New Keynesian DSGE Models: Theory, Empirical Implementation, and Specification

DISSERTATION

zur Erlangung des Grades eines Doktors der Wirtschaftswissenschaft
eingereicht an der
Wirtschaftswissenschaftlichen Fakultät
der Universität Regensburg
vorgelegt von:
Oke Röhe

Berichterstatter:
Prof. Dr. Jürgen Jerger (Universität Regensburg)
Prof. David N. DeJong, Ph.D (University of Pittsburgh)

Acknowledgements

Foremost, I am deeply grateful to my first supervisor Prof. Jürgen Jerger for giving me the opportunity to work on this exciting field of research. I am truly indebted and thankful for his guidance, patience, and continuous support during the completion of this dissertation. Further, I would sincerely like to thank my second supervisor Prof. David N. DeJong for his very helpful advice. I greatly benefited from his detailed and highly valuable comments. I also would like to show my gratitude to Prof Gabriel S. Lee for his concise comments, helpful suggestions, and his invitations to the Vienna Macroeconomics Workshop. Many thanks go to my colleagues and friends at the department of economics. It is in great part due to them that I had such an enjoyable and memorable time in Regensburg. Special thanks go to my parents and my sister. I always felt their support during the years. Finally, my deep gratitude goes to Michaela for her invaluable help, encouragement, and understanding through this timely process.

Contents

List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Background 1
1.2 Outline of the Thesis 3
2 DSGE Models: Basic Structure and Empirical Implementation 5
2.1 Introduction 5
2.2 The Basic Structure of DSGE Models 6
2.2.1 A Graphical Exposition 6
2.2.2 A Formal Exposition 8
2.2.2.1 Overview 8
2.2.2.2 Households 9
2.2.2.3 Firms 11
2.2.2.4 Monetary Authority 13
2.2.3 Approximating and Solving the Model 14
2.2.3.1 Log-linear Approximation 14
2.2.3.2 Solution 15
2.3 Taking DSGE Models to the Data 16
2.3.1 Calibration 16
2.3.2 Estimation 17
2.4 Conclusion 19
Appendix A Equilibrium Conditions 23
A. 1 The Economic Environment 23
A. 2 The Nonlinear System 27
A.2.1 Symmetric Equilibrium 27
A.2.2 Change of Variables and System Reduction 28
A. 3 Steady States 29
A. 4 The Linearized System 29
Appendix B Solving the Model 31
B. 1 Klein's method 31
B. 2 Solution 32
3 Testing for Parameter Stability in DSGE Models. The Cases of France, Germany, Italy, and Spain 39
3.1 Introduction 39
3.2 The Model 41
3.2.1 Overview 41
3.2.2 Households 41
3.2.3 Firms 43
3.2.4 Monetary policy 45
3.2.5 Solution and Estimation 46
3.3 Data 47
3.4 Estimating the Set of Stable Parameters: The ESS Procedure 48
3.5 Results 49
3.5.1 Full Sample Estimates 49
3.5.2 Testing for Parameter Instability 51
3.6 Conclusions 53
Appendix C Equilibrium Conditions 57
C. 1 The Economic Environment 57
C. 2 The Nonlinear System 62
C.2.1 Symmetric Equilibrium 62
C.2.2 Change of Variables 64
C. 3 Steady States 65
C. 4 The Linearized System 67
Appendix D Solving the Model 69
D. 1 Blanchard and Kahn's Method 69
D. 2 System Reduction 70
D. 3 Solution 74
Appendix E Estimation 79
E. 1 Empirical State Space Model 79
E. 2 Kalman Filter 80
E.2.1 Kalman Filter Recursion 81
E.2.2 Log Likelihood Function 82
Appendix F Data sources 83
Appendix G Tables 85
4 Comparing Quadratic Costs of Capital Accumulation: An Em- pirical Assessment 95
4.1 Introduction 95
4.2 The Model 99
4.2.1 Overview 99
4.2.2 Households 99
4.2.3 Firms 102
4.2.4 Monetary Authority 103
4.3 Solution and Estimation 104
4.4 Monte Carlo Filtering and Regionalized Sensitivity Analysis 107
4.4.1 Methodology 107
4.4.2 Mapping Stability 109
4.4.3 Mapping the Fit 110
4.5 Data and Priors 111
4.6 Posterior Odds Comparison 114
4.7 Results 117
4.7.1 Bayesian Estimation 117
4.7.2 Monte Carlo Filtering Analysis 123
4.7.3 Model Evaluation 124
4.7.3.1 Bayesian Model Comparison 124
4.7.3.2 Standard Moment Criteria 126
4.7.3.3 Impulse Response Analysis 127
4.7.3.4 Variance Decomposition 129
4.8 Conclusions 131
Appendix H Equilibrium Conditions 135
H. 1 The Economic Environment 135
H. 2 The Nonlinear System 140
H.2.1 Symmetric Equilibrium 140
H.2.2 Change of Variables 142
H. 3 Steady States 143
H. 4 The Linearized System 145
Appendix I Solving the Model 147
I. 1 Klein's method 147
I. 2 Solving \mathcal{M}_{2} and \mathcal{M}_{3} 148
I. 3 Solving \mathcal{M}_{1} 157
Appendix J Estimation 167
J. 1 Empirical State Space Model 167
J. 2 Kalman Filter 168
J.2.1 Kalman Filter Recursion 169
J.2.2 Log Likelihood Function 171
Appendix K Data Sources 173
Appendix L Figures and Tables 175
5 Conclusion 227
Bibliography 230

List of Figures

2.1 A basic DSGE framework 6
L. 1 Euro area: \mathcal{M}_{1}. Smirnov two-sample test for stability analysis 177
L. 2 Euro area: \mathcal{M}_{2}. Smirnov two-sample test for stability analysis 178
L. 3 Euro area: \mathcal{M}_{3}. Smirnov two-sample test for stability analysis 179
L. 4 US: \mathcal{M}_{1}. Smirnov two-sample test for stability analysis 180
L. 5 US: \mathcal{M}_{2}. Smirnov two-sample test for stability analysis 181
L. 6 US: \mathcal{M}_{3}. Smirnov two-sample test for stability analysis 182
L. 7 Euro area: \mathcal{M}_{1}. Prior and posterior distributions 183
L. 8 Euro area: \mathcal{M}_{2}. Prior and posterior distributions 184
L. 9 Euro area: \mathcal{M}_{3}. Prior and posterior distributions 185
L. 10 US: \mathcal{M}_{1}. Prior and posterior distributions 186
L. 11 US: \mathcal{M}_{2}. Prior and posterior distributions 187
L. 12 US: \mathcal{M}_{3}. Prior and posterior distributions 188
L. 13 Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions 189
L. 14 Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 190
L. 15 Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 191
L. 16 Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 192
L. 17 Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions 193
L. 18 Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 194
L. 19 Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 195
L. 20 Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 196
L. 21 Euro area: \mathcal{M}_{3}. Cumulative empirical probability distributions 197
L. 22 Euro area: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 198
L. 23 Euro area: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 199
L. 24 Euro area: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 200
L. 25 US: \mathcal{M}_{1}. Cumulative empirical probability distributions 201
L. 26 US: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 202
L. 27 US: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 203
L. 28 US: \mathcal{M}_{1}. Cumulative empirical probability distributions (cont.) 204
L. 29 US: \mathcal{M}_{2}. Cumulative empirical probability distributions 205
L. 30 US: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 206
L. 31 US: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 207
L. 32 US: \mathcal{M}_{2}. Cumulative empirical probability distributions (cont.) 208
L. 33 US: \mathcal{M}_{3}. Cumulative empirical probability distributions 209
L. 34 US: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 210
L. 35 US: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 211
L. 36 US: \mathcal{M}_{3}. Cumulative empirical probability distributions (cont.) 212
L. 37 Euro area: Impulse responses to a preference shock 217
L. 38 Euro area: Impulse responses to an investment shock 217
L. 39 Euro area: Impulse responses to a technology shock 218
L. 40 Euro area: Impulse responses to a monetary policy shock 218
L. 41 US: Impulse responses to a preference shock 219
L. 42 US: Impulse responses to an investment shock 219
L. 43 US: Impulse responses to a technology shock 220
L. 44 US: Impulse responses to a monetary policy shock 220

List of Tables

3.1 Maximum Likelihood Estimates: Full Samples 50
G. 1 Maximum Likelihood Estimates: France 86
G. 2 Maximum Likelihood Estimates: Germany 87
G. 3 Maximum Likelihood Estimates: Italy 88
G. 4 Maximum Likelihood Estimates: Spain 89
G. 5 P-values of Andrews' QLR test on individual parameters for France 90
G. 6 P-values of Andrews' QLR test on individual parameters for Germany 91
G. 7 P-values of Andrews' QLR test on individual parameters for Italy 92
G. 8 P-values of Andrews' QLR test on individual parameters for Spain 93
4.1 Estimates: Euro area 121
4.2 Estimates: US 122
4.3 Prior probabilities, marginal log likelihoods and posterior probabil- ities across model specifications and regions 124
4.4 Cross-validation: BVARs and model specifications 126
L. 1 Estimates: US, 1948:Q1-2006:Q4 176
L. 2 Euro area: \mathcal{M}_{1}. P-values of the Smirnov two-sample test 213
L. 3 Euro area: \mathcal{M}_{2}. P-values of the Smirnov two-sample test 213
L. 4 Euro area: \mathcal{M}_{3}. P-values of the Smirnov two-sample test 214
L. 5 US: \mathcal{M}_{1}. P-values of the Smirnov two-sample test 214
L. 6 US: \mathcal{M}_{2}. P-values of the Smirnov two-sample test 215
L. 7 US: \mathcal{M}_{3}. P-values of the Smirnov two-sample test 215
L. 8 Euro area: Selected second moments 216
L. 9 US: Selected second moments 216
L. 10 Euro area: \mathcal{M}_{1}. Forecast error variance decomposition 221
L. 11 Euro area: \mathcal{M}_{2}. Forecast error variance decomposition 222
L. 12 Euro area: \mathcal{M}_{3}. Forecast error variance decomposition 223
L. 13 US: \mathcal{M}_{1}. Forecast error variance decomposition 224
L. 14 US: \mathcal{M}_{2}. Forecast error variance decomposition 225
L. 15 US: \mathcal{M}_{3}. Forecast error variance decomposition 226

Chapter 1

Introduction

1.1 Background

The last four decades have witnessed a fundamental change in macroeconomic modeling. This development has its origins in the 1970s when the existing conventional quantitative macroeconomic models, rooted in Keynesian economic theory, were heavily criticized on both theoretical and empirical grounds (see, for example, Lucas, 1976; Sims, 1980; Sargent, 1981). Existing mainstream macroeconomic models, including the Wharton Econometric Forecasting Model and the Brookings Model, showed a poor forecast performance, missing the economic reality of stagflation (see Galí and Gertler, 2007). As a result, the general applicability of these models for forecasting and policy analysis was questioned. In his famous critique of econometric policy evaluation, Lucas (1976) emphasized the lack of structural invariance of the current macroeconomic models making them unfit to predict the effects of alternative policies:
"... [T]he ability to forecast the consequences of "arbitrary", unannounced sequences of policy decisions, currently claimed (at least implicitly) by the theory of economic policy, appears to be beyond the capability not only of the current-generation models, but of conceivable future models as well" (Lucas, 1976, p. 41).

A response to this critique emerged in the form of the first generation of dynamic stochastic general equilibrium (DSGE) models. The development of these models was a merit of the real business cycle (RBC) approach initiated by the seminal work of Kydland and Prescott (1982) and Long and Plosser (1983).
"For the first time, macroeconomists had a small and coherent dynamic model of the economy, built from first principles with optimizing agents, rational expectations, and market clearing, that could generate data that resembled observed variables to a remarkable degree" (Fernández-Villaverde, 2010, p. 4).

Based on the frictionless neoclassical growth model, the RBC approach aimed to explain economic fluctuations as an optimal response of rational agents to real disturbances, particularly technology shocks (see Rebelo, 2005). From this paradigm, a distinct school of thought evolved becoming known as New Keynesian macroeconomics. Originally derived as an extension to the standard real business cycle framework, which features monetary neutrality due to the presence of flexible prices and wages, New Keynesian economics evolved into a progressive research program, accounting for the real effects of monetary policy.
"... [New Keynesian] models integrate Keynesian elements (imperfect competition, and nominal rigidities) into a dynamic general equilibrium framework that until recently was largely associated with the Real Business Cycle (RBC) paradigm. They can be used (and are being used) to analyze the connection between money, inflation, and the business cycle, and to assess the desirability of alternative monetary policies" (Galí, 2002, p. 1).

DSGE models rapidly became a standard tool for quantitative policy analysis in macroeconomics. While, as outlined in An and Schorfheide (2007), the quantitative evaluation of the early DSGE models was typically conducted without formal statistical methods and instead relied on parameter calibration, i.e., the choice of parameter values on the basis of microeconomic evidence or long-run data properties (see Karagedikli et al., 2010), the predominance of calibration in empirical DSGE analysis decreased considerably in the 1990s when advances in computational power and the development of new econometric methods made the estimation of DSGE models more accessible.
"There has been tremendous improvement over the last twenty years in the mathematical, probabilistic, and computational tools available to applied macroeconomists. This extended set of tools has changed
the way researchers have approached the problem of estimating parameters, validating theories, or simply identifying regularities in the data" (Canova, 2007, p. xi).

As a result, DSGE models not only became widely used for empirical research in macroeconomics, but also for policy analysis and forecasting at policy-making institutions.
"DSGE models are powerful tools that provide a coherent framework for policy discussion and analysis. In principle, they can help to identify sources of fluctuations; answer questions about structural changes; forecast and predict the effect of policy changes, and perform counterfactual experiments" (Tovar, 2009, p. 1).

This thesis contributes to the evolving field of applied macroeconomic research, strengthening the idea of a fruitful symbiosis between theoretical models and advanced econometric techniques.

1.2 Outline of the Thesis

The core of the dissertation consists of three chapters. Chapter 2 provides a graphical and formal representation of a basic dynamic stochastic general equilibrium economy and discusses the prerequisites needed for an empirical implementation. The aim of this chapter is to present the core features of the models used in chapter 3 and 4 of this work and to introduce the estimation techniques employed in the remainder of the thesis.

In chapter 3 we estimate a New Keynesian DSGE model on French, German, Italian, and Spanish data to check for the respective sets of parameters that are stable over time, implementing the ESS procedure ("Estimate of Set of Stable parameters") developed by Inoue and Rossi (2011). This econometric technique allows to identify the respective parameters of a DSGE model that have changed at an unknown break date. In the case of France, Germany, and Italy our results point to structural breaks after the beginning of the second stage of EMU in the mid-1990s, while the estimates for Spain show a significant break just before the start of the third stage in 1998. Specifically, we find significant changes in
monetary policy behavior for France, Italy, and Spain, while we detect monetary policy to be stable over time in Germany.

The incorporation of convex adjustment costs of capital accumulation into dynamic stochastic general equilibrium models has become standard practice in the literature, since these frictions improve the ability of sticky-price models with endogenous investment to match the key features of the data considerably. In chapter 4, we use a Bayesian approach to investigate empirically how different ad-hoc specifications of adjustment costs affect the fit and the dynamics of a New Keynesian dynamic stochastic general equilibrium model with real and nominal frictions featuring several exogenous stochastic disturbances. We consider three different forms of quadratic adjustment costs: an investment adjustment cost specification and two versions of capital adjustment costs. Using both euro area and US data, we detect in part marked differences between the estimated structural parameters across the three model specifications. Further, the implementation of either investment or capital adjustment costs affects the empirical fit and the dynamics of the respective model specifications substantially. Concerning the overall empirical fit, the model specifications with capital adjustment costs outperform the model version featuring investment adjustment costs, although only the latter is able to produce data-consistent hump-shaped investment dynamics in response to exogenous shocks.

Chapter 5 concludes by summarizing the main results of this dissertation.

Chapter 2

DSGE Models: Basic Structure and Empirical Implementation

2.1 Introduction

DSGE models have become the workhorse in modern macroeconomics, receiving wide support not only among researchers, but also from policy making circles, supporting, for instance, the monetary policy decision-making process at central banks around the world (see Kremer et al., 2006; Tovar, 2009). The term DSGE thereby refers to a special class of dynamic stochastic macroeconomic models which feature a sound micro-founded general equilibrium framework, characterized by the optimizing behavior of rational agents subject to technology, budget, and institutional constraints (see Smets et al., 2010). As outlined in FernándezVillaverde (2010), a crucial part of the recent popularity of DSGE models stems from the ability to fit these structural models to the data.

In this chapter, we present the general structure of DSGE models and discuss prerequisites needed for an empirical implementation. We focus on a standard New Keynesian model and describe basic procedures for constructing and solving this prototype model. Further, we consider three empirical methods for DSGE models. The purpose of this chapter, on the one hand, is to highlight the core features of the models used in chapter 3 and 4 of this work. On the other hand, we introduce the estimation methods employed in the remainder of the thesis.

Chapter 2 is organized as follows: Section 2.2 provides a graphical and formal presentation of a standard DSGE framework. The formal description comprises of
the theoretical setup, the log-linear approximation, and the solution of a standard New Keynesian model. Section 2.3 discusses three common strategies used in the empirical analysis of DSGE models: calibration, maximum likelihood estimation, and Bayesian estimation. Technical details concerning the theoretical setup, the log-linear approximation, and the model solution appear in the appendices.

2.2 The Basic Structure of DSGE Models

2.2.1 A Graphical Exposition

In presenting a general DSGE framework, we closely follow Sbordone et al. (2010) and use a simplified diagram to illustrate the interactions among the different agents in a basic dynamic stochastic general equilibrium economy (see figure 2.1).

Figure 2.1: A basic DSGE framework.

The model economy can be characterized by three interrelated blocks: a demand block arising from the optimal behavior of households, a supply block describing the optimal behavior of firms, and a monetary policy equation. Each of these blocks is defined by equations derived from the underlying microeconomic structure of the model, i.e., explicit assumptions on the specific behavior of agents as well as the technological, budget, and institutional constraints in the economy.

As outlined in Sbordone et al. (2010), the demand block determines the real activity Y as a function of the expected future real activity Y^{e} and the real interest rate, which, according to the Fisherian equation, equals the difference between nominal interest rate r and the expected inflation rate π^{e}. The demand block exhibits a negative relationship between the real interest rate and real activity, since a rise in the real interest rate increases savings and lowers consumption (and investment). In contrast, the functional relation between real activity and its expected value is assumed to be positive, capturing the willingness of people to spend more in anticipation of thriving days.

The arrow pointing from the demand block to the supply block emphasizes the importance of the real activity Y emerging from demand, since it is, together with expected inflation π^{e}, a key input for determining the inflation rate π. The supply block captures a positive relationship between the rate of inflation and the level of real activity, implicitly expressing the pressure of factor prices on producer prices stemming from increased competition for scarce production factors. Further, the supply block accounts for a positive relation between current inflation and expected inflation.

Following Sbordone et al. (2010), the values of real activity and inflation determined by the demand and supply block enter into the monetary policy block. Monetary policy itself is often described by a central bank, which sets the shortterm nominal interest rate according to a Taylor-type policy rule (see Taylor, 1993). The monetary authority adjusts the nominal interest rate r in response to deviations of current inflation π and real activity Y from their respective target values π^{*} and Y^{*}. The effects of monetary policy on real activity and inflation are stressed by the arrow running from the monetary policy block to the demand block and then on to the supply block. Thus, the policy reaction function of the monetary authority closes the model allowing for a complete description of the relationship between the key variables: output Y, inflation π, and the nominal interest rate r.

Note that the incorporation of expectations about future outcomes provides the source of (forward-looking) dynamic interactions between the three interrelated blocks. To take into account the role of expectations, figure 2.1 explicitly highlights the influence of expectations on real activity and inflation, especially emphasizing the expectations channel of monetary policy.

The stochastic nature of DSGE models originates from exogenous processes,
commonly called shocks. These shocks amount to fluctuations of the model around its deterministic steady state equilibrium, a perfectly predictable path, with neither booms nor busts. Although recent micro-founded DSGE models include various types of shocks, figure 2.1 only contains some of the most common specifications (represented as triangles, with arrows pointing to the blocks that are directly affected by a specific driving process).

2.2.2 A Formal Exposition

According to Clarida et al. (2002), Ambler (2007), Blanchard and Galí (2007), and Galí (2008), New Keynesian models have become a fundamental tool for monetary policy analysis by academic economists and central banks. As outlined in Goodfriend and King (1997) and Goodfriend (2002), these models extend the neoclassical RBC setup by introducing Keynesian features like imperfect competition and sticky prices and hence provide a setting that allows monetary policy to be central to macroeconomic fluctuations.

We subsequently present the micro-foundations of a standard, closed-economy New Keynesian model in the spirit of Clarida et al. (1999), Galí (2002), Woodford (2003), or Ireland (2004). We select this standard framework for two reasons. First, it closely mimics the basic structure outlined in the previous section. Second, the model clearly outlines the core features of the more elaborated versions applied in chapter 3 and 4 of this work.

2.2.2.1 Overview

The economy consists of a representative household, a representative finished goods-producing firm, a continuum of intermediate goods-producing firms indexed by $i \in[0,1]$ and a monetary authority. The representative household consumes, saves, and supplies labor to the intermediate goods-producing firms. Final output is produced by a representative finished goods-producing firm acting in a perfectly competitive market. The finished goods-producing firm bundles the continuum of intermediate goods manufactured by monopolistic competitors and sells it to the household, who uses the final good for consumption. The intermediate goodsproducing firms are owned by the household and each of them produces a distinct, perishable intermediate good, also indexed by $i \in[0,1]$ during each period $t=$ $0,1,2, \ldots$ The assumption of monopoly power of intermediate goods-producing
firms allows to introduce nominal rigidities in the form of quadratic nominal price adjustment costs. Finally, there is a monetary authority that conducts monetary policy by setting the nominal interest rate according to a Taylor-type rule.

2.2.2.2 Households

The representative household of the economy enters period t holding B_{t-1} oneperiod bonds. During period t the household receives $W_{t} l_{t}$ total nominal factor payments from supplying $l_{t}(i)$ units of labor at the nominal wage rate W_{t} to each intermediate goods-producing firm $i \in[0,1]$. For all $t=0,1,2, \ldots$, the household's choices of $l_{t}(i)$ must satisfy

$$
l_{t}=\int_{0}^{1} l_{t}(i) d i
$$

where l_{t} denotes total hours worked. Further, the household receives nominal dividends from each intermediate goods producing firm $i \in[0,1]$ aggregating to

$$
D_{t}=\int_{0}^{1} D_{t}(i) d i
$$

The household uses its funds to purchase new bonds at the nominal cost B_{t} / r_{t}, where r_{t} denotes the gross nominal interest rate between time periods, and output for consumption purposes from the final goods sector at price P_{t}. We follow Woodford (2003) and assume that prices are measured in terms of a unit of account called "money", but that the economy is cashless otherwise. Therefore, the budget constraint of the representative household is given by

$$
\frac{B_{t-1}+W_{t} l_{t}+D_{t}}{P_{t}} \geq c_{t}+\frac{B_{t} / r_{t}}{P_{t}}
$$

Furthermore, we impose a no-Ponzi-game condition preventing the household from excessive borrowing. Subject to these constraints, the household seeks to maximize the stream of expected utility

$$
E \sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right)
$$

where $0<\beta<1$ is a discount factor and $\chi>0$ measures the relative weight of the disutility of labor. The parameter $\sigma \geq 0$ denotes the inverse of the elasticity
of intertemporal substitution for consumption while $\eta \geq 0$ is the inverse of the Frisch elasticity of labor supply. ${ }^{1}$

To solve this optimization problem, we form the Lagrangian

$$
\begin{aligned}
\max _{c_{t}, l_{t}, B_{t}} \Lambda= & E \sum_{t=0}^{\infty}\left[\beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right)\right. \\
& \left.-\beta^{t} \lambda_{t}\left(c_{t}+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}\right)\right]
\end{aligned}
$$

obtaining the first-order conditions

$$
\begin{gathered}
\Lambda_{c_{t}}=c_{t}^{-\sigma}-\lambda_{t}=0 \\
\Lambda_{l_{t}}=-\chi l_{t}^{\eta}+\lambda_{t} \frac{W_{t}}{P_{t}}=0 \\
\Lambda_{B_{t}}=\frac{\lambda_{t}}{P_{t}}-\beta r_{t} E_{t}\left(\frac{\lambda_{t+1}}{P_{t+1}}\right)=0 \\
\Lambda_{\lambda_{t}}=c_{t}+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}=0,
\end{gathered}
$$

and a standard transversality condition for bonds. By rearranging the first-order conditions of the household's decision problem concerning the choice of consumption, labor supply, and bond holding we yield the following standard optimality conditions:

$$
\frac{W_{t}}{P_{t}}=\chi \frac{l_{t}^{\eta}}{c_{t}^{-\sigma}}
$$

and

$$
c_{t}^{-\sigma}=\beta r_{t} E_{t}\left(\frac{c_{t+1}^{-\sigma}}{\pi_{t+1}}\right),
$$

where $\pi_{t+1}=\frac{P_{t+1}}{P_{t}}$. While the former equation describes the intratemporal optimality condition, setting the real wage equal to marginal rate of substitution between leisure and consumption, the latter represents the Euler equation for the optimal intertemporal allocation of consumption.

[^0]
2.2.2.3 Firms

The final good y_{t} is produced by a firm that acts in a perfectly competitive environment, bundling the intermediate goods $y_{t}(i)$ subject to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

where $\theta>1$ represents the elasticity of substitution between intermediate goods $y_{t}(i)$. Profit maximization leads to the demand function for intermediate goods

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

with $P_{t}(i)$ denoting the price of intermediate good i and

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)}
$$

Each intermediate good i is produced by a single monopolistically competitive firm according to the constant returns to scale technology

$$
y_{t}(i) \leq z_{t} l_{t}(i)
$$

where the technology shock z_{t} is assumed to follow the autoregressive process

$$
\ln \left(z_{t}\right)=\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}
$$

with $1>\rho_{z}>0$ and $\varepsilon_{z t} \sim N\left(0, \sigma_{z}^{2}\right)$. Although each firm i exerts some market power, it acts as a price taker in the factor markets. Moreover, the adjustment of the firm's nominal price $P_{t}(i)$ is assumed to be costly, where the cost function is convex in the size of the price adjustment. Following Rotemberg (1982), these costs are defined as

$$
\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

where $\phi_{P} \geq 0$ governs the size of price adjustment costs and π denotes the gross steady state rate of inflation targeted by the monetary authority. As outlined in Ireland (1997), this specification can be interpreted as the negative effects of price
changes on customer-firm relationships. ${ }^{2}$

The typical intermediate goods-producing firm's optimization problem can be split into two steps. First, each firm wants to minimize its costs $W_{t} l_{t}(i)$ subject to the production technology $y_{t}(i)=z_{t} l_{t}(i)$. The Lagrangian of this problem can be written in real terms as

$$
\min _{l_{t}(i)} \Lambda=\left(\frac{W_{t}}{P_{t}}\right) l_{t}(i)-\varphi_{t}\left[z_{t} l_{t}(i)-y_{t}(i)\right] .
$$

The first-order conditions of the firm's problem are

$$
\Lambda_{l_{t}(i)}=W_{t} / P_{t}-\varphi_{t} z_{t}=0
$$

and

$$
\Lambda_{\varphi_{t}}=z_{t} l_{t}(i)-y_{t}(i)=0
$$

where the Lagrange multiplier φ_{t} has the interpretation of the firm's real marginal costs. Second, since the convex adjustment costs make the firm's optimization problem dynamic (see Ireland, 2003), each firm chooses $y_{t}(i)$ and $P_{t}(i)$ to maximize its total market value

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[D_{t}(i) / P_{t}\right]
$$

subject to the demand function for intermediate goods, where λ_{t} measures the period t marginal utility to the representative household provided by an additional unit of profits. The firm's profits distributed to the household as dividends are defined in real terms by

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\varphi_{t} y_{t}(i)-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

[^1]The optimization problem of each firm takes the form

$$
\begin{array}{r}
\max _{P_{t}(i)} E \sum_{t=0}^{\infty}\left(\beta ^ { t } \lambda _ { t } \left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\varphi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}\right.\right. \\
\left.\left.-\frac{\phi}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}\right\}\right),
\end{array}
$$

where $\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}$ denotes revenues and $\varphi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}+\frac{\phi}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}$ refers to costs.

The first-order condition of this problem is

$$
\begin{array}{r}
\lambda_{t}\left\{(1-\theta)\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} \frac{y_{t}}{P_{t}}+\varphi_{t} \theta\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta-1} \frac{y_{t}}{P_{t}}-\phi_{p}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right] \frac{y_{t}}{\pi P_{t-1}(i)}\right\} \\
+\beta E_{t}\left\{\lambda_{t+1} \phi_{p}\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)}-1\right]\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)^{2}}\right] y_{t+1}\right\}=0
\end{array}
$$

If $\phi_{P}=0$, the above expression reduces to

$$
P_{t}(i)=\frac{\theta}{\theta-1} \varphi_{t} P_{t}
$$

which points out, that in the case of costless price adjustment, a representative intermediate goods-producing firm sets its markup of price $P_{t}(i)$ over (nominal) marginal cost $\varphi_{t} P_{t}$ equal to $\theta /(\theta-1)$.

2.2.2.4 Monetary Authority

Following Clarida et al. (2000), Ireland (2000), Canova (2009), and FernándezVillaverde et al. (2010), monetary policy can be described by a modified Taylor rule of the form:

$$
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right)
$$

The monetary authority gradually adjusts the short-term nominal interest rate in response to deviations of current gross inflation $\pi_{t}=\frac{P_{t}}{P_{t-1}}$ and output y_{t} from their steady state values, where ρ_{r}, ω_{π}, and ω_{y} are the parameters of the monetary
policy rule. ${ }^{3}$ The monetary policy shock v_{t} follows the autoregressive process

$$
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t},
$$

where $0<\rho_{v}<1$ and $\varepsilon_{v t} \sim N\left(0, \sigma_{v}^{2}\right)$.

2.2.3 Approximating and Solving the Model

Empirical investigations using DSGE models require to find a solution to the dynamic system. Since most dynamic models do not have an exact analytical closed-form solution, a tractable approximation needs to be derived (see Aruoba et al., 2006). To reduce the computational burden, the majority of studies involving either simulation or estimation use linear approximations of the original model (see Iskrev, 2010), which then can be solved by various solution methods for linear difference models under rational expectations. ${ }^{4}$ An extensive coverage of approximation techniques and solution methods for DSGE models can be found in Canova (2007), DeJong and Dave (2007), and McCandless (2008). In the following sections we give a short presentation of the linearized standard New Keynesian model and its solution, while a detailed description is provided in the appendices A and B .

2.2.3.1 Log-linear Approximation

As outlined in Zietz (2008), log-linearization allows to transform a system of nonlinear equations into a system that is linear in terms of the log-deviations of the underlying variables from their steady state values. To log-linearize the standard New Keynesian model we use a first-order Taylor approximation of the model around its steady state values. ${ }^{5}$ Letting $\widehat{\operatorname{var}}_{t}=\log \left(\frac{v a r_{t}}{v a r}\right)$ denote the log-deviation

[^2]of some variable $v a r t$ from its steady state var the model can be expressed as:
\[

$$
\begin{gathered}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\frac{1}{\sigma}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right), \\
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\frac{\theta-1}{\phi_{P}}(\eta+\sigma) \hat{y}_{t}-\frac{\theta-1}{\phi_{P}}(1+\eta) \hat{z}_{t} \\
\hat{r}_{t}=\rho_{r} \hat{r}_{t-1}+\left(1-\rho_{r}\right)\left(\omega_{\pi} \hat{\pi}_{t}+\omega_{y} \hat{y}_{t}\right)+\hat{v}_{t}, \\
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\varepsilon_{z t},
\end{gathered}
$$
\]

and

$$
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\varepsilon_{v t} .
$$

The first equation is a so-called dynamic IS curve, capturing the features of aggregate demand outlined in section 2.2.1, whereas the properties of aggregate supply are described by the second equation, usually termed as New Keynesian Phillips curve. ${ }^{6}$ Monetary policy is characterized by the third equation, which is a Taylor-type policy reaction function. While these equations are often referred to as "three equation New Keynesian DSGE framework" (see, for example, Schorfheide, 2008; Woodford, 2008; Christiano et al., 2010), the last two equations complete the model, describing the first-order autoregressive structure of the exogenous shocks.

2.2.3.2 Solution

Since the early work of Blanchard and Kahn (1980), several techniques for solving linear difference models under rational expectations have emerged, including the approaches of Anderson and Moore (1985), Uhlig (1999), Klein (2000), and Sims (2002). Although these procedures differ with respect to their specific methodology, they all allow the solution of the underlying model to be written in state space form, which enables the use of the Kalman filter to perform a likelihood-based analysis of DSGE models.

Employing the approach of Klein (2000) on our standard New Keynesian model

[^3]leads to a solution in state space form, characterized by a state equation
$$
s_{t+1}=\Gamma_{0}(\mu) s_{t}+\Gamma_{1}(\mu) \varepsilon_{t+1}
$$
and an observation equation
$$
f_{t}=\Gamma_{2}(\mu) s_{t}
$$
where
\[

s_{t}=\left[$$
\begin{array}{lll}
\hat{r}_{t-1} & \hat{z}_{t} & \hat{v}_{t}
\end{array}
$$\right]^{\prime}
\]

contains the model's state variables, including endogenous predetermined and exogenous variables ${ }^{7}$,

$$
\varepsilon_{t+1}=\left[\begin{array}{ll}
\varepsilon_{z t+1} & \varepsilon_{v t+1}
\end{array}\right]^{\prime}
$$

consists of the serially and mutually uncorrelated innovations of the shocks, and

$$
f_{t}=\left[\begin{array}{ll}
\hat{y}_{t} & \hat{\pi}_{t}
\end{array}\right]^{\prime}
$$

comprises the model's flow variables. The matrices $\Gamma_{0}(\mu), \Gamma_{1}(\mu)$, and $\Gamma_{2}(\mu)$ contain (functions of) the model's parameters μ.

2.3 Taking DSGE Models to the Data

An appealing feature of DSGE models is their applicability for empirical analysis, making them a widely used tool for empirical research in macroeconomics as well as quantitative policy analysis and forecasting at central banks all over the world (see Schorfheide, 2011). In this section, we briefly describe three common empirical strategies for taking DSGE models to the data: calibration, maximum likelihood estimation, and Bayesian estimation. For a more detailed description of empirical methods for DSGE models, we refer to Canova (2007) and DeJong and Dave (2007).

2.3.1 Calibration

Pioneered by Kydland and Prescott (1982), calibration was the most popular method for empirical analysis based on DSGE models until the late 1990s (see

[^4]Karagedikli et al., 2010). According to Kydland and Prescott (1996), "basic" calibration in the sense of an empirical methodology involves the following five steps: ${ }^{8}$

1. Pose an economic question. Such a question can either deal with policy evaluation issues or with the testing and development of theory.
2. Use a "well-tested theory", i.e., an explicit set of instructions for building a mechanical imitation system to answer the question.
3. Construct a model economy that is appropriate to address the question.
4. Calibrate the model economy by choosing values for certain key parameters of the underlying preferences and technologies using evidence from other empirical studies (see also Plosser, 1989).
5. Run the experiment. For this, the state space representation derived in the previous section can be employed to assess theoretical implications of changes in policy or the ability of a specific model to mimic features of the real world.

Although, as outlined in Ruge-Murcia (2007), calibration is, in general, a useful tool for understanding the dynamic properties of DSGE models, the initial predominance of the calibration approach in the quantitative evaluation of DSGE models was partly due to the fact that "... macroeconomists were unsure about how to compute their models efficiently, a necessary condition to perform likelihood-based inference. Moreover, even if economists had known how to do so, most of the techniques required for estimating DSGE models using a likelihood approach did not exist" (Fernández-Villaverde and Rubio-Ramírez, 2006, p. 1). Calibration offered a solution to this problem.

2.3.2 Estimation

According to Fernández-Villaverde and Rubio-Ramírez (2006), the predominance of calibration in empirical DSGE analysis decreased considerably in the late 1990s.

[^5]Advances in computer power and the development of new econometric techniques have facilitated the estimation of DSGE models, and henceforth, as described in Ruge-Murcia (2007, p. 2622), lead to several benefits compared to calibration:

- Rather than relying on (potentially inconsistent) estimates from microstudies to calibrate the model, parameter estimates can be obtained by imposing the restrictions of the full model under consideration on the data.
- Bootstrapped confidence bands can be computed to quantify the degree of estimation uncertainty of impulse-responses.
- "... [S]tandard tools of model selection and evaluation can be readily applied."

As outlined in An and Schorfheide (2007) and Tovar (2009), the empirical literature features various econometric techniques for estimating DSGE models, including generalized method of moments (GMM) estimation of equilibrium relationships (see Christiano and Eichenbaum, 1992; Burnside et al., 1993), minimum distance estimation based on minimizing a weighted distance between structural vector autoregressive (SVAR) and DSGE model impulse-response functions (see Rotemberg and Woodford, 1997; Christiano et al., 2005), maximum likelihood (see Altug, 1989; Leeper and Sims, 1994; Ireland, 1997), and Bayesian estimation (see DeJong et al., 2000b; Schorfheide, 2000; Otrok, 2001). According to Canova (2007), a key feature distinguishing these different approaches is the amount of information processed. While limited-information procedures like GMM only exploit part of the information contained in a subset of the model's equilibrium conditions, full-information likelihood-based methods aim at estimating the entire DSGE model simultaneously. Tovar (2009, p. 14) points out, that "[i]t is for this reason that the most important strand of the literature has focused on estimation methods built around the implied likelihood function derived from the DSGE model." According to DeJong et al. (2000b), the distinction between maximum likelihood and Bayesian estimation given a specific model hinges critically on whether the data or the model parameters are interpreted as random variables.

Under the classical maximum likelihood approach to inference, ". . . the parameters are treated as fixed and the data are treated as unknown in the sense that their probability distribution (the likelihood) is the center of focus. The question
is whether the observed data could plausibly have come from the model under a particular parameterization" (DeJong et al., 2000b, p. 210). Therefore, maximum likelihood estimation seeks to determine the parameter values that maximize the likelihood of the observed data given a specific model, where ". . . the uncertainty regarding the specific values estimated for the parameters is conveyed by reporting associated standard errors" (DeJong and Dave, 2007, p. 180). To test for the empirical plausibility of a specific model, formal hypothesis procedures can be applied within a maximum likelihood framework (see, for example, Ireland, 2003).

Bayesian analysis takes a different point of view, since the observed data are treated as fixed whereas the unknown parameters are regarded as random variables. According to DeJong and Dave (2007), this probabilistic interpretation of the model parameters allows for the formal incorporation of a priori information in form of prior distributions specified for the parameters. These prior distributions ". . . either reflect subjective opinions or summarize information derived from data sets not included in the estimation sample" (Del Negro and Schorfheide, 2008, p. 1). Therefore, Bayesian estimation is sometimes described as a bridge between estimation and calibration (see, for example, Kremer et al., 2006; Walsh, 2010), since it combines the likelihood function, formed by the structure of the model and the data, with the prior distributions (by employing Bayes's theorem) to construct a posterior distribution for the parameters of interest. Once the posterior distribution of the parameters is derived, inference like point estimation or model comparison can be performed (see Fernández-Villaverde, 2010).

2.4 Conclusion

DSGE models have become a standard tool of modern macroeconomics, capable to bridge the gap between micro-founded macroeconomic theory and the data. This appealing feature of DSGE models made them a widely used tool for empirical research in macroeconomics as well as policy analysis and forecasting in central banking (see Schorfheide, 2011).

In this chapter we describe the general structure of DSGE models and appropriate steps to take these models to the data. In particular, we consider a standard New Keynesian model and expound the basic procedure for setting up and solving such a prototype DSGE model. Finally, we briefly discuss three common
strategies used in the empirical analysis of DSGE models: calibration, maximum likelihood estimation, and Bayesian estimation.

Appendices

Appendix A

Equilibrium Conditions

The appendix presents the equation system of the standard New Keynesian DSGE model.

