Z. Kristallogr. NCS 227 (2012) 361-362 / DOI 10.1524/ncrs.2012.0173

© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of (2*S*, 4*R*)-2-benzyl 1-*tert*-butyl 4-(tosyloxy)pyrrolidine-1,2-dicarboxylate, C₂₄H₂₉NO₇S

Munmun Ghosh^I, Arijit Mallick^{II} and David Díaz Díaz^{*, I, III}

¹ Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany

^{II} Physical/Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India

^{III} ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain

Received January 12, 2012, accepted July 05, 2012, available online July 26, 2012, CCDC no. 1267/3796

 $\begin{array}{c} c_{16} \\ c_{13} \\ c_{13} \\ c_{13} \\ c_{13} \\ c_{14} \\ c_{12} \\ c_{14} \\ c_{12} \\ c_{13} \\ c_{14} \\ c_{12} \\ c_{14$

Abstract

C₂₄H₂₉NO₇S, triclinic, P1 (no. 1), a = 6.5903(3) Å, b = 9.7193(5) Å, c = 9.9874(4) Å, $\alpha = 82.462(4)^{\circ}$, $\beta = 77.197(3)^{\circ}$, $\gamma = 85.6180(4)^{\circ}$, V = 617.7 Å³, Z = 1, $R_{\rm gt}(F) = 0.0351$, $wR_{\rm ref}(F^2) = 0.0967$, T = 123 K.

Table 1. Data collection and handling.

Crystal:	colourless prisms, size
-	0.1551×0.2145×0.3113 mm
Wavelength:	Cu K_{α} radiation (1.54184 Å)
μ:	15.30 cm^{-1}
Diffractometer, scan mode:	SuperNova System, ω
$2\theta_{\text{max}}$:	147.46°
N(hkl) _{measured} , N(hkl) _{unique} :	22769, 4737
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 4714$
N(param) _{refined} :	298
Programs:	SIR-97 [4], SHELXL-97 [5], PLATON [6]

Source of material

All chemicals were purchased from commercial suppliers and used without further purification. The title compound was synthesized following the general procedure reported in the literature [1]. p-Toluenesulfonyl chloride (1.31 g, 6.84 mmol) was added portionwise to a solution of 2-benzyl 1-tert-butyl (2S,4R)-4hydroxypyrrolidine-1,2-dicarboxylate [2] (2 g, 6.22 mmol) in pyridine (10 mL) at 0 °C. The mixture was stirred for 12 h at room temperature, the solvent evaporated in vacuo and the residue poured into an ice bath. The mixture was extracted with ethyl acetate (3 \times 50 mL) and washed subsequently with 1M HCl, H₂O, Na_2CO_3 (10%) and H_2O . The combined organic phases were dried over anhydrous Na₂SO₄, filtered and the solvent evaporated to give a yellow oil, which was purified by column chromatography (eluent = hexane:ethyl acetate 8:2). The title compound was obtained as a colourless oil (yield 75%) and displayed spectroscopic data identical to those reported in the literature [3]. The compound spontaneously crystallized over time to white crystals

* Correspondence author (e-mail: David.Diaz@chemie.uni-regensburg.de)

suitable for X-ray analysis (m.p. 76-77 °C). An Ortep diagram with ellipsoids drawn at the 50% probability level is shown.

Experimental details

The data were collected at 123K using an Oxford Instruments Cryojet Cooler. The structure was solved by direct methods (SIR-97 [4]) and refined by full-matrix anisotropic least squares (SHELXL-97 [5]).

All hydrogen atoms on carbons were generated geometrically with d(C-H) = 0.95-1.00 Å and $U_{iso}(H) = 1.28 U_{eq}(C)$.

