt/rt,

where rt denotes the gross nominal interest rate between time periods, or output

from the final goods sector at price Pt. This good can be used for consumption

ct or investment it. In the latter case, quadratic capital adjustment cost given by

φK
2

(
kt+1

kt
− 1

)2

kt

accrue to the household. The parameter φK ≥ 0 governs the size of these adjust-

ment costs. The capital accumulation process is given by

kt+1 = (1− δ)kt + xtit, (3.1)

with 0 < δ < 1 denoting the rate of depreciation and xt representing a shock to

the marginal efficiency of investment. This shock is specified as

ln(xt) = ρx ln(xt−1) + εxt, (3.2)

2The endowment of time is normalized to one.
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with 0 < ρx < 1 and εxt ∼ N(0, σ2
x) as introduced by Greenwood et al. (1988).

The budget constraint of the representative household is given by

Mt−1 + Tt +Bt−1 +Wtlt +Qtkt +Dt

Pt
≥ ct+it+

φK
2

(
kt+1

kt
− 1

)2

kt+
Bt/rt +Mt

Pt
.

In addition, we impose a no-Ponzi-game condition to prevent the household from

excessive borrowing. Given these constraints, the household maximizes the stream

of expected utility

E
∞∑
t=0

βt
{
at

[
γ

γ − 1

]
ln

[
c
(γ−1)/γ
t + e

1/γ
t (Mt/Pt)

(γ−1)/γ
]
+ χ ln(1− lt)

}
,

where 0 < β < 1 is a discount factor and χ > 0 measures the relative weight of

leisure in the utility function. Further, it can be shown that γ is the absolute value

of the interest rate elasticity of money demand. The utility function contains two

preference shocks, which are both assumed to follow an autoregressive process. In

particular,

ln(at) = ρa ln(at−1) + εat, (3.3)

whith 0 < ρa < 1 and εat ∼ N(0, σ2
a) denotes an IS shock (McCallum and Nel-

son, 1999), whereas

ln(et) = (1− ρe) ln(e) + ρe ln(et−1) + εet (3.4)

represents a money demand shock with 0 < ρe < 1, e > 0 and εet ∼ N(0, σ2
e).

3.2.3 Firms

The final good yt is produced by a firm, acting in a perfectly competitive market,

which combines the intermediate goods yt(i) according to the constant returns to

scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

,

where θ > 1 represents the elasticity of substitution between intermediate goods

yt(i). With Pt(i) denoting the price of intermediate good i, profit maximization
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leads to the following demand function for intermediate goods

yt(i) =

[
Pt(i)

Pt

]−θ
yt,

where

Pt =

[∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

Each intermediate good i is produced by a single monopolistically competitive

firm according to the constant returns to scale technology

yt(i) ≤ kt(i)
α[ztlt(i)]

1−α,

where 1 > α > 0 represents the elasticity of output with respect to capital. The

technology shock zt follows the autoregressive process

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt (3.5)

with 1 > ρz > 0, z > 0 and εzt ∼ N(0, σ2
z). Although each firm i enjoys some

market power on its own output, it is assumed to act as a price taker in the factor

markets. Furthermore, the adjustment of its nominal price Pt(i) is assumed to

be costly, where the cost function is convex in the size of the price adjustment.

Following Rotemberg (1982), these costs are defined as

φP
2

[
Pt(i)

πPt−1(i)
− 1

]2
yt,

where φP ≥ 0 governs the size of price adjustment costs and π denotes the gross

steady state rate of inflation targeted by the monetary authority. Due to these

convex adjustment costs, the firm’s optimization problem becomes dynamic. It

chooses lt(i), kt(i), yt(i), and Pt(i) to maximize its total market value

E

∞∑
t=0

βtλt

[
Dt(i)

Pt

]

subject to the demand function for intermediate goods, where λt measures the

period tmarginal utility to the representative household provided by an additional

unit of profits. The firm’s profits distributed to the household as dividends, are
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defined in real terms by

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)− Wtlt(i) +Qtkt(i)

Pt
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2

yt.

3.2.4 Monetary policy

Similar to Ireland (2001), monetary policy is represented by a generalized Taylor

rule of the form

ln(rt/r) = ωτ ln(τt/τ) + ωπ ln(πt/π) + ωy ln(yt/y) + ln(υt),

encompassing the standard Taylor (1993) rule (when ωτ = 0), where the monetary

authority changes interest rates in response to inflation and output deviations.3 If

ωτ is non-zero, monetary policy can be considered to influence a linear combination

of the interest rate rt and the money growth rate τt = Mt/Mt−1 in response to

deviations of gross inflation and detrended output from their steady state values.4

The latter specification allows for two alternative interpretations. On the one

hand, the central bank responds to money growth because it wishes to protect

the economy from the effects of money demand shocks, on the other hand, the

monetary authority reacts since money growth is a predictor of future inflation

(see Christensen and Dib, 2008) and has a predictive value beyond the other

variables contained in the Taylor (1993) rule.

The monetary policy shock υt follows the autoregressive process

ln(υt) = ρυ ln(υt−1) + ευt, (3.6)

where 0 < ρυ < 1 and ευt ∼ N(0, σ2
υ).

This characterization of the monetary authority does not even ask the question

of optimal monetary policy. Being aware that there are a lot of alternative speci-

fications of monetary reaction functions and that it might be doubtful to assume

an identical specification of the monetary policy function for the four economies

under consideration we would like to stress that we are much more interested

3The above Taylor rule is a simplified version of the monetary policy rule presented in chapter
2 with ρr = 0, i.e., no interest smoothing.

4Note that the steady state money growth rate τ is assumed to be determined by the monetary
authority.
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in examining the statistical relationship between short term interest rates, infla-

tion, money growth, and the output gap in four different countries than in issues

regarding the specification of monetary policy.

3.2.5 Solution and Estimation

The model is characterized by a set of nonlinear difference equations, namely the

first-order conditions for the three agents’ problems, the laws of motion for the

five exogenous shocks, and the monetary policy rule. Two additional steps are

required to close the model. First, to get from sectoral to aggregate variables,

symmetric behavior within the intermediate sector is assumed, implying Pt(i) =

Pt, yt(i) = yt, lt(i) = lt, kt(i) = kt, and Dt(i) = Dt for all i ∈ [0, 1]. Second, the

market clearing conditions for both the money market Mt = Mt−1 + Tt and the

bond market Bt = Bt−1 = 0 must hold for all t = 0, 1, 2....

Since the model is nonlinear, no exact analytical closed-form solution exists

in general. An approximation is obtained by computing the steady state, log-

linearizing the system around the steady state, and then applying the method

of Blanchard and Kahn (1980) to solve linear difference models under rational

expectations (see appendices C and D). The solution takes on the form of a state

space representation with a state equation

st+1 = Γ0(μ)st + Γ1(μ)εt+1

and an observation equation

ft = Γ2(μ)st,

where the vector st contains the model’s state variables including the current

capital stock, lagged real balances and the five exogenous shocks. The vector εt+1

consists of the mutually as well as serially uncorrelated innovations εat+1, εet+1,

εxt+1, εzt+1, ευt+1 while the vector ft comprises the model’s flow variables including

current values of consumption, investment, inflation and the nominal interest rate.

The matrices Γ0(μ), Γ1(μ), and Γ2(μ) contain (functions of) the parameters μ

of the model. These parameters are estimated using maximum likelihood. As

outlined in Canova (2007, p. 123), “. . . the likelihood function of a state space

model can be conveniently expressed in terms of one-step-ahead forecast errors,

conditional on the initial observations, and of their recursive variance, both of
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which can be obtained with the Kalman filter.”5 Because likelihoods can have

several peaks we use multiple starting values as well as different numerical search

algorithms to circumvent stalling at a local peak.6

3.3 Data

To estimate the structural parameters of the model we use French, German, Ital-

ian, and Spanish quarterly (seasonally adjusted) data for consumption, invest-

ment, money balances, inflation, and the interest rate.7 While French, German,

and Italian time series data run from 1980:Q1 to 2008:Q3, we decided to follow

Burrriel et al. (2010) and drop the data before 1987:Q1 for Spain because the

changes in the structure of the Spanish economy were too substantial in the early

1980s. Consumption and investment are measured by real personal consumption

and real gross fixed capital formation in per capita terms. Real money balances

are constructed by dividing the monetary aggregate M3 (again per capita) by

the consumer price index, which we use to construct a measure of inflation. The

interest rate is measured by the three month money market rate.8

Following Fagan et al. (2005), we deal with the break in the series for Ger-

many due to re-unification by re-scaling the West German series for consumption,

investment, and money prior to re-unification by the ratio of the values for West

Germany and Germany at re-unification. We detrend the time series for (logs

of) consumption, investment and M3 applying the Hodrick-Prescott (H-P) filter,

although we are aware of the potential problem of spuriousness, as pointed out in

DeJong and Dave (2007) and Canova and Ferroni (2011).9

Despite its relative simplicity the model contains a large number of parameters

that are difficult to estimate precisely on only five time series. Hence, a number

of parameters had to be fixed prior to estimation. The value of χ is set to 1.5

5For a detailed description of the Kalman filter we refer to appendix E.
6Therefore, we implement Christopher Sims’ hybrid optimization algorithm “csminwel”,

which combines the derivative-based Broyden-Fletcher-Goldfarb-Shannon (BFGS) method with
a simplex algorithm (see DeJong and Dave, 2007 and Heer and Maussner, 2009 for details). The
“csminwel” program is available at http://sims.princeton.edu/yftp/optimize/.

7Since the model contains as many structural shocks as observable variables the problem of
stochastic singularity is avoided (see Ingram, Kocherlakota and Savin, 1994).

8Appendix F presents the data sources.
9To facilitate the process of parameter estimation, we follow DeJong and Dave (2007, Chap-

ter 11.2.5) and perform further data alignment by scaling the filtered series using their (relative)
means.
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which implies that the representative household’s labor supply in the steady state

amounts to one-third of its time. In addition, the depreciation rate δ is set to

0.025, corresponding to an annual depreciation rate of about 10 percent and θ

is fixed at 6, implying a steady state markup of prices over marginal cost of 20

percent. Lastly, we set the elasticities of output with respect to capital of each

country equal to their respective average capital income share, calculated from

OECD data. The steady state money growth rate of each country is set equal to

the average rate of inflation for the whole sample under consideration.

3.4 Estimating the Set of Stable Parameters: The

ESS Procedure

In this section we outline the ESS procedure developed by Inoue and Rossi (2011),

which allows to identify the subset of parameters of a model that are stable over

time. They propose the following recursive procedure. First, test the joint null

hypothesis that all parameters are stable, using a consistent test for structural

breaks. Following Inoue and Rossi (2011), we employ Andrews’ (1993) Quandt

Likelihood Ratio (QLR) stability test. If the null hypothesis is not rejected, then

all the parameters belong to the set of stable parameters. If it is, the p-values of

the individual test statistics are calculated to test whether each of the parameters

is stable. Then the parameter with the lowest p-value is eliminated from the set of

stable parameters, since this is the one that is most likely to be unstable. Second,

it is tested whether the remaining parameters are jointly stable. If they are, then

the set of stable parameters includes those parameters; otherwise, eliminate the

parameter with the second lowest p-value from the set, and continue this procedure

until the joint test on the remaining parameters does not reject stability.

Two specific features of the ESS procedure have to be emphasized:

(i) The individual tests do not rely on the assumption that the other parameters

are constant over time.
”
If the parameters that are assumed to be constant

are in reality time-varying, [a “one at a time” approach] may incorrectly

attribute the time variation to the wrong source“ (Inoue and Rossi, 2011, p.

1186). Therefore, the individual tests allow all the other parameters to be

time-varying.
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(ii) The ESS approach overcomes the problem of size distortions, which arises

“... in existing tests for structural breaks when used repeatedly to test struc-

tural changes in more than one subset of parameters” (Inoue and Rossi, 2011,

p. 1203).10

3.5 Results

3.5.1 Full Sample Estimates

Here we first report the estimates for the whole sample before moving to the

identification of parameter instabilities in section 3.5.2.

For each country table 3.1 presents the full sample maximum likelihood es-

timates of the parameters as well as the respective standard errors. The latter

are computed using a parametric bootstrapping technique as in Cho and Moreno

(2006) or Ireland (2007). According to Ireland (2007), this procedure simulates

the estimated model for each country to generate 1000 samples of artificial data

for real personal consumption, real gross fixed capital formation, real money bal-

ances, inflation, and the short term interest rate, each containing the same number

of observations as the original samples of the four EMU countries, and then re-

estimates the model 1000 times using these artificial data sets. For a detailed

description of the parametric bootstrapping analysis we refer to Efron and Tib-

shirani (1993). The absolute value of the maximized log likelihood function is

indicated by |L|.
To compare parameter estimates of the full samples across countries, we em-

ploy the Andrews and Fair (1988) Wald test. The Wald statistic can be written

as

W =
(ai − aj)

2

σ2
ai
+ σ2

aj

,

where a and σa denote the point estimate of a parameter and the associated boot-

strapped standard deviation, respectively, for country i, j ∈ {France, Germany,

Italy, Spain}, i 	= j. The test statistic W follows a χ2(1) distribution under the

null hypothesis of ai = aj. For a detailed discussion on the use of the bootstrap

10For a more detailed description of the methodology, including a formal description of the
algorithm and proofs, we refer to Inoue and Rossi (2011) as well as to their not-for-publication
appendix; see http://econ.duke.edu/ brossi/NotforPublicationAppendixInoueRossi2009.pdf.
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France Germany Italy Spain
Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

β 0.9905 0.0112 0.9921 0.0008 0.9998 0.0410 0.9932 0.0277
γ 0.0152 0.0091 0.0738 0.0079 0.0067 0.0157 0.0366 0.0334
φP 10.2132 2.7778 13.9927 0.3103 46.7997 14.2531 27.0936 6.9245
φK 26.5408 4.1028 30.2681 0.4301 35.4014 6.2435 20.5672 3.4103
ωτ 0.2009 0.0411 0.4362 0.0078 0.5647 0.1378 0.3163 0.0832
ωπ 0.9391 0.1491 1.6001 0.0020 1.0750 0.4163 0.8161 0.0901
ωy -0.1011 0.0842 -0.0024 0.0039 -0.1673 0.1378 -0.0711 0.0495
e 4.1884 0.0202 2.9638 0.0001 3.7456 0.9409 4.3559 0.0056
z 4214.3794 0.0001 4184.4958 0.0001 3189.9297 0.0080 1866.9879 0.0001
ρa 0.9678 0.0357 0.9003 0.0025 0.8587 0.0782 0.9731 0.0221
ρe 0.8778 0.0552 0.8796 0.0023 0.9877 0.0350 0.9360 0.0373
ρx 0.9615 0.0381 0.9061 0.0008 0.9873 0.0386 0.9294 0.1063
ρz 0.9125 0.0318 0.9162 0.0019 0.9871 0.0626 0.9210 0.0518
ρυ 0.4826 0.0096 0.2397 0.0108 0.1425 0.3356 0.3818 0.0121
σa 0.0124 0.0012 0.0149 0.0010 0.0258 0.0178 0.0189 0.0020
σe 0.0096 0.0007 0.0145 0.0012 0.0135 0.0030 0.0102 0.0003
σx 0.0236 0.0201 0.0816 0.0065 0.2162 0.1450 0.0182 0.0094
σz 0.0090 0.0012 0.0141 0.0010 0.0334 0.0052 0.0140 0.0014
σv 0.0041 0.0007 0.0070 0.0005 0.0105 0.0028 0.0069 0.0008
|L| 2195.2950 2038.4201 1891.2450 1553.1251

Table 3.1: Maximum Likelihood Estimates: Full Samples.

in hypothesis testing we refer to Cameron and Trivedi (2005).11

Turning to our results, we first note that the estimates for the discount factor

β are below unity, but exceed 0.99 for all of the four economies.

The money demand equation derived from the household’s optimization prob-

lem implies an interest elasticity for real money holdings of −γ. We find small

values of this elasticity with the correct sign for all regions, although the estimates

for Italy and Spain turn out to be statistically insignificant. These results are in

line with a large empirical literature detecting small interest rate elasticities of

(broad) money demand (see Browne et al., 2005).

Next, we turn to the estimates for the rigidity parameters. For all countries,

both the adjustment cost parameters for capital φK defined in section 3.2.2 and

prices φP defined in section 3.2.3 are significant. The latter is significantly higher

in Italy and Spain compared to France and Germany at the 5% and 10% level,

respectively. Our findings are confirmed by the results of analysis on consumer

price changes conducted by Dhyne et al. (2006), identifying Italy to have the

lowest incidence of price changes, whereas France shows the highest frequency of

price changes among the four regions.

11A full set of the test statistics is available from the authors upon request.
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Turning to the monetary policy reaction function, our estimates of ωπ and ωτ

are non-zero for all four countries, allowing at least for two possible interpreta-

tions of monetary policy (see section 3.2.4). Compared to France and Spain ωπ

is significantly higher in Germany (at the 1% level). This result might reflect the

well-documented higher pre-occupation with inflation in this country. The point

estimate of ωπ for Italy is also well below the estimate for Germany, although in-

significantly so. Concerning the positive estimates of ωτ our results are consistent

with the findings of Andrés et al. (2006) for the euro area. It is important to note

that for each of the four countries the estimates of ωτ and ωπ sum up to a value

greater than unity. Hence, the monetary policy rule is consistent with a unique

rational expectations equilibrium (see Clarida et al., 2000). For all countries the

estimates of ωy are negative. However, they are insignificant, which makes it dif-

ficult to interpret this result as a hint for the presence of an endogenous money

channel.

The estimates of e and z are not interesting from an economic policy point

of view; they simply allow the steady state values of real balances and output in

the model to match the average values of these variables in the data (see Ireland,

1997).

The estimates of ρa, ρe, ρx, ρz, and ρυ indicate a high persistence of the

first four shocks, whereas the monetary policy shock is less persistent and even

statistically insignificant for Italy. In the case of France, Germany, and Italy, the

estimated standard deviations of the innovations are dominated by the ones of

the investment shock, although the estimate of σx turns out to be insignificant for

Italy. This result is consistent with the findings of Justiniano et al. (2010) for the

US. Hence, the marginal efficiency of investment shock is identified as the most

important driver of business cycle fluctuations. For Spain the preference shock is

the most volatile followed by the marginal efficiency of investment shock.

3.5.2 Testing for Parameter Instability

For each country tables G.1 – G.4 report the parameter estimates and standard

deviations in both sub-samples, while tables G.5 – G.8 show the p-values of the

QLR test on individual parameters as well as the p-values at each step of the ESS

procedure. The set of stable parameters at the 10% significance level is denoted

by S. To structure the following discussion, it is useful to divide the parameters
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into three groups:

(i) private sector parameters: β, γ, φP , φK ;

(ii) monetary policy parameters: ωτ , ωπ, ωy;

(iii) shock parameters: e, z, ρa, ρe, ρx, ρz, ρυ, σa, σe, σx, σz, and συ.

In the case of France, the QLR stability test indicates a significant break in

1994:Q3. Concerning the private sector parameters, table G.5 reports instabilities

of γ and φP . The estimates of γ are lower in both sub-samples than in the full

sample, the estimate for the 1980:Q1 to 1994:Q2 period is insignificant, however.

Table G.1 shows a sharp decline of the price rigidity parameter φP . Further, we

find significant changes in the monetary policy parameters ωy and ωπ, both in-

creasing in absolute values. Concerning the shock parameters, the ESS procedure

identifies only the technology shock to be stable with respect to both persistence

and volatility. The direction of change in the persistence of the remaining shocks

is ambiguous, while we find an overall decline in the volatilities σa, σe, σx, and συ.

For Germany we locate a break in 1994:Q2.12 As reported in table G.6, the

set of stable parameters S contains (σx, σe, ωτ , ωπ, ρe, ρa, ρz, ωy, ρx). Most inter-

estingly, we find monetary policy to be constant over time. This result suggests

no discernible difference between the monetary policy conducted in the 1980:Q2

to 1994:Q1 period by the German Bundesbank and the 1994:Q2 to 2008:Q3 pe-

riod, although the latter is affected by the inception of EMU and the monetary

policy strategy of the ECB. Further, we find instabilities in all of the private sec-

tor parameters, as well as the persistence of the monetary policy shock and the

volatilities of the preference shock at, the technology shock zt and the monetary

policy shock υt. Concerning the direction of change, only the volatility of the

monetary policy shock increases, while the volatilities of the other shocks decline

or stay constant over time.

We detect a significant break in 1994:Q4 for Italy. With respect to the private

sector parameters, table G.7 shows instabilities of γ, φP , and φK . According to

12We cannot rule out a test bias due to the treatment of re-unification outlined in section 3.
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table G.3 the interest elasticity of money demand turns out to increase over time,

while we find a significant decline in capital and price adjustment costs after the

break. Concerning the monetary policy parameters, ωy appears to be stable over

time, whereas ωτ and ωπ both change significantly. More specifically, table G.3

presents a sharp decline of ωτ and a substantial increase of ωπ in the 1994:Q4 to

2008:Q3 period. With exception of ρx, we find the persistence parameters to be

unstable. While ρa and ρv increase, ρe and ρz turn out to decrease after the break.

Regarding the volatilities of the five shocks, the ESS procedure identifies σa and

σe to be stable, whereas σv, σx and σz decrease over time.

Turning to Spain, we find a significant break in 1998:Q1. Moreover, we detect

instabilities in the private sector parameters (γ, φP , φK), the monetary policy

parameters (ωτ , ωπ) and the shock parameters (e, z, ρz, ρυ, σa, σe, σx, σz, and συ).

While ωτ decreases, ωπ is significantly higher after the break (see table G.4).

Furthermore, we observe a sharp decline in capital and price adjustment costs.

Regarding the persistence of the technology shock and the money policy shock,

table G.4 shows a decrease in both, while the latter declines sharply after the

break. With the exception of the money demand shock, we also find a decrease

in the volatilities of the shocks at, xt, zt, and υt.

3.6 Conclusions

Despite some skepticism voiced in the literature DSGE models became a corner-

stone of modern macroeconometrics leading to a high acceptance both in academia

and central banking (see Tovar, 2009). Being firmly rooted in microeconomic

foundations, this class of models is able to identify structural characteristics of

economies that are not easily recovered from a necessarily parsimonious set of

macroeconomic time series. Apart from their frequent use as a tool for the de-

scription and evaluation of monetary policy, DSGE models enable cross-country

comparisons of such characteristics without having to resort to micro-data (see

Smets and Wouters, 2005).

In this chapter, we apply a New Keynesian model to French, German, Italian,

and Spanish data and formally test for parameter stability over time. Parameter

instabilities are detected by the ESS procedure developed by Inoue and Rossi

(2011). This procedure allows to identify the parameters of the model that have
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changed at an unknown break date. In the cases of France, Germany, and Italy

our results point to structural breaks in the mid-1990s after the beginning of the

second stage of EMU, while the estimates for Spain show a significant break just

before the start of the third stage of EMU in 1998. An interesting result is that

France, Italy, and Spain show significant changes in monetary policy behavior

after the break dates, while monetary policy in Germany is found to be stable

over time. Furthermore, France, Italy, and Spain exhibit a significant decline in

capital and price adjustment costs after the break. Moreover, we find at least four

out of the five shocks to be either constant or declining after the break date for

all economies under consideration.

On a methodological level, we demonstrate that the use of DSGEmodels is able

to sheds some light on the process of economic integration in Europe by allowing to

look at the stability of structural and policy parameters both across countries and

across time. This process yields numerous explanations for changes of allegedly

“deep” parameters questioning the full compliance with the well-known Lucas

(1976) critique. However, as set out in Inoue and Rossi (2011, p. 1195), “. . . the

definition of structural parameters (in the sense of the Lucas critique) is that these

parameters are policy invariant, not necessarily time invariant.” Therefore, future

research faces an important challenge in developing techniques able to identify

the specific factors responsible for parameter instabilities, allowing to assess the

applicability of the respective DSGE setting for policy analysis and forecasting.
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Appendix C

Equilibrium Conditions

The appendix contains a detailed description of the estimated DSGE model. The

exposition is based on the technical notes of Ireland (2003).1

C.1 The Economic Environment

• Households:

The representative household chooses {ct, lt,Mt, Bt, kt+1, it}∞t=0 to maximize

utility

E
∞∑
t=0

βt{at[γ/(γ − 1)] ln[c
(γ−1)/γ
t + e

1/γ
t (Mt/Pt)

(γ−1)/γ ] + χ ln(1− lt)},

subject to the budget constraint

Mt−1 + Tt +Bt−1 +Wtlt +Qtkt +Dt

Pt
≥ ct+it+

φk
2

(
kt+1

kt
− 1

)2

kt+
Bt/rt +Mt

Pt
,

and the law of motion for capital

kt+1 = (1− δ)kt + xtit. (3.1)

1The technical notes are available at http://www.irelandp.com/progs/endogenous.zip.
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Further, following Buiter and Sibert (2007), we prevent the household from

excessive debts by imposing the no-Ponzi-game condition:

lim
t→∞

Bt

t∏
s=0

1

rs
≥ 0.

Accordingly the Lagrangian can be written as follows:

Λ = E

∞∑
t=0

(
βt

{
at [γ/(γ − 1)] ln

[
c
(γ−1)/γ
t + e

1/γ
t

(
Mt

Pt

)(γ−1)/γ
]
+ χ ln(1− lt)

}
−βtλt

{
ct +

[
kt+1 − (1− δ)kt

xt

]
+
φK
2

(
kt+1

kt
− 1

)2

kt +
Bt/rt +Mt

Pt

−
(
Mt−1 + Tt +Bt−1 +Wtlt +Qtkt +Dt

Pt

)})
.