A. 1 The Economic Environment

- Households:

The representative household chooses $\left\{c_{t}, l_{t}, B_{t}\right\}_{t=0}^{\infty}$ to maximize utility

$$
E \sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right)
$$

subject to the budget constraint

$$
\frac{B_{t-1}+W_{t} l_{t}+D_{t}}{P_{t}} \geq c_{t}+\frac{B_{t} / r_{t}}{P_{t}}
$$

Further, following Buiter and Sibert (2007), we prevent the household from excessive borrowing by imposing the no-Ponzi-game condition

$$
\lim _{t \rightarrow \infty} B_{t} \prod_{s=0}^{t} \frac{1}{r_{s}} \geq 0
$$

Accordingly, the Lagrangian can be written as follows:

$$
\begin{aligned}
\max _{c_{t}, l_{t}, B_{t}} \Lambda= & E \sum_{t=0}^{\infty}\left[\beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right)\right. \\
& \left.-\beta^{t} \lambda_{t}\left(c_{t}+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}\right)\right] .
\end{aligned}
$$

The first-order conditions are obtained by setting the partial derivatives of Λ with respect to c_{t}, l_{t}, B_{t}, and λ_{t} equal to zero, yielding

$$
\begin{gather*}
\Lambda_{c_{t}}=c_{t}^{-\sigma}-\lambda_{t}=0 \tag{2.1}\\
\Lambda_{l_{t}}=-\chi l_{t}^{\eta}+\lambda_{t} \frac{W_{t}}{P_{t}}=0 \tag{2.2}\\
\Lambda_{B_{t}}=\frac{\lambda_{t}}{P_{t}}-\beta r_{t} E_{t}\left(\frac{\lambda_{t+1}}{P_{t+1}}\right)=0 \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\Lambda_{\lambda_{t}}=c_{t}+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}=0 \tag{2.4}
\end{equation*}
$$

Finally, we impose the standard transversality conditions to guarantee that bonds do not grow too quickly:

$$
\lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} \frac{B_{t}}{P_{t}}=0
$$

- Finished goods-producing firms:

The representative finished goods-producing firm seeks to maximize its profits

$$
P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

subject to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

Therefore, the firm's problem can be written as

$$
\max _{y_{t}(i)} \Pi_{t}=P_{t}\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

which leads to the following first-order condition characterizing the demand for intermediate goods:

$$
\frac{\partial \Pi_{t}}{\partial y_{t}(i)}=y_{t}(i)-\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}=0
$$

By plugging this expression into the constant elasticity of scale (CES) aggregator for intermediate goods we obtain the price aggregator

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)}
$$

- Intermediate goods-producing firms:

The typical intermediate goods-producing firm optimizes along two dimensions. First, each firm wants to minimize its costs subject to the production technology. The Lagrangian of this problem can be written in real terms as

$$
\min _{l_{t}(i)} \Lambda=\left(\frac{W_{t}}{P_{t}}\right) l_{t}(i)-\varphi_{t}\left[z_{t} l_{t}(i)-y_{t}(i)\right]
$$

where

$$
\begin{equation*}
\ln \left(z_{t}\right)=\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t} . \tag{2.5}
\end{equation*}
$$

Therefore, we have the first-order conditions

$$
\begin{equation*}
\Lambda_{l_{t}(i)}=\frac{W_{t}}{P_{t}}-\varphi_{t} z_{t}=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{\varphi_{t}}=z_{t} l_{t}(i)-y_{t}(i)=0 \tag{2.7}
\end{equation*}
$$

Second, each intermediate goods-producing firm seeks to maximize its present discounted value of profits

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[D_{t}(i) / P_{t}\right]
$$

by choosing $\left\{y_{t}(i), P_{t}(i)\right\}_{t=0}^{\infty}$ subject to the demand for intermediate goods

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

We can use the latter expression to rewrite the real value of dividends

$$
\begin{equation*}
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\varphi_{t} y_{t}(i)-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t} \tag{2.8}
\end{equation*}
$$

as

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\varphi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

Therefore, the firms' intertemporal optimization problem can be written as

$$
\begin{array}{r}
\max _{P_{t}(i)} E \sum_{t=0}^{\infty}\left(\beta ^ { t } \lambda _ { t } \left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\varphi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}\right.\right. \\
\left.\left.-\frac{\phi}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}\right\}\right),
\end{array}
$$

leading to the following first-order condition:

$$
\begin{array}{r}
\lambda_{t}\left\{(1-\theta)\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} \frac{y_{t}}{P_{t}}+\varphi_{t} \theta\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta-1} \frac{y_{t}}{P_{t}}-\phi_{p}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right] \frac{y_{t}}{\pi P_{t-1}(i)}\right\} \\
+\beta E_{t}\left\{\lambda_{t+1} \phi_{p}\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)}-1\right]\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)^{2}}\right] y_{t+1}\right\}=0 . \tag{2.9}
\end{array}
$$

- The monetary authority sets the gross nominal interest rate according to the modified Taylor rule

$$
\begin{equation*}
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

A. 2 The Nonlinear System

A.2.1 Symmetric Equilibrium

The model is characterized by the nonlinear difference equations (2.1) - (2.7), $\left(2.8^{\prime}\right),(2.9)-(2.11)$. To close the model, two additional steps are required. First, we focus on a symmetric equilibrium, where all intermediate goods-producing firms make identical decisions. This implies $P_{t}(i)=P_{t}, y_{t}(i)=y_{t}, l_{t}(i)=l_{t}$, and $D_{t}(i)=D_{t}$ for all $i \in[0,1]$ and $t=0,1,2, \ldots$. Second, the market clearing condition for the bond market, $B_{t}=B_{t-1}=0$ must hold for all $t=0,1,2, \ldots$ By substituting these conditions into (2.1) - (2.11) we obtain:

$$
\begin{gather*}
c_{t}^{-\sigma}=\lambda_{t}, \tag{2.1}\\
\chi l_{t}^{\eta}=\lambda_{t} \frac{W_{t}}{P_{t}}, \tag{2.2}\\
\frac{\lambda_{t}}{P_{t}}=\beta r_{t} E_{t}\left(\frac{\lambda_{t+1}}{P_{t+1}}\right), \tag{2.3}\\
c_{t}=\frac{W_{t} l_{t}}{P_{t}}+\frac{D_{t}}{P_{t}}, \tag{2.4}\\
\ln \left(z_{t}\right)=\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{2.5}\\
\frac{W_{t}}{P_{t}}=\varphi_{t} z_{t}, \tag{2.6}\\
y_{t}=z_{t} l_{t}, \tag{2.7}\\
\frac{D_{t}}{P_{t}}=y_{t}-\varphi_{t} y_{t}-\frac{\phi_{P}}{2}\left[\frac{P_{t}}{\pi P_{t-1}}-1\right]^{2} y_{t} \\
\left.(1-\theta) y_{t}+\varphi_{t} \theta y_{t}-\phi_{p}\left(\frac{P_{t}}{\pi P_{t-1}}-1\right) \frac{P_{t}}{\pi P_{t-1}} y_{t}\right] \\
=-\beta E_{t}\left[\lambda_{t+1} \phi_{p}\left(\frac{P_{t+1}}{\pi P_{t}}-1\right)\left[\frac{P_{t+1}}{\pi P_{t}}\right] y_{t+1}\right] \tag{2.9}\\
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right), \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

A.2.2 Change of Variables and System Reduction

We can rewrite the nonlinear system by defining $\pi_{t}=\frac{P_{t}}{P_{t-1}}, w_{t}=\frac{W_{t}}{P_{t}}$, and $d_{t}=\frac{D_{t}}{P_{t}}$. In terms of these re-defined variables (2.1), (2.2), (2.3), (2.4), (2.5) - (2.7), (2.8'), and (2.9) - (2.11) become:

$$
\begin{gather*}
c_{t}^{-\sigma}=\lambda_{t}, \tag{2.1}\\
\chi l_{t}^{\eta}=\lambda_{t} w_{t}, \tag{2.2}\\
\lambda_{t}=\beta r_{t} E_{t}\left(\frac{\lambda_{t+1}}{\pi_{t+1}}\right), \tag{2.3}\\
c_{t}=w_{t} l_{t}+d_{t}, \tag{2.4}\\
\ln \left(z_{t}\right)=\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{2.5}\\
w_{t}=\varphi_{t} z_{t}, \tag{2.6}\\
y_{t}=z_{t} l_{t}, \tag{2.7}\\
\lambda_{t}\left[(1-\theta) y_{t}+\varphi_{t} \theta y_{t}-\phi_{p}\left(\frac{\pi_{t}}{\pi}-1\right)\left(\frac{\pi_{t}}{\pi}\right) y_{t}\right] \\
d_{t}=-\beta E_{t}\left[\varphi_{t+1} \phi_{p}\left(\frac{\pi_{t+1}}{\pi}-1\right)\left[\frac{\pi_{t+1}}{\pi}\right] y_{t+1}\right], \\
\ln \left(\frac{r_{t}}{2}\left[\frac{r_{t}}{\pi}-1\right]^{2} y_{t},\right. \tag{2.9}\\
\ln)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right), \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

Following King and Watson (2002), we apply a system reduction and use equation $(2.1),(2.2),(2.6),(2.7)$, and $\left(2.8^{\prime}\right)$ to eliminate l_{t}, w_{t}, d_{t}, and φ_{t}. The reduced system can be written as

$$
\begin{gather*}
c_{t}^{-\sigma}=\beta r_{t} E_{t}\left(\frac{c_{t+1}^{-\sigma}}{\pi_{t+1}}\right), \\
y_{t}=c_{t}+\frac{\phi_{P}}{2}\left[\frac{\pi_{t}}{\pi}-1\right]^{2} y_{t} \\
\ln \left(z_{t}\right)=\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t} \tag{2.5}
\end{gather*}
$$

$$
\begin{align*}
& c_{t}^{-\sigma}\left[(1-\theta) y_{t}\right.\left.+\chi\left(\frac{y_{t}}{z_{t}}\right)^{1+\eta} c_{t}^{\sigma} \theta-\phi_{p}\left(\frac{\pi_{t}}{\pi}-1\right)\left(\frac{\pi_{t}}{\pi}\right) y_{t}\right] \\
&=-\beta E_{t}\left[c_{t+1}^{-\sigma} \phi_{p}\left(\frac{\pi_{t+1}}{\pi}-1\right)\left[\frac{\pi_{t+1}}{\pi}\right] y_{t+1}\right], \\
& \ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right), \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

A. 3 Steady States

In absence of the two shocks, i.e., $\varepsilon_{z t}=\varepsilon_{v t}=0$ for all $t=0,1,2 \ldots$, the economy converges to a steady state in which each of the six variables of the reduced system is constant. We use (2.5) and (2.11) to solve for

$$
\begin{aligned}
& z=1 \\
& v=1
\end{aligned}
$$

By assuming that the monetary authority targets zero inflation, implying a gross steady state inflation rate π equal to one, $\left(2.3^{\prime}\right)$ can be used to solve for

$$
r=\frac{1}{\beta} .
$$

Use (2.4') to solve for

$$
c=y .
$$

Finally use $\left(2.4^{\prime}\right),(2.5)$, and (2.9') to solve for

$$
y=\left[\frac{1}{\chi}\left(\frac{\theta-1}{\theta}\right)\right]^{\frac{1}{\eta+\sigma}} .
$$

A. 4 The Linearized System

The nonlinear system $\left(2.3^{\prime}\right),\left(2.4^{\prime}\right),(2.5),\left(2.9^{\prime}\right),(2.10)$, and (2.11) can be linearized by taking a log-linear approximation of the model at steady state values. For a detailed description of logarithmic approximations, we refer to Canova (2007),

DeJong and Dave (2007), and Zietz (2008). Let $\widehat{v a r}_{t} \equiv \log \left(\frac{v a r_{t}}{v a r}\right)$ denote the \log-deviation of some variable $v a r_{t}$ from its steady state var, where $\log \left(\frac{v a r_{t}}{v a r}\right) \approx$ $\frac{v a r_{t}-v a r}{v a r}$. A first-order Taylor approximation of equation $\left(2.3^{\prime}\right)-(2.11)$ at the steady state gives:

$$
\begin{gather*}
\hat{c}_{t}=E_{t} \hat{c}_{t+1}-\frac{1}{\sigma}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right), \\
\hat{y}_{t}=\hat{c}_{t}, \\
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\varepsilon_{z t}, \tag{2.5}\\
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\left(\frac{\theta-1}{\phi_{P}}\right)\left(\sigma \hat{c}_{t}+\eta \hat{y}_{t}\right)-\frac{(\theta-1)(1+\eta)}{\phi_{P}} \hat{z}_{t}, \\
\hat{r}_{t}=\rho_{r} \hat{r}_{t-1}+\left(1-\rho_{r}\right)\left(\omega_{\pi} \hat{\pi}_{t}+\omega_{y} \hat{y}_{t}\right)+\hat{v}_{t}, \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

By using (2.4') we can rewrite the linearized system as

$$
\begin{gather*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\frac{1}{\sigma}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\varepsilon_{z t} \tag{2.5}\\
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\frac{\theta-1}{\phi_{P}}(\eta+\sigma) \hat{y}_{t}-\frac{\theta-1}{\phi_{P}}(1+\eta) \hat{z}_{t} \\
\hat{r}_{t}=\rho_{r} \hat{r}_{t-1}+\left(1-\rho_{r}\right)\left(\omega_{\pi} \hat{\pi}_{t}+\omega_{y} \hat{y}_{t}\right)+\hat{v}_{t}, \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\varepsilon_{v t} . \tag{2.11}
\end{equation*}
$$

Appendix B

Solving the Model

B. 1 Klein's method

A solution of the model can be obtained by applying the approach of Klein (2000) for solving linear difference models under rational expectations. Therefore, the model is brought into the form:

$$
\begin{gather*}
A E_{t} s_{t+1}^{0}=B s_{t}^{0}+C \zeta_{t} \tag{2.12}\\
\zeta_{t}=P \zeta_{t-1}+\varepsilon_{t} \tag{2.13}
\end{gather*}
$$

where A, B, and C are coefficient matrices, P contains the persistence parameters of the shocks, ζ_{t} consists of the model's exogenous forcing variables while the serially and mutually uncorrelated innovations are included in ε_{t} (see DeJong and Dave, 2007). Similar to the approach of Blanchard and Kahn (1980) s_{t}^{0} can be separated into

$$
s_{t}^{0}=\left[\begin{array}{ll}
s_{1 t}^{0} & s_{2 t}^{0}
\end{array}\right]^{\prime},
$$

letting $s_{1 t}^{0}$ denote a vector of predetermined and $s_{2 t}^{0}$ a vector of non-predetermined variables, which implies that:

$$
E_{t} s_{t+1}=\left[\begin{array}{ll}
s_{1 t+1}^{0} & E_{t} s_{2 t+1}^{0}
\end{array}\right]^{\prime}
$$

The solution method relies on decoupling the system into unstable and stable portions, using a complex generalized Schur decomposition, and then solving the two components in turn. If the number of unstable generalized eigenvalues of
A and B is equal to the number of non-predetermined variables, the system is said to be saddle-path stable and a unique solution exists. In contrast to the method of Blanchard and Kahn (1980), which relies on a Jordan decomposition, Klein's procedure does not require invertibility of matrix A. The subsequent sections follow the expositions in Klein (2000), DeJong and Dave (2007), and the technical notes of Ireland (2011). ${ }^{1}$

B. 2 Solution

Let

$$
\begin{gathered}
s_{t}^{0}=\left[\begin{array}{lll}
\hat{r}_{t-1} & \hat{y}_{t} & \hat{\pi}_{t}
\end{array}\right]^{\prime}, \\
\zeta_{t}=\left[\begin{array}{ll}
\hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime} \\
P=\left[\begin{array}{cc}
\rho_{z} & 0 \\
0 & \rho_{v}
\end{array}\right]
\end{gathered}
$$

and

$$
\varepsilon_{t}=\left[\begin{array}{ll}
\varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime}
$$

Then the coefficient matrices A, B, and C of the model are:

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-\frac{1}{\sigma} & 1 & \frac{1}{\sigma} \\
0 & 0 & -\beta \\
1 & 0 & 0
\end{array}\right] \\
B=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{\theta-1}{\phi_{P}}(\eta+\sigma) & -1 \\
\rho_{r} & \left(1-\rho_{r}\right) \omega_{y} & \left(1-\rho_{r}\right) \omega_{\pi}
\end{array}\right],
\end{gathered}
$$

and

$$
C=\left[\begin{array}{cc}
0 & 0 \\
-\frac{\theta-1}{\phi_{P}}(1+\eta) & 0 \\
0 & 1
\end{array}\right]
$$

Following Klein (2000), we apply the complex generalized Schur decomposition

[^6]of A and B, which is given by
$$
Q A Z=S
$$
and
$$
Q B Z=T
$$
where Q and Z are unitary and S and T are upper triangular matrices. The generalized eigenvalues of B and A can be recovered as the ratios of the diagonal elements of T and S :
$$
\lambda(B, A)=\left\{t_{i i} / s_{i i} \mid i=1,2,3\right\} .
$$

The matrices Q, Z, S, and T can always be arranged so that the generalized eigenvalues are ordered in increasing value in moving from left to right. Note that one variable in the vector s_{t}^{0} is predetermined and two variables are nonpredetermined. Given this setup, Blanchard and Kahn (1980) prove the following three propositions.

- PROPOSITION 1: If the number of eigenvalues outside the unit circle is equal to the number of non-predetermined variables, then there is a unique solution to the system.
- PROPOSITION 2: If the number of eigenvalues outside the unit circle is greater than the number of non-predetermined variables, then there is no solution to the system.
- PROPOSITION 3: If the number of eigenvalues outside the unit circle is less than the number of non-predetermined variables, then there is an infinite number of solutions.

We proceed under the case of saddle-path stability, assuming exactly two generalized eigenvalues to lie outside the unit circle and therefore allow for a unique solution. The matrices Q, Z, S, and T are portioned, so that

$$
Q=\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right],
$$

where Q_{1} is 1×3 and Q_{2} is 2×3 and

$$
\begin{aligned}
& Z=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right] \\
& S=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0_{(2 \times 1)} & S_{22}
\end{array}\right], \\
& T=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0_{(2 \times 1)} & T_{22}
\end{array}\right],
\end{aligned}
$$

where Z_{11}, S_{11}, and T_{11} are 1×1 and Z_{12}, S_{12}, and T_{12} are $1 \times 2, Z_{21}$ is 2×1, and Z_{22}, S_{22}, and T_{22} are 2×2. To "triangularize" the system we first define the vector of auxiliary variables as

$$
s_{t}^{1}=Z^{H} s_{t}^{0}
$$

letting Z^{H} denote the conjugate transpose of matrix Z, so that

$$
s_{t}^{1}=\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]
$$

where

$$
s_{1 t}^{1}=Z_{11}^{H} \hat{r}_{t-1}+Z_{21}^{H}\left[\begin{array}{l}
\hat{y}_{t} \tag{2.14}\\
\hat{\pi}_{t}
\end{array}\right]
$$

is 1×1 and

$$
s_{2 t}^{1}=Z_{12}^{H} \hat{r}_{t-1}+Z_{22}^{H}\left[\begin{array}{l}
\hat{y}_{t} \tag{2.15}\\
\hat{\pi}_{t}
\end{array}\right]
$$

is 2×1. Since Z is unitary, $Z^{H} Z=I$ or $Z^{H}=Z^{-1}$ and hence $s_{t}^{0}=Z s_{t}^{1}$. We use this property to rewrite (2.12) as

$$
A Z E_{t} s_{t+1}^{1}=B Z s_{t}^{1}+C \zeta_{t}
$$

Premultiplying this equation by Q gives

$$
\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right] E_{t}\left[\begin{array}{l}
s_{1 t+1}^{1} \\
s_{2 t+1}^{1}
\end{array}\right]=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]+\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] C \zeta_{t}
$$

or in matrix partitions,

$$
\begin{equation*}
S_{11} E_{t} s_{1 t+1}^{1}+S_{12} E_{t} s_{2 t+1}^{1}=T_{11} s_{1 t}^{1}+T_{12} s_{2 t}^{1}+Q_{1} C \zeta_{t} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{22} E_{t} s_{2 t+1}^{1}=T_{22} s_{2 t}^{1}+Q_{2} C \zeta_{t} \tag{2.17}
\end{equation*}
$$

Since the generalized eigenvalues of A and B corresponding to the diagonal elements of S_{22} and T_{22} all lie outside the unit circle, (2.17) can be solved forward to obtain

$$
s_{2 t}^{1}=-T_{22}^{-1} R \zeta_{t},
$$

where the 2×2 matrix R is given by "reshaping" ${ }^{2}$

$$
\begin{aligned}
\operatorname{vec}(R) & =\operatorname{vec} \sum_{j=0}^{\infty}\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}=\sum_{j=0}^{\infty} \operatorname{vec}\left[\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}\right] \\
& =\sum_{j=0}^{\infty}\left[P^{j} \otimes\left(S_{22} T_{22}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2} C\right)=\sum_{j=0}^{\infty}\left[P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{j} \operatorname{vec}\left(Q_{2} C\right) \\
& =\left[I_{(4 \times 4)}-P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{-1} \operatorname{vec}\left(Q_{2} C\right)
\end{aligned}
$$

Using this result together with equation (2.15) allows to solve for

$$
\left[\begin{array}{c}
\hat{y}_{t} \tag{2.18}\\
\hat{\pi}_{t}
\end{array}\right]=-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H} \hat{r}_{t-1}-\left(Z_{22}^{H}\right)^{-1} T_{22}^{-1} R \zeta_{t} .
$$

Under the assumption that Z is unitary, i.e.,

$$
\underbrace{\left[\begin{array}{ll}
Z_{11}^{H} & Z_{21}^{H} \\
Z_{12}^{H} & Z_{22}^{H}
\end{array}\right]}_{Z^{H}} \underbrace{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}_{Z}=\underbrace{\left[\begin{array}{cc}
I_{(1 \times 1)} & 0_{(1 \times 22)} \\
0_{(2 \times 1)} & I_{(2 \times 2)}
\end{array}\right]}_{I}
$$

we find

$$
Z_{12}^{H} Z_{11}+Z_{22}^{H} Z_{21}=0
$$

[^7]\[

$$
\begin{gathered}
-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H}=Z_{21} Z_{11}^{-1} \\
Z_{12}^{H} Z_{12}+Z_{22}^{H} Z_{22}=I
\end{gathered}
$$
\]

and

$$
\left(Z_{22}^{H}\right)^{-1}=Z_{22}+\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H} Z_{12}=Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}
$$

which allows to rewrite (2.18) as

$$
\left[\begin{array}{c}
\hat{y}_{t} \\
\hat{\pi}_{t}
\end{array}\right]=M_{1} \hat{r}_{t-1}+M_{2} \zeta_{t}
$$

with

$$
M_{1}=Z_{21} Z_{11}^{-1}
$$

and

$$
M_{2}=-\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R
$$

Now we can solve (2.14) for $s_{1 t}^{1}$

$$
s_{1 t}^{1}=\left(Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}\right) \hat{r}_{t-1}-Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R \zeta_{t},
$$

using

$$
\begin{gathered}
Z_{11}^{H} Z_{11}+Z_{21}^{H} Z_{21}=I, \\
Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}=Z_{11}^{-1},
\end{gathered}
$$

and

$$
Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right]=Z_{21}^{H} Z_{22}-Z_{21}^{H} Z_{21} Z_{11}^{-1} Z_{12}=-Z_{11}^{-1} Z_{12}
$$

so that

$$
s_{1 t}^{1}=Z_{11}^{-1} \hat{r}_{t-1}+Z_{11}^{-1} Z_{12} T_{22}^{-1} R \zeta_{t} .
$$

If we plug this expression result into equation (2.16) we get

$$
\begin{equation*}
\hat{r}_{t}=M_{3} \hat{r}_{t-1}+M_{4} \zeta_{t}, \tag{2.19}
\end{equation*}
$$

where

$$
M_{3}=Z_{11} S_{11}^{-1} T_{11} Z_{11}^{-1}
$$

and

$$
M_{4}=Z_{11} S_{11}^{-1}\left(T_{11} Z_{11}^{-1} Z_{12} T_{22}^{-1} R+Q_{1} C+S_{12} T_{22}^{-1} R P-T_{12} T_{22}^{-1} R\right)-Z_{12} T_{22}^{-1} R P
$$

Hence, the model's solution can be written compactly in state space form by combining (2.13), (2.18'), and (2.19) as

$$
\begin{equation*}
s_{t+1}=\Gamma_{0} s_{t}+\Gamma_{1} \varepsilon_{t+1}, \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{t}=\Gamma_{2} s_{t} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{gathered}
s_{t}=\left[\begin{array}{lll}
\hat{r}_{t-1} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}, \\
f_{t}=\left[\begin{array}{ll}
\hat{y}_{t} & \hat{\pi}_{t}
\end{array}\right]^{\prime}, \\
\varepsilon_{t}=\left[\begin{array}{ll}
\varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime}, \\
\Gamma_{0}=\left[\begin{array}{cc}
M_{3} & M_{4} \\
0_{(2 \times 1)} & P
\end{array}\right], \\
\Gamma_{1}=\left[\begin{array}{c}
0_{(1 \times 2)} \\
I_{(2 \times 2)}
\end{array}\right],
\end{gathered}
$$

and

$$
\Gamma_{2}=\left[\begin{array}{ll}
M_{1} & M_{2}
\end{array}\right] .
$$

Chapter 3

Testing for Parameter Stability in DSGE Models. The Cases of France, Germany, Italy, and Spain

This chapter is joint work with Jürgen Jerger. It presents an extended version of Jerger and Röhe (2012). We expand the model presented in chapter 2 by adding endogenous capital formation, capital adjustment costs, as well as preference shocks and a shock to the marginal efficiency of investment. Furthermore, we introduce real money balances into the household's utility function, to generate an explicit role for money other than that of a pure unit of account.

3.1 Introduction

DSGE models emerged as a standard tool of modern macroeconometrics. The attractiveness of this class of models lies in the symbiosis of theoretical macroeconomic models with the recent developments in macroeconometric analysis (see DeJong and Dave, 2007). As outlined in Fernández-Villaverde (2010), considerable advances made in both theoretical and empirical DSGE research led to a progressive discipline, reshaping our thinking about macroeconomic modeling and economic policy advise. We contribute to this area of research by employing an econometric technique, recently introduced by Inoue and Rossi (2011), to test
for parameter stability in a New Keynesian model estimated for the four largest countries of the European Monetary Union (EMU): France, Germany, Italy, and Spain. Therefore, we add to a vast literature that developed around the topic of economic integration within Europe. One of the important aspects of this ongoing, gradual integration process was the introduction of a common monetary policy in the EMU. Evaluating the overall macroeconomic performance in 2008, the European Commission (2008) summarizes that the record after almost one decade of the EMU looks quite favorable. More detailed analyses of European economic integration can be grouped into four distinct strands of literature. The first looks at the implications of a common currency for other economic institutions like regulation or wage setting (see, for example, von Hagen, 1999; Cukierman and Lippi, 2001; Jerger, 2002; Fratzscher and Stracca, 2009). A second one analyzes the (change of) different transmission channels of monetary policy (Angeloni and Ehrmann, 2006; Hughes Hallett and Richter, 2009; Jarocinski, 2010). Thirdly, the availability of micro-data, especially for loans and prices, led to a large literature studying the economically convergence across countries due to monetary union (Fischer, 2012; Popov and Ongena, 2011). A fourth and relatively recent literature uses DSGE models to characterize the euro area or the economies in this region within some well-defined theoretical framework (see, for example, Smets and Wouters, 2003; Coenen and Wieland, 2005; Casares, 2007; Sahuc and Smets, 2008).

In this chapter we contribute to the last strand and add the dimensions parameter stability over time and cross country comparisons. Therefore we employ the ESS procedure ("Estimate of Set of Stable parameters") introduced by Inoue and Rossi (2011). The ESS procedure allows to pin down the subset of parameters of a model that are stable for an unknown break date. Following Inoue and Rossi (2011, p. 9), "... our analysis focuses on the situation in which there is a single, unanticipated and once for all shift in some of the parameters of the structural model at an unknown time, and in which there is an immediate convergence to a rational-expectations equilibrium after the regime change."

In the case of France, Germany, and Italy our results point to structural breaks after the beginning of the second stage of EMU in the mid-1990s, while the estimates for Spain show a significant break just before the start of the third stage in 1998. We identify significant changes in monetary policy behavior for France, Italy, and Spain, whereas monetary policy in Germany appears to be stable over
time. We also find significant declines in capital and price adjustment costs in France, Italy, and Spain.

The rest of the chapter is structured as follows. Section 3.2 describes the model. Section 3.3 discusses data issues. Section 3.4 outlines the ESS procedure. Section 3.5 presents the results. Section 3.6 concludes. Technical details of the model setup, its solution, and the construction of the likelihood appear in the appendices.

3.2 The Model

3.2.1 Overview

The model we use for France, Germany, Italy, and Spain is similar to the standard closed-economy New Keynesian framework developed in Ireland (2003). The model economy features a representative household, a representative finished goods-producing firm, a continuum of intermediate goods-producing firms indexed by $i \in[0,1]$, and a monetary policy authority. During each period $t=0,1,2, \ldots$, the intermediate goods-producing firms owned by the household produce a distinct, perishable intermediate good, also indexed by $i \in[0,1]$. The solution requires these firms to be treated symmetrically.

We choose a closed-economy approach, since openness complicates the modeling of a capital formation process, which is a central part of the present model (see also the discussion by DiCecio and Nelson, 2007, who apply a closed-economy model to the UK, as well as the remarks of Obstfeld, 2002, and Neiss and Nelson, 2003 concerning the choice of closed-economy models).

We next characterize the decisions taken by households and firms before looking at the behavior of the monetary authority and sketching the solution of the model. ${ }^{1}$

3.2.2 Households

The representative household enters period t holding M_{t-1}, B_{t-1}, and k_{t} units of money, one-period bonds and physical capital. In addition to this endowment, the household receives a lump sum transfer T_{t} from the monetary authority at

[^8]the beginning of period t. The household receives $W_{t} l_{t}+Q_{t} k_{t}$ total nominal factor payments from supplying $l_{t}(i)$ units of labor and $k_{t}(i)$ units of capital to each intermediate goods-producing firm $i \in[0,1]$, letting W_{t} and Q_{t} denote the nominal wage rate for labor and the nominal rental rate for capital, respectively. For all $t=0,1,2, \ldots$, the household's choices of $l_{t}(i)$ and $k_{t}(i)$ must satisfy
$$
l_{t}=\int_{0}^{1} l_{t}(i) d i
$$
where l_{t} denotes total hours worked ${ }^{2}$, and
$$
k_{t}=\int_{0}^{1} k_{t}(i) d i
$$

Finally, the household earns nominal dividends

$$
D_{t}=\int_{0}^{1} D_{t}(i) d i
$$

from the ownership of the intermediate goods-producing firms. Each source of income is measured in units of money.

The household uses its funds to purchase new bonds at the nominal cost B_{t} / r_{t}, where r_{t} denotes the gross nominal interest rate between time periods, or output from the final goods sector at price P_{t}. This good can be used for consumption c_{t} or investment i_{t}. In the latter case, quadratic capital adjustment cost given by

$$
\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}
$$

accrue to the household. The parameter $\phi_{K} \geq 0$ governs the size of these adjustment costs. The capital accumulation process is given by

$$
\begin{equation*}
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t} \tag{3.1}
\end{equation*}
$$

with $0<\delta<1$ denoting the rate of depreciation and x_{t} representing a shock to the marginal efficiency of investment. This shock is specified as

$$
\begin{equation*}
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{3.2}
\end{equation*}
$$

[^9]with $0<\rho_{x}<1$ and $\varepsilon_{x t} \sim N\left(0, \sigma_{x}^{2}\right)$ as introduced by Greenwood et al. (1988).
The budget constraint of the representative household is given by
$$
\frac{M_{t-1}+T_{t}+B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}} \geq c_{t}+i_{t}+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{B_{t} / r_{t}+M_{t}}{P_{t}}
$$

In addition, we impose a no-Ponzi-game condition to prevent the household from excessive borrowing. Given these constraints, the household maximizes the stream of expected utility

$$
E \sum_{t=0}^{\infty} \beta^{t}\left\{a_{t}\left[\frac{\gamma}{\gamma-1}\right] \ln \left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(M_{t} / P_{t}\right)^{(\gamma-1) / \gamma}\right]+\chi \ln \left(1-l_{t}\right)\right\}
$$

where $0<\beta<1$ is a discount factor and $\chi>0$ measures the relative weight of leisure in the utility function. Further, it can be shown that γ is the absolute value of the interest rate elasticity of money demand. The utility function contains two preference shocks, which are both assumed to follow an autoregressive process. In particular,

$$
\begin{equation*}
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{3.3}
\end{equation*}
$$

whith $0<\rho_{a}<1$ and $\varepsilon_{a t} \sim N\left(0, \sigma_{a}^{2}\right)$ denotes an IS shock (McCallum and Nelson, 1999), whereas

$$
\begin{equation*}
\ln \left(e_{t}\right)=\left(1-\rho_{e}\right) \ln (e)+\rho_{e} \ln \left(e_{t-1}\right)+\varepsilon_{e t} \tag{3.4}
\end{equation*}
$$

represents a money demand shock with $0<\rho_{e}<1, e>0$ and $\varepsilon_{e t} \sim N\left(0, \sigma_{e}^{2}\right)$.

3.2.3 Firms

The final good y_{t} is produced by a firm, acting in a perfectly competitive market, which combines the intermediate goods $y_{t}(i)$ according to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

where $\theta>1$ represents the elasticity of substitution between intermediate goods $y_{t}(i)$. With $P_{t}(i)$ denoting the price of intermediate good i, profit maximization
leads to the following demand function for intermediate goods

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

where

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)} .
$$

Each intermediate good i is produced by a single monopolistically competitive firm according to the constant returns to scale technology

$$
y_{t}(i) \leq k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}
$$

where $1>\alpha>0$ represents the elasticity of output with respect to capital. The technology shock z_{t} follows the autoregressive process

$$
\begin{equation*}
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t} \tag{3.5}
\end{equation*}
$$

with $1>\rho_{z}>0, z>0$ and $\varepsilon_{z t} \sim N\left(0, \sigma_{z}^{2}\right)$. Although each firm i enjoys some market power on its own output, it is assumed to act as a price taker in the factor markets. Furthermore, the adjustment of its nominal price $P_{t}(i)$ is assumed to be costly, where the cost function is convex in the size of the price adjustment. Following Rotemberg (1982), these costs are defined as

$$
\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

where $\phi_{P} \geq 0$ governs the size of price adjustment costs and π denotes the gross steady state rate of inflation targeted by the monetary authority. Due to these convex adjustment costs, the firm's optimization problem becomes dynamic. It chooses $l_{t}(i), k_{t}(i), y_{t}(i)$, and $P_{t}(i)$ to maximize its total market value

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[\frac{D_{t}(i)}{P_{t}}\right]
$$

subject to the demand function for intermediate goods, where λ_{t} measures the period t marginal utility to the representative household provided by an additional unit of profits. The firm's profits distributed to the household as dividends, are
defined in real terms by

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

3.2.4 Monetary policy

Similar to Ireland (2001), monetary policy is represented by a generalized Taylor rule of the form

$$
\ln \left(r_{t} / r\right)=\omega_{\tau} \ln \left(\tau_{t} / \tau\right)+\omega_{\pi} \ln \left(\pi_{t} / \pi\right)+\omega_{y} \ln \left(y_{t} / y\right)+\ln \left(v_{t}\right)
$$

encompassing the standard Taylor (1993) rule (when $\omega_{\tau}=0$), where the monetary authority changes interest rates in response to inflation and output deviations. ${ }^{3}$ If ω_{τ} is non-zero, monetary policy can be considered to influence a linear combination of the interest rate r_{t} and the money growth rate $\tau_{t}=M_{t} / M_{t-1}$ in response to deviations of gross inflation and detrended output from their steady state values. ${ }^{4}$ The latter specification allows for two alternative interpretations. On the one hand, the central bank responds to money growth because it wishes to protect the economy from the effects of money demand shocks, on the other hand, the monetary authority reacts since money growth is a predictor of future inflation (see Christensen and Dib, 2008) and has a predictive value beyond the other variables contained in the Taylor (1993) rule.

The monetary policy shock v_{t} follows the autoregressive process

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{3.6}
\end{equation*}
$$

where $0<\rho_{v}<1$ and $\varepsilon_{v t} \sim N\left(0, \sigma_{v}^{2}\right)$.
This characterization of the monetary authority does not even ask the question of optimal monetary policy. Being aware that there are a lot of alternative specifications of monetary reaction functions and that it might be doubtful to assume an identical specification of the monetary policy function for the four economies under consideration we would like to stress that we are much more interested

[^10]in examining the statistical relationship between short term interest rates, inflation, money growth, and the output gap in four different countries than in issues regarding the specification of monetary policy.

3.2.5 Solution and Estimation

The model is characterized by a set of nonlinear difference equations, namely the first-order conditions for the three agents' problems, the laws of motion for the five exogenous shocks, and the monetary policy rule. Two additional steps are required to close the model. First, to get from sectoral to aggregate variables, symmetric behavior within the intermediate sector is assumed, implying $P_{t}(i)=$ $P_{t}, y_{t}(i)=y_{t}, l_{t}(i)=l_{t}, k_{t}(i)=k_{t}$, and $D_{t}(i)=D_{t}$ for all $i \in[0,1]$. Second, the market clearing conditions for both the money market $M_{t}=M_{t-1}+T_{t}$ and the bond market $B_{t}=B_{t-1}=0$ must hold for all $t=0,1,2 \ldots$

Since the model is nonlinear, no exact analytical closed-form solution exists in general. An approximation is obtained by computing the steady state, loglinearizing the system around the steady state, and then applying the method of Blanchard and Kahn (1980) to solve linear difference models under rational expectations (see appendices C and D). The solution takes on the form of a state space representation with a state equation

$$
s_{t+1}=\Gamma_{0}(\mu) s_{t}+\Gamma_{1}(\mu) \varepsilon_{t+1}
$$

and an observation equation

$$
f_{t}=\Gamma_{2}(\mu) s_{t},
$$

where the vector s_{t} contains the model's state variables including the current capital stock, lagged real balances and the five exogenous shocks. The vector ε_{t+1} consists of the mutually as well as serially uncorrelated innovations $\varepsilon_{a t+1}, \varepsilon_{e t+1}$, $\varepsilon_{x t+1}, \varepsilon_{z t+1}, \varepsilon_{v t+1}$ while the vector f_{t} comprises the model's flow variables including current values of consumption, investment, inflation and the nominal interest rate. The matrices $\Gamma_{0}(\mu), \Gamma_{1}(\mu)$, and $\Gamma_{2}(\mu)$ contain (functions of) the parameters μ of the model. These parameters are estimated using maximum likelihood. As outlined in Canova (2007, p. 123), "... the likelihood function of a state space model can be conveniently expressed in terms of one-step-ahead forecast errors, conditional on the initial observations, and of their recursive variance, both of
which can be obtained with the Kalman filter." ${ }^{5}$ Because likelihoods can have several peaks we use multiple starting values as well as different numerical search algorithms to circumvent stalling at a local peak. ${ }^{6}$

3.3 Data

To estimate the structural parameters of the model we use French, German, Italian, and Spanish quarterly (seasonally adjusted) data for consumption, investment, money balances, inflation, and the interest rate. ${ }^{7}$ While French, German, and Italian time series data run from 1980:Q1 to 2008:Q3, we decided to follow Burrriel et al. (2010) and drop the data before 1987:Q1 for Spain because the changes in the structure of the Spanish economy were too substantial in the early 1980s. Consumption and investment are measured by real personal consumption and real gross fixed capital formation in per capita terms. Real money balances are constructed by dividing the monetary aggregate M3 (again per capita) by the consumer price index, which we use to construct a measure of inflation. The interest rate is measured by the three month money market rate. ${ }^{8}$

Following Fagan et al. (2005), we deal with the break in the series for Germany due to re-unification by re-scaling the West German series for consumption, investment, and money prior to re-unification by the ratio of the values for West Germany and Germany at re-unification. We detrend the time series for (logs of) consumption, investment and M3 applying the Hodrick-Prescott (H-P) filter, although we are aware of the potential problem of spuriousness, as pointed out in DeJong and Dave (2007) and Canova and Ferroni (2011). ${ }^{9}$

Despite its relative simplicity the model contains a large number of parameters that are difficult to estimate precisely on only five time series. Hence, a number of parameters had to be fixed prior to estimation. The value of χ is set to 1.5

[^11]which implies that the representative household's labor supply in the steady state amounts to one-third of its time. In addition, the depreciation rate δ is set to 0.025 , corresponding to an annual depreciation rate of about 10 percent and θ is fixed at 6 , implying a steady state markup of prices over marginal cost of 20 percent. Lastly, we set the elasticities of output with respect to capital of each country equal to their respective average capital income share, calculated from OECD data. The steady state money growth rate of each country is set equal to the average rate of inflation for the whole sample under consideration.

3.4 Estimating the Set of Stable Parameters: The ESS Procedure

In this section we outline the ESS procedure developed by Inoue and Rossi (2011), which allows to identify the subset of parameters of a model that are stable over time. They propose the following recursive procedure. First, test the joint null hypothesis that all parameters are stable, using a consistent test for structural breaks. Following Inoue and Rossi (2011), we employ Andrews' (1993) Quandt Likelihood Ratio (QLR) stability test. If the null hypothesis is not rejected, then all the parameters belong to the set of stable parameters. If it is, the p-values of the individual test statistics are calculated to test whether each of the parameters is stable. Then the parameter with the lowest p-value is eliminated from the set of stable parameters, since this is the one that is most likely to be unstable. Second, it is tested whether the remaining parameters are jointly stable. If they are, then the set of stable parameters includes those parameters; otherwise, eliminate the parameter with the second lowest p-value from the set, and continue this procedure until the joint test on the remaining parameters does not reject stability.

Two specific features of the ESS procedure have to be emphasized:
(i) The individual tests do not rely on the assumption that the other parameters are constant over time. "If the parameters that are assumed to be constant are in reality time-varying, [a "one at a time" approach] may incorrectly attribute the time variation to the wrong source" (Inoue and Rossi, 2011, p. 1186). Therefore, the individual tests allow all the other parameters to be time-varying.
(ii) The ESS approach overcomes the problem of size distortions, which arises "... in existing tests for structural breaks when used repeatedly to test structural changes in more than one subset of parameters" (Inoue and Rossi, 2011, p. 1203). ${ }^{10}$

3.5 Results

3.5.1 Full Sample Estimates

Here we first report the estimates for the whole sample before moving to the identification of parameter instabilities in section 3.5.2.

For each country table 3.1 presents the full sample maximum likelihood estimates of the parameters as well as the respective standard errors. The latter are computed using a parametric bootstrapping technique as in Cho and Moreno (2006) or Ireland (2007). According to Ireland (2007), this procedure simulates the estimated model for each country to generate 1000 samples of artificial data for real personal consumption, real gross fixed capital formation, real money balances, inflation, and the short term interest rate, each containing the same number of observations as the original samples of the four EMU countries, and then reestimates the model 1000 times using these artificial data sets. For a detailed description of the parametric bootstrapping analysis we refer to Efron and Tibshirani (1993). The absolute value of the maximized log likelihood function is indicated by $|L|$.

To compare parameter estimates of the full samples across countries, we employ the Andrews and Fair (1988) Wald test. The Wald statistic can be written as

$$
W=\frac{\left(a_{i}-a_{j}\right)^{2}}{\sigma_{a_{i}}^{2}+\sigma_{a_{j}}^{2}}
$$

where a and σ_{a} denote the point estimate of a parameter and the associated bootstrapped standard deviation, respectively, for country $i, j \in\{$ France, Germany, Italy, Spain $\}, i \neq j$. The test statistic W follows a $\chi^{2}(1)$ distribution under the null hypothesis of $a_{i}=a_{j}$. For a detailed discussion on the use of the bootstrap

[^12]| | France | | Germany | | Italy | | Spain | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Estimate | Std. Error |
| β | 0.9905 | 0.0112 | 0.9921 | 0.0008 | 0.9998 | 0.0410 | 0.9932 | 0.0277 |
| γ | 0.0152 | 0.0091 | 0.0738 | 0.0079 | 0.0067 | 0.0157 | 0.0366 | 0.0334 |
| ϕ_{P} | 10.2132 | 2.7778 | 13.9927 | 0.3103 | 46.7997 | 14.2531 | 27.0936 | 6.9245 |
| ϕ_{K} | 26.5408 | 4.1028 | 30.2681 | 0.4301 | 35.4014 | 6.2435 | 20.5672 | 3.4103 |
| ω_{τ} | 0.2009 | 0.0411 | 0.4362 | 0.0078 | 0.5647 | 0.1378 | 0.3163 | 0.0832 |
| ω_{π} | 0.9391 | 0.1491 | 1.6001 | 0.0020 | 1.0750 | 0.4163 | 0.8161 | 0.0901 |
| ω_{y} | -0.1011 | 0.0842 | -0.0024 | 0.0039 | -0.1673 | 0.1378 | -0.0711 | 0.0495 |
| e | 4.1884 | 0.0202 | 2.9638 | 0.0001 | 3.7456 | 0.9409 | 4.3559 | 0.0056 |
| z | 4214.3794 | 0.0001 | 4184.4958 | 0.0001 | 3189.9297 | 0.0080 | 1866.9879 | 0.0001 |
| ρ_{a} | 0.9678 | 0.0357 | 0.9003 | 0.0025 | 0.8587 | 0.0782 | 0.9731 | 0.0221 |
| ρ_{e} | 0.8778 | 0.0552 | 0.8796 | 0.0023 | 0.9877 | 0.0350 | 0.9360 | 0.0373 |
| ρ_{x} | 0.9615 | 0.0381 | 0.9061 | 0.0008 | 0.9873 | 0.0386 | 0.9294 | 0.1063 |
| ρ_{z} | 0.9125 | 0.0318 | 0.9162 | 0.0019 | 0.9871 | 0.0626 | 0.9210 | 0.0518 |
| ρ_{v} | 0.4826 | 0.0096 | 0.2397 | 0.0108 | 0.1425 | 0.3356 | 0.3818 | 0.0121 |
| σ_{a} | 0.0124 | 0.0012 | 0.0149 | 0.0010 | 0.0258 | 0.0178 | 0.0189 | 0.0020 |
| σ_{e} | 0.0096 | 0.0007 | 0.0145 | 0.0012 | 0.0135 | 0.0030 | 0.0102 | 0.0003 |
| σ_{x} | 0.0236 | 0.0201 | 0.0816 | 0.0065 | 0.2162 | 0.1450 | 0.0182 | 0.0094 |
| σ_{z} | 0.0090 | 0.0012 | 0.0141 | 0.0010 | 0.0334 | 0.0052 | 0.0140 | 0.0014 |
| σ_{v} | 0.0041 | 0.0007 | 0.0070 | 0.0005 | 0.0105 | 0.0028 | 0.0069 | 0.0008 |
| $\|L\|$ | 2195.2950 | | 2038.4201 | | 1891.2450 | | 1553.1251 | |

Table 3.1: Maximum Likelihood Estimates: Full Samples.
in hypothesis testing we refer to Cameron and Trivedi (2005). ${ }^{11}$
Turning to our results, we first note that the estimates for the discount factor β are below unity, but exceed 0.99 for all of the four economies.

The money demand equation derived from the household's optimization problem implies an interest elasticity for real money holdings of $-\gamma$. We find small values of this elasticity with the correct sign for all regions, although the estimates for Italy and Spain turn out to be statistically insignificant. These results are in line with a large empirical literature detecting small interest rate elasticities of (broad) money demand (see Browne et al., 2005).

Next, we turn to the estimates for the rigidity parameters. For all countries, both the adjustment cost parameters for capital ϕ_{K} defined in section 3.2.2 and prices ϕ_{P} defined in section 3.2.3 are significant. The latter is significantly higher in Italy and Spain compared to France and Germany at the 5% and 10% level, respectively. Our findings are confirmed by the results of analysis on consumer price changes conducted by Dhyne et al. (2006), identifying Italy to have the lowest incidence of price changes, whereas France shows the highest frequency of price changes among the four regions.

[^13]Turning to the monetary policy reaction function, our estimates of ω_{π} and ω_{τ} are non-zero for all four countries, allowing at least for two possible interpretations of monetary policy (see section 3.2.4). Compared to France and Spain ω_{π} is significantly higher in Germany (at the 1% level). This result might reflect the well-documented higher pre-occupation with inflation in this country. The point estimate of ω_{π} for Italy is also well below the estimate for Germany, although insignificantly so. Concerning the positive estimates of ω_{τ} our results are consistent with the findings of Andrés et al. (2006) for the euro area. It is important to note that for each of the four countries the estimates of ω_{τ} and ω_{π} sum up to a value greater than unity. Hence, the monetary policy rule is consistent with a unique rational expectations equilibrium (see Clarida et al., 2000). For all countries the estimates of ω_{y} are negative. However, they are insignificant, which makes it difficult to interpret this result as a hint for the presence of an endogenous money channel.

The estimates of e and z are not interesting from an economic policy point of view; they simply allow the steady state values of real balances and output in the model to match the average values of these variables in the data (see Ireland, 1997).

The estimates of $\rho_{a}, \rho_{e}, \rho_{x}, \rho_{z}$, and ρ_{v} indicate a high persistence of the first four shocks, whereas the monetary policy shock is less persistent and even statistically insignificant for Italy. In the case of France, Germany, and Italy, the estimated standard deviations of the innovations are dominated by the ones of the investment shock, although the estimate of σ_{x} turns out to be insignificant for Italy. This result is consistent with the findings of Justiniano et al. (2010) for the US. Hence, the marginal efficiency of investment shock is identified as the most important driver of business cycle fluctuations. For Spain the preference shock is the most volatile followed by the marginal efficiency of investment shock.

3.5.2 Testing for Parameter Instability

For each country tables G. 1 - G. 4 report the parameter estimates and standard deviations in both sub-samples, while tables G. 5 - G. 8 show the p-values of the QLR test on individual parameters as well as the p-values at each step of the ESS procedure. The set of stable parameters at the 10% significance level is denoted by \mathcal{S}. To structure the following discussion, it is useful to divide the parameters
into three groups:
(i) private sector parameters: $\beta, \gamma, \phi_{P}, \phi_{K}$;
(ii) monetary policy parameters: $\omega_{\tau}, \omega_{\pi}, \omega_{y}$;
(iii) shock parameters: $e, z, \rho_{a}, \rho_{e}, \rho_{x}, \rho_{z}, \rho_{v}, \sigma_{a}, \sigma_{e}, \sigma_{x}, \sigma_{z}$, and σ_{v}.

In the case of France, the QLR stability test indicates a significant break in 1994:Q3. Concerning the private sector parameters, table G. 5 reports instabilities of γ and ϕ_{P}. The estimates of γ are lower in both sub-samples than in the full sample, the estimate for the 1980:Q1 to 1994:Q2 period is insignificant, however. Table G. 1 shows a sharp decline of the price rigidity parameter ϕ_{P}. Further, we find significant changes in the monetary policy parameters ω_{y} and ω_{π}, both increasing in absolute values. Concerning the shock parameters, the ESS procedure identifies only the technology shock to be stable with respect to both persistence and volatility. The direction of change in the persistence of the remaining shocks is ambiguous, while we find an overall decline in the volatilities $\sigma_{a}, \sigma_{e}, \sigma_{x}$, and σ_{v}.

For Germany we locate a break in 1994:Q2. ${ }^{12}$ As reported in table G.6, the set of stable parameters \mathcal{S} contains $\left(\sigma_{x}, \sigma_{e}, \omega_{\tau}, \omega_{\pi}, \rho_{e}, \rho_{a}, \rho_{z}, \omega_{y}, \rho_{x}\right)$. Most interestingly, we find monetary policy to be constant over time. This result suggests no discernible difference between the monetary policy conducted in the 1980:Q2 to 1994:Q1 period by the German Bundesbank and the 1994:Q2 to 2008:Q3 period, although the latter is affected by the inception of EMU and the monetary policy strategy of the ECB. Further, we find instabilities in all of the private sector parameters, as well as the persistence of the monetary policy shock and the volatilities of the preference shock a_{t}, the technology shock z_{t} and the monetary policy shock v_{t}. Concerning the direction of change, only the volatility of the monetary policy shock increases, while the volatilities of the other shocks decline or stay constant over time.

We detect a significant break in 1994:Q4 for Italy. With respect to the private sector parameters, table G. 7 shows instabilities of γ, ϕ_{P}, and ϕ_{K}. According to

[^14]table G. 3 the interest elasticity of money demand turns out to increase over time, while we find a significant decline in capital and price adjustment costs after the break. Concerning the monetary policy parameters, ω_{y} appears to be stable over time, whereas ω_{τ} and ω_{π} both change significantly. More specifically, table G. 3 presents a sharp decline of ω_{τ} and a substantial increase of ω_{π} in the 1994:Q4 to 2008:Q3 period. With exception of ρ_{x}, we find the persistence parameters to be unstable. While ρ_{a} and ρ_{v} increase, ρ_{e} and ρ_{z} turn out to decrease after the break. Regarding the volatilities of the five shocks, the ESS procedure identifies σ_{a} and σ_{e} to be stable, whereas σ_{v}, σ_{x} and σ_{z} decrease over time.

Turning to Spain, we find a significant break in 1998:Q1. Moreover, we detect instabilities in the private sector parameters $\left(\gamma, \phi_{P}, \phi_{K}\right)$, the monetary policy parameters $\left(\omega_{\tau}, \omega_{\pi}\right)$ and the shock parameters $\left(e, z, \rho_{z}, \rho_{v}, \sigma_{a}, \sigma_{e}, \sigma_{x}, \sigma_{z}\right.$, and $\left.\sigma_{v}\right)$. While ω_{τ} decreases, ω_{π} is significantly higher after the break (see table G.4). Furthermore, we observe a sharp decline in capital and price adjustment costs. Regarding the persistence of the technology shock and the money policy shock, table G. 4 shows a decrease in both, while the latter declines sharply after the break. With the exception of the money demand shock, we also find a decrease in the volatilities of the shocks a_{t}, x_{t}, z_{t}, and v_{t}.