Discussion

Substituted prolines have attracted a great deal of attention in the development of molecular probes, ligands, and asymmetric organocatalysts [3]. In the title compound, the characteristic C=O, C–O and C–N bond distances are in the ranges 1.217(2)-1.197(2) Å, 1.332(2)-1.482(2) Å and 1.354(2)-1.464(3) Å, respectively. The C–S bond distance is 1.7560(19) Å. The characteristic $\angle O$ –C–C, $\angle O$ –S–C and $\angle C$ –N–C bond angles are in the ranges 102.22-125.48°, 105.17-108.76° and 113.48-125.84°, respectively. Other bond distances and angles are all in normal ranges. The molecular structure is further extended through intermolecular CH–O interactions (H–O bond distances are in the range 2.352(1)-2.715(1) Å) and CH– π interactions (centroid–H distances are 3.150 and 3.082 Å).

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom Site		x	у	Ζ	$U_{ m iso}$	
H(2)	1 <i>a</i>	0.4169	-0.0555	0.7089	0.045	
H(3)	1 <i>a</i>	0.2365	0.1057	0.5796	0.04	
H(5)	1 <i>a</i>	0.7837	0.2138	0.3212	0.039	
H(6)	1 <i>a</i>	0.9613	0.0508	0.4516	0.044	
H(7A)	1 <i>a</i>	0.7744	-0.2185	0.6763	0.063	
H(7B)	1 <i>a</i>	0.7987	-0.1032	0.7716	0.063	
H(7C)	1 <i>a</i>	0.9732	-0.1247	0.6354	0.063	
H(8)	1 <i>a</i>	0.4911	0.1747	0.1141	0.042	
H(9A)	1 <i>a</i>	0.3662	-0.0281	0.0678	0.05	
H(9B)	1 <i>a</i>	0.2568	-0.0288	0.2293	0.05	
H(10)	1 <i>a</i>	-0.0799	0.2401	0.1016	0.035	
H(11A)	1 <i>a</i>	0.3297	0.2442	-0.0716	0.046	
H(11B)	1 <i>a</i>	0.223	0.3528	0.0353	0.046	
H(14A)	1 <i>a</i>	-0.1169	-0.4765	0.325	0.082	
H(14B)	1 <i>a</i>	0.0042	-0.3603	0.3711	0.082	
H(14C)	1 <i>a</i>	0.0886	-0.4158	0.2239	0.082	
H(15A)	1 <i>a</i>	-0.3234	-0.2104	0.4102	0.061	
H(15B)	1 <i>a</i>	-0.4447	-0.3262	0.3637	0.061	
H(15C)	1a	-0.4462	-0.1706	0.288	0.061	

