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Spin transmission control in helical magnetic fields
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We calculate spin transport in two-dimensional waveguides in the presence of spatially modulated Zeeman-split
energy bands. We show that in a regime where the spin evolution is predominantly adiabatic the spin backscattering
rate can be tuned via diabatic Landau-Zener transitions between the spin-split bands [Betthausen et al., Science
337, 324 (2012)]. This mechanism is tolerant against spin-independent scattering processes. Completely spin-
polarized systems show full spin backscattering, and thus current switching. In partially spin-polarized systems
a spatial sequence of Landau-Zener transition points enhances the resistance modulation via reoccupation of
backscattered spin-polarized transport modes. We discuss a possible application as a spin transistor.
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I. INTRODUCTION

Current technologies in semiconductor electronics have
fundamental limits on the transistor switching times that can
be achieved with low energy consumption. Integration of
electron spin-based functionalities into devices may lead to
faster operation.1 Datta and Das proposed an idea to modulate
current in a spin transistor device via spin precession in a
spin-orbit field.2 In their concept spin is injected from a
ferromagnetic source into a channel of a two-dimensional
electron gas (2DEG) where spin precesses in a gate-controlled
spin-orbit field. The drain is another ferromagnet where
spin magnetic moment orientation parallel (antiparallel) to
the magnetization direction of the drain corresponds to the
transistor “on” (“off”) position. Signatures of the Datta-Das
spin transistor mechanism have been demonstrated in a
nonlocal measurement.3 However, signal levels are small due
to issues concerning spin injection efficiency and fast spin
relaxation.4 Fast spin decay makes information encoded in
spin very volatile and limits its transmission range.

Recently an alternative way to achieve spin transistor action
has been proposed: Stability of spin is enhanced by keeping
spin transport in the adiabatic regime5 and spin transmission
can then be controlled via Landau-Zener transitions in spatially
modulated spin-split bands.6 This leads effectively to a tunable
backscattering of spins which changes conductance and the
degree of spin polarization of transmitted electrons in the
device. The validity of this approach was shown in transport
experiments6 in magnetically modulated diluted (Cd,Mn)Te
magnetic semiconductor quantum wells where the s-d ex-
change interaction between electronic states and the localized
magnetic moments of the Mn atoms gives rise to an enhanced
g factor and a giant Zeeman splitting.7 In the low-field limit at
low temperatures the g factor is approximately constant with
values ranging up to several hundreds. In these experiments
spin transistor action was realized by combining helical and
tunable homogeneous magnetic field components. The helical
field component was created by placing a premagnetized
ferromagnetic stripe grating above the sample surface. A
dysprosium stripe grating induces a stray field which is
approximately helical in the plane of the 2DEG with a field
strength of the order of 50 mT. Due to the giant g factor
the spin polarization of the ground state in this field was
about 10%. The giant Zeeman coupling is more than an order

of magnitude larger than the Rashba and the Dresselhaus
spin-orbit couplings in these magnetic fields.6

Motivated by these experiments, here we consider spin
transmission control in helical magnetic fields in the presence
of spin-independent disorder scattering and magnetic field
coupling to orbital dynamics. We calculate spin transport in
a two-terminal model device, sketched in Fig. 1. We show
that current switching can be attained in fully spin-polarized
systems despite disorder. This finding is in contrast to the
Datta-Das spin transistor; its operation is disrupted if the
mean free path of electrons is of the order of the channel
length. We further show that transitions between transport
modes induced by orbital coupling, which was not considered
in Ref. 6, may enhance the resistance modulation in partially
polarized waveguides.