The first-order conditions are obtained by setting the partial derivatives of

Λ with respect to ct, lt,Mt, Bt, kt+1, and λt equal to zero, yielding

Λct = at − λtc
1/γ
t

[
c
(γ−1)/γ
t + e

1/γ
t

(
Mt

Pt

)(γ−1)/γ
]
= 0, (3.7)

Λlt = χ− λt

(
Wt

Pt

)
(1− lt) = 0, (3.8)

ΛMt =

(
Mt

Pt

)1/γ
[
c
(γ−1)/γ
t + e

1/γ
t

(
Mt

Pt

)(γ−1)γ
] [

λt − βEt

(
λt+1

Pt
Pt+1

)]
− ate

1/γ
t = 0,

(3.9)

ΛBt = λt − βrtEt

(
λt+1

Pt
Pt+1

)
= 0, (3.10)
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Λkt+1 = λt

[
1

xt
+ φK

(
kt+1

kt
− 1

)]
−

{
βEt

[
λt+1

(
Qt+1

Pt+1
+

1− δ

xt+1

)]
−

(
βφK
2

)
Et

[
λt+1

(
kt+2

kt+1
− 1

)2
]

+ βφKEt

[
λt+1

(
kt+2

kt+1
− 1

)(
kt+2

kt+1

)]}
= 0,

(3.11)

and

Λλt = ct +

[
kt+1 − (1− δ)kt

xt

]
+
φK
2

(
kt+1

kt
− 1

)2

kt +
Bt/rt +Mt

Pt

−
(
Mt−1 + Tt +Bt−1 +Wtlt +Qtkt +Dt

Pt

)
= 0.

(3.12)

Note that we can rewrite (3.9) by using (3.7) and (3.10) to obtain

ctet −
(
Mt

Pt

)(
1− 1

rt

)γ

= 0. (3.9′)

Finally, we impose the standard transversality conditions to guarantee that

money, bonds and capital do not grow too quickly:

lim
t→∞

βtλt
Mt

Pt
= 0,

lim
t→∞

βtλt
Bt

Pt
= 0,

lim
t→∞

βtλtkt+1 = 0.

• Finished goods-producing firms:

The representative finished goods-producing firm seeks to maximize its prof-

its

Ptyt −
∫ 1

0

Pt(i)yt(i)di

subject to the constant returns to scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

.
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Therefore, the firm’s optimization problem can be written as

max
yt(i)

Πt = Pt

[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

−
∫ 1

0

Pt(i)yt(i)di,

which leads to the following first-order condition characterizing the demand

for intermediate goods:

∂Πt

∂yt(i)
= yt(i)−

[
Pt(i)

Pt

]−θ
yt = 0.

By plugging this expression into the constant elasticity of substitution ag-

gregator of intermediate goods we obtain the price aggregator

Pt =

[ ∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

• Intermediate goods-producing firms:

Each intermediate goods-producing firm seeks to maximize its present dis-

counted value of profits

E

∞∑
t=0

βtλt[Dt(i)/Pt],

by choosing {lt(i), kt(i), yt(i), Pt(i)}∞t=0 subject to the Cobb-Douglas tech-

nology constraint

yt(i) ≤ kt(i)
α[ztlt(i)]

1−α

and the above demand for intermediate goods

yt(i) =

[
Pt(i)

Pt

]−θ
yt.

We can use the latter expression to rewrite the real value of dividends

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)−

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2

yt
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as

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θ
yt −

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt.

(3.13)

Therefore, the Lagrangian for the firms’ intertemporal optimization problem

can be written as:

Λ = E
∞∑
t=0

(
βtλt

{[
Pt(i)

Pt

]1−θ
yt −

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt

}

−βtξt
{[

Pt(i)

Pt

]−θ
yt − kt(i)

α[ztlt(i)]
1−α

})
.

Setting the partial derivatives of Λ with respect to lt(i), kt(i), Pt(i), and ξt

equal to zero leads to the first order conditions:

Λlt(i) =
λtWtlt(i)

Pt
− (1− α)ξtkt(i)

α[ztlt(i)]
1−α = 0, (3.14)

Λkt(i) =
λtQtkt(i)

Pt
− αξtkt(i)

α[ztlt(i)]
1−α = 0, (3.15)

ΛPt(i) = φPλt

[
Pt(i)

πPt−1(i)
− 1

][
Pt

πPt−1(i)

]
− (1− θ)λt

[
Pt(i)

Pt

]−θ
− θξt

[
Pt(i)

Pt

]−θ−1

− βφPEt

{
λt+1

[
Pt+1(i)

πPt(i)
− 1

][
Pt+1(i)Pt
πPt(i)2

](
yt+1

yt

)}
= 0,

(3.16)

and

Λξt =

[
Pt(i)

Pt

]−θ
yt − kt(i)

α[ztlt(i)]
1−α = 0. (3.17)

• The monetary authority sets the gross nominal interest rate according to

the generalized Taylor rule:

ln

(
rt
r

)
= ωτ ln

(
τt
τ

)
+ ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)
+ ln(υt). (3.18)
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C.2 The Nonlinear System

C.2.1 Symmetric Equilibrium

The dynamic system is described by the nonlinear difference equations (3.1) −
(3.8), (3.9′), (3.10) − (3.18). To close the model, we complete the following two

steps. First, we consider a symmetric equilibrium where all intermediate goods-

producing firms make identical decisions. This assumption implies Pt(i) = Pt,

yt(i) = yt, lt(i) = lt, kt(i) = kt, and Dt(i) = Dt for t = 0, 1, 2... and all i ∈ [0, 1].

Second, the market clearing condition for both the bond market, Bt = Bt−1 = 0,

and the money market, Mt = Mt−1 + Tt, must hold for all t = 0, 1, 2.... By

substituting these conditions into (3.1)− (3.18) and defining the average product

of labor as nt = yt/lt and the money growth rate as τt =
Mt

Mt−1
we get:

kt+1 = (1− δ)kt + xtit, (3.1)

ln(xt) = ρx ln(xt−1) + εxt, (3.2)

ln(at) = ρa ln(at−1) + εat, (3.3)

ln(et) = (1− ρe) ln(e) + ρe ln(et−1) + εet, (3.4)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (3.5)

ln(υt) = ρυ ln(υt−1) + ευt, (3.6)

at = λtc
1/γ
t

[
c
(γ−1)/γ
t + e

1/γ
t

(
Mt

Pt

)(γ−1)/γ
]
, (3.7)

χ = λt

(
Wt

Pt

)
(1− lt), (3.8)

ctet =

(
Mt

Pt

)(
1− 1

rt

)γ

, (3.9′)

λt = βrtEt

(
λt+1

Pt
Pt+1

)
, (3.10)
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λt

[
1

xt
+ φK

(
kt+1

kt
− 1

)]
= βEt

[
λt+1

(
Qt+1

Pt+1

+
1− δ

xt+1

)]
−

(
βφK
2

)
Et

[
λt+1

(
kt+2

kt+1

− 1

)2
]

+ βφKEt

[
λt+1

(
kt+2

kt+1
− 1

)(
kt+2

kt+1

)]
,

(3.11)

ct +

[
kt+1 − (1− δ)kt

xt

]
+
φK
2

(
kt+1

kt
− 1

)2

kt =

(
Wtlt +Qtkt +Dt

Pt

)
, (3.12)

Dt

Pt
= yt − Wtlt +Qtkt

Pt
− φP

2

(
Pt

πPt−1

− 1

)2

yt, (3.13)

λt

(
Wt

Pt

)
lt = (1− α)ξtk

α
t [ztlt]

1−α, (3.14)

λt

(
Qt

Pt

)
kt = αξtk

α
t [ztlt]

1−α, (3.15)

φPλt

[
Pt

πPt−1
− 1

][
Pt

πPt−1

]
= (1− θ)λt + θξt

+ βφPEt

[
λt+1

(
Pt+1

πPt
− 1

)(
Pt+1

πPt

)(
yt+1

yt

)]
,

(3.16)

yt = kαt [ztlt]
1−α, (3.17)

ln

(
rt
r

)
= ωτ ln

(
τt
τ

)
+ ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)
+ ln(υt), (3.18)

nt =
yt
lt
, (3.19)

and

τt =
Mt

Mt−1

. (3.20)

Note that we can rewrite (3.12) by using (3.13) to obtain:

yt = ct + it +
φK
2

(
kt+1

kt
− 1

)2

kt +
φP
2

[
Pt

πPt−1
− 1

]2

yt. (3.12′)

Further, (3.17) can be used to rewrite (3.14) and (3.15) as

λt

(
Wt

Pt

)
lt = (1− α)ξtyt (3.14′)
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and

λt

(
Qt

Pt

)
kt = αξtyt. (3.15′)

C.2.2 Change of Variables

We can rewrite the nonlinear system by defining πt =
Pt

Pt−1
, mt =

Mt

Pt
, wt =

Wt

Pt
, qt =

Qt

Pt
, and dt =

Dt

Pt
. With these re-defined variables, (3.1)−(3.8), (3.9′), (3.10), (3.11),

(3.12′), (3.13), (3.14′), (3.15′), (3.16)− (3.20) become:

kt+1 = (1− δ)kt + xtit, (3.1)

ln(xt) = ρx ln(xt−1) + εxt, (3.2)

ln(at) = ρa ln(at−1) + εat, (3.3)

ln(et) = (1− ρe) ln(e) + ρe ln(et−1) + εet, (3.4)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (3.5)

ln(υt) = ρυ ln(υt−1) + ευt, (3.6)

at = λtc
1/γ
t

[
c
(γ−1)/γ
t + e

1/γ
t m

(γ−1)/γ
t

]
, (3.7)

χ = λtwt(1− lt), (3.8)

ctet = mt

(
1− 1

rt

)γ

, (3.9′)

λt = βrtEt

(
λt+1

πt+1

)
, (3.10)

λt

[
1

xt
+ φK

(
kt+1

kt
− 1

)]
= βEt

[
λt+1

(
qt+1 +

1− δ

xt+1

)]
−

(
βφK
2

)
Et

[
λt+1

(
kt+2

kt+1
− 1

)2
]

+ βφKEt

[
λt+1

(
kt+2

kt+1

− 1

)(
kt+2

kt+1

)]
,

(3.11)

yt = ct + it +
φK
2

(
kt+1

kt
− 1

)2

kt +
φP
2

(πt
π

− 1
)2

yt, (3.12′)

dt = yt − wtlt − qtkt −
(
φP
2

)(πt
π

− 1
)2

yt, (3.13)
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λtwtlt = (1− α)ξtyt, (3.14′)

λtqtkt = αξtyt, (3.15′)

φPλt

(
πt
π

− 1

)(
πt
π

)
= (1− θ)λt + θξt

+ βφPEt

[
λt+1

(
πt+1

π
− 1

)(
πt+1

π

)(
yt+1

yt

)]
,

(3.16)

yt = kαt [ztlt]
1−α, (3.17)

ln

(
rt
r

)
= ωτ ln

(
τt
τ

)
+ ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)
+ ln(υt), (3.18)

nt =
yt
lt
, (3.19)

and

τt =

(
mt

mt−1

)
πt. (3.20)

C.3 Steady States

In absence of the five shocks, i.e., εxt = εat = εet = εzt = εvt = 0 for all t =

0, 1, 2, ..., the economy converges to a steady state, where each of the 20 variables

is constant. We use (3.2), (3.3), (3.4), (3.5), and (3.6) to solve for

x = 1,

a = 1,

e = e,

z = z,

v = 1.

Assuming that the steady state money growth rate τ is determined by policy,

(3.10) and (3.20) can be used to solve for

π = τ

and

r =
π

β
.
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Next, (3.11) and (3.16) can be used to solve for

q =
1

β
− 1 + δ

and

ξ =

[
(θ − 1)

θ

]
λ.

Equations (3.7) and (3.9′) can be used to solve for

c =

[
1 + e

(
r

r − 1

)γ−1
]−1 (

1

λ

)

and

m = e

(
r

r − 1

)γ

c.

Use (3.1), (3.12′), (3.15′), and (3.16) to solve for

y =

[
1− δ

(
α

q

)(
θ − 1

θ

)]−1

.

Use (3.15′) and (3.16) to solve for

k =

(
α

q

)(
θ − 1

θ

)
y.

Equations (3.1), (3.13), (3.14′),(3.17), and (3.19) can be used to solve for

i = δk,

l =
1

z

( y

kα

)1/(1−α)
,

w = (1− α)

(
θ − 1

θ

)(y
l

)
,

d = y − wl− qk,

and

n =
y

l
.
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Finally, (3.8), (3.14′), and (3.16) can be used to solve for

λ =
χ+ (1− α)

[
1 + e

(
r
r−1

)γ−1
]−1 [(

θ
θ−1

)− δ
(
α
q

)]−1

(1− α)z
(
θ−1
θ

)1/(1−α) (α
q

)α/(1−α) .

C.4 The Linearized System

To linearize the nonlinear system (3.1) − (3.20), we perform a log-linear ap-

proximation of the model at steady state values.2 Let v̂art ≡ log
(
vart
var

)
de-

note the log-deviation of some variable vart from its steady state var, where

log
(
vart
var

) ≈ vart−var
var

. A first-order Taylor approximation of equation (3.1)− (3.8),

(3.9′), (3.10), (3.11), (3.12′), (3.13), (3.14′), (3.15′), (3.16)− (3.20) at the steady

state gives:

kk̂t+1 = (1− δ)kk̂t + ix̂t + îit, (3.1)

x̂t = ρxx̂t−1 + εxt, (3.2)

ât = ρaât−1 + εat, (3.3)

êt = ρeêt−1 + εet, (3.4)

ẑt = ρz ẑt−1 + εzt, (3.5)

v̂t = ρv v̂t−1 + εvt, (3.6)

γrât = γrλ̂t + r [1 + (γ − 1)λc] ĉt + (r − 1)λmêt + (γ − 1)(r − 1)mm̂t, (3.7)

λwll̂t = χλ̂t + χŵt, (3.8)

(r − 1)ĉt + (r − 1)êt = (r − 1)m̂t + γr̂t, (3.9′)

λ̂t = r̂t + Etλ̂t+1 − Etπt+1, (3.10)

λ̂t− x̂t−φkk̂t = Etλ̂t+1+βqEtq̂t+1−β(1− δ)Etx̂t+1+βφKEtk̂t+2− (1+β)φKk̂t+1,

(3.11)

yŷt = cĉt + îit, (3.12′)

dd̂t = yŷt − wlŵt − wll̂t − qkq̂t − qkk̂t, (3.13)

2Canova (2007), DeJong and Dave (2007), and Zietz (2008) provide a detailed description of
logarithmic approximations.
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λ̂t + ŵt + l̂t = ξ̂t + ŷt, (3.14′)

λ̂t + q̂t + k̂t = ξ̂t + ŷt, (3.15′)

φP π̂t = (1− θ)λ̂t + (θ − 1)ξ̂t + βφPEtπ̂t+1, (3.16)

ŷt = αk̂t + (1− α)ẑt + (1− α)l̂t, (3.17)

r̂t = ωτ τ̂t + ωππ̂t + ωyŷt + v̂t, (3.18)

n̂t = ŷt − l̂t, (3.19)

and

τ̂t = m̂t − m̂t−1 + π̂t. (3.20)

To facilitate the model’s solution we follow Ireland (2003) and use (3.20) to rewrite

(3.7) and (3.9′) as

γrât = γrλ̂t + r[1 + (γ − 1)λc]ĉt + (r − 1)λmêt

+ (γ − 1)(r − 1)λmτ̂t + (γ − 1)(r − 1)λmm̂t−1 − (γ − 1)(r − 1)λmπ̂t

(3.7′)

and

(r − 1)êt + (r − 1)ĉt = (r − 1)τ̂t + (r − 1)m̂t−1 − (r − 1)π̂t + γr̂t. (3.9′′)

Further, we make use of (3.1) and (3.2) to rewrite (3.11) as

λ̂t −
{
1 + β [δφK − (1− δ)] ρx

}
x̂t − φK k̂t

= Etλ̂t+1 + βqEtq̂t+1 + φK [β(1− δ)− (1 + β)] k̂t+1

+ βδφKEtît+1.

(3.11′)



Appendix D

Solving the Model

To solve the linear difference model under rational expectations described by equa-

tions (3.1)−(3.6), (3.7′), (3.8), (3.9′′), (3.10), (3.11′), (3.12′), (3.13),(3.14′),(3.15′),(3.16)−
(3.20), we apply the method proposed by Blanchard and Kahn (1980). The sub-

sequent sections follow the expositions in Blanchard and Kahn (1980), Farmer

(1999), the technical notes of Ireland (2003), and DeJong and Dave (2007).

D.1 Blanchard and Kahn’s Method

A solution to the linear difference model under rational expectations can be ob-

tained by making use of the approach developed by Blanchard and Kahn (1980).

Therefore, a vector s0t is defined which can be separated into

s0t = [s01t s
0
2t]

′,

letting s01t denote a n × 1 vector of predetermined and s02t a m × 1 vector of

non-predetermined variables, which implies that:

Etst+1 = [s01t+1 Ets
0
2t+1]

′.

Next, to apply Blanchard and Kahn’s (1980) procedure, the model is written

as

Ets
0
t+1 = As0t +Bζt (3.21)

69
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with

ζt = Pζt−1 + εt, (3.22)

where A and B are (n +m) × (n +m) and (n +m) × k coefficient matrices, P

is k × k matrix containing the persistence parameters of the shocks, ζt is a k × 1

vector consisting of the model’s exogenous forcing variables while the serially

and mutually uncorrelated innovations are included in the k × 1 vector εt. The

solution method relies on decoupling (3.21) into unstable and stable portions,

using a Jordan decomposition, and then solving the two components in turn.

If the number of unstable eigenvalues (with absolute value greater than one) of

matrix A is equal to the number of non-predetermined variables, the system is

said to be saddle-path stable and a unique solution exists (see Blanchard and

Kahn, 1980).1

D.2 System Reduction

The solution of the system comprising (3.21) and (3.22) can be simplified by

applying a system reduction first. According to King and Watson (2002, p. 2)

the idea of a system reduction is to isolate a “... reduced-dimension, nonsingular

dynamic system in a subset of variables of the full vector of endogenous variables.

Once the rational expectations solution to this smaller system is obtained, it is

easy to also calculate the solution for the remaining variables as these are governed

by dynamic identities.”

Let

f 0
t =

[
ŷt ĉt ît l̂t n̂t τ̂t ŵt q̂t d̂t r̂t

]′
,

s0t =
[
k̂t m̂t−1 π̂t λ̂t ξ̂t

]′
,

and

ζt =
[
ât êt x̂t ẑt v̂t

]′
.

Then, the linearized equilibrium conditions (3.1), (3.10), (3.11′), (3.16), and (3.20)

can be written in matrix form as

Ω0Ets
0
t+1 + Ω1Etf

0
t+1 = Ω2s

0
t + Ω3f

0
t + Ω4ζt (3.23)

1A detailed presentation of the Blanchard-Kahn (1980) conditions is given in appendix B.2.
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with

Ω0 =

⎡⎢⎢⎢⎢⎢⎢⎣
k 0 0 0 0

0 0 1 −1 0

φK [β(1− δ)− (1 + β)] 0 0 1 0

0 0 βφP 0 0

0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ω1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 βδφK 0 0 0 0 βq 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ω2 =

⎡⎢⎢⎢⎢⎢⎢⎣
(1− δ)k 0 0 0 0

0 0 0 −1 0

−φK 0 0 1 0

0 0 φP θ − 1 −(θ − 1)

0 1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ω3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

Ω4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 i 0 0

0 0 0 0 0

0 0 −1 − β [δφK − (1− δ)] ρx 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Likewise, (3.7′), (3.8), (3.9′′), (3.12′), (3.13), (3.14′), (3.15′), (3.17), (3.18), and

(3.19) can be written as

Ω5f
0
t = Ω6s

0
t + Ω7ζt (3.24)

with
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Ω5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y −c −i 0 0 0 0 0 0 0

0 r [1 + (γ − 1)λc] 0 0 0 (γ − 1)(r − 1)λm 0 0 0 0

0 0 0 λwl 0 0 −χ 0 0 0

0 r − 1 0 0 0 −(r − 1) 0 0 0 −γ
y 0 0 −wl 0 0 −wl −qk −d 0

1 0 0 −(1 − α) 0 0 0 0 0 0

1 0 0 −1 0 0 −1 0 0 0

1 0 0 0 0 0 0 −1 0 0

ωy 0 0 0 0 ωτ 0 0 0 −1

1 0 0 −1 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ω6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 −(γ − 1)(r − 1)λm (γ − 1)(r − 1)λm −γr 0

0 0 0 χ 0

0 r − 1 −(r − 1) 0 0

qk 0 0 0 0

α 0 0 0 0

0 0 0 1 −1

1 0 0 1 −1

0 0 −ωπ 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Ω7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

γr −(r − 1)λm 0 0 0

0 0 0 0 0

0 −(r − 1) 0 0 0

0 0 0 0 0

0 0 0 1− α 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, (3.2)− (3.6) can directly be written as

ζt = Pζt−1 + εt (3.22)

with

P =

⎡⎢⎢⎢⎢⎢⎢⎣
ρa 0 0 0 0

0 ρe 0 0 0

0 0 ρx 0 0

0 0 0 ρz 0

0 0 0 0 ρv

⎤⎥⎥⎥⎥⎥⎥⎦ .
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To cast (3.23) and (3.24) in the form of (3.21), we start by iterating forward

equation (3.22) j periods which implies:

P jζt = Etζt+j .
2 (3.22′)

Rewriting (3.24) as

f 0
t = Ω−1

5 Ω6s
0
t + Ω−1

5 Ω7ζt (3.24′)

and substituting this expression together with (3.22′) into (3.23) yields

Ω0Ets
0
t+1 +Ω1Et

(
Ω−1
5 Ω6s

0
t+1 +Ω−1

5 Ω7ζt+1

)
= Ω2s

0
t +Ω3

(
Ω−1
5 Ω6s

0
t +Ω−1

5 Ω7ζt
)
+Ω4ζt(

Ω0 +Ω1Ω
−1
5 Ω6

)
Ets

0
t+1 +Ω1Ω

−1
5 Ω7Etζt+1 =

(
Ω2 +Ω3Ω

−1
5 Ω6

)
s0t +

(
Ω4 +Ω3Ω

−1
5 Ω7

)
ζt(

Ω0 +Ω1Ω
−1
5 Ω6

)
Ets

0
t+1 +Ω1Ω

−1
5 Ω7Pζt =

(
Ω2 +Ω3Ω

−1
5 Ω6

)
s0t +

(
Ω4 +Ω3Ω

−1
5 Ω7

)
ζt(

Ω0 +Ω1Ω
−1
5 Ω6

)
Ets

0
t+1 =

(
Ω2 +Ω3Ω

−1
5 Ω6

)
s0t

+
(
Ω4 +Ω3Ω

−1
5 Ω7 − Ω1Ω

−1
5 Ω7P

)
ζt.

If Ω0 + Ω1Ω
−1
5 Ω6 is nonsingular, we can rewrite the expression above as

Ets
0
t+1 =

(
Ω0 + Ω1Ω

−1
5 Ω6

)−1 (
Ω2 + Ω3Ω

−1
5 Ω6

)
s0t

+
(
Ω0 + Ω1Ω

−1
5 Ω6

)−1 (
Ω4 + Ω3Ω

−1
5 Ω7 − Ω1Ω

−1
5 Ω7P

)
ζt,

which is in the same form as (3.21) with

A =
(
Ω0 + Ω1Ω

−1
5 Ω6

)−1 (
Ω2 + Ω3Ω

−1
5 Ω6

)
and

B =
(
Ω0 + Ω1Ω

−1
5 Ω6

)−1 (
Ω4 + Ω3Ω

−1
5 Ω7 − Ω1Ω

−1
5 Ω7P

)
so that

Ets
0
t+1 = As0t +Bζt (3.21)

or

Et

⎡⎢⎢⎢⎢⎢⎢⎣
k̂t+1

m̂t

π̂t+1

λ̂t+1

ξ̂t+1

⎤⎥⎥⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎢⎢⎢⎣
k̂t

m̂t−1

π̂t

λ̂t

ξ̂t

⎤⎥⎥⎥⎥⎥⎥⎦+B

⎡⎢⎢⎢⎢⎢⎢⎣
ât

êt

x̂t

ẑt

v̂t

⎤⎥⎥⎥⎥⎥⎥⎦ .
2To derive (3.22′) we use the Law of Iterated Expectations: Et[Et+1(·)] = Et(·).
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It should be emphasized, that the transformation of the linearized model into

(3.21) and (3.22) hinges critically on the invertibility of Ω0 + Ω1Ω
−1
5 Ω6.

D.3 Solution

Blanchard and Kahn’s (1980) solution strategy relies on simplifying the model

Ets
0
t+1 = As0t +Bζt (3.21)

with

ζt = Pζt−1 + εt (3.22)

by transforming it into canonical form. As outlined in DeJong and Dave (2007),

the method begins with a Jordan decomposition of A such that

A =M−1NM,

where the diagonal elements of N , consisting of the eigenvalues of A, are ordered

in increasing absolute value and the columns of M−1 are the eigenvectors of A.