3.6 Conclusions

Despite some skepticism voiced in the literature DSGE models became a cornerstone of modern macroeconometrics leading to a high acceptance both in academia and central banking (see Tovar, 2009). Being firmly rooted in microeconomic foundations, this class of models is able to identify structural characteristics of economies that are not easily recovered from a necessarily parsimonious set of macroeconomic time series. Apart from their frequent use as a tool for the description and evaluation of monetary policy, DSGE models enable cross-country comparisons of such characteristics without having to resort to micro-data (see Smets and Wouters, 2005).

In this chapter, we apply a New Keynesian model to French, German, Italian, and Spanish data and formally test for parameter stability over time. Parameter instabilities are detected by the ESS procedure developed by Inoue and Rossi (2011). This procedure allows to identify the parameters of the model that have
changed at an unknown break date. In the cases of France, Germany, and Italy our results point to structural breaks in the mid-1990s after the beginning of the second stage of EMU, while the estimates for Spain show a significant break just before the start of the third stage of EMU in 1998. An interesting result is that France, Italy, and Spain show significant changes in monetary policy behavior after the break dates, while monetary policy in Germany is found to be stable over time. Furthermore, France, Italy, and Spain exhibit a significant decline in capital and price adjustment costs after the break. Moreover, we find at least four out of the five shocks to be either constant or declining after the break date for all economies under consideration.

On a methodological level, we demonstrate that the use of DSGE models is able to sheds some light on the process of economic integration in Europe by allowing to look at the stability of structural and policy parameters both across countries and across time. This process yields numerous explanations for changes of allegedly "deep" parameters questioning the full compliance with the well-known Lucas (1976) critique. However, as set out in Inoue and Rossi (2011, p. 1195), "... the definition of structural parameters (in the sense of the Lucas critique) is that these parameters are policy invariant, not necessarily time invariant." Therefore, future research faces an important challenge in developing techniques able to identify the specific factors responsible for parameter instabilities, allowing to assess the applicability of the respective DSGE setting for policy analysis and forecasting.

Appendices

Appendix C

Equilibrium Conditions

The appendix contains a detailed description of the estimated DSGE model. The exposition is based on the technical notes of Ireland (2003). ${ }^{1}$

C. 1 The Economic Environment

- Households:

The representative household chooses $\left\{c_{t}, l_{t}, M_{t}, B_{t}, k_{t+1}, i_{t}\right\}_{t=0}^{\infty}$ to maximize utility

$$
E \sum_{t=0}^{\infty} \beta^{t}\left\{a_{t}[\gamma /(\gamma-1)] \ln \left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(M_{t} / P_{t}\right)^{(\gamma-1) / \gamma}\right]+\chi \ln \left(1-l_{t}\right)\right\},
$$

subject to the budget constraint

$$
\frac{M_{t-1}+T_{t}+B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}} \geq c_{t}+i_{t}+\frac{\phi_{k}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{B_{t} / r_{t}+M_{t}}{P_{t}}
$$

and the law of motion for capital

$$
\begin{equation*}
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t} . \tag{3.1}
\end{equation*}
$$

[^15]Further, following Buiter and Sibert (2007), we prevent the household from excessive debts by imposing the no-Ponzi-game condition:

$$
\lim _{t \rightarrow \infty} B_{t} \prod_{s=0}^{t} \frac{1}{r_{s}} \geq 0
$$

Accordingly the Lagrangian can be written as follows:

$$
\begin{aligned}
\Lambda= & E \sum_{t=0}^{\infty}\left(\beta^{t}\left\{a_{t}[\gamma /(\gamma-1)] \ln \left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(\frac{M_{t}}{P_{t}}\right)^{(\gamma-1) / \gamma}\right]+\chi \ln \left(1-l_{t}\right)\right\}\right. \\
& -\beta^{t} \lambda_{t}\left\{c_{t}+\left[\frac{k_{t+1}-(1-\delta) k_{t}}{x_{t}}\right]+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{B_{t} / r_{t}+M_{t}}{P_{t}}\right. \\
& \left.\left.-\left(\frac{M_{t-1}+T_{t}+B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}}\right)\right\}\right) .
\end{aligned}
$$

The first-order conditions are obtained by setting the partial derivatives of Λ with respect to $c_{t}, l_{t}, M_{t}, B_{t}, k_{t+1}$, and λ_{t} equal to zero, yielding

$$
\begin{gather*}
\Lambda_{c_{t}}=a_{t}-\lambda_{t} c_{t}^{1 / \gamma}\left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(\frac{M_{t}}{P_{t}}\right)^{(\gamma-1) / \gamma}\right]=0 \tag{3.7}\\
\Lambda_{l t}=\chi-\lambda_{t}\left(\frac{W_{t}}{P_{t}}\right)\left(1-l_{t}\right)=0 \tag{3.8}\\
\Lambda_{M_{t}}=\left(\frac{M_{t}}{P_{t}}\right)^{1 / \gamma}\left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(\frac{M_{t}}{P_{t}}\right)^{(\gamma-1) \gamma}\right]\left[\lambda_{t}-\beta E_{t}\left(\lambda_{t+1} \frac{P_{t}}{P_{t+1}}\right)\right] \\
-a_{t} e_{t}^{1 / \gamma}=0 \tag{3.9}\\
\Lambda_{B_{t}}=\lambda_{t}-\beta r_{t} E_{t}\left(\lambda_{t+1} \frac{P_{t}}{P_{t+1}}\right)=0 \tag{3.10}
\end{gather*}
$$

$$
\begin{align*}
\Lambda_{k_{t+1}}= & \lambda_{t}\left[\frac{1}{x_{t}}+\phi_{K}\left(\frac{k_{t+1}}{k_{t}}-1\right)\right] \\
& -\left\{\beta E_{t}\left[\lambda_{t+1}\left(\frac{Q_{t+1}}{P_{t+1}}+\frac{1-\delta}{x_{t+1}}\right)\right]\right. \\
& -\left(\frac{\beta \phi_{K}}{2}\right) E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)^{2}\right] \tag{3.11}\\
& \left.+\beta \phi_{K} E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)\left(\frac{k_{t+2}}{k_{t+1}}\right)\right]\right\}=0
\end{align*}
$$

and

$$
\begin{align*}
\Lambda_{\lambda_{t}}= & c_{t}+\left[\frac{k_{t+1}-(1-\delta) k_{t}}{x_{t}}\right]+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{B_{t} / r_{t}+M_{t}}{P_{t}} \tag{3.12}\\
& -\left(\frac{M_{t-1}+T_{t}+B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}}\right)=0
\end{align*}
$$

Note that we can rewrite (3.9) by using (3.7) and (3.10) to obtain

$$
c_{t} e_{t}-\left(\frac{M_{t}}{P_{t}}\right)\left(1-\frac{1}{r_{t}}\right)^{\gamma}=0
$$

Finally, we impose the standard transversality conditions to guarantee that money, bonds and capital do not grow too quickly:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} \frac{M_{t}}{P_{t}}=0 \\
& \lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} \frac{B_{t}}{P_{t}}=0 \\
& \lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} k_{t+1}=0
\end{aligned}
$$

- Finished goods-producing firms:

The representative finished goods-producing firm seeks to maximize its profits

$$
P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

subject to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

Therefore, the firm's optimization problem can be written as

$$
\max _{y_{t}(i)} \Pi_{t}=P_{t}\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

which leads to the following first-order condition characterizing the demand for intermediate goods:

$$
\frac{\partial \Pi_{t}}{\partial y_{t}(i)}=y_{t}(i)-\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}=0
$$

By plugging this expression into the constant elasticity of substitution aggregator of intermediate goods we obtain the price aggregator

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)} .
$$

- Intermediate goods-producing firms:

Each intermediate goods-producing firm seeks to maximize its present discounted value of profits

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[D_{t}(i) / P_{t}\right]
$$

by choosing $\left\{l_{t}(i), k_{t}(i), y_{t}(i), P_{t}(i)\right\}_{t=0}^{\infty}$ subject to the Cobb-Douglas technology constraint

$$
y_{t}(i) \leq k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}
$$

and the above demand for intermediate goods

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

We can use the latter expression to rewrite the real value of dividends

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

as

$$
\begin{equation*}
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t} \tag{3.13}
\end{equation*}
$$

Therefore, the Lagrangian for the firms' intertemporal optimization problem can be written as:

$$
\begin{aligned}
\Lambda= & E \sum_{t=0}^{\infty}\left(\beta^{t} \lambda_{t}\left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}\right\}\right. \\
& \left.-\beta^{t} \xi_{t}\left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}-k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}\right\}\right)
\end{aligned}
$$

Setting the partial derivatives of Λ with respect to $l_{t}(i), k_{t}(i), P_{t}(i)$, and ξ_{t} equal to zero leads to the first order conditions:

$$
\begin{gather*}
\Lambda_{l_{t}(i)}=\frac{\lambda_{t} W_{t} l_{t}(i)}{P_{t}}-(1-\alpha) \xi_{t} k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0 \tag{3.14}\\
\Lambda_{k_{t}(i)}=\frac{\lambda_{t} Q_{t} k_{t}(i)}{P_{t}}-\alpha \xi_{t} k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0 \tag{3.15}\\
\Lambda_{P_{t}(i)}=\phi_{P} \lambda_{t}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]\left[\frac{P_{t}}{\pi P_{t-1}(i)}\right] \\
-(1-\theta) \lambda_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta}-\theta \xi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta-1} \tag{3.16}\\
-\beta \phi_{P} E_{t}\left\{\lambda_{t+1}\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)}-1\right]\left[\frac{P_{t+1}(i) P_{t}}{\pi P_{t}(i)^{2}}\right]\left(\frac{y_{t+1}}{y_{t}}\right)\right\}=0,
\end{gather*}
$$

and

$$
\begin{equation*}
\Lambda_{\xi_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}-k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0 \tag{3.17}
\end{equation*}
$$

- The monetary authority sets the gross nominal interest rate according to the generalized Taylor rule:

$$
\begin{equation*}
\ln \left(\frac{r_{t}}{r}\right)=\omega_{\tau} \ln \left(\frac{\tau_{t}}{\tau}\right)+\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)+\ln \left(v_{t}\right) \tag{3.18}
\end{equation*}
$$

C. 2 The Nonlinear System

C.2.1 Symmetric Equilibrium

The dynamic system is described by the nonlinear difference equations (3.1) (3.8), (3.9'), (3.10) - (3.18). To close the model, we complete the following two steps. First, we consider a symmetric equilibrium where all intermediate goodsproducing firms make identical decisions. This assumption implies $P_{t}(i)=P_{t}$, $y_{t}(i)=y_{t}, l_{t}(i)=l_{t}, k_{t}(i)=k_{t}$, and $D_{t}(i)=D_{t}$ for $t=0,1,2 \ldots$ and all $i \in[0,1]$. Second, the market clearing condition for both the bond market, $B_{t}=B_{t-1}=0$, and the money market, $M_{t}=M_{t-1}+T_{t}$, must hold for all $t=0,1,2 \ldots$ By substituting these conditions into (3.1) - (3.18) and defining the average product of labor as $n_{t}=y_{t} / l_{t}$ and the money growth rate as $\tau_{t}=\frac{M_{t}}{M_{t-1}}$ we get:

$$
\begin{gather*}
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t}, \tag{3.1}\\
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{3.2}\\
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{3.3}\\
\ln \left(e_{t}\right)=\left(1-\rho_{e}\right) \ln (e)+\rho_{e} \ln \left(e_{t-1}\right)+\varepsilon_{e t}, \tag{3.4}\\
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{3.5}\\
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{3.6}\\
a_{t}=\lambda_{t} c_{t}^{1 / \gamma}\left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma}\left(\frac{M_{t}}{P_{t}}\right)^{(\gamma-1) / \gamma}\right], \tag{3.7}\\
\chi=\lambda_{t}\left(\frac{W_{t}}{P_{t}}\right)\left(1-l_{t}\right), \tag{3.8}\\
c_{t} e_{t}=\left(\frac{M_{t}}{P_{t}}\right)\left(1-\frac{1}{r_{t}}\right)^{\gamma}, \\
\lambda_{t}=\beta r_{t} E_{t}\left(\lambda_{t+1} \frac{P_{t}}{P_{t+1}}\right)^{\prime}, \tag{3.10}
\end{gather*}
$$

$$
\begin{align*}
& \lambda_{t}\left[\frac{1}{x_{t}}+\phi_{K}\left(\frac{k_{t+1}}{k_{t}}-1\right)\right]= \beta E_{t}\left[\lambda_{t+1}\left(\frac{Q_{t+1}}{P_{t+1}}+\frac{1-\delta}{x_{t+1}}\right)\right] \\
&-\left(\frac{\beta \phi_{K}}{2}\right) E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)^{2}\right] \tag{3.11}\\
&+\beta \phi_{K} E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)\left(\frac{k_{t+2}}{k_{t+1}}\right)\right] \\
& c_{t}+\left[\frac{\left.k_{t+1}-(1-\delta) k_{t}\right]+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}=\left(\frac{W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}}\right),}{} \begin{array}{rl}
\frac{D_{t}}{P_{t}}=y_{t}-\frac{W_{t} l_{t}+Q_{t} k_{t}}{P_{t}}-\frac{\phi_{P}}{2}\left(\frac{P_{t}}{\pi P_{t-1}}-1\right)^{2} y_{t}, \\
\lambda_{t}\left(\frac{W_{t}}{P_{t}}\right) l_{t} & =(1-\alpha) \xi_{t} k_{t}^{\alpha}\left[z_{t} l_{t}\right]^{1-\alpha}, \\
\lambda_{t}\left(\frac{Q_{t}}{P_{t}}\right) k_{t}=\alpha \xi_{t} k_{t}^{\alpha}\left[z_{t} l_{t}\right]^{1-\alpha}, \\
\phi_{P} \lambda_{t}\left[\frac{P_{t}}{\pi P_{t-1}}-1\right]\left[\frac{P_{t}}{\pi P_{t-1}}\right]= & (1-\theta) \lambda_{t}+\theta \xi_{t} \\
& +\beta \phi_{P} E_{t}\left[\lambda_{t+1}\left(\frac{P_{t+1}}{\pi P_{t}}-1\right)\left(\frac{P_{t+1}}{\pi P_{t}}\right)\left(\frac{y_{t+1}}{y_{t}}\right)\right] \\
\ln \left(\frac{r_{t}}{r}\right)=\omega_{\tau} \ln \left(\frac{\tau_{t}}{\tau}\right)+\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)+\ln \left(v_{t}\right), \\
& n_{t}=\frac{y_{t}}{l_{t}}
\end{array}\right. \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{t}=\frac{M_{t}}{M_{t-1}} \tag{3.20}
\end{equation*}
$$

Note that we can rewrite (3.12) by using (3.13) to obtain:

$$
y_{t}=c_{t}+i_{t}+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{\phi_{P}}{2}\left[\frac{P_{t}}{\pi P_{t-1}}-1\right]^{2} y_{t}
$$

Further, (3.17) can be used to rewrite (3.14) and (3.15) as

$$
\lambda_{t}\left(\frac{W_{t}}{P_{t}}\right) l_{t}=(1-\alpha) \xi_{t} y_{t}
$$

and

$$
\lambda_{t}\left(\frac{Q_{t}}{P_{t}}\right) k_{t}=\alpha \xi_{t} y_{t}
$$

C.2.2 Change of Variables

We can rewrite the nonlinear system by defining $\pi_{t}=\frac{P_{t}}{P_{t-1}}, m_{t}=\frac{M_{t}}{P_{t}}, w_{t}=\frac{W_{t}}{P_{t}}, q_{t}=$ $\frac{Q_{t}}{P_{t}}$, and $d_{t}=\frac{D_{t}}{P_{t}}$. With these re-defined variables, (3.1)-(3.8), (3.9'), (3.10), (3.11), $\left(3.12^{\prime}\right),(3.13),\left(3.14^{\prime}\right),\left(3.15^{\prime}\right),(3.16)-(3.20)$ become:

$$
\begin{gather*}
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t}, \tag{3.1}\\
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{3.2}\\
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{3.3}\\
\ln \left(e_{t}\right)=\left(1-\rho_{e}\right) \ln (e)+\rho_{e} \ln \left(e_{t-1}\right)+\varepsilon_{e t}, \tag{3.4}\\
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{3.5}\\
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{3.6}\\
a_{t}=\lambda_{t} c_{t}^{1 / \gamma}\left[c_{t}^{(\gamma-1) / \gamma}+e_{t}^{1 / \gamma} m_{t}^{(\gamma-1) / \gamma}\right], \tag{3.7}\\
\chi=\lambda_{t} w_{t}\left(1-l_{t}\right), \tag{3.8}\\
c_{t} e_{t}=m_{t}\left(1-\frac{1}{r_{t}}\right)^{\gamma}, \\
\lambda_{t}=\beta r_{t} E_{t}\left(\frac{\lambda_{t+1}}{\pi_{t+1}}\right), \tag{3.10}\\
\lambda_{t}\left[\frac{1}{x_{t}}+\phi_{K}\left(\frac{k_{t+1}}{k_{t}}-1\right)\right]=\beta E_{t}\left[\lambda_{t+1}\left(q_{t+1}+\frac{1-\delta}{x_{t+1}}\right)\right] \\
-\left(\frac{\beta \phi_{K}}{2}\right) E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)^{2}\right] \tag{3.11}\\
+\beta \phi_{K} E_{t}\left[\lambda_{t+1}\left(\frac{k_{t+2}}{k_{t+1}}-1\right)\left(\frac{k_{t+2}}{k_{t+1}}\right)\right], \\
d_{t}=y_{t}-w_{t} l_{t}-q_{t} k_{t}-\left(\frac{\phi_{P}}{2}\right)\left(\frac{\pi_{t}}{\pi}-1\right)^{2} y_{t}, \\
y_{t}=c_{t}+i_{t}+\frac{\phi_{K}}{2}\left(\frac{k_{t+1}}{k_{t}}-1\right)^{2} k_{t}+\frac{\phi_{P}}{2}\left(\frac{\pi_{t}}{\pi}-1\right)^{2} y_{t}, \tag{3.13}\\
\end{gather*}
$$

$$
\begin{gather*}
\lambda_{t} w_{t} l_{t}=(1-\alpha) \xi_{t} y_{t} \\
\lambda_{t} q_{t} k_{t}=\alpha \xi_{t} y_{t}, \\
\phi_{P} \lambda_{t}\left(\frac{\pi_{t}}{\pi}-1\right)\left(\frac{\pi_{t}}{\pi}\right)=(1-\theta) \lambda_{t}+\theta \xi_{t} \tag{3.16}\\
+\beta \phi_{P} E_{t}\left[\lambda_{t+1}\left(\frac{\pi_{t+1}}{\pi}-1\right)\left(\frac{\pi_{t+1}}{\pi}\right)\left(\frac{y_{t+1}}{y_{t}}\right)\right], \\
y_{t}=k_{t}^{\alpha}\left[z_{t} l_{t}\right]^{1-\alpha}, \tag{3.17}\\
\ln \left(\frac{r_{t}}{r}\right)=\omega_{\tau} \ln \left(\frac{\tau_{t}}{\tau}\right)+\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)+\ln \left(v_{t}\right), \tag{3.18}\\
n_{t}=\frac{y_{t}}{l_{t}} \tag{3.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\tau_{t}=\left(\frac{m_{t}}{m_{t-1}}\right) \pi_{t} \tag{3.20}
\end{equation*}
$$

C. 3 Steady States

In absence of the five shocks, i.e., $\varepsilon_{x t}=\varepsilon_{a t}=\varepsilon_{e t}=\varepsilon_{z t}=\varepsilon_{v t}=0$ for all $t=$ $0,1,2, \ldots$, the economy converges to a steady state, where each of the 20 variables is constant. We use (3.2), (3.3), (3.4), (3.5), and (3.6) to solve for

$$
\begin{aligned}
x & =1, \\
a & =1, \\
e & =e, \\
z & =z, \\
v & =1 .
\end{aligned}
$$

Assuming that the steady state money growth rate τ is determined by policy, (3.10) and (3.20) can be used to solve for

$$
\pi=\tau
$$

and

$$
r=\frac{\pi}{\beta} .
$$

Next, (3.11) and (3.16) can be used to solve for

$$
q=\frac{1}{\beta}-1+\delta
$$

and

$$
\xi=\left[\frac{(\theta-1)}{\theta}\right] \lambda .
$$

Equations (3.7) and (3.9') can be used to solve for

$$
c=\left[1+e\left(\frac{r}{r-1}\right)^{\gamma-1}\right]^{-1}\left(\frac{1}{\lambda}\right)
$$

and

$$
m=e\left(\frac{r}{r-1}\right)^{\gamma} c .
$$

Use (3.1), (3.12'), (3.15'), and (3.16) to solve for

$$
y=\left[1-\delta\left(\frac{\alpha}{q}\right)\left(\frac{\theta-1}{\theta}\right)\right]^{-1} .
$$

Use (3.15') and (3.16) to solve for

$$
k=\left(\frac{\alpha}{q}\right)\left(\frac{\theta-1}{\theta}\right) y .
$$

Equations (3.1), (3.13), (3.14'),(3.17), and (3.19) can be used to solve for

$$
\begin{gathered}
i=\delta k, \\
l=\frac{1}{z}\left(\frac{y}{k^{\alpha}}\right)^{1 /(1-\alpha)}, \\
w=(1-\alpha)\left(\frac{\theta-1}{\theta}\right)\left(\frac{y}{l}\right), \\
d=y-w l-q k,
\end{gathered}
$$

and

$$
n=\frac{y}{l} .
$$

Finally, (3.8), (3.14'), and (3.16) can be used to solve for

$$
\lambda=\frac{\chi+(1-\alpha)\left[1+e\left(\frac{r}{r-1}\right)^{\gamma-1}\right]^{-1}\left[\left(\frac{\theta}{\theta-1}\right)-\delta\left(\frac{\alpha}{q}\right)\right]^{-1}}{(1-\alpha) z\left(\frac{\theta-1}{\theta}\right)^{1 /(1-\alpha)}\left(\frac{\alpha}{q}\right)^{\alpha /(1-\alpha)}}
$$

C. 4 The Linearized System

To linearize the nonlinear system (3.1) - (3.20), we perform a log-linear approximation of the model at steady state values. ${ }^{2}$ Let $\widehat{v a r}_{t} \equiv \log \left(\frac{v a r_{t}}{v a r}\right)$ denote the log-deviation of some variable vart from its steady state var, where $\log \left(\frac{\text { vart }_{t}}{\text { var }}\right) \approx \frac{\text { vart-var }_{t}}{\text { var }}$. A first-order Taylor approximation of equation (3.1) - (3.8), $\left(3.9^{\prime}\right),(3.10),(3.11),\left(3.12^{\prime}\right),(3.13),\left(3.14^{\prime}\right),\left(3.15^{\prime}\right),(3.16)-(3.20)$ at the steady state gives:

$$
\begin{gather*}
k \hat{k}_{t+1}=(1-\delta) k \hat{k}_{t}+i \hat{x}_{t}+i \hat{i}_{t}, \tag{3.1}\\
\hat{x}_{t}=\rho_{x} \hat{x}_{t-1}+\varepsilon_{x t}, \tag{3.2}\\
\hat{a}_{t}=\rho_{a} \hat{a}_{t-1}+\varepsilon_{a t}, \tag{3.3}\\
\hat{e}_{t}=\rho_{e} \hat{e}_{t-1}+\varepsilon_{e t}, \tag{3.4}\\
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\varepsilon_{z t}, \tag{3.5}\\
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\varepsilon_{v t}, \tag{3.6}\\
\gamma r \hat{a}_{t}=\gamma r \hat{\lambda}_{t}+r[1+(\gamma-1) \lambda c] \hat{c}_{t}+(r-1) \lambda m \hat{e}_{t}+(\gamma-1)(r-1) m \hat{m}_{t}, \tag{3.7}\\
\lambda w l \hat{l}_{t}=\chi \hat{\lambda}_{t}+\chi \hat{w}_{t}, \tag{3.8}\\
(r-1) \hat{c}_{t}+(r-1) \hat{e}_{t}=(r-1) \hat{m}_{t}+\gamma \hat{r}_{t}, \\
\hat{\lambda}_{t}=\hat{r}_{t}+E_{t} \hat{\lambda}_{t+1}-E_{t} \pi_{t+1}, \tag{3.10}
\end{gather*}
$$

$\hat{\lambda}_{t}-\hat{x}_{t}-\phi_{k} \hat{k}_{t}=E_{t} \hat{\lambda}_{t+1}+\beta q E_{t} \hat{q}_{t+1}-\beta(1-\delta) E_{t} \hat{x}_{t+1}+\beta \phi_{K} E_{t} \hat{k}_{t+2}-(1+\beta) \phi_{K} \hat{k}_{t+1}$,

[^16]\[

$$
\begin{gather*}
\hat{\lambda}_{t}+\hat{w}_{t}+\hat{l}_{t}=\hat{\xi}_{t}+\hat{y}_{t}, \\
\hat{\lambda}_{t}+\hat{q}_{t}+\hat{k}_{t}=\hat{\xi}_{t}+\hat{y}_{t}, \\
\phi_{P} \hat{\pi}_{t}=(1-\theta) \hat{\lambda}_{t}+(\theta-1) \hat{\xi}_{t}+\beta \phi_{P} E_{t} \hat{\pi}_{t+1}, \tag{3.16}\\
\hat{y}_{t}=\alpha \hat{k}_{t}+(1-\alpha) \hat{z}_{t}+(1-\alpha) \hat{l}_{t}, \tag{3.17}\\
\hat{r}_{t}=\omega_{\tau} \hat{\tau}_{t}+\omega_{\pi} \hat{\pi}_{t}+\omega_{y} \hat{y}_{t}+\hat{v}_{t}, \tag{3.18}\\
\hat{n}_{t}=\hat{y}_{t}-\hat{l}_{t}, \tag{3.19}
\end{gather*}
$$
\]

and

$$
\begin{equation*}
\hat{\tau}_{t}=\hat{m}_{t}-\hat{m}_{t-1}+\hat{\pi}_{t} \tag{3.20}
\end{equation*}
$$

To facilitate the model's solution we follow Ireland (2003) and use (3.20) to rewrite (3.7) and (3.9') as

$$
\begin{align*}
\gamma r \hat{a}_{t}= & \gamma r \hat{\lambda}_{t}+r[1+(\gamma-1) \lambda c] \hat{c}_{t}+(r-1) \lambda m \hat{e}_{t} \\
& +(\gamma-1)(r-1) \lambda m \hat{\tau}_{t}+(\gamma-1)(r-1) \lambda m \hat{m}_{t-1}-(\gamma-1)(r-1) \lambda m \hat{\pi}_{t}
\end{align*}
$$

and

$$
(r-1) \hat{e}_{t}+(r-1) \hat{c}_{t}=(r-1) \hat{\tau}_{t}+(r-1) \hat{m}_{t-1}-(r-1) \hat{\pi}_{t}+\gamma \hat{r}_{t} .
$$

Further, we make use of (3.1) and (3.2) to rewrite (3.11) as

$$
\begin{align*}
& \hat{\lambda}_{t}-\left\{1+\beta\left[\delta \phi_{K}-(1-\delta)\right] \rho_{x}\right\} \hat{x}_{t}-\phi_{K} \hat{k}_{t} \\
= & E_{t} \hat{\lambda}_{t+1}+\beta q E_{t} \hat{q}_{t+1}+\phi_{K}[\beta(1-\delta)-(1+\beta)] \hat{k}_{t+1} \\
& +\beta \delta \phi_{K} E_{t} \hat{i}_{t+1} .
\end{align*}
$$

Appendix D

Solving the Model

To solve the linear difference model under rational expectations described by equations (3.1)-(3.6), (3.7'), (3.8), (3.9'), (3.10), (3.11'), (3.12'), (3.13), (3.14'), (3.15'), (3.16)(3.20), we apply the method proposed by Blanchard and Kahn (1980). The subsequent sections follow the expositions in Blanchard and Kahn (1980), Farmer (1999), the technical notes of Ireland (2003), and DeJong and Dave (2007).

D. 1 Blanchard and Kahn's Method

A solution to the linear difference model under rational expectations can be obtained by making use of the approach developed by Blanchard and Kahn (1980). Therefore, a vector s_{t}^{0} is defined which can be separated into

$$
s_{t}^{0}=\left[s_{1 t}^{0} s_{2 t}^{0}\right]^{\prime},
$$

letting $s_{1 t}^{0}$ denote a $n \times 1$ vector of predetermined and $s_{2 t}^{0}$ a $m \times 1$ vector of non-predetermined variables, which implies that:

$$
E_{t} s_{t+1}=\left[\begin{array}{ll}
s_{1 t+1}^{0} & E_{t} s_{2 t+1}^{0}
\end{array}\right]^{\prime} .
$$

Next, to apply Blanchard and Kahn's (1980) procedure, the model is written as

$$
\begin{equation*}
E_{t} s_{t+1}^{0}=A s_{t}^{0}+B \zeta_{t} \tag{3.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta_{t}=P \zeta_{t-1}+\varepsilon_{t} \tag{3.22}
\end{equation*}
$$

where A and B are $(n+m) \times(n+m)$ and $(n+m) \times k$ coefficient matrices, P is $k \times k$ matrix containing the persistence parameters of the shocks, ζ_{t} is a $k \times 1$ vector consisting of the model's exogenous forcing variables while the serially and mutually uncorrelated innovations are included in the $k \times 1$ vector ε_{t}. The solution method relies on decoupling (3.21) into unstable and stable portions, using a Jordan decomposition, and then solving the two components in turn. If the number of unstable eigenvalues (with absolute value greater than one) of matrix A is equal to the number of non-predetermined variables, the system is said to be saddle-path stable and a unique solution exists (see Blanchard and Kahn, 1980). ${ }^{1}$

D. 2 System Reduction

The solution of the system comprising (3.21) and (3.22) can be simplified by applying a system reduction first. According to King and Watson (2002, p. 2) the idea of a system reduction is to isolate a "... reduced-dimension, nonsingular dynamic system in a subset of variables of the full vector of endogenous variables. Once the rational expectations solution to this smaller system is obtained, it is easy to also calculate the solution for the remaining variables as these are governed by dynamic identities."

Let

$$
\begin{gathered}
f_{t}^{0}=\left[\begin{array}{llllllllll}
\hat{y}_{t} & \hat{c}_{t} & \hat{i}_{t} & \hat{l}_{t} & \hat{n}_{t} & \hat{\tau}_{t} & \hat{w}_{t} & \hat{q}_{t} & \hat{d}_{t} & \hat{r}_{t}
\end{array}\right]^{\prime} \\
s_{t}^{0}=\left[\begin{array}{lllll}
\hat{k}_{t} & \hat{m}_{t-1} & \hat{\pi}_{t} & \hat{\lambda}_{t} & \hat{\xi}_{t}
\end{array}\right]^{\prime}
\end{gathered}
$$

and

$$
\zeta_{t}=\left[\begin{array}{lllll}
\hat{a}_{t} & \hat{e}_{t} & \hat{x}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}
$$

Then, the linearized equilibrium conditions (3.1), (3.10), (3.11'), (3.16), and (3.20) can be written in matrix form as

$$
\begin{equation*}
\Omega_{0} E_{t} s_{t+1}^{0}+\Omega_{1} E_{t} f_{t+1}^{0}=\Omega_{2} s_{t}^{0}+\Omega_{3} f_{t}^{0}+\Omega_{4} \zeta_{t} \tag{3.23}
\end{equation*}
$$

[^17]with
\[

$$
\begin{aligned}
& \Omega_{0}=\left[\begin{array}{ccccc}
k & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
\phi_{K}[\beta(1-\delta)-(1+\beta)] & 0 & 0 & 1 & 0 \\
0 & 0 & \beta \phi_{P} & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right], \\
& \Omega_{1}=\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \beta \delta \phi_{K} & 0 & 0 & 0 & 0 & \beta q & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \Omega_{2}=\left[\begin{array}{ccccc}
(1-\delta) k & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
-\phi_{K} & 0 & 0 & 1 & 0 \\
0 & 0 & \phi_{P} & \theta-1 & -(\theta-1) \\
0 & 1 & -1 & 0 & 0
\end{array}\right], \\
& \Omega_{3}=\left[\begin{array}{llllllllll}
0 & 0 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$
\]

and

$$
\Omega_{4}=\left[\begin{array}{ccccc}
0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1-\beta\left[\delta \phi_{K}-(1-\delta)\right] \rho_{x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Likewise, (3.7'), (3.8), (3.9"), (3.12'), (3.13), (3.14'), (3.15'), (3.17), (3.18), and (3.19) can be written as

$$
\begin{equation*}
\Omega_{5} f_{t}^{0}=\Omega_{6} s_{t}^{0}+\Omega_{7} \zeta_{t} \tag{3.24}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Omega_{5}=\left[\begin{array}{cccccccccc}
y & -c & -i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & r[1+(\gamma-1) \lambda c] & 0 & 0 & 0 & (\gamma-1)(r-1) \lambda m & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda w l & 0 & 0 & -\chi & 0 & 0 & 0 \\
0 & r-1 & 0 & 0 & 0 & -(r-1) & 0 & 0 & 0 & -\gamma \\
y & 0 & 0 & -w l & 0 & 0 & -w l & -q k & -d & 0 \\
1 & 0 & 0 & -(1-\alpha) & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\omega_{y} & 0 & 0 & 0 & 0 & \omega_{\tau} & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \Omega_{6}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -(\gamma-1)(r-1) \lambda m & (\gamma-1)(r-1) \lambda m & -\gamma r & 0 \\
0 & 0 & 0 & \chi & 0 \\
0 & r-1 & -(r-1) & 0 & 0 \\
q k & 0 & 0 & 0 & 0 \\
\alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
1 & 0 & 0 & 1 & -1 \\
0 & 0 & -\omega_{\pi} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

and

$$
\Omega_{7}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\gamma r & -(r-1) \lambda m & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -(r-1) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1-\alpha & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Finally, (3.2) - (3.6) can directly be written as

$$
\begin{equation*}
\zeta_{t}=P \zeta_{t-1}+\varepsilon_{t} \tag{3.22}
\end{equation*}
$$

with

$$
P=\left[\begin{array}{ccccc}
\rho_{a} & 0 & 0 & 0 & 0 \\
0 & \rho_{e} & 0 & 0 & 0 \\
0 & 0 & \rho_{x} & 0 & 0 \\
0 & 0 & 0 & \rho_{z} & 0 \\
0 & 0 & 0 & 0 & \rho_{v}
\end{array}\right] .
$$

To cast (3.23) and (3.24) in the form of (3.21), we start by iterating forward equation (3.22) j periods which implies:

$$
P^{j} \zeta_{t}=E_{t} \zeta_{t+j} .^{2}
$$

Rewriting (3.24) as

$$
f_{t}^{0}=\Omega_{5}^{-1} \Omega_{6} s_{t}^{0}+\Omega_{5}^{-1} \Omega_{7} \zeta_{t}
$$

and substituting this expression together with (3.22') into (3.23) yields

$$
\begin{aligned}
\Omega_{0} E_{t} s_{t+1}^{0}+\Omega_{1} E_{t}\left(\Omega_{5}^{-1} \Omega_{6} s_{t+1}^{0}+\Omega_{5}^{-1} \Omega_{7} \zeta_{t+1}\right)= & \Omega_{2} s_{t}^{0}+\Omega_{3}\left(\Omega_{5}^{-1} \Omega_{6} s_{t}^{0}+\Omega_{5}^{-1} \Omega_{7} \zeta_{t}\right)+\Omega_{4} \zeta_{t} \\
\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right) E_{t} s_{t+1}^{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{7} E_{t} \zeta_{t+1}= & \left(\Omega_{2}+\Omega_{3} \Omega_{5}^{-1} \Omega_{6}\right) s_{t}^{0}+\left(\Omega_{4}+\Omega_{3} \Omega_{5}^{-1} \Omega_{7}\right) \zeta_{t} \\
\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right) E_{t} s_{t+1}^{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{7} P \zeta_{t}= & \left(\Omega_{2}+\Omega_{3} \Omega_{5}^{-1} \Omega_{6}\right) s_{t}^{0}+\left(\Omega_{4}+\Omega_{3} \Omega_{5}^{-1} \Omega_{7}\right) \zeta_{t} \\
\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right) E_{t} s_{t+1}^{0}= & \left(\Omega_{2}+\Omega_{3} \Omega_{5}^{-1} \Omega_{6}\right) s_{t}^{0} \\
& +\left(\Omega_{4}+\Omega_{3} \Omega_{5}^{-1} \Omega_{7}-\Omega_{1} \Omega_{5}^{-1} \Omega_{7} P\right) \zeta_{t} .
\end{aligned}
$$

If $\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}$ is nonsingular, we can rewrite the expression above as

$$
\begin{aligned}
& E_{t} s_{t+1}^{0}=\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right)^{-1}\left(\Omega_{2}+\Omega_{3} \Omega_{5}^{-1} \Omega_{6}\right) s_{t}^{0} \\
&+\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right)^{-1}\left(\Omega_{4}+\Omega_{3} \Omega_{5}^{-1} \Omega_{7}-\Omega_{1} \Omega_{5}^{-1} \Omega_{7} P\right) \zeta_{t}
\end{aligned}
$$

which is in the same form as (3.21) with

$$
A=\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right)^{-1}\left(\Omega_{2}+\Omega_{3} \Omega_{5}^{-1} \Omega_{6}\right)
$$

and

$$
B=\left(\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}\right)^{-1}\left(\Omega_{4}+\Omega_{3} \Omega_{5}^{-1} \Omega_{7}-\Omega_{1} \Omega_{5}^{-1} \Omega_{7} P\right)
$$

so that

$$
\begin{equation*}
E_{t} s_{t+1}^{0}=A s_{t}^{0}+B \zeta_{t} \tag{3.21}
\end{equation*}
$$

or

$$
E_{t}\left[\begin{array}{c}
\hat{k}_{t+1} \\
\hat{m}_{t} \\
\hat{\pi}_{t+1} \\
\hat{\lambda}_{t+1} \\
\hat{\xi}_{t+1}
\end{array}\right]=A\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1} \\
\hat{\pi}_{t} \\
\hat{\lambda}_{t} \\
\hat{\xi}_{t}
\end{array}\right]+B\left[\begin{array}{c}
\hat{a}_{t} \\
\hat{e}_{t} \\
\hat{x}_{t} \\
\hat{z}_{t} \\
\hat{v}_{t}
\end{array}\right]
$$

[^18]It should be emphasized, that the transformation of the linearized model into (3.21) and (3.22) hinges critically on the invertibility of $\Omega_{0}+\Omega_{1} \Omega_{5}^{-1} \Omega_{6}$.

D. 3 Solution

Blanchard and Kahn's (1980) solution strategy relies on simplifying the model

$$
\begin{equation*}
E_{t} s_{t+1}^{0}=A s_{t}^{0}+B \zeta_{t} \tag{3.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta_{t}=P \zeta_{t-1}+\varepsilon_{t} \tag{3.22}
\end{equation*}
$$

by transforming it into canonical form. As outlined in DeJong and Dave (2007), the method begins with a Jordan decomposition of A such that

$$
A=M^{-1} N M
$$

where the diagonal elements of N, consisting of the eigenvalues of A, are ordered in increasing absolute value and the columns of M^{-1} are the eigenvectors of A. We proceed under the case of saddle-path stability and assume that $m=3$, i.e., the number of eigenvalues outside the unit circle equals the number nonpredetermined variables in s_{t}^{0} and therefore allow for a unique solution. Thus, N can be written as

$$
N=\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right]
$$

where the eigenvalues of the 2×2 matrix N_{1} are on or inside the unit circle and the eigenvalues of the 3×3 matrix N_{2} lie outside the unit circle. M and B are decomposed accordingly, so that

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
$$

where M_{11} is a $2 \times 2, M_{12}$ is a $2 \times 3, M_{21}$ is a $3 \times 2, M_{22}$ is a $3 \times 3, B_{1}$ is a 2×5, and B_{2} is a 3×5 matrix. Now (3.21) can be rewritten as

$$
E_{t} s_{t+1}^{0}=M^{-1} N M s_{t}^{0}+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] \zeta_{t} .
$$

Pre-multiplying (3.21') by M gives

$$
\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] E_{t} s_{t+1}^{0}=\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right]\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] s_{t}^{0}+\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] \zeta_{t}
$$

or in terms of matrix partitions

$$
\begin{equation*}
E_{t} s_{1 t+1}^{1}=N_{1} s_{1 t}^{1}+Q_{1} \zeta_{t} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{t} s_{2 t+1}^{1}=N_{2} s_{2 t}^{1}+Q_{2} \zeta_{t}, \tag{3.26}
\end{equation*}
$$

where

$$
\begin{gather*}
s_{1 t}^{1}=M_{11}\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1}
\end{array}\right]+M_{12}\left[\begin{array}{c}
\hat{\pi}_{t} \\
\hat{\lambda}_{t} \\
\hat{\xi}_{t}
\end{array}\right], \tag{3.27}\\
s_{2 t}^{1}=M_{21}\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1}
\end{array}\right]+M_{22}\left[\begin{array}{c}
\hat{\pi}_{t} \\
\hat{\lambda}_{t} \\
\hat{\xi}_{t}
\end{array}\right], \tag{3.28}\\
Q_{1}=M_{11} B_{1}+M_{12} B_{2}
\end{gather*}
$$

and

$$
Q_{2}=M_{21} B_{1}+M_{22} B_{2}
$$

Since the eigenvalues of N_{2} all lie outside the unit circle, (3.26) can be solved forward. Using the result of this forward iteration together with $\left(3.22^{\prime}\right)$ we obtain

$$
\begin{equation*}
s_{2 t}^{1}=-N_{2}^{-1} R \zeta_{t}, \tag{3.29}
\end{equation*}
$$

where the 3×5 matrix R is obtained by "reshaping" ${ }^{3}$

$$
\begin{aligned}
\operatorname{vec}(R) & =\operatorname{vec} \sum_{j=0}^{\infty} N_{2}^{-j} Q_{2} P^{j}=\sum_{j=0}^{\infty} \operatorname{vec}\left(N_{2}^{-j} Q_{2} P^{j}\right) \\
& =\sum_{j=0}^{\infty}\left[P^{j} \otimes\left(N_{2}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2}\right)=\sum_{j=0}^{\infty}\left(P \otimes N_{2}^{-1}\right)^{j} \operatorname{vec}\left(Q_{2}\right) \\
& =\left[I_{(15 \times 15)}-P \otimes N_{2}^{-1}\right]^{-1} \operatorname{vec}\left(Q_{2}\right)
\end{aligned}
$$

Substituting (3.29) into (3.28) gives

$$
\left[\begin{array}{c}
\hat{\pi}_{t} \tag{3.30}\\
\hat{\lambda}_{t} \\
\hat{\xi}_{t}
\end{array}\right]=S_{1}\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1}
\end{array}\right]+S_{2} \zeta_{t}
$$

where

$$
S_{1}=-M_{22}^{-1} M_{21}
$$

and

$$
S_{2}=-M_{22}^{-1} N_{2}^{-1} R
$$

We can next substitute (3.30) into (3.27) to solve for

$$
s_{1 t}^{1}=\left(M_{11}+M_{12} S_{1}\right)\left[\begin{array}{c}
\hat{k}_{t} \tag{3.31}\\
\hat{m}_{t-1}
\end{array}\right]+M_{12} S_{2} \zeta_{t} .
$$

Substituting (3.31) into (3.25) gives

$$
\left[\begin{array}{c}
\hat{k}_{t+1} \tag{3.32}\\
\hat{m}_{t}
\end{array}\right]=S_{3}\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1}
\end{array}\right]+S_{4} \zeta_{t},
$$

where

$$
S_{3}=\left(M_{11}+M_{12} S_{1}\right)^{-1} N_{1}\left(M_{11}+M_{12} S_{1}\right)
$$

[^19]and
$$
S_{4}=\left(M_{11}+M_{12} S_{1}\right)^{-1}\left(Q_{1}+N_{1} M_{12} S_{2}-M_{12} S_{2} P\right)
$$

Finally, by using (3.30), (3.24') can be written as

$$
\begin{aligned}
f_{t}^{0} & =\Omega_{5}^{-1} \Omega_{6} s_{t}^{0}+\Omega_{5}^{-1} \Omega_{7} \zeta_{t} \\
& =\Omega_{5}^{-1} \Omega_{6}\left[\begin{array}{c}
I_{(2 \times 2)} \\
S_{1}
\end{array}\right]\left[\begin{array}{c}
\hat{k}_{t} \\
\hat{m}_{t-1}
\end{array}\right]+\Omega_{5}^{-1} \Omega_{6}\left[\begin{array}{c}
0_{(2 \times 5)} \\
S_{2}
\end{array}\right] \zeta_{t}+\Omega_{5}^{-1} \Omega_{7} \zeta_{t}
\end{aligned}
$$

or simply

$$
f_{t}^{0}=S_{5}\left[\begin{array}{c}
\hat{k}_{t} \tag{3.33}\\
\hat{m}_{t-1}
\end{array}\right]+S_{6} \zeta_{t}
$$

where

$$
S_{5}=\Omega_{5}^{-1} \Omega_{6}\left[\begin{array}{c}
I_{(2 \times 2)} \\
S_{1}
\end{array}\right]
$$

and

$$
S_{6}=\Omega_{5}^{-1} \Omega_{6}\left[\begin{array}{c}
0_{(2 \times 5)} \\
S_{2}
\end{array}\right]+\Omega_{5}^{-1} \Omega_{7}
$$

Hence, the model's solution can be written compactly in state space form by combining (3.22), (3.30), (3.32), and (3.33) as

$$
\begin{equation*}
s_{t+1}=\Gamma_{0} s_{t}+\Gamma_{1} \varepsilon_{t+1} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{t}=\Gamma_{2} s_{t} \tag{3.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& s_{t}=\left[\begin{array}{lllllll}
\hat{k}_{t} & \hat{m}_{t-1} & \hat{a}_{t} & \hat{e}_{t} & \hat{x}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}, \\
& f_{t}=\left[\begin{array}{lllllllllllll}
\hat{y}_{t} & \hat{c}_{t} & \hat{i}_{t} & \hat{l}_{t} & \hat{n}_{t} & \hat{\tau}_{t} & \hat{w}_{t} & \hat{q}_{t} & \hat{d}_{t} & \hat{r}_{t} & \hat{\pi}_{t} & \hat{\lambda}_{t} & \hat{\xi}_{t}
\end{array}\right]^{\prime}, \\
& \varepsilon_{t}=\left[\begin{array}{lllll}
\varepsilon_{a t} & \varepsilon_{e t} & \varepsilon_{x t} & \varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime}, \\
& \Gamma_{0}=\left[\begin{array}{cc}
S_{3} & S_{4} \\
0_{(5 \times 2)} & P
\end{array}\right], \\
& \Gamma_{1}=\left[\begin{array}{c}
0_{(2 \times 5)} \\
I_{(5 \times 5)}
\end{array}\right],
\end{aligned}
$$

and

$$
\Gamma_{2}=\left[\begin{array}{ll}
S_{5} & S_{6} \\
S_{1} & S_{2}
\end{array}\right]
$$

Appendix E

Estimation

E. 1 Empirical State Space Model

Since the model is estimated using an observed sample X including consumption, investment, money, inflation, and interest rates, we can define a sequence of observations $\left\{X_{t}\right\}_{t=1}^{T}$ with a measured data vector

$$
X_{t}=\left[\begin{array}{c}
\hat{c}_{t} \\
\hat{i}_{t} \\
\hat{m}_{t} \\
\hat{\pi}_{t} \\
\hat{r}_{t}
\end{array}\right] .
$$

To distinguish the theoretical model from the empirical model, we rewrite (3.34) and (3.35) as

$$
\begin{equation*}
s_{t+1}=\Psi_{0} s_{t}+\Psi_{1} \varepsilon_{t+1} \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{t}=\Psi_{2} s_{t} \tag{3.37}
\end{equation*}
$$

where $\Gamma_{o}=\Psi_{0}, \Gamma_{1}=\Psi_{1}$ and Ψ_{2} is formed from the rows (\cdot) of Γ_{0} and Γ_{2} as

$$
\Psi_{2}=\left[\begin{array}{c}
\Gamma_{2}(2) \\
\Gamma_{2}(3) \\
\Gamma_{0}(2) \\
\Gamma_{2}(11) \\
\Gamma_{2}(10)
\end{array}\right] .
$$

Given the empirical state space model, the Kalman filter can be used to estimate the model parameters with maximum likelihood and to draw inferences about the unobserved components of the state vector s_{t} exploiting the information contained in the five observable series (see Ireland, 2004).