II. MODEL

A. Effective mass Hamiltonian

We use an effective mass model to describe electrons
moving in a plane of a 2DEG in a waveguide. The orbital
motion couples to the magnetic field component perpendicular
to the plane of the 2DEG (z direction). In (Cd,Mn)Te the
exchange interaction between mobile electrons and electrons
localized in Mn atoms gives rise to the giant Zeeman coupling.
In the mean-field theory it can be modeled with an effective g

factor geff . We assume that other electron-electron interactions
can be omitted for the open conductors considered at typical
electron densities and at small magnetic fields. The effective
mass Hamiltonian is then

Ĥ = 1

2m∗ [P̂ − eA(x)]2 + 1

2
geffμBB(x) · σ + Vdis(x), (1)

where P̂ is the momentum operator, m∗ is the effective mass,
B(x) is the magnetic field, A(x) is the vector potential of
the z component of B(x), μB is the Bohr magneton, σ is
the vector of Pauli matrices, and Vdis(x) is the scattering
potential of the disorder. We assume that the giant Zeeman
coupling in (Cd,Mn)Te is the largest spin-dependent energy
scale and we omit the Rashba and the Dresselhaus spin-orbit
couplings in the Hamiltonian, as discussed above. We use
in our calculations the effective mass of CdTe m∗ = 0.1me,
where me is the bare electron mass. We assume that at low
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FIG. 1. (Color online) Schematic figure of the system with a
2DEG waveguide of dimensions L × W and the attached leads. The
constant magnetic field Bc is along the −z direction and the helical
magnetic field Bhelix rotates in the xz plane. The waveguide length L

is n′ helical pitches a. In the figure n′ = 2 is shown as an example.

temperature the material has a giant Zeeman splitting7 with a
very large geff , hence we use here geff ranging from 177 to 550.
Disorder is modeled with an Anderson-like impurity model to
account for spin-independent scattering processes.8

We study both finite rectangular waveguides as well as
periodic systems in the direction transverse to the transport
direction (y direction). With periodic boundary conditions
we emulate wide systems which would otherwise be be-
yond computational capabilities. In both cases we calculate
magnetoconductance in a domain of length L and width
W and the waveguide is connected to leads at x = 0 and
x = L. Besides the helical magnetic field we assume a tunable
homogeneous magnetic field Bc = Bc(0,0,−1) perpendicular
to the 2DEG plane. In the leads this gives rise to a significant
spin polarization

p = (n↑ − n↓)/(n↑ + n↓), (2)

where nσ denotes the number of occupied modes for spin
σ = {↑,↓}.

B. Magnetic field texture

The magnetic field in the calculations has a rotating
component which is helical in the transport direction,

Bhelix(x) = −Bhelix(sin 2πx/a,0, cos 2πx/a), (3)

where a is the pitch of the helix. The Zeeman energy of the
total magnetic field B(x) = Bhelix(x) + Bc for parallel (+) and
antiparallel (−) spin orientations (for geff > 0) is then

EZ,±(x) = ± 1
2geffμBBhelix

√
1 + γ 2 + 2γ cos(2πx/a), (4)

where γ = Bc/Bhelix. Energies and spin directions of the
Zeeman-split bands are depicted in Fig. 2 for different values

of γ . The direction of the total field is

θ (x) = arctan

(
sin(2πx/a)

cos(2πx/a) + γ

)
. (5)

We study spin transmission in the regime where spin
transport is predominantly adiabatic.5 The magnetic field
in the electron’s frame of reference then changes slowly
on time scales of the order of the period of Larmor spin
precession 2π/ωL = 2πh̄/(geffμBB). Denoting the magnetic
field modulation frequency in the electron’s frame of reference
by ωmod = 2πvF/a we use Q = ωL/ωmod as a measure of the
degree of adiabaticity.9,10 In ballistic systems the adiabatic
regime is Q � 1. In the presence of disorder the condition is
Q � a/le, where le is the electron mean free path.11

C. Landau-Zener model

In the absence of the homogeneous field component θ (x) =
2πx/a, and for electrons moving parallel to the helix axis,

Qhelix = μBgeffBhelixa/(2πh̄vF) (6)

is constant. However, if both field components are present θ (x)
changes faster close to x = (n′ + 1

2 )a, where n′ is an integer
[see Fig. 2(b)]:

∂θ (x)

∂x
=

2π
a

[1 + γ cos(2πx/a)]

1 + γ 2 + 2γ cos(2πx/a)
. (7)