 $C_{24}H_{29}NO_7S$

Table 2. continued.					Table 2. continued.							
Atom	Site	x	у .	Z	$U_{\rm iso}$		Atom	Site	x	у	Ζ	$U_{ m iso}$
H(16A)	1 <i>a</i>	-0.2955	-0.4074	0.1216	0.07		H(20)	1 <i>a</i>	-0.3461	0.5183	-0.0725	0.052
H(16B)	1 <i>a</i>	-0.0886	-0.3384	0.031	0.07		H(21)	1a	-0.6241	0.6823	-0.0573	0.06
H(16C)	1 <i>a</i>	-0.3036	-0.2477	0.058	0.07		H(22)	1a	-0.8358	0.7059	-0.2182	0.061
H(18A)	1a	-0.2665	0.2438 -	0.2762	0.049)	H(23)	1a	-0.7739	0.5589	-0.3914	0.074
H(18B)	1a	-0.099	0.3617 -	0.3263	0.049)	H(24)	1a	-0.496	0.3942	-0.4069	0.065
Table 3.	Atomic co	pordinates and dis	placement para	meters (in	Å ²).							
Atom	Site	x	У	Ζ		U_{11}	U_2	22	U ₃₃	U_{12}	U_{13}	U ₂₃
S(1)	1 <i>a</i>	0.35568(5)) 0.29985(4)) 0.345	12(4)	0.0409(2)	0(2) 0.0305(2)		0.0327(2)	-0.0020(2)	-0.0141(2)	0.0011(2)
O(1)	1 <i>a</i>	0.5015(3)	0.3823(2)	0.245	9(2)	0.063(1)	0.0)363(8)	0.0454(8)	-0.0202(7)	-0.0259(7)	0.0126(6)
O(2)	1 <i>a</i>	0.1956(3)	0.3629(2)	0.442	21(2)	0.0607(9)) 0.0)487(9)	0.0453(8)	0.0200(7)	-0.0200(7)	-0.0115(7)
O(3)	1 <i>a</i>	0.2320(2)	0.2161(1)	0.266	58(1)	0.0280(6)) 0.0	0407(8)	0.0329(6)	-0.0059(5)	-0.0075(5)	-0.0012(5)
O(4)	1 <i>a</i>	-0.2583(2)	-0.0116(1)	0.098	9(1)	0.0251(6)) 0.0)338(7)	0.0443(7)	-0.0041(5)	-0.0131(5)	0.0026(5)
O(5)	1 <i>a</i>	-0.0284(2)	-0.1629(1)	0.190	2(2)	0.0380(7) 0.0)254(7)	0.0650(9)	-0.0039(5)	-0.0260(6)	0.0023(6)
O(6)	1 <i>a</i>	0.0331(2)	0.1131(2)	-0.184	3(2)	0.0408(7) 0.0)527(9)	0.0342(7)	0.0021(6)	-0.0017(5)	-0.0145(6)
O(7)	1 <i>a</i>	-0.1579(2)	0.3039(2)	-0.120	5(1)	0.0434(7) 0.0	0400(8)	0.0263(6)	0.0019(6)	-0.0117(5)	-0.0056(6)
N(1)	1 <i>a</i>	0.0643(2)	0.0492(2)	0.099	9(2)	0.0203(7) 0.0)309(8)	0.0454(8)	-0.0028(5)	-0.0108(6)	0.0008(6)
C(1)	1 <i>a</i>	0.7078(3)	-0.0201(2)	0.593	0(2)	0.039(1)	0.0)33(1)	0.0367(9)	-0.0018(7)	-0.0137(8)	-0.0040(7)
C(2)	1 <i>a</i>	0.4915(3)	-0.0014(2)	0.629	6(2)	0.0390(9)) 0.0)39(1)	0.0311(9)	-0.0074(7)	-0.0061(7)	0.0061(7)
C(3)	1 <i>a</i>	0.3838(3)	0.0939(2)	0.553	2(2)	0.0299(8)) 0.0)38(1)	0.0311(9)	-0.0034(7)	-0.0017(7)	-0.0011(7)
C(4)	1 <i>a</i>	0.4934(3)	0.1729(2)	0.436	57(2)	0.0315(8)) 0.0)31(1)	0.0259(8)	-0.0025(7)	-0.0078(6)	-0.0025(7)
C(5)	1 <i>a</i>	0.7091(3)	0.1583(2)	0.399	93(2)	0.0312(8)) 0.0	041(1)	0.0255(8)	-0.0070(7)	-0.0027(6)	-0.0022(7)
C(6)	1 <i>a</i>	0.8139(3)	0.0617(2)	0.477	'4(2)	0.0280(8)) 0.0	046(1)	0.0364(9)	-0.0019(7)	-0.0080(7)	-0.0055(8)
C(7)	1 <i>a</i>	0.8237(4)	-0.1259(3)	0.676	64(3)	0.052(1)	0.0	047(1)	0.061(1)	0.001(1)	-0.028(1)	0.006(1)
C(8)	1a	0.3362(3)	0.1697(2)	0.132	.8(2)	0.0236(8) 0.0	041(1)	0.0399(9)	-0.0057(7)	-0.0039(7)	-0.0083(8)
C(9)	1a	0.2683(3)	0.0236(2)	0.136	92(3)	0.0234(8) 0.0)39(1)	0.069(1)	0.0018(7)	-0.0193(8)	-0.013(1)