E. 2 Kalman Filter

As stated, for example, in Ruge-Murcia (2007) the maximum likelihood estimation of a DSGE model in state space form calls for the construction and evaluation of the likelihood function

$$
\mathcal{L}(\mu \mid X)=p(X \mid \mu)=\prod_{t=1}^{T} p\left(X_{t} \mid \mu\right)
$$

letting X denote the T observations of a vector of observable variables X_{t} given the model's parameters μ. According to Hamilton (1994a) the Kalman filter can be used to calculate the likelihood function for such a state space system. More precisely, as outlined in Canova (2007, p. 123), "... the likelihood function of a state space model can be conveniently expressed in terms of one-step-ahead forecast errors, conditional on the initial observations, and of their recursive variance, both of which can be obtained with the Kalman filter." While a general and detailed treatment of the Kalman filter can be found in Harvey (1993), Hamilton (1994a), and Hamilton (1994b), we only give a brief exemplary exposition of the Kalman filter by applying the recursive algorithm originally developed by Kalman (1960) and Kalman and Bucy (1961) to the empirical state space model formed by state equation (3.36) and observation equation (3.37):

$$
\begin{equation*}
s_{t+1}=\Psi_{0} s_{t}+\Psi_{1} \varepsilon_{t+1} \tag{3.36}
\end{equation*}
$$

$$
\begin{equation*}
X_{t}=\Psi_{2} s_{t} \tag{3.37}
\end{equation*}
$$

Note that s_{t} is a vector of possibly unknown state variables, X_{t} denotes a vector of observed variables, Ψ_{0}, Ψ_{1}, and Ψ_{2} depend on the structural parameters of the model and the vector ε_{t+1} comprises the serially uncorrelated innovations

$$
\varepsilon_{t+1}=\left[\begin{array}{lllll}
\varepsilon_{a t+1} & \varepsilon_{e t+1} & \varepsilon_{x t+1} & \varepsilon_{z t+1} & \varepsilon_{v t+1}
\end{array}\right]^{\prime}
$$

which are assumed to be normally distributed with zero mean and diagonal covariance matrix

$$
\Sigma_{\varepsilon}=E \varepsilon_{t+1} \varepsilon_{t+1}^{\prime}=\left[\begin{array}{ccccc}
\sigma_{a}^{2} & 0 & 0 & 0 & 0 \\
0 & \sigma_{e}^{2} & 0 & 0 & 0 \\
0 & 0 & \sigma_{x}^{2} & 0 & 0 \\
0 & 0 & 0 & \sigma_{z}^{2} & 0 \\
0 & 0 & 0 & 0 & \sigma_{v}^{2}
\end{array}\right]
$$

E.2.1 Kalman Filter Recursion

In order to outline the Kalman filter recursion, we follow the expositions of Hamilton (1994a) and Lütkepohl (2005). Let

$$
\begin{array}{ll}
s_{t \mid j} & =E\left(s_{t} \mid X_{1}, \ldots, X_{j}\right) \\
\Sigma_{s}(t \mid j) & =E\left(s_{t}-s_{t \mid j}\right)\left(s_{t}-s_{t \mid j}\right)^{\prime} \\
X_{t \mid j} & =E\left(X_{t} \mid X_{1}, \ldots, X_{j}\right) \\
\Sigma_{X}(t \mid j) & =E\left(X_{t}-X_{t \mid j}\right)\left(X_{t}-X_{t \mid j}\right)^{\prime} .
\end{array}
$$

Further, the initial state s_{0} and the conditional distribution of s given X are assumed to be normally distributed with $s_{0} \sim \mathcal{N}\left(\mu_{s 0}, \Sigma_{0}\right)$ and $(s \mid X) \sim \mathcal{N}\left(\mu_{s}, \Sigma\right)$, respectively. Given the previous conditions, the normality assumption implies

$$
\begin{array}{lll}
\left(s_{t} \mid X_{1}, \ldots, X_{t-1}\right) & \sim \mathcal{N}\left(s_{t \mid t-1}, \Sigma_{s}(t \mid t-1)\right) & \text { for } t=2, \ldots, T, \\
\left(s_{t} \mid X_{1}, \ldots, X_{t}\right) & \sim \mathcal{N}\left(s_{t \mid t}, \Sigma_{s}(t \mid t)\right) & \text { for } t=1, \ldots, T, \\
\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) & \sim \mathcal{N}\left(X_{t \mid t-1}, \Sigma_{X}(t \mid t-1)\right) & \text { for } t=2, \ldots, T .
\end{array}
$$

According to in Lütkepohl (2005) the conditional means and covariance matrices can be obtained by the subsequent Kalman filter recursions:

- Initialization:

$$
s_{0 \mid 0}=\mu_{s 0}, \Sigma_{s}(0 \mid 0)=\Sigma_{0} .
$$

- Prediction step $(1 \leq t \leq T)$:

$$
\begin{array}{ll}
s_{t \mid t-1} & =\Psi_{0} s_{t-1 \mid t-1} \\
\Sigma_{s}(t \mid t-1) & =\Psi_{0} \Sigma_{s}(t-1 \mid t-1) \Psi_{0}^{\prime}+\Psi_{1} \Sigma_{\varepsilon} \Psi_{1}^{\prime} \\
X_{t \mid t-1} & =\Psi_{2} s_{t \mid t-1} \\
\Sigma_{X}(t \mid t-1) & =\Psi_{2} \Sigma_{s}(t \mid t-1) \Psi_{2}^{\prime} \\
u_{t} & =X_{t}-X_{t \mid t-1}
\end{array}
$$

- Correction step $(1 \leq t \leq T)$:

$$
\begin{array}{ll}
s_{t \mid t} & =s_{t \mid t-1}+\Upsilon_{t} u_{t} \\
\Sigma_{s}(t \mid t) & =\Sigma_{s}(t \mid t-1)-\Upsilon_{t} \Sigma_{X}(t \mid t-1) \Upsilon_{t}^{\prime}
\end{array}
$$

where the Kalman gain Υ_{t} is defined as

$$
\Upsilon_{t}=s_{t \mid t-1} \Psi_{2}^{\prime} \Sigma_{X}(t \mid t-1)^{-1}
$$

As outlined in Lütkepohl (2005) the recursions proceed by performing the prediction step for $t=1$. Then, the correction step is performed for $t=1$. Next, the prediction and correction steps are repeated for $t=2$ and so on.

E.2.2 Log Likelihood Function

The observation vector estimation errors $\left\{u_{t}\right\}_{t=1}^{T}$ can be used to form the Gaussian log likelihood function for $\left\{X_{t}\right\}_{t=1}^{T}$:

$$
\begin{aligned}
\ln \mathcal{L}(\mu \mid X) & =\sum_{t=1}^{T} \ln p\left(X_{t} \mid \mu\right) \\
& =-\frac{5 T}{2} \ln (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \ln \left|\Sigma_{X}(t \mid t-1)\right|-\frac{1}{2} \sum_{t=1}^{T} u_{t}^{\prime} \Sigma_{X}(t \mid t-1)^{-1} u_{t}
\end{aligned}
$$

Appendix F

Data sources

All data have been retrieved from Thomson Reuters Datastream. The original sources are detailed below.

- France:

Real personal consumption: EUROSTAT
Gross fixed capital formation: EUROSTAT
Money balances (M3): Banque de France
Consumer price index: OECD
Interest rate (Pibor): OECD
Population: National Institute for Statistics and Economic Studies (INSEE)

- Germany:

Real personal consumption: Federal Statistical Office
Gross fixed capital formation: Federal Statistics Office
Money balances (M3): Deutsche Bundesbank
Consumer price index: OECD
Interest rate (Fibor): OECD
Population: Federal Statistics Office

- Italy:

Real personal consumption: Oxford Economics
Gross fixed capital formation: Oxford Economics
Money balances (M3): Oxford Economics

Consumer price index: Oxford Economics
Interest rate (three-month money market rate): Oxford Economics
Population: Oxford Economics

- Spain:

Real personal consumption: EUROSTAT
Gross fixed capital formation: EUROSTAT
Money balances (M3): Banco de España
Consumer price index: OECD
Interest rate (three-month money market rate): OECD
Population: EUROSTAT

Appendix G

Tables

	1980:Q1		1994:Q2	1994:Q3 - 2008:Q3	
Parameter	Estimate	Std. Error	Estimate	Std. Error	
β	0.9906	0.0013	0.9913	0.0024	
γ	0.0000	0.0007	0.0043	0.0014	
ϕ_{P}	10.3880	0.5796	3.2691	0.3101	
ϕ_{K}	30.0492	0.5400	28.8285	2.1778	
ω_{τ}	0.2980	0.0081	0.2792	0.0188	
ω_{π}	1.1974	0.0095	1.4680	0.0807	
ω_{y}	-0.0075	0.0115	-0.1417	0.0605	
e	4.4410	0.0006	4.3587	0.0115	
z	4185.6183	0.0001	4181.1612	0.0001	
ρ_{a}	0.8963	0.0065	0.8507	0.0137	
ρ_{e}	0.9000	0.0071	0.8132	0.0128	
ρ_{x}	0.9011	0.0078	0.9817	0.0067	
ρ_{z}	0.8995	0.0188	0.9222	0.0061	
ρ_{v}	0.4999	0.0076	0.1976	0.0249	
σ_{a}	0.0202	0.0004	0.0082	0.0002	
σ_{e}	0.0096	0.0001	0.0089	0.0001	
σ_{x}	0.0554	0.0069	0.0324	0.0021	
σ_{z}	0.0080	0.0003	0.0082	0.0002	
σ_{v}	0.0057	0.0001	0.0044	0.0003	

Table G.1: Maximum Likelihood Estimates: France.

	1980:Q1		1994:Q1	1994:Q2 $-2008: \mathrm{Q} 3$	
Parameter	Estimate	Std. Error	Estimate	Std. Error	
β	0.9917	0.0001	0.9926	0.0001	
γ	0.0757	0.0001	0.0731	0.0001	
ϕ_{P}	13.9735	0.0128	14.0138	0.0143	
ϕ_{K}	29.9619	0.1973	30.5119	0.1615	
ω_{τ}	0.4368	0.0007	0.4353	0.0008	
ω_{π}	1.5998	0.0007	1.6005	0.0005	
ω_{y}	-0.0025	0.0008	-0.0023	0.0030	
e	2.9640	0.0001	2.9633	0.0001	
z	4195.9727	0.0001	4158.7916	0.0001	
ρ_{a}	0.9000	0.0007	0.9001	0.0006	
ρ_{e}	0.8795	0.0007	0.8800	0.0006	
ρ_{x}	0.9061	0.0006	0.9061	0.0005	
ρ_{z}	0.9162	0.0006	0.9162	0.0004	
ρ_{v}	0.2400	0.0002	0.2388	0.0004	
σ_{a}	0.0186	0.0011	0.0105	0.0009	
σ_{e}	0.0150	0.0009	0.0134	0.0006	
σ_{x}	0.0850	0.0036	0.0777	0.0031	
σ_{z}	0.0170	0.0008	0.0113	0.0007	
σ_{v}	0.0063	0.0001	0.0075	0.0001	

Table G.2: Maximum Likelihood Estimates: Germany.

	1980:Q1		1994:Q3	1994:Q4 $-2008: \mathrm{Q} 3$	
Parameter	Estimate	Std. Error	Estimate	Std. Error	
β	0.9992	0.0100	0.9975	0.0036	
γ	0.0054	0.0057	0.0350	0.0057	
ϕ_{P}	64.6013	4.7897	31.7841	1.8189	
ϕ_{K}	33.1134	0.8700	14.5576	1.4126	
ω_{τ}	0.6722	0.0287	0.0538	0.0096	
ω_{π}	0.8736	0.0287	1.6598	0.2561	
ω_{y}	-0.1286	0.0302	-0.1627	0.0832	
e	3.9728	0.0855	3.2327	0.5237	
z	3343.6115	0.0006	3336.9033	0.0013	
ρ_{a}	0.8379	0.0108	0.9935	0.0142	
ρ_{e}	0.9929	0.0093	0.9093	0.0119	
ρ_{x}	0.9952	0.0085	0.9891	0.0077	
ρ_{z}	0.9953	0.0195	0.8519	0.0062	
ρ_{v}	0.0899	0.0662	0.5551	0.0022	
σ_{a}	0.0291	0.0076	0.0119	0.0005	
σ_{e}	0.0153	0.0021	0.0110	0.0001	
σ_{x}	0.2501	0.0364	0.0192	0.0017	
σ_{z}	0.0533	0.0017	0.0101	0.0003	
σ_{v}	0.0128	0.0015	0.0034	0.0006	

Table G.3: Maximum Likelihood Estimates: Italy.

	1987:Q1			1997:Q4
Parameter	Estimate	Std. Error	Estimate	2008:Q3
β	0.9929	0.0067	0.9957	0.0020
γ	0.0189	0.0069	0.0518	0.0075
ϕ_{P}	66.9756	3.5472	2.7164	0.3119
ϕ_{K}	26.8170	0.7038	7.4710	0.4382
ω_{τ}	0.4707	0.0313	0.2367	0.0171
ω_{π}	0.6868	0.0339	1.2448	0.0480
ω_{y}	-0.0646	0.0098	-0.1006	0.0140
e	4.6627	0.0034	4.1651	0.0035
z	1932.4221	0.0001	1771.8852	0.0001
ρ_{a}	0.9542	0.0123	0.9411	0.0147
ρ_{e}	0.9440	0.0098	0.9648	0.0071
ρ_{x}	0.9625	0.0142	0.9903	0.0122
ρ_{z}	0.9477	0.0122	0.7833	0.0173
ρ_{v}	0.4565	0.0027	0.0333	0.0025
σ_{a}	0.0235	0.0006	0.0079	0.0002
σ_{e}	0.0084	0.0001	0.0107	0.0002
σ_{x}	0.0389	0.0086	0.0083	0.0004
σ_{z}	0.0227	0.0008	0.0073	0.0002
σ_{v}	0.0071	0.0003	0.0054	0.0002

Table G.4: Maximum Likelihood Estimates: Spain.

Model Parameters	Individual p-value	ESS p-value
z	0	0
σ_{a}	0	0
ρ_{v}	0	0
ϕ_{P}	0	0
ρ_{x}	0	0
e	0	0
ρ_{e}	0	0
σ_{v}	0	0
σ_{e}	0	0
ω_{π}	0.0503	0
σ_{x}	0.0723	0
ρ_{a}	0.1106	0
γ	0.2181	0
ω_{y}	0.5459	0
ρ_{z}	1	1
ω_{τ}	1	1
σ_{z}	1	1
ϕ_{K}	1	1
β	1	1

Set of stable parameters (90\% probability level):
$\mathcal{S}=\left\{\rho_{z}, \omega_{\tau}, \sigma_{z}, \phi_{K}, \beta\right\}$

Table G.5: The table shows the p-values of Andrews'(1993) QLR test on individual parameters for France. In addition the set of stable parameters is reported as well as the p-values at each step of Inoue and Rossi's (2011) ESS procedure.

Model Parameters	Individual p-value	ESS p-value
z	0	0
γ	0	0
e	0	0
β	0	0
σ_{v}	0	0
σ_{a}	0	0
σ_{z}	0	0
ρ_{v}	0.1515	0
ϕ_{K}	0.5622	0
ϕ_{P}	0.6054	0
σ_{x}	1	0.5929
σ_{e}	1	0.4773
ω_{τ}	1	1
ω_{π}	1	1
ρ_{e}	1	1
ρ_{a}	1	1
ρ_{z}	1	1
ω_{y}	1	1
ρ_{x}	1	1

Set of stable parameters (90\% probability level):
$\underline{\underline{\mathcal{S}}=\left\{\sigma_{x}, \sigma_{e}, \omega_{\tau}, \omega_{\pi}, \rho_{e}, \rho_{a}, \rho_{z}, \omega_{y}, \rho_{x}\right\}}$

Table G.6: The table shows the p-values of Andrews'(1993) QLR test on individual parameters for Germany. In addition the set of stable parameters is reported as well as the p-values at each step of Inoue and Rossi's (2011) ESS procedure.

Model Parameters	Individual p-value	ESS p-value
z	0	0
σ_{z}	0	0
ω_{τ}	0	0
ϕ_{K}	0	0
ρ_{a}	0	0
ρ_{v}	0	0
ρ_{z}	0	0
ϕ_{P}	0	0
σ_{x}	0	0
σ_{v}	0	0
ρ_{e}	0	0
γ	0.0180	0
ω_{π}	0.1498	0
σ_{a}	0.4892	0.6207
σ_{e}	0.6370	0.7320
e	1	1
ρ_{x}	1	1
ω_{y}	1	1
β	1	1

Set of stable parameters (90\% probability level):
$\mathcal{S}=\left\{\sigma_{a}, \sigma_{e}, e, \rho_{x}, \omega_{y}, \beta\right\}$

Table G.7: The table shows the p-values of Andrews'(1993) QLR test on individual parameters for Italy. In addition the set of stable parameters is reported as well as the p-values at each step of Inoue and Rossi's (2011) ESS procedure.

Model Parameters	Individual p-value	ESS p-value
z	0	0
ρ_{v}	0	0
e	0	0
σ_{a}	0	0
ϕ_{K}	0	0
σ_{z}	0	0
ϕ_{P}	0	0
σ_{e}	0	0
ω_{π}	0	0
ρ_{z}	0	0
ω_{τ}	0	0
σ_{v}	0	0
σ_{x}	0.0249	0
γ	0.0066	0
ω_{y}	0.5959	0.6288
ρ_{e}	0.8332	1
ρ_{x}	1	1
ρ_{a}	1	1
β	1	1

Set of stable parameters (90% probability level):
$\underline{\mathcal{S}=\left\{\omega_{y}, \rho_{e}, \rho_{x}, \rho_{a}, \beta\right\}}$

Table G.8: The table shows the p-values of Andrews'(1993) QLR test on individual parameters for Spain. In addition the set of stable parameters is reported as well as the p-values at each step of Inoue and Rossi's (2011) ESS procedure.

Chapter 4

Comparing Quadratic Costs of Capital Accumulation: An Empirical Assessment

4.1 Introduction

Over the last three decades DSGE models have become the paradigm for monetary policy and business cycle analysis, both in academic and policy making circles (see Canova and Ferroni, 2011). The origin of this class of models dates back to the work of Kydland and Prescott (1982) and Long and Plosser (1983), who develop a small scale frictionless neoclassical framework in which utility-maximizing rational agents operate subject to budget constraints, technological restrictions, and Hicksneutral technology shocks. As outlined in Shea (1998), this so-called real business cycle (RBC) model was seminal in several ways. First, the Schumpeterian idea that random changes in productivity (technology shocks) can generate business cycle fluctuations was reintroduced. Second, these business cycle fluctuations were seen as optimal responses of rational agents to erratic changes in technology, leaving no need for government policy interventions. Third, business cycles were explained in a dynamic stochastic general equilibrium framework in which optimal behavior of agents can explicitly be derived from microeconomic first principles by specifying preferences, technologies, budget and resource constraints, and the institutional environment.

Since the pioneering contribution of Kydland and Prescott (1982) and Long
and Plosser (1983), the DSGE research program broadened considerably, generating a wide set of extensions of the basic RBC model, including New Keynesian features like monopolistic competition and nominal rigidities (see Woodford, 2003). Also the initial view of technology shocks as the ultimate source of business cycle fluctuations has soon been challenged by a number of studies, leading to the incorporation of a variety of economic disturbances into mainstream DSGE models (see Danthine and Donaldson, 1993 and Galí and Rabanal, 2004 for an overview).

A prominent candidate shock is the marginal efficiency of investment shock. Even though already Keynes (1936, p. 313) assumed that the phenomenon of the business cycle is "... mainly due to the way in which the marginal efficiency of capital fluctuates . . .", Greenwood et al. (1988) were the first to provide a theoretical and quantitative analysis of the marginal efficiency of investment shock in a single-shock dynamic stochastic general equilibrium framework of the RBC type. Employing a model with variable capacity utilization, Greenwood et al. (1988) conclude that their calibrated RBC model is able to match the observed cyclical fluctuations in US data as well as DSGE models purely driven by technology shocks.

Based on these investigations, DeJong et al. (2000a) choose a multiple-shock approach to analyze the relative importance of a total factor productivity shock and a marginal efficiency of investment shock in explaining US business cycle fluctuations. Using Bayesian estimation techniques, DeJong et al. (2000a, p. 328) find both shocks to play an important role in driving aggregate fluctuations with the total factor productivity shock having "... a greater initial impact on output and investment ...", whereas the marginal efficiency of investment shock shows "... a more lasting impact."

Also, Justiniano et al. (2010) adopt this empirical approach and estimate a multiple-shock DSGE model with New Keynesian features by employing Bayesian inference methods. The estimated medium-scale model contains a host of nominal and real frictions, like imperfect competition, sticky prices, habit formation in consumption, variable capacity utilization, and investment adjustment costs as well as several shocks including a marginal efficiency of investment shock. As a result, Justiniano et al. (2010, p. 144) find, ". . that investment shocks - shocks to the marginal efficiency of investment - are the main drivers of movements in hours, output and investment over the [US] cycle ...", whereas the incorporation of frictions such as convex investment adjustment costs plays ". . . a crucial role in
turning investment shocks into a viable driving force of fluctuations" (Justiniano et al., 2010, p. 133).

The inclusion of adjustment costs into New Keynesian models to constrain physical capital accumulation has become standard practice in the recent DSGE literature, since, as outlined in Ireland (2003) and Smets and Wouters (2007), these frictions improve the ability of sticky-price models with endogenous investment to match the key features of the data substantially. A familiar way to model these real rigidities is to assume that capital owners are subject to quadratic adjustment costs (see, for example, Kim, 1998; Ireland, 2003; Zanetti, 2007 and Cogley and Yagihashi, 2010). As described in Groth and Kahn (2010), these convex adjustment costs specifications can be classified into either costs to adjusting the level of capital (capital adjustment costs) or costs to changing the level of investment (investment adjustment costs). In particular, the latter specification becomes widely used in the context of monetary policy analysis, since, as argued by Christiano et al. (2005), Smets and Wouters (2007), and Christiano et al. (2010, p. 49), adjustment costs as a function of the change in investment are able to "... reproduce VAR-based evidence that investment has a humped-shaped response to a monetary policy shock." ${ }^{1}$

The purpose of this chapter is to investigate empirically how these different specifications of quadratic adjustment costs affect the fit and the dynamics of a DSGE model with real and nominal frictions featuring several exogenous stochastic disturbances. Specifically, a preference shock, a monetary policy shock, and a shock to the marginal efficiency of investment compete with a standard RBC technology shock in driving aggregate fluctuations. We consider three different specifications of quadratic costs of capital accumulation. Thus, each variant of adjustment costs defines a distinct version of the underlying New Keynesian model. Following DeJong et al. (2000a) and Justiniano et al. (2010), we use a Bayesian approach to estimate and compare the different model versions for both the euro area and the US.

The main results of the analysis are as follows. First, we find in part marked differences between the estimated structural parameters across the three model specifications. In particular, the estimates of persistence and volatility of the marginal efficiency of investment shock vary with the choice of investment or cap-

[^20]ital adjustment costs. The use of Monte Carlo filtering techniques allows us to take a closer look at the causes of these differences. Second, the implementation of either investment or capital adjustment costs affects the dynamics of the respective model specifications substantially. Our results confirm the findings of Christiano et al. (2005) and Smets and Wouters (2007, p. 589), who point out that "... modeling capital adjustment costs as a function of the change in investment rather than its level introduces additional dynamics in the [model's] investment equation, which is useful in capturing the hump-shaped response of investment to various shocks." Third, despite the ability of investment adjustment to generate hump-shaped investment responses, the posterior odds comparison, which evaluates the relative empirical fit of a DSGE model, provides decisive evidence in favor of the model specifications featuring capital adjustment costs. To further evaluate where the model specifications fail to match the data, we compare the model versions' implied characteristics to the actual data using standard moment criteria. Consistent with the results from the posterior odds analysis, we obtain a better fit of the model versions with capital adjustment costs than with the specification including investment adjustment costs. Our findings appear to be qualitatively robust across both data sets. We conclude that using estimated DSGE models with quadratic costs of capital accumulation for policy analysis should be done with caution, since the results could be influenced by the choice of either investment or capital adjustment costs both having in common the lack of an explicit microfoundation.

The remainder of the chapter is organized as follows: Section 4.2 presents the theoretical setup of the three model specifications. Section 4.3 describes the solution of the model versions and the estimation technique applied. Section 4.4 introduces the concepts of Monte Carlo filtering and regionalized sensitivity analysis. Section 4.5 explains the data and the priors used. Section 4.6 exposes the use of Bayesian posterior odds analysis for model evaluation. Section 4.7 discusses the results obtained from the Bayesian estimation, the MCF analysis, the posterior odds comparison, the moment analysis, the impulse response analysis, and the variance decomposition. Section 4.8 concludes. Technical details concerning the theoretical setup, the model solution, and the construction of the likelihood appear in the appendices.

4.2 The Model

4.2.1 Overview

The model economy is a simple cashless closed-economy New Keynesian model featuring a representative household, a representative finished goods-producing firm, a continuum of intermediate goods-producing firms indexed by $i \in[0,1]$, and a monetary authority. We consider three versions of the model that differ only with respect to the particular specification of capital accumulation costs. The representative household consumes, saves, and supplies labor and capital services to the intermediate goods-producing firms. Moreover, the household is assumed to face convex adjustment costs of capital accumulation. We consider three different quadratic specifications frequently used in the recent DSGE literature. The final output is produced by a representative finished goods-producing firm acting in a perfectly competitive market. The finished goods-producing firm bundles the continuum of intermediate goods manufactured by monopolistic competitors and sells it to the household who divides the final good between consumption an investment. The intermediate goods-producing firms are owned by the household and each of them produces a distinct, perishable intermediate good, also indexed by $i \in[0,1]$ during each period $t=0,1,2, \ldots$. The assumption of monopoly power of intermediate goods-producing firms allows nominal rigidities to arise in the form of quadratic nominal price adjustment costs. Finally, there is a monetary authority, which conducts monetary policy by setting the nominal interest rate according to a Taylor-type rule. We next characterize the decisions taken by households and firms before looking at the behavior of the monetary authority and sketching the solution of the model. ${ }^{2}$

4.2.2 Households

The representative household enters period t holding B_{t-1} nominal one-period bonds and k_{t} units of physical capital. During period t the household receives $W_{t} l_{t}+Q_{t} k_{t}$ total nominal factor payments from supplying $l_{t}(i)$ units of labor and $k_{t}(i)$ units of capital to each intermediate goods-producing firm $i \in[0,1] . W_{t}$ and Q_{t} denote the nominal wage rate for labor and the nominal rental rate for capital,

[^21]respectively. For all $t=0,1,2, \ldots$, the household's choices of $l_{t}(i)$ and $k_{t}(i)$ must satisfy
$$
l_{t}=\int_{0}^{1} l_{t}(i) d i
$$
where l_{t} denotes total hours worked, ${ }^{3}$ and
$$
k_{t}=\int_{0}^{1} k_{t}(i) d i
$$

Further, the household receives nominal dividends from each intermediate goods producing firm $i \in[0,1]$ aggregating to

$$
D_{t}=\int_{0}^{1} D_{t}(i) d i
$$

The household uses its funds to purchase new bonds at the nominal cost B_{t} / r_{t}, where r_{t} denotes the gross nominal interest rate between time periods, and output from the final goods sector at price P_{t}. Following Woodford (2003), we assume that prices are measured in terms of a unit of account called "money", but the economy is cashless otherwise. The final good can be used for consumption c_{t} or investment i_{t}. In the latter case convex (quadratic) adjustment costs accrue to the household measured in terms of the finished good. As outlined in Kim (2000, p. 335) quadratic costs are justified on the basis that "... it is easier to absorb new capacity into the firm at a slow rate." We consider three different specifications of quadratic adjustment costs S indexed by $j \in\{1,2,3\}$, which are frequently used in the recent DSGE literature, namely:
i)

$$
S_{1}\left(i_{t-1}, i_{t}\right)=g_{1}\left(i_{t-1}, i_{t}\right) i_{t}=\frac{\phi}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2} i_{t}
$$

employed by Schmitt-Grohé and Uribe (2005), Del Negro and Schorfheide (2008), and Fernández-Villaverde (2010)
ii)

$$
S_{2}\left(i_{t}, k_{t}\right)=g_{2}\left(i_{t}, k_{t}\right) k_{t}=\frac{\phi}{2}\left(\frac{i_{t}}{k_{t}}-\delta\right)^{2} k_{t}
$$

[^22]as in Ireland (2003), Dellas (2006), Christensen and Dib (2008), and Cogley and Yagihashi (2010)
iii)
$$
S_{3}\left(i_{t}, k_{t}\right)=g_{3}\left(i_{t}, k_{t}\right) i_{t}=\frac{\phi}{2}\left(\frac{i_{t}}{k_{t}}-\delta\right)^{2} i_{t}
$$
similar in spirit to the specifications used in Kim (1998), Kim (2000), and Groth and Khan (2010).

Letting the function $g_{j}(\cdot, \cdot)$ parameterize the adjustment costs, it holds that $g_{j}(\cdot, \cdot)=g_{j}^{\prime}(\cdot, \cdot)=0$ and $g_{j}^{\prime \prime}(\cdot, \cdot)>0$ in the steady state. Therefore, as described in Christiano et al. (2005), the adjustment costs will only depend on the secondorder derivative. The parameter $\phi \geq 0$ governs the size of these adjustment costs. Note that each adjustment cost specification S_{j} defines a distinct version \mathcal{M}_{j} of the model. ${ }^{4}$
The capital accumulation process is given by

$$
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t}
$$

with $0<\delta<1$ denoting the rate of depreciation and x_{t} representing a shock to the marginal efficiency of investment introduced by Greenwood et al. (1988). The shock is specified as

$$
\begin{equation*}
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{4.1}
\end{equation*}
$$

with $0<\rho_{x}<1$ and $\varepsilon_{x t} \sim N\left(0, \sigma_{x}^{2}\right)$.
The budget constraint of the representative household is given by

$$
\frac{B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}} \geq c_{t}+i_{t}+S_{j}(\cdot, \cdot)+\frac{B_{t} / r_{t}}{P_{t}}
$$

Moreover, we impose a no-Ponzi-game condition to prevent the household to make excessive debts. Facing these constraints, the household maximizes the stream of expected utility

$$
E \sum_{t=0}^{\infty} \beta^{t} a_{t}\left[\log \left(c_{t}-h c_{t-1}\right)-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right]
$$

[^23]where $0<\beta<1$ is a discount factor, $0 \leq h<1$ is the parameter that controls the "degree" of habit persistence, $\chi>0$ measures the relative weight of leisure, and $\eta \geq 0$ denotes the inverse of the Frisch labor supply elasticity. The expected utility function is subject to an intertemporal preference shock, which is assumed to follow the autoregressive process
\[

$$
\begin{equation*}
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{4.2}
\end{equation*}
$$

\]

where $0<\rho_{a}<1$ and $\varepsilon_{a t} \sim N\left(0, \sigma_{a}^{2}\right)$. Following Primiceri et al. (2006), we refer to a_{t} as a "discount factor shock", affecting both the marginal utility of consumption and the marginal disutility of hours worked.

4.2.3 Firms

The final good y_{t} is produced by a firm in a perfectly competitive environment, bundling together the differentiated intermediate goods $y_{t}(i)$ according to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

where $\theta>1$ represents the elasticity of substitution between intermediate goods $y_{t}(i)$. Letting $P_{t}(i)$ denoting the price of intermediate good i, the following demand function for intermediate goods is obtained from profit maximization:

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

with

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)}
$$

Each intermediate good i is produced by a single monopolistically competitive firm having access to the constant returns to scale technology

$$
y_{t}(i) \leq k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}
$$

where $1>\alpha>0$ represents the elasticity of output with respect to capital. The
technology shock z_{t} follows the autoregressive process

$$
\begin{equation*}
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{4.3}
\end{equation*}
$$

with $1>\rho_{z}>0, z>0$, and $\varepsilon_{z t} \sim N\left(0, \sigma_{z}^{2}\right)$. While each firm i exerts some market power, it acts as a price taker in the factor markets. Furthermore, the adjustment of the firm's nominal price $P_{t}(i)$ is assumed to be costly, where the cost function is convex in the size of the price adjustment. According to Rotemberg (1982), these costs are defined as

$$
\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

where $\phi_{P} \geq 0$ governs the size of price adjustment costs and π denotes the gross steady state rate of inflation targeted by the monetary authority. Following Ireland (1997), this specification accounts for the negative effects of price changes on customer-firm relationships. As a consequence of these convex adjustment costs, the firm's optimization problem becomes dynamic. In accordance with Ireland (2003), each firm chooses $l_{t}(i), k_{t}(i), y_{t}(i)$, and $P_{t}(i)$ to maximize its total market value

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[D_{t}(i) / P_{t}\right]
$$

subject to the demand function for intermediate goods, where λ_{t} measures the period t marginal utility to the representative household provided by an additional unit of profits. The firm's profits are distributed to the household as dividends, which are defined in real terms by

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

4.2.4 Monetary Authority

Following Clarida et al. (2000), Ireland (2000), Canova (2009), and FernándezVillaverde et al. (2010), monetary policy is conducted through setting the shortterm nominal gross interest rate r_{t} according to a modified Taylor rule (see Taylor,
1993):

$$
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right)
$$

The monetary authority gradually adjusts the nominal interest rate in response to deviations of current gross inflation $\pi_{t}=\frac{P_{t}}{P_{t-1}}$ and output y_{t} from their steady state values, where ρ_{r}, ω_{π} and ω_{y} are the parameters of the monetary policy rule. ${ }^{5}$ The monetary policy shock v_{t} follows the autoregressive process

$$
\begin{equation*}
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{4.4}
\end{equation*}
$$

where $0<\rho_{v}<1$ and $\varepsilon_{v t} \sim N\left(0, \sigma_{v}^{2}\right)$.

4.3 Solution and Estimation

Each version \mathcal{M}_{j} of the model is characterized by a set of nonlinear difference equations, encompassing the first-order conditions for the three agents' problems, the laws of motion for the four exogenous shocks, and the monetary policy rule. To close the model, we complete the following two steps. First, we assume symmetric behavior within the intermediate sector to get from sectoral to aggregate variables, which implies $P_{t}(i)=P_{t}, y_{t}(i)=y_{t}, l_{t}(i)=l_{t}, k_{t}(i)=k_{t}$, and $D_{t}(i)=D_{t}$, for $t=0,1,2 \ldots$ and all $i \in[0,1]$. Second, for all $t=0,1,2 \ldots$, the market clearing conditions for the bond market $B_{t}=B_{t-1}=0$ must hold.

The empirical implementation requires additional preparation of the underlying model. Since the model is nonlinear, no exact analytical closed-form solution can be derived in general. Therefore, an approximate solution is obtained by computing the steady state, log-linearizing the system around the steady state, and then applying a complex generalized Schur decomposition to solve the linear difference model under rational expectations (see appendices H and I). ${ }^{6}$ The

[^24]solution can be written in state space form with a state equation
$$
s_{t+1}=\Gamma_{0}(\mu) s_{t}+\Gamma_{1}(\mu) \varepsilon_{t+1}
$$
and an observation equation
$$
f_{t}=\Gamma_{2}(\mu) s_{t}
$$
where the vector s_{t} contains the model's state variables, the vector ε_{t+1} consists of the serially and mutually uncorrelated innovations ${ }^{7}$, and the vector f_{t} comprises the model's flow variables. The matrices $\Gamma_{0}(\mu), \Gamma_{1}(\mu)$, and $\Gamma_{2}(\mu)$ contain (functions of) the model's parameters $\mu_{i}, i=1,2, \ldots, k$. These parameters are estimated using Bayesian methods. In contrast to classical statistical inference, where the parameters of interest are considered as fixed, but unknown quantities, the Bayesian approach assigns a probabilistic interpretation to the model's parameters under consideration (see Robert, 2001; DeJong and Dave, 2007). Hence, as stated in An and Schorfheide (2007), the Bayesian framework allows to incorporate information about the model's parameters that is not contained in the estimation sample through re-weighting the likelihood function of a model by a prior density. Therefore, according to DeJong and Dave (2007), the likelihood function has to be formed at first, providing the foundation for both classical and Bayesian approaches to statistical inference. As outlined in Canova (2007, p. 123), "... the likelihood function of a state space model can be conveniently expressed in terms of one-step-ahead forecast errors, conditional on the initial observations, and of their recursive variance, both of which can be obtained with the Kalman filter." ${ }^{8}$

If

$$
\mathcal{L}(\mu \mid X) \equiv p(X \mid \mu)=\prod_{t=1}^{T} p\left(X_{t} \mid \mu\right)
$$

represents the likelihood function of the model, letting X denote the T observations of an $m \times 1$ vector of observable variables X_{t} and μ define a $k \times 1$ vector of the model's parameters, then, according to the Bayes theorem, for any specification

[^25]of the prior distribution $p(\mu)^{9}$, the posterior distribution of the model is given by
\[

$$
\begin{aligned}
p(\mu \mid X) & =\frac{p(\mu) p(X \mid \mu)}{p(X)} \\
& =\frac{p(\mu) \mathcal{L}(\mu \mid X)}{p(X)} \\
& \propto p(\mu) \mathcal{L}(\mu \mid X)
\end{aligned}
$$
\]

where the unnormalized posterior density $p(\mu) \mathcal{L}(\mu \mid X)$ is referred to as the posterior kernel \mathcal{K}. ${ }^{10}$ Since, as described in Canova (2009), an analytical computation of the posterior is practically impossible when μ has many dimensions, we use a Markov Chain Monte-Carlo (MCMC) method to obtain draws from the unknown posterior distribution. "[This] method involves simulating from a complex and generally multivariate target distribution ... indirectly, by generating a Markov chain with the target density as its stationary density" (Brooks and Gelman, 1998, p. 434).

Specifically, we employ a Random-Walk Metropolis (RWM)-algorithm which was first applied to deliver draws from the posterior distribution of DSGE model parameters by Schorfheide (2000) and Otrok (2001). According to An and Schorfheide (2007) and Fernández-Villaverde (2010) the RWM-algorithm can be characterized by the following steps:

1. Employ a numerical optimization routine to maximize the log posterior kernel $\ln \mathcal{K}(\mu \mid X)=\ln p(\mu)+\ln \mathcal{L}(\mu \mid X)$ with respect to μ. Let $\tilde{\mu}$ be the posterior mode.
2. To initialize the procedure draw μ^{0} from the symmetric jumping distribution $N\left(\tilde{\mu}, c \tilde{\sum}\right)$, where $\tilde{\sum}$ defines the inverse of the Hessian computed at the posterior mode $\tilde{\mu}$ and c denotes a scale factor. ${ }^{11}$ Alternatively, specify a starting value directly.
3. For $t=1, \ldots, n_{\text {sim }}$ draw a proposal μ^{*} from the jumping distribution $J\left(\mu^{*} \mid \mu^{t-1}\right)=N\left(\mu^{t-1}, c \tilde{\sum}\right)$. The jump from μ^{t-1} is accepted $\left(\mu^{t}=\mu^{*}\right)$ if

[^26]ϑ_{t} drawn from the uniform distribution $U(0,1)$ satisfies $\vartheta_{t} \leq \min \{r, 1\}$, with $r=\frac{p\left(\mu^{*} \mid X\right)}{p\left(\mu^{t-1} \mid X\right)}=\frac{\mathcal{K}\left(\mu^{*} \mid X\right)}{\mathcal{K}\left(\mu^{t-1} \mid X\right)}$, and rejected otherwise $\left(\mu^{t}=\mu^{t-1}\right)$.
4. Approximate the posterior expected value of a function $g(\mu)$ by $\frac{1}{n_{s i m}} \sum_{t=1}^{n_{s i m}} g\left(\mu^{t}\right)$, where the Ergodic theorem implies that $\lim _{n_{\text {sim }} \rightarrow \infty} \frac{1}{n_{\text {sim }}} \sum_{t=1}^{n_{\text {sim }}} g\left(\mu^{t}\right) \xrightarrow{\text { a.s. }} E[g(\mu)]$ (for details see Canova, 2007).

Following DeJong et al. (2000b), different specifications of $g(\mu)$ can be considered. If, for example, $g(\mu)$ defines the identity function, then the sequence of accepted drawings $\left\{\mu^{t}\right\}$ can be used to approximate the posterior mean of μ. Alternatively, $g(\mu)$ "... might be an indicator for a small interval, in which case the function of interest is the (average) value of the posterior on that interval" (see DeJong et al., 2000b, p. 213).

For a more detailed description of MCMC methods we refer to Gelman et al. (2003) and Geweke (2005). The estimation procedure is implemented using DYNARE, which is a public domain toolbox for the simulation and estimation of DSGE models. To maximize the posterior kernel we employ Christopher Sim's hybrid optimization algorithm "csminwel", which combines the derivative-based Broyden-Fletcher-Goldfarb-Shannon (BFGS) method with a simplex algorithm. ${ }^{12}$ As proposed by Roberts et al. (1997), the scale factor c is chosen to ensure an acceptance rate around 25%. We simulate five chains ${ }^{13}$ of 100000 draws each, and discarded the first 50% as burn-in to eliminate any dependence of the chain from its starting values. The stationarity of the chains was monitored using the convergence checks proposed by Brooks and Gelman (1998).

4.4 Monte Carlo Filtering and Regionalized Sensitivity Analysis

4.4.1 Methodology

According to Ratto (2008), a number of issues regularly arises concerning the estimation and evaluation process of DSGE models, especially when these models

[^27]feature a complex structure and a rich parametrization:
i) Which portion of the prior parameter space violates the Blanchard-Kahn (1980) conditions, leading to indeterminacy or instability of the model? ${ }^{14}$
ii) Which of the structural parameters mostly drive the fit of a particular observed times series?
iii) Are there any conflicts or trade-off's between the fit of one observed time series versus another?

As shown in Ratto (2008), Monte Carlo filtering (MCF) and regionalized (or generalized) sensitivity analysis (RSA) can be used to answer these questions. Subsequently, we give a brief general description of both techniques before we focus on the application of these tools in a DSGE context. A detailed treatment of MCF and RSA can be found in Saltelli et al. (2004) and Saltelli et al. (2008).

According to Young et al. (1996) and Saltelli (2002), MCF denotes a process of rejecting sets of model simulations that do not fulfill certain pre-specified characteristics. More precisely, following Giglioli et al. (2004, p. 279), MCF is performed by ". . . mapping the space of the input factors into one or more model outputs, censoring the model output set into acceptable/non-acceptable (or behavioral or non-behavioral), and mapping back the acceptable (or behavioral) set into the space of input factors." Hence, two tasks are required for an MCF exercise (see Saltelli et al., 2008, p. 154):

- "[A] qualitative definition of the system behavior (a set of constraints: thresholds, ceilings, time bounds etc. based on available information on the system);
- [A] binary classification of model outputs based on the specified behavior definition (qualifies a simulation as behavioral, B, if the model output lies within constraints, non-behavioral, \bar{B}, otherwise)."

RSA, originally developed in the context of environmental models by Spear and Hornberger (1980), goes one step further by using the output of a MCF experiment for sensitivity analysis purposes (see Giglioli et al., 2004; Pappenberger et al., 2008). As in MCF, for a given vector of input factors, model output is

[^28]categorized (filtered) into either behavioral B or non-behavioral \bar{B}. "The $[B-\bar{B}]$ categorization is mapped back onto the [input factors], each of which is thus also partitioned into [an acceptable and a non-acceptable sub-sample]" (Saltelli et al., 2008, p. 185). Then, for each input factor, the sets of model inputs being classified as part of the behavioral subset B are compared with the sets of model inputs in subset \bar{B}, qualified as non-behavioral. Specifically, following Saltelli (2002), a statistical hypothesis test is applied to check, whether the two subsets are samples from the same distribution. An input factor is regarded as key factor in driving the model behavior, when the generated sample distributions are significantly different (see Ratto, 2008).

4.4.2 Mapping Stability

As outlined in Riggi and Tancioni (2010), the identification of the stability domain of the model under consideration is a fundamental issue in Bayesian DSGE model estimation, because it allows to initialize the estimation within the portion of the parameter space that satisfies the Blanchard-Kahn (1980) conditions for a unique stable solution. Since for most DSGE models an analytical derivation of the stability properties is very difficult if not impossible, RSA provides a valuable tool to detect the stability region of a model (see Ratto, 2008). Following Saltelli et al. (2004) and Ratto (2008), the steps for the analysis are as follows:

- Initially, N Monte Carlo runs are performed, sampling the model parameters from their prior distributions and propagating them through the model. ${ }^{15}$ Therefore, each Monte Carlo run is associated with a specific vector of values of the input parameters.
- Depending on whether or not Blanchard-Kahn (1980) conditions are satisfied, the model output is is categorized into either behavioral or nonbehavioral and then mapped back onto the input parameters, each of which is thus also partitioned into an acceptable and a non-acceptable sub-sample. Target stable behavior is classified as B, unacceptable behavior, i.e., instability or indeterminacy, is classified as \bar{B}. Hence, given the total number N

[^29]of Monte Carlo runs, two subsets are obtained: $\left(\mu_{i} \mid B\right)$ of n elements and $\left(\mu_{i} \mid \bar{B}\right)$ of \bar{n} elements, where $n+\bar{n}=N$. According to Saltelli et al. (2008, p. 185), "[i]n general, the two sub-samples will come from different unknown probability density functions $f_{n}\left(\mu_{i} \mid B\right)$ and $f_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)$."