The angle θ (x) is discontinuous at x = (n′ + 1
2 )a in the limit

γ → 1, and conditions for adiabaticity are therefore violated.6

The Zeeman-split levels are then intertwined and they cross at
x = (n′ + 1

2 )a [see Fig. 2(c)]. In this limit a spin wave function
which has been transported adiabatically to x = (n′ + 1

2 )a has
an overlap of 1 with the upper band with vanishing energy
difference between the bands. This means that a transition
occurs to the upper band with probability 1. For spin-polarized
states the upper band is at least partially above the Fermi
energy and the electron’s wave function decays. This leads
to spin backscattering. Spin-compensated transport modes
are not affected since their energy remains below the Fermi
energy. The relative strength of the homogeneous and helical
field components therefore determines adiabaticity and the
backscattering probability of spin.
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FIG. 2. (Color online) Adiabatic and diabatic spin evolution for a two-level system described by Eqs. (4) and (5) for Bc/Bhelix = γ = 0.2
(a), γ = 0.8 (b), and γ = 1 (c). Magnetic field orientation at x = 0 is down for geff > 0. Fast rotation of the φ− eigenstate spin orientation
(arrows attached to the red line) may lead to a diabatic transition to φ+ at a level anticrossing (b). If EF is lower than the energy of φ+ the
wave function decays and the spin is backscattered at the corresponding potential barrier. At γ = 1 the energy levels cross at x = a/2 (c).
Spin which is transported to this point adiabatically in the φ− state has a wave-function overlap of 1 with φ+, and a diabatic transition occurs
followed by backscattering.
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The energies of spin-split eigenstates φ± in a combination of
homogeneous and helical magnetic fields are given by Eq. (4)
and depicted for three representative values of γ in Fig. 2. They
form a two-level system where diabatic transitions are possible
between the states. Landau, Zener, Stückelberg, and Majorana
calculated the diabatic transition probability in particular two-
level systems.13–16 The levels given by Eq. (4) anticross at
x = (n′ + 1

2 )a, and a diabatic transition from φ− to φ+ occurs
with a probability

P = exp

(
−2π

h̄2 ε2
12/α

)
, (8)

where the nondiagonal energy term

ε12 = 1
2μBgeffBhelix|γ − 1| (9)

equals half the closest distance between the eigenenergies at
the closest approach and α = 1

h̄
d
dt

(ε+ − ε−) measures how fast
the energies of eigenstates φ+ and φ− approach each other
during spin transport at the level anticrossing. This depends
on the transport velocity. Assuming that an electron moves
parallel to the helix axis at speed vF, the energy difference
ε+ − ε− can be approximated from the eigenenergies in the
limit γ → 1 yielding

α = 1

2
μBgeffBhelix

1

h̄

2π

a
vF lim

τ→π−

d

dτ

√
2 + 2 cos τ

= μBgeffBhelix
1

h̄

2π

a
vF, (10)

where τ = 2π
a

vFt . In waveguides electrons have a component
of momentum perpendicular to the helix axis and effectively
α is lower. Using Eqs. (8), (9), and (10) the probability of
diabatic transition can be approximated as

P ≈ exp[−π (γ − 1)2Qhelix/2], (11)

where Qhelix is given by Eq. (6).
The transition amplitude can also be obtained within the

formalism introduced by Dykhne.17,18 However, we found
that the transition probability in our case of predominantly
adiabatic transport does not significantly differ from the
Landau-Zener formula (8).