We proceed under the case of saddle-path stability and assume that m = 3,

i.e., the number of eigenvalues outside the unit circle equals the number non-

predetermined variables in s0t and therefore allow for a unique solution. Thus, N

can be written as

N =

[
N1 0

0 N2

]
,

where the eigenvalues of the 2 × 2 matrix N1 are on or inside the unit circle and

the eigenvalues of the 3 × 3 matrix N2 lie outside the unit circle. M and B are

decomposed accordingly, so that

M =

[
M11 M12

M21 M22

]

and

B =

[
B1

B2

]
,
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where M11 is a 2× 2, M12 is a 2× 3, M21 is a 3× 2, M22 is a 3× 3, B1 is a 2× 5,

and B2 is a 3× 5 matrix. Now (3.21) can be rewritten as

Ets
0
t+1 =M−1NMs0t +

[
B1

B2

]
ζt. (3.21′)

Pre-multiplying (3.21′) by M gives[
M11 M12

M21 M22

]
Ets

0
t+1 =

[
N1 0

0 N2

][
M11 M12

M21 M22

]
s0t +

[
M11 M12

M21 M22

][
B1

B2

]
ζt

or in terms of matrix partitions

Ets
1
1t+1 = N1s

1
1t +Q1ζt (3.25)

and

Ets
1
2t+1 = N2s

1
2t +Q2ζt, (3.26)

where

s11t =M11

[
k̂t

m̂t−1

]
+M12

⎡⎢⎣ π̂t

λ̂t

ξ̂t

⎤⎥⎦ , (3.27)

s12t =M21

[
k̂t

m̂t−1

]
+M22

⎡⎢⎣ π̂t

λ̂t

ξ̂t

⎤⎥⎦ , (3.28)

Q1 =M11B1 +M12B2,

and

Q2 =M21B1 +M22B2.

Since the eigenvalues of N2 all lie outside the unit circle, (3.26) can be solved

forward. Using the result of this forward iteration together with (3.22′) we obtain

s12t = −N−1
2 Rζt, (3.29)
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where the 3× 5 matrix R is obtained by “reshaping”3

vec(R) = vec

∞∑
j=0

N−j
2 Q2P

j =

∞∑
j=0

vec
(
N−j

2 Q2P
j
)

=
∞∑
j=0

[
P j ⊗ (

N−1
2

)j]
vec(Q2) =

∞∑
j=0

(
P ⊗N−1

2

)j
vec(Q2)

=
[
I(15×15) − P ⊗N−1

2

]−1
vec(Q2).

Substituting (3.29) into (3.28) gives⎡⎢⎣ π̂t

λ̂t

ξ̂t

⎤⎥⎦ = S1

[
k̂t

m̂t−1

]
+ S2ζt, (3.30)

where

S1 = −M−1
22 M21

and

S2 = −M−1
22 N

−1
2 R.

We can next substitute (3.30) into (3.27) to solve for

s11t = (M11 +M12S1)

[
k̂t

m̂t−1

]
+M12S2ζt. (3.31)

Substituting (3.31) into (3.25) gives[
k̂t+1

m̂t

]
= S3

[
k̂t

m̂t−1

]
+ S4ζt, (3.32)

where

S3 = (M11 +M12S1)
−1N1 (M11 +M12S1)

3According Hamilton (1994a) and DeJong and Dave (2007), the appearance of the vec oper-
ator accommodates the VAR specification for ζt. In particular, we use the relationship between

vec operator and Kronecker product: vec
(
N−j

2 Q2P
j
)

=
[
(P j)′ ⊗N−j

2

]
vec(Q2). Note that

P ′ = P , since P is a diagonal matrix.
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and

S4 = (M11 +M12S1)
−1 (Q1 +N1M12S2 −M12S2P ) .

Finally, by using (3.30), (3.24′) can be written as

f 0
t = Ω−1

5 Ω6s
0
t + Ω−1

5 Ω7ζt

= Ω−1
5 Ω6

[
I(2×2)

S1

][
k̂t

m̂t−1

]
+ Ω−1

5 Ω6

[
0(2×5)

S2

]
ζt + Ω−1

5 Ω7ζt,

or simply

f 0
t = S5

[
k̂t

m̂t−1

]
+ S6ζt, (3.33)

where

S5 = Ω−1
5 Ω6

[
I(2×2)

S1

]
and

S6 = Ω−1
5 Ω6

[
0(2×5)

S2

]
+ Ω−1

5 Ω7.

Hence, the model’s solution can be written compactly in state space form by

combining (3.22), (3.30), (3.32), and (3.33) as

st+1 = Γ0st + Γ1εt+1 (3.34)

and

ft = Γ2st, (3.35)

where

st =
[
k̂t m̂t−1 ât êt x̂t ẑt v̂t

]′
,

ft =
[
ŷt ĉt ît l̂t n̂t τ̂t ŵt q̂t d̂t r̂t π̂t λ̂t ξ̂t

]′
,

εt =
[
εat εet εxt εzt εvt

]′
,

Γ0 =

[
S3 S4

0(5×2) P

]
,

Γ1 =

[
0(2×5)

I(5×5)

]
,
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and

Γ2 =

[
S5 S6

S1 S2

]
.



Appendix E

Estimation

E.1 Empirical State Space Model

Since the model is estimated using an observed sample X including consump-

tion, investment, money, inflation, and interest rates, we can define a sequence of

observations {Xt}Tt=1 with a measured data vector

Xt =

⎡⎢⎢⎢⎢⎢⎢⎣
ĉt

ît

m̂t

π̂t

r̂t

⎤⎥⎥⎥⎥⎥⎥⎦ .

To distinguish the theoretical model from the empirical model, we rewrite (3.34)

and (3.35) as

st+1 = Ψ0st +Ψ1εt+1 (3.36)

and

Xt = Ψ2st, (3.37)

79
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where Γo = Ψ0, Γ1 = Ψ1 and Ψ2 is formed from the rows (·) of Γ0 and Γ2 as

Ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎣
Γ2(2)

Γ2(3)

Γ0(2)

Γ2(11)

Γ2(10)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Given the empirical state space model, the Kalman filter can be used to estimate

the model parameters with maximum likelihood and to draw inferences about the

unobserved components of the state vector st exploiting the information contained

in the five observable series (see Ireland, 2004).

E.2 Kalman Filter

As stated, for example, in Ruge-Murcia (2007) the maximum likelihood estimation

of a DSGE model in state space form calls for the construction and evaluation of

the likelihood function

L(μ|X) = p(X|μ) =
T∏
t=1

p(Xt|μ),

letting X denote the T observations of a vector of observable variables Xt given

the model’s parameters μ. According to Hamilton (1994a) the Kalman filter can

be used to calculate the likelihood function for such a state space system. More

precisely, as outlined in Canova (2007, p. 123), “. . . the likelihood function of a

state space model can be conveniently expressed in terms of one-step-ahead fore-

cast errors, conditional on the initial observations, and of their recursive variance,

both of which can be obtained with the Kalman filter.” While a general and de-

tailed treatment of the Kalman filter can be found in Harvey (1993), Hamilton

(1994a), and Hamilton (1994b), we only give a brief exemplary exposition of the

Kalman filter by applying the recursive algorithm originally developed by Kalman

(1960) and Kalman and Bucy (1961) to the empirical state space model formed

by state equation (3.36) and observation equation (3.37):

st+1 = Ψ0st +Ψ1εt+1, (3.36)
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Xt = Ψ2st. (3.37)

Note that st is a vector of possibly unknown state variables, Xt denotes a vector

of observed variables, Ψ0, Ψ1, and Ψ2 depend on the structural parameters of the

model and the vector εt+1 comprises the serially uncorrelated innovations

εt+1 =
[
εat+1 εet+1 εxt+1 εzt+1 εvt+1

]′
,

which are assumed to be normally distributed with zero mean and diagonal co-

variance matrix

Σε = Eεt+1ε
′
t+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2
a 0 0 0 0

0 σ2
e 0 0 0

0 0 σ2
x 0 0

0 0 0 σ2
z 0

0 0 0 0 σ2
v

⎤⎥⎥⎥⎥⎥⎥⎦ .

E.2.1 Kalman Filter Recursion

In order to outline the Kalman filter recursion, we follow the expositions of Hamil-

ton (1994a) and Lütkepohl (2005). Let

st|j = E(st|X1, ..., Xj),

Σs(t|j) = E(st − st|j)(st − st|j)′,

Xt|j = E(Xt|X1, ..., Xj),

ΣX(t|j) = E(Xt −Xt|j)(Xt −Xt|j)′.

Further, the initial state s0 and the conditional distribution of s given X are

assumed to be normally distributed with s0 ∼ N (μs0,Σ0) and (s|X) ∼ N (μs,Σ),

respectively. Given the previous conditions, the normality assumption implies

(st|X1, ..., Xt−1) ∼ N (st|t−1,Σs(t|t− 1)) for t = 2, ..., T,

(st|X1, ..., Xt) ∼ N (st|t,Σs(t|t)) for t = 1, ..., T,

(Xt|X1, ..., Xt−1) ∼ N (Xt|t−1,ΣX(t|t− 1)) for t = 2, ..., T.

According to in Lütkepohl (2005) the conditional means and covariance ma-

trices can be obtained by the subsequent Kalman filter recursions:
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• Initialization:

s0|0 = μs0,Σs(0|0) = Σ0.

• Prediction step (1 ≤ t ≤ T ):

st|t−1 = Ψ0st−1|t−1,

Σs(t|t− 1) = Ψ0Σs(t− 1|t− 1)Ψ′
0 +Ψ1ΣεΨ

′
1,

Xt|t−1 = Ψ2st|t−1,

ΣX(t|t− 1) = Ψ2Σs(t|t− 1)Ψ′
2,

ut = Xt −Xt|t−1.

• Correction step (1 ≤ t ≤ T ):

st|t = st|t−1 +Υtut,

Σs(t|t) = Σs(t|t− 1)−ΥtΣX(t|t− 1)Υ′
t,

where the Kalman gain Υt is defined as

Υt = st|t−1Ψ
′
2ΣX(t|t− 1)−1 .

As outlined in Lütkepohl (2005) the recursions proceed by performing the

prediction step for t = 1. Then, the correction step is performed for t = 1. Next,

the prediction and correction steps are repeated for t = 2 and so on.

E.2.2 Log Likelihood Function

The observation vector estimation errors {ut}Tt=1 can be used to form the Gaussian

log likelihood function for {Xt}Tt=1:

lnL(μ|X) =

T∑
t=1

ln p(Xt|μ)

= −5T

2
ln(2π)− 1

2

T∑
t=1

ln |ΣX(t|t− 1)| − 1

2

T∑
t=1

u′tΣX(t|t− 1)−1ut.



Appendix F

Data sources

All data have been retrieved from Thomson Reuters Datastream. The original
sources are detailed below.

• France:

Real personal consumption: EUROSTAT

Gross fixed capital formation: EUROSTAT

Money balances (M3): Banque de France

Consumer price index: OECD

Interest rate (Pibor): OECD

Population: National Institute for Statistics and Economic Studies (INSEE)

• Germany:

Real personal consumption: Federal Statistical Office

Gross fixed capital formation: Federal Statistics Office

Money balances (M3): Deutsche Bundesbank

Consumer price index: OECD

Interest rate (Fibor): OECD

Population: Federal Statistics Office

• Italy:

Real personal consumption: Oxford Economics

Gross fixed capital formation: Oxford Economics

Money balances (M3): Oxford Economics

83
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Consumer price index: Oxford Economics

Interest rate (three-month money market rate): Oxford Economics

Population: Oxford Economics

• Spain:

Real personal consumption: EUROSTAT

Gross fixed capital formation: EUROSTAT

Money balances (M3): Banco de España

Consumer price index: OECD

Interest rate (three-month money market rate): OECD

Population: EUROSTAT



Appendix G

Tables
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1980:Q1 - 1994:Q2 1994:Q3 - 2008:Q3
Parameter Estimate Std. Error Estimate Std. Error

β 0.9906 0.0013 0.9913 0.0024
γ 0.0000 0.0007 0.0043 0.0014
φP 10.3880 0.5796 3.2691 0.3101
φK 30.0492 0.5400 28.8285 2.1778
ωτ 0.2980 0.0081 0.2792 0.0188
ωπ 1.1974 0.0095 1.4680 0.0807
ωy -0.0075 0.0115 -0.1417 0.0605
e 4.4410 0.0006 4.3587 0.0115
z 4185.6183 0.0001 4181.1612 0.0001
ρa 0.8963 0.0065 0.8507 0.0137
ρe 0.9000 0.0071 0.8132 0.0128
ρx 0.9011 0.0078 0.9817 0.0067
ρz 0.8995 0.0188 0.9222 0.0061
ρυ 0.4999 0.0076 0.1976 0.0249
σa 0.0202 0.0004 0.0082 0.0002
σe 0.0096 0.0001 0.0089 0.0001
σx 0.0554 0.0069 0.0324 0.0021
σz 0.0080 0.0003 0.0082 0.0002
συ 0.0057 0.0001 0.0044 0.0003

Table G.1: Maximum Likelihood Estimates: France.
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1980:Q1 - 1994:Q1 1994:Q2 - 2008:Q3
Parameter Estimate Std. Error Estimate Std. Error

β 0.9917 0.0001 0.9926 0.0001
γ 0.0757 0.0001 0.0731 0.0001
φP 13.9735 0.0128 14.0138 0.0143
φK 29.9619 0.1973 30.5119 0.1615
ωτ 0.4368 0.0007 0.4353 0.0008
ωπ 1.5998 0.0007 1.6005 0.0005
ωy -0.0025 0.0008 -0.0023 0.0030
e 2.9640 0.0001 2.9633 0.0001
z 4195.9727 0.0001 4158.7916 0.0001
ρa 0.9000 0.0007 0.9001 0.0006
ρe 0.8795 0.0007 0.8800 0.0006
ρx 0.9061 0.0006 0.9061 0.0005
ρz 0.9162 0.0006 0.9162 0.0004
ρυ 0.2400 0.0002 0.2388 0.0004
σa 0.0186 0.0011 0.0105 0.0009
σe 0.0150 0.0009 0.0134 0.0006
σx 0.0850 0.0036 0.0777 0.0031
σz 0.0170 0.0008 0.0113 0.0007
συ 0.0063 0.0001 0.0075 0.0001

Table G.2: Maximum Likelihood Estimates: Germany.
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1980:Q1 - 1994:Q3 1994:Q4 - 2008:Q3
Parameter Estimate Std. Error Estimate Std. Error

β 0.9992 0.0100 0.9975 0.0036
γ 0.0054 0.0057 0.0350 0.0057
φP 64.6013 4.7897 31.7841 1.8189
φK 33.1134 0.8700 14.5576 1.4126
ωτ 0.6722 0.0287 0.0538 0.0096
ωπ 0.8736 0.0287 1.6598 0.2561
ωy -0.1286 0.0302 -0.1627 0.0832
e 3.9728 0.0855 3.2327 0.5237
z 3343.6115 0.0006 3336.9033 0.0013
ρa 0.8379 0.0108 0.9935 0.0142
ρe 0.9929 0.0093 0.9093 0.0119
ρx 0.9952 0.0085 0.9891 0.0077
ρz 0.9953 0.0195 0.8519 0.0062
ρυ 0.0899 0.0662 0.5551 0.0022
σa 0.0291 0.0076 0.0119 0.0005
σe 0.0153 0.0021 0.0110 0.0001
σx 0.2501 0.0364 0.0192 0.0017
σz 0.0533 0.0017 0.0101 0.0003
συ 0.0128 0.0015 0.0034 0.0006

Table G.3: Maximum Likelihood Estimates: Italy.
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1987:Q1 - 1997:Q4 1998:Q1 - 2008:Q3
Parameter Estimate Std. Error Estimate Std. Error

β 0.9929 0.0067 0.9957 0.0020
γ 0.0189 0.0069 0.0518 0.0075
φP 66.9756 3.5472 2.7164 0.3119
φK 26.8170 0.7038 7.4710 0.4382
ωτ 0.4707 0.0313 0.2367 0.0171
ωπ 0.6868 0.0339 1.2448 0.0480
ωy -0.0646 0.0098 -0.1006 0.0140
e 4.6627 0.0034 4.1651 0.0035
z 1932.4221 0.0001 1771.8852 0.0001
ρa 0.9542 0.0123 0.9411 0.0147
ρe 0.9440 0.0098 0.9648 0.0071
ρx 0.9625 0.0142 0.9903 0.0122
ρz 0.9477 0.0122 0.7833 0.0173
ρυ 0.4565 0.0027 0.0333 0.0025
σa 0.0235 0.0006 0.0079 0.0002
σe 0.0084 0.0001 0.0107 0.0002
σx 0.0389 0.0086 0.0083 0.0004
σz 0.0227 0.0008 0.0073 0.0002
συ 0.0071 0.0003 0.0054 0.0002

Table G.4: Maximum Likelihood Estimates: Spain.
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Model Individual ESS
Parameters p-value p-value

z 0 0
σa 0 0
ρυ 0 0
φP 0 0
ρx 0 0
e 0 0
ρe 0 0
συ 0 0
σe 0 0
ωπ 0.0503 0
σx 0.0723 0
ρa 0.1106 0
γ 0.2181 0
ωy 0.5459 0
ρz 1 1
ωτ 1 1
σz 1 1
φK 1 1
β 1 1

Set of stable parameters (90% probability level):
S = {ρz, ωτ , σz, φK , β}

Table G.5: The table shows the p-values of Andrews’(1993) QLR test on individual
parameters for France. In addition the set of stable parameters is reported as well
as the p-values at each step of Inoue and Rossi’s (2011) ESS procedure.
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Model Individual ESS
Parameters p-value p-value

z 0 0
γ 0 0
e 0 0
β 0 0
συ 0 0
σa 0 0
σz 0 0
ρυ 0.1515 0
φK 0.5622 0
φP 0.6054 0
σx 1 0.5929
σe 1 0.4773
ωτ 1 1
ωπ 1 1
ρe 1 1
ρa 1 1
ρz 1 1
ωy 1 1
ρx 1 1

Set of stable parameters (90% probability level):
S = {σx, σe, ωτ , ωπ, ρe, ρa, ρz, ωy, ρx}

Table G.6: The table shows the p-values of Andrews’(1993) QLR test on individual
parameters for Germany. In addition the set of stable parameters is reported as
well as the p-values at each step of Inoue and Rossi’s (2011) ESS procedure.
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Model Individual ESS
Parameters p-value p-value

z 0 0
σz 0 0
ωτ 0 0
φK 0 0
ρa 0 0
ρv 0 0
ρz 0 0
φP 0 0
σx 0 0
συ 0 0
ρe 0 0
γ 0.0180 0
ωπ 0.1498 0
σa 0.4892 0.6207
σe 0.6370 0.7320
e 1 1
ρx 1 1
ωy 1 1
β 1 1

Set of stable parameters (90% probability level):
S = {σa, σe, e, ρx, ωy, β}

Table G.7: The table shows the p-values of Andrews’(1993) QLR test on individual
parameters for Italy. In addition the set of stable parameters is reported as well
as the p-values at each step of Inoue and Rossi’s (2011) ESS procedure.



93

Model Individual ESS
Parameters p-value p-value

z 0 0
ρυ 0 0
e 0 0
σa 0 0
φK 0 0
σz 0 0
φP 0 0
σe 0 0
ωπ 0 0
ρz 0 0
ωτ 0 0
συ 0 0
σx 0.0249 0
γ 0.0066 0
ωy 0.5959 0.6288
ρe 0.8332 1
ρx 1 1
ρa 1 1
β 1 1

Set of stable parameters (90% probability level):
S = {ωy, ρe, ρx, ρa, β}

Table G.8: The table shows the p-values of Andrews’(1993) QLR test on individual
parameters for Spain. In addition the set of stable parameters is reported as well
as the p-values at each step of Inoue and Rossi’s (2011) ESS procedure.
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Chapter 4

Comparing Quadratic Costs of

Capital Accumulation: An

Empirical Assessment

4.1 Introduction

Over the last three decades DSGE models have become the paradigm for monetary

policy and business cycle analysis, both in academic and policy making circles (see

Canova and Ferroni, 2011). The origin of this class of models dates back to the

work of Kydland and Prescott (1982) and Long and Plosser (1983), who develop a

small scale frictionless neoclassical framework in which utility-maximizing rational

agents operate subject to budget constraints, technological restrictions, and Hicks-

neutral technology shocks. As outlined in Shea (1998), this so-called real business

cycle (RBC) model was seminal in several ways. First, the Schumpeterian idea

that random changes in productivity (technology shocks) can generate business

cycle fluctuations was reintroduced. Second, these business cycle fluctuations

were seen as optimal responses of rational agents to erratic changes in technology,

leaving no need for government policy interventions. Third, business cycles were

explained in a dynamic stochastic general equilibrium framework in which optimal

behavior of agents can explicitly be derived from microeconomic first principles

by specifying preferences, technologies, budget and resource constraints, and the

institutional environment.

Since the pioneering contribution of Kydland and Prescott (1982) and Long

95
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and Plosser (1983), the DSGE research program broadened considerably, generat-

ing a wide set of extensions of the basic RBC model, including New Keynesian fea-

tures like monopolistic competition and nominal rigidities (see Woodford, 2003).

Also the initial view of technology shocks as the ultimate source of business cycle

fluctuations has soon been challenged by a number of studies, leading to the in-

corporation of a variety of economic disturbances into mainstream DSGE models

(see Danthine and Donaldson, 1993 and Gaĺı and Rabanal, 2004 for an overview).

A prominent candidate shock is the marginal efficiency of investment shock.

Even though already Keynes (1936, p. 313) assumed that the phenomenon of the

business cycle is “. . . mainly due to the way in which the marginal efficiency of

capital fluctuates . . .”, Greenwood et al. (1988) were the first to provide a theoret-

ical and quantitative analysis of the marginal efficiency of investment shock in a

single-shock dynamic stochastic general equilibrium framework of the RBC type.

Employing a model with variable capacity utilization, Greenwood et al. (1988)

conclude that their calibrated RBC model is able to match the observed cycli-

cal fluctuations in US data as well as DSGE models purely driven by technology

shocks.

Based on these investigations, DeJong et al. (2000a) choose a multiple-shock

approach to analyze the relative importance of a total factor productivity shock

and a marginal efficiency of investment shock in explaining US business cycle

fluctuations. Using Bayesian estimation techniques, DeJong et al. (2000a, p. 328)

find both shocks to play an important role in driving aggregate fluctuations with

the total factor productivity shock having “. . . a greater initial impact on output

and investment . . .”, whereas the marginal efficiency of investment shock shows

“. . . a more lasting impact.”

Also, Justiniano et al. (2010) adopt this empirical approach and estimate a

multiple-shock DSGE model with New Keynesian features by employing Bayesian

inference methods. The estimated medium-scale model contains a host of nominal

and real frictions, like imperfect competition, sticky prices, habit formation in

consumption, variable capacity utilization, and investment adjustment costs as

well as several shocks including a marginal efficiency of investment shock. As a

result, Justiniano et al. (2010, p. 144) find, “. . . that investment shocks – shocks

to the marginal efficiency of investment – are the main drivers of movements in

hours, output and investment over the [US] cycle . . .”, whereas the incorporation

of frictions such as convex investment adjustment costs plays “. . . a crucial role in
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turning investment shocks into a viable driving force of fluctuations” (Justiniano

et al., 2010, p. 133).

The inclusion of adjustment costs into New Keynesian models to constrain

physical capital accumulation has become standard practice in the recent DSGE

literature, since, as outlined in Ireland (2003) and Smets and Wouters (2007),

these frictions improve the ability of sticky-price models with endogenous invest-

ment to match the key features of the data substantially. A familiar way to model

these real rigidities is to assume that capital owners are subject to quadratic ad-

justment costs (see, for example, Kim, 1998; Ireland, 2003; Zanetti, 2007 and

Cogley and Yagihashi, 2010). As described in Groth and Kahn (2010), these con-

vex adjustment costs specifications can be classified into either costs to adjusting

the level of capital (capital adjustment costs) or costs to changing the level of

investment (investment adjustment costs). In particular, the latter specification

becomes widely used in the context of monetary policy analysis, since, as argued

by Christiano et al. (2005), Smets and Wouters (2007), and Christiano et al. (2010,

p. 49), adjustment costs as a function of the change in investment are able to “. . .

reproduce VAR-based evidence that investment has a humped-shaped response

to a monetary policy shock.”1

The purpose of this chapter is to investigate empirically how these different

specifications of quadratic adjustment costs affect the fit and the dynamics of a

DSGE model with real and nominal frictions featuring several exogenous stochas-

tic disturbances. Specifically, a preference shock, a monetary policy shock, and

a shock to the marginal efficiency of investment compete with a standard RBC

technology shock in driving aggregate fluctuations. We consider three different

specifications of quadratic costs of capital accumulation. Thus, each variant of ad-

justment costs defines a distinct version of the underlying New Keynesian model.

Following DeJong et al. (2000a) and Justiniano et al. (2010), we use a Bayesian

approach to estimate and compare the different model versions for both the euro

area and the US.

