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We develop a low-energy nonequilibrium field theory for weakly interacting quantum dots. The theory is
based on the Keldysh field integral in the spin channel of the quantum dot described by the single-impurity
Anderson Hamiltonian. The effective Keldysh action is a functional of the Hubbard-Stratonovich magnetization
field decoupling the quantum dot spin channel. We expand this action up to the second order with respect to the
magnetization field, which allows one to describe nonequilibrium interacting quantum dots at low temperatures
and weak electron-electron interactions, up to the contacts-dot coupling energy. Besides its simplicity, an
additional advantage of the theory is that it correctly describes the unitary limit, giving the correct result for the
conductance maximum. Thus our theory establishes an alternative simple method relevant for investigation of
weakly interacting nonequilibrium nanodevices.
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I. INTRODUCTION

Nonequilibrium nanoscopic systems having discrete elec-
tronic states1 currently attract unflagging attention of re-
searchers from both experimental and theoretical sides because
of practical applications in various electronic devices. Such
systems also provide a unique platform for fundamental
science since they represent a plexus of different fields of
physics, leading to new complex and highly nontrivial physical
scenario.

A particularly interesting physics arises when both electron-
electron interactions and nonequilibrium significantly con-
tribute to the state of a nanoscopic system. The system’s differ-
ential conductance, as is well known, may then enhance2,3 and
exceed the value it would have without electronic correlations.
This enhancement, taking place at low temperatures, signifies
the appearance of new physics due to the system’s transition
into a resonant many-particle Kondo regime discovered first
in the context of magnetic alloys.4–6

The single-impurity Anderson model (SIAM)7 is one of
the main theoretical paradigms which is able to capture basic
physics of nonequilibrium interacting nanoscopic systems. It
describes a quantum dot (QD) with a single spin-degenerate
level coupled to two fermionic contacts. The contacts have
different chemical potentials with the difference specifying
the voltage applied to the QD. This voltage is the source of
nonequilibrium.

Quantum transport theories built upon SIAM can be divided
into two classes: (1) operator-based theories and (2) field-
integral-based theories. Within the first class one directly uses
the second quantized operators while within the second class
one transforms these operators into fields whose dynamics is
governed by a certain effective action.

Among numerous examples of the first class of theories
are perturbation theories in the electron-electron interaction8,9

as well as in the tunneling amplitude,10 noncrossing
approximation,11–13 equations of motion,11,14,15 mean-field
approximation,16,17 and renormalization group theories.18–21

At the same time the relatively new second class is not so wide,
since field-integral concepts in physics of nonequilibrium
interacting nanoscopic systems are just on the way of growing

emergence. Here examples are given by analytical22–24 and
numerical25,26 Keldysh field-integral theories.

The Anderson impurity model has two distinct fixed
points—the weak-coupling fixed point and the strong-coupling
or Kondo fixed point, each one being a Fermi liquid.27

Analytical field-integral-oriented theories are mainly based
on slave-particle28–32 strong-coupling fixed-point approaches.
For example, in Ref. 22 the saddle point analysis is applicable
at temperatures below the Kondo temperature TK and thus the
unitary limit is within its temperature range. However, being a
1/N expansion it gives an incorrect value of the conductance
maximum for spin 1/2. In Refs. 23 and 24 the effective
Keldysh action is expanded around the zero slave-bosonic
field configuration up to the second order in the slave-bosonic
fields, and this restricts those theories to a temperature range
close to and above TK. These examples show that either the
unitary limit is incorrectly described quantitatively or it cannot
be reached at all due to temperature limitations of theories.
However, it is desirable to have a field-integral theory treating
the unitary limit properly since this limit gets more and more
feasible in modern experiments,33 both for the strong-coupling
and weak-coupling fixed-point regimes.

A practical guide for developing a second class theory
having a proper treatment of the unitary limit in the weak-
coupling fixed-point regime is given by the first-class theories,
namely, perturbation theories being expansions in powers of
the electron-electron interaction. Indeed, these theories8,9 are
applicable at zero temperature and reproduce the correct value
of the conductance maximum, 2e2/h. This gives one the cue
that in the context of the field integration, a theory valid at
zero temperature and having the correct unitary limit might
be obtained through the expansion of its effective action in
powers of the electron-electron interaction. Of course, such an
expansion of the effective action also means an expansion in
powers of a certain field. This field turns out to be nonunique
and its choice is not obvious a priori. At this stage one usually
relies upon various physical motivations which could simplify
mathematical formulation and achieve physical clarity.

In this paper we choose this field as the Hubbard-
Stratonovich field decoupling the electronic correlations in
their spin channel. This means that such a magnetization field
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is sensitive to the QD spin fluctuations induced by the electron-
electron interaction. Since it has a magnetic origin, it is also
susceptible to the QD magnetic properties. In particular, when
the magnetic symmetry is violated, e.g., in the presence of a
magnetic field, either directly applied to the QD or indirectly
induced in the QD by the ferromagnetic contact proximity
effect, the minimum of the effective Keldysh action moves
from the zero magnetization field configuration and the new
extremum provides the effective magnetic field experienced by
the QD electron dynamics. On the contrary, in the absence of
any magnetic structure the effective Keldysh action simplifies,
admitting only even powers of the magnetization field.

In general, the effective Keldysh action is a nonlinear
functional of the magnetization field. Here we expand it up
to the second order in this field, which is also a second-order
expansion in the electron-electron interaction. The quadratic
model is an expansion about the weak-coupling fixed point,
where the saddle-point magnetization vanishes. Thus such a
theory must reproduce the unitary limit because it is an expan-
sion about a Fermi liquid fixed point. Therefore, the goal of the
present research is to develop a quadratic spin-channel Keldysh
field-integral formalism to provide an alternative theoretical
tool for investigation of weakly correlated nonequilibrium
nanosystems.