III. RESULTS

A. Numerical method

The magnetoconductance of waveguides with spin-
polarized states is calculated using a recursive Green’s function
(RGF) algorithm based on a tight-binding discretization of the
system.12 Moreover, we compare the results to the Landau-
Zener approximation for ballistic systems. The electron mean
free path le is estimated from the disorder strength. The
transmission coefficients tnm of transport modes are calculated
with the RGF algorithm and conductance G is obtained from
the Landauer formula

G(B) = G0
∑

n,m,σ,σ ′

∣∣tσσ ′
nm (B)

∣∣2
, (12)

where G0 = e2/h is the conductance (per spin) of one channel,
σ and σ ′ denote the spin indices, and n and m are the channel
indices. In both leads there is a homogeneous magnetic field

Bc + Bhelix perpendicular to the 2DEG surface. In disordered
systems tnm is averaged over random disorder configurations
in our calculations. The number of configurations ranges from
10 configurations in large bulklike multimode systems to more
than 100 000 in single-mode waveguides where the electron
mean free path is short. Since the giant Zeeman effect in
(Cd,Mn)Te is significant only at low temperatures (mK regime)
we assume zero temperature in our calculations and do no
energy averaging.

B. Tuning of spin backscattering with Landau-Zener transitions

We first study transitions caused by a single level
(anti)crossing in the Zeeman-split bands. Waveguide length
is therefore one helical pitch, L = a. We omit therefore
orbital effects as a first approximation and the effective
mass Hamiltonian includes only the kinetic term, the Zeeman
coupling, and the disorder potential,

Ĥ = 1

2m∗ P̂2 + 1

2
geffμBB(x) · σ + Vdis(x). (13)

In long waveguides with sequences of level (anti)crossings
orbital effects become important and they are studied in
Sec. III C. In the case of rectangular waveguides we assume
an infinite potential well of width W in the transverse
direction. For mode n the quantum well energy is En =
(h̄2/2m∗)(π2n2/W 2) for n = 1,2,3, . . . . In the simplest case
transport involves only one spin-polarized mode (n = 1). The
spin splitting of this mode, Eq. (4), in the modulated magnetic
field gives rise to a two-level system with a periodic sequence
of level (anti)crossings (see Fig. 2 for one period).

In ballistic systems the transition probability from the
lower spin eigenstate to the higher one can be calculated
using either the Landau-Zener approximation, Eq. (11), or
the RGF algorithm. For spin-polarized states the upper band
is at least partially above the Fermi energy and the wave
function decays after a diabatic transition. This leads to
spin backscattering. Figure 3 shows the probability of spin
backscattering in a single-mode wave function calculated with
both methods. In the low Qhelix regime numerical results show
a shift in the peak position from γ = 1 towards lower γ values
[Fig. 3(a)]. Spin transport is not perfectly adiabatic in this
regime and spin is slightly nonaligned with the magnetic field
resulting in precession. At γ = 1 in the Qhelix � 1 regime
the probability of diabatic transition and spin backreflection
tends to 1 [Fig. 2(c)]. The adiabatic theorem is reflected in the
probability distribution which gets narrower with increasing
Qhelix.

The role of spin-independent disorder scattering was
analyzed within the RGF formalism. Figure 4(a) shows a
dip in the magnetoconductance associated with spin trans-
mission blocking in a disordered single-mode waveguide. We
normalize magnetoconductances in the following figures to
the corresponding values in a homogeneous magnetic field of
strength Bc + Bhelix in order to factor out ohmic resistance
caused by the disorder. The magnetoconductance calculations
at different mean free paths show that almost all transmission is
blocked at Bc = Bhelix even if the mean free path is shorter than
the magnetic field helix pitch a [Fig. 4(b)]. The result can be
understood in terms of adiabatic spin transport which remains
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FIG. 3. (Color online) Diabatic transition probability in a ballistic single-mode waveguide of one helical pitch L = a calculated with the
RGF algorithm (solid lines) at a = 1.5 μm corresponding to Qhelix = 8 (a) and a = 18 μm corresponding to Qhelix = 96 (b). In the latter case
the helical magnetic field changes more slowly in the electron’s frame of reference and transport is more adiabatic. Results are compared to the
transition probability, Eq. (11), from the Landau-Zener approximation (dashed lines). The adiabaticity parameter Qhelix is approximated using
Eq. (6).

spin aligned with the magnetic field despite scattering from
disorder. At γ = 1 there is no adiabatic path through the system
and spin is reflected [Fig. 2(c)]. With increasing disorder
the dip in the relative conductance broadens. Since electrons
scatter from impurities they pass the level (anti)crossing many
times, which enhances backreflection probability.