The main results of the analysis are as follows. First, we find in part marked

differences between the estimated structural parameters across the three model

specifications. In particular, the estimates of persistence and volatility of the

marginal efficiency of investment shock vary with the choice of investment or cap-

1Groth and Khan (2010) outline further arguments made in favor of investment adjustment
costs in the recent DSGE literature.
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ital adjustment costs. The use of Monte Carlo filtering techniques allows us to

take a closer look at the causes of these differences. Second, the implementa-

tion of either investment or capital adjustment costs affects the dynamics of the

respective model specifications substantially. Our results confirm the findings of

Christiano et al. (2005) and Smets and Wouters (2007, p. 589), who point out that

“. . . modeling capital adjustment costs as a function of the change in investment

rather than its level introduces additional dynamics in the [model’s] investment

equation, which is useful in capturing the hump-shaped response of investment to

various shocks.” Third, despite the ability of investment adjustment to generate

hump-shaped investment responses, the posterior odds comparison, which evalu-

ates the relative empirical fit of a DSGE model, provides decisive evidence in favor

of the model specifications featuring capital adjustment costs. To further evaluate

where the model specifications fail to match the data, we compare the model ver-

sions’ implied characteristics to the actual data using standard moment criteria.

Consistent with the results from the posterior odds analysis, we obtain a better

fit of the model versions with capital adjustment costs than with the specification

including investment adjustment costs. Our findings appear to be qualitatively

robust across both data sets. We conclude that using estimated DSGE models

with quadratic costs of capital accumulation for policy analysis should be done

with caution, since the results could be influenced by the choice of either invest-

ment or capital adjustment costs both having in common the lack of an explicit

microfoundation.

The remainder of the chapter is organized as follows: Section 4.2 presents

the theoretical setup of the three model specifications. Section 4.3 describes the

solution of the model versions and the estimation technique applied. Section

4.4 introduces the concepts of Monte Carlo filtering and regionalized sensitivity

analysis. Section 4.5 explains the data and the priors used. Section 4.6 exposes the

use of Bayesian posterior odds analysis for model evaluation. Section 4.7 discusses

the results obtained from the Bayesian estimation, the MCF analysis, the posterior

odds comparison, the moment analysis, the impulse response analysis, and the

variance decomposition. Section 4.8 concludes. Technical details concerning the

theoretical setup, the model solution, and the construction of the likelihood appear

in the appendices.
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4.2 The Model

4.2.1 Overview

The model economy is a simple cashless closed-economy New Keynesian model

featuring a representative household, a representative finished goods-producing

firm, a continuum of intermediate goods-producing firms indexed by i ∈ [0, 1], and

a monetary authority. We consider three versions of the model that differ only

with respect to the particular specification of capital accumulation costs. The

representative household consumes, saves, and supplies labor and capital services

to the intermediate goods-producing firms. Moreover, the household is assumed to

face convex adjustment costs of capital accumulation. We consider three different

quadratic specifications frequently used in the recent DSGE literature. The final

output is produced by a representative finished goods-producing firm acting in

a perfectly competitive market. The finished goods-producing firm bundles the

continuum of intermediate goods manufactured by monopolistic competitors and

sells it to the household who divides the final good between consumption an

investment. The intermediate goods-producing firms are owned by the household

and each of them produces a distinct, perishable intermediate good, also indexed

by i ∈ [0, 1] during each period t = 0, 1, 2, .... The assumption of monopoly power

of intermediate goods-producing firms allows nominal rigidities to arise in the

form of quadratic nominal price adjustment costs. Finally, there is a monetary

authority, which conducts monetary policy by setting the nominal interest rate

according to a Taylor-type rule. We next characterize the decisions taken by

households and firms before looking at the behavior of the monetary authority

and sketching the solution of the model.2

4.2.2 Households

The representative household enters period t holding Bt−1 nominal one-period

bonds and kt units of physical capital. During period t the household receives

Wtlt+Qtkt total nominal factor payments from supplying lt(i) units of labor and

kt(i) units of capital to each intermediate goods-producing firm i ∈ [0, 1]. Wt and

Qt denote the nominal wage rate for labor and the nominal rental rate for capital,

2Appendices H and I provide a summary of the complete model and its solution.
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respectively. For all t = 0, 1, 2, ..., the household’s choices of lt(i) and kt(i) must

satisfy

lt =

∫ 1

0

lt(i)di,

where lt denotes total hours worked,
3 and

kt =

∫ 1

0

kt(i)di.

Further, the household receives nominal dividends from each intermediate goods

producing firm i ∈ [0, 1] aggregating to

Dt =

∫ 1

0

Dt(i)di.

The household uses its funds to purchase new bonds at the nominal cost Bt/rt,

where rt denotes the gross nominal interest rate between time periods, and output

from the final goods sector at price Pt. Following Woodford (2003), we assume

that prices are measured in terms of a unit of account called “money”, but the

economy is cashless otherwise. The final good can be used for consumption ct or

investment it. In the latter case convex (quadratic) adjustment costs accrue to the

household measured in terms of the finished good. As outlined in Kim (2000, p.

335) quadratic costs are justified on the basis that “. . . it is easier to absorb new

capacity into the firm at a slow rate.” We consider three different specifications of

quadratic adjustment costs S indexed by j ∈ {1, 2, 3}, which are frequently used

in the recent DSGE literature, namely:

i)

S1(it−1, it) = g1(it−1, it)it =
φ

2

(
it
it−1

− 1

)2

it,

employed by Schmitt-Grohé and Uribe (2005), Del Negro and Schorfheide (2008),

and Fernández-Villaverde (2010)

ii)

S2(it, kt) = g2(it, kt)kt =
φ

2

(
it
kt

− δ

)2

kt,

3The endowment of time is normalized to one. Therefore, 1− lt denotes leisure.
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as in Ireland (2003), Dellas (2006), Christensen and Dib (2008), and Cogley

and Yagihashi (2010)

iii)

S3(it, kt) = g3(it, kt)it =
φ

2

(
it
kt

− δ

)2

it,

similar in spirit to the specifications used in Kim (1998), Kim (2000), and

Groth and Khan (2010).

Letting the function gj(·, ·) parameterize the adjustment costs, it holds that

gj(·, ·) = g′j(·, ·) = 0 and g′′j (·, ·) > 0 in the steady state. Therefore, as described

in Christiano et al. (2005), the adjustment costs will only depend on the second-

order derivative. The parameter φ ≥ 0 governs the size of these adjustment costs.

Note that each adjustment cost specification Sj defines a distinct version Mj of

the model.4

The capital accumulation process is given by

kt+1 = (1− δ)kt + xtit,

with 0 < δ < 1 denoting the rate of depreciation and xt representing a shock to

the marginal efficiency of investment introduced by Greenwood et al. (1988). The

shock is specified as

ln(xt) = ρx ln(xt−1) + εxt, (4.1)

with 0 < ρx < 1 and εxt ∼ N(0, σ2
x).

The budget constraint of the representative household is given by

Bt−1 +Wtlt +Qtkt +Dt

Pt
≥ ct + it + Sj(·, ·) + Bt/rt

Pt
.

Moreover, we impose a no-Ponzi-game condition to prevent the household to make

excessive debts. Facing these constraints, the household maximizes the stream of

expected utility

E

∞∑
t=0

βtat

[
log(ct − hct−1)− χ

l1+ηt

1 + η

]
,

4Since g2 equals g3, we a priori expect M2 and M3 to share the same dynamics, whereas
differences presumably occur in the estimated magnitude of the parameter φ.
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where 0 < β < 1 is a discount factor, 0 ≤ h < 1 is the parameter that controls

the “degree” of habit persistence, χ > 0 measures the relative weight of leisure,

and η ≥ 0 denotes the inverse of the Frisch labor supply elasticity. The expected

utility function is subject to an intertemporal preference shock, which is assumed

to follow the autoregressive process

ln(at) = ρa ln(at−1) + εat, (4.2)

where 0 < ρa < 1 and εat ∼ N(0, σ2
a). Following Primiceri et al. (2006), we refer to

at as a “discount factor shock”, affecting both the marginal utility of consumption

and the marginal disutility of hours worked.

4.2.3 Firms

The final good yt is produced by a firm in a perfectly competitive environment,

bundling together the differentiated intermediate goods yt(i) according to the

constant returns to scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

,

where θ > 1 represents the elasticity of substitution between intermediate goods

yt(i). Letting Pt(i) denoting the price of intermediate good i, the following demand

function for intermediate goods is obtained from profit maximization:

yt(i) =

[
Pt(i)

Pt

]−θ
yt,

with

Pt =

[∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

Each intermediate good i is produced by a single monopolistically competitive

firm having access to the constant returns to scale technology

yt(i) ≤ kt(i)
α[ztlt(i)]

1−α,

where 1 > α > 0 represents the elasticity of output with respect to capital. The
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technology shock zt follows the autoregressive process

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (4.3)

with 1 > ρz > 0, z > 0, and εzt ∼ N(0, σ2
z). While each firm i exerts some market

power, it acts as a price taker in the factor markets. Furthermore, the adjustment

of the firm’s nominal price Pt(i) is assumed to be costly, where the cost function

is convex in the size of the price adjustment. According to Rotemberg (1982),

these costs are defined as

φP
2

[
Pt(i)

πPt−1(i)
− 1

]2

yt,

where φP ≥ 0 governs the size of price adjustment costs and π denotes the gross

steady state rate of inflation targeted by the monetary authority. Following Ire-

land (1997), this specification accounts for the negative effects of price changes on

customer-firm relationships. As a consequence of these convex adjustment costs,

the firm’s optimization problem becomes dynamic. In accordance with Ireland

(2003), each firm chooses lt(i), kt(i), yt(i), and Pt(i) to maximize its total market

value

E
∞∑
t=0

βtλt[Dt(i)/Pt]

subject to the demand function for intermediate goods, where λt measures the

period tmarginal utility to the representative household provided by an additional

unit of profits. The firm’s profits are distributed to the household as dividends,

which are defined in real terms by

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)− Wtlt(i) +Qtkt(i)

Pt
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2

yt.

4.2.4 Monetary Authority

Following Clarida et al. (2000), Ireland (2000), Canova (2009), and Fernández-

Villaverde et al. (2010), monetary policy is conducted through setting the short-

term nominal gross interest rate rt according to a modified Taylor rule (see Taylor,
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1993):

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt).

The monetary authority gradually adjusts the nominal interest rate in response

to deviations of current gross inflation πt =
Pt

Pt−1
and output yt from their steady

state values, where ρr, ωπ and ωy are the parameters of the monetary policy rule.5

The monetary policy shock υt follows the autoregressive process

ln(υt) = ρυ ln(υt−1) + ευt, (4.4)

where 0 < ρυ < 1 and ευt ∼ N(0, σ2
υ).

4.3 Solution and Estimation

Each version Mj of the model is characterized by a set of nonlinear difference

equations, encompassing the first-order conditions for the three agents’ problems,

the laws of motion for the four exogenous shocks, and the monetary policy rule. To

close the model, we complete the following two steps. First, we assume symmetric

behavior within the intermediate sector to get from sectoral to aggregate variables,

which implies Pt(i) = Pt, yt(i) = yt, lt(i) = lt, kt(i) = kt, and Dt(i) = Dt, for

t = 0, 1, 2... and all i ∈ [0, 1]. Second, for all t = 0, 1, 2..., the market clearing

conditions for the bond market Bt = Bt−1 = 0 must hold.

The empirical implementation requires additional preparation of the underly-

ing model. Since the model is nonlinear, no exact analytical closed-form solution

can be derived in general. Therefore, an approximate solution is obtained by

computing the steady state, log-linearizing the system around the steady state,

and then applying a complex generalized Schur decomposition to solve the lin-

ear difference model under rational expectations (see appendices H and I).6 The

5Note that the gross steady state level of inflation π is assumed to be determined by the
monetary authority.

6As outlined in Adjemian et al. (2011), the core of the DYNARE solution algorithm for
computing the solution of a linear rational expectations model is predicated on a complex
generalized Schur decomposition as presented in Klein (2000).
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solution can be written in state space form with a state equation

st+1 = Γ0(μ)st + Γ1(μ)εt+1

and an observation equation

ft = Γ2(μ)st,

where the vector st contains the model’s state variables, the vector εt+1 consists

of the serially and mutually uncorrelated innovations7, and the vector ft com-

prises the model’s flow variables. The matrices Γ0(μ),Γ1(μ), and Γ2(μ) contain

(functions of) the model’s parameters μi, i = 1, 2, . . . , k. These parameters are

estimated using Bayesian methods. In contrast to classical statistical inference,

where the parameters of interest are considered as fixed, but unknown quantities,

the Bayesian approach assigns a probabilistic interpretation to the model’s pa-

rameters under consideration (see Robert, 2001; DeJong and Dave, 2007). Hence,

as stated in An and Schorfheide (2007), the Bayesian framework allows to in-

corporate information about the model’s parameters that is not contained in the

estimation sample through re-weighting the likelihood function of a model by a

prior density. Therefore, according to DeJong and Dave (2007), the likelihood

function has to be formed at first, providing the foundation for both classical and

Bayesian approaches to statistical inference. As outlined in Canova (2007, p. 123),

“. . . the likelihood function of a state space model can be conveniently expressed

in terms of one-step-ahead forecast errors, conditional on the initial observations,

and of their recursive variance, both of which can be obtained with the Kalman

filter.”8

If

L(μ|X) ≡ p(X|μ) =
T∏
t=1

p(Xt|μ)

represents the likelihood function of the model, letting X denote the T observa-

tions of anm×1 vector of observable variables Xt and μ define a k×1 vector of the

model’s parameters, then, according to the Bayes theorem, for any specification

7Specifically, we assume εt ∼ N(0,
∑

ε(μ)).
8See appendix J for a detailed presentation of the Kalman filter.
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of the prior distribution p(μ)9, the posterior distribution of the model is given by

p(μ|X) =
p(μ)p(X|μ)

p(X)

=
p(μ)L(μ|X)

p(X)

∝ p(μ)L(μ|X),

where the unnormalized posterior density p(μ)L(μ|X) is referred to as the poste-

rior kernel K.10 Since, as described in Canova (2009), an analytical computation

of the posterior is practically impossible when μ has many dimensions, we use a

Markov Chain Monte-Carlo (MCMC) method to obtain draws from the unknown

posterior distribution. “[This] method involves simulating from a complex and

generally multivariate target distribution . . . indirectly, by generating a Markov

chain with the target density as its stationary density” (Brooks and Gelman, 1998,

p. 434).

Specifically, we employ a Random-Walk Metropolis (RWM)-algorithm which

was first applied to deliver draws from the posterior distribution of DSGE model

parameters by Schorfheide (2000) and Otrok (2001). According to An and Schorfheide

(2007) and Fernández-Villaverde (2010) the RWM-algorithm can be characterized

by the following steps:

1. Employ a numerical optimization routine to maximize the log posterior ker-

nel lnK(μ|X) = ln p(μ)+lnL(μ|X) with respect to μ. Let μ̃ be the posterior

mode.

2. To initialize the procedure draw μ0 from the symmetric jumping distribution

N(μ̃, c
∑̃

), where
∑̃

defines the inverse of the Hessian computed at the

posterior mode μ̃ and c denotes a scale factor.11 Alternatively, specify a

starting value directly.

3. For t = 1, . . . , nsim draw a proposal μ∗ from the jumping distribution

J(μ∗|μt−1) = N(μt−1, c
∑̃

). The jump from μt−1 is accepted (μt = μ∗) if

9Subsequently, we assume that the prior distribution can be factored as p(μ) =
∏k

i=1 p(μi).
10As stated in Hamilton (1994a) and DeJong and Dave (2007), p(X), which assigns probabili-

ties to specific values ofX , can be regarded as a constant from the perspective of the distribution
of μ.

11According to Otrok (2001), a suitable jumping distribution should be both easy to simulate
from and symmetric. These requirements are satisfied by the multivariate normal distribution.
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ϑt drawn from the uniform distribution U(0, 1) satisfies ϑt ≤ min{r, 1},
with r = p(μ∗|X)

p(μt−1|X)
= K(μ∗|X)

K(μt−1|X)
, and rejected otherwise (μt = μt−1).

4. Approximate the posterior expected value of a function g(μ) by 1
nsim

∑nsim

t=1 g(μt),

where the Ergodic theorem implies that lim
nsim→∞

1
nsim

∑nsim

t=1 g(μt)
a.s.−→ E[g(μ)]

(for details see Canova, 2007).

Following DeJong et al. (2000b), different specifications of g(μ) can be considered.

If, for example, g(μ) defines the identity function, then the sequence of accepted

drawings {μt} can be used to approximate the posterior mean of μ. Alternatively,

g(μ) “. . . might be an indicator for a small interval, in which case the function

of interest is the (average) value of the posterior on that interval” (see DeJong et

al., 2000b, p. 213).

For a more detailed description of MCMC methods we refer to Gelman et

al. (2003) and Geweke (2005). The estimation procedure is implemented using

DYNARE, which is a public domain toolbox for the simulation and estimation of

DSGE models. To maximize the posterior kernel we employ Christopher Sim’s

hybrid optimization algorithm “csminwel”, which combines the derivative-based

Broyden-Fletcher-Goldfarb-Shannon (BFGS) method with a simplex algorithm.12

As proposed by Roberts et al. (1997), the scale factor c is chosen to ensure an

acceptance rate around 25%. We simulate five chains13 of 100000 draws each,

and discarded the first 50% as burn-in to eliminate any dependence of the chain

from its starting values. The stationarity of the chains was monitored using the

convergence checks proposed by Brooks and Gelman (1998).

4.4 Monte Carlo Filtering and Regionalized Sen-

sitivity Analysis

4.4.1 Methodology

According to Ratto (2008), a number of issues regularly arises concerning the

estimation and evaluation process of DSGE models, especially when these models

12For a detailed presentation of simplex and BFGS methods we refer to DeJong and Dave
(2007) and Heer and Maussner (2009).

13Note that only one chain is used for inference, whereas the remaining chains are employed
to diagnose MCMC convergence.
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feature a complex structure and a rich parametrization:

i) Which portion of the prior parameter space violates the Blanchard-Kahn

(1980) conditions, leading to indeterminacy or instability of the model?14

ii) Which of the structural parameters mostly drive the fit of a particular ob-

served times series?

iii) Are there any conflicts or trade-off’s between the fit of one observed time

series versus another?

As shown in Ratto (2008), Monte Carlo filtering (MCF) and regionalized (or

generalized) sensitivity analysis (RSA) can be used to answer these questions.

Subsequently, we give a brief general description of both techniques before we

focus on the application of these tools in a DSGE context. A detailed treatment

of MCF and RSA can be found in Saltelli et al. (2004) and Saltelli et al. (2008).

According to Young et al. (1996) and Saltelli (2002), MCF denotes a pro-

cess of rejecting sets of model simulations that do not fulfill certain pre-specified

characteristics. More precisely, following Giglioli et al. (2004, p. 279), MCF is

performed by “. . . mapping the space of the input factors into one or more model

outputs, censoring the model output set into acceptable/non-acceptable (or be-

havioral or non-behavioral), and mapping back the acceptable (or behavioral) set

into the space of input factors.” Hence, two tasks are required for an MCF exercise

(see Saltelli et al., 2008, p. 154):

• “[A] qualitative definition of the system behavior (a set of constraints:

thresholds, ceilings, time bounds etc. based on available information on

the system);

• [A] binary classification of model outputs based on the specified behavior

definition (qualifies a simulation as behavioral, B, if the model output lies

within constraints, non-behavioral, B̄, otherwise).”

RSA, originally developed in the context of environmental models by Spear

and Hornberger (1980), goes one step further by using the output of a MCF

experiment for sensitivity analysis purposes (see Giglioli et al., 2004; Pappenberger

et al., 2008). As in MCF, for a given vector of input factors, model output is

14A detailed description of the Blanchard-Kahn (1980) conditions is given in appendix I.
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categorized (filtered) into either behavioral B or non-behavioral B̄. “The [B− B̄]

categorization is mapped back onto the [input factors], each of which is thus also

partitioned into [an acceptable and a non-acceptable sub-sample]” (Saltelli et al.,

2008, p. 185). Then, for each input factor, the sets of model inputs being classified

as part of the behavioral subset B are compared with the sets of model inputs

in subset B̄, qualified as non-behavioral. Specifically, following Saltelli (2002), a

statistical hypothesis test is applied to check, whether the two subsets are samples

from the same distribution. An input factor is regarded as key factor in driving

the model behavior, when the generated sample distributions are significantly

different (see Ratto, 2008).

4.4.2 Mapping Stability

As outlined in Riggi and Tancioni (2010), the identification of the stability domain

of the model under consideration is a fundamental issue in Bayesian DSGE model

estimation, because it allows to initialize the estimation within the portion of

the parameter space that satisfies the Blanchard-Kahn (1980) conditions for a

unique stable solution. Since for most DSGE models an analytical derivation of

the stability properties is very difficult if not impossible, RSA provides a valuable

tool to detect the stability region of a model (see Ratto, 2008). Following Saltelli

et al. (2004) and Ratto (2008), the steps for the analysis are as follows:

• Initially, N Monte Carlo runs are performed, sampling the model parameters

from their prior distributions and propagating them through the model.15

Therefore, each Monte Carlo run is associated with a specific vector of values

of the input parameters.

• Depending on whether or not Blanchard-Kahn (1980) conditions are sat-

isfied, the model output is is categorized into either behavioral or non-

behavioral and then mapped back onto the input parameters, each of which

is thus also partitioned into an acceptable and a non-acceptable sub-sample.

Target stable behavior is classified as B, unacceptable behavior, i.e., insta-

bility or indeterminacy, is classified as B̄. Hence, given the total number N

15In the applications presented below, the samples are generated using Sobol’ quasi-Monte
Carlo (LPτ ) sequences, which allow better efficiency properties compared to traditional pseudo-
random Monte Carlo sampling (see Ratto, 2008; Saltelli et al., 2008). For a detailed description
of quasi-Monte Carlo techniques we refer to Judd (1998), Sobol’ (1998), and Saltelli et al. (2008).
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of Monte Carlo runs, two subsets are obtained: (μi|B) of n elements and

(μi|B̄) of n̄ elements, where n+ n̄ = N . According to Saltelli et al. (2008, p.

185), “[i]n general, the two sub-samples will come from different unknown

probability density functions fn(μi|B) and fn̄(μi|B̄).”

• To detect the parameters that are mostly responsible for driving the DSGE

model into the target stable behavior, the distributions fn(μi|B) and fn̄(μi|B̄)

are compared for each parameter independently, using a nonparametric test

statistic of the Kolmogorov-Smirnov type. Since we are dealing with empir-

ical distributions, the Smirnov two-sample test (two-sided version) is per-

formed (see Conover, 1999; Saltelli et al., 2004), to compare the null hy-

pothesis that the distributions fn(μi|B) and fn̄(μi|B̄) are identical against

the alternative hypothesis that the distributions are different:

H0 : fn(μi|B) = fn̄(μi|B̄)

H1 : fn(μi|B) 	= fn̄(μi|B̄).

The test statistic dn,n̄ is defined as the greatest absolute vertical distance

between the cumulative probability functions Fn(μi|B) and Fn̄(μi|B̄), i.e.,

dn,n̄(μi) = sup |Fn(μi|B)− Fn̄(μi|B̄)|.

Hence, the test is able to answer the following question (see Saltelli et al.,

2004, p. 154): “At what significance level α does the computed values of

dn,n̄ determine the rejection of H0?” According to Ratto (2008, p. 118), the

smaller α (or, equivalently, the larger dn,n̄), “. . . the more important is the

parameter in driving the behavior of the DSGE model”.

4.4.3 Mapping the Fit

While the estimation procedure outlined in section 4.3 selects values for the struc-

tural parameters that allow an overall optimal fit of the model with respect to a

multivariate data set, MCF techniques can be used to map the fit of each singu-

lar time series in complex multivariate systems, i.e., MCF can detect “. . . which

parameter values would be selected if one single observed series at a time were to

be fitted” (Ratto, 2008, p. 125).
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According to Ratto (2008), the MCF procedure is initialized, sampling the

model parameters μi, i = 1, 2, . . . , k, from their respective posterior distributions.

Each Monte Carlo run is associated with a specific vector of values of the model

parameters. Let Xt = [x̃1t, ..., x̃mt]
′ encompass all observed times series x̃j with

j = 1, 2, . . . , m. Then, for each observed time series a binary classification of the

structural parameters into either B or B̄ is performed, where, based on the root

mean squared error (RMSE) of the one-step-ahead model prediction, B labels the

parameter values that produce the smallest 10 percent RMSEs. This procedure

leads to m distinct filtering rules, each rule identifying the structural parameters

that provide optimal fit for a specific observed series. Hence, given the total

number m of observed time series x̃j , we obtain m distinct empirical distributions

fx̃j(μi|B) for each parameter μi. Therefore, MCF enables to identify the presence

of trade-offs or conflicts for structural parameters when taking the DSGE model

to the data. Following Ratto (2008, p. 126), trade-off’s for a given parameter are

detected, if the following two conditions are fulfilled:

• “[A]t least two distributions fx̃j (μi|B) are significantly different from the

posterior distribution

• and such distributions are significantly different to each other.”

If only the first condition holds, there are likely to be conflicts between the prior

distribution and the likelihood.

4.5 Data and Priors

To estimate the structural parameters of the model specifications we use quarterly

(seasonally adjusted) euro area and US data from 1980:Q1 to 2006:Q4.16 Follow-

ing Canova and Ferroni (2012), we decide to stop at 2006 to avoid complications

stemming from the recent financial crisis. The euro area data come from the Area

Wide Model (AWM) database (see Fagan et al. 2005) and the Euro Area Real-

Time Database (RTDB), whereas the US data are taken from the FRED database

of the Federal Reserve Bank of St. Louis.17 We treat four variables as directly

16We verified that our main results are robust to extending the US data back to 1948 (see
table L.1).