- To detect the parameters that are mostly responsible for driving the DSGE model into the target stable behavior, the distributions $f_{n}\left(\mu_{i} \mid B\right)$ and $f_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)$ are compared for each parameter independently, using a nonparametric test statistic of the Kolmogorov-Smirnov type. Since we are dealing with empirical distributions, the Smirnov two-sample test (two-sided version) is performed (see Conover, 1999; Saltelli et al., 2004), to compare the null hypothesis that the distributions $f_{n}\left(\mu_{i} \mid B\right)$ and $f_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)$ are identical against the alternative hypothesis that the distributions are different:

$$
\begin{aligned}
H_{0} & : f_{n}\left(\mu_{i} \mid B\right)=f_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right) \\
H_{1} & : f_{n}\left(\mu_{i} \mid B\right) \neq f_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right) .
\end{aligned}
$$

The test statistic $d_{n, \bar{n}}$ is defined as the greatest absolute vertical distance between the cumulative probability functions $F_{n}\left(\mu_{i} \mid B\right)$ and $F_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)$, i.e.,

$$
d_{n, \bar{n}}\left(\mu_{i}\right)=\sup \left|F_{n}\left(\mu_{i} \mid B\right)-F_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)\right| .
$$

Hence, the test is able to answer the following question (see Saltelli et al., 2004, p. 154): "At what significance level α does the computed values of $d_{n, \bar{n}}$ determine the rejection of H_{0} ?" According to Ratto (2008, p. 118), the smaller α (or, equivalently, the larger $d_{n, \bar{n}}$), "... the more important is the parameter in driving the behavior of the DSGE model".

4.4.3 Mapping the Fit

While the estimation procedure outlined in section 4.3 selects values for the structural parameters that allow an overall optimal fit of the model with respect to a multivariate data set, MCF techniques can be used to map the fit of each singular time series in complex multivariate systems, i.e., MCF can detect "... which parameter values would be selected if one single observed series at a time were to be fitted" (Ratto, 2008, p. 125).

According to Ratto (2008), the MCF procedure is initialized, sampling the model parameters $\mu_{i}, i=1,2, \ldots, k$, from their respective posterior distributions. Each Monte Carlo run is associated with a specific vector of values of the model parameters. Let $X_{t}=\left[\tilde{x}_{1 t}, \ldots, \tilde{x}_{m t}\right]^{\prime}$ encompass all observed times series \tilde{x}_{j} with $j=1,2, \ldots, m$. Then, for each observed time series a binary classification of the structural parameters into either B or \bar{B} is performed, where, based on the root mean squared error (RMSE) of the one-step-ahead model prediction, B labels the parameter values that produce the smallest 10 percent RMSEs. This procedure leads to m distinct filtering rules, each rule identifying the structural parameters that provide optimal fit for a specific observed series. Hence, given the total number m of observed time series \tilde{x}_{j}, we obtain m distinct empirical distributions $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ for each parameter μ_{i}. Therefore, MCF enables to identify the presence of trade-offs or conflicts for structural parameters when taking the DSGE model to the data. Following Ratto (2008, p. 126), trade-off's for a given parameter are detected, if the following two conditions are fulfilled:

- " $[\mathrm{A}] \mathrm{t}$ least two distributions $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ are significantly different from the posterior distribution
- and such distributions are significantly different to each other."

If only the first condition holds, there are likely to be conflicts between the prior distribution and the likelihood.

4.5 Data and Priors

To estimate the structural parameters of the model specifications we use quarterly (seasonally adjusted) euro area and US data from 1980:Q1 to 2006:Q4. ${ }^{16}$ Following Canova and Ferroni (2012), we decide to stop at 2006 to avoid complications stemming from the recent financial crisis. The euro area data come from the Area Wide Model (AWM) database (see Fagan et al. 2005) and the Euro Area RealTime Database (RTDB), whereas the US data are taken from the FRED database of the Federal Reserve Bank of St. Louis. ${ }^{17}$ We treat four variables as directly

[^30]observed: real consumption, real investment, gross domestic product (GDP) price inflation, and the short-run interest rate. ${ }^{18}$ The series for consumption and investment are expressed in per capita terms. ${ }^{19}$ We detrend all time series applying the Hodrick-Prescott (H-P) filter, although being aware of the potential problem of spuriousness, as discussed in DeJong and Dave (2007) and Canova and Ferroni (2011). ${ }^{20}$ By detrending inflation and the short-run interest rate, we follow Coenen and Wieland (2005), Juillard et al. (2006), Casares (2007), Canova and Ferroni (2012) and eliminate the downward trend in both series that occurs over the sample. ${ }^{21}$

Tables 4.1 and 4.2 present the prior distributions of the parameters, which are selected according to the following rule:

- Beta distributions are chosen for parameters that must lie in an interval $[0,1]\left(\rho_{r}, \rho_{a}, \rho_{z}, \rho_{x}, \rho_{v}, h\right.$ and $\left.\alpha\right) ;$
- gamma distributions are used for parameters that must be positive $\left(\phi_{p}, \phi\right.$, $\ln (z))$;
- inverse gamma distribution are selected for the standard deviation of the shocks $\left(\sigma_{a}, \sigma_{z}, \sigma_{x}\right.$ and $\left.\sigma_{v}\right)$;
- and normal distributions are picked for all other parameters $\left(\omega_{\pi}\right.$ and $\left.\omega_{y}\right)$.

We follow Sahuc and Smets (2008) and assume a prior mean of 0.75 for $\rho_{r}, \rho_{a}, \rho_{z}$, and ρ_{x}, setting each standard deviations to 0.15 . Regarding ρ_{v} and h we chose prior means of 0.5 and standard deviations of 0.1 and 0.2 , respectively. With respect to α, we follow Smets and Wouters (2007) and set a prior with a mean of 0.3 and a standard deviation of 0.05 . For the parameter ϕ_{P}, we assume a prior mean of 50 and a standard deviation of 10 . Regarding the adjustment cost parameter ϕ, the prior mean is set to $4\left(\mathcal{M}_{1}\right), 30\left(\mathcal{M}_{2}\right)$, and $1500\left(\mathcal{M}_{3}\right)$ with a prior standard deviation equal to one-fourth of the respective mean. Concerning

[^31]$\ln (z)$, we chose a prior mean of 8.13 for the euro area and 9.18 for the US, both with a standard deviation of $1 .{ }^{22}$ For $\sigma_{a}, \sigma_{z}, \sigma_{x}$, and σ_{v} we follow Canova (2009) and assume priors with a mean of 0.01 and a standard deviation of 0.5 . The prior distributions of the reaction coefficients ω_{π} and ω_{y} are centered on the prior mean values 1.3 and 0.125 with standard deviations equal to 0.3 and 0.2 , respectively.

Since the model contains several parameters that are difficult to estimate precisely, we decide to fix them prior to estimation (i.e. impose dogmatic priors). The discount factor β is set equal to 0.99 following standard practice. We set η to a standard intermediate value of 1.35 (see Fernández-Villaverde, 2010), while χ is calibrated to assure that the representative household's labor supply in the steady state amounts to one-third of its time. In addition, the depreciation rate δ is set to 0.025 , corresponding to an annual depreciation rate of about 10 percent and θ is fixed at 6 , implying a steady state markup of prices over marginal cost of 20 percent. Finally, the respective steady state inflation rate is set equal to the average rate of inflation for the whole sample under consideration.

To identify which portion of the prior parameter space violates the BlanchardKahn (1980) conditions, leading to indeterminacy or instability of the three model specifications, we employ the RSA procedure based on a sample of size 2048 for both regions. ${ }^{23}$ The RSA analysis shows that for all model specifications and both regions 85.1 percent of the prior space is stable, while 14.9 percent of the prior domain gives indeterminacy. Hence, the RSA results suggest a well-defined prior space, ensuring that the subsequent posterior update is not affected by a considerable portion of violations of Blanchard-Kahn (1980) conditions (see Ratto et al., 2009). Figures $L .1-L .6$ show, that indeterminacy is essentially driven by the monetary policy parameter ω_{π}. The Smirnov test statistic $d_{n, \bar{n}}\left(\omega_{\pi}\right)$ rejects the null hypothesis based on a significance level $\alpha=1 \%$. The cumulative distributions for stable behavior are shifted to the right, indicating that the model specification are most likely to have a unique stable solution if $\omega_{\pi}>1$, i.e., when the Taylor principle is satisfied.

[^32]
4.6 Posterior Odds Comparison

According to Geweke (1999), Bayesian inference provides a framework to assess the empirical performance of several competing models by comparing the different specifications through their posterior odds ratio. Moreover, as shown by Fernández-Villaverde and Rubio-Ramírez (2004), asymptotically, the best model under the Kullback-Leibler distance will have the highest posterior probability, with the former measure having a complete axiomatic foundation that justifies why it is precisely the criterion a rational agent should use to choose between models (even if these models are misspecified and/or nonnested). ${ }^{24}$

To derive the posterior odds ratio, we follow DeJong and Dave (2007) and rewrite the posterior to emphasize that the probability assigned to a given value of μ is conditional not only on the observations X, but also on the specific versions \mathcal{M}_{j} of the model. ${ }^{25}$ For a given model specification \mathcal{M}_{j}, the posterior can be written as

$$
p\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right)=\frac{p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right)}{p\left(X \mid \mathcal{M}_{j}\right)}
$$

letting the notation $\mu_{\mathcal{M}_{j}}$ accentuate the potential for μ to be specific to a particular version of the model \mathcal{M}_{j}. Integrating this expression over $\mu_{\mathcal{M}_{j}}$ gives

$$
\underbrace{\int p\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}}_{=1}=\int \frac{p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right)}{p\left(X \mid \mathcal{M}_{j}\right)} d \mu_{\mathcal{M}_{j}}
$$

which can be rewritten to form an expression for the marginal likelihood associated with model specification \mathcal{M}_{j} :

$$
p\left(X \mid \mathcal{M}_{j}\right)=\int p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}
$$

The marginal likelihood is the probability that the model specification assigns to having observed the data.

As stated in DeJong and Dave (2007), just as the Bayes theorem can be used to derive the conditional probability associated with $\mu_{\mathcal{M}_{j}}$, it can also be applied

[^33]to calculate the conditional probability with respect to a particular version of the model \mathcal{M}_{j} :
\[

$$
\begin{aligned}
p\left(\mathcal{M}_{j} \mid X\right) & =\frac{p\left(\mathcal{M}_{j}\right) p\left(X \mid \mathcal{M}_{j}\right)}{p(X)} \\
& =\frac{p\left(\mathcal{M}_{j}\right)\left[\int p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}\right]}{p(X)}
\end{aligned}
$$
\]

where $p\left(\mathcal{M}_{j}\right)$ denotes the prior probability assigned to a particular version of the model \mathcal{M}_{j}. Taking the ratio of conditional probabilities for two model specifications \mathcal{M}_{j} and $\mathcal{M}_{j^{\prime}}$ with $j, j^{\prime} \in\{1,2,3\}$ gives the posterior odds ratio:

$$
\begin{aligned}
P O_{\mathcal{M}_{j}, \mathcal{M}_{j^{\prime}}} & =\frac{p\left(\mathcal{M}_{j} \mid X\right)}{p\left(\mathcal{M}_{j^{\prime}} \mid X\right)} \\
& =\frac{p\left(\mathcal{M}_{j}\right)\left[\int p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}\right]}{p\left(\mathcal{M}_{j^{\prime}}\right)\left[\int p\left(\mu_{\mathcal{M}_{j^{\prime}}} \mid \mathcal{M}_{j^{\prime}}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j^{\prime}}} \mid X, \mathcal{M}_{j^{\prime}}\right) d \mu_{\mathcal{M}_{j^{\prime}}}\right.},
\end{aligned}
$$

where

$$
\frac{p\left(\mathcal{M}_{j}\right)}{p\left(\mathcal{M}_{j^{\prime}}\right)}
$$

is called the prior odds ratio and

$$
\frac{\left[\int p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}\right]}{\left[\int p\left(\mu_{\mathcal{M}_{j^{\prime}}} \mid \mathcal{M}_{j^{\prime}}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j^{\prime}}} \mid X, \mathcal{M}_{j^{\prime}}\right) d \mu_{\mathcal{M}_{j^{\prime}}}\right]}
$$

is referred to as the Bayes factor. As stated in Kass and Raftery (1995, p. 777), the Bayes factor represents "a summary of the evidence by the data in favor of one scientific theory, represented by a statistical model, as opposed to another." Note that the Bayes factor corresponds to the posterior odds ratio if the prior odds ratio is set to unity, i.e., either model specification is equally probable a priori. To interpret the Bayes factor, Jeffreys (1961) suggests the following rule of thumb:
i) a Bayes factor between 1 and 3 provides very slight evidence,
ii) a Bayes factor between 3 and 10 provides slight evidence,
iii) a Bayes factor between 10 and 32 provides strong evidence,
iv) a Bayes factor between 32 and 100 provides very strong evidence and
v) a Bayes factor above 100 provides decisive evidence
in favor of specification \mathcal{M}_{j} against $\mathcal{M}_{j^{\prime}}$.
Further, relaxing the assumption of a unity prior odds ratio, posterior odds can be used to compare a set of model specifications by computing their posterior probabilities. Following Fernández-Villaverde and Rubío-Ramirez (2004) and An and Schorfheide (2007), the posterior probability of \mathcal{M}_{1} against \mathcal{M}_{2} and \mathcal{M}_{3} is given by

$$
p_{\mathrm{post}_{1}}=\frac{1}{P O_{\mathcal{M}_{1}, \mathcal{M}_{1}}+P O_{\mathcal{M}_{2}, \mathcal{M}_{1}}+P O_{\mathcal{M}_{3}, \mathcal{M}_{1}}} .^{26}
$$

As outlined in An and Schorfheide (2007) and Canova (2007), the practical difficulty in implementing posterior odds comparisons is the computation of the marginal likelihood because the integral

$$
p\left(X \mid \mathcal{M}_{j}\right)=\int p\left(\mu_{\mathcal{M}_{j}} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}} \mid X, \mathcal{M}_{j}\right) d \mu_{\mathcal{M}_{j}}
$$

typically has no analytical solution. Since there are several approaches to compute marginal likelihoods, usually relying on approximations or simulation-based methods, we decide to choose Geweke's (1999) modified harmonic mean estimator to calculate the marginal likelihood based on the output of the RWM-algorithm. ${ }^{27}$ The theoretical foundation of this approach is the harmonic mean identity, which implies that the reciprocal of the integrated likelihood is equal to the posterior harmonic mean of the likelihood (see Raftery et al., 2007). Following Canova (2006) and An and Schorfheide (2007), the modified harmonic mean estimator can be described as follows: For each version of the model \mathcal{M}_{j}, the marginal likelihood $p\left(X \mid \mathcal{M}_{j}\right)$ is approximated using

$$
\left[\frac{1}{n_{\text {sim }}} \sum_{t=1}^{n_{\text {sim }}} \frac{f\left(\mu_{\mathcal{M}_{j}}^{t}\right)}{p\left(\mu_{\mathcal{M}_{j}}^{t} \mid \mathcal{M}_{j}\right) \mathcal{L}\left(\mu_{\mathcal{M}_{j}}^{t} \mid X, \mathcal{M}_{j}\right)}\right]^{-1}
$$

where every single vector $\mu_{\mathcal{M}_{j}}^{t}$ comes from the RWM iterations, denoting the draw t of the parameters μ of model specification \mathcal{M}_{j} and f is a truncated normal dis-

[^34]tribution, which, to make the numerical approximation efficient, should be chosen so that the summands are of equal magnitude. For a more detailed discussion of the modified harmonic mean estimator we refer to Geweke (1999).

4.7 Results

4.7.1 Bayesian Estimation

Table 4.1 and 4.2 present the parameter estimates of the three model specifications across the two data sets. Each table lists posterior means, posterior standard deviations, and highest posterior density (HPD) intervals containing the 90 percent highest posterior density. ${ }^{28}$ The respective prior and posterior distributions of the parameters are graphed in figures $L .7-L .12$.

For both regions, figures $L .7-L .12$ show the data to be reasonably informative about the shock parameters, since their prior and posterior distributions appear to be relatively distinct. The posterior means of ρ_{a}, ρ_{z}, and ρ_{v} indicate the three shocks to be quite persistent across all model specifications $\mathcal{M}_{1}-\mathcal{M}_{3}$, whereas the monetary policy shock appears to be less persistent than the preference and the technology shock. Contrary to these results, ρ_{x} differs substantially in magnitude between \mathcal{M}_{1} on the one hand and \mathcal{M}_{2} and \mathcal{M}_{3} on the other hand, since, for both regions, the respective HPD intervals do not overlap. While the latter specifications exhibit a high persistence of the marginal efficiency of investment shock, the estimated mean of the persistence parameter is considerably lower under \mathcal{M}_{1}. Except for ρ_{z}, we find the persistence parameters of the shocks to be relatively higher in the euro area. For example, the posterior mean of the autoregressive parameter ρ_{a} is almost two times higher in the euro area than in the US (across all model specifications), which is broadly consistent with the findings reported in Smets and Wouters (2005).

Further differences between \mathcal{M}_{1} and the specifications $\mathcal{M}_{2} / \mathcal{M}_{3}$ appear when turning to the estimated standard deviations of the innovations. Except for σ_{v}, the standard deviations of the innovations appear to be higher under model specification \mathcal{M}_{1} in both the euro area and the US. For both regions, the posterior

[^35]means of σ_{a} and σ_{z} increase by at least one respective posterior standard deviation under \mathcal{M}_{1}, while in the case of σ_{x} the HPD intervals of \mathcal{M}_{2} and \mathcal{M}_{3} do not even overlap with the intervals of \mathcal{M}_{1}. Despite these differences, $\mathcal{M}_{1}-\mathcal{M}_{3}$ coincide in detecting the shock to the marginal efficiency of investment to be the most volatile followed by the technology and the preference shock, whereas the monetary policy shock features the lowest volatility. Our estimates are in line with the results of Adolfson et al. (2008) and Gelain et al. (2012) for closed economy DSGE models of the euro area featuring adjustment costs of the form S_{1}, both finding the marginal efficiency of investment shock to be relatively low in persistence but high in volatility. For the US, our results coincide with the findings of Ireland (2003) and Justiniano et al. (2010), who both obtain relatively large estimates of σ_{x}, implementing adjustment cost specifications of the form S_{2} and S_{1}, respectively. Overall, we find the standard deviations of the innovations $\left(\sigma_{a}, \sigma_{z}, \sigma_{x}\right.$, and $\left.\sigma_{v}\right)$ to be relatively higher in the US than in the euro area.

Compared to the results of Smets and Wouters (2003) and Adjemian et al. (2007) for the euro area, we obtain smaller values of the degree of backwardlooking behavior of consumption across all model specifications, whereas our estimates for the US, which appear to be higher than in the euro area, are in line with the findings of Christiano et al. (2005), Smets and Wouters (2005), and Ireland (2007). Further, we find the posterior mean of h under \mathcal{M}_{1} to exceed the estimated means under \mathcal{M}_{2} and \mathcal{M}_{3} by more than one posterior standard deviation in case of the euro area, while these differences become less apparent for the US.

Regarding the price adjustment cost parameter ϕ_{P}, we find the posterior means of \mathcal{M}_{2} and \mathcal{M}_{3} to increase by at least one posterior standard deviation under \mathcal{M}_{1}, both in the euro area and the US. Concerning its magnitude, our estimates of the price adjustment cost parameter are consistent with the results of Gerali et al. (2010) for the euro area and Ireland (2001) for the US. Moreover, the degree of price stickiness seems to be higher in the US than in the euro area, although this result is in line with the findings of Smets and Wouters (2005) it is at odds with the micro-evidence on price stickiness presented in Álvarez et al. (2006).

Turning first to the results for the euro area, the data point to lower adjustment costs S_{1} than were embodied in the prior, since we find the posterior distribution for ϕ to be left-shifted relative to the prior distribution with a posterior mean lying more than one posterior standard deviation below its prior mean. Concerning adjustment cost specifications S_{2} and S_{3}, the respective prior and posterior means
of ϕ appear to be similar in size, whereas the posterior distributions are more tightly distributed than the priors.

In case of the US, we find the data to be quite informative about the adjustment costs parameter across all specifications $S_{1}-S_{3}$, since the posterior distributions for ϕ are left-shifted relative to the prior distributions with the respective posterior means lying partly more than one posterior standard deviation below their prior means. For S_{1}, our results are in line with Levin et al. (2005) and Zubairy (2010), whereas our findings for S_{2} are consistent with the estimates of Ireland (2003). By broadening the scope of the analysis across data sets, we perceive adjustment costs to be higher in the euro area than in the US.

The estimates of α, measuring share of capital in the production function for intermediate goods, are almost exactly 0.3 across all model specifications for both regions. As shown in figures L. $7-L .12$ the respective posterior distributions of α are centered very close to the prior, but are much more tightly distributed, both which is due to the data alignment described in section 4.5.

Turning to the monetary policy reaction function estimated for the euro area, we find the respective posterior means of ω_{π} and ω_{y} to be approximately equal across the model specifications $\mathcal{M}_{1}-\mathcal{M}_{3}$, whereas the posterior mean of the interest-rate-smoothing parameter ρ_{r} under \mathcal{M}_{1} exceeds the respective estimates under \mathcal{M}_{2} and \mathcal{M}_{3} by more than two posterior standard deviations. The estimated means of ω_{π} are in line with results for the euro area documented by Smets and Wouters (2003), Adolfson et al. (2008), and Sahuc and Smets (2008), while we find smaller values for the posterior mean of ρ_{r}. Like in Smets and Wouters (2003) and Adolfson et al. (2008), we obtain small estimates of the posterior mean of ω_{y}, albeit our results all show a negative sign.

In case of the US a similar pattern occurs, since the respective posterior means of ω_{π} and ω_{y} are approximately equal across the model specifications $\mathcal{M}_{1}-\mathcal{M}_{3}$, whereas the posterior mean of the interest-rate-smoothing parameter ρ_{r} under \mathcal{M}_{1} exceeds the respective estimates under \mathcal{M}_{2} and \mathcal{M}_{3} by more than one posterior standard deviation. In accordance with the results for the euro area, we find small values of the posterior mean of ω_{y}, although the estimates turn out to be positive for the US. The posterior means of ω_{π} and ω_{y} are consistent with the estimates provided in Smets and Wouters (2007) and Sahuc and Smets (2008), while we find smaller values for the posterior mean of ρ_{r}. By comparing the estimated policy rules across regions, it turns out that the interest rate persistence is higher and
the response to inflation is stronger in the US.
Finally, we find the estimates of $\ln (z)$ to be almost equal across all model specifications within each region. Note that $\ln (z)$ has no impact on the dynamics of the model specifications, since it only serves to determine steady states (see section 4.5). As displayed in figures L.7-L.12 prior and posterior distribution are almost indistinguishable, indicating that the data are uninformative regarding the location of $\ln (z)$.

		\mathcal{M}_{1}						\mathcal{M}_{2}					
		prior		posterior				prior		posterior			
	Type	Mean	Std.	Mean	Std.	HPD	terval	Mean	Std.	Mean	Std.	HPD	terval
ρ_{r}	Beta	0.7500	0.1500	0.5436	0.0602	0.4536	0.6399	0.7500	0.1500	0.3887	0.0753	0.2683	0.5028
ρ_{a}	Beta	0.7500	0.1500	0.6846	0.0706	0.5660	0.7994	0.7500	0.1500	0.7316	0.0687	0.6368	0.8256
ρ_{z}	Beta	0.7500	0.1500	0.9553	0.0252	0.9183	0.9920	0.7500	0.1500	0.9618	0.0217	0.9347	0.9906
ρ_{x}	Beta	0.7500	0.1500	0.1886	0.0677	0.0805	0.2911	0.7500	0.1500	0.8166	0.0479	0.7384	0.8939
ρ_{v}	Beta	0.5000	0.1000	0.4462	0.0536	0.3643	0.5323	0.5000	0.1000	0.4010	0.0532	0.3286	0.4756
h	Beta	0.5000	0.2000	0.2857	0.0769	0.1593	0.4120	0.5000	0.2000	0.1743	0.0801	0.0749	0.2682
α	Beta	0.3000	0.0500	0.3001	0.0006	0.2988	0.3014	0.3000	0.0500	0.3001	0.0009	0.2986	0.3016
ϕ_{P}	Gamma	50.0000	10.0000	41.2423	9.9792	29.0034	53.7091	50.0000	10.0000	26.3339	14.7360	17.8193	34.4437
ϕ	Gamma	4.0000	1.0000	3.1538	0.6462	2.0259	4.2973	30.0000	7.5000	31.3504	4.9778	23.4267	39.2136
ω_{π}	Normal	1.3000	0.3000	1.7634	0.2137	1.4256	2.1145	1.3000	0.3000	1.7021	0.1902	1.3921	2.0199
ω_{y}	Normal	0.1250	0.2000	-0.0447	0.0273	-0.1012	0.0067	0.1250	0.2000	-0.0400	0.0255	-0.0906	0.0110
$\ln (z)$	Gamma	8.1300	1.0000	8.1267	0.9981	6.4052	9.6600	8.1300	1.0000	8.1369	1.0060	6.4460	9.7428
σ_{a}	Inverse gamma	0.0100	0.5000	0.0054	0.0007	0.0043	0.0065	0.0100	0.5000	0.0043	0.0007	0.0034	0.0052
σ_{z}	Inverse gamma	0.0100	0.5000	0.0094	0.0011	0.0077	0.0110	0.0100	0.5000	0.0079	0.0010	0.0068	0.0090
σ_{x}	Inverse gamma	0.0100	0.5000	0.0309	0.0065	0.0194	0.0428	0.0100	0.5000	0.0087	0.0015	0.0063	0.0111
σ_{v}	Inverse gamma	0.0100	0.5000	0.0020	0.0002	0.0016	0.0023	0.0100	0.5000	0.0024	0.0003	0.0018	0.0029

		\mathcal{M}_{3}					
		prior		posterior			
	Type	Mean	Std.	Mean	Std.	HPD	terval
ρ_{r}	Beta	0.7500	0.1500	0.4046	0.0739	0.2866	0.5208
ρ_{a}	Beta	0.7500	0.1500	0.7310	0.0719	0.6332	0.8305
ρ_{z}	Beta	0.7500	0.1500	0.9631	0.0219	0.9365	0.9922
ρ_{x}	Beta	0.7500	0.1500	0.8208	0.0460	0.7438	0.8966
ρ_{v}	Beta	0.5000	0.1000	0.4076	0.0538	0.3306	0.4802
h	Beta	0.5000	0.2000	0.1842	0.0825	0.0829	0.282
α	Beta	0.3000	0.0500	0.3002	0.0010	0.2985	0.3018
ϕ_{P}	Gamma	50.0000	10.0000	27.4259	13.7310	18.647	36.313
ϕ	Gamma	1500.0000	375.0000	1368.5365	281.3410	1005.659	1730.2949
ω_{π}	Normal	1.3000	0.3000	1.7171	0.1987	1.3984	2.0413
ω_{y}	Normal	0.1250	0.2000	-0.0371	0.0285	-0.0853	0.0132
$\ln (z)$	Gamma	8.1300	1.0000	8.1245	1.0065	6.4623	9.7284
σ_{a}	Inverse gamma	0.0100	0.5000	0.0045	0.0007	0.0035	0.0054
σ_{z}	Inverse gamma	0.0100	0.5000	0.0080	0.0010	0.0069	0.0091
σ_{x}	Inverse gamma	0.0100	0.5000	0.0095	0.0021	0.0068	0.0122
σ_{v}	Inverse gamma	0.0100	0.5000	0.0023	0.0003	0.0018	0.0028

Table 4.1: Estimates: Euro area.

[^36]
4.7.2 Monte Carlo Filtering Analysis

To identify the presence of trade-offs or conflicts for the structural parameters when taking the three model specifications to the data, we apply the MCF procedure described in section 4.4 .3 combined with a Smirnov two-sample test. ${ }^{29}$ The Smirnov test answers the question: "At what significance level α can the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution be rejected?" ${ }^{30}$ Figures L. 13 - L. 36 present the cumulative empirical probability distributions of the filtered samples corresponding to the best fit for each observed time series (c, i, π, r) and the respective cumulative posterior probability distributions (base), while the tables $L .2-L .7$ contain the p-values (in percent) of the Smirnov twosample test.

In section 4.7.1, we found that the most remarkable differences between specification \mathcal{M}_{1} on the one hand and \mathcal{M}_{2} and \mathcal{M}_{3} on the other hand occur with respect to the parameters ρ_{x} and σ_{x}, capturing the persistence and volatility of the marginal efficiency of investment shock. We detected the posterior means of ρ_{x} under specification \mathcal{M}_{2} and \mathcal{M}_{3} to be considerably higher than under \mathcal{M}_{1}, whereas the estimates of σ_{x} turned out to be markedly lower. In the remainder of this section we will use the MCF analysis to identify the causes of these differences.

Concerning ρ_{x}, the three specifications differ markedly with regard to the cumulative empirical probability distributions $F_{r}\left(\rho_{x} \mid B\right)$. We find no significant differences between $F_{r}\left(\rho_{x} \mid B\right)$ and the cumulative posterior distribution (euro area) or even support for smaller values of the persistence parameter (US) in case of \mathcal{M}_{1}, while observations of r clearly support larger values of ρ_{x}, i.e., a more persistent shock to the marginal efficiency of investment, in specifications \mathcal{M}_{2} and \mathcal{M}_{3}.

This provides an explanation for the relative higher estimates of the marginal efficiency of investment shock's persistence under specification \mathcal{M}_{2} and \mathcal{M}_{3} compared to \mathcal{M}_{1}.

Turning to σ_{x}, the model versions differ especially regarding the relative location of $F_{i}\left(\sigma_{x} \mid B\right)$ and $F_{\pi}\left(\sigma_{x} \mid B\right)$ with respect to the particular cumulative posterior

[^37]distributions. For the euro area, the observations for i significantly prefer larger values of σ_{x} under \mathcal{M}_{1}, whereas in case of \mathcal{M}_{2} and \mathcal{M}_{3}, i data support smaller values than the ones implied by the posterior distribution. With regard to the US, the preferences of the observations are qualitatively consistent across all model specifications, although the p-values show that the preferences of i and π observations for lower values of σ_{x} are considerably stronger under \mathcal{M}_{2} and \mathcal{M}_{3} than under \mathcal{M}_{1}. Hence, the MCF results give a clue why specifications \mathcal{M}_{2} and \mathcal{M}_{3} exhibit a lower volatility of the marginal efficiency of investment shock than \mathcal{M}_{1}.

4.7.3 Model Evaluation

4.7.3.1 Bayesian Model Comparison

To assess the overall time series fit of the three model specifications under consideration, we list the respective prior probabilities, marginal log likelihoods and posterior probabilities in table 4.3. By assigning equal probabilities to the model specifications a priori, the exponentiated differences of marginal log likelihoods can be interpreted as posterior odds. ${ }^{31}$

	Euro Area		
	\mathcal{M}_{1}	\mathcal{M}_{2}	\mathcal{M}_{3}
Prior probability	$1 / 3$	$1 / 3$	$1 / 3$
Marginal log likelihood	1790.2238	1800.6993	1800.6304
Posterior probability	0.0000	0.5172	0.4828
			US
	\mathcal{M}_{1}	\mathcal{M}_{2}	\mathcal{M}_{3}
	$1 / 3$	$1 / 3$	$1 / 3$
Prior probability	1606.2136	1617.3322	1616.0600
Marginal log likelihood	0.0000	0.7811	0.2189

Table 4.3: Prior probabilities, marginal log likelihoods and posterior probabilities across model specifications and regions.

[^38]For both data sets we find \mathcal{M}_{2} to perform best in explaining the data showing the highest posterior probability, whereas specification \mathcal{M}_{1}, gaining the lowest marginal log likelihood, turns out to have a zero posterior probability. More specifically, the posterior odds provide very slight evidence in favor of \mathcal{M}_{2} against \mathcal{M}_{3} and decisive evidence in favor of \mathcal{M}_{2} against \mathcal{M}_{1} for the euro area. In case of the US, Jeffreys' (1961) rule of thumb indicates slight evidence in favor of \mathcal{M}_{2} against \mathcal{M}_{3} and decisive evidence in favor of \mathcal{M}_{2} against \mathcal{M}_{1}.

As discussed in Rabanal and Rubio-Ramírez (2008), policymakers are often interested in how theoretical models compare with more densely parameterized and less restrictive reference models. Hence, in line with Schorfheide (2000), Smets and Wouters (2003), and Juillard et al. (2008), we broaden the scope of the analysis by comparing the three model specifications with Bayesian vector autoregressive (BVAR) models at various lag lengths (lags 1 to 4). ${ }^{32}$ Concerning the prior distributions of the BVARs we follow Lubik and Schorfheide (2005) and use a modified version of the so-called Minnesota prior, which originally dates back to Litterman (1980) and Doan et al. (1984). ${ }^{33}$ The prior is made of two components, with a dummy observation prior, constructed according to Sims' version of the Minnesota prior (see Doan et al.), being augmented by Jeffrey's improper prior. For a detailed description of the BVAR setup we refer to Lubik and Schorfheide (2005). ${ }^{34}$

Table 4.4 displays prior probabilities, marginal log likelihoods and posterior probabilities of the three model specifications and the four BVARs. ${ }^{35}$ For both data sets our three model specifications do not compare favorably to the best fitting BVAR. In contrast to large-scale DSGE models as developed by Smets and Wouters (2007) or Ratto et al. (2009), which are able to outperform BVAR models, our deliberately stylized specifications lack of features like wage and price indexation or the usage of a large set of shocks. Although to some extent criticized

[^39]| Euro Area | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \mathcal{M}_{1} | \mathcal{M}_{2} | \mathcal{M}_{3} | BVAR(1) | BVAR(2) | $\operatorname{BVAR}(3)$ | $\operatorname{BVAR}(4)$ |
| Prior probability | 1/7 | 1/7 | 1/7 | 1/7 | 1/7 | 1/7 | $1 / 7$ |
| Marginal log likelihood | 1790.2238 | 1800.6993 | 1800.6304 | 1807.1802 | 1813.9321 | 1808.1124 | 1803.7778 |
| Posterior probability | 0.0000 | 0.0000 | 0.0000 | 0.0012 | 0.9958 | 0.0030 | 0.0000 |
| US | | | | | | | |
| | \mathcal{M}_{1} | \mathcal{M}_{2} | \mathcal{M}_{3} | BVAR(1) | BVAR (2) | $\operatorname{BVAR}(3)$ | BVAR(4) |
| Prior probability | 1/7 | 1/7 | 1/7 | 1/7 | 1/7 | 1/7 | $1 / 7$ |
| Marginal log likelihood | 1606.2136 | 1617.3322 | 1616.0600 | 1636.0099 | 1647.9345 | 1656.7848 | 1660.5414 |
| Posterior probability | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0228 | 0.9772 |

Table 4.4: Cross-validation: BVARs and model specifications.
(see, for example, Chari et al., 2009), we would expect that the implementation of these features would improve the macroeconomic fit of our model specifications considerably.

4.7.3.2 Standard Moment Criteria

To understand why model specification \mathcal{M}_{1} fits the data worse than \mathcal{M}_{2} and \mathcal{M}_{3}, we present some selected unconditional second moments of the data and compare them with their theoretical counterparts implied by the different model versions. Tables L. 8 and L. 9 report standard deviations and first-order autocorrelations of consumption, investment, inflation, and the nominal interest rate derived from the data and the moments obtained from the three model specifications. Following Schmitt-Grohé and Uribe (2008) and Gabriel et al. (2012), the model implied statistics were computed by simulating the model specifications at the respective posterior means obtained from estimation. As outlined in Rabanal (2007), likelihood-based methods try to fit all second moments of the data, so this selection is just illustrative of where the model specifications fail.

Turning to the standard deviations first, we find the data to exhibit a higher volatility in consumption, investment, and the nominal interest rate for the US than for the euro area. Although the three model specifications are able to match the empirical observation that investment is more volatile than consumption, all specifications generate too much volatility of consumption compared to the data. In line with the Bayesian model comparison, we detect marked differences between \mathcal{M}_{1} on the one hand and \mathcal{M}_{2} and \mathcal{M}_{3} on the other hand in fitting the
data. Specifically, \mathcal{M}_{2} and \mathcal{M}_{3} outperform \mathcal{M}_{1} in matching the volatility of consumption, investment and inflation in the data for both regions. Most noticeably, specification \mathcal{M}_{1} performs relatively poorly in capturing the standard deviation of investment, since the volatility implied by the model specification departs considerably from its counterpart in the data. Model version \mathcal{M}_{1} is able to outperform the two other specifications only in capturing the volatility of the nominal interest rate in the data with respect to the euro area.

Concerning first-order autocorrelations all model specifications appear to match the serial correlations of the data well. The most notable discrepancies between model specification and data can be found for the euro area, since actual inflation turns out to have a much lower first-order autocorrelation than implied by the model specifications.

4.7.3.3 Impulse Response Analysis

To gain insight into the dynamic properties of the three model specifications, we compare impulse response functions (IRFs) of output, consumption, investment, hours, inflation, and the nominal interest rate with respect to the four structural shocks (see figures $L .37-L .44$). ${ }^{36}$ Following Levin et al. (2005), all impulse responses are computed by simulating the model specifications at the posterior means reported in table 4.1 and 4.2.

First of all, the respective model specifications show similar qualitative responses across the data sets. However, to some extent we find marked differences between the IRFs of specification \mathcal{M}_{1} on the one hand and \mathcal{M}_{2} and \mathcal{M}_{3} on the other hand within the data sets.

In accordance with the results of Smets and Wouters (2003) and Peersman and Straub (2006), a positive preference shock crowds out investment, but has a positive impact on consumption and output. Further, the increase in capacity necessary to satisfy demand causes a rise in hours worked. Figures L. 37 and L. 41 show that the increase of overall demand puts upward pressure on inflation. Consequently, the movements in output and inflation lead to a rise in the nominal interest rate under the estimated monetary policy rule. While the responses of output, consumption, hours, inflation, and the interest rate turn out to be quite

[^40]similar across the three model specifications, we find marked differences with respect to investment. In contrast to \mathcal{M}_{2} and \mathcal{M}_{3}, investment declines in a hump-shaped pattern under \mathcal{M}_{1}.

Figures L. 38 and L. 42 report the impulse responses to the marginal efficiency of investment shock. We find the dynamics to be fairly similar across the model specifications. In accordance with the results of Peersman and Straub (2006) and Justiniano et al. (2010), output, investment, and hours rise after a positive impulse. With respect to consumption, we find an initially negative response, followed by a rise after a few quarters. Inflation and the nominal interest rate both rise in response to a positive marginal efficiency of investment shock. Justiniano et al. (2009) therefore attest the marginal efficiency of investment shock to have the typical features of a demand shock, which moves quantities and prices in the same direction, leading to a tightening of monetary policy.

Although the shape of the IRFs differs to some extend considerably between \mathcal{M}_{1} and the model versions $\mathcal{M}_{2} / \mathcal{M}_{3}$, all model specifications predict a rise in output, consumption, and investment after a positive technology shock (see figures L. 39 and L.43). Once again, we find hump-shaped investment dynamics under \mathcal{M}_{1}. Further, consistent with empirical evidence presented in Galí (1999), the presence of nominal price rigidities causes a decrease in hours worked in response to a positive technology shock. In all model specifications inflation falls contemporaneously following a positive technology shock, because the increase in productivity lowers real marginal costs. Likewise, the nominal interest rate falls in the three model specifications, since, according to the estimated Taylor-type rules, monetary policy responds more strongly to inflation than to output.

Finally, figures L. 40 and L. 44 depict the effects of an unpredicted monetary policy disturbance. The shock leads to a rise in the nominal short-term interest rate, which induces a fall in output, consumption, investment, hours, and inflation. As discussed in Christiano et al. (2005), the investment adjustment cost specification under \mathcal{M}_{1} generates a hump-shaped response of aggregate investment to the monetary policy shock, and therefore improves the ability of the model specification to reproduce VAR-based evidence.

4.7.3.4 Variance Decomposition

To shed further light on the dynamics of our three model specifications, we examine the relative importance of the four structural shocks for the fluctuations of output, consumption, investment, hours worked, inflation, and the nominal interest rate. ${ }^{37}$ To that effect, we compute the fraction of the forecast error variance of the six variables attributable to each type of shock . ${ }^{38}$ Tables L. $10-L .15$ present the forecast error variance decompositions across model specifications and regions at the one-year, three-year, and infinite horizon. ${ }^{39}$

Turning to the euro area first, we find the technology shock to represent the dominant force of movements in output and consumption for all three model specifications at all horizons. However, the role of the four shocks in explaining the fluctuations of investment, hours worked, inflation, and the nominal interest rate differ to some extend considerably between \mathcal{M}_{1} on the one hand and \mathcal{M}_{2} and \mathcal{M}_{3} on the other hand at the different horizons. The marginal efficiency of investment shock, for instance, accounts for the largest part of the conditional variance in forecasting investment in the short run (up to one year) under \mathcal{M}_{2} and \mathcal{M}_{3}, while we find the technology shock to be relatively more important in driving the short term movements in investment under \mathcal{M}_{1}. Further, we find that hours worked are mainly driven by the technology shock over the medium (three-year horizon) to the long run (infinite horizon) under \mathcal{M}_{1}, whereas the monetary policy shock explains more than 60 percent of the forecast error variance of hours worked under \mathcal{M}_{2} and \mathcal{M}_{3} at all horizons. We partly attribute this high contribution of the monetary policy shock to the relatively lower estimates of habit persistence under \mathcal{M}_{2} and \mathcal{M}_{3}, since, following Bouakez et al. (2005), a higher degree of habit formation induces agents to adjust their labor supply more gradually in response to monetary policy shocks. Although the monetary policy shock is also the most important driving force behind short, medium and long run fluctuations of inflation across all model specifications, the policy shock turns out to be relatively more important under \mathcal{M}_{2} and \mathcal{M}_{3} than under \mathcal{M}_{1}. According to all model specifications, the preference shock represents a dominant source

[^41]of movements in the nominal interest at all horizons, while the technology shock appears to be relatively more important for explaining fluctuations in the nominal interest rate under \mathcal{M}_{1} than under \mathcal{M}_{2} and \mathcal{M}_{3}.

By analyzing the forecast error variances decomposition for the US, we also find the technology shock to explain most of the fluctuations in output and consumption across all model specifications at all horizons. Although the three model specifications likewise coincide in attributing most of the short run movements in investment to the marginal efficiency shock of investment, $\mathcal{M}_{1}, \mathcal{M}_{2}$ and \mathcal{M}_{3} clearly differ at higher horizons, since the technology shock explains most of the investment forecast error variance under \mathcal{M}_{1}, while the investment fluctuations under \mathcal{M}_{2} and \mathcal{M}_{3} continue to be mainly driven by the investment shock (even though the contribution of the technology shock increases over the medium to the long run). The case is similar for hours worked, as we find the technology shock to play a more important role under \mathcal{M}_{1} than under \mathcal{M}_{2} and \mathcal{M}_{3} at all horizons, albeit the marginal efficiency shock of investment represents the dominant source of movements in hours worked across all three specifications. Focusing on the sources of inflation fluctuation, it turns out that the marginal efficiency of investment shock and the monetary policy shock are about equally important under \mathcal{M}_{1}, both constituting the two most important driving forces behind short and medium run fluctuations, while the technology shock accounts for most of the inflation forecast error variance in the long run. Under \mathcal{M}_{2} and \mathcal{M}_{3}, in contrast, the monetary policy shock accounts for most of the forecast error variance of inflation at all horizons, although the investment shock and the technology shock play a supporting role in driving inflation fluctuations. According to all model specifications, the marginal efficiency of investment shock represents an important source of movements in the nominal interest rate at all horizons. Furthermore, the contribution of the technology shock to the forecast error variance of the nominal interest rate increases across all model specifications over the medium to the long run. Moreover, we find the monetary policy shock to be relatively more important than the preference shock in explaining the fluctuations of the nominal interest rate under \mathcal{M}_{1}, while the reverse holds under specification \mathcal{M}_{2} and \mathcal{M}_{3}.

Overall, also the forecast error variance decomposition reveals to some extent remarkable differences between specification \mathcal{M}_{1} and model versions \mathcal{M}_{2} and \mathcal{M}_{3}. In addition, it appears that the technology shock explains most of the fluctuations in output and consumption in both regions. However, we find the marginal
efficiency of investment shock to play a more important role in business cycle fluctuations in the US than in the euro area. According to tables $L .10-L .15$, the preference shock represents a dominant source of movements in the nominal interest in the euro area, whereas the same holds for the shock to the marginal efficiency of investment in case of the US. Finally, we identify the monetary policy shock to be much more important in explaining the forecast error variance of hours worked and inflation in the euro area than in the US.

4.8 Conclusions

In this chapter we use a Bayesian approach to analyze the impact of different specifications of quadratic adjustment costs on the fit and the dynamics of a New Keynesian model using both euro area and US data. The underlying dynamic stochastic general equilibrium model features real and nominal frictions as well as several exogenous stochastic disturbances, namely a preference shock, a technology shock, a shock to the marginal efficiency of investment, and a monetary policy shock. We consider three different specifications of quadratic adjustment costs: an investment adjustment cost specification and two forms of capital adjustment costs. Therefore, each variant of quadratic adjustment costs defines a distinct version of our New Keynesian DSGE model.

We find to some extent noticeable differences between the estimated structural parameters across the three model versions. The estimates of persistence and volatility of the marginal efficiency of investment shock turn out to vary substantially with the choice of investment or capital adjustment costs.

Moreover, the implementation of either investment or capital adjustment costs affects the dynamics of the respective model specifications considerably. Our results are in line with the findings of Christiano et al. (2005) and Smets and Wouters (2007), who show that sticky-price models incorporating investment adjustment costs are able to produce data-consistent hump-shaped investment dynamics. However, despite the ability of investment adjustment costs to generate hump-shaped investment responses to various shocks, the Bayesian posterior odds comparison indicates that the two model specifications with capital adjustment costs outperform the model version incorporating investment adjustment costs in terms of overall empirical fit.

To further evaluate where the model specifications fail to match the data, we compare the model version's implied characteristics with the actual data using standard moment criteria. In line with the results from the posterior odds analysis, the model versions with capital adjustment costs provide a better fit to the data than the specification including investment adjustment costs. Our findings appear to be qualitatively robust across both data sets.

Therefore, using estimated DSGE models with quadratic costs of capital accumulation for policy analysis should be done with caution, since the results could be affected by the choice of either investment or capital adjustment costs both being modeling shortcuts. Hence, our results give further evidence to encourage the efforts of a sound microfoundation of adjustment costs for capital accumulation as recently put forward by Wang and Wen (2012).

Appendices

Appendix H

Equilibrium Conditions

The appendix outlines the complete system of equations of the three DSGE model specifications.