The result applies also to multiple spin-polarized channels.
Figure 5 shows that in a spin-polarized multichannel system
current is almost completely switched off at γ = 1 even in the
presence of disorder. There is a small leakage current through
the system at γ = 1 because conditions of adiabaticity hold
only approximately (Qhelix ≈ 11 at n = 1 and Qhelix ≈ 25 at
n = 8 in this case) and spin flips are therefore possible. The
mean free paths le and the ratios le/a in the calculations are of
the order of those which are attained in (Cd,Mn)Te quantum
wells.6

In partially spin-polarized systems Zeeman-split eigen-
states φ± of spin-compensated modes both remain below
the Fermi energy [see dashed lines in Fig. 6(a)]. Spin
backscattering at a level (anti)crossing therefore does not
occur and both spins are transmitted in the ballistic case.

This is shown for a double-mode ballistic calculation in
Fig. 6(b) where the upper spin-polarized mode is reflected at
Bc = Bhelix but the lower spin-compensated mode gives 2G0

conductance (the normalized relative conductance is therefore
2/3). Note that if EF is below the maximum value of the
spin-polarized energy band [solid red line in Fig. 6(a)] the
wave function of these states decays without a Landau-Zener
transition.

In disordered waveguides with partial spin polarization
(p < 1) the resistance is increased partly due to spin backscat-
tering at Landau-Zener transitions and partly due to disorder
scattering, which affects both spin eigenstates. The latter
gets more important as disorder increases and there are
also transitions between spin-polarized and spin-compensated
transport modes. An electron which is initially in a spin-
polarized mode may then scatter to another mode which is
not backscattered at a level (anti)crossing [e.g., the mode
shown with dashed lines in Fig. 6(a)]. As a consequence
the electron may transmit and the relative conductance dip
at γ = 1 decreases. The total relative conductance depends on
the disorder strength as shown in Fig. 6(b).
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FIG. 4. (Color online) Calculated disorder-averaged transmission in a spin-polarized single-mode waveguide with a helical field of strength
Bhelix = 0.12 T and pitch a = L = 1 μm. Waveguide width is 24 nm, m∗ = 0.1me, EF = 6.6 meV, and geff = 177. (a) Magnetoconductance
shows a dip associated with spin backscattering at Bc = Bhelix. Magnetoconductance in a homogeneous field is shown for comparison. Electron
mean free path le = 3 μm. (b) Relative magnetoconductance for various electron mean free paths (le = 0.5, 1, and 3 μm). Conductance is
normalized to conductance in a homogeneous magnetic field of the same strength. The energy levels for the ballistic system are shown in Fig. 2.
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FIG. 5. (Color online) Relative magnetoconductance in a mul-
timode disordered waveguide with eight spin-polarized transport
modes at γ = 1. Conductances are normalized to respective con-
ductances in a homogeneous magnetic field of the same strength.
Waveguide length is one helical pitch L = a = 1 μm and EF =
8 meV. Electron mean free path le is indicated in the figure.

The above results are directly applicable to bulklike
multimode systems. Figure 7 shows magnetoconductance in a
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FIG. 6. (Color online) (a) In a multimode waveguide energies of
the Zeeman-split eigenstate pairs are either both below the Fermi
energy (dashed lines) giving rise to a spin-compensated mode, or the
higher Zeeman-split eigenstate (solid lines) is above the Fermi energy
EF giving rise to a spin-polarized mode. Eigenstates are plotted at
γ = 0.8. The arrows show the corresponding spin directions at x = 0.
(b) Relative magnetoconductance calculated in a double-mode ballis-
tic waveguide (solid line) and disordered waveguides (dashed line for
le = 3 μm and dash-dotted line for le = 1 μm). The energy levels of
the modes are depicted in (a); the lower mode is spin compensated and
the upper mode is spin polarized, p = 0.33. The system parameters
are otherwise the same as in the caption of Fig. 5.
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FIG. 7. (Color online) Relative magnetoconductance in a partially
polarized (p = 0.34 at γ = 1) disordered waveguide with 170
transverse modes. Waveguide length L = a = 1 μm and width is
3 μm. Conductance is normalized to conductance in a homogeneous
magnetic field of the same strength. EF = 6.6 meV and geff =
550.

partially polarized multimode system (n = 170) where a sim-
ilar conductance pattern develops due to spin backscattering.
The magnetoconductance is asymmetric with respect to γ = 1
since the calculations are done at constant Bhelix and therefore
spin polarization of the leads increases with γ .