17Appendix K presents the data sources.
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observed: real consumption, real investment, gross domestic product (GDP) price

inflation, and the short-run interest rate.18 The series for consumption and in-

vestment are expressed in per capita terms.19 We detrend all time series applying

the Hodrick-Prescott (H-P) filter, although being aware of the potential problem

of spuriousness, as discussed in DeJong and Dave (2007) and Canova and Fer-

roni (2011).20 By detrending inflation and the short-run interest rate, we follow

Coenen and Wieland (2005), Juillard et al. (2006), Casares (2007), Canova and

Ferroni (2012) and eliminate the downward trend in both series that occurs over

the sample.21

Tables 4.1 and 4.2 present the prior distributions of the parameters, which are

selected according to the following rule:

• Beta distributions are chosen for parameters that must lie in an interval

[0, 1] (ρr, ρa, ρz, ρx, ρv, h and α);

• gamma distributions are used for parameters that must be positive (φp, φ,

ln(z));

• inverse gamma distribution are selected for the standard deviation of the

shocks (σa, σz , σx and σv);

• and normal distributions are picked for all other parameters (ωπ and ωy).

We follow Sahuc and Smets (2008) and assume a prior mean of 0.75 for ρr, ρa, ρz,

and ρx, setting each standard deviations to 0.15. Regarding ρv and h we chose

prior means of 0.5 and standard deviations of 0.1 and 0.2, respectively. With

respect to α, we follow Smets and Wouters (2007) and set a prior with a mean

of 0.3 and a standard deviation of 0.05. For the parameter φP , we assume a

prior mean of 50 and a standard deviation of 10. Regarding the adjustment cost

parameter φ, the prior mean is set to 4 (M1), 30 (M2), and 1500 (M3) with a

prior standard deviation equal to one-fourth of the respective mean. Concerning

18Note that the model contains as many structural shocks as observable variables, so that the
problem of stochastic singularity is avoided (see Ingram et al., 1994).

19Concerning the euro area time series on population, quarterly data is interpolated from the
annual series using cubic spline interpolation.

20 To facilitate the process of parameter estimation, we follow the procedure suggested in
DeJong and Dave (2007, Chapter 11.2.5) and perform further data alignment by scaling the
filtered series using their (relative) means.

21The use of original (not detrended) or quadratically detrended series of inflation and short-
run interest rates did not alter our results substantially.
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ln(z), we chose a prior mean of 8.13 for the euro area and 9.18 for the US, both

with a standard deviation of 1.22 For σa, σz, σx, and σv we follow Canova (2009)

and assume priors with a mean of 0.01 and a standard deviation of 0.5. The prior

distributions of the reaction coefficients ωπ and ωy are centered on the prior mean

values 1.3 and 0.125 with standard deviations equal to 0.3 and 0.2, respectively.

Since the model contains several parameters that are difficult to estimate pre-

cisely, we decide to fix them prior to estimation (i.e. impose dogmatic priors).

The discount factor β is set equal to 0.99 following standard practice. We set η

to a standard intermediate value of 1.35 (see Fernández-Villaverde, 2010), while

χ is calibrated to assure that the representative household’s labor supply in the

steady state amounts to one-third of its time. In addition, the depreciation rate δ

is set to 0.025, corresponding to an annual depreciation rate of about 10 percent

and θ is fixed at 6, implying a steady state markup of prices over marginal cost

of 20 percent. Finally, the respective steady state inflation rate is set equal to the

average rate of inflation for the whole sample under consideration.

To identify which portion of the prior parameter space violates the Blanchard-

Kahn (1980) conditions, leading to indeterminacy or instability of the three model

specifications, we employ the RSA procedure based on a sample of size 2048 for

both regions.23 The RSA analysis shows that for all model specifications and

both regions 85.1 percent of the prior space is stable, while 14.9 percent of the

prior domain gives indeterminacy. Hence, the RSA results suggest a well-defined

prior space, ensuring that the subsequent posterior update is not affected by a

considerable portion of violations of Blanchard-Kahn (1980) conditions (see Ratto

et al., 2009). Figures L.1 − L.6 show, that indeterminacy is essentially driven by

the monetary policy parameter ωπ. The Smirnov test statistic dn,n̄(ωπ) rejects the

null hypothesis based on a significance level α = 1%. The cumulative distributions

for stable behavior are shifted to the right, indicating that the model specification

are most likely to have a unique stable solution if ωπ > 1, i.e., when the Taylor

principle is satisfied.

22We set the prior means of ln(z) so that the steady state values of ct and it in the model
match the respective average values of consumption and investment in the data.

23The RSA is performed using the Sensitivity Analysis Toolbox for DYNARE, a collection of
MATLAB routines developed by Marco Ratto (2009).
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4.6 Posterior Odds Comparison

According to Geweke (1999), Bayesian inference provides a framework to assess

the empirical performance of several competing models by comparing the dif-

ferent specifications through their posterior odds ratio. Moreover, as shown by

Fernández-Villaverde and Rubio-Ramı́rez (2004), asymptotically, the best model

under the Kullback-Leibler distance will have the highest posterior probability,

with the former measure having a complete axiomatic foundation that justifies

why it is precisely the criterion a rational agent should use to choose between

models (even if these models are misspecified and/or nonnested).24

To derive the posterior odds ratio, we follow DeJong and Dave (2007) and

rewrite the posterior to emphasize that the probability assigned to a given value

of μ is conditional not only on the observations X, but also on the specific versions

Mj of the model.25 For a given model specification Mj, the posterior can be

written as

p(μMj
|X,Mj) =

p(μMj
|Mj)L(μMj

|X,Mj)

p(X|Mj)
,

letting the notation μMj
accentuate the potential for μ to be specific to a particular

version of the model Mj. Integrating this expression over μMj
gives∫

p(μMj
|X,Mj)dμMj︸ ︷︷ ︸
=1

=

∫
p(μMj

|Mj)L(μMj
|X,Mj)

p(X|Mj)
dμMj

,

which can be rewritten to form an expression for the marginal likelihood associated

with model specification Mj:

p(X|Mj) =

∫
p(μMj

|Mj)L(μMj
|X,Mj)dμMj

.

The marginal likelihood is the probability that the model specification assigns to

having observed the data.

As stated in DeJong and Dave (2007), just as the Bayes theorem can be used

to derive the conditional probability associated with μMj
, it can also be applied

24As stated in Canova (2007), the Kullback-Leibler distance measures the discrepancy between
the model distribution and the true distribution of the data.

25For the sake of consistency with section 4.2, we refer to specific versions of the model rather
than to specific models.
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to calculate the conditional probability with respect to a particular version of the

model Mj:

p(Mj|X) =
p(Mj)p(X|Mj)

p(X)

=
p(Mj)

[∫
p(μMj

|Mj)L(μMj
|X,Mj)dμMj

]
p(X)

,

where p(Mj) denotes the prior probability assigned to a particular version of the

model Mj. Taking the ratio of conditional probabilities for two model specifica-

tions Mj and Mj′ with j, j
′ ∈ {1, 2, 3} gives the posterior odds ratio:

POMj,Mj′ =
p(Mj|X)

p(Mj′|X)

=
p(Mj)[

∫
p(μMj

|Mj)L(μMj
|X,Mj)dμMj

]

p(Mj′)[
∫
p(μMj′ |Mj′)L(μMj′ |X,Mj′)dμMj′ ]

,

where
p(Mj)

p(Mj′)

is called the prior odds ratio and

[
∫
p(μMj

|Mj)L(μMj
|X,Mj)dμMj

]

[
∫
p(μMj′ |Mj′)L(μMj′ |X,Mj′)dμMj′ ]

is referred to as the Bayes factor. As stated in Kass and Raftery (1995, p. 777),

the Bayes factor represents “a summary of the evidence by the data in favor of

one scientific theory, represented by a statistical model, as opposed to another.”

Note that the Bayes factor corresponds to the posterior odds ratio if the prior

odds ratio is set to unity, i.e., either model specification is equally probable a

priori. To interpret the Bayes factor, Jeffreys (1961) suggests the following rule

of thumb:

i) a Bayes factor between 1 and 3 provides very slight evidence,

ii) a Bayes factor between 3 and 10 provides slight evidence,

iii) a Bayes factor between 10 and 32 provides strong evidence,

iv) a Bayes factor between 32 and 100 provides very strong evidence and
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v) a Bayes factor above 100 provides decisive evidence

in favor of specification Mj against Mj′.

Further, relaxing the assumption of a unity prior odds ratio, posterior odds

can be used to compare a set of model specifications by computing their posterior

probabilities. Following Fernández-Villaverde and Rub́ıo-Ramirez (2004) and An

and Schorfheide (2007), the posterior probability of M1 against M2 and M3 is

given by

ppost1 =
1

POM1,M1 + POM2,M1 + POM3,M1

.26

As outlined in An and Schorfheide (2007) and Canova (2007), the practical

difficulty in implementing posterior odds comparisons is the computation of the

marginal likelihood because the integral

p(X|Mj) =

∫
p(μMj

|Mj)L(μMj
|X,Mj)dμMj

typically has no analytical solution. Since there are several approaches to com-

pute marginal likelihoods, usually relying on approximations or simulation-based

methods, we decide to choose Geweke’s (1999) modified harmonic mean estimator

to calculate the marginal likelihood based on the output of the RWM-algorithm.27

The theoretical foundation of this approach is the harmonic mean identity, which

implies that the reciprocal of the integrated likelihood is equal to the posterior har-

monic mean of the likelihood (see Raftery et al., 2007). Following Canova (2006)

and An and Schorfheide (2007), the modified harmonic mean estimator can be

described as follows: For each version of the model Mj, the marginal likelihood

p(X|Mj) is approximated using[
1

nsim

nsim∑
t=1

f(μtMj
)

p(μtMj
|Mj)L(μtMj

|X,Mj)

]−1

,

where every single vector μtMj
comes from the RWM iterations, denoting the draw

t of the parameters μ of model specification Mj and f is a truncated normal dis-

26The computation of ppost2 and ppost3 proceeds in the same manner.
27While DYNARE allows to choose between a Laplace-approximation method and the modi-

fied harmonic mean estimator, we prefer the latter, motivated by the results of Adolfson et al.
(2007), who find the modified harmonic mean estimator to be numerically stable in the RWM
case.
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tribution, which, to make the numerical approximation efficient, should be chosen

so that the summands are of equal magnitude. For a more detailed discussion of

the modified harmonic mean estimator we refer to Geweke (1999).

4.7 Results

4.7.1 Bayesian Estimation

Table 4.1 and 4.2 present the parameter estimates of the three model specifications

across the two data sets. Each table lists posterior means, posterior standard de-

viations, and highest posterior density (HPD) intervals containing the 90 percent

highest posterior density.28 The respective prior and posterior distributions of the

parameters are graphed in figures L.7 − L.12.

For both regions, figures L.7−L.12 show the data to be reasonably informative

about the shock parameters, since their prior and posterior distributions appear

to be relatively distinct. The posterior means of ρa, ρz , and ρv indicate the three

shocks to be quite persistent across all model specifications M1 − M3, whereas

the monetary policy shock appears to be less persistent than the preference and

the technology shock. Contrary to these results, ρx differs substantially in magni-

tude between M1 on the one hand and M2 and M3 on the other hand, since, for

both regions, the respective HPD intervals do not overlap. While the latter speci-

fications exhibit a high persistence of the marginal efficiency of investment shock,

the estimated mean of the persistence parameter is considerably lower under M1.

Except for ρz, we find the persistence parameters of the shocks to be relatively

higher in the euro area. For example, the posterior mean of the autoregressive

parameter ρa is almost two times higher in the euro area than in the US (across

all model specifications), which is broadly consistent with the findings reported

in Smets and Wouters (2005).

Further differences between M1 and the specifications M2/M3 appear when

turning to the estimated standard deviations of the innovations. Except for σv,

the standard deviations of the innovations appear to be higher under model spec-

ification M1 in both the euro area and the US. For both regions, the posterior

28For a detailed description of HPD intervals and their construction we refer to Gill and King
(2003), whereas the computation of posterior standard deviations is outlined in DeJong and
Dave (2007).
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means of σa and σz increase by at least one respective posterior standard devi-

ation under M1, while in the case of σx the HPD intervals of M2 and M3 do

not even overlap with the intervals of M1. Despite these differences, M1 −M3

coincide in detecting the shock to the marginal efficiency of investment to be the

most volatile followed by the technology and the preference shock, whereas the

monetary policy shock features the lowest volatility. Our estimates are in line

with the results of Adolfson et al. (2008) and Gelain et al. (2012) for closed

economy DSGE models of the euro area featuring adjustment costs of the form

S1, both finding the marginal efficiency of investment shock to be relatively low

in persistence but high in volatility. For the US, our results coincide with the

findings of Ireland (2003) and Justiniano et al. (2010), who both obtain relatively

large estimates of σx, implementing adjustment cost specifications of the form S2

and S1, respectively. Overall, we find the standard deviations of the innovations

(σa, σz , σx, and σv) to be relatively higher in the US than in the euro area.

Compared to the results of Smets and Wouters (2003) and Adjemian et al.

(2007) for the euro area, we obtain smaller values of the degree of backward-

looking behavior of consumption across all model specifications, whereas our esti-

mates for the US, which appear to be higher than in the euro area, are in line with

the findings of Christiano et al. (2005), Smets and Wouters (2005), and Ireland

(2007). Further, we find the posterior mean of h under M1 to exceed the esti-

mated means under M2 and M3 by more than one posterior standard deviation

in case of the euro area, while these differences become less apparent for the US.

Regarding the price adjustment cost parameter φP , we find the posterior means

of M2 and M3 to increase by at least one posterior standard deviation under M1,

both in the euro area and the US. Concerning its magnitude, our estimates of the

price adjustment cost parameter are consistent with the results of Gerali et al.

(2010) for the euro area and Ireland (2001) for the US. Moreover, the degree of

price stickiness seems to be higher in the US than in the euro area, although this

result is in line with the findings of Smets and Wouters (2005) it is at odds with

the micro-evidence on price stickiness presented in Álvarez et al. (2006).

Turning first to the results for the euro area, the data point to lower adjustment

costs S1 than were embodied in the prior, since we find the posterior distribution

for φ to be left-shifted relative to the prior distribution with a posterior mean lying

more than one posterior standard deviation below its prior mean. Concerning

adjustment cost specifications S2 and S3, the respective prior and posterior means
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of φ appear to be similar in size, whereas the posterior distributions are more

tightly distributed than the priors.

In case of the US, we find the data to be quite informative about the ad-

justment costs parameter across all specifications S1 − S3, since the posterior

distributions for φ are left-shifted relative to the prior distributions with the re-

spective posterior means lying partly more than one posterior standard deviation

below their prior means. For S1, our results are in line with Levin et al. (2005)

and Zubairy (2010), whereas our findings for S2 are consistent with the estimates

of Ireland (2003). By broadening the scope of the analysis across data sets, we

perceive adjustment costs to be higher in the euro area than in the US.

The estimates of α, measuring share of capital in the production function for

intermediate goods, are almost exactly 0.3 across all model specifications for both

regions. As shown in figures L.7−L.12 the respective posterior distributions of α

are centered very close to the prior, but are much more tightly distributed, both

which is due to the data alignment described in section 4.5.

Turning to the monetary policy reaction function estimated for the euro area,

we find the respective posterior means of ωπ and ωy to be approximately equal

across the model specifications M1 − M3, whereas the posterior mean of the

interest-rate-smoothing parameter ρr under M1 exceeds the respective estimates

under M2 and M3 by more than two posterior standard deviations. The esti-

mated means of ωπ are in line with results for the euro area documented by Smets

and Wouters (2003), Adolfson et al. (2008), and Sahuc and Smets (2008), while

we find smaller values for the posterior mean of ρr. Like in Smets and Wouters

(2003) and Adolfson et al. (2008), we obtain small estimates of the posterior mean

of ωy, albeit our results all show a negative sign.

In case of the US a similar pattern occurs, since the respective posterior means

of ωπ and ωy are approximately equal across the model specifications M1 −M3,

whereas the posterior mean of the interest-rate-smoothing parameter ρr underM1

exceeds the respective estimates under M2 and M3 by more than one posterior

standard deviation. In accordance with the results for the euro area, we find small

values of the posterior mean of ωy, although the estimates turn out to be positive

for the US. The posterior means of ωπ and ωy are consistent with the estimates

provided in Smets and Wouters (2007) and Sahuc and Smets (2008), while we find

smaller values for the posterior mean of ρr. By comparing the estimated policy

rules across regions, it turns out that the interest rate persistence is higher and
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the response to inflation is stronger in the US.

Finally, we find the estimates of ln(z) to be almost equal across all model

specifications within each region. Note that ln(z) has no impact on the dynamics

of the model specifications, since it only serves to determine steady states (see

section 4.5). As displayed in figures L.7 − L.12 prior and posterior distribution

are almost indistinguishable, indicating that the data are uninformative regarding

the location of ln(z).
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4.7.2 Monte Carlo Filtering Analysis

To identify the presence of trade-offs or conflicts for the structural parameters

when taking the three model specifications to the data, we apply the MCF proce-

dure described in section 4.4.3 combined with a Smirnov two-sample test.29 The

Smirnov test answers the question: “At what significance level α can the null hy-

pothesis that fx̃j(μi|B) equals the respective posterior distribution be rejected?”30

Figures L.13− L.36 present the cumulative empirical probability distributions of

the filtered samples corresponding to the best fit for each observed time series (c,

i, π, r) and the respective cumulative posterior probability distributions (base),

while the tables L.2 − L.7 contain the p-values (in percent) of the Smirnov two-

sample test.

In section 4.7.1, we found that the most remarkable differences between spec-

ification M1 on the one hand and M2 and M3 on the other hand occur with

respect to the parameters ρx and σx, capturing the persistence and volatility of

the marginal efficiency of investment shock. We detected the posterior means of

ρx under specification M2 and M3 to be considerably higher than under M1,

whereas the estimates of σx turned out to be markedly lower. In the remain-

der of this section we will use the MCF analysis to identify the causes of these

differences.

Concerning ρx, the three specifications differ markedly with regard to the

cumulative empirical probability distributions Fr(ρx|B). We find no significant

differences between Fr(ρx|B) and the cumulative posterior distribution (euro area)

or even support for smaller values of the persistence parameter (US) in case ofM1,

while observations of r clearly support larger values of ρx, i.e., a more persistent

shock to the marginal efficiency of investment, in specifications M2 and M3.

This provides an explanation for the relative higher estimates of the marginal

efficiency of investment shock’s persistence under specification M2 and M3 com-

pared to M1.

Turning to σx, the model versions differ especially regarding the relative loca-

tion of Fi(σx|B) and Fπ(σx|B) with respect to the particular cumulative posterior

29We perform the MCF analysis using the Sensitivity Analysis Toolbox for DYNARE, a
collection of MATLAB routines developed by Marco Ratto (2009). The MCF procedure is
based on a sample of size 6000.

30Recall from section 4.4.3, that B labels the parameter values producing the smallest 10
percent RMSEs.
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distributions. For the euro area, the observations for i significantly prefer larger

values of σx under M1, whereas in case of M2 and M3, i data support smaller

values than the ones implied by the posterior distribution. With regard to the US,

the preferences of the observations are qualitatively consistent across all model

specifications, although the p-values show that the preferences of i and π obser-

vations for lower values of σx are considerably stronger under M2 and M3 than

under M1. Hence, the MCF results give a clue why specifications M2 and M3

exhibit a lower volatility of the marginal efficiency of investment shock than M1.

4.7.3 Model Evaluation

4.7.3.1 Bayesian Model Comparison

To assess the overall time series fit of the three model specifications under con-

sideration, we list the respective prior probabilities, marginal log likelihoods and

posterior probabilities in table 4.3. By assigning equal probabilities to the model

specifications a priori, the exponentiated differences of marginal log likelihoods

can be interpreted as posterior odds.31

Euro Area

M1 M2 M3

Prior probability 1/3 1/3 1/3
Marginal log likelihood 1790.2238 1800.6993 1800.6304
Posterior probability 0.0000 0.5172 0.4828

US

M1 M2 M3

Prior probability 1/3 1/3 1/3
Marginal log likelihood 1606.2136 1617.3322 1616.0600
Posterior probability 0.0000 0.7811 0.2189

Table 4.3: Prior probabilities, marginal log likelihoods and posterior probabilities
across model specifications and regions.

31The posterior odds of model specification Mj versus Mj′ with j, j′ ∈ {1, 2, 3} can be
obtained by multiplying the prior odds, which are unity in the case of equal prior probabilities,
with the Bayes factor exp [ln p(Mj |X)− ln p(Mj′ |X)].
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For both data sets we find M2 to perform best in explaining the data showing

the highest posterior probability, whereas specification M1, gaining the lowest

marginal log likelihood, turns out to have a zero posterior probability. More

specifically, the posterior odds provide very slight evidence in favor of M2 against

M3 and decisive evidence in favor of M2 against M1 for the euro area. In case

of the US, Jeffreys’ (1961) rule of thumb indicates slight evidence in favor of M2

against M3 and decisive evidence in favor of M2 against M1.

As discussed in Rabanal and Rubio-Ramı́rez (2008), policymakers are often

interested in how theoretical models compare with more densely parameterized

and less restrictive reference models. Hence, in line with Schorfheide (2000),

Smets and Wouters (2003), and Juillard et al. (2008), we broaden the scope of

the analysis by comparing the three model specifications with Bayesian vector

autoregressive (BVAR) models at various lag lengths (lags 1 to 4).32 Concerning

the prior distributions of the BVARs we follow Lubik and Schorfheide (2005) and

use a modified version of the so-called Minnesota prior, which originally dates

back to Litterman (1980) and Doan et al. (1984).33 The prior is made of two

components, with a dummy observation prior, constructed according to Sims’

version of the Minnesota prior (see Doan et al.), being augmented by Jeffrey’s

improper prior. For a detailed description of the BVAR setup we refer to Lubik

and Schorfheide (2005).34

Table 4.4 displays prior probabilities, marginal log likelihoods and posterior

probabilities of the three model specifications and the four BVARs.35 For both

data sets our three model specifications do not compare favorably to the best

fitting BVAR. In contrast to large-scale DSGE models as developed by Smets

and Wouters (2007) or Ratto et al. (2009), which are able to outperform BVAR

models, our deliberately stylized specifications lack of features like wage and price

indexation or the usage of a large set of shocks. Although to some extent criticized

32Pre-samples are used to initialize the BVARs.
33Since, as outlined in Lütkepohl (2005), the Minnesota prior was primarily suggested for

certain non-stationary processes, we slightly modify the prior, following the approach of Lubik
and Schorfheide (2005).

34As outlined in Del Negro and Schorfheide (2011), the Minnesota prior depends on several
hyperparameters. According to Smets and Wouters (2007) and Ratto et al. (2009), we set
the prior decay and tightness parameters to 0.5 and 3, respectively. Further, the parameter
determining the weight on own-persistence (sum-of-coefficients on own lags) is set at 2 and the
parameter determining the degree of co-persistence is set at 5.

35The marginal likelihoods of the BVARs are computed using the MATLAB codes provided
by Christopher Sims, which are available at http://sims.princeton.edu/yftp/VARtools/.
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Euro Area

M1 M2 M3 BVAR(1) BVAR(2) BVAR(3) BVAR(4)
Prior probability 1/7 1/7 1/7 1/7 1/7 1/7 1/7
Marginal log likelihood 1790.2238 1800.6993 1800.6304 1807.1802 1813.9321 1808.1124 1803.7778
Posterior probability 0.0000 0.0000 0.0000 0.0012 0.9958 0.0030 0.0000

US

M1 M2 M3 BVAR(1) BVAR(2) BVAR(3) BVAR(4)
Prior probability 1/7 1/7 1/7 1/7 1/7 1/7 1/7
Marginal log likelihood 1606.2136 1617.3322 1616.0600 1636.0099 1647.9345 1656.7848 1660.5414
Posterior probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0228 0.9772

Table 4.4: Cross-validation: BVARs and model specifications.

(see, for example, Chari et al., 2009), we would expect that the implementation

of these features would improve the macroeconomic fit of our model specifications

considerably.

4.7.3.2 Standard Moment Criteria

To understand why model specification M1 fits the data worse than M2 and M3,

we present some selected unconditional second moments of the data and compare

them with their theoretical counterparts implied by the different model versions.

Tables L.8 and L.9 report standard deviations and first-order autocorrelations of

consumption, investment, inflation, and the nominal interest rate derived from

the data and the moments obtained from the three model specifications. Follow-

ing Schmitt-Grohé and Uribe (2008) and Gabriel et al. (2012), the model implied

statistics were computed by simulating the model specifications at the respec-

tive posterior means obtained from estimation. As outlined in Rabanal (2007),

likelihood-based methods try to fit all second moments of the data, so this selec-

tion is just illustrative of where the model specifications fail.

Turning to the standard deviations first, we find the data to exhibit a higher

volatility in consumption, investment, and the nominal interest rate for the US

than for the euro area. Although the three model specifications are able to match

the empirical observation that investment is more volatile than consumption, all

specifications generate too much volatility of consumption compared to the data.

In line with the Bayesian model comparison, we detect marked differences be-

tween M1 on the one hand and M2 and M3 on the other hand in fitting the
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data. Specifically, M2 and M3 outperform M1 in matching the volatility of con-

sumption, investment and inflation in the data for both regions. Most noticeably,

specification M1 performs relatively poorly in capturing the standard deviation of

investment, since the volatility implied by the model specification departs consid-

erably from its counterpart in the data. Model version M1 is able to outperform

the two other specifications only in capturing the volatility of the nominal interest

rate in the data with respect to the euro area.