C(10)	1 <i>a</i>	0.0301(3)	0.1894(2)	0.037	5(2)	0.0269(8) 0.0)318(9)	0.0262(8)	-0.0048(6)	-0.0024(6)	-0.0001(7)
C(11)	1 <i>a</i>	0.2414(3)	0.2533(2)	0.021	2(2)	0.0356(9) 0.0)48(1)	0.0308(9)	-0.0179(8)	-0.0026(7)	-0.0009(8)
C(12)	1 <i>a</i>	-0.0894(3)	-0.0418(2)	0.128	30(2)	0.0261(8) 0.0)268(9)	0.0371(9)	-0.0029(6)	-0.0100(6)	-0.0026(7)
C(13)	1a	-0.1689(3)	-0.2803(2)	0.227	5(2)	0.050(1)	0.0)243(9)	0.049(1)	-0.0099(8)	-0.0182(9)	-0.0004(8)
C(14)	1a	-0.0365(5)	-0.3933(3)	0.292	26(4)	0.078(2)	0.0)32(1)	0.100(2)	-0.003(1)	-0.038(2)	0.011(1)
C(15)	a	-0.3628(4)	-0.2437(3)	0.331	4(3)	0.065(1)	0.0)38(1)	0.046(1)	-0.012(1)	-0.008(1)	0.0024(9)
C(16)	1a	-0.2185(5)	-0.3221(3)	0.098	32(3)	0.083(2)	0.0)48(1)	$0.04^{-}/(1)$	-0.030(1)	-0.012(1)	-0.008(1)
C(17)	1a	-0.0296(3)	0.1938(2)	-0.101	9(2)	0.0278(8) 0.0	$\frac{337(1)}{52(1)}$	0.0264(8)	-0.0059(7)	-0.0005(6)	-0.0036(7)
C(18)	1a	-0.2190(3)	0.3301(2)	-0.252	7(2)	0.046(1)	0.0	353(1)	0.0263(8)	0.0007(9)	-0.0124(8)	-0.00/1(8)
C(19)	1a	-0.3921(3)	0.4400(2)	-0.241	7(2)	0.039(1)	0.0)37(1)	0.0261(8)	-0.011/(8)	-0.00/6(7)	0.0045(7)
C(20)	1a	-0.4324(4)	0.5263(2)	-0.138	50(2)	0.048(1)	0.0)41(1)	0.048(1)	-0.0044(9)	-0.0228(9)	-0.0091(9)
C(21)	1 <i>a</i>	-0.59/6(4)	0.6240(2)	-0.129	2(3)	0.056(1)	0.0)40(1)	0.059(1)	0.002(1)	-0.022(1)	-0.010(1)
C(22)	1a	-0.7240(4)	0.6377(3)	-0.223	8(3)	0.049(1)	0.0)49(1)	0.053(1)	0.002(1)	-0.017(1)	0.008(1)
C(23)	1a	-0.6864(5)	0.5512(3)	-0.326	ob(3)	0.067(2)	0.0)/3(2)	0.053(1)	0.010(1)	-0.035(1)	-0.003(1)
C(24)	1a	-0.5211(4)	0.4531(3)	-0.335	0(2)	0.065(1)	0.0	168(2)	0.037(1)	0.006(1)	-0.025(1)	-0.009(1)

Acknowledgments. We acknowledge financial support for an internship of M. G. by the INDIGO program funded by the German Academic Exchange Service. A. M. acknowledges CSIR for a Junior Research Fellowship. We are also indebted to Dr. Rahul Banerjee and Dr. Sayam S. Sengupta (NCL, Pune) for their support, Dennis Kühbeck for determination of the melting point and Sabine Stempfhuber (University of Regensburg) for X-ray data acquisition.

References

- Tamaki, M.; Guoxia, H.; Hruby, J.: Practical and efficient synthesis of orthogonally protected constrained 4-guanidinoprolines. J. Org. Chem. 66 (2001) 1038-1042.
- Gangamani, B. P.; Kumar, V. A.; Ganesh, K. N.: Synthesis of N^α-(purinyl/pyrimidinyi acetyl)-4-aminoproline diastereomers with potential use in PNA synthesis. Tetrahedron **52** (1996) 15017-15030.
- 3. Bonifacio, V. D. B.: Proline Derivatives in Organic Synthesis. Org. Chem. Highlights (2007), March 25.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R.: *SIR*97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. **32** (1999) 115-119.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122
- Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36 (2003) 7-13.