Although an electron may scatter at impurities, the spin
still aligns with the local external magnetic field if it
changes slowly in the electron’s rest frame (Q � 1). In the
diabatic transport regime (Q 
 1) the spin wave function
becomes a superposition of local eigenstates which leads
to spin precession in the local magnetic field. The above-
described way to control spin transmission is then not
possible.

C. Sequences of level (anti)crossings

A single (anti)crossing in the Zeeman-split energy levels
has a spin transmission blocking effect as shown in Sec. III B.
This causes an increase in resistance which depends on spin
polarization and disorder strength. Resistance modulation is
enhanced if electrons are transported through a sequence
of level (anti)crossings (n′ helical modulations, L = n′a).
The electron transmission probability depends on transitions
between transport channels caused by disorder scattering or
orbital dynamics in the magnetic field. Hence we take orbital
effects into account and use Hamiltonian (1) to calculate
magnetoconductance with the RGF method.

In ballistic systems there are no transitions between
transport channels in the adiabatic transport limit since the
local transverse modes change slowly with the magnetic
field. However, if the local magnetic field in the electron’s
frame of reference changes rapidly, transitions between the
modes may lead to reoccupation of a backscattered spin-
polarized mode [e.g., in Fig. 6(a) these transitions would
be from the spin-compensated modes (dashed lines) to spin-
polarized modes (solid lines)]. The electron may subsequently
backscatter in the following level (anti)crossing. The relative
magnetoconductance therefore decreases with magnetic field
helix pitch at γ = 1 [see Fig. 8(a)]. Neither a pure Zeeman
coupling nor orbital coupling alone account for the clear-cut
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FIG. 8. (Color online) Relative magnetoconductance in long bal-
listic waveguides with n′ helical modulations. Magnetoconductance
is calculated at Bc = Bhelix = 0.12 T, geff = 177, and p = 0.14.
(a) Relative magnetoconductance as a function of the helix pitch
a in the case n′ = 16. The figure shows relative magnetoconductance
calculated with the full model Hamiltonian [Eq. (1), solid line], in
the absence of the Zeeman coupling (geff = 0, dotted line), and in
the absence of the orbital coupling (A = 0, dashed line). Adiabaticity
parameter Qhelix ≈ 1 for the mode n = 1 at a = 0.5 μm. Waveguide
width is W = 425 nm, number of transport modes n = 16, and
EF = 7.4 meV. (b) Relative magnetoconductance as a function of
n′ in a rectangular waveguide (for a = 1 μm, solid line, and for
a = 0.5 μm, dash-dotted line) and in a periodic system in the y

direction for a = 1 μm. Full model Hamiltonian is used here. The
dashed line shows the relative magnetoconductance in the adiabatic
limit. The waveguide width W = 350 nm.

reduction in the relative conductance for a � 1.5 μm. For
magnetoconductance traces as a function of magnetic field
in the ballistic case see Supplemental Material in Ref. 6.

Figure 8(b) shows magnetoconductance in a partially
polarized ballistic waveguide as a function of the number
of helical modulations n′ in the Zeeman-split energy bands.
Conductances are calculated at γ = 1 where the diabatic
transition probability is highest. The degree of adiabaticity is
lower in the short helix pitch a = 0.5 μm and the probability of
mode transitions is higher. The relative conductance decrease
is amplified with increasing n′ and results in a huge dip in
magnetoconductance at γ = 1 if the number of modulations
is large. We find qualitatively similar but quantitatively larger
effects in periodic systems [dotted line in Fig. 8(b)].