H. 1 The Economic Environment

- Households:

The representative household chooses $\left\{c_{t}, l_{t}, B_{t}, k_{t+1}, i_{t}\right\}_{t=0}^{\infty}$ to maximize utility

$$
E \sum_{t=0}^{\infty} \beta^{t} a_{t}\left[\log \left(c_{t}-h c_{t-1}\right)-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right],
$$

subject to the budget constraint

$$
\frac{B_{t-1}+W_{t} l_{t}+Q_{t} k_{t}+D_{t}}{P_{t}} \geq c_{t}+i_{t}+S_{j}(\cdot, \cdot)+\frac{B_{t} / r_{t}}{P_{t}}
$$

and the law of motion for capital

$$
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t} .
$$

According to Buiter and Sibert (2007), we prevent the household to make excessive debts by imposing the no-Ponzi-game condition

$$
\lim _{t \rightarrow \infty} B_{t} \prod_{s=0}^{t} \frac{1}{r_{s}} \geq 0
$$

Hence, the Lagrangian can be written as follows:

$$
\begin{aligned}
\Lambda= & E \sum_{t=0}^{\infty}\left\{\beta^{t} a_{t}\left[\log \left(c_{t}-h c_{t-1}\right)-\chi \frac{l_{t}^{1+\eta}}{1+\eta}\right]\right. \\
& -\beta^{t} \lambda_{t}\left[c_{t}+i_{t}+S_{j}(\cdot, \cdot)+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{Q_{t} k_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}\right] \\
& \left.-\beta^{t} \psi_{t}\left[k_{t+1}-(1-\delta) k_{t}-x_{t} i_{t}\right]\right\} .
\end{aligned}
$$

The first-order conditions are obtained by setting the partial derivatives of Λ with respect to $c_{t}, l_{t}, B_{t}, k_{t+1}, i_{t}, \lambda_{t}$, and ψ_{t} equal to zero, yielding

$$
\begin{gather*}
\Lambda_{c_{t}}=a_{t}\left(c_{t}-h c_{t-1}\right)^{-1}-h \beta E_{t}\left[a_{t+1}\left(c_{t+1}-h c_{t}\right)^{-1}\right]-\lambda_{t}=0, \tag{4.5}\\
\Lambda_{l_{t}}=\lambda_{t} \frac{W_{t}}{P_{t}}-a_{t} \chi l_{t}^{\eta}=0, \tag{4.6}\\
\Lambda_{B_{t}}=r_{t} \beta E_{t}\left(\lambda_{t+1} \frac{P_{t}}{P_{t+1}}\right)-\lambda_{t}=0, \tag{4.7}
\end{gather*}
$$

and, concerning the different specifications of $S_{j}(\cdot, \cdot)$,

$$
-S_{1}\left(i_{t-1}, i_{t}\right):
$$

$$
\begin{align*}
\Lambda_{k_{t+1}} & =\psi_{t}-\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right)-\beta E_{t}\left[\psi_{t+1}(1-\delta)\right]=0 \tag{4.8}\\
\Lambda_{i_{t}}= & \lambda_{t}+\lambda_{t}\left[\phi\left(\frac{i_{t}}{i_{t-1}}-1\right)\left(\frac{i_{t}}{i_{t-1}}\right)+\frac{\phi}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}\right] \\
& -\psi_{t} x_{t}-\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{i_{t}}-1\right)\left(\frac{i_{t+1}}{i_{t}}\right)^{2}\right]\right\}=0 \tag{4.9}
\end{align*}
$$

$-S_{2}\left(i_{t}, k_{t}\right):$

$$
\begin{align*}
\Lambda_{k_{t+1}}= & \psi_{t}+\beta E_{t}\left\{\lambda_{t+1}\left[\frac{\phi}{2}\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)^{2}\right]\right\} \\
& -\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)\right]\right\} \\
& -\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right)-\beta E_{t}\left[\psi_{t+1}(1-\delta)\right]=0,
\end{align*}
$$

$$
\Lambda_{i_{t}}=\psi_{t} x_{t}-\lambda_{t}-\lambda_{t}\left[\phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\right]=0
$$

$-S_{3}\left(i_{t}, k_{t}\right):$

$$
\begin{gather*}
\Lambda_{k_{t+1}}=\psi_{t}-\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)^{2}\right]\right\} \\
-\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right)-\beta E_{t}\left[\psi_{t+1}(1-\delta)\right]=0 \\
\Lambda_{i_{t}}=\psi_{t} x_{t}-\lambda_{t}-\lambda_{t} \phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\left(\frac{i_{t}}{k_{t}}\right) \\
\quad-\lambda_{t} \frac{\phi}{2}\left(\frac{i_{t}}{k_{t}}-\delta\right)^{2}=0
\end{gather*}
$$

as well as

$$
\begin{equation*}
\Lambda_{\lambda_{t}}=c_{t}+i_{t}+S(\cdot, \cdot)+\frac{B_{t} / r_{t}}{P_{t}}-\frac{B_{t-1}}{P_{t}}-\frac{W_{t} l_{t}}{P_{t}}-\frac{Q_{t} k_{t}}{P_{t}}-\frac{D_{t}}{P_{t}}=0 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{\psi_{t}}=k_{t+1}-(1-\delta) k_{t}-x_{t} i_{t}=0 \tag{4.11}
\end{equation*}
$$

Finally, we impose the standard transversality conditions to guarantee that bonds and capital do not grow too quickly:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} \frac{B_{t}}{P_{t}}=0 \\
& \lim _{t \rightarrow \infty} \beta^{t} \lambda_{t} k_{t+1}=0
\end{aligned}
$$

- Finished goods-producing firms:

The representative finished goods-producing wants to maximize its profits

$$
P_{t} y_{t}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

subject to the constant returns to scale technology

$$
y_{t} \leq\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}
$$

Hence, the firm's optimization problem can be written as

$$
\max _{y_{t}(i)} \Pi_{t}=P_{t}\left[\int_{0}^{1} y_{t}(i)^{(\theta-1) / \theta} d i\right]^{\theta /(\theta-1)}-\int_{0}^{1} P_{t}(i) y_{t}(i) d i
$$

which leads to the following first-order condition characterizing the demand for intermediate goods:

$$
\frac{\partial \Pi_{t}}{\partial y_{t}(i)}=y_{t}(i)-\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}=0
$$

By substituting this expression into the constant elasticity of substitution aggregator of intermediate goods, we derive the price aggregator

$$
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\theta} d i\right]^{1 /(1-\theta)}
$$

- Intermediate goods-producing firms:

Each intermediate goods-producing firm maximizes its present discounted value of profits

$$
E \sum_{t=0}^{\infty} \beta^{t} \lambda_{t}\left[D_{t}(i) / P_{t}\right]
$$

by choosing $\left\{l_{t}(i), k_{t}(i), y_{t}(i), P_{t}(i)\right\}_{t=0}^{\infty}$ subject to the Cobb-Douglas technology constraint

$$
y_{t}(i) \leq k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}
$$

and the demand for intermediate goods outlined above

$$
y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}
$$

We can use the latter expression to rewrite the real value of dividends

$$
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right] y_{t}(i)-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}
$$

as

$$
\begin{equation*}
\frac{D_{t}(i)}{P_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t} \tag{4.12}
\end{equation*}
$$

Accordingly, the Lagrangian for the firms' intertemporal optimization problem can be written as:

$$
\begin{aligned}
\Lambda= & E \sum_{t=0}^{\infty}\left(\beta^{t} \lambda_{t}\left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{1-\theta} y_{t}-\left[\frac{W_{t} l_{t}(i)+Q_{t} k_{t}(i)}{P_{t}}\right]-\frac{\phi_{P}}{2}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]^{2} y_{t}\right\}\right. \\
& \left.-\beta^{t} \xi_{t}\left\{\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}-k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}\right\}\right)
\end{aligned}
$$

By setting the partial derivatives of Λ with respect to $l_{t}(i), k_{t}(i), P_{t}(i)$, and ξ_{t} equal to zero we have the first-order conditions:

$$
\begin{gather*}
\Lambda_{l_{t}(i)}=\frac{\lambda_{t} W_{t} l_{t}(i)}{P_{t}}-(1-\alpha) \xi_{t} k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0, \tag{4.13}\\
\Lambda_{k_{t}(i)}=\frac{\lambda_{t} Q_{t} k_{t}(i)}{P_{t}}-\alpha \xi_{t} k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0, \tag{4.14}\\
\Lambda_{P_{t}(i)}=\phi_{P} \lambda_{t}\left[\frac{P_{t}(i)}{\pi P_{t-1}(i)}-1\right]\left[\frac{P_{t}}{\pi P_{t-1}(i)}\right] \\
-(1-\theta) \lambda_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta}-\theta \xi_{t}\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta-1} \tag{4.15}\\
-\beta \phi_{P} E_{t}\left\{\lambda_{t+1}\left[\frac{P_{t+1}(i)}{\pi P_{t}(i)}-1\right]\left[\frac{P_{t+1}(i) P_{t}}{\pi P_{t}(i)^{2}}\right]\left(\frac{y_{t+1}}{y_{t}}\right)\right\}=0,
\end{gather*}
$$

and

$$
\begin{equation*}
\Lambda_{\xi_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\theta} y_{t}-k_{t}(i)^{\alpha}\left[z_{t} l_{t}(i)\right]^{1-\alpha}=0 \tag{4.16}
\end{equation*}
$$

- The monetary authority sets the gross nominal interest rate according to the Taylor-type rule:

$$
\begin{equation*}
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right) \tag{4.17}
\end{equation*}
$$

H. 2 The Nonlinear System

H.2.1 Symmetric Equilibrium

Each version \mathcal{M}_{j} of the model is characterized by a nonlinear system of 17 equations, namely:

- $\mathcal{M}_{1}:(4.1)-(4.7),(4.8),(4.9),(4.10)-(4.17)$,
- $\mathcal{M}_{2}:(4.1)-(4.7),\left(4.8^{\prime}\right),\left(4.9^{\prime}\right),(4.10)-(4.17)$, and
- $\mathcal{M}_{3}:(4.1)-(4.7),\left(4.8^{\prime \prime}\right),\left(4.9^{\prime \prime}\right),(4.10)-(4.17)$.

The model is closed through two additional steps. First, we focus on a symmetric equilibrium where all intermediate goods-producing firms make identical decisions. This assumption implies $P_{t}(i)=P_{t}, y_{t}(i)=y_{t}, l_{t}(i)=l_{t}, k_{t}(i)=k_{t}$, and $D_{t}(i)=$ D_{t} for all $i \in[0,1]$ and $t=0,1,2, \ldots$. Second, the market clearing condition for the bond market $B_{t}=B_{t-1}=0$ must hold for all $t=0,1,2, \ldots$. By substituting these conditions into (4.1) - (4.17) and defining the average product of labor as $n_{t}=y_{t} / l_{t}$ for each version \mathcal{M}_{j} of the underlying model we obtain:

$$
\begin{gather*}
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{4.1}\\
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{4.2}\\
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{4.3}\\
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{4.4}\\
a_{t}\left(c_{t}-h c_{t-1}\right)^{-1}-h \beta E_{t}\left[a_{t+1}\left(c_{t+1}-h c_{t}\right)^{-1}\right]=\lambda_{t}, \tag{4.5}\\
\lambda_{t} \frac{W_{t}}{P_{t}}=a_{t} \chi l_{t}^{\eta} \tag{4.6}\\
\lambda_{t}=r_{t} \beta E_{t}\left(\lambda_{t+1} \frac{P_{t}}{P_{t+1}}\right), \tag{4.7}\\
\psi_{t}=\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right)+\beta E_{t}\left[\psi_{t+1}(1-\delta)\right], \tag{4.8}
\end{gather*}
$$

$$
\begin{align*}
& \psi_{t} x_{t}=\lambda_{t}+\lambda_{t}\left[\phi\left(\frac{i_{t}}{i_{t-1}}-1\right)\left(\frac{i_{t}}{i_{t-1}}\right)+\frac{\phi}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}\right] \\
& -\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{i_{t}}-1\right)\left(\frac{i_{t+1}}{i_{t}}\right)^{2}\right]\right\}, \tag{4.9}\\
& \beta E_{t}\left[\psi_{t+1}(1-\delta)\right]=\psi_{t}+\beta E_{t}\left\{\lambda_{t+1}\left[\frac{\phi}{2}\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)^{2}\right]\right\} \\
& -\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)\right]\right\} \\
& -\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right), \\
& \psi_{t} x_{t}=\lambda_{t}+\lambda_{t}\left[\phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\right], \\
& \psi_{t}=\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)^{2}\right]\right\} \\
& +\beta E_{t}\left(\lambda_{t+1} \frac{Q_{t+1}}{P_{t+1}}\right)+\beta E_{t}\left[\psi_{t+1}(1-\delta)\right], \\
& \psi_{t} x_{t}=\lambda_{t}+\lambda_{t} \phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\left(\frac{i_{t}}{k_{t}}\right) \\
& +\lambda_{t} \frac{\phi}{2}\left(\frac{i_{t}}{k_{t}}-\delta\right)^{2}, \\
& y_{t}=c_{t}+i_{t}+S_{j}(\cdot, \cdot)+\frac{\phi_{P}}{2}\left(\frac{P_{t}}{\pi P_{t-1}}-1\right)^{2} y_{t}, \tag{4.10}\\
& k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t}, \tag{4.11}\\
& \frac{D_{t}}{P_{t}}=y_{t}-\frac{W_{t} l_{t}+Q_{t} k_{t}}{P_{t}}-\frac{\phi_{P}}{2}\left(\frac{P_{t}}{\pi P_{t-1}}-1\right)^{2} y_{t}, \tag{4.12}\\
& \lambda_{t} \frac{W_{t}}{P_{t}} l_{t}=(1-\alpha) \xi_{t} y_{t}, \tag{4.13}\\
& \lambda_{t} \frac{Q_{t}}{P_{t}} k_{t}=\alpha \xi_{t} y_{t}, \tag{4.14}\\
& \phi_{P} \lambda_{t}\left(\frac{P_{t}}{\pi P_{t-1}}-1\right)\left(\frac{P_{t}}{\pi P_{t-1}}\right)=(1-\theta) \lambda_{t}+\theta \xi_{t} \\
& +\beta \phi_{P} E_{t}\left[\lambda_{t+1}\left(\frac{P_{t+1}}{\pi P_{t}}-1\right)\left(\frac{P_{t+1}}{\pi P_{t}}\right)\left(\frac{y_{t+1}}{y_{t}}\right)\right], \tag{4.15}
\end{align*}
$$

$$
\begin{gather*}
y_{t}=k_{t}^{\alpha}\left[z_{t} l_{t}\right]^{1-\alpha} \tag{4.16}\\
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right) \tag{4.17}
\end{gather*}
$$

and

$$
\begin{equation*}
n_{t}=\frac{y_{t}}{l_{t}} \tag{4.18}
\end{equation*}
$$

H.2.2 Change of Variables

Let $\pi_{t}=\frac{P_{t}}{P_{t-1}}, w_{t}=\frac{W_{t}}{P_{t}}, q_{t}=\frac{Q_{t}}{P_{t}}$, and $d_{t}=\frac{D_{t}}{P_{t}}$. Using these re-defined variables the nonlinear system encompassing (4.1) - (4.18) becomes:

$$
\begin{gather*}
\ln \left(x_{t}\right)=\rho_{x} \ln \left(x_{t-1}\right)+\varepsilon_{x t}, \tag{4.1}\\
\ln \left(a_{t}\right)=\rho_{a} \ln \left(a_{t-1}\right)+\varepsilon_{a t}, \tag{4.2}\\
\ln \left(z_{t}\right)=\left(1-\rho_{z}\right) \ln (z)+\rho_{z} \ln \left(z_{t-1}\right)+\varepsilon_{z t}, \tag{4.3}\\
\ln \left(v_{t}\right)=\rho_{v} \ln \left(v_{t-1}\right)+\varepsilon_{v t}, \tag{4.4}\\
a_{t}\left(c_{t}-h c_{t-1}\right)^{-1}-h \beta E_{t}\left[a_{t+1}\left(c_{t+1}-h c_{t}\right)^{-1}\right]=\lambda_{t}, \tag{4.5}\\
\lambda_{t} w_{t}=a_{t} \chi l_{t}^{\eta}, \tag{4.6}\\
\lambda_{t}=r_{t} \beta E_{t}\left(\frac{\lambda_{t+1}}{\pi_{t+1}}\right), \tag{4.7}\\
\psi_{t}=\beta E_{t}\left(\lambda_{t+1} q_{t+1}\right)+\beta E_{t}\left[\psi_{t+1}(1-\delta)\right], \tag{4.8}\\
\psi_{t} x_{t}=\lambda_{t}+\lambda_{t}\left[\phi\left(\frac{i_{t}}{i_{t-1}}-1\right)\left(\frac{i_{t}}{i_{t-1}}\right)+\frac{\phi}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}\right] \tag{4.9}\\
-\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{i_{t}}-1\right)\left(\frac{i_{t+1}}{i_{t}}\right)^{2}\right]\right\}, \\
\beta E_{t}\left[\psi_{t+1}(1-\delta)\right]=\psi_{t}+\beta E_{t}\left\{\lambda_{t+1}\left[\frac{\phi}{2}\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)^{2}\right]\right\} \\
\quad-\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)\right]\right\} \\
\quad-\beta E_{t}\left(\lambda_{t+1} q_{t+1}\right),
\end{gather*}
$$

$$
\begin{gather*}
\psi_{t} x_{t}=\lambda_{t}+\lambda_{t}\left[\phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\right], \\
\psi_{t}=\beta E_{t}\left\{\lambda_{t+1}\left[\phi\left(\frac{i_{t+1}}{k_{t+1}}-\delta\right)\left(\frac{i_{t+1}}{k_{t+1}}\right)^{2}\right]\right\} \\
+\beta E_{t}\left(\lambda_{t+1} q_{t+1}\right)+\beta E_{t}\left[\psi_{t+1}(1-\delta)\right], \\
\psi_{t} x_{t}=\lambda_{t}+\lambda_{t} \phi\left(\frac{i_{t}}{k_{t}}-\delta\right)\left(\frac{i_{t}}{k_{t}}\right) \\
+\lambda_{t} \frac{\phi}{2}\left(\frac{i_{t}}{k_{t}}-\delta\right)^{2}, \\
y_{t}=c_{t}+i_{t}+S_{j}(\cdot, \cdot)+\frac{\phi_{P}}{2}\left(\frac{\pi_{t}}{\pi}-1\right)^{2} y_{t}, \tag{4.10}\\
k_{t+1}=(1-\delta) k_{t}+x_{t} i_{t}, \tag{4.11}\\
d_{t}=y_{t}-w_{t} l_{t}-q_{t} k_{t}-\frac{\phi_{P}}{2}\left(\frac{\pi_{t}}{\pi}-1\right)^{2} y_{t}, \tag{4.12}\\
\lambda_{t} w_{t} l_{t}=(1-\alpha) \xi_{t} y_{t}, \tag{4.13}\\
\lambda_{t} q_{t} k_{t}=\alpha \xi_{t} y_{t}, \tag{4.14}\\
\phi_{P} \lambda_{t}\left(\frac{\pi_{t}}{\pi}-1\right)\left(\frac{\pi_{t}}{\pi}\right)=(1-\theta) \lambda_{t}+\theta \xi_{t} \\
+\beta \phi_{P} E_{t}\left[\lambda_{t+1}\left(\frac{\pi_{t+1}}{\pi}-1\right)\left(\frac{\pi_{t+1}}{\pi}\right)\left(\frac{y_{t+1}}{y_{t}}\right)\right] \tag{4.15}\\
y_{t}=k_{t}^{\alpha}\left[z_{t} l_{t}\right]^{1-\alpha}, \tag{4.16}\\
\ln \left(\frac{r_{t}}{r}\right)=\rho_{r} \ln \left(\frac{r_{t-1}}{r}\right)+\left(1-\rho_{r}\right)\left[\omega_{\pi} \ln \left(\frac{\pi_{t}}{\pi}\right)+\omega_{y} \ln \left(\frac{y_{t}}{y}\right)\right]+\ln \left(v_{t}\right), \tag{4.17}
\end{gather*}
$$

and

$$
\begin{equation*}
n_{t}=\frac{y_{t}}{l_{t}} . \tag{4.18}
\end{equation*}
$$

H. 3 Steady States

In absence of the four shocks, i.e., $\varepsilon_{x t}=\varepsilon_{a t}=\varepsilon_{z t}=\varepsilon_{v t}=0$ for all $t=0,1,2, \ldots$, the economy converges to a steady state, where each of the 18 variables is constant. Due to the absence of adjustment costs of capital accumulation in the steady state, the determination of the model's steady state values is independent from a specific form of adjustment costs. Therefore, the subsequent steady state computation can
be undertaken using just one out of the three adjustment costs specifications under consideration. We use (4.1), (4.2), (4.3) and (4.4) to solve for

$$
\begin{aligned}
& x=1 \\
& a=1 \\
& z=z \\
& v=1
\end{aligned}
$$

Assuming that steady state (gross) inflation target π is determined by policy, (4.7) can be used to solve for

$$
r=\frac{\pi}{\beta}
$$

Next, (4.8) and (4.9) can be used to solve for

$$
q=\frac{1}{\beta}-1+\delta
$$

and

$$
\psi=\lambda
$$

Use (4.15) to solve for

$$
\xi=\left(\frac{\theta-1}{\theta}\right) \lambda .
$$

Equation (4.5) can be used to solve for

$$
c=\left(\frac{1-h \beta}{1-h}\right)\left(\frac{1}{\lambda}\right) .
$$

Use (4.10)-(4.16), and (4.18) to solve for

$$
\begin{gathered}
y=\left[1-\delta\left(\frac{\alpha}{q}\right)\left(\frac{\theta-1}{\theta}\right)\right]^{-1} c \\
k=\left(\frac{\alpha}{q}\right)\left(\frac{\theta-1}{\theta}\right) y \\
i=\delta k \\
l=\left(\frac{1}{z}\right)\left(\frac{y}{k^{\alpha}}\right)^{\frac{1}{1-\alpha}}
\end{gathered}
$$

$$
\begin{gathered}
w=(1-\alpha)\left(\frac{\theta-1}{\theta}\right)\left(\frac{y}{l}\right), \\
d=y-w l-q k
\end{gathered}
$$

and

$$
n=\frac{y}{l} .
$$

Finally, use (4.6) to solve for

$$
\lambda=\frac{\chi\left\{\frac{(1-\alpha)\left(\frac{\theta-1}{\theta}\right)\left[1-\delta\left(\frac{\alpha}{q}\right)\left(\frac{\theta-1}{\theta}\right)\right]^{-1}\left(\frac{1-h \beta}{1-h}\right)}{\chi}\right\}^{\frac{\eta}{1+\eta}}}{(1-\alpha) z\left(\frac{\alpha}{q}\right)^{\frac{\alpha}{1-\alpha}}\left(\frac{\theta-1}{\theta}\right)^{\frac{1}{1-\alpha}}} .
$$

H. 4 The Linearized System

The nonlinear system (4.1) - (4.18) can be linearized by taking a log-linear approximation of the model at steady state values. For a detailed description of logarithmic approximations we refer to Canova (2007), DeJong and Dave (2007), and Zietz (2008). Let $\widehat{v a r}_{t} \equiv \log \left(\frac{v a r t_{t}}{v a r}\right)$ denote the log-deviation of some variable $v a r_{t}$ from its steady state var, where $\log \left(\frac{v a r_{t}}{v a r}\right) \approx \frac{v a r_{t}-v a r}{v a r}$. A first-order Taylor approximation of equation $(4.1)-(4.18)$ at the steady state gives:

$$
\begin{gather*}
\hat{x}_{t}=\rho_{x} \hat{x}_{t-1}+\varepsilon_{x t} \tag{4.1}\\
\hat{a}_{t}=\rho_{a} \hat{a}_{t-1}+\varepsilon_{a t} \tag{4.2}\\
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\varepsilon_{z t} \tag{4.3}\\
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\varepsilon_{v t} \tag{4.4}\\
(1-h)(1-h \beta) \hat{\lambda}_{t}=(1-h)\left(1-h \beta \rho_{a}\right) \hat{a}_{t}+h \hat{c}_{t-1}-\left(1+h^{2} \beta\right) \hat{c}_{t}+h \beta E_{t} \hat{c}_{t+1} \tag{4.5}\\
\hat{\lambda}_{t}+\hat{w}_{t}=\hat{a}_{t}+\eta \hat{l}_{t} \tag{4.6}\\
\hat{\lambda}_{t}=\hat{r}_{t}+E_{t} \hat{\lambda}_{t+1}-E_{t} \hat{\pi}_{t+1} \tag{4.7}\\
\hat{\psi}_{t}=\beta q E_{t} \hat{\lambda}_{t+1}+\beta q E_{t} \hat{q}_{t+1}+\beta(1-\delta) E_{t} \hat{\psi}_{t+1} \tag{4.8}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\psi}_{t}+\hat{x}_{t}=\hat{\lambda}_{t}-\phi \hat{i}_{t-1}+(1+\beta) \phi \hat{i}_{t}-\beta \phi E_{t} \hat{i}_{t+1}, \tag{4.9}\\
\beta(1-\delta) E_{t} \hat{\psi}_{t+1}=\hat{\psi}_{t}-\beta \phi\left(\frac{i}{k}\right)^{2} E_{t} \hat{i}_{t+1}+\beta \phi\left(\frac{i}{k}\right)^{2} \hat{k}_{t+1}-\beta q E_{t} \hat{\lambda}_{t+1}-\beta q E_{t} \hat{q}_{t+1}, \\
\hat{\psi}_{t}+\hat{x}_{t}=\hat{\lambda}_{t}+\phi\left(\frac{i}{k}\right) \hat{i}_{t}-\phi\left(\frac{i}{k}\right)^{\prime} \hat{k}_{t}, \\
\hat{\psi}_{t}=\beta \phi\left(\frac{i}{k}\right)\left(\frac{i}{k}\right)^{2} E_{t} \hat{i}_{t+1}-\beta \phi\left(\frac{i}{k}\right)^{3} \hat{k}_{t+1} \\
+\beta q E_{t} \hat{q}_{t+1}+\beta q E_{t} \hat{\lambda}_{t+1}+\beta(1-\delta) E_{t} \hat{\psi}_{t+1}, \\
\hat{\psi}_{t}+\hat{x}_{t}=\hat{\lambda}_{t}+\phi\left(\frac{i}{k}\right)^{2} \hat{i}_{t}-\phi\left(\frac{i}{k}\right)^{2} \hat{k}_{t}, \\
y \hat{y}_{t}=c \hat{c}_{t}+i \hat{i}_{t}, \tag{4.10}\\
k \hat{k}_{t+1}=(1-\delta) k \hat{k}_{t}+i \hat{x}_{t}+i \hat{i}_{t}, \tag{4.11}\\
d \hat{d}_{t}=y \hat{y}_{t}-w l \hat{w}_{t}-w l \hat{l}_{t}-q k \hat{q}_{t}-q k \hat{k}_{t}, \tag{4.12}\\
\hat{\lambda}_{t}+\hat{w}_{t}+\hat{l}_{t}=\hat{\xi}_{t}+\hat{y}_{t}, \tag{4.13}\\
\hat{\lambda}_{t}+\hat{q}_{t}+\hat{k}_{t}=\hat{\xi}_{t}+\hat{y}_{t}, \tag{4.14}\\
\hat{l}_{P} \hat{\pi}_{t}=(1-\theta) \hat{\lambda}_{t}+(\theta-1) \hat{\xi}_{t}+\beta \phi_{P} E_{t} \hat{\pi}_{t+1}, \tag{4.15}\\
\hat{y}=\alpha \hat{k}_{t}+(1-\alpha) \hat{z}_{t}+(1-\alpha) \hat{l}_{t}, \tag{4.16}\\
\hat{r}_{t}=\rho_{r} \hat{r}_{t-1}+\left(1-\rho_{r}\right)\left(\omega_{\pi} \hat{\pi}_{t}+\omega_{y} \hat{y}_{t}\right)+\hat{v}_{t}, \tag{4.17}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{n}_{t}=\hat{y}_{t}-\hat{l}_{t} . \tag{4.18}
\end{equation*}
$$

Appendix I

Solving the Model

According to Adjemian et al. (2011), the core of the DYNARE solution algorithm for computing the solution of a linear rational expectations model is based on a complex generalized Schur decomposition as presented in Klein (2000). Hence, we give a brief description of how to solve the three model specifications under consideration using this solution method. For a more detailed presentation of the complex generalized Schur decomposition we refer to Golub and Van Loan (1996).

I. 1 Klein's method

Each model version \mathcal{M}_{j} can be solved following the approach of Klein (2000) outlined in appendix B.2. Therefore, each of the model's specifications is brought into the form:

$$
\begin{gather*}
A E_{t} s_{t+1}^{0}=B s_{t}^{0}+C \zeta_{t} \tag{4.19}\\
\zeta_{t}=P \zeta_{t-1}+\varepsilon_{t} \tag{4.20}
\end{gather*}
$$

where A, B, and C are coefficient matrices, P contains the persistence parameters of the shocks, ζ_{t} consists of the model's exogenous forcing variables, while the serially and mutually uncorrelated innovations are included in ε_{t}. The vector s_{t}^{0} can be separated into

$$
s_{t}^{0}=\left[\begin{array}{ll}
s_{1 t}^{0} & s_{2 t}^{0}
\end{array}\right]^{\prime},
$$

letting $s_{1 t}^{0}$ denote a vector of predetermined and $s_{2 t}^{0}$ a vector of non-predetermined
variables, which implies that:

$$
E_{t} s_{t+1}=\left[\begin{array}{ll}
s_{1 t+1}^{0} & E_{t} s_{2 t+1}^{0}
\end{array}\right]^{\prime}
$$

The solution technique relies on decoupling the system into unstable and stable portions, using a complex generalized Schur decomposition, and then solving the two components in turn. If, as set out in Blanchard and Kahn (1980), the number of generalized eigenvalues with modulus larger than unity equals the number of non-predetermined variables, a unique solution exits and system is said to be saddle-path stable (see DeJong and Dave, 2007). ${ }^{1}$ Since the versions \mathcal{M}_{2} and \mathcal{M}_{3}, of the model differ with respect to the number of predetermined variables from \mathcal{M}_{1}, we need to subdivide the description of the solution method. The subsequent sections follow the expositions in Klein (2000), DeJong and Dave (2007), and the technical notes of Ireland (2011). ${ }^{2}$

I. 2 Solving \mathcal{M}_{2} and \mathcal{M}_{3}

Let

$$
\begin{gathered}
s_{t}^{0}=\left[\begin{array}{lllllllllllll}
\hat{c}_{t-1} & \hat{k}_{t} & \hat{r}_{t-1} & \hat{\lambda}_{t} & \hat{w}_{t} & \hat{l}_{t} & \hat{\pi}_{t} & \hat{\psi}_{t} & \hat{q}_{t} & \hat{i}_{t} & \hat{y}_{t} & \hat{d}_{t} & \hat{\xi}_{t} \\
\hat{n}_{t} & \hat{c}_{t}
\end{array}\right]^{\prime} \\
\zeta_{t} \\
=\left[\begin{array}{cccc}
\hat{x}_{t} & \hat{a}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime} \\
P=\left[\begin{array}{cccc}
\rho_{x} & 0 & 0 & 0 \\
0 & \rho_{a} & 0 & 0 \\
0 & 0 & \rho_{z} & 0 \\
0 & 0 & 0 & \rho_{v}
\end{array}\right]
\end{gathered}
$$

and

$$
\varepsilon_{t}=\left[\begin{array}{llll}
\varepsilon_{x t} & \varepsilon_{a t} & \varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime}
$$

[^42]Then the coefficient matrices A, B, and C for the different versions of the model are:

- \mathcal{M}_{2} :

$$
A=\left[\begin{array}{ccccccccccccccc}
-\left(1+h^{2} \beta\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h \beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta \phi\left(\frac{i}{k}\right)^{2} & 0 & \beta q & 0 & 0 & 0 & \beta(1-\delta) & \beta q & \beta \phi\left(\frac{i}{k}\right)^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta \phi_{P} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
B=\left[\begin{array}{ccccccccccccccc}
-h & 0 & 0 & (1-h)(1-h \beta) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & -\eta & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \phi\left(\frac{i}{k}\right) & 0 & -1 & 0 & 0 & 0 & 1 & 0 & -\phi\left(\frac{i}{k}\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i & y & 0 & 0 & 0 & 0 \\
0 & (1-\delta) k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i & 0 & 0 & 0 & 0 & 0 \\
0 & -q k & 0 & 0 & -w l & -w l & 0 & 0 & -q k & 0 & y & -d & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -(1-\theta) & 0 & 0 & \phi_{P} & 0 & 0 & 0 & 0 & 0 & -(\theta-1) & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & (1-\alpha) & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & \rho_{r} & 0 & 0 & 0 & \left(1-\rho_{r}\right) \omega_{\pi} & 0 & 0 & 0 & \left(1-\rho_{r}\right) \omega_{y} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

and

$$
C=\left[\begin{array}{cccc}
0 & -(1-h)\left(1-h \beta \rho_{a}\right) & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & (1-\alpha) & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

- \mathcal{M}_{3} :

$$
\begin{aligned}
& A=\left[\begin{array}{ccccccccccccccc}
-\left(1+h^{2} \beta\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h \beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta \phi\left(\frac{i}{k}\right)^{3} & 0 & \beta q & 0 & 0 & 0 & \beta(1-\delta) & \beta q & \beta \phi\left(\frac{i}{k}\right)^{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta \phi_{P} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& B=\left[\begin{array}{ccccccccccccccc}
-h & 0 & 0 & (1-h)(1-h \beta) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & -\eta & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \phi\left(\frac{i}{k}\right)^{2} & 0 & -1 & 0 & 0 & 0 & 1 & 0 & -\phi\left(\frac{i}{k}\right)^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i & y & 0 & 0 & 0 & 0 \\
0 & (1-\delta) k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i & 0 & 0 & 0 & 0 & 0 \\
0 & -q k & 0 & 0 & -w l & -w l & 0 & 0 & -q k & 0 & y & -d & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -(1-\theta) & 0 & 0 & \phi_{P} & 0 & 0 & 0 & 0 & 0 & -(\theta-1) & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & (1-\alpha) & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & \rho_{r} & 0 & 0 & 0 & \left(1-\rho_{r}\right) \omega_{\pi} & 0 & 0 & 0 & \left(1-\rho_{r}\right) \omega_{y} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

and

$$
C=\left[\begin{array}{cccc}
0 & -(1-h)\left(1-h \beta \rho_{a}\right) & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & (1-\alpha) & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Following Klein (2000), we apply the complex generalized Schur decomposition of A and B, which is given by

$$
Q A Z=S
$$

and

$$
Q B Z=T
$$

where Q and Z are unitary and S and T are upper triangular matrices. The generalized eigenvalues of B and A can be recovered as the ratios of the diagonal elements of T and S :

$$
\lambda(B, A)=\left\{t_{i i} / s_{i i} \mid i=1,2, \ldots, 15\right\}
$$

The matrices Q, Z, S, and T can always be arranged so that the generalized eigenvalues are ordered in increasing value in moving from left to right. Note that the vector s_{t}^{0} comprises of three predetermined and twelve non-predetermined variables.

We proceed under the case of saddle-path stability, assuming exactly twelve generalized eigenvalues to lie outside the unit circle, and therefore allow for a unique solution. The matrices Q, Z, S, and T are portioned, so that

$$
Q=\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]
$$

where Q_{1} is 3×15 and Q_{2} is 12×15 and

$$
\begin{aligned}
Z & =\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right] \\
S & =\left[\begin{array}{cc}
S_{11} & S_{12} \\
0_{(12 \times 3)} & S_{22}
\end{array}\right], \\
T & =\left[\begin{array}{cc}
T_{11} & T_{12} \\
0_{(12 \times 3)} & T_{22}
\end{array}\right],
\end{aligned}
$$

where Z_{11}, S_{11}, and T_{11} are 3×3 and Z_{12}, S_{12}, and T_{12} are $3 \times 12, Z_{21}$ is 12×3, and Z_{22}, S_{22}, and T_{22} are 12×12. To "triangularize" the system we first define the vector of auxiliary variables as

$$
s_{t}^{1}=Z^{H} s_{t}^{0}
$$

letting Z^{H} denote the conjugate transpose of matrix Z, so that

$$
s_{t}^{1}=\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]
$$

where

$$
s_{1 t}^{1}=Z_{11}^{H}\left[\begin{array}{c}
\hat{c}_{t-1} \tag{4.21}\\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]+Z_{21}^{H}\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{i}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t}
\end{array}\right]
$$

is 3×1 and

$$
s_{2 t}^{1}=Z_{12}^{H}\left[\begin{array}{c}
\hat{c}_{t-1} \tag{4.22}\\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]+Z_{22}^{H}\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{i}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t}
\end{array}\right]
$$

is 12×1.
Since Z is unitary, $Z^{H} Z=I$ or $Z^{H}=Z^{-1}$ and hence $s_{t}^{0}=Z s_{t}^{1}$. We use this property to rewrite (4.19) as

$$
A Z E_{t} s_{t+1}^{1}=B Z s_{t}^{1}+C \zeta_{t} .
$$

Premultiplying this equation by Q gives

$$
\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right] E_{t}\left[\begin{array}{l}
s_{1 t+1}^{1} \\
s_{2 t+1}^{1}
\end{array}\right]=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]+\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] C \zeta_{t}
$$

or in matrix partitions,

$$
\begin{equation*}
S_{11} E_{t} s_{1 t+1}^{1}+S_{12} E_{t} s_{2 t+1}^{1}=T_{11} s_{1 t}^{1}+T_{12} s_{2 t}^{1}+Q_{1} C \zeta_{t} \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{22} E_{t} s_{2 t+1}^{1}=T_{22} s_{2 t}^{1}+Q_{2} C \zeta_{t} . \tag{4.24}
\end{equation*}
$$

Since the generalized eigenvalues corresponding to the diagonal elements of S_{22} and T_{22} all lie outside the unit circle, (4.24) can be solved forward to obtain

$$
s_{2 t}^{1}=-T_{22}^{-1} R \zeta_{t},
$$

where the 12×4 matrix R is given by "reshaping" ${ }^{3}$

$$
\begin{aligned}
\operatorname{vec}(R) & =\operatorname{vec} \sum_{j=0}^{\infty}\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}=\sum_{j=0}^{\infty} \operatorname{vec}\left[\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}\right] \\
& =\sum_{j=0}^{\infty}\left[P^{j} \otimes\left(S_{22} T_{22}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2} C\right)=\sum_{j=0}^{\infty}\left[P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{j} \operatorname{vec}\left(Q_{2} C\right) \\
& =\left[I_{(48 \times 48)}-P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{-1} \operatorname{vec}\left(Q_{2} C\right) .
\end{aligned}
$$

Using this result together with equation (4.22) allows to solve for

$$
\left[\begin{array}{c}
\hat{\lambda}_{t} \tag{4.25}\\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{i}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t}
\end{array}\right]=-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]-\left(Z_{22}^{H}\right)^{-1} T_{22}^{-1} R \zeta_{t} .
$$

Under the assumption that Z is unitary, i.e.,

$$
\underbrace{\left[\begin{array}{cc}
Z_{11}^{H} & Z_{21}^{H} \\
Z_{12}^{H} & Z_{22}^{H}
\end{array}\right]}_{Z^{H}} \underbrace{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}_{Z}=\underbrace{\left[\begin{array}{cc}
I_{(3 \times 3)} & 0_{(3 \times 12)} \\
0_{(12 \times 3)} & I_{(12 \times 12)}
\end{array}\right]}_{I},
$$

we find

$$
Z_{12}^{H} Z_{11}+Z_{22}^{H} Z_{21}=0
$$

[^43]\[

$$
\begin{gathered}
-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H}=Z_{21} Z_{11}^{-1} \\
Z_{12}^{H} Z_{12}+Z_{22}^{H} Z_{22}=I
\end{gathered}
$$
\]

and

$$
\left(Z_{22}^{H}\right)^{-1}=Z_{22}+\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H} Z_{12}=Z_{22}-Z_{21} Z_{11}^{-1} Z_{12},
$$

which allows to rewrite (4.25) as

$$
\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{i}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t}
\end{array}\right]=M_{1}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]+M_{2} \zeta_{t}
$$

with

$$
M_{1}=Z_{21} Z_{11}^{-1}
$$

and

$$
M_{2}=-\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R
$$

Now we can solve (4.21) for $s_{1 t}^{1}$

$$
s_{1 t}^{1}=\left(Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}\right)\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]-Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R \zeta_{t},
$$

using

$$
Z_{11}^{H} Z_{11}+Z_{21}^{H} Z_{21}=I
$$

$$
Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}=Z_{11}^{-1}
$$

and

$$
Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right]=Z_{21}^{H} Z_{22}-Z_{21}^{H} Z_{21} Z_{11}^{-1} Z_{12}=-Z_{11}^{-1} Z_{12}
$$

so that

$$
s_{1 t}^{1}=Z_{11}^{-1}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]+Z_{11}^{-1} Z_{12} T_{22}^{-1} R \zeta_{t}
$$

If we plug this result into equation (4.23), we get

$$
\left[\begin{array}{c}
\hat{c}_{t} \tag{4.26}\\
\hat{k}_{t+1} \\
\hat{r}_{t}
\end{array}\right]=M_{3}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1}
\end{array}\right]+M_{4} \zeta_{t},
$$

where

$$
M_{3}=Z_{11} S_{11}^{-1} T_{11} Z_{11}^{-1}
$$

and

$$
M_{4}=Z_{11} S_{11}^{-1}\left(T_{11} Z_{11}^{-1} Z_{12} T_{22}^{-1} R+Q_{1} C+S_{12} T_{22}^{-1} R P-T_{12} T_{22}^{-1} R\right)-Z_{12} T_{22}^{-1} R P
$$

Hence, the model's solution can be written compactly in state space form by combining (4.20), (4.25') and (4.26) as

$$
\begin{equation*}
s_{t+1}=\Gamma_{0} s_{t}+\Gamma_{1} \varepsilon_{t+1} \tag{4.27}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{t}=\Gamma_{2} s_{t} \tag{4.28}
\end{equation*}
$$

where

$$
\begin{aligned}
& s_{t}=\left[\begin{array}{lllllll}
\hat{c}_{t-1} & \hat{k}_{t} & \hat{r}_{t-1} & \hat{x}_{t} & \hat{a}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}, \\
& f_{t}=\left[\begin{array}{llllllllllll}
\hat{\lambda}_{t} & \hat{w}_{t} & \hat{l}_{t} & \hat{\pi}_{t} & \hat{\psi}_{t} & \hat{q}_{t} & \hat{i}_{t} & \hat{y}_{t} & \hat{d}_{t} & \hat{\xi}_{t} & \hat{n}_{t} & \hat{c}_{t}
\end{array}\right]^{\prime}, \\
& \varepsilon_{t+1}=\left[\begin{array}{llll}
\varepsilon_{x t} & \varepsilon_{a t} & \varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime},
\end{aligned}
$$

$$
\begin{gathered}
\Gamma_{0}=\left[\begin{array}{cc}
M_{3} & M_{4} \\
0_{(4 \times 3)} & P
\end{array}\right], \\
\Gamma_{1}=\left[\begin{array}{c}
0_{(3 \times 4)} \\
I_{(4 \times 4)}
\end{array}\right],
\end{gathered}
$$

and

$$
\Gamma_{2}=\left[\begin{array}{ll}
M_{1} & M_{2}
\end{array}\right]
$$

I. 3 Solving \mathcal{M}_{1}

Let

$$
\left.\begin{array}{c}
s_{t}^{0}=\left[\begin{array}{lllllllllllllll}
\hat{c}_{t-1} & \hat{k}_{t} & \hat{r}_{t-1} & \hat{i}_{t-1} & \hat{\lambda}_{t} & \hat{w}_{t} & \hat{l}_{t} & \hat{\pi}_{t} & \hat{\psi}_{t} & \hat{q}_{t} & \hat{y}_{t} & \hat{d}_{t} & \hat{\xi}_{t} & \hat{n}_{t} & \hat{c}_{t}
\end{array} \hat{i}_{t}\right.
\end{array}\right]^{\prime}, ~ \begin{array}{cc}
\zeta_{t} & =\left[\begin{array}{llll}
\hat{x}_{t} & \hat{a}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}, \\
P & =\left[\begin{array}{cccc}
\rho_{x} & 0 & 0 & 0 \\
0 & \rho_{a} & 0 & 0 \\
0 & 0 & \rho_{z} & 0 \\
0 & 0 & 0 & \rho_{v}
\end{array}\right],
\end{array}
$$

and

$$
\varepsilon_{t}=\left[\begin{array}{llll}
\varepsilon_{x t} & \varepsilon_{a t} & \varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime} .
$$

Then the coefficient matrices A, B and C for version \mathcal{M}_{1} of the model are:

$$
A=\left[\begin{array}{cccccccccccccccc}
-\left(1+h^{2} \beta\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h \beta & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \beta q & 0 & 0 & 0 & \beta(1-\delta) & \beta q & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & (1+\beta) \phi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\beta \phi \\
c & 0 & 0 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & k & 0 & -i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta \phi_{P} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$B=\left[\begin{array}{cccccccccccccccc}-h & 0 & 0 & 0 & (1-h)(1-h \beta) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -\eta & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \phi & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & y & 0 & 0 & 0 & 0 & 0 \\ 0 & (1-\delta) k & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -q k & 0 & 0 & 0 & -w l & -w l & 0 & 0 & -q k & y & -d & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -(1-\theta) & 0 & 0 & \phi_{P} & 0 & 0 & 0 & 0 & -(\theta-1) & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 & (1-\alpha) & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \rho_{r} & 0 & 0 & 0 & 0 & \left(1-\rho_{r}\right) \omega_{\pi} & 0 & 0 & \left(1-\rho_{r}\right) \omega_{y} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$,
and

$$
C=\left[\begin{array}{cccc}
0 & -(1-h)\left(1-h \beta \rho_{a}\right) & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & (1-\alpha) & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Just as in the case of \mathcal{M}_{2} and \mathcal{M}_{3} we follow the approach of Klein (2000), and perform a complex generalized Schur decomposition of A and B, which is given by

$$
Q A Z=S
$$

and

$$
Q B Z=T,
$$

letting Q and Z denote unitary and S and T upper triangular matrices. The generalized eigenvalues of B and A can be recovered as the ratios of the diagonal
elements of T and S :

$$
\lambda(B, A)=\left\{t_{i i} / s_{i i} \mid i=1,2, \ldots, 16\right\} .
$$

Again, the matrices Q, Z, S, and T can be arranged so that the generalized eigenvalues appear in ascending order. Note that there are four predetermined variables and twelve non-predetermined variables in the vector s_{t}^{0}. We proceed under the case of saddle-path stability and assume that there are exactly twelve generalized eigenvalues that lie outside the unit circle, and therefore allow for a unique solution. The matrices Q, Z, S, and T are portioned, so that

$$
Q=\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]
$$

where Q_{1} is 4×16 and Q_{2} is 12×16 and

$$
\begin{aligned}
& Z=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right] \\
& S=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0_{(12 \times 4)} & S_{22}
\end{array}\right] \\
& T=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0_{(12 \times 4)} & T_{22}
\end{array}\right]
\end{aligned}
$$

where Z_{11}, S_{11}, and T_{11} are 4×4 and Z_{12}, S_{12}, and T_{12} are $4 \times 12, Z_{21}$ is 12×4, and Z_{22}, S_{22}, and T_{22} are 12×12. To "triangularize" the system we first define the vector of auxiliary variables as

$$
s_{t}^{1}=Z^{H} s_{t}^{0}
$$

letting Z^{H} denote the conjugate transpose of matrix Z, so that

$$
s_{t}^{1}=\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]
$$

where

$$
s_{1 t}^{1}=Z_{11}^{H}\left[\begin{array}{c}
\hat{c}_{t-1} \tag{4.29}\\
\hat{k}_{t} \\
\hat{r}_{t-1} \\
\hat{i}_{t-1}
\end{array}\right]+Z_{21}^{H}\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t} \\
\hat{i}_{t}
\end{array}\right]
$$

is 4×1 and

$$
s_{2 t}^{1}=Z_{12}^{H}\left[\begin{array}{c}
\hat{c}_{t-1} \tag{4.30}\\
\hat{k}_{t} \\
\hat{r}_{t-1} \\
\hat{i}_{t-1}
\end{array}\right]+Z_{22}^{H}\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t} \\
\hat{i}_{t}
\end{array}\right]
$$

is 12×1.