Concerning first-order autocorrelations all model specifications appear to match

the serial correlations of the data well. The most notable discrepancies between

model specification and data can be found for the euro area, since actual inflation

turns out to have a much lower first-order autocorrelation than implied by the

model specifications.

4.7.3.3 Impulse Response Analysis

To gain insight into the dynamic properties of the three model specifications, we

compare impulse response functions (IRFs) of output, consumption, investment,

hours, inflation, and the nominal interest rate with respect to the four structural

shocks (see figures L.37 − L.44).36 Following Levin et al. (2005), all impulse

responses are computed by simulating the model specifications at the posterior

means reported in table 4.1 and 4.2.

First of all, the respective model specifications show similar qualitative re-

sponses across the data sets. However, to some extent we find marked differences

between the IRFs of specification M1 on the one hand and M2 and M3 on the

other hand within the data sets.

In accordance with the results of Smets and Wouters (2003) and Peersman

and Straub (2006), a positive preference shock crowds out investment, but has

a positive impact on consumption and output. Further, the increase in capacity

necessary to satisfy demand causes a rise in hours worked. Figures L.37 and

L.41 show that the increase of overall demand puts upward pressure on inflation.

Consequently, the movements in output and inflation lead to a rise in the nominal

interest rate under the estimated monetary policy rule. While the responses of

output, consumption, hours, inflation, and the interest rate turn out to be quite

36The impulse responses are the log-deviations from the steady state to a one-standard devi-
ation innovation. A detailed description of the computation of IRFs can be found in Hamilton
(1994a), Lütkepohl (2005), and Canova (2007).
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similar across the three model specifications, we find marked differences with

respect to investment. In contrast to M2 and M3, investment declines in a

hump-shaped pattern under M1.

Figures L.38 and L.42 report the impulse responses to the marginal efficiency

of investment shock. We find the dynamics to be fairly similar across the model

specifications. In accordance with the results of Peersman and Straub (2006)

and Justiniano et al. (2010), output, investment, and hours rise after a positive

impulse. With respect to consumption, we find an initially negative response,

followed by a rise after a few quarters. Inflation and the nominal interest rate both

rise in response to a positive marginal efficiency of investment shock. Justiniano

et al. (2009) therefore attest the marginal efficiency of investment shock to have

the typical features of a demand shock, which moves quantities and prices in the

same direction, leading to a tightening of monetary policy.

Although the shape of the IRFs differs to some extend considerably between

M1 and the model versions M2/M3, all model specifications predict a rise in

output, consumption, and investment after a positive technology shock (see fig-

ures L.39 and L.43). Once again, we find hump-shaped investment dynamics

under M1. Further, consistent with empirical evidence presented in Gaĺı (1999),

the presence of nominal price rigidities causes a decrease in hours worked in re-

sponse to a positive technology shock. In all model specifications inflation falls

contemporaneously following a positive technology shock, because the increase in

productivity lowers real marginal costs. Likewise, the nominal interest rate falls

in the three model specifications, since, according to the estimated Taylor-type

rules, monetary policy responds more strongly to inflation than to output.

Finally, figures L.40 and L.44 depict the effects of an unpredicted monetary

policy disturbance. The shock leads to a rise in the nominal short-term inter-

est rate, which induces a fall in output, consumption, investment, hours, and

inflation. As discussed in Christiano et al. (2005), the investment adjustment

cost specification under M1 generates a hump-shaped response of aggregate in-

vestment to the monetary policy shock, and therefore improves the ability of the

model specification to reproduce VAR-based evidence.
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4.7.3.4 Variance Decomposition

To shed further light on the dynamics of our three model specifications, we ex-

amine the relative importance of the four structural shocks for the fluctuations of

output, consumption, investment, hours worked, inflation, and the nominal inter-

est rate.37 To that effect, we compute the fraction of the forecast error variance of

the six variables attributable to each type of shock .38 Tables L.10−L.15 present

the forecast error variance decompositions across model specifications and regions

at the one-year, three-year, and infinite horizon. 39

Turning to the euro area first, we find the technology shock to represent the

dominant force of movements in output and consumption for all three model

specifications at all horizons. However, the role of the four shocks in explaining

the fluctuations of investment, hours worked, inflation, and the nominal interest

rate differ to some extend considerably between M1 on the one hand and M2

and M3 on the other hand at the different horizons. The marginal efficiency of

investment shock, for instance, accounts for the largest part of the conditional

variance in forecasting investment in the short run (up to one year) under M2

and M3, while we find the technology shock to be relatively more important in

driving the short term movements in investment under M1. Further, we find

that hours worked are mainly driven by the technology shock over the medium

(three-year horizon) to the long run (infinite horizon) under M1, whereas the

monetary policy shock explains more than 60 percent of the forecast error variance

of hours worked under M2 and M3 at all horizons. We partly attribute this high

contribution of the monetary policy shock to the relatively lower estimates of

habit persistence under M2 and M3, since, following Bouakez et al. (2005), a

higher degree of habit formation induces agents to adjust their labor supply more

gradually in response to monetary policy shocks. Although the monetary policy

shock is also the most important driving force behind short, medium and long run

fluctuations of inflation across all model specifications, the policy shock turns out

to be relatively more important under M2 and M3 than under M1. According

to all model specifications, the preference shock represents a dominant source

37Following Rabanal (2009), the variance decomposition is performed evaluating the model
(specification) parameters at their posterior means.

38For a detailed description of the computation of forecast error variance decompositions, we
refer to Hamilton (1994a), Lütkepohl (2005), or Canova (2007).

39Note that as the horizon increases, the conditional variance of the forecast error of a given
variable converges to the unconditional variance of that variable (see Bouakez et al., 2005).
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of movements in the nominal interest at all horizons, while the technology shock

appears to be relatively more important for explaining fluctuations in the nominal

interest rate under M1 than under M2 and M3.

By analyzing the forecast error variances decomposition for the US, we also

find the technology shock to explain most of the fluctuations in output and con-

sumption across all model specifications at all horizons. Although the three model

specifications likewise coincide in attributing most of the short run movements in

investment to the marginal efficiency shock of investment, M1, M2 and M3

clearly differ at higher horizons, since the technology shock explains most of the

investment forecast error variance under M1, while the investment fluctuations

under M2 and M3 continue to be mainly driven by the investment shock (even

though the contribution of the technology shock increases over the medium to the

long run). The case is similar for hours worked, as we find the technology shock

to play a more important role under M1 than under M2 and M3 at all horizons,

albeit the marginal efficiency shock of investment represents the dominant source

of movements in hours worked across all three specifications. Focusing on the

sources of inflation fluctuation, it turns out that the marginal efficiency of invest-

ment shock and the monetary policy shock are about equally important under

M1, both constituting the two most important driving forces behind short and

medium run fluctuations, while the technology shock accounts for most of the

inflation forecast error variance in the long run. Under M2 and M3, in contrast,

the monetary policy shock accounts for most of the forecast error variance of in-

flation at all horizons, although the investment shock and the technology shock

play a supporting role in driving inflation fluctuations. According to all model

specifications, the marginal efficiency of investment shock represents an important

source of movements in the nominal interest rate at all horizons. Furthermore, the

contribution of the technology shock to the forecast error variance of the nominal

interest rate increases across all model specifications over the medium to the long

run. Moreover, we find the monetary policy shock to be relatively more important

than the preference shock in explaining the fluctuations of the nominal interest

rate under M1, while the reverse holds under specification M2 and M3.

Overall, also the forecast error variance decomposition reveals to some extent

remarkable differences between specification M1 and model versions M2 and M3.

In addition, it appears that the technology shock explains most of the fluctua-

tions in output and consumption in both regions. However, we find the marginal
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efficiency of investment shock to play a more important role in business cycle

fluctuations in the US than in the euro area. According to tables L.10 − L.15,

the preference shock represents a dominant source of movements in the nominal

interest in the euro area, whereas the same holds for the shock to the marginal

efficiency of investment in case of the US. Finally, we identify the monetary pol-

icy shock to be much more important in explaining the forecast error variance of

hours worked and inflation in the euro area than in the US.

4.8 Conclusions

In this chapter we use a Bayesian approach to analyze the impact of different

specifications of quadratic adjustment costs on the fit and the dynamics of a New

Keynesian model using both euro area and US data. The underlying dynamic

stochastic general equilibrium model features real and nominal frictions as well as

several exogenous stochastic disturbances, namely a preference shock, a technol-

ogy shock, a shock to the marginal efficiency of investment, and a monetary policy

shock. We consider three different specifications of quadratic adjustment costs:

an investment adjustment cost specification and two forms of capital adjustment

costs. Therefore, each variant of quadratic adjustment costs defines a distinct

version of our New Keynesian DSGE model.

We find to some extent noticeable differences between the estimated struc-

tural parameters across the three model versions. The estimates of persistence

and volatility of the marginal efficiency of investment shock turn out to vary

substantially with the choice of investment or capital adjustment costs.

Moreover, the implementation of either investment or capital adjustment costs

affects the dynamics of the respective model specifications considerably. Our re-

sults are in line with the findings of Christiano et al. (2005) and Smets and

Wouters (2007), who show that sticky-price models incorporating investment ad-

justment costs are able to produce data-consistent hump-shaped investment dy-

namics. However, despite the ability of investment adjustment costs to generate

hump-shaped investment responses to various shocks, the Bayesian posterior odds

comparison indicates that the two model specifications with capital adjustment

costs outperform the model version incorporating investment adjustment costs in

terms of overall empirical fit.
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To further evaluate where the model specifications fail to match the data,

we compare the model version’s implied characteristics with the actual data using

standard moment criteria. In line with the results from the posterior odds analysis,

the model versions with capital adjustment costs provide a better fit to the data

than the specification including investment adjustment costs. Our findings appear

to be qualitatively robust across both data sets.

Therefore, using estimated DSGE models with quadratic costs of capital accu-

mulation for policy analysis should be done with caution, since the results could

be affected by the choice of either investment or capital adjustment costs both be-

ing modeling shortcuts. Hence, our results give further evidence to encourage the

efforts of a sound microfoundation of adjustment costs for capital accumulation

as recently put forward by Wang and Wen (2012).
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Appendix H

Equilibrium Conditions

The appendix outlines the complete system of equations of the three DSGE model

specifications.

H.1 The Economic Environment

• Households:

The representative household chooses {ct, lt, Bt, kt+1, it}∞t=0 to maximize util-

ity

E
∞∑
t=0

βtat

[
log(ct − hct−1)− χ

l1+ηt

1 + η

]
,

subject to the budget constraint

Bt−1 +Wtlt +Qtkt +Dt

Pt
≥ ct + it + Sj(·, ·) + Bt/rt

Pt

and the law of motion for capital

kt+1 = (1− δ)kt + xtit.

According to Buiter and Sibert (2007), we prevent the household to make

excessive debts by imposing the no-Ponzi-game condition

lim
t→∞

Bt

t∏
s=0

1

rs
≥ 0.

.
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Hence, the Lagrangian can be written as follows:

Λ = E

∞∑
t=0

{
βtat

[
log(ct − hct−1)− χ

l1+ηt

1 + η

]
− βtλt

[
ct + it + Sj(·, ·) + Bt/rt

Pt
− Bt−1

Pt
− Wtlt

Pt
− Qtkt

Pt
− Dt

Pt

]
− βtψt[kt+1 − (1− δ)kt − xtit]

}
.

The first-order conditions are obtained by setting the partial derivatives of

Λ with respect to ct, lt, Bt, kt+1, it, λt, and ψt equal to zero, yielding

Λct = at(ct − hct−1)
−1 − hβEt[at+1(ct+1 − hct)

−1]− λt = 0, (4.5)

Λlt = λt
Wt

Pt
− atχl

η
t = 0, (4.6)

ΛBt = rtβEt

(
λt+1

Pt
Pt+1

)
− λt = 0, (4.7)

and, concerning the different specifications of Sj(·, ·),

– S1(it−1, it):

Λkt+1 = ψt − βEt

(
λt+1

Qt+1

Pt+1

)
− βEt[ψt+1(1− δ)] = 0, (4.8)

Λit = λt + λt

[
φ

(
it
it−1

− 1

)(
it
it−1

)
+
φ

2

(
it
it−1

− 1

)2]
− ψtxt − βEt

{
λt+1

[
φ

(
it+1

it
− 1

)(
it+1

it

)2]}
= 0,

(4.9)

– S2(it, kt):

Λkt+1 = ψt + βEt

{
λt+1

[
φ

2

(
it+1

kt+1
− δ

)2]}
− βEt

{
λt+1

[
φ

(
it+1

kt+1

− δ

)(
it+1

kt+1

)]}
− βEt

(
λt+1

Qt+1

Pt+1

)
− βEt[ψt+1(1− δ)] = 0,

(4.8′)
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Λit = ψtxt − λt − λt

[
φ

(
it
kt

− δ

)]
= 0, (4.9′)

– S3(it, kt):

Λkt+1 = ψt − βEt

{
λt+1

[
φ

(
it+1

kt+1

− δ

)(
it+1

kt+1

)2]}
− βEt

(
λt+1

Qt+1

Pt+1

)
− βEt[ψt+1(1− δ)] = 0,

(4.8′′)

Λit = ψtxt − λt − λtφ

(
it
kt

− δ

)(
it
kt

)
− λt

φ

2

(
it
kt

− δ

)2

= 0,

(4.9′′)

as well as

Λλt = ct + it + S(·, ·) + Bt/rt
Pt

− Bt−1

Pt
− Wtlt

Pt
− Qtkt

Pt
− Dt

Pt
= 0, (4.10)

and

Λψt = kt+1 − (1− δ)kt − xtit = 0. (4.11)

Finally, we impose the standard transversality conditions to guarantee that

bonds and capital do not grow too quickly:

lim
t→∞

βtλt
Bt

Pt
= 0,

lim
t→∞

βtλtkt+1 = 0.

• Finished goods-producing firms:

The representative finished goods-producing wants to maximize its profits

Ptyt −
∫ 1

0

Pt(i)yt(i)di

subject to the constant returns to scale technology

yt ≤
[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

.
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Hence, the firm’s optimization problem can be written as

max
yt(i)

Πt = Pt

[∫ 1

0

yt(i)
(θ−1)/θdi

]θ/(θ−1)

−
∫ 1

0

Pt(i)yt(i)di,

which leads to the following first-order condition characterizing the demand

for intermediate goods:

∂Πt

∂yt(i)
= yt(i)−

[
Pt(i)

Pt

]−θ
yt = 0.

By substituting this expression into the constant elasticity of substitution

aggregator of intermediate goods, we derive the price aggregator

Pt =

[ ∫ 1

0

Pt(i)
1−θdi

]1/(1−θ)
.

• Intermediate goods-producing firms:

Each intermediate goods-producing firm maximizes its present discounted

value of profits

E
∞∑
t=0

βtλt[Dt(i)/Pt],

by choosing {lt(i), kt(i), yt(i), Pt(i)}∞t=0 subject to the Cobb-Douglas tech-

nology constraint

yt(i) ≤ kt(i)
α[ztlt(i)]

1−α

and the demand for intermediate goods outlined above

yt(i) =

[
Pt(i)

Pt

]−θ
yt.

We can use the latter expression to rewrite the real value of dividends

Dt(i)

Pt
=

[
Pt(i)

Pt

]
yt(i)−

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2

yt
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as

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θ
yt −

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt.

(4.12)

Accordingly, the Lagrangian for the firms’ intertemporal optimization prob-

lem can be written as:

Λ = E
∞∑
t=0

(
βtλt

{[
Pt(i)

Pt

]1−θ
yt −

[
Wtlt(i) +Qtkt(i)

Pt

]
− φP

2

[
Pt(i)

πPt−1(i)
− 1

]2
yt

}

−βtξt
{[

Pt(i)

Pt

]−θ
yt − kt(i)

α[ztlt(i)]
1−α

})
.

By setting the partial derivatives of Λ with respect to lt(i), kt(i), Pt(i), and

ξt equal to zero we have the first-order conditions:

Λlt(i) =
λtWtlt(i)

Pt
− (1− α)ξtkt(i)

α[ztlt(i)]
1−α = 0, (4.13)

Λkt(i) =
λtQtkt(i)

Pt
− αξtkt(i)

α[ztlt(i)]
1−α = 0, (4.14)

ΛPt(i) = φPλt

[
Pt(i)

πPt−1(i)
− 1

][
Pt

πPt−1(i)

]
− (1− θ)λt

[
Pt(i)

Pt

]−θ
− θξt

[
Pt(i)

Pt

]−θ−1

− βφPEt

{
λt+1

[
Pt+1(i)

πPt(i)
− 1

][
Pt+1(i)Pt
πPt(i)2

](
yt+1

yt

)}
= 0,

(4.15)

and

Λξt =

[
Pt(i)

Pt

]−θ
yt − kt(i)

α[ztlt(i)]
1−α = 0. (4.16)

• The monetary authority sets the gross nominal interest rate according to

the Taylor-type rule:

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+(1−ρr)

[
ωπ ln

(
πt
π

)
+ωy ln

(
yt
y

)]
+ln(υt). (4.17)
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H.2 The Nonlinear System

H.2.1 Symmetric Equilibrium

Each version Mj of the model is characterized by a nonlinear system of 17 equa-

tions, namely:

• M1 : (4.1)− (4.7), (4.8), (4.9), (4.10)− (4.17),

• M2 : (4.1)− (4.7), (4.8′), (4.9′), (4.10)− (4.17), and

• M3 : (4.1)− (4.7), (4.8′′), (4.9′′), (4.10)− (4.17).

The model is closed through two additional steps. First, we focus on a symmetric

equilibrium where all intermediate goods-producing firms make identical decisions.

This assumption implies Pt(i) = Pt, yt(i) = yt, lt(i) = lt, kt(i) = kt, and Dt(i) =

Dt for all i ∈ [0, 1] and t = 0, 1, 2, .... Second, the market clearing condition for

the bond market Bt = Bt−1 = 0 must hold for all t = 0, 1, 2, .... By substituting

these conditions into (4.1)− (4.17) and defining the average product of labor as

nt = yt/lt for each version Mj of the underlying model we obtain:

ln(xt) = ρx ln(xt−1) + εxt, (4.1)

ln(at) = ρa ln(at−1) + εat, (4.2)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (4.3)

ln(υt) = ρυ ln(υt−1) + ευt, (4.4)

at(ct − hct−1)
−1 − hβEt[at+1(ct+1 − hct)

−1] = λt, (4.5)

λt
Wt

Pt
= atχl

η
t , (4.6)

λt = rtβEt

(
λt+1

Pt
Pt+1

)
, (4.7)

ψt = βEt

(
λt+1

Qt+1

Pt+1

)
+ βEt[ψt+1(1− δ)], (4.8)
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ψtxt = λt + λt

[
φ

(
it
it−1

− 1

)(
it
it−1

)
+
φ

2

(
it
it−1

− 1

)2]
− βEt

{
λt+1

[
φ

(
it+1

it
− 1

)(
it+1

it

)2]}
,

(4.9)

βEt[ψt+1(1− δ)] = ψt + βEt

{
λt+1

[
φ

2

(
it+1

kt+1

− δ

)2]}
− βEt

{
λt+1

[
φ

(
it+1

kt+1
− δ

)(
it+1

kt+1

)]}
− βEt

(
λt+1

Qt+1

Pt+1

)
,

(4.8′)

ψtxt = λt + λt

[
φ

(
it
kt

− δ

)]
, (4.9′)

ψt = βEt

{
λt+1

[
φ

(
it+1

kt+1

− δ

)(
it+1

kt+1

)2]}
+ βEt

(
λt+1

Qt+1

Pt+1

)
+ βEt[ψt+1(1− δ)],

(4.8′′)

ψtxt = λt + λtφ

(
it
kt

− δ

)(
it
kt

)
+ λt

φ

2

(
it
kt

− δ

)2

,

(4.9′′)

yt = ct + it + Sj(·, ·) + φP
2

(
Pt

πPt−1
− 1

)2

yt, (4.10)

kt+1 = (1− δ)kt + xtit, (4.11)

Dt

Pt
= yt − Wtlt +Qtkt

Pt
− φP

2

(
Pt

πPt−1
− 1

)2

yt, (4.12)

λt
Wt

Pt
lt = (1− α)ξtyt, (4.13)

λt
Qt

Pt
kt = αξtyt, (4.14)

φPλt

(
Pt

πPt−1
− 1

)(
Pt

πPt−1

)
= (1− θ)λt + θξt

+ βφPEt

[
λt+1

(
Pt+1

πPt
− 1

)(
Pt+1

πPt

)(
yt+1

yt

)]
,

(4.15)
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yt = kαt [ztlt]
1−α, (4.16)

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt), (4.17)

and

nt =
yt
lt
. (4.18)

H.2.2 Change of Variables

Let πt =
Pt

Pt−1
, wt =

Wt

Pt
, qt =

Qt

Pt
, and dt =

Dt

Pt
. Using these re-defined variables the

nonlinear system encompassing (4.1)− (4.18) becomes:

ln(xt) = ρx ln(xt−1) + εxt, (4.1)

ln(at) = ρa ln(at−1) + εat, (4.2)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (4.3)

ln(υt) = ρυ ln(υt−1) + ευt, (4.4)

at(ct − hct−1)
−1 − hβEt[at+1(ct+1 − hct)

−1] = λt, (4.5)

λtwt = atχl
η
t , (4.6)

λt = rtβEt

(
λt+1

πt+1

)
, (4.7)

ψt = βEt

(
λt+1qt+1

)
+ βEt[ψt+1(1− δ)], (4.8)

ψtxt = λt + λt

[
φ

(
it
it−1

− 1

)(
it
it−1

)
+
φ

2

(
it
it−1

− 1

)2]
− βEt

{
λt+1

[
φ

(
it+1

it
− 1

)(
it+1

it

)2]}
,

(4.9)

βEt[ψt+1(1− δ)] = ψt + βEt

{
λt+1

[
φ

2

(
it+1

kt+1
− δ

)2]}
− βEt

{
λt+1

[
φ

(
it+1

kt+1

− δ

)(
it+1

kt+1

)]}
− βEt

(
λt+1qt+1

)
,

(4.8′)
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ψtxt = λt + λt

[
φ

(
it
kt

− δ

)]
, (4.9′)

ψt = βEt

{
λt+1

[
φ

(
it+1

kt+1
− δ

)(
it+1

kt+1

)2]}
+ βEt

(
λt+1qt+1

)
+ βEt[ψt+1(1− δ)],

(4.8′′)

ψtxt = λt + λtφ

(
it
kt

− δ

)(
it
kt

)
+ λt

φ

2

(
it
kt

− δ

)2

,

(4.9′′)

yt = ct + it + Sj(·, ·) + φP
2

(πt
π

− 1
)2

yt, (4.10)

kt+1 = (1− δ)kt + xtit, (4.11)

dt = yt − wtlt − qtkt − φP
2

(πt
π

− 1
)2

yt, (4.12)

λtwtlt = (1− α)ξtyt, (4.13)

λtqtkt = αξtyt, (4.14)

φPλt

(
πt
π

− 1

)(
πt
π

)
= (1− θ)λt + θξt

+ βφPEt

[
λt+1

(
πt+1

π
− 1

)(
πt+1

π

)(
yt+1

yt

)]
,

(4.15)

yt = kαt [ztlt]
1−α, (4.16)

ln

(
rt
r

)
= ρr ln

(
rt−1

r

)
+ (1− ρr)

[
ωπ ln

(
πt
π

)
+ ωy ln

(
yt
y

)]
+ ln(υt), (4.17)

and

nt =
yt
lt
. (4.18)

H.3 Steady States

In absence of the four shocks, i.e., εxt = εat = εzt = εvt = 0 for all t = 0, 1, 2, ..., the

economy converges to a steady state, where each of the 18 variables is constant.

Due to the absence of adjustment costs of capital accumulation in the steady state,

the determination of the model’s steady state values is independent from a specific

form of adjustment costs. Therefore, the subsequent steady state computation can
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be undertaken using just one out of the three adjustment costs specifications under

consideration. We use (4.1), (4.2), (4.3) and (4.4) to solve for

x = 1,

a = 1,

z = z,

v = 1.

Assuming that steady state (gross) inflation target π is determined by policy, (4.7)

can be used to solve for

r =
π

β
.

Next, (4.8) and (4.9) can be used to solve for

q =
1

β
− 1 + δ

and

ψ = λ.

Use (4.15) to solve for

ξ =

(
θ − 1

θ

)
λ.

Equation (4.5) can be used to solve for

c =

(
1− hβ

1− h

)(
1

λ

)
.

Use (4.10)-(4.16), and (4.18) to solve for

y =

[
1− δ

(
α

q

)(
θ − 1

θ

)]−1

c,

k =

(
α

q

)(
θ − 1

θ

)
y,

i = δk,

l =

(
1

z

)(
y

kα

) 1
1−α

,
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w = (1− α)

(
θ − 1

θ

)(
y

l

)
,

d = y − wl − qk,

and

n =
y

l
.

Finally, use (4.6) to solve for

λ =

χ

⎧⎪⎪⎨⎪⎪⎩
(1−α)

(
θ−1
θ

)[
1−δ

(
α
q

)(
θ−1
θ

)]−1(
1−hβ
1−h

)
χ

⎫⎪⎪⎬⎪⎪⎭
η

1+η

(1− α)z

(
α
q

) α
1−α

(
θ−1
θ

) 1
1−α

.