The above mechanism causes enhanced spin blocking also
in disordered waveguides. The resistance is effectively higher
for the spin-polarized channels than for spin-compensated
channels due to diabatic transitions and spin backscattering.
The dip in the relative magnetoconductance at γ = 1 increases

0 0.5 1 1.5 2 2.5
0.75

0.8

0.85

0.9

0.95

1

γ=B
c
/B

helix

re
la

tiv
e 

co
nd

uc
ta

nc
e

1 modulation
10 modulations

FIG. 9. (Color online) Relative magnetoconductance in a partially
spin-polarized (p = 0.11) disordered waveguide for one helical
modulation (solid line) and for ten modulations (dashed line).
Magnetic field helix pitch is a = 0.5 μm in both cases and Qhelix ≈ 1
for the mode n = 1. Electron mean free path le = 3 μm, waveguide
width W = 350 nm, geff = 177, EF = 6.6 meV, Bhelix = 0.12 T, and
the number of transport modes is 16. The calculation is done at zero
temperature. The smaller peaks at γ > 1 reflect the particular choice
of energy and geometry of the system.

with the number of magnetic modulations (Fig. 9). This is in
line with the experiments in Ref. 6. Figure 10 shows the relative
conductance at γ = 1 in disordered waveguides with spin
polarization p = 0.11. We note that the relative conductance
change at n′ = 15 for le = 1 μm is larger than the relative
conductance change at n′ = 1 in the ballistic case.

IV. CONCLUSIONS AND OUTLOOK

Our results show that spin transistor action can be realized
via tunable Landau-Zener transitions. The mechanism is
tolerant against spin-independent disorder scattering for an
Anderson impurity model. Completely spin-polarized systems
show full spin backscattering, and thus current switching, even
when the mean free path of electrons is of the order of the
magnetic modulation length.

In partially spin-polarized waveguides the resistance mod-
ulation decreases with increasing disorder strength. However,
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FIG. 10. (Color online) Relative magnetoconductance in a par-
tially spin-polarized (p = 0.11) disordered waveguide at γ = 1 as
a function of the number of magnetic modulations (in helix pitches
a = 0.5 μm). The waveguide parameters are otherwise the same as
in Fig. 8(b).
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the resistance modulation due to Landau-Zener transitions can
be enhanced with a sequence of (anti)crossings in the spin-split
bands. Orbital transitions ca use successive reoccupation
and backscattering of spin-polarized modes. This effect also
provides an explanation as towhy the spin-blocking effect
in experiments is larger than the theoretical prediction for
ballistic systems in the absence of orbital effects.6

Implementation of a spin transistor mechanism via tunable
Landau-Zener transitions might be a more feasible approach
to realize spin transistor functionality than controlling spin
dephasing times using an interplay of Rashba and Dresselhaus
spin-orbit couplings.19 In the latter proposal the transistor
operation is based on the persistent spin helix state20 which
is also tolerant against spin-independent disorder scattering.
However, device operation requires a delicate adjustment of the
spin-orbit parameters. Moreover, the spin splitting is bounded
by the Dresselhaus spin-orbit coupling strength that depends
on the crystal lattice structure.

Several technical challenges remain before our concept can
be realized in a useful spin transistor device. The magnetic
fields for spin transmission control could be generated with
magnetic gates (see Supplemental Material in Ref. 6). The
giant Zeeman effect in known materials is significant only at

low temperatures. Nevertheless, the presented spin-blocking
mechanism can be applied also for other spin-splitting in-
teractions which persist to higher temperatures. For a more
thorough discussion of the device development aspects we
refer to Ref. 6. Our concepts may also be applied to other
materials where helical spin ordering is present, such as the
interface of multiferroic oxides.21 To conclude, robustness of
the spin-blocking effect via tunable Landau-Zener transitions
provides a promising alternative strategy to design spin
transistor functionality with enhanced efficiency and disorder
tolerance.
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