Since Z is unitary, $Z^{H} Z=I$ or $Z^{H}=Z^{-1}$ and hence $s_{t}^{0}=Z s_{t}^{1}$. We use this property to rewrite (4.19) as

$$
A Z E_{t} s_{t+1}^{1}=B Z s_{t}^{1}+C \zeta_{t} .
$$

Premultiplying this equation by Q gives

$$
\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right] E_{t}\left[\begin{array}{c}
s_{1 t+1}^{1} \\
s_{2 t+1}^{1}
\end{array}\right]=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{c}
s_{1 t}^{1} \\
s_{2 t}^{1}
\end{array}\right]+\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] C \zeta_{t}
$$

or in terms of the matrix partitions,

$$
\begin{equation*}
S_{11} E_{t} s_{1 t+1}^{1}+S_{12} E_{t} s_{2 t+1}^{1}=T_{11} s_{1 t}^{1}+T_{12} s_{2 t}^{1}+Q_{1} C \zeta_{t} \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{22} E_{t} s_{2 t+1}^{1}=T_{22} s_{2 t}^{1}+Q_{2} C \zeta_{t} \tag{4.32}
\end{equation*}
$$

Since the generalized eigenvalues corresponding to the diagonal elements of S_{22} and T_{22} all lie outside the unit circle, (4.32) can be solved forward to obtain

$$
s_{2 t}^{1}=-T_{22}^{-1} R \zeta_{t},
$$

where the 12×4 matrix R is given by "reshaping"

$$
\begin{aligned}
\operatorname{vec}(R) & =\operatorname{vec} \sum_{j=0}^{\infty}\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}=\sum_{j=0}^{\infty} \operatorname{vec}\left[\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}\right] \\
& =\sum_{j=0}^{\infty}\left[P^{j} \otimes\left(S_{22} T_{22}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2} C\right)=\sum_{j=0}^{\infty}\left[P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{j} \operatorname{vec}\left(Q_{2} C\right) \\
& =\left[I_{(48 \times 48)}-P \otimes\left(S_{22} T_{22}^{-1}\right)\right]^{-1} \operatorname{vec}\left(Q_{2} C\right) .
\end{aligned}
$$

Using this result together with equation (4.30) allows to solve for

$$
\left[\begin{array}{c}
\hat{\lambda}_{t} \tag{4.33}\\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t} \\
\hat{i}_{t}
\end{array}\right]=-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H}\left[\begin{array}{c}
c_{t-1} \\
k_{t} \\
r_{t-1} \\
i_{t-1}
\end{array}\right]-\left(Z_{22}^{H}\right)^{-1} T_{22}^{-1} R \zeta_{t}
$$

Under the assumption that Z is unitary, i.e.,

$$
\underbrace{\left[\begin{array}{cc}
Z_{11}^{H} & Z_{21}^{H} \\
Z_{12}^{H} & Z_{22}^{H}
\end{array}\right]}_{Z^{H}} \underbrace{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}_{Z}=\underbrace{\left[\begin{array}{cc}
I_{(4 \times 4)} & 0_{(4 \times 12)} \\
0_{(12 \times 4)} & I_{(12 \times 12)}
\end{array}\right]}_{I},
$$

we find

$$
Z_{12}^{H} Z_{11}+Z_{22}^{H} Z_{21}=0
$$

$$
-\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H}=Z_{21} Z_{11}^{-1},
$$

$$
Z_{12}^{H} Z_{12}+Z_{22}^{H} Z_{22}=I
$$

and

$$
\left(Z_{22}^{H}\right)^{-1}=Z_{22}+\left(Z_{22}^{H}\right)^{-1} Z_{12}^{H} Z_{12}=Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}
$$

which allows to rewrite (4.33) as

$$
\left[\begin{array}{c}
\hat{\lambda}_{t} \\
\hat{w}_{t} \\
\hat{l}_{t} \\
\hat{\pi}_{t} \\
\hat{\psi}_{t} \\
\hat{q}_{t} \\
\hat{y}_{t} \\
\hat{d}_{t} \\
\hat{\xi}_{t} \\
\hat{n}_{t} \\
\hat{c}_{t} \\
\hat{i}_{t}
\end{array}\right]=\tilde{M}_{1}\left[\begin{array}{c}
c_{t-1} \\
k_{t} \\
r_{t-1} \\
i_{t-1}
\end{array}\right]+\tilde{M}_{2} \zeta_{t},
$$

with

$$
\tilde{M}_{1}=Z_{21} Z_{11}^{-1}
$$

and

$$
\tilde{M}_{2}=-\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R
$$

Now we can solve (4.29) for $s_{1 t}^{1}$

$$
s_{1 t}^{1}=\left(Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}\right)\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1} \\
\hat{i}_{t-1}
\end{array}\right]-Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right] T_{22}^{-1} R \zeta_{t}
$$

making use of

$$
\begin{gathered}
Z_{11}^{H} Z_{11}+Z_{21}^{H} Z_{21}=I, \\
Z_{11}^{H}+Z_{21}^{H} Z_{21} Z_{11}^{-1}=Z_{11}^{-1},
\end{gathered}
$$

and

$$
Z_{21}^{H}\left[Z_{22}-Z_{21} Z_{11}^{-1} Z_{12}\right]=Z_{21}^{H} Z_{22}-Z_{21}^{H} Z_{21} Z_{11}^{-1} Z_{12}=-Z_{11}^{-1} Z_{12},
$$

so that

$$
s_{1 t}^{1}=Z_{11}^{-1}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1} \\
\hat{i}_{t-1}
\end{array}\right]+Z_{11}^{-1} Z_{12} T_{22}^{-1} R \zeta_{t}
$$

If we plug this result into equation (4.31) we get

$$
\left[\begin{array}{c}
\hat{c}_{t} \tag{4.34}\\
\hat{k}_{t+1} \\
\hat{r}_{t} \\
\hat{i}_{t}
\end{array}\right]=\tilde{M}_{3}\left[\begin{array}{c}
\hat{c}_{t-1} \\
\hat{k}_{t} \\
\hat{r}_{t-1} \\
\hat{i}_{t-1}
\end{array}\right]+\tilde{M}_{4} \zeta_{t}
$$

where

$$
\tilde{M}_{3}=Z_{11} S_{11}^{-1} T_{11} Z_{11}^{-1}
$$

and

$$
\tilde{M}_{4}=Z_{11} S_{11}^{-1}\left(T_{11} Z_{11}^{-1} Z_{12} T_{22}^{-1} R+Q_{1} C+S_{12} T_{22}^{-1} R P-T_{12} T_{22}^{-1} R\right)-Z_{12} T_{22}^{-1} R P
$$

The model's solution can be written compactly in state space form by combining (4.20), (4.33'), and (4.34) as

$$
\begin{equation*}
\tilde{s}_{t+1}=\tilde{\Gamma}_{0} \tilde{s}_{t}+\tilde{\Gamma}_{1} \varepsilon_{t+1} \tag{4.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{f}_{t}=\tilde{\Gamma}_{2} \tilde{s}_{t} \tag{4.36}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{s}_{t}=\left[\begin{array}{llllllll}
\hat{c}_{t-1} & \hat{k}_{t} & \hat{r}_{t-1} & \hat{i}_{t-1} & \hat{x}_{t} & \hat{a}_{t} & \hat{z}_{t} & \hat{v}_{t}
\end{array}\right]^{\prime}, \\
& \tilde{f}_{t}=\left[\begin{array}{llllllllllll}
\hat{\lambda}_{t} & \hat{w}_{t} & \hat{l}_{t} & \hat{\pi}_{t} & \hat{\psi}_{t} & \hat{q}_{t} & \hat{y}_{t} & \hat{d}_{t} & \hat{\xi}_{t} & \hat{n}_{t} & \hat{c}_{t} & \hat{i}_{t}
\end{array}\right]^{\prime}, \\
& \varepsilon_{t+1}=\left[\begin{array}{llll}
\varepsilon_{x t} & \varepsilon_{a t} & \varepsilon_{z t} & \varepsilon_{v t}
\end{array}\right]^{\prime}, \\
& \tilde{\Gamma}_{0}=\left[\begin{array}{cc}
\tilde{M}_{3} & \tilde{M}_{4} \\
0_{(4 \times 4)} & P
\end{array}\right],
\end{aligned}
$$

$$
\tilde{\Gamma}_{1}=\left[\begin{array}{c}
0_{(4 \times 4)} \\
I_{(4 \times 4)}
\end{array}\right]
$$

and

$$
\tilde{\Gamma}_{2}=\left[\begin{array}{ll}
\tilde{M}_{1} & \tilde{M}_{2}
\end{array}\right] .
$$

Appendix J

Estimation

J. 1 Empirical State Space Model

Since the model is estimated using an observed sample X including consumption, investment, inflation and interest rates, we can define a sequence of observations $\left\{X_{t}\right\}_{t=1}^{T}$ with a measured data vector

$$
X_{t}=\left[\begin{array}{c}
\hat{c}_{t} \\
\hat{i}_{t} \\
\hat{\pi}_{t} \\
\hat{r}_{t}
\end{array}\right] .
$$

To distinguish the theoretical model from the empirical model, we rewrite (4.27) and (4.28) as

$$
\begin{equation*}
s_{t+1}=\Psi_{0} s_{t}+\Psi_{1} \varepsilon_{t+1} \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{t}=\Psi_{2} s_{t} \tag{4.38}
\end{equation*}
$$

where $\Gamma_{o}=\Psi_{0}, \Gamma_{1}=\Psi_{1}$, and Ψ_{2} is formed from the rows (\cdot) of Γ_{0} and Γ_{2} as

$$
\Psi_{2}=\left[\begin{array}{c}
\Gamma_{0}(1) \\
\Gamma_{2}(7) \\
\Gamma_{2}(4) \\
\Gamma_{0}(3)
\end{array}\right],
$$

while (4.35) and (4.36) can be expressed as

$$
\begin{equation*}
\tilde{s}_{t+1}=\tilde{\Psi}_{0} \tilde{s}_{t}+\tilde{\Psi}_{1} \varepsilon_{t+1} \tag{4.39}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{t}=\tilde{\Psi}_{2} \tilde{s}_{t} \tag{4.40}
\end{equation*}
$$

where $\tilde{\Gamma}_{o}=\tilde{\Psi}_{0}, \tilde{\Gamma}_{1}=\tilde{\Psi}_{1}$, and $\tilde{\Psi}_{2}$ is formed from the rows (\cdot) of $\tilde{\Gamma}_{0}$ and $\tilde{\Gamma}_{2}$ as

$$
\tilde{\Psi}_{2}=\left[\begin{array}{c}
\tilde{\Gamma}_{0}(1) \\
\tilde{\Gamma}_{0}(4) \\
\tilde{\Gamma}_{2}(4) \\
\tilde{\Gamma}_{0}(3)
\end{array}\right]
$$

J. 2 Kalman Filter

Bayesian estimation of a DSGE model in state space form requires the construction and evaluation of the likelihood function

$$
\mathcal{L}(\mu \mid X)=p(X \mid \mu)=\prod_{t=1}^{T} p\left(X_{t} \mid \mu\right)
$$

where X denotes the T observations of a vector of observable variables X_{t} and μ a $k \times 1$ vector of the model's parameters. Following Hamilton (1994a), the Kalman filter provides a way to calculate the likelihood function for a state space system. As outlined in Canova (2007, p. 123), ". . . the likelihood function of a state space model can be conveniently expressed in terms of one-step-ahead forecast errors, conditional on the initial observations, and of their recursive variance, both of which can be obtained with the Kalman filter." Since a general and detailed treatment of the Kalman filter can be found in Harvey (1993), Hamilton (1994a) and Hamilton (1994b), we give a brief exemplary exposition of the Kalman filter by applying the recursive algorithm originally developed by Kalman (1960) and Kalman and Bucy (1961) to the empirical state space model formed by state
equation (4.37) and observation equation (4.38) ${ }^{1}$:

$$
\begin{gather*}
s_{t+1}=\Psi_{0} s_{t}+\Psi_{1} \varepsilon_{t+1} \tag{4.37}\\
X_{t}=\Psi_{2} s_{t} \tag{4.38}
\end{gather*}
$$

Recall that s_{t} is a vector of possibly unknown state variables, X_{t} denotes a vector of observed variables, Ψ_{0}, Ψ_{1}, and Ψ_{2} depend on the structural parameters of the model and the vector ε_{t+1} comprises the serially uncorrelated innovations

$$
\varepsilon_{t+1}=\left[\begin{array}{llll}
\varepsilon_{x t+1} & \varepsilon_{a t+1} & \varepsilon_{z t+1} & \varepsilon_{v t+1}
\end{array}\right]^{\prime}
$$

which are assumed to be normally distributed with zero mean and diagonal covariance matrix

$$
\Sigma_{\varepsilon}=E \varepsilon_{t+1} \varepsilon_{t+1}^{\prime}=\left[\begin{array}{cccc}
\sigma_{x}^{2} & 0 & 0 & 0 \\
0 & \sigma_{a}^{2} & 0 & 0 \\
0 & 0 & \sigma_{z}^{2} & 0 \\
0 & 0 & 0 & \sigma_{v}^{2}
\end{array}\right]
$$

J.2.1 Kalman Filter Recursion

To analyze the Kalman filter recursion, we follow the expositions of Hamilton (1994a) and Lütkepohl (2005). Let

$$
\begin{aligned}
s_{t \mid j} & =E\left(s_{t} \mid X_{1}, \ldots, X_{j}\right), \\
\Sigma_{s}(t \mid j) & =E\left(s_{t}-s_{t \mid j}\right)\left(s_{t}-s_{t \mid j}\right)^{\prime}, \\
X_{t \mid j} & =E\left(X_{t} \mid X_{1}, \ldots, X_{j}\right) \\
\Sigma_{X}(t \mid j) & =E\left(X_{t}-X_{t \mid j}\right)\left(X_{t}-X_{t \mid j}\right)^{\prime} .
\end{aligned}
$$

Further, the initial state s_{0} and the conditional distribution of s given X are assumed to be normally distributed with $s_{0} \sim \mathcal{N}\left(\mu_{s 0}, \Sigma_{0}\right)$ and $(s \mid X) \sim \mathcal{N}\left(\mu_{s}, \Sigma\right)$, respectively. Given the previous conditions, the normality assumption implies

$$
\begin{array}{lll}
\left(s_{t} \mid X_{1}, \ldots, X_{t-1}\right) & \sim \mathcal{N}\left(s_{t \mid t-1}, \Sigma_{s}(t \mid t-1)\right) & \text { for } t=2, \ldots, T, \\
\left(s_{t} \mid X_{1}, \ldots, X_{t}\right) & \sim \mathcal{N}\left(s_{t \mid t}, \Sigma_{s}(t \mid t)\right) & \text { for } t=1, \ldots, T, \\
\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) & \sim \mathcal{N}\left(X_{t \mid t-1}, \Sigma_{X}(t \mid t-1)\right) & \text { for } t=2, \ldots, T .
\end{array}
$$

[^44]As outlined in Lütkepohl (2005), the conditional means and covariance matrices can be obtained by the following Kalman filter recursions:

- Initialization:

$$
s_{0 \mid 0}=\mu_{s 0}, \Sigma_{s}(0 \mid 0)=\Sigma_{0}
$$

- Prediction step $(1 \leq t \leq T)$:

$$
\begin{array}{ll}
s_{t \mid t-1} & =\Psi_{0} s_{t-1 \mid t-1} \\
\Sigma_{s}(t \mid t-1) & =\Psi_{0} \Sigma_{s}(t-1 \mid t-1) \Psi_{0}^{\prime}+\Psi_{1} \Sigma_{\varepsilon} \Psi_{1}^{\prime} \\
X_{t \mid t-1} & =\Psi_{2} s_{t \mid t-1} \\
\Sigma_{X}(t \mid t-1) & =\Psi_{2} \Sigma_{s}(t \mid t-1) \Psi_{2}^{\prime} \\
u_{t} & =X_{t}-X_{t \mid t-1}
\end{array}
$$

- Correction step $(1 \leq t \leq T)$:

$$
\begin{array}{ll}
s_{t \mid t} & =s_{t \mid t-1}+\Upsilon_{t} u_{t} \\
\Sigma_{s}(t \mid t) & =\Sigma_{s}(t \mid t-1)-\Upsilon_{t} \Sigma_{X}(t \mid t-1) \Upsilon_{t}^{\prime}
\end{array}
$$

where the Kalman gain Υ_{t} is defined as

$$
\Upsilon_{t}=s_{t \mid t-1} \Psi_{2}^{\prime} \Sigma_{X}(t \mid t-1)^{-1}
$$

As described in Lütkepohl (2005), the recursions proceed by performing the prediction step for $t=1$. Then, the correction step is performed for $t=1$. Next, the prediction and correction steps are repeated for $t=2$ and so on.

J.2.2 Log Likelihood Function

The observation vector estimation errors $\left\{u_{t}\right\}_{t=1}^{T}$ can be used to form the Gaussian \log likelihood function for $\left\{X_{t}\right\}_{t=1}^{T}$ as

$$
\begin{aligned}
\ln \mathcal{L}(\mu \mid X) & =\sum_{t=1}^{T} \ln p\left(X_{t} \mid \mu\right) \\
& =-\frac{4 T}{2} \ln (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \ln \left|\Sigma_{X}(t \mid t-1)\right|-\frac{1}{2} \sum_{t=1}^{T} u_{t}^{\prime} \Sigma_{X}(t \mid t-1)^{-1} u_{t}
\end{aligned}
$$

Appendix K

Data Sources

- Euro area:

Real personal consumption: AWM database
Gross fixed capital formation: AWM database
Consumer price index: AWM database
Interest rate (short term): AWM database
Population: RTDB

- US:

Real personal consumption: FRED database
Gross fixed capital formation: FRED database
Consumer price index: FRED database
Interest rate (three-month money market rate): FRED database
Population: FRED database

Appendix L

Figures and Tables

> \mathcal{M}_{3}
Table L.1: Estimates: US, 1948:Q1-2006:Q4.

[^45]

Figure L.7: Euro area: \mathcal{M}_{1}. Prior distributions (gray lines) and posterior distributions (black lines) of the estimated parameters.

h

Figure L.8: Euro area: \mathcal{M}_{2}. Prior distributions (gray lines) and posterior distributions (black lines) of the estimated parameters.

Figure L.9: Euro area: \mathcal{M}_{3}. Prior distributions (gray lines) and posterior distributions (black lines) of the estimated parameters.

Figure L.10: US: \mathcal{M}_{1}. Prior distributions (gray lines) and posterior distributions (black lines) of the estimated parameters.

Figure L.11: US: \mathcal{M}_{2}. Prior distributions (gray lines) and posterior distributions (black lines) of the estimated parameters.

Figure L.12: US: \mathcal{M}_{3}. Prior distributions (gray lines) and posterior distributions of the estimated parameters.

Figure L. 13 : Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions of the filtered samples corresponding to the
best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

Figure L.16: Euro area: \mathcal{M}_{1}. Cumulative empirical probability distributions of the filtered samples corresponding to the
best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

Figure L.17: Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions of the filtered samples corresponding to the
best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

Figure L.20: Euro area: \mathcal{M}_{2}. Cumulative empirical probability distributions of the filtered samples corresponding to the
best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

Figure L.21: Euro area: \mathcal{M}_{3}. Cumulative empirical probability distributions of the filtered samples corresponding to the
best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

[^46]

Figure L.31: US: \mathcal{M}_{2}. Cumulative empirical probability distributions of the filtered samples corresponding to the best fit
for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

Figure L.35: US \mathcal{M}_{3}. Cumulative empirical probability distributions of the filtered samples corresponding to the best fit
for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

	c	i	π	r
σ_{a}	$4.230 \mathrm{E}-28$	0.113	$4.490 \mathrm{E}-29$	$5.490 \mathrm{E}-21$
σ_{z}	$3.000 \mathrm{E}-54$	$3.030 \mathrm{E}-38$	$1.120 \mathrm{E}-114$	$2.000 \mathrm{E}-59$
σ_{x}	$7.190 \mathrm{E}-10$	$1.290 \mathrm{E}-76$	0.756	$4.860 \mathrm{E}-09$
σ_{v}	$1.150 \mathrm{E}-06$	71.700	$9.110 \mathrm{E}-08$	5.350
ρ_{r}	$2.840 \mathrm{E}-05$	0.168	$6.560 \mathrm{E}-39$	$1.770 \mathrm{E}-11$
ρ_{a}	$1.350 \mathrm{E}-04$	0.289	$4.550 \mathrm{E}-103$	0.028
ρ_{z}	$5.380 \mathrm{E}-50$	$2.280 \mathrm{E}-06$	3.000	$1.760 \mathrm{E}-19$
ρ_{x}	3.390	$3.560 \mathrm{E}-128$	8.040	0.185
ρ_{v}	$4.100 \mathrm{E}-26$	92.800	$2.860 \mathrm{E}-149$	$8.000 \mathrm{E}-146$
h	$8.280 \mathrm{E}-128$	$6.870 \mathrm{E}-20$	$8.700 \mathrm{E}-240$	$5.030 \mathrm{E}-45$
α	$5.050 \mathrm{E}-115$	0.003	13.900	1.160
ϕ_{P}	$9.220 \mathrm{E}-48$	16.200	$7.710 \mathrm{E}-134$	$1.920 \mathrm{E}-19$
ϕ	$1.220 \mathrm{E}-12$	$2.350 \mathrm{E}-46$	0.002	$7.080 \mathrm{E}-22$
ω_{π}	0.348	$1.210 \mathrm{E}-06$	0.197	0.004
ω_{y}	1.360	$3.950 \mathrm{E}-89$	$2.490 \mathrm{E}-09$	$6.910 \mathrm{E}-148$
$\ln (z)$	15.000	9.360	26.100	28.500

Table L.2: Euro area: \mathcal{M}_{1}. Cells contain the p-values (in percent) of the Smirnov two-sample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values $<0.1 \%$.

	c	i	π	
			r	
σ_{a}	$7.390 \mathrm{E}-32$	$4.110 \mathrm{E}-07$	$4.390 \mathrm{E}-47$	0.070
σ_{z}	$1.970 \mathrm{E}-29$	$1.040 \mathrm{E}-18$	$2.340 \mathrm{E}-71$	$3.010 \mathrm{E}-16$
σ_{x}	$1.440 \mathrm{E}-20$	0.006	$1.860 \mathrm{E}-61$	$2.140 \mathrm{E}-25$
σ_{v}	$3.300 \mathrm{E}-07$	$1.020 \mathrm{E}-20$	0.083	0.011
ρ_{r}	$2.220 \mathrm{E}-05$	$1.660 \mathrm{E}-05$	$1.150 \mathrm{E}-34$	$1.900 \mathrm{E}-21$
ρ_{a}	$1.280 \mathrm{E}-14$	$2.670 \mathrm{E}-73$	$4.820 \mathrm{E}-05$	$8.900 \mathrm{E}-18$
ρ_{z}	$5.160 \mathrm{E}-71$	$1.350 \mathrm{E}-04$	0.055	0.564
ρ_{x}	$4.450 \mathrm{E}-02$	$6.680 \mathrm{E}-201$	1.160	$1.500 \mathrm{E}-57$
ρ_{v}	$2.480 \mathrm{E}-21$	15.300	$5.040 \mathrm{E}-215$	$2.490 \mathrm{E}-85$
h	$9.310 \mathrm{E}-77$	$4.510 \mathrm{E}-22$	$6.580 \mathrm{E}-158$	$2.980 \mathrm{E}-29$
α	$6.710 \mathrm{E}-128$	$6.410 \mathrm{E}-18$	10.400	22.700
ϕ_{P}	$1.820 \mathrm{E}-32$	$6.860 \mathrm{E}-40$	$1.620 \mathrm{E}-220$	$2.340 \mathrm{E}-05$
ϕ	$8.590 \mathrm{E}-30$	3.560	$1.300 \mathrm{E}-57$	$4.870 \mathrm{E}-19$
ω_{π}	0.017	$1.370 \mathrm{E}-10$	$2.150 \mathrm{E}-10$	0.271
ω_{y}	$1.690 \mathrm{E}-07$	14.700	0.012	$1.330 \mathrm{E}-70$
$\ln (z)$	78.700	0.516	30.500	71.000

Table L.3: Euro area: \mathcal{M}_{2}. Cells contain the p-values (in percent) of the Smirnov two-sample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values< 0.1%.

		c	π	r
σ_{a}	$9.490 \mathrm{E}-28$	$5.300 \mathrm{E}-05$	$3.030 \mathrm{E}-49$	0.197
σ_{z}	$1.060 \mathrm{E}-32$	$3.240 \mathrm{E}-08$	$1.730 \mathrm{E}-57$	$1.520 \mathrm{E}-22$
σ_{x}	$2.080 \mathrm{E}-28$	0.003	$1.560 \mathrm{E}-49$	$1.020 \mathrm{E}-20$
σ_{v}	$1.450 \mathrm{E}-11$	$2.090 \mathrm{E}-15$	$4.180 \mathrm{E}-05$	0.002
ρ_{r}	$3.160 \mathrm{E}-10$	$1.360 \mathrm{E}-05$	$2.930 \mathrm{E}-42$	$7.710 \mathrm{E}-27$
ρ_{a}	$2.240 \mathrm{E}-07$	$1.730 \mathrm{E}-59$	0.002	$8.180 \mathrm{E}-25$
ρ_{z}	$9.010 \mathrm{E}-75$	$2.150 \mathrm{E}-10$	$3.360 \mathrm{E}-10$	$6.720 \mathrm{E}-05$
ρ_{x}	0.051	$4.120 \mathrm{E}-162$	3.390	$1.810 \mathrm{E}-53$
ρ_{v}	$4.990 \mathrm{E}-26$	0.142	$5.160 \mathrm{E}-209$	$3.400 \mathrm{E}-75$
h	$2.770 \mathrm{E}-89$	$2.590 \mathrm{E}-18$	$2.040 \mathrm{E}-158$	$1.060 \mathrm{E}-32$
α	$9.040 \mathrm{E}-113$	$1.440 \mathrm{E}-20$	1.260	0.298
ϕ_{P}	$2.960 \mathrm{E}-31$	$3.630 \mathrm{E}-39$	$2.520 \mathrm{E}-226$	$3.240 \mathrm{E}-08$
ϕ	$5.830 \mathrm{E}-39$	28.500	$9.820 \mathrm{E}-59$	$3.230 \mathrm{E}-21$
ω_{π}	0.005	$3.940 \mathrm{E}-11$	$4.700 \mathrm{E}-06$	5.480
ω_{y}	$5.480 \mathrm{E}-09$	23.500	$6.720 \mathrm{E}-06$	$3.180 \mathrm{E}-33$
$\ln (z)$	28.000	31.500	0.247	0.133

Table L.4: Euro area: \mathcal{M}_{3}. Cells contain the p-values (in percent) of the Smirnov two-sample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values $<0.1 \%$.

	c	i	π	r
σ_{a}	$5.540 \mathrm{E}-37$	$6.960 \mathrm{E}-18$	$3.040 \mathrm{E}-46$	0.016
σ_{z}	63.000	$2.610 \mathrm{E}-60$	$5.770 \mathrm{E}-19$	$1.920 \mathrm{E}-24$
σ_{x}	$2.340 \mathrm{E}-04$	$4.310 \mathrm{E}-09$	$1.450 \mathrm{E}-24$	$1.790 \mathrm{E}-07$
σ_{v}	0.317	0.001	$1.420 \mathrm{E}-06$	50.200
ρ_{r}	$4.240 \mathrm{E}-06$	$2.950 \mathrm{E}-06$	$3.030 \mathrm{E}-11$	$4.120 \mathrm{E}-16$
ρ_{a}	$5.010 \mathrm{E}-134$	$3.450 \mathrm{E}-05$	$2.100 \mathrm{E}-93$	$4.330 \mathrm{E}-68$
ρ_{z}	$7.080 \mathrm{E}-22$	25.700	$5.710 \mathrm{E}-17$	$2.770 \mathrm{E}-17$
ρ_{x}	39.300	$1.180 \mathrm{E}-96$	$7.440 \mathrm{E}-06$	$9.900 \mathrm{E}-25$
ρ_{v}	$8.680 \mathrm{E}-10$	$2.830 \mathrm{E}-11$	$8.590 \mathrm{E}-30$	$4.190 \mathrm{E}-04$
h	$2.570 \mathrm{E}-56$	$1.350 \mathrm{E}-13$	$4.120 \mathrm{E}-50$	28.000
α	$3.840 \mathrm{E}-188$	$6.110 \mathrm{E}-08$	20.400	0.006
ϕ_{P}	13.900	$4.140 \mathrm{E}-58$	$3.480 \mathrm{E}-19$	$2.770 \mathrm{E}-13$
ϕ	$3.790 \mathrm{E}-05$	$6.550 \mathrm{E}-21$	$4.990 \mathrm{E}-26$	$4.110 \mathrm{E}-07$
ω_{π}	0.532	$3.070 \mathrm{E}-04$	$1.470 \mathrm{E}-03$	$1.780 \mathrm{E}-04$
ω_{y}	0.006	$5.100 \mathrm{E}-30$	$2.260 \mathrm{E}-155$	$6.680 \mathrm{E}-11$
$\ln (z)$	6.290	11.100	49.500	86.200

Table L.5: US: \mathcal{M}_{1}. Cells contain the p-values (in percent) of the Smirnov twosample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values $<0.1 \%$.

	c	i	π	r
σ_{a}	$2.050 \mathrm{E}-20$	$2.520 \mathrm{E}-32$	$2.760 \mathrm{E}-36$	$1.340 \mathrm{E}-08$
σ_{z}	0.010	$7.390 \mathrm{E}-05$	$9.590 \mathrm{E}-04$	$4.980 \mathrm{E}-29$
σ_{x}	0.431	$5.520 \mathrm{E}-124$	$2.920 \mathrm{E}-70$	$1.190 \mathrm{E}-08$
σ_{v}	0.162	$6.520 \mathrm{E}-15$	$5.880 \mathrm{E}-35$	66.600
ρ_{r}	$4.250 \mathrm{E}-13$	$1.830 \mathrm{E}-23$	$2.700 \mathrm{E}-14$	$6.860 \mathrm{E}-08$
ρ_{a}	$2.920 \mathrm{E}-101$	$2.070 \mathrm{E}-41$	$5.740 \mathrm{E}-69$	$1.060 \mathrm{E}-71$
ρ_{z}	$4.860 \mathrm{E}-44$	$4.920 \mathrm{E}-10$	$1.170 \mathrm{E}-13$	$4.070 \mathrm{E}-76$
ρ_{x}	15.600	$1.030 \mathrm{E}-99$	0.548	$1.340 \mathrm{E}-112$
ρ_{v}	$7.880 \mathrm{E}-12$	89.500	$8.720 \mathrm{E}-14$	1.650
h	$5.610 \mathrm{E}-31$	$7.26 \mathrm{E}-02$	$1.500 \mathrm{E}-57$	17.500
α	$1.910 \mathrm{E}-100$	2.920	0.025	$2.280 \mathrm{E}-08$
ϕ_{P}	$5.460 \mathrm{E}-04$	$2.300 \mathrm{E}-88$	$2.340 \mathrm{E}-71$	5.480
ϕ	13.900	$3.370 \mathrm{E}-121$	$9.150 \mathrm{E}-65$	0.050
ω_{π}	60.100	3.070	$9.270 \mathrm{E}-22$	$1.620 \mathrm{E}-09$
ω_{y}	0.002	$3.960 \mathrm{E}-33$	$2.130 \mathrm{E}-220$	$6.220 \mathrm{E}-04$
$\ln (z)$	21.100	63.700	12.000	93.200

Table L.6: US: \mathcal{M}_{2}. Cells contain the p-values (in percent) of the Smirnov twosample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values $<0.1 \%$.

	c	i	π	r
σ_{a}	$1.170 \mathrm{E}-16$	$2.770 \mathrm{E}-17$	$1.130 \mathrm{E}-40$	$1.890 \mathrm{E}-10$
σ_{z}	$1.430 \mathrm{E}-08$	0.050	$2.000 \mathrm{E}-07$	$2.230 \mathrm{E}-20$
σ_{x}	0.002	$3.060 \mathrm{E}-139$	$7.890 \mathrm{E}-88$	0.001
σ_{v}	0.001	$4.920 \mathrm{E}-10$	$4.980 \mathrm{E}-29$	61.500
ρ_{r}	$1.450 \mathrm{E}-11$	$1.380 \mathrm{E}-14$	$2.810 \mathrm{E}-18$	$4.120 \mathrm{E}-16$
ρ_{a}	$1.530 \mathrm{E}-92$	$1.400 \mathrm{E}-42$	$4.390 \mathrm{E}-67$	$1.600 \mathrm{E}-63$
ρ_{z}	$5.610 \mathrm{E}-31$	$1.350 \mathrm{E}-04$	$2.810 \mathrm{E}-04$	$8.920 \mathrm{E}-93$
ρ_{x}	50.200	$2.620 \mathrm{E}-105$	0.756	$2.160 \mathrm{E}-104$
ρ_{v}	$1.270 \mathrm{E}-16$	74.500	$7.880 \mathrm{E}-12$	13.100
h	$2.720 \mathrm{E}-30$	28.000	$5.400 \mathrm{E}-57$	7.690
α	$4.720 \mathrm{E}-111$	0.898	1.990	$9.790 \mathrm{E}-05$
ϕ_{P}	$2.580 \mathrm{E}-05$	$2.770 \mathrm{E}-66$	$1.130 \mathrm{E}-90$	16.900
ϕ	1.650	$1.280 \mathrm{E}-137$	$8.570 \mathrm{E}-83$	1.440
ω_{π}	78.000	0.337	$1.900 \mathrm{E}-21$	$9.690 \mathrm{E}-20$
ω_{y}	$1.490 \mathrm{E}-06$	$4.080 \mathrm{E}-31$	$4.540 \mathrm{E}-199$	12.500
$\ln (z)$	83.200	70.300	2.440	10.800

Table L.7: US: \mathcal{M}_{3}. Cells contain the p-values (in percent) of the Smirnov twosample test. Question answered by the test: "At what significance level α is the null hypothesis that $f_{\tilde{x}_{j}}\left(\mu_{i} \mid B\right)$ equals the respective posterior distribution rejected?" Gray cells indicate p-values $<0.1 \%$.

	Standard Deviations (Percent)			
	Consumption	Investment	Inflation	Interest Rate
Data	0.80	2.37	0.22	0.25
\mathcal{M}_{1}	2.59	6.35	0.32	0.23
\mathcal{M}_{2}	2.35	3.10	0.28	0.21
\mathcal{M}_{3}	2.43	3.10	0.27	0.21
	Autocorrelations (First-order)			
	Consumption	Investment	Inflation	Interest Rate
Data	0.84	0.87	0.21	0.87
\mathcal{M}_{1}	0.98	0.98	0.59	0.81
\mathcal{M}_{2}	0.98	0.92	0.50	0.82
\mathcal{M}_{3}	0.98	0.92	0.51	0.82

Table L.8: Euro area: Selected second moments.

	Standard Deviations (Percent)			
	Consumption	Investment	Inflation	Interest Rate
Data	1.05	6.32	0.22	0.34
\mathcal{M}_{1}	4.43	10.79	0.30	0.39
\mathcal{M}_{2}	3.45	6.69	0.28	0.36
\mathcal{M}_{3}	3.46	6.60	0.28	0.37
	Autocorrelations (First-order)			
	Consumption	Investment	Inflation	Interest Rate
Data	0.88	0.82	0.45	0.83
\mathcal{M}_{1}	0.99	0.94	0.53	0.81
\mathcal{M}_{2}	0.99	0.84	0.51	0.81
\mathcal{M}_{3}	0.99	0.84	0.53	0.82

Table L.9: US: Selected second moments.

Figure L. 37: Euro area: Impulse responses (log-deviations from the steady state) to a one standard deviation preference shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.38: Euro area: Impulse responses (log-deviations from the steady state) to a one standard deviation marginal efficiency of investment shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.39: Euro area: Impulse responses (log-deviations from the steady state) to a one standard deviation technology shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.40: Euro area: Impulse responses (log-deviations from the steady state) to a one standard deviation monetary policy shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.41: US: Impulse responses (log-deviations from the steady state) to a one standard deviation preference shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.42: US: Impulse responses (log-deviations from the steady state) to a one standard deviation marginal efficiency of investment shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.43: US: Impulse responses (log-deviations from the steady state) to a one standard deviation technology shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Figure L.44: US: Impulse responses (log-deviations from the steady state) to a one standard deviation monetary policy shock for 20 quarters; \mathcal{M}_{1} (solid lines), \mathcal{M}_{2} (dashed lines), \mathcal{M}_{3} (dotted lines).

Variable	Fraction of the Variance Due to			
	Preference Shock	Investment	Shock Technology Shock	Monetary Policy Shock
	One-Year Horizon			
Output	1.33	2.89	91.88	3.91
Consumption	6.6	0.63	87.98	4.79
Investment	5.33	33.38	59.83	1.47
Hours	13.5	17.11	31.12	38.27
Inflation	22.07	5.69	5.54	66.7
Interest Rate	62.51	16.01	15.11	6.38
Three-Year Horizon				
Output	0.54	1.6	96.49	1.36
Consumption	3.28	0.99	93.49	2.23
Investment	2.84	10	86.64	0.52
Hours	11.37	14.73	42.04	31.86
Inflation	20.24	5.49	12.88	61.39
Interest Rate	56.32	16.53	31.49	5.66
Infinite Horizon				
Output	0.29	0.90	98.17	0.64
Consumption	1.29	1.20	96.71	0.80
Investment	1.92	7.03	90.70	0.35
Hours	10.09	13.62	- 48.22	28.07
Inflation	18.76	5.12	19.27	56.85
Interest Rate	49.89	15.07	7 30.03	5.01

Table L.10: Euro area: \mathcal{M}_{1}. Forecast error variance decomposition.

Variable	Fraction of the Variance Due to			
	Preference Shock	Investment Shock	Technology Shock	Monetary Policy Shock
	One-Year Horizon			
Output	0.15	1.79	94.53	3.53
Consumption	2.18	1.32	93.44	3.06
Investment	6.63	48.40	42.53	2.44
Hours	3.26	23.51	4.77	68.46
Inflation	19.31	5.71	0.54	74.44
Interest Rate	75.10	20.52	2.11	2.27
	Three-Year Horizon			
Output	0.08	1.85	96.63	1.45
Consumption	0.92	0.81	97.02	1.26
Investment	4.39	36.69	57.50	1.43
Hours	3.18	25.75	4.84	66.22
Inflation	19.71	6.52	1.20	72.57
Interest Rate	73.14	22.66	2.23	1.97
	Infinite Horizon			
Output	0.07	2.55	96.68	0.70
Consumption	0.47	2.15	96.79	0.59
Investment	2.91	25.18	70.97	0.94
Hours	3.18	25.78	4.99	66.05
Inflation	19.39	6.58	2.65	71.38
Interest Rate	72.72	22.76	2.57	1.95

Table L.11: Euro area: \mathcal{M}_{2}. Forecast error variance decomposition.

Variable	Fraction of the Variance Due to			
	Preference Shock	Investment Shock	Technology Shock	Monetary Policy Shock
	One-Year Horizon			
Output	0.21	1.89	94.53	3.37
Consumption	2.26	1.27	93.51	2.96
Investment	6.37	51.62	39.84	2.18
Hours	4.40	24.37	6.22	65.01
Inflation	21.47	5.86	0.55	72.12
Interest Rate	75.80	19.27	2.65	2.28
Three-Year Horizon				
Output	0.10	2.01	96.52	1.37
Consumption	0.94	0.80	97.05	1.20
Investment	4.23	39.92	54.58	1.28
Hours	4.29	26.82	6.09	62.79
Inflation	21.90	6.71	0.97	70.42
Interest Rate	73.63	21.42	2.98	1.97
Infinite Horizon				
Output	0.08	2.9	96.37	0.65
Consumption	0.47	2.34	96.63	0.56
Investment	2.74	27.19	69.25	0.82
Hours	4.29	26.89	6.14	62.68
Inflation	21.63	6.81	2.04	69.53
Interest Rate	72.93	21.44	3.69	1.95

Table L.12: Euro area: \mathcal{M}_{3}. Forecast error variance decomposition.

Table L.13: US: \mathcal{M}_{1}. Forecast error variance decomposition.

Variable	Fraction of the Variance Due to			
	Preference Shock	Investment Shock	Technology Shock	Monetary Policy Shock
	One-Year Horizon			
Output	1.18	15.01	80.87	2.94
Consumption	7.60	3.38	87.12	1.91
Investment	1.67	73.46	22.86	2.02
Hours	6.80	66.83	10.95	15.43
Inflation	18.81	28.17	12.23	40.79
Interest Rate	24.48	43.60	15.06	16.86
Three-Year Horizon				
Output	0.47	8.48	89.89	1.16
Consumption	2.59	2.40	94.33	0.67
Investment	1.26	61.00	36.25	1.50
Hours	6.68	67.06	11.10	15.16
Inflation	17.99	27.10	15.90	39.01
Interest Rate	21.83	41.90	21.50	14.77
Infinite Horizon				
Output	0.22	6.22	93.02	0.54
Consumption	1.04	4.52	94.16	0.27
Investment	1.01	48.94	48.85	1.20
Hours	6.65	66.96	11.29	15.10
Inflation	16.39	25.15	22.91	35.55
Interest Rate	18.48	36.21	32.81	12.50

Table L.14: US: \mathcal{M}_{2}. Forecast error variance decomposition.

Variable	Fraction of the Variance Due to			
	Preference Shock	Investment Shock	Technology Shock	Monetary Policy Shock
	One-Year Horizon			
Output	1.47	16.49	79.38	2.65
Consumption	7.65	3.12	87.38	1.85
Investment	1.30	77.72	19.39	1.59
Hours	7.67	66.41	13.18	12.73
Inflation	19.36	28.54	14.96	37.14
Interest Rate	23.73	42.21	17.34	16.72
	Three-Year Horizon			
Output	0.58	9.54	88.83	1.05
Consumption	2.60	2.44	94.31	0.65
Investment	1.00	66.27	31.53	1.20
Hours	7.54	66.82	13.10	12.55
Inflation	18.32	27.15	19.38	35.15
Interest Rate	20.85	40.05	24.68	14.42
	Infinite Horizon			
Output	0.27	7.52	91.72	0.48
Consumption	1.06	5.34	93.33	0.27
Investment	0.81	53.88	44.34	0.97
Hours	7.52	66.78	13.18	12.52
Inflation	16.45	24.98	26.99	31.58
Interest Rate	17.47	34.43	36.02	12.08

Table L.15: US: \mathcal{M}_{3}. Forecast error variance decomposition.

Chapter 5

Conclusion

During the last three decades there has been a remarkable progress in the development of DSGE models. Starting with the influential work of Kydland and Prescott (1982) and Long and Plosser (1983), DSGE models rapidly attracted increasing interest among the profession thus becoming a centrepiece of modern macroeconomics. Among the vast body of literature that evolved in recent years two main categories can be identified:
i) Research, primarily dealing with the empirical implementation of DSGE models and
ii) literature with a particular focus on the exact specification of the underlying theoretical model.

Contributing to both categories, this thesis builds on the remarkable progress achieved in the DSGE research program so far, but also points out important problems and challenges that need to be addressed in the future.

Chapter 2 starts by presenting the general setup of DSGE models as well as techniques that enable their empirical implementation. For the sake of clarity, we focus on a standard New Keynesian model and expound the structure and solution for this prototype model. Further, we briefly introduce three common strategies used in the empirical analysis of DSGE models: calibration, maximum likelihood estimation, and Bayesian estimation. The objective of this chapter is to lay out the core features of the models used in the subsequent chapters and to introduce the estimation techniques employed.

In chapter 3, we apply an extended version of the standard New Keynesian model to French, German, Italian, and Spanish data and test for parameter stability over time. The model is estimated employing a maximum likelihood approach. Parameter instabilities are identified by the ESS procedure of Inoue and Rossi (2011). This procedure aims at detecting the parameters of a specific model that have changed at an unknown break date, overcoming the drawbacks known from "one at a time approaches" by allowing all parameters to be time-varying but, at the same time, avoids size distortions. For France, Germany, and Italy we find structural breaks in the mid-1990s after the beginning of the second stage of EMU, while the estimates for Spain show a significant break just before the start of the third stage of EMU in 1998. Concerning monetary policy behavior, France, Italy, and Spain show significant changes after the break dates, whereas monetary policy in Germany turns out to be stable over time. Moreover, France, Italy, and Spain exhibit a significant decline in capital and price adjustment costs after the break. Further, we find at least four out of the five shocks to be either constant or declining after the break date for all economies under consideration. The identification of changes in both policy and structural parameters might let the DSGE framework appear to be vulnerable to the Lucas (1976) critique. However, as outlined in Inoue and Rossi (2011, p. 1195), "... the definition of structural parameters (in the sense of the Lucas critique) is that these parameters are policy invariant, not necessarily time invariant." Therefore, future research faces an important challenge in developing techniques able to extract the factors responsible for parameter instabilities, allowing to assess the applicability of the respective DSGE setting for policy analysis and forecasting.

In chapter 4 we use a Bayesian approach to analyze the impact of distinct ad hoc specifications of adjustment costs on the fit and the dynamics of a New Keynesian model using both euro area and US data. Particularly, we consider three different theoretical specifications of quadratic adjustment costs of capital accumulation frequently used in the literature: an investment adjustment cost specification and two forms of capital adjustment costs. Our findings suggest that caution should be exercised when using estimated DSGE models with quadratic costs of capital accumulation for policy analysis, since the results could be affected by the choice of either investment or capital adjustment costs both being modeling shortcuts. Hence, our analysis provides further evidence for encouraging the efforts of a rigorous microfoundation of adjustment costs for capital
accumulation.

Bibliography

Adjemian, Stéphane, Houtan Bastani, Michel Juillard, Ferhat Mihoubi, George Perendia, Marco Ratto, and Sébastien Villemot, "Dynare: Reference Manual, Version 4," Dynare Working Papers, April 2011, (1).
_ , Matthieu Darracq Pariès, and Stéphane Moyen, "Optimal Monetary Policy in an Estimated DSGE for the Euro Area," ECB Working Paper Series, August 2007, (803).