H.4 The Linearized System

The nonlinear system (4.1) − (4.18) can be linearized by taking a log-linear ap-

proximation of the model at steady state values. For a detailed description of

logarithmic approximations we refer to Canova (2007), DeJong and Dave (2007),

and Zietz (2008). Let v̂art ≡ log
(
vart
var

)
denote the log-deviation of some variable

vart from its steady state var, where log
(
vart
var

) ≈ vart−var
var

. A first-order Taylor

approximation of equation (4.1)− (4.18) at the steady state gives:

x̂t = ρxx̂t−1 + εxt, (4.1)

ât = ρaât−1 + εat, (4.2)

ẑt = ρz ẑt−1 + εzt, (4.3)

v̂t = ρv v̂t−1 + εvt, (4.4)

(1− h)(1− hβ)λ̂t = (1− h)(1− hβρa)ât + hĉt−1 − (1 + h2β)ĉt + hβEtĉt+1, (4.5)

λ̂t + ŵt = ât + ηl̂t, (4.6)

λ̂t = r̂t + Etλ̂t+1 − Etπ̂t+1, (4.7)

ψ̂t = βqEtλ̂t+1 + βqEtq̂t+1 + β(1− δ)Etψ̂t+1, (4.8)
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ψ̂t + x̂t = λ̂t − φît−1 + (1 + β)φît − βφEt̂it+1, (4.9)

β(1− δ)Etψ̂t+1 = ψ̂t − βφ

(
i

k

)2

Etît+1 + βφ

(
i

k

)2

k̂t+1 − βqEtλ̂t+1 − βqEtq̂t+1,

(4.8′)

ψ̂t + x̂t = λ̂t + φ

(
i

k

)
ît − φ

(
i

k

)
k̂t, (4.9′)

ψ̂t = βφ

(
i

k

)(
i

k

)2

Etît+1 − βφ

(
i

k

)3

k̂t+1

+ βqEtq̂t+1 + βqEtλ̂t+1 + β(1− δ)Etψ̂t+1,

(4.8′′)

ψ̂t + x̂t = λ̂t + φ

(
i

k

)2

ît − φ

(
i

k

)2

k̂t, (4.9′′)

yŷt = cĉt + îit, (4.10)

kk̂t+1 = (1− δ)kk̂t + ix̂t + îit, (4.11)

dd̂t = yŷt − wlŵt − wll̂t − qkq̂t − qkk̂t, (4.12)

λ̂t + ŵt + l̂t = ξ̂t + ŷt, (4.13)

λ̂t + q̂t + k̂t = ξ̂t + ŷt, (4.14)

φP π̂t = (1− θ)λ̂t + (θ − 1)ξ̂t + βφPEtπ̂t+1, (4.15)

ŷt = αk̂t + (1− α)ẑt + (1− α)l̂t, (4.16)

r̂t = ρrr̂t−1 + (1− ρr)(ωππ̂t + ωyŷt) + v̂t, (4.17)

and

n̂t = ŷt − l̂t. (4.18)



Appendix I

Solving the Model

According to Adjemian et al. (2011), the core of the DYNARE solution algorithm

for computing the solution of a linear rational expectations model is based on a

complex generalized Schur decomposition as presented in Klein (2000). Hence,

we give a brief description of how to solve the three model specifications under

consideration using this solution method. For a more detailed presentation of the

complex generalized Schur decomposition we refer to Golub and Van Loan (1996).

I.1 Klein’s method

Each model version Mj can be solved following the approach of Klein (2000)

outlined in appendix B.2. Therefore, each of the model’s specifications is brought

into the form:

AEts
0
t+1 = Bs0t + Cζt (4.19)

ζt = Pζt−1 + εt, (4.20)

where A, B, and C are coefficient matrices, P contains the persistence param-

eters of the shocks, ζt consists of the model’s exogenous forcing variables, while

the serially and mutually uncorrelated innovations are included in εt. The vector

s0t can be separated into

s0t = [s01t s
0
2t]

′,

letting s01t denote a vector of predetermined and s02t a vector of non-predetermined

147
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variables, which implies that:

Etst+1 = [s01t+1 Ets
0
2t+1]

′.

The solution technique relies on decoupling the system into unstable and stable

portions, using a complex generalized Schur decomposition, and then solving the

two components in turn. If, as set out in Blanchard and Kahn (1980), the number

of generalized eigenvalues with modulus larger than unity equals the number of

non-predetermined variables, a unique solution exits and system is said to be

saddle-path stable (see DeJong and Dave, 2007).1 Since the versions M2 and M3,

of the model differ with respect to the number of predetermined variables from

M1, we need to subdivide the description of the solution method. The subsequent

sections follow the expositions in Klein (2000), DeJong and Dave (2007), and the

technical notes of Ireland (2011).2

I.2 Solving M2 and M3

Let

s0t =
[
ĉt−1 k̂t r̂t−1 λ̂t ŵt l̂t π̂t ψ̂t q̂t ît ŷt d̂t ξ̂t n̂t ĉt

]′
,

ζt =
[
x̂t ât ẑt v̂t

]′
,

P =

⎡⎢⎢⎢⎢⎣
ρx 0 0 0

0 ρa 0 0

0 0 ρz 0

0 0 0 ρv

⎤⎥⎥⎥⎥⎦ ,
and

εt =
[
εxt εat εzt εvt

]′
.

1A detailed presentation of the Blanchard-Kahn (1980) conditions is given in appendix B.2.
2The technical notes of Ireland (2011) are available at

http://www.irelandp.com/progs/nkp.zip.
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Then the coefficient matrices A, B, and C for the different versions of the

model are:

• M2:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1 + h2β) 0 0 0 0 0 0 0 0 0 0 0 0 0 hβ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 0 0 0 0 0 0 0 0

0 −βφ (
i
k

)2
0 βq 0 0 0 β(1− δ) βq βφ

(
i
k

)2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 k 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 βφP 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h 0 0 (1− h)(1− hβ) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 −η 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 φ
(
i
k

)
0 −1 0 0 0 1 0 −φ (

i
k

)
0 0 0 0 0

0 0 0 0 0 0 0 0 0 −i y 0 0 0 0

0 (1− δ)k 0 0 0 0 0 0 0 i 0 0 0 0 0

0 −qk 0 0 −wl −wl 0 0 −qk 0 y −d 0 0 0

0 0 0 1 1 1 0 0 0 0 −1 0 −1 0 0

0 1 0 1 0 0 0 0 1 0 −1 0 −1 0 0

0 0 0 −(1 − θ) 0 0 φP 0 0 0 0 0 −(θ − 1) 0 0

0 α 0 0 0 (1− α) 0 0 0 0 −1 0 0 0 0

0 0 ρr 0 0 0 (1− ρr)ωπ 0 0 0 (1− ρr)ωy 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −(1− h)(1− hβρa) 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

i 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 (1− α) 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

• M3:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1 + h2β) 0 0 0 0 0 0 0 0 0 0 0 0 0 hβ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 0 0 0 0 0 0 0 0

0 −βφ (
i
k

)3
0 βq 0 0 0 β(1− δ) βq βφ

(
i
k

)3
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 k 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 βφP 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h 0 0 (1− h)(1− hβ) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 −η 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 φ
(
i
k

)2
0 −1 0 0 0 1 0 −φ (

i
k

)2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 −i y 0 0 0 0

0 (1− δ)k 0 0 0 0 0 0 0 i 0 0 0 0 0

0 −qk 0 0 −wl −wl 0 0 −qk 0 y −d 0 0 0

0 0 0 1 1 1 0 0 0 0 −1 0 −1 0 0

0 1 0 1 0 0 0 0 1 0 −1 0 −1 0 0

0 0 0 −(1− θ) 0 0 φP 0 0 0 0 0 −(θ − 1) 0 0

0 α 0 0 0 (1− α) 0 0 0 0 −1 0 0 0 0

0 0 ρr 0 0 0 (1− ρr)ωπ 0 0 0 (1− ρr)ωy 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −(1− h)(1− hβρa) 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

i 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 (1− α) 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Following Klein (2000), we apply the complex generalized Schur decomposition

of A and B, which is given by

QAZ = S

and

QBZ = T,

where Q and Z are unitary and S and T are upper triangular matrices. The

generalized eigenvalues of B and A can be recovered as the ratios of the diagonal

elements of T and S:

λ(B,A) = {tii/sii|i = 1, 2, ..., 15}.

The matrices Q,Z, S, and T can always be arranged so that the generalized

eigenvalues are ordered in increasing value in moving from left to right. Note that

the vector s0t comprises of three predetermined and twelve non-predetermined

variables.

We proceed under the case of saddle-path stability, assuming exactly twelve

generalized eigenvalues to lie outside the unit circle, and therefore allow for a

unique solution. The matrices Q,Z, S, and T are portioned, so that

Q =

[
Q1

Q2

]
,
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where Q1 is 3× 15 and Q2 is 12× 15 and

Z =

[
Z11 Z12

Z21 Z22

]
,

S =

[
S11 S12

0(12×3) S22

]
,

T =

[
T11 T12

0(12×3) T22

]
,

where Z11, S11, and T11 are 3×3 and Z12, S12, and T12 are 3×12, Z21 is 12×3,

and Z22, S22, and T22 are 12 × 12. To “triangularize” the system we first define

the vector of auxiliary variables as

s1t = ZHs0t ,

letting ZH denote the conjugate transpose of matrix Z, so that

s1t =

[
s11t

s12t

]
,

where

s11t = ZH
11

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦+ ZH
21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ît

ŷt

d̂t

ξ̂t

n̂t

ĉt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

is 3× 1 and
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s12t = ZH
12

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦+ ZH
22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ît

ŷt

d̂t

ξ̂t

n̂t

ĉt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.22)

is 12× 1.

Since Z is unitary, ZHZ = I or ZH = Z−1 and hence s0t = Zs1t . We use this

property to rewrite (4.19) as

AZEts
1
t+1 = BZs1t + Cζt.

Premultiplying this equation by Q gives[
S11 S12

0 S22

]
Et

[
s11t+1

s12t+1

]
=

[
T11 T12

0 T22

][
s11t

s12t

]
+

[
Q1

Q2

]
Cζt,

or in matrix partitions,

S11Ets
1
1t+1 + S12Ets

1
2t+1 = T11s

1
1t + T12s

1
2t +Q1Cζt (4.23)

and

S22Ets
1
2t+1 = T22s

1
2t +Q2Cζt. (4.24)

Since the generalized eigenvalues corresponding to the diagonal elements of

S22 and T22 all lie outside the unit circle, (4.24) can be solved forward to obtain

s12t = −T−1
22 Rζt,



154

where the 12× 4 matrix R is given by “reshaping”3

vec(R) = vec

∞∑
j=0

(S22T
−1
22 )jQ2CP

j =

∞∑
j=0

vec[(S22T
−1
22 )jQ2CP

j]

=
∞∑
j=0

[P j ⊗ (S22T
−1
22 )j ]vec(Q2C) =

∞∑
j=0

[P ⊗ (S22T
−1
22 )]jvec(Q2C)

= [I(48×48) − P ⊗ (S22T
−1
22 )]−1vec(Q2C).

Using this result together with equation (4.22) allows to solve for⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ît

ŷt

d̂t

ξ̂t

n̂t

ĉt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(ZH
22)

−1ZH
12

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦− (ZH
22)

−1T−1
22 Rζt. (4.25)

Under the assumption that Z is unitary, i.e.,[
ZH

11 ZH
21

ZH
12 ZH

22

]
︸ ︷︷ ︸

ZH

[
Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Z

=

[
I(3×3) 0(3×12)

0(12×3) I(12×12)

]
︸ ︷︷ ︸

I

,

we find

ZH
12Z11 + ZH

22Z21 = 0,

3Following Hamilton (1994a) and DeJong and Dave (2007), the appearance of the vec oper-
ator accommodates the VAR specification for ζt. We use the relationship between vec opera-
tor and Kronecker product: vec[(S22T

−1
22 )jQ2CP j ] = [(P j)′ ⊗ (S22T

−1
22 )j ]vec(Q2C). Note that

P ′ = P , since P is a diagonal matrix.
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−(ZH
22)

−1ZH
12 = Z21Z

−1
11 ,

ZH
12Z12 + ZH

22Z22 = I,

and

(ZH
22)

−1 = Z22 + (ZH
22)

−1ZH
12Z12 = Z22 − Z21Z

−1
11 Z12,

which allows to rewrite (4.25) as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ît

ŷt

d̂t

ξ̂t

n̂t

ĉt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=M1

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦+M2ζt, (4.25′)

with

M1 = Z21Z
−1
11

and

M2 = −[Z22 − Z21Z
−1
11 Z12]T

−1
22 R.

Now we can solve (4.21) for s11t

s11t = (ZH
11 + ZH

21Z21Z
−1
11 )

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦− ZH
21[Z22 − Z21Z

−1
11 Z12]T

−1
22 Rζt,

using

ZH
11Z11 + ZH

21Z21 = I,
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ZH
11 + ZH

21Z21Z
−1
11 = Z−1

11 ,

and

ZH
21[Z22 − Z21Z

−1
11 Z12] = ZH

21Z22 − ZH
21Z21Z

−1
11 Z12 = −Z−1

11 Z12,

so that

s11t = Z−1
11

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦+ Z−1
11 Z12T

−1
22 Rζt.

If we plug this result into equation (4.23), we get⎡⎢⎣ ĉt

k̂t+1

r̂t

⎤⎥⎦ =M3

⎡⎢⎣ ĉt−1

k̂t

r̂t−1

⎤⎥⎦+M4ζt, (4.26)

where

M3 = Z11S
−1
11 T11Z

−1
11

and

M4 = Z11S
−1
11 (T11Z

−1
11 Z12T

−1
22 R +Q1C + S12T

−1
22 RP − T12T

−1
22 R)− Z12T

−1
22 RP.

Hence, the model’s solution can be written compactly in state space form by

combining (4.20), (4.25′) and (4.26) as

st+1 = Γ0st + Γ1εt+1, (4.27)

and

ft = Γ2st, (4.28)

where

st =
[
ĉt−1 k̂t r̂t−1 x̂t ât ẑt v̂t

]′
,

ft =
[
λ̂t ŵt l̂t π̂t ψ̂t q̂t ît ŷt d̂t ξ̂t n̂t ĉt

]′
,

εt+1 =
[
εxt εat εzt εvt

]′
,
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Γ0 =

[
M3 M4

0(4×3) P

]
,

Γ1 =

[
0(3×4)

I(4×4)

]
,

and

Γ2 =
[
M1 M2

]
.

I.3 Solving M1

Let

s0t =
[
ĉt−1 k̂t r̂t−1 ît−1 λ̂t ŵt l̂t π̂t ψ̂t q̂t ŷt d̂t ξ̂t n̂t ĉt ît

]′
,

ζt =
[
x̂t ât ẑt v̂t

]′
,

P =

⎡⎢⎢⎢⎢⎣
ρx 0 0 0

0 ρa 0 0

0 0 ρz 0

0 0 0 ρv

⎤⎥⎥⎥⎥⎦ ,
and

εt =
[
εxt εat εzt εvt

]′
.

Then the coefficient matrices A, B and C for version M1 of the model are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1 + h2β) 0 0 0 0 0 0 0 0 0 0 0 0 0 hβ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 βq 0 0 0 β(1− δ) βq 0 0 0 0 0 0

0 0 0 (1 + β)φ 0 0 0 0 0 0 0 0 0 0 0 −βφ
c 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0

0 k 0 −i 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 βφP 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h 0 0 0 (1− h)(1− hβ) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 −η 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 φ −1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0

0 (1− δ)k 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −qk 0 0 0 −wl −wl 0 0 −qk y −d 0 0 0 0

0 0 0 0 1 1 1 0 0 0 −1 0 −1 0 0 0

0 1 0 0 1 0 0 0 0 1 −1 0 −1 0 0 0

0 0 0 0 −(1− θ) 0 0 φP 0 0 0 0 −(θ − 1) 0 0 0

0 α 0 0 0 0 (1− α) 0 0 0 −1 0 0 0 0 0

0 0 ρr 0 0 0 0 (1− ρr)ωπ 0 0 (1− ρr)ωy 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 1 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −(1− h)(1− hβρa) 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

i 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 (1− α) 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Just as in the case of M2 and M3 we follow the approach of Klein (2000), and

perform a complex generalized Schur decomposition of A and B, which is given

by

QAZ = S

and

QBZ = T,

letting Q and Z denote unitary and S and T upper triangular matrices. The

generalized eigenvalues of B and A can be recovered as the ratios of the diagonal
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elements of T and S:

λ(B,A) = {tii/sii|i = 1, 2, ..., 16}.

Again, the matrices Q,Z, S, and T can be arranged so that the generalized

eigenvalues appear in ascending order. Note that there are four predetermined

variables and twelve non-predetermined variables in the vector s0t . We proceed

under the case of saddle-path stability and assume that there are exactly twelve

generalized eigenvalues that lie outside the unit circle, and therefore allow for a

unique solution. The matrices Q,Z, S, and T are portioned, so that

Q =

[
Q1

Q2

]
,

where Q1 is 4× 16 and Q2 is 12× 16 and

Z =

[
Z11 Z12

Z21 Z22

]
,

S =

[
S11 S12

0(12×4) S22

]
,

T =

[
T11 T12

0(12×4) T22

]
,

where Z11, S11, and T11 are 4×4 and Z12, S12, and T12 are 4×12, Z21 is 12×4,

and Z22, S22, and T22 are 12 × 12. To ”triangularize” the system we first define

the vector of auxiliary variables as

s1t = ZHs0t ,

letting ZH denote the conjugate transpose of matrix Z, so that

s1t =

[
s11t
s12t

]
,
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where

s11t = ZH
11

⎡⎢⎢⎢⎢⎣
ĉt−1

k̂t

r̂t−1

ît−1

⎤⎥⎥⎥⎥⎦+ ZH
21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ŷt

d̂t

ξ̂t

n̂t

ĉt

ît

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

is 4× 1 and

s12t = ZH
12

⎡⎢⎢⎢⎢⎣
ĉt−1

k̂t

r̂t−1

ît−1

⎤⎥⎥⎥⎥⎦+ ZH
22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ŷt

d̂t

ξ̂t

n̂t

ĉt

ît

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.30)

is 12× 1.

Since Z is unitary, ZHZ = I or ZH = Z−1 and hence s0t = Zs1t . We use this

property to rewrite (4.19) as

AZEts
1
t+1 = BZs1t + Cζt.
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Premultiplying this equation by Q gives[
S11 S12

0 S22

]
Et

[
s11t+1

s12t+1

]
=

[
T11 T12

0 T22

][
s11t

s12t

]
+

[
Q1

Q2

]
Cζt,

or in terms of the matrix partitions,

S11Ets
1
1t+1 + S12Ets

1
2t+1 = T11s

1
1t + T12s

1
2t +Q1Cζt (4.31)

and

S22Ets
1
2t+1 = T22s

1
2t +Q2Cζt. (4.32)

Since the generalized eigenvalues corresponding to the diagonal elements of

S22 and T22 all lie outside the unit circle, (4.32) can be solved forward to obtain

s12t = −T−1
22 Rζt,

where the 12× 4 matrix R is given by “reshaping”

vec(R) = vec

∞∑
j=0

(S22T
−1
22 )jQ2CP

j =

∞∑
j=0

vec[(S22T
−1
22 )jQ2CP

j]

=

∞∑
j=0

[P j ⊗ (S22T
−1
22 )j ]vec(Q2C) =

∞∑
j=0

[P ⊗ (S22T
−1
22 )]jvec(Q2C)

= [I(48×48) − P ⊗ (S22T
−1
22 )]−1vec(Q2C).
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Using this result together with equation (4.30) allows to solve for⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ŷt

d̂t

ξ̂t

n̂t

ĉt

ît

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(ZH
22)

−1ZH
12

⎡⎢⎢⎢⎢⎣
ct−1

kt

rt−1

it−1

⎤⎥⎥⎥⎥⎦− (ZH
22)

−1T−1
22 Rζt. (4.33)

Under the assumption that Z is unitary, i.e.,[
ZH

11 ZH
21

ZH
12 ZH

22

]
︸ ︷︷ ︸

ZH

[
Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Z

=

[
I(4×4) 0(4×12)

0(12×4) I(12×12)

]
︸ ︷︷ ︸

I

,

we find

ZH
12Z11 + ZH

22Z21 = 0,

−(ZH
22)

−1ZH
12 = Z21Z

−1
11 ,

ZH
12Z12 + ZH

22Z22 = I,

and

(ZH
22)

−1 = Z22 + (ZH
22)

−1ZH
12Z12 = Z22 − Z21Z

−1
11 Z12,



163

which allows to rewrite (4.33) as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̂t

ŵt

l̂t

π̂t

ψ̂t

q̂t

ŷt

d̂t

ξ̂t

n̂t

ĉt

ît

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M̃1

⎡⎢⎢⎢⎢⎣
ct−1

kt

rt−1

it−1

⎤⎥⎥⎥⎥⎦+ M̃2ζt, (4.33′)

with

M̃1 = Z21Z
−1
11

and

M̃2 = −[Z22 − Z21Z
−1
11 Z12]T

−1
22 R.

Now we can solve (4.29) for s11t

s11t = (ZH
11 + ZH

21Z21Z
−1
11 )

⎡⎢⎢⎢⎢⎣
ĉt−1

k̂t

r̂t−1

ît−1

⎤⎥⎥⎥⎥⎦− ZH
21[Z22 − Z21Z

−1
11 Z12]T

−1
22 Rζt,

making use of

ZH
11Z11 + ZH

21Z21 = I,

ZH
11 + ZH

21Z21Z
−1
11 = Z−1

11 ,

and

ZH
21[Z22 − Z21Z

−1
11 Z12] = ZH

21Z22 − ZH
21Z21Z

−1
11 Z12 = −Z−1

11 Z12,
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so that

s11t = Z−1
11

⎡⎢⎢⎢⎢⎣
ĉt−1

k̂t

r̂t−1

ît−1

⎤⎥⎥⎥⎥⎦+ Z−1
11 Z12T

−1
22 Rζt.

If we plug this result into equation (4.31) we get⎡⎢⎢⎢⎢⎣
ĉt

k̂t+1

r̂t

ît

⎤⎥⎥⎥⎥⎦ = M̃3

⎡⎢⎢⎢⎢⎣
ĉt−1

k̂t

r̂t−1

ît−1

⎤⎥⎥⎥⎥⎦+ M̃4ζt, (4.34)

where

M̃3 = Z11S
−1
11 T11Z

−1
11

and

M̃4 = Z11S
−1
11 (T11Z

−1
11 Z12T

−1
22 R +Q1C + S12T

−1
22 RP − T12T

−1
22 R)− Z12T

−1
22 RP.

The model’s solution can be written compactly in state space form by com-

bining (4.20), (4.33′), and (4.34) as

s̃t+1 = Γ̃0s̃t + Γ̃1εt+1, (4.35)

and

f̃t = Γ̃2s̃t, (4.36)

where

s̃t =
[
ĉt−1 k̂t r̂t−1 ît−1 x̂t ât ẑt v̂t

]′
,

f̃t =
[
λ̂t ŵt l̂t π̂t ψ̂t q̂t ŷt d̂t ξ̂t n̂t ĉt ît

]′
,

εt+1 =
[
εxt εat εzt εvt

]′
,

Γ̃0 =

[
M̃3 M̃4

0(4×4) P

]
,
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Γ̃1 =

[
0(4×4)

I(4×4)

]
,

and

Γ̃2 =
[
M̃1 M̃2

]
.



166



Appendix J

Estimation

J.1 Empirical State Space Model

Since the model is estimated using an observed sample X including consumption,

investment, inflation and interest rates, we can define a sequence of observations

{Xt}Tt=1 with a measured data vector

Xt =

⎡⎢⎢⎢⎢⎣
ĉt

ît

π̂t

r̂t

⎤⎥⎥⎥⎥⎦ .

To distinguish the theoretical model from the empirical model, we rewrite (4.27)

and (4.28) as

st+1 = Ψ0st +Ψ1εt+1, (4.37)

and

Xt = Ψ2st, (4.38)

where Γo = Ψ0, Γ1 = Ψ1, and Ψ2 is formed from the rows (·) of Γ0 and Γ2 as

Ψ2 =

⎡⎢⎢⎢⎢⎣
Γ0(1)

Γ2(7)

Γ2(4)

Γ0(3)

⎤⎥⎥⎥⎥⎦ ,
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while (4.35) and (4.36) can be expressed as

s̃t+1 = Ψ̃0s̃t + Ψ̃1εt+1, (4.39)

and

Xt = Ψ̃2s̃t, (4.40)

where Γ̃o = Ψ̃0, Γ̃1 = Ψ̃1, and Ψ̃2 is formed from the rows (·) of Γ̃0 and Γ̃2 as

Ψ̃2 =

⎡⎢⎢⎢⎢⎣
Γ̃0(1)

Γ̃0(4)

Γ̃2(4)

Γ̃0(3)

⎤⎥⎥⎥⎥⎦ .

J.2 Kalman Filter

Bayesian estimation of a DSGE model in state space form requires the construc-

tion and evaluation of the likelihood function

L(μ|X) = p(X|μ) =
T∏
t=1

p(Xt|μ),

where X denotes the T observations of a vector of observable variables Xt and μ a

k× 1 vector of the model’s parameters. Following Hamilton (1994a), the Kalman

filter provides a way to calculate the likelihood function for a state space system.

As outlined in Canova (2007, p. 123), “. . . the likelihood function of a state space

model can be conveniently expressed in terms of one-step-ahead forecast errors,

conditional on the initial observations, and of their recursive variance, both of

which can be obtained with the Kalman filter.” Since a general and detailed

treatment of the Kalman filter can be found in Harvey (1993), Hamilton (1994a)

and Hamilton (1994b), we give a brief exemplary exposition of the Kalman filter

by applying the recursive algorithm originally developed by Kalman (1960) and

Kalman and Bucy (1961) to the empirical state space model formed by state
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equation (4.37) and observation equation (4.38)1:

st+1 = Ψ0st +Ψ1εt+1, (4.37)

Xt = Ψ2st. (4.38)

Recall that st is a vector of possibly unknown state variables, Xt denotes a vector

of observed variables, Ψ0,Ψ1, and Ψ2 depend on the structural parameters of the

model and the vector εt+1 comprises the serially uncorrelated innovations

εt+1 =
[
εxt+1 εat+1 εzt+1 εvt+1

]′
,

which are assumed to be normally distributed with zero mean and diagonal co-

variance matrix

Σε = Eεt+1ε
′
t+1 =

⎡⎢⎢⎢⎢⎣
σ2
x 0 0 0

0 σ2
a 0 0

0 0 σ2
z 0

0 0 0 σ2
v

⎤⎥⎥⎥⎥⎦ .

J.2.1 Kalman Filter Recursion

To analyze the Kalman filter recursion, we follow the expositions of Hamilton (1994a)

and Lütkepohl (2005). Let

st|j = E(st|X1, ..., Xj),

Σs(t|j) = E(st − st|j)(st − st|j)′,

Xt|j = E(Xt|X1, ..., Xj),

ΣX(t|j) = E(Xt −Xt|j)(Xt −Xt|j)′.

Further, the initial state s0 and the conditional distribution of s given X are

assumed to be normally distributed with s0 ∼ N (μs0,Σ0) and (s|X) ∼ N (μs,Σ),

respectively. Given the previous conditions, the normality assumption implies

(st|X1, ..., Xt−1) ∼ N (st|t−1,Σs(t|t− 1)) for t = 2, ..., T,

(st|X1, ..., Xt) ∼ N (st|t,Σs(t|t)) for t = 1, ..., T,

(Xt|X1, ..., Xt−1) ∼ N (Xt|t−1,ΣX(t|t− 1)) for t = 2, ..., T.

1The Kalman filter recursion for the state equation (4.39) and observation equation (4.40)
would proceed in exactly the same way.
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As outlined in Lütkepohl (2005), the conditional means and covariance matri-

ces can be obtained by the following Kalman filter recursions:

• Initialization:

s0|0 = μs0,Σs(0|0) = Σ0.

• Prediction step (1 ≤ t ≤ T ):

st|t−1 = Ψ0st−1|t−1,

Σs(t|t− 1) = Ψ0Σs(t− 1|t− 1)Ψ′
0 +Ψ1ΣεΨ

′
1,

Xt|t−1 = Ψ2st|t−1,

ΣX(t|t− 1) = Ψ2Σs(t|t− 1)Ψ′
2,

ut = Xt −Xt|t−1.

• Correction step (1 ≤ t ≤ T ):

st|t = st|t−1 +Υtut,

Σs(t|t) = Σs(t|t− 1)−ΥtΣX(t|t− 1)Υ′
t,

where the Kalman gain Υt is defined as

Υt = st|t−1Ψ
′
2ΣX(t|t− 1)−1 .

As described in Lütkepohl (2005), the recursions proceed by performing the

prediction step for t = 1. Then, the correction step is performed for t = 1. Next,

the prediction and correction steps are repeated for t = 2 and so on.
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J.2.2 Log Likelihood Function

The observation vector estimation errors {ut}Tt=1 can be used to form the Gaussian

log likelihood function for {Xt}Tt=1 as

lnL(μ|X) =
T∑
t=1

ln p(Xt|μ)

= −4T

2
ln(2π)− 1

2

T∑
t=1

ln |ΣX(t|t− 1)| − 1

2

T∑
t=1

u′tΣX(t|t− 1)−1ut.
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Appendix K

Data Sources

• Euro area:

Real personal consumption: AWM database

Gross fixed capital formation: AWM database

Consumer price index: AWM database

Interest rate (short term): AWM database

Population: RTDB

• US:

Real personal consumption: FRED database

Gross fixed capital formation: FRED database

Consumer price index: FRED database

Interest rate (three-month money market rate): FRED database

Population: FRED database
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Appendix L

Figures and Tables
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Figure L.7: Euro area: M1. Prior distributions (gray lines) and posterior distri-
butions (black lines) of the estimated parameters.



184

σ
a σ

z
    σ

x

σ
v
                   ρ

r
             ρ

a
             

ρ
z
                           ρ

x
ρ

v

                               h α φ
P

φ ω
y

                               ln(z)

ωφ ω
yπω

Figure L.8: Euro area: M2. Prior distributions (gray lines) and posterior distri-
butions (black lines) of the estimated parameters.
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Figure L.9: Euro area: M3. Prior distributions (gray lines) and posterior distri-
butions (black lines) of the estimated parameters.
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Figure L.10: US: M1. Prior distributions (gray lines) and posterior distributions
(black lines) of the estimated parameters.



187

σ
a σ

z
    σ

x

σ
v
                   ρ

r
             ρ

a
             

ρ
z
                           ρ

x
ρ

v

                               h α φ
P

φ ω
y

                               ln(z)

ωφ ω
yπω

Figure L.11: US: M2. Prior distributions (gray lines) and posterior distributions
(black lines) of the estimated parameters.
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Figure L.12: US: M3. Prior distributions (gray lines) and posterior distributions
of the estimated parameters.
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c i π r

σa 4.230E-28 0.113 4.490E-29 5.490E-21
σz 3.000E-54 3.030E-38 1.120E-114 2.000E-59
σx 7.190E-10 1.290E-76 0.756 4.860E-09
σv 1.150E-06 71.700 9.110E-08 5.350
ρr 2.840E-05 0.168 6.560E-39 1.770E-11
ρa 1.350E-04 0.289 4.550E-103 0.028
ρz 5.380E-50 2.280E-06 3.000 1.760E-19
ρx 3.390 3.560E-128 8.040 0.185
ρv 4.100E-26 92.800 2.860E-149 8.000E-146
h 8.280E-128 6.870E-20 8.700E-240 5.030E-45
α 5.050E-115 0.003 13.900 1.160
φP 9.220E-48 16.200 7.710E-134 1.920E-19
φ 1.220E-12 2.350E-46 0.002 7.080E-22
ωπ 0.348 1.210E-06 0.197 0.004
ωy 1.360 3.950E-89 2.490E-09 6.910E-148
ln(z) 15.000 9.360 26.100 28.500

Table L.2: Euro area: M1. Cells contain the p-values (in percent) of the Smirnov
two-sample test. Question answered by the test: “At what significance level α
is the null hypothesis that fx̃j (μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.

c i π r

σa 7.390E-32 4.110E-07 4.390E-47 0.070
σz 1.970E-29 1.040E-18 2.340E-71 3.010E-16
σx 1.440E-20 0.006 1.860E-61 2.140E-25
σv 3.300E-07 1.020E-20 0.083 0.011
ρr 2.220E-05 1.660E-05 1.150E-34 1.900E-21
ρa 1.280E-14 2.670E-73 4.820E-05 8.900E-18
ρz 5.160E-71 1.350E-04 0.055 0.564
ρx 4.450E-02 6.680E-201 1.160 1.500E-57
ρv 2.480E-21 15.300 5.040E-215 2.490E-85
h 9.310E-77 4.510E-22 6.580E-158 2.980E-29
α 6.710E-128 6.410E-18 10.400 22.700
φP 1.820E-32 6.860E-40 1.620E-220 2.340E-05
φ 8.590E-30 3.560 1.300E-57 4.870E-19
ωπ 0.017 1.370E-10 2.150E-10 0.271
ωy 1.690E-07 14.700 0.012 1.330E-70
ln(z) 78.700 0.516 30.500 71.000

Table L.3: Euro area: M2. Cells contain the p-values (in percent) of the Smirnov
two-sample test. Question answered by the test: “At what significance level α
is the null hypothesis that fx̃j (μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.
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c i π r

σa 9.490E-28 5.300E-05 3.030E-49 0.197
σz 1.060E-32 3.240E-08 1.730E-57 1.520E-22
σx 2.080E-28 0.003 1.560E-49 1.020E-20
σv 1.450E-11 2.090E-15 4.180E-05 0.002
ρr 3.160E-10 1.360E-05 2.930E-42 7.710E-27
ρa 2.240E-07 1.730E-59 0.002 8.180E-25
ρz 9.010E-75 2.150E-10 3.360E-10 6.720E-05
ρx 0.051 4.120E-162 3.390 1.810E-53
ρv 4.990E-26 0.142 5.160E-209 3.400E-75
h 2.770E-89 2.590E-18 2.040E-158 1.060E-32
α 9.040E-113 1.440E-20 1.260 0.298
φP 2.960E-31 3.630E-39 2.520E-226 3.240E-08
φ 5.830E-39 28.500 9.820E-59 3.230E-21
ωπ 0.005 3.940E-11 4.700E-06 5.480
ωy 5.480E-09 23.500 6.720E-06 3.180E-33
ln(z) 28.000 31.500 0.247 0.133

Table L.4: Euro area: M3. Cells contain the p-values (in percent) of the Smirnov
two-sample test. Question answered by the test: “At what significance level α
is the null hypothesis that fx̃j(μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.

c i π r

σa 5.540E-37 6.960E-18 3.040E-46 0.016
σz 63.000 2.610E-60 5.770E-19 1.920E-24
σx 2.340E-04 4.310E-09 1.450E-24 1.790E-07
σv 0.317 0.001 1.420E-06 50.200
ρr 4.240E-06 2.950E-06 3.030E-11 4.120E-16
ρa 5.010E-134 3.450E-05 2.100E-93 4.330E-68
ρz 7.080E-22 25.700 5.710E-17 2.770E-17
ρx 39.300 1.180E-96 7.440E-06 9.900E-25
ρv 8.680E-10 2.830E-11 8.590E-30 4.190E-04
h 2.570E-56 1.350E-13 4.120E-50 28.000
α 3.840E-188 6.110E-08 20.400 0.006
φP 13.900 4.140E-58 3.480E-19 2.770E-13
φ 3.790E-05 6.550E-21 4.990E-26 4.110E-07
ωπ 0.532 3.070E-04 1.470E-03 1.780E-04
ωy 0.006 5.100E-30 2.260E-155 6.680E-11
ln(z) 6.290 11.100 49.500 86.200

Table L.5: US: M1. Cells contain the p-values (in percent) of the Smirnov two-
sample test. Question answered by the test: “At what significance level α is
the null hypothesis that fx̃j (μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.
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c i π r

σa 2.050E-20 2.520E-32 2.760E-36 1.340E-08
σz 0.010 7.390E-05 9.590E-04 4.980E-29
σx 0.431 5.520E-124 2.920E-70 1.190E-08
σv 0.162 6.520E-15 5.880E-35 66.600
ρr 4.250E-13 1.830E-23 2.700E-14 6.860E-08
ρa 2.920E-101 2.070E-41 5.740E-69 1.060E-71
ρz 4.860E-44 4.920E-10 1.170E-13 4.070E-76
ρx 15.600 1.030E-99 0.548 1.340E-112
ρv 7.880E-12 89.500 8.720E-14 1.650
h 5.610E-31 7.26E-02 1.500E-57 17.500
α 1.910E-100 2.920 0.025 2.280E-08
φP 5.460E-04 2.300E-88 2.340E-71 5.480
φ 13.900 3.370E-121 9.150E-65 0.050
ωπ 60.100 3.070 9.270E-22 1.620E-09
ωy 0.002 3.960E-33 2.130E-220 6.220E-04
ln(z) 21.100 63.700 12.000 93.200

Table L.6: US: M2. Cells contain the p-values (in percent) of the Smirnov two-
sample test. Question answered by the test: “At what significance level α is
the null hypothesis that fx̃j (μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.

c i π r

σa 1.170E-16 2.770E-17 1.130E-40 1.890E-10
σz 1.430E-08 0.050 2.000E-07 2.230E-20
σx 0.002 3.060E-139 7.890E-88 0.001
σv 0.001 4.920E-10 4.980E-29 61.500
ρr 1.450E-11 1.380E-14 2.810E-18 4.120E-16
ρa 1.530E-92 1.400E-42 4.390E-67 1.600E-63
ρz 5.610E-31 1.350E-04 2.810E-04 8.920E-93
ρx 50.200 2.620E-105 0.756 2.160E-104
ρv 1.270E-16 74.500 7.880E-12 13.100
h 2.720E-30 28.000 5.400E-57 7.690
α 4.720E-111 0.898 1.990 9.790E-05
φP 2.580E-05 2.770E-66 1.130E-90 16.900
φ 1.650 1.280E-137 8.570E-83 1.440
ωπ 78.000 0.337 1.900E-21 9.690E-20
ωy 1.490E-06 4.080E-31 4.540E-199 12.500
ln(z) 83.200 70.300 2.440 10.800

Table L.7: US: M3. Cells contain the p-values (in percent) of the Smirnov two-
sample test. Question answered by the test: “At what significance level α is
the null hypothesis that fx̃j (μi|B) equals the respective posterior distribution
rejected?” Gray cells indicate p-values< 0.1%.
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Standard Deviations (Percent)
Consumption Investment Inflation Interest Rate

Data 0.80 2.37 0.22 0.25
M1 2.59 6.35 0.32 0.23
M2 2.35 3.10 0.28 0.21
M3 2.43 3.10 0.27 0.21

Autocorrelations (First-order)
Consumption Investment Inflation Interest Rate

Data 0.84 0.87 0.21 0.87
M1 0.98 0.98 0.59 0.81
M2 0.98 0.92 0.50 0.82
M3 0.98 0.92 0.51 0.82

Table L.8: Euro area: Selected second moments.

Standard Deviations (Percent)
Consumption Investment Inflation Interest Rate

Data 1.05 6.32 0.22 0.34
M1 4.43 10.79 0.30 0.39
M2 3.45 6.69 0.28 0.36
M3 3.46 6.60 0.28 0.37

Autocorrelations (First-order)
Consumption Investment Inflation Interest Rate

Data 0.88 0.82 0.45 0.83
M1 0.99 0.94 0.53 0.81
M2 0.99 0.84 0.51 0.81
M3 0.99 0.84 0.53 0.82

Table L.9: US: Selected second moments.
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Figure L.37: Euro area: Impulse responses (log-deviations from the steady state)
to a one standard deviation preference shock for 20 quarters; M1 (solid lines),
M2 (dashed lines), M3 (dotted lines).
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Figure L.38: Euro area: Impulse responses (log-deviations from the steady state)
to a one standard deviation marginal efficiency of investment shock for 20 quarters;
M1 (solid lines), M2 (dashed lines), M3 (dotted lines).
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Figure L.39: Euro area: Impulse responses (log-deviations from the steady state)
to a one standard deviation technology shock for 20 quarters; M1 (solid lines),
M2 (dashed lines), M3 (dotted lines).
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Figure L.40: Euro area: Impulse responses (log-deviations from the steady state)
to a one standard deviation monetary policy shock for 20 quarters; M1 (solid
lines), M2 (dashed lines), M3 (dotted lines).
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Figure L.41: US: Impulse responses (log-deviations from the steady state) to a
one standard deviation preference shock for 20 quarters; M1 (solid lines), M2

(dashed lines), M3 (dotted lines).
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Figure L.42: US: Impulse responses (log-deviations from the steady state) to a
one standard deviation marginal efficiency of investment shock for 20 quarters;
M1 (solid lines), M2 (dashed lines), M3 (dotted lines).
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Figure L.43: US: Impulse responses (log-deviations from the steady state) to a
one standard deviation technology shock for 20 quarters; M1 (solid lines), M2

(dashed lines), M3 (dotted lines).
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Figure L.44: US: Impulse responses (log-deviations from the steady state) to a
one standard deviation monetary policy shock for 20 quarters; M1 (solid lines),
M2 (dashed lines), M3 (dotted lines).
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Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 1.33 2.89 91.88 3.91
Consumption 6.6 0.63 87.98 4.79
Investment 5.33 33.38 59.83 1.47
Hours 13.5 17.11 31.12 38.27
Inflation 22.07 5.69 5.54 66.7
Interest Rate 62.51 16.01 15.11 6.38

Three-Year Horizon

Output 0.54 1.6 96.49 1.36
Consumption 3.28 0.99 93.49 2.23
Investment 2.84 10 86.64 0.52
Hours 11.37 14.73 42.04 31.86
Inflation 20.24 5.49 12.88 61.39
Interest Rate 56.32 16.53 21.49 5.66

Infinite Horizon

Output 0.29 0.90 98.17 0.64
Consumption 1.29 1.20 96.71 0.80
Investment 1.92 7.03 90.70 0.35
Hours 10.09 13.62 48.22 28.07
Inflation 18.76 5.12 19.27 56.85
Interest Rate 49.89 15.07 30.03 5.01

Table L.10: Euro area: M1. Forecast error variance decomposition.
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Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 0.15 1.79 94.53 3.53
Consumption 2.18 1.32 93.44 3.06
Investment 6.63 48.40 42.53 2.44
Hours 3.26 23.51 4.77 68.46
Inflation 19.31 5.71 0.54 74.44
Interest Rate 75.10 20.52 2.11 2.27

Three-Year Horizon

Output 0.08 1.85 96.63 1.45
Consumption 0.92 0.81 97.02 1.26
Investment 4.39 36.69 57.50 1.43
Hours 3.18 25.75 4.84 66.22
Inflation 19.71 6.52 1.20 72.57
Interest Rate 73.14 22.66 2.23 1.97

Infinite Horizon

Output 0.07 2.55 96.68 0.70
Consumption 0.47 2.15 96.79 0.59
Investment 2.91 25.18 70.97 0.94
Hours 3.18 25.78 4.99 66.05
Inflation 19.39 6.58 2.65 71.38
Interest Rate 72.72 22.76 2.57 1.95

Table L.11: Euro area: M2. Forecast error variance decomposition.
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Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 0.21 1.89 94.53 3.37
Consumption 2.26 1.27 93.51 2.96
Investment 6.37 51.62 39.84 2.18
Hours 4.40 24.37 6.22 65.01
Inflation 21.47 5.86 0.55 72.12
Interest Rate 75.80 19.27 2.65 2.28

Three-Year Horizon

Output 0.10 2.01 96.52 1.37
Consumption 0.94 0.80 97.05 1.20
Investment 4.23 39.92 54.58 1.28
Hours 4.29 26.82 6.09 62.79
Inflation 21.90 6.71 0.97 70.42
Interest Rate 73.63 21.42 2.98 1.97

Infinite Horizon

Output 0.08 2.9 96.37 0.65
Consumption 0.47 2.34 96.63 0.56
Investment 2.74 27.19 69.25 0.82
Hours 4.29 26.89 6.14 62.68
Inflation 21.63 6.81 2.04 69.53
Interest Rate 72.93 21.44 3.69 1.95

Table L.12: Euro area: M3. Forecast error variance decomposition.
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Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 2.78 22.63 72.62 1.97
Consumption 13.17 2.23 82.40 2.20
Investment 0.86 74.47 23.97 0.69
Hours 10.03 55.59 27.64 6.74
Inflation 17.91 29.53 21.96 30.60
Interest Rate 17.54 39.75 22.53 20.18

Three-Year Horizon

Output 0.88 9.44 89.03 0.65
Consumption 4.37 4.28 90.61 0.74
Investment 0.62 38.95 60.04 0.40
Hours 9.23 52.10 32.25 6.42
Inflation 17.93 29.54 22.00 30.53
Interest Rate 16.55 42.29 22.24 18.91

Infinite Horizon

Output 0.31 3.75 95.70 0.23
Consumption 0.98 3.48 95.36 0.18
Investment 0.42 27.77 71.53 0.27
Hours 8.65 50.30 35.04 6.02
Inflation 16.27 27.66 28.37 27.70
Interest Rate 13.93 37.67 32.50 15.90

Table L.13: US: M1. Forecast error variance decomposition.
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Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 1.18 15.01 80.87 2.94
Consumption 7.60 3.38 87.12 1.91
Investment 1.67 73.46 22.86 2.02
Hours 6.80 66.83 10.95 15.43
Inflation 18.81 28.17 12.23 40.79
Interest Rate 24.48 43.60 15.06 16.86

Three-Year Horizon

Output 0.47 8.48 89.89 1.16
Consumption 2.59 2.40 94.33 0.67
Investment 1.26 61.00 36.25 1.50
Hours 6.68 67.06 11.10 15.16
Inflation 17.99 27.10 15.90 39.01
Interest Rate 21.83 41.90 21.50 14.77

Infinite Horizon

Output 0.22 6.22 93.02 0.54
Consumption 1.04 4.52 94.16 0.27
Investment 1.01 48.94 48.85 1.20
Hours 6.65 66.96 11.29 15.10
Inflation 16.39 25.15 22.91 35.55
Interest Rate 18.48 36.21 32.81 12.50

Table L.14: US: M2. Forecast error variance decomposition.



226

Fraction of the Variance Due to

Variable Preference Shock Investment Shock Technology Shock Monetary Policy Shock

One-Year Horizon

Output 1.47 16.49 79.38 2.65
Consumption 7.65 3.12 87.38 1.85
Investment 1.30 77.72 19.39 1.59
Hours 7.67 66.41 13.18 12.73
Inflation 19.36 28.54 14.96 37.14
Interest Rate 23.73 42.21 17.34 16.72

Three-Year Horizon

Output 0.58 9.54 88.83 1.05
Consumption 2.60 2.44 94.31 0.65
Investment 1.00 66.27 31.53 1.20
Hours 7.54 66.82 13.10 12.55
Inflation 18.32 27.15 19.38 35.15
Interest Rate 20.85 40.05 24.68 14.42

Infinite Horizon

Output 0.27 7.52 91.72 0.48
Consumption 1.06 5.34 93.33 0.27
Investment 0.81 53.88 44.34 0.97
Hours 7.52 66.78 13.18 12.52
Inflation 16.45 24.98 26.99 31.58
Interest Rate 17.47 34.43 36.02 12.08

Table L.15: US: M3. Forecast error variance decomposition.



Chapter 5

Conclusion

During the last three decades there has been a remarkable progress in the de-

velopment of DSGE models. Starting with the influential work of Kydland and

Prescott (1982) and Long and Plosser (1983), DSGE models rapidly attracted

increasing interest among the profession thus becoming a centrepiece of modern

macroeconomics. Among the vast body of literature that evolved in recent years

two main categories can be identified:

i) Research, primarily dealing with the empirical implementation of DSGEmod-

els and

ii) literature with a particular focus on the exact specification of the underlying

theoretical model.

Contributing to both categories, this thesis builds on the remarkable progress

achieved in the DSGE research program so far, but also points out important

problems and challenges that need to be addressed in the future.

Chapter 2 starts by presenting the general setup of DSGE models as well as

techniques that enable their empirical implementation. For the sake of clarity,

we focus on a standard New Keynesian model and expound the structure and

solution for this prototype model. Further, we briefly introduce three common

strategies used in the empirical analysis of DSGE models: calibration, maximum

likelihood estimation, and Bayesian estimation. The objective of this chapter is

to lay out the core features of the models used in the subsequent chapters and to

introduce the estimation techniques employed.
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In chapter 3, we apply an extended version of the standard New Keynesian

model to French, German, Italian, and Spanish data and test for parameter sta-

bility over time. The model is estimated employing a maximum likelihood ap-

proach. Parameter instabilities are identified by the ESS procedure of Inoue and

Rossi (2011). This procedure aims at detecting the parameters of a specific model

that have changed at an unknown break date, overcoming the drawbacks known

from “one at a time approaches” by allowing all parameters to be time-varying

but, at the same time, avoids size distortions. For France, Germany, and Italy we

find structural breaks in the mid-1990s after the beginning of the second stage of

EMU, while the estimates for Spain show a significant break just before the start

of the third stage of EMU in 1998. Concerning monetary policy behavior, France,

Italy, and Spain show significant changes after the break dates, whereas monetary

policy in Germany turns out to be stable over time. Moreover, France, Italy,

and Spain exhibit a significant decline in capital and price adjustment costs after

the break. Further, we find at least four out of the five shocks to be either con-

stant or declining after the break date for all economies under consideration. The

identification of changes in both policy and structural parameters might let the

DSGE framework appear to be vulnerable to the Lucas (1976) critique. However,

as outlined in Inoue and Rossi (2011, p. 1195), “. . . the definition of structural

parameters (in the sense of the Lucas critique) is that these parameters are policy

invariant, not necessarily time invariant.” Therefore, future research faces an im-

portant challenge in developing techniques able to extract the factors responsible

for parameter instabilities, allowing to assess the applicability of the respective

DSGE setting for policy analysis and forecasting.

In chapter 4 we use a Bayesian approach to analyze the impact of distinct

ad hoc specifications of adjustment costs on the fit and the dynamics of a New

Keynesian model using both euro area and US data. Particularly, we consider

three different theoretical specifications of quadratic adjustment costs of capital

accumulation frequently used in the literature: an investment adjustment cost

specification and two forms of capital adjustment costs. Our findings suggest that

caution should be exercised when using estimated DSGE models with quadratic

costs of capital accumulation for policy analysis, since the results could be af-

fected by the choice of either investment or capital adjustment costs both being

modeling shortcuts. Hence, our analysis provides further evidence for encour-

aging the efforts of a rigorous microfoundation of adjustment costs for capital
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accumulation.
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