Adolfson, Malin, Jesper Lindé, and Mattias Villani, "Bayesian Analysis of DSGE Models - Some Comments," Econometric Reviews, August 2007, 26 (2-4), 173-185.
_ , Stefan Laséen, Jesper Lindé, and Mattias Villani, "Empirical Properties of Closed- and Open-Economy DSGE Models of the Euro Area," Macroeconomic Dynamics, April 2008, 12 (1), 2-19.

Altug, Sumru, "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, November 1989, 30 (4), 889-920.

Álvarez, Luis J., Emmanuel Dhyne, Marco Hoeberichts, Claudia Kwapil, Hervé Le Bihan, Patrick Lünnemann, Fernando Martins, Roberto Sabbatini, Harald Stahl, Philip Vermeulen, and Jouko Vilmunen, "Sticky Prices in the Euro Area: A Summary of New Micro-evidence," Journal of the European Economic Association, April 2006, 4 (2-3), 575-584.

Ambler, Steve, "The Costs of Inflation in New Keynesian Models," Bank of Canada Review, 2007, pp. 5-14.

An, Sungbae, "Bayesian Estimation of DSGE Models: Lessons from SecondOrder Approximations," May 2007. Mimeo, University of Pennsylvania.
_ and Frank Schorfheide, "Bayesian Analysis of DSGE Models," Econometric Reviews, August 2007, 26 (2-4), 113-172.

Anderson, Gary and George Moore, "A Linear Algebraic Procedure for Solving Linear Perfect Foresight Models," Economics Letters, 1985, 17 (3), 247-252.

Andrews, Donald W. K. and Ray C. Fair, "Inference in Nonlinear Econometric Models with Structural Change," Review of Economic Studies, October 1988, 55 (184), 615-639.

Andrews, Donald W.K., "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, July 1993, 61 (4), 821856.

Andrés, Javier, J. David Lopéz-Salido, and Javier Vallés, "Money in an Estimated Business Cycle Model of the Euro Area," Economic Journal, April 2006, 116 (511), 457-477.

Angeloni, Ignazio and Michael Ehrmann, "The Euro and the Transmission of Monetary Policy," in Lawrence R. Klein, ed., Long-Run Growth and ShortRun Stabilization: Essays in Memory of Albert Ando, Elgar, 2006, pp. 161-206.

Aruoba, S. Boragan, Jesus Fernandez-Villaverde, and Juan F. Rubio-Ramirez, "Comparing Solution Methods for Dynamic Equilibrium Economies," Journal of Economic Dynamics and Control, December 2006, 30 (12), 2477-2508.

Ascari, Guido, Efrem Castelnuovo, and Lorenza Rossi, "Calvo vs. Rotemberg in a Trend Inflation World: An Empirical Investigation," Journal of Economic Dynamics and Control, November 2011, 35 (11), 1852-1867.

Blanchard, Olivier J. and Charles M. Kahn, "The Solution of Linear Difference Models under Rational Expectations," Econometrica, July 1980, 48 (5), 1305-1311.

- and Jordi Galí, "Real Wage Rigidities and the New Keynesian Model," Journal of Money, Credit and Banking, February 2007, 39, 35-65.

Bouakez, Hafedh, Emanuela Cardia, and Francisco J. Ruge-Murcia, "Habit Formation and the Persistence of Monetary Shocks," Journal of Monetary Economics, September 2005, 52 (6), 1073-1088.

Brooks, Stephen P. and Andrew Gelman, "General Methods for Monitoring Convergence of Iterative Simulations," Journal of Computational and Graphical Statistics, December 1998, 7 (4), 434-455.

Browne, Frank, Gabriel Fagan, and Jerome Henry, "Money Demand in EU Countries: A Survey," Macroeconomics 0503004, EconWPA March 2005.

Buiter, Willem H. and Anne C. Sibert, "Deflationary Bubbles," Macroeconomic Dynamics, September 2007, 11 (4), 431-454.

Burnside, Craig, Martin Eichenbaum, and Sergio T. Rebelo, "Labor Hoarding and the Business Cycle," Journal of Political Economy, April 1993, 101 (2), 245-273.

Burriel, Pablo, Jesús Fernández-Villaverde, and Juan Rubio-Ramírez, "MEDEA: A DSGE Model for the Spanish Economy," SERIEs - Journal of the Spanish Economic Association, March 2010, 1 (1), 175-243.

Calvo, Guillermo A., "Staggered Prices in a Utility-Maximizing Framework," Journal of Monetary Economics, September 1983, 12 (3), 383-398.

Cameron, A. Colin and Pravin K. Trivedi, Microeconometrics: Methods and Applications, Cambridge University Press, 2005.

Canova, Fabio, "Monetary Policy and the Evolution of the US Economy," CEPR Discussion Papers, July 2006, (5467).
_ , Methods for Applied Macroeconomic Research, Princeton University Press, 2007.
_ , "What Explains the Great Moderation in the U.S.? A Structural Analysis," Journal of the European Economic Association, June 2009, 7 (4), 697-721.

- and Filippo Ferroni, "Multiple Filtering Devices for the Estimation of Cyclical DSGE Models," Quantitative Economics, March 2011, 2 (1), 73-98.
_ and _ , "The Dynamics of US Inflation: Can Monetary Policy Explain the Changes?," Journal of Econometrics, March 2012, 167 (1), 47-60.

Casares, Miguel, "The New Keynesian Model and the Euro Area Business Cycle," Oxford Bulletin of Economics and Statistics, April 2007, 69 (2), 209244.

Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan, "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, January 2009, 1 (1), 242-66.

Cho, Seonghoon and Antonio Moreno, "A Small-Sample Study of the NewKeynesian Macro Model," Journal of Money, Credit and Banking, September 2006, 38 (6), 1461-1481.

Christensen, Ian and Ali Dib, "The Financial Accelerator in an Estimated New Keynesian Model," Review of Economic Dynamics, January 2008, 11 (1), 155-178.

Christiano, Lawrence J. and Martin Eichenbaum, "Current Real-BusinessCycle Theories and Aggregate Labor-Market Fluctuations," American Economic Review, June 1992, 82 (3), 430-450.
_, _, and Charles L. Evans, "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, February 2005, 113 (1), 1-45.
_ , Mathias Trabandt, and Karl Walentin, "DSGE Models for Monetary Policy Analysis," in Benjamin M. Friedman and Michael Woodford, eds., Handbook of Monetary Economics, 1 ed., Vol. 3, Elsevier, 2010, pp. 285-367.

Clarida, Richard, Jordi Galí, and Mark Gertler, "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, December 1999, 37 (4), 1661-1707.
_ , _ , and _ , "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," Quarterly Journal of Economics, February 2000, 115 (1), 147-180.
_ , _ , and _ , "A Simple Framework for International Monetary Policy Analysis," Journal of Monetary Economics, July 2002, 49 (5), 879-904.

Coenen, Günter and Volker Wieland, "A Small Estimated Euro Area Model with Rational Expectations and Nominal Rigidities," European Economic Review, July 2005, 49 (5), 1081-1104.

Cogley, Timothy and Takeshi Yagihashi, "Are DSGE Approximating Models Invariant to Shifts in Policy?," The B.E. Journal of Macroeconomics, 2010, 10 (1).

Conover, William J., Practical Nonparametric Statistics, 3 ed., Wiley and Sons, 1999.

Cukierman, Alex and Francesco Lippi, "Labour Markets and Monetary Union: A Strategic Analysis," Economic Journal, July 2001, 111 (473), 541565.

Danthine, Jean Pierre and John B. Donaldson, "Methodological and Empirical Issues in Real Business Cycle Theory," European Economic Review, January 1993, 37 (1), 1-35.

DeJong, David N. and Chetan Dave, Structural Macroeconometrics, Princeton University Press, 2007.
_ and _ , Structural Macroeconometrics, 2 ed., Princeton University Press, 2011.
_ , Beth F. Ingram, and Charles H. Whiteman, "A Bayesian Approach to Calibration," Journal of Business and Economic Statistics, January 1996, 14 (1), 1-9.
_ , , , and _ , "Keynesian Impulses versus Solow Residuals: Identifying Sources of Business Cycle Fluctuations," Journal of Applied Econometrics, May 2000a, 15 (3), 311-329.
_, , and _, "A Bayesian Approach to Dynamic Macroeconomics," Journal of Econometrics, October 2000b, 98 (2), 203-223.

Del Negro, Marco and Frank Schorfheide, "Forming Priors for DSGE Models (And How It Affects the Assessment of Nominal Rigidities)," Journal of Monetary Economics, October 2008, 55 (7), 1191-1208.
_ and _ , "Bayesian Macroeconometrics," in Gary Koop John Geweke and Herman van Dijk, eds., The Oxford Handbook of Bayesian Econometrics, Oxford University Press, 2011.

Dellas, Harris, "Monetary Shocks and Inflation Dynamics in the New Keynesian Model," Journal of Money, Credit and Banking, March 2006, 38 (2), 543-551.

Dhyne, Emmanuel, Luis J. Álvarez, Hervé Le Bihan, Giovanni Veronese, Daniel Dias, Johannes Hoffmann, Nicole Jonker, Patrick Lünnemann, Fabio Rumler, and Jouko Vilmunen, "Price Changes in the Euro Area and the United States: Some Facts from Individual Consumer Price Data," Journal of Economic Perspectives, 2006, 20 (2), 171-192.

DiCecio, Riccardo and Edward Nelson, "An Estimated DSGE Model for the United Kingdom," Federal Reserve Bank of St. Louis Review, July 2007, 89 (4), 215-231.

Doan, Thomas, Robert Litterman, and Christopher A. Sims, "Forecasting and Conditional Projection Using Realistic Prior Distributions," Econometric Reviews, 1984, 3 (1), 1-100.

Efron, Bradley and Robert J. Tibshirani, An Introduction to the Bootstrap, Chapman \& Hall/CRC, 1993.

European Commission, EMU@10: Successes and Challenges After 10 Years of Economic and Monetary Union, Office for Official Publications of the European Communities, 2008.

Fagan, Gabriel, Jérôme Henry, and Ricardo Mestre, "An Area-Wide Model for the Euro Area," Economic Modelling, January 2005, 22 (1), 39-59.

Farmer, Roger E. A., The Macroeconomics of Self-fulfilling Prophecies, MIT Press, 1999.

Fernández-Villaverde, Jesús, "The Econometrics of DSGE Models," SERIEs

- Journal of the Spanish Economic Association, March 2010, 1 (1), 3-49.
_ and Juan F. Rubio-Ramírez, "Comparing Dynamic Equilibrium Models to Data: A Bayesian Approach," Journal of Econometrics, November 2004, 123 (1), 153-187.
_ and _ , "Our Research Agenda: Estimating DSGE Models," Newsletter of the Review of Economic Dynamics, November 2006, 8 (1).
_ , Pablo Guerrón-Quintana, and Juan F. Rubio-Ramírez, "The New Macroeconometrics: A Bayesian Approach," in Tony O'Hagan and Mike West, eds., The Oxford Handbook of Applied Bayesian Analysis, Oxford University Press, 2010, pp. 366-397.

Fischer, Christoph, "Price Convergence in the EMU? Evidence from Micro Data," European Economic Review, May 2012, 56 (4), 757-776.

Fratzscher, Marcel and Livio Stracca, "The Political Economy Under Monetary Union: Has the Euro Made a Difference?," Economic Policy, April 2009, 24 (58), 307-348.

Gabriel, Vasco, Paul Levine, Joseph Pearlman, and Bo Yang, "An Estimated DSGE Model of the Indian Economy," in Chetan Ghate, ed., The Oxford Handbook of the Indian Economy, Oxford University Press, 2012, pp. 835-890.

Galí, Jordi, "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, March 1999, 89 (1), 249-271.
_ , "New Perspectives on Monetary Policy, Inflation, and the Business Cycle," NBER Working Paper Series, February 2002, (8767).
_, Introduction to Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework, Princeton University Press, 2008.

- and Mark Gertler, "Macroeconomic Modeling for Monetary Policy Evaluation," Journal of Economic Perspectives, 2007, 21 (4), 25-45.
- and Pau Rabanal, "Technology Shocks and Aggregate Fluctuations: How Well Does the Real Business Cycle Model Fit Postwar U.S. Data?," NBER/Macroeconomics Annual, October 2004, 19, 225-288.

Gelain, Paolo, Diego Rodríguez-Palenzuela, and Balázs Világi, "An Estimated Euro-area DSGE Model with Financial Frictions: Empirical Investigation of the Financial Accelerator Mechanism," ECB Working Paper Series, 2012. Forthcoming.

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin, Bayesian Data Analysis, 2 ed., Chapman \& Hall/CRC, 2003.

Gerali, Andrea, Stefano Neri, Luca Sessa, and Federico M. Signoretti, "Credit and Banking in a DSGE Model of the Euro Area," Journal of Money, Credit and Banking, September 2010, 42, 107-141.

Geweke, John, "Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication," Econometric Reviews, February 1999, 18 (1), 1-73.
_ , Contemporary Bayesian Econometrics and Statistics, Wiley and Sons, 2005.
Giglioli, Nicla, Andrea Saltelli, and Stefano Tarantola, "Global Uncertainty and Sensitivity Analysis and Neighbourhoods," in Andris Buikis, Raimondas Ciegis, and Alistair D. Fitt, eds., Progress in Industrial Mathematics at ECMI 2002, Vol. 5 of Mathematics in Industry, Springer, 2004, pp. 277-283.

Gill, Jeff and Gary King, "Numerical Issues Involved in Inverting Hessian Matrices," in Micah Altman, Jeff Gill, and Michael P. McDonald, eds., Numerical Issues in Statistical Computing for the Social Scientist, Wiley and Sons, 2003, chapter 6, pp. 143-176.

Golub, Gene H. and Charles F. Van Loan, Matrix Computations, 3 ed., Johns Hopkins University Press, 1996.

Goodfriend, Marvin, "Monetary Policy in the New Neoclassical Synthesis: A Primer," International Finance, 2002, 5 (2), 165-191.

- and Robert G. King, "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER/Macroeconomics Annual, October 1997, 12 (1), 231283.

Greenwood, Jeremy, Zvi Hercowitz, and Gregory W. Huffman, "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, June 1988, 78 (3), 402-417.

Groth, Charlotta and Hashmat Khan, "Investment Adjustment Costs: An Empirical Assessment," Journal of Money, Credit and Banking, December 2010, 42 (8), 1469-1494.

Hamilton, James D., Time Series Analysis, Princeton University Press, 1994a.
_ , "State-Space Models," in Robert F. Engle and Daniel L. McFadden, eds., Handbook of Econometrics, Vol. 4, Elsevier, 1994b, pp. 3039-3080.

Harvey, Andrew C., Time Series Models, 2 ed., MIT Press, 1993.
Heer, Burkhard and Alfred Maussner, Dynamic General Equilibrium Modeling: Computational Methods and Applications, 2 ed., Springer, 2009.

Hughes Hallett, Andrew and Christian Richter, "Has There Been Any Structural Convergence in the Transmission of European Monetary Policies?," International Economics and Economic Policy, July 2009, 6 (2), 85-101.

Ingram, Beth F., Narayana R. Kocherlakota, and N. Eugene Savin, "Explaining Business Cycles: A Multiple-Shock Approach," Journal of Monetary Economics, December 1994, 34 (3), 415-428.

Inoue, Atsushi and Barbara Rossi, "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," Review of Economics and Statistics, November 2011, 93 (4), 1186-1204.

Ireland, Peter N., "A Small, Structural, Quarterly Model for Monetary Policy Evaluation," Carnegie-Rochester Conference Series on Public Policy, December 1997, 47, 83-108.
_ , "Interest Rates, Inflation, and Federal Reserve Policy since 1980," Journal of Money, Credit and Banking, August 2000, 32 (3), 417-434.
_ , "Sticky-price Models of the Business Cycle: Specification and Stability," Journal of Monetary Economics, February 2001, 47 (1), 3-18.

- , "Endogenous Money or Sticky Prices?," Journal of Monetary Economics, November 2003, 50 (8), 1623-1648.
_, "Technology Shocks in the New Keynesian Model," Review of Economics and Statistics, November 2004, 86 (4), 923-936.
- , "Changes in the Federal Reserve's Inflation Target: Causes and Consequences," Journal of Money, Credit and Banking, December 2007, 39 (8), 18511882.
_ , "A New Keynesian Perspective on the Great Recession," Journal of Money, Credit and Banking, February 2011, 43 (1), 31-54.

Iskrev, Nikolay, "Local Identification in DSGE Models," Journal of Monetary Economics, March 2010, 57 (2), 189-202.

Jarocinski, Marek, "Responses to Monetary Policy Shocks in the East and the West of Europe: A Comparison," Journal of Applied Econometrics, August 2010, 25 (5), 833-868.

Jeffreys, Harold, Theory of Probability, 3 ed., Oxford University Press, 1961.
Jerger, Jürgen, "Socially Optimal Monetary Policy Institutions," European Journal of Political Economy, November 2002, 18 (4), 761-781.

- and Oke Röhe, "Testing for Parameter Stability in DSGE Models. The Cases of France, Germany, Italy, and Spain," BGPE Discussion Papers, 2012, (118).

Judd, Kenneth L., Numerical Methods in Economics, MIT Press, 1998.
Juillard, Michel, Ondra Kamenik, Michael Kumhof, and Douglas Laxton, "Optimal Price Setting and Inflation Inertia in a Rational Expectations Model," Journal of Economic Dynamics and Control, August 2008, 32 (8), 2584-2621.
_ , Philippe Karam, Douglas Laxton, and Paolo Pesenti, "Welfare-based Monetary Policy Rules in an Estimated DSGE Model of the US Economy," ECB Working Paper Series, April 2006, (613).

Justiniano, Alejandro, Giorgio E. Primiceri, and Andrea Tambalotti, "Investment Shocks and Business Cycles," NBER Working Paper Series, December 2009, (15570).
_ , _ , and _ , "Investment Shocks and Business Cycles," Journal of Monetary Economics, March 2010, 57 (2), 132-145.

Kalman, Rudolf E., "A New Approach to Linear Filtering and Prediction Problems," Journal of Basic Engineering, March 1960, 82 (1), 35-45.

- and Richard S. Bucy, "New Results in Linear Filtering and Prediction Theory," Journal of Basic Engineering, March 1961, 83 (1), 95-107.

Karagedikli, Özer, Troy Matheson, Christie Smith, and Shaun P. Vahey, "RBCs and DSGEs: The Computational Approach to Business Cycle Theory and Evidence," Journal of Economic Surveys, February 2010, 24 (1), 113-136.

Kass, Robert E. and Adrian E. Raftery, "Bayes Factors," Journal of the American Statistical Association, June 1995, 90 (430), 773-795.

Keynes, John M., The General Theory of Employment, Interest and Money, Macmillan, 1936.

Kim, Jinill, "Monetary Policy in a Stochastic Equilibrium Model with Real and Nominal Rigidities," Finance and Economics Discussion Series provided by Board of Governors of the Federal Reserve System (U.S.), 1998, (1998-02).
_ , "Constructing and Estimating a Realistic Optimizing Model of Monetary Policy," Journal of Monetary Economics, April 2000, 45 (2), 329-359.

- and Sunghyun Henry Kim, "Spurious Welfare Reversals in International Business Cycle Models," Journal of International Economics, August 2003, 60 (2), 471-500.
_, Sunghyun Kim, Ernst Schaumburg, and Christopher A. Sims, "Calculating and Using Second-Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models," Journal of Economic Dynamics and Control, November 2008, 32 (11), 3397-3414.

King, Robert G. and Mark W. Watson, "System Reduction and Solution Algorithms for Singular Linear Difference Systems under Rational Expectations," Computational Economics, October 2002, 20 (1-2), 57-86.
_ , Charles I. Plosser, and Sergio T. Rebelo, "Production, Growth and Business Cycles: I. The Basic Neoclassical Model," Journal of Monetary Economics, March 1988, 21 (2/3), 195-232.

Klein, Paul, "Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model," Journal of Economic Dynamics and Control, September 2000, 24 (10), 1405-1423.

Kremer, Jana, Giovanni Lombardo, Leopold von Thadden, and Thomas Werner, "Dynamic Stochastic General Equilibrium Models as a Tool for Policy Analysis," CESifo Economic Studies, December 2006, 52 (4), 640-665.

Kydland, Finn E. and Edward C. Prescott, "Time to Build and Aggregate Fluctuations," Econometrica, November 1982, 50 (6), 1345-1370.
_ and _ , "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, 1996, 10 (1), 69-85.

Leeper, Eric M. and Christopher A. Sims, "Toward a Modern Macroeconomic Model Usable for Policy Analysis," NBER/Macroeconomics Annual, June 1994, 9, 81-118.

Levin, Andrew T., Alexei Onatski, John C. Williams, and Noah Williams, "Monetary Policy Under Uncertainty in Micro-Founded Macroeconometric Models," NBER/Macroeconomics Annual, October 2005, 20 (1), 229-287.

Litterman, Robert B., "Techniques for Forecasting with Vector Autoregressions." Ph.d. thesis, University of Minnesota 1980.

Lombardo, Giovanni and David Vestin, "Welfare Implications of Calvo vs. Rotemberg-pricing Assumptions," Economics Letters, August 2008, 100 (2), 275-279.

Long, John B. and Charles I. Plosser, "Real Business Cycles," Journal of Political Economy, February 1983, 91 (1), 39-69.

Lubik, Thomas and Frank Schorfheide, "A Bayesian Look at New Open Economy Macroeconomics," NBER/Macroeconomics Annual, October 2005, 20 (1), 313-366.

Lucas, Robert E. Jr., "Econometric Policy Evaluation: A Critique," CarnegieRochester Conference Series on Public Policy, January 1976, 1, 19-46.

Lütkepohl, Helmut, New Introduction to Multiple Time Series Analysis, Springer, 2005.

McCallum, Bennett T. and Edward Nelson, "An Optimizing IS-LM Specification for Monetary Policy and Business Cycle Analysis," Journal of Money, Credit and Banking, August 1999, 31 (3), 296-316.

McCandless, George, The ABCs of RBCs: An Introduction to Dynamic Macroeconomic Models, Harvard University Press, 2008.

Neiss, Katharine S. and Edward Nelson, "The Real-Interest-Rate Gap as an Inflation Indicator," Macroeconomic Dynamics, April 2003, 7 (2), 239-262.

Obstfeld, Maurice, "Exchange Rates and Adjustment: Perspectives from the New Open- Economy Macroeconomics," Monetary and Economic Studies, December 2002, 20 (S1), 23-46.

Otrok, Christopher, "On Measuring the Welfare Cost of Business Cycle," Journal of Monetary Economics, February 2001, 47 (1), 61-92.

Pappenberger, Florian, Keith J. Beven, Marco Ratto, and Patrick Matgen, "Multi-Method Global Sensitivity Analysis of Flood Inundation Models," Advances in Water Resources, January 2008, 31 (1), 1-14.

Peersman, Gert and Roland Straub, "Putting the New Keynesian Model to a Test," IMF Working Papers, May 2006, (06/135).

Plosser, Charles I., "Understanding Real Business Cycles," Journal of Economic Perspectives, 1989, 3 (3), 51-77.

Popov, Alexander and Steven Ongena, "Interbank Market Integration, Loan Rates, and Firm Leverage," Journal of Banking \& Finance, March 2011, 35 (3), 544-559.

Primiceri, Giorgio E., Ernst Schaumburg, and Andrea Tambalotti, "Intertemporal Disturbances," NBER Working Paper Series, May 2006, (12243).

Rabanal, Pau, "Does Inflation Increase after a Monetary Policy Tightening? Answers Based on an Estimated DSGE Model," Journal of Economic Dynamics and Control, March 2007, 31 (3), 906-937.
_ , "Inflation Differentials between Spain and the EMU: A DSGE Perspective," Journal of Money, Credit and Banking, September 2009, 41 (6), 1141-1166.

- and Juan F. Rubio-Ramírez, "Comparing New Keynesian Models in the Euro Area: A Bayesian Approach," Spanish Economic Review, March 2008, 10 (1), 23-40.

Raftery, Adrian E., Michael A. Newton, Jaya M. Satagopan, and Pavel N. Krivitsky, "Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity," in José M. Bernardo, M.J. Bayarri, James O. Berger, A. Philip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West, eds., Bayesian Statistics 8, Oxford University Press, 2007, pp. 1-45.

Ratto, Marco, "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, March 2008, 31 (2), 115-139.
_ , Sensitivity Analysis Toolbox for DYNARE, European Commission, Joint Research Centre, 2009.
_ , Werner Roeger, and Jan in 't Veld, "QUEST III: An Estimated OpenEconomy DSGE Model of the Euro Area with Fiscal and Monetary Policy," Economic Modelling, January 2009, 26 (1), 222-233.

Rebelo, Sergio T., "Real Business Cycle Models: Past, Present and Future," Scandinavian Journal of Economics, June 2005, 107 (2), 217-238.

Riggi, Marianna and Massimiliano Tancioni, "Nominal vs Real Wage Rigidities in New Keynesian Models with Hiring Costs: A Bayesian Evaluation," Journal of Economic Dynamics and Control, July 2010, 34 (7), 1305-1324.

Robert, Christian P., The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, Springer, 2001.

Roberts, Gareth O., Andrew Gelman, and Walter R. Gilks, "Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms," Annals of Applied Probability, February 1997, 7 (1), 110-120.

Roberts, John M., "New Keynesian Economics and the Phillips Curve," Journal of Money, Credit and Banking, November 1995, 27 (4), 975-984.

Rotemberg, Julio J., "Sticky Prices in the United States," Journal of Political Economy, December 1982, 90 (6), 1187-1211.

- and Michael Woodford, "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER/Macroeconomics Annual, October 1997, 12 (1), 297-346.

Ruge-Murcia, Francisco J., "Methods to Estimate Dynamic Stochastic General Equilibrium Models," Journal of Economic Dynamics and Control, August 2007, 31 (8), 2599-2636.

Sahuc, Jean-Guillaume and Frank Smets, "Differences in Interest Rate Policy at the ECB and the Fed: An Investigation with a Medium-Scale DSGE Model," Journal of Money, Credit and Banking, March 2008, 40 (2/3), 505521.

Saltelli, Andrea, "Sensitivity Analysis for Importance Assessment," Risk Analysis, June 2002, 22 (3), 579-590.
_ , Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola, Global Sensitivity Analysis: The Primer, Wiley and Sons, 2008.
_ , Stefano Tarantola, Francesca Campolongo, and Marco Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Wiley and Sons, 2004.

Sargent, Thomas J., "Interpreting Economic Time Series," Journal of Political Economy, April 1981, 89 (2), 213-248.

Sbordone, Argia M., Andrea Tambalotti, Krishna Rao, and Kieran Walsh, "Policy Analysis Using DSGE Models: An Introduction," Economic Policy Review, October 2010, 16 (2), 23-43.

Schmitt-Grohé, Stephanie and Martín Uribe, "Optimal Fiscal and Monetary Policy in a Medium-Scale Macroeconomic Model," NBER/Macroeconomics Annual, October 2005, 20 (1), 383-425.
_ and _ , "What's News in Business Cycles," NBER Working Paper Series, August 2008, (14215).

Schorfheide, Frank, "Loss Function-Based Evaluation of DSGE Models," Journal of Applied Econometrics, November 2000, 15 (6), 645-670.
_ , "DSGE Model-Based Estimation of the New Keynesian Phillips Curve," Federal Reserve Bank of Richmond Economic Quarterly, 2008, 94 (4), 397-433.

- , "Estimation and Evaluation of DSGE Models: Progress and Challenges," NBER Working Paper Series, February 2011, (16781).

Shea, John, "What Do Technology Shocks Do?," NBER/Macroeconomics Annual, October 1998, 13 (1), 275-322.

Sims, Christopher A., "Macroeconomics and Reality," Econometrica, January 1980, 48 (1), 1-48.
_ , "Solving Linear Rational Expectations Models," Computational Economics, October 2002, 20 (1-2), 1-20.

Smets, Frank and Raf Wouters, "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, September 2003, 1 (5), 1123-1175.
_ and _ , "Comparing Shocks and Frictions in US and Euro Area Business Cycles: A Bayesian DSGE Approach," Journal of Applied Econometrics, March 2005, 20 (2), 161-183.
_ and _ , "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, June 2007, 97 (3), 586-606.
_ , Kai Christoffel, Günter Coenen, Roberto Motto, and Massimo Rostagno, "DSGE Models and Their Use at the ECB," SERIEs: Journal of the Spanish Economic Association, February 2010, 1 (1), 51-65.

Sobol', Ilya M., "On Quasi-Monte Carlo Integrations," Mathematics and Computers in Simulation, August 1998, 47 (2-5), 103-112.

Spear, Robert C. and George M. Hornberger, "Eutrophication in Peel Inlet-II. Identification of Critical Uncertainties via Generalized Sensitivity Analysis," Water Research, 1980, 14 (1), 43-49.

Taylor, John B., "Aggregate Dynamics and Staggered Contracts," Journal of Political Economy, February 1980, 88 (1), 1-23.
_ , "Discretion Versus Policy Rules in Practice," Carnegie-Rochester Conference Series on Public Policy, December 1993, 39 (1), 195-214.

Tovar, Camilo E., "DSGE Models and Central Banks," Economics: The OpenAccess, Open-Assessment E-Journal, May 2009, 3 (2009-16).

Uhlig, Harald, "A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily," in Ramon Marimon and Andrew Scott, eds., Computational Methods for the Study of Dynamic Economies, Oxford University Press, 1999, pp. 30-61.
von Hagen, Jürgen, "Macroeconomic Consequences of the EMU," Empirica, December 1999, 26 (4), 359-374.

Walsh, Carl E., "Commentary: Using Models for Monetary Policy Analysis," International Journal of Central Banking, March 2010, 6 (1), 259-270.

Wang, Pengfei and Yi Wen, "Hayashi Meets Kiyotaki and Moore: A Theory of Capital Adjustment Costs," Review of Economic Dynamics, April 2012, 15 (2), 207-225.

Woodford, Michael, Interest and Prices, Princeton University Press, 2003.
_ , "How Important Is Money in the Conduct of Monetary Policy?," Journal of Money, Credit and Banking, December 2008, 40 (8), 1561-1598.

Young, Peter C., Stuart Parkinson, and Matthew Lees, "Simplicity Out of Complexity in Environmental Modelling: Occam's Razor Revisited," Journal of Applied Statistics, June 1996, 23 (2/3), 165-210.

Zanetti, Francesco, "A Non-Walrasian Labor Market in a Monetary Model of the Business Cycle," Journal of Economic Dynamics and Control, July 2007, 31 (7), 2413-2437.

Zietz, Joachim, "A Clarifying Note on Converting to Log-Deviations from the Steady State," Economics Bulletin, 2008, 3 (50), 1-15.

Zubairy, Sarah, "On Fiscal Multipliers: Estimates from a Medium Scale DSGE
Model," Bank of Canada Workingpaper, November 2010, (10-30).

[^0]: ${ }^{1}$ Note that $\sigma=1$ implies a log utility for consumption, so that the model would be consistent with a balanced growth path if secular technical progress was introduced (see King et al., 1988; Galí, 2002).

[^1]: ${ }^{2}$ Alternative specifications of nominal price rigidities in the recent New Keynesian literature include Taylor's (1980) pricing contracts and Calvo's (1983) random probability of price adjustment (for an overview see Roberts, 1995). A detailed analysis of Rotemberg (1982) and Calvo (1983) price setting mechanisms can be found in Lombardo and Vestin (2008) and Ascari et al. (2011).

[^2]: ${ }^{3}$ Note that the gross steady state level of inflation π is determined by the inflation target of the monetary authority.
 ${ }^{4}$ Although, as outlined in Kim et al. (2008), linear approximations might be sufficiently accurate for a wide variety of purposes, using a linear approximation to the model economy can be inappropriate. Examples include welfare comparisons across policies that do not have first-order effects on the model's deterministic steady state (see Kim and Kim, 2003; An 2007; Kim et al., 2008). DeJong and Dave (2011) provide an overview of recent nonlinear solution methods and their use in empirical applications.
 ${ }^{5}$ For the ease of exposition, we assume that the inflation target is zero, implying a gross steady state inflation rate π equal to one.

[^3]: ${ }^{6}$ As shown in appendix A, the dynamic IS curve can be derived from the Euler equation of the representative household (see section 2.2.2.2), while the New Keynesian Phillips curve is obtained from solving the monopolistically competitive firm's optimization problem under price adjustment costs (see section 2.2.2.3).

[^4]: ${ }^{7}$ See appendix B for details.

[^5]: ${ }^{8}$ More advanced types of calibration are, for example, based on Bayesian Monte Carlo techniques, taking into account the degree of uncertainty in parameter values (see DeJong et al., 1996).

[^6]: ${ }^{1}$ The technical notes of Ireland (2011) are available at http://www.irelandp.com/progs/nkp.zip.

[^7]: ${ }^{2}$ As outlined in Hamilton (1994a) and DeJong and Dave (2007) the appearance of the vec operator accommodates the VAR specification for ζ_{t}. We use the relationship between vec operator and Kronecker product: $\operatorname{vec}\left[\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}\right]=\left[\left(P^{j}\right)^{\prime} \otimes\left(S_{22} T_{22}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2} C\right)$. Note that $P^{\prime}=P$, since P is a diagonal matrix.

[^8]: ${ }^{1}$ Appendices C and D provide a summary of the complete model and its solution.

[^9]: ${ }^{2}$ The endowment of time is normalized to one.

[^10]: ${ }^{3}$ The above Taylor rule is a simplified version of the monetary policy rule presented in chapter 2 with $\rho_{r}=0$, i.e., no interest smoothing.
 ${ }^{4}$ Note that the steady state money growth rate τ is assumed to be determined by the monetary authority.

[^11]: ${ }^{5}$ For a detailed description of the Kalman filter we refer to appendix E.
 ${ }^{6}$ Therefore, we implement Christopher Sims' hybrid optimization algorithm "csminwel", which combines the derivative-based Broyden-Fletcher-Goldfarb-Shannon (BFGS) method with a simplex algorithm (see DeJong and Dave, 2007 and Heer and Maussner, 2009 for details). The "csminwel" program is available at http://sims.princeton.edu/yftp/optimize/.
 ${ }^{7}$ Since the model contains as many structural shocks as observable variables the problem of stochastic singularity is avoided (see Ingram, Kocherlakota and Savin, 1994).
 ${ }^{8}$ Appendix F presents the data sources.
 ${ }^{9}$ To facilitate the process of parameter estimation, we follow DeJong and Dave (2007, Chapter 11.2.5) and perform further data alignment by scaling the filtered series using their (relative) means.

[^12]: ${ }^{10}$ For a more detailed description of the methodology, including a formal description of the algorithm and proofs, we refer to Inoue and Rossi (2011) as well as to their not-for-publication appendix; see http://econ.duke.edu/ brossi/NotforPublicationAppendixInoueRossi2009.pdf.

[^13]: ${ }^{11} \mathrm{~A}$ full set of the test statistics is available from the authors upon request.

[^14]: ${ }^{12}$ We cannot rule out a test bias due to the treatment of re-unification outlined in section 3 .

[^15]: ${ }^{1}$ The technical notes are available at http://www.irelandp.com/progs/endogenous.zip.

[^16]: ${ }^{2}$ Canova (2007), DeJong and Dave (2007), and Zietz (2008) provide a detailed description of logarithmic approximations.

[^17]: ${ }^{1} \mathrm{~A}$ detailed presentation of the Blanchard-Kahn (1980) conditions is given in appendix B.2.

[^18]: ${ }^{2}$ To derive $\left(3.22^{\prime}\right)$ we use the Law of Iterated Expectations: $E_{t}\left[E_{t+1}(\cdot)\right]=E_{t}(\cdot)$.

[^19]: ${ }^{3}$ According Hamilton (1994a) and DeJong and Dave (2007), the appearance of the vec operator accommodates the VAR specification for ζ_{t}. In particular, we use the relationship between vec operator and Kronecker product: $\operatorname{vec}\left(N_{2}^{-j} Q_{2} P^{j}\right)=\left[\left(P^{j}\right)^{\prime} \otimes N_{2}^{-j}\right] \operatorname{vec}\left(Q_{2}\right)$. Note that $P^{\prime}=P$, since P is a diagonal matrix.

[^20]: ${ }^{1}$ Groth and Khan (2010) outline further arguments made in favor of investment adjustment costs in the recent DSGE literature.

[^21]: ${ }^{2}$ Appendices H and I provide a summary of the complete model and its solution.

[^22]: ${ }^{3}$ The endowment of time is normalized to one. Therefore, $1-l_{t}$ denotes leisure.

[^23]: ${ }^{4}$ Since g_{2} equals g_{3}, we a priori expect \mathcal{M}_{2} and \mathcal{M}_{3} to share the same dynamics, whereas differences presumably occur in the estimated magnitude of the parameter ϕ.

[^24]: ${ }^{5}$ Note that the gross steady state level of inflation π is assumed to be determined by the monetary authority.
 ${ }^{6}$ As outlined in Adjemian et al. (2011), the core of the DYNARE solution algorithm for computing the solution of a linear rational expectations model is predicated on a complex generalized Schur decomposition as presented in Klein (2000).

[^25]: ${ }^{7}$ Specifically, we assume $\varepsilon_{t} \sim N\left(0, \sum_{\varepsilon}(\mu)\right)$.
 ${ }^{8}$ See appendix J for a detailed presentation of the Kalman filter.

[^26]: ${ }^{9}$ Subsequently, we assume that the prior distribution can be factored as $p(\mu)=\prod_{i=1}^{k} p\left(\mu_{i}\right)$.
 ${ }^{10}$ As stated in Hamilton (1994a) and DeJong and Dave (2007), $p(X)$, which assigns probabilities to specific values of X, can be regarded as a constant from the perspective of the distribution of μ.
 ${ }^{11}$ According to Otrok (2001), a suitable jumping distribution should be both easy to simulate from and symmetric. These requirements are satisfied by the multivariate normal distribution.

[^27]: ${ }^{12}$ For a detailed presentation of simplex and BFGS methods we refer to DeJong and Dave (2007) and Heer and Maussner (2009).
 ${ }^{13}$ Note that only one chain is used for inference, whereas the remaining chains are employed to diagnose MCMC convergence.

[^28]: ${ }^{14} \mathrm{~A}$ detailed description of the Blanchard-Kahn (1980) conditions is given in appendix I.

[^29]: ${ }^{15}$ In the applications presented below, the samples are generated using Sobol' quasi-Monte Carlo $\left(L P_{\tau}\right)$ sequences, which allow better efficiency properties compared to traditional pseudorandom Monte Carlo sampling (see Ratto, 2008; Saltelli et al., 2008). For a detailed description of quasi-Monte Carlo techniques we refer to Judd (1998), Sobol' (1998), and Saltelli et al. (2008).

[^30]: ${ }^{16}$ We verified that our main results are robust to extending the US data back to 1948 (see table L.1).
 ${ }^{17}$ Appendix K presents the data sources.

[^31]: ${ }^{18}$ Note that the model contains as many structural shocks as observable variables, so that the problem of stochastic singularity is avoided (see Ingram et al., 1994).
 ${ }^{19}$ Concerning the euro area time series on population, quarterly data is interpolated from the annual series using cubic spline interpolation.
 ${ }^{20}$ To facilitate the process of parameter estimation, we follow the procedure suggested in DeJong and Dave (2007, Chapter 11.2.5) and perform further data alignment by scaling the filtered series using their (relative) means.
 ${ }^{21}$ The use of original (not detrended) or quadratically detrended series of inflation and shortrun interest rates did not alter our results substantially.

[^32]: ${ }^{22}$ We set the prior means of $\ln (z)$ so that the steady state values of c_{t} and i_{t} in the model match the respective average values of consumption and investment in the data.
 ${ }^{23}$ The RSA is performed using the Sensitivity Analysis Toolbox for DYNARE, a collection of MATLAB routines developed by Marco Ratto (2009).

[^33]: ${ }^{24}$ As stated in Canova (2007), the Kullback-Leibler distance measures the discrepancy between the model distribution and the true distribution of the data.
 ${ }^{25}$ For the sake of consistency with section 4.2 , we refer to specific versions of the model rather than to specific models.

[^34]: ${ }^{26}$ The computation of $p_{\text {post }_{2}}$ and $p_{\text {post }_{3}}$ proceeds in the same manner.
 ${ }^{27}$ While DYNARE allows to choose between a Laplace-approximation method and the modified harmonic mean estimator, we prefer the latter, motivated by the results of Adolfson et al. (2007), who find the modified harmonic mean estimator to be numerically stable in the RWM case.

[^35]: ${ }^{28}$ For a detailed description of HPD intervals and their construction we refer to Gill and King (2003), whereas the computation of posterior standard deviations is outlined in DeJong and Dave (2007).

[^36]: \mathcal{M}_{3}

 | | | prior | | posterior | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Type | Mean | Std. | Mean | Std. | HPD | Interval |
 | ρ_{r} | Beta | 0.7500 | 0.1500 | 0.5713 | 0.0486 | 0.4883 | 0.6584 |
 | ρ_{a} | Beta | 0.7500 | 0.1500 | 0.395 | 0.1231 | 0.2095 | 0.5835 |
 | ρ_{z} | Beta | 0.7500 | 0.1500 | 0.9633 | 0.0183 | 0.9366 | 0.9919 |
 | ρ_{x} | Beta | 0.7500 | 0.1500 | 0.7566 | 0.0594 | 0.6634 | 0.8514 |
 | ρ_{v} | Beta | 0.5000 | 0.1000 | 0.2746 | 0.0548 | 0.1818 | 0.3690 |
 | h | Beta | 0.5000 | 0.2000 | 0.4841 | 0.0707 | 0.3725 | 0.5944 |
 | α | Beta | 0.3000 | 0.0500 | 0.3000 | 0.0007 | 0.2985 | 0.3016 |
 | ϕ_{P} | Gamma | 50.0000 | 10.0000 | 57.6791 | 7.5121 | 43.0400 | 72.3395 |
 | ϕ | Gamma | 1500.0000 | 375.0000 | 944.4802 | 539.1763 | 549.9274 | 1335.0799 |
 | ω_{π} | Normal | 1.3000 | 0.3000 | 2.1752 | 0.2043 | 1.8281 | 2.5026 |
 | ω_{y} | Normal | 0.1250 | 0.2000 | 0.0182 | 0.0297 | -0.0297 | 0.0652 |
 | $\ln (z)$ | Gamma | 9.1800 | 1.0000 | 9.1926 | 1.0051 | 7.5516 | 10.8149 |
 | σ_{a} | Inverse gamma | 0.0100 | 0.5000 | 0.0076 | 0.0009 | 0.0061 | 0.0092 |
 | σ_{z} | Inverse gamma | 0.0100 | 0.5000 | 0.0114 | 0.0009 | 0.0098 | 0.0130 |
 | σ_{x} | Inverse gamma | 0.0100 | 0.5000 | 0.0243 | 0.0130 | 0.0145 | 0.0340 |
 | σ_{v} | Inverse gamma | 0.0100 | 0.5000 | 0.0024 | 0.0002 | 0.0021 | 0.0028 |

 Table 4.2: Estimates: US.

[^37]: ${ }^{29}$ We perform the MCF analysis using the Sensitivity Analysis Toolbox for DYNARE, a collection of MATLAB routines developed by Marco Ratto (2009). The MCF procedure is based on a sample of size 6000 .
 ${ }^{30}$ Recall from section 4.4.3, that B labels the parameter values producing the smallest 10 percent RMSEs.

[^38]: ${ }^{31}$ The posterior odds of model specification \mathcal{M}_{j} versus $\mathcal{M}_{j^{\prime}}$ with $j, j^{\prime} \in\{1,2,3\}$ can be obtained by multiplying the prior odds, which are unity in the case of equal prior probabilities, with the Bayes factor $\exp \left[\ln p\left(\mathcal{M}_{j} \mid X\right)-\ln p\left(\mathcal{M}_{j^{\prime}} \mid X\right)\right]$.

[^39]: ${ }^{32}$ Pre-samples are used to initialize the BVARs.
 ${ }^{33}$ Since, as outlined in Lütkepohl (2005), the Minnesota prior was primarily suggested for certain non-stationary processes, we slightly modify the prior, following the approach of Lubik and Schorfheide (2005).
 ${ }^{34}$ As outlined in Del Negro and Schorfheide (2011), the Minnesota prior depends on several hyperparameters. According to Smets and Wouters (2007) and Ratto et al. (2009), we set the prior decay and tightness parameters to 0.5 and 3 , respectively. Further, the parameter determining the weight on own-persistence (sum-of-coefficients on own lags) is set at 2 and the parameter determining the degree of co-persistence is set at 5 .
 ${ }^{35}$ The marginal likelihoods of the BVARs are computed using the MATLAB codes provided by Christopher Sims, which are available at http://sims.princeton.edu/yftp/VARtools/.

[^40]: ${ }^{36}$ The impulse responses are the log-deviations from the steady state to a one-standard deviation innovation. A detailed description of the computation of IRFs can be found in Hamilton (1994a), Lütkepohl (2005), and Canova (2007).

[^41]: ${ }^{37}$ Following Rabanal (2009), the variance decomposition is performed evaluating the model (specification) parameters at their posterior means.
 ${ }^{38}$ For a detailed description of the computation of forecast error variance decompositions, we refer to Hamilton (1994a), Lütkepohl (2005), or Canova (2007).
 ${ }^{39}$ Note that as the horizon increases, the conditional variance of the forecast error of a given variable converges to the unconditional variance of that variable (see Bouakez et al., 2005).

[^42]: ${ }^{1}$ A detailed presentation of the Blanchard-Kahn (1980) conditions is given in appendix B.2. ${ }^{2}$ The technical notes of Ireland (2011) are available at http://www.irelandp.com/progs/nkp.zip.

[^43]: ${ }^{3}$ Following Hamilton (1994a) and DeJong and Dave (2007), the appearance of the vec operator accommodates the VAR specification for ζ_{t}. We use the relationship between vec operator and Kronecker product: vec $\left[\left(S_{22} T_{22}^{-1}\right)^{j} Q_{2} C P^{j}\right]=\left[\left(P^{j}\right)^{\prime} \otimes\left(S_{22} T_{22}^{-1}\right)^{j}\right] \operatorname{vec}\left(Q_{2} C\right)$. Note that $P^{\prime}=P$, since P is a diagonal matrix.

[^44]: ${ }^{1}$ The Kalman filter recursion for the state equation (4.39) and observation equation (4.40) would proceed in exactly the same way.

[^45]: Figure L.2: Euro area: \mathcal{M}_{2}. Smirnov two-sample test for stability analysis: $F_{n}\left(\mu_{i} \mid B\right)$ (dotted lines), $F_{\bar{n}}\left(\mu_{i} \mid \bar{B}\right)$ (solid lines) and Smirnov test statistic (d-stat).

[^46]: Figure L.25: US: \mathcal{M}_{1}. Cumulative empirical probability distributions of the filtered samples corresponding to the best fit for each observed time series (c, i, π, r) and cumulative posterior probability distributions (base).