The paper is organized as follows. Section II introduces the
spin channel in the single-impurity Anderson Hamiltonian,
while Sec. III converts it into the Keldysh field-integral
framework and provides the general form of the effective
Keldysh action as a functional of the Hubbard-Stratonovich
classical and quantum magnetization fields. In Sec. IV this
action is expanded up to the second order in the magnetization
fields and afterward it is used to obtain the QD tunneling
density of states. Finally, the results are shown in Sec. V and
with Sec. VI we conclude.

II. QUANTUM DOT SPIN CHANNEL

We first formulate the problem on the operator level
and prepare at this stage for its subsequent field-integral
formulation in the QD spin channel.

The single-impurity Anderson Hamiltonian reads

Ĥd =
∑

σ

εdn̂d,σ + Un̂d,↑n̂d,↓, (1)

where σ =↑ , ↓, n̂d,σ = d†
σ dσ , {d†

σ , dσ } are the QD creation
and annihilation electronic operators, εd is the QD energy level,
and U is the strength of the electron-electron interaction in
the QD.

The contacts are fermionic noninteracting reservoirs de-
scribed by the following Hamiltonian:

ĤC =
∑

a

εac
†
aca, (2)

where a = {x,k,σ } is the contact set of quantum numbers
including the contacts label, x = L,R (left and right contacts),
{c†a, ca} are the contacts creation and annihilation operators,
and εa identifies the contact single-particle energies. The
contacts are in equilibrium described by the Fermi-Dirac
distributions, n(ε) = {exp[(ε − μx)/kT ] + 1}−1, where μx
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FIG. 1. (Color online) Temperature dependence of the differential
conductance maximum at the symmetric point obtained from the
present spin-channel Keldysh field-integral theory for U = 0.9 �,
εd = U/2. Here kT0 is the zero-temperature QD TDOS half-width
at half maximum. The red circles show the universal temperature
dependence of the differential conductance maximum obtained in the
numerical renormalization group theory (Refs. 35 and 36). In this
case kT0 is the Kondo temperature, which is approximately equal to
the zero-temperature QD TDOS half-width at half maximum.

are the contact chemical potentials, defining the voltage
applied to the QD as V ≡ (μR − μL)/e, and T is the contact
temperature which is assumed to be the same in the left and
right contacts.

The QD and contacts interact through a tunneling coupling
given by the tunneling Hamiltonian,

ĤT =
∑
aσ

(c†aTaσ dσ + d†
σ T ∗

aσ ca), (3)

where Taσ are the tunneling matrix elements.
In order to construct a field integral in the QD spin channel,

one has to rewrite the QD Hamiltonian in such a way that the

-1.5 -1 -0.5 0 0.5 1 1.5

energy, ε  [ Γ  ]

0.15

0.2

0.25

0.3

tu
nn

el
in

g 
de

ns
it

y 
of

 s
ta

te
s,

 ν σ
  [

 Γ
  −

1 ] V = 0.0, T = 0.0
V = 1.4 Γ, T = 0.0

FIG. 2. (Color online) Equilibrium and nonequilibrium QD
TDOS (17) at zero temperature, U = 0.8 �, εd = U/2. The effect
of a finite voltage is to decrease and broaden the QD TDOS.

195310-2



SPIN-CHANNEL KELDYSH FIELD THEORY FOR WEAKLY . . . PHYSICAL REVIEW B 85, 195310 (2012)

coupling to the QD electron spin variable becomes apparent.
This can be achieved, e.g., using the following equality:

n̂d,↑n̂d,↓ = 1
2 (n̂d,↑ + n̂d,↓) − 1

2 (n̂d,↑ − n̂d,↓)2. (4)

As a result the QD Hamiltonian acquires the form explicitly
involving the QD electron-spin degree of freedom,

Ĥd =
∑

σ

(
εσ + U

2

)
n̂d,σ − U

2

(∑
σ

σ n̂d,σ

)2

. (5)

The QD Hamiltonian in the form of Eq. (5) together
with Eqs. (2) and (3) constitute a nonequilibrium interacting
problem with the full Hamiltonian Ĥ = Ĥd + ĤC + ĤT. The
explicit presence of the QD electron spin in the operator
formulation allows one to introduce within the Keldysh
field-integral framework classical and quantum fields directly
connected to the QD spin-channel dynamics, as it is shown in
the next section.

III. SPIN CHANNEL KELDYSH FIELD INTEGRAL

An equality similar to Eq. (4) has been utilized27,34 to
explore quantum critical phenomena, in particular, itinerant

magnetic phases, using a field integral in the imaginary
(or Matsubara) time formulation. The field integral in that
approach is obtained by integrating out the fermionic degrees
of freedom and obtaining an effective action as a functional of
the Hubbard-Stratonovich field decoupling the spin channel. It
turns out that such a Hubbard-Stratonovich field has a physical
meaning of magnetization and it is sensitive to magnetic
properties of systems.

In the same spirit, using real time and integrating out the
fermionic degrees of freedom, one arrives at the Keldysh field
integral27 for SIAM in the QD spin channel.

Here before integrating out the fermionic degrees of
freedom the action is identical to the one in Eq. (6) of
Ref. 25. However, after that stage we perform the Keldysh
rotation27 and, instead of Ising-like discrete spin fields, we
use a continuous Hubbard-Stratonovich field from Refs. 34
and 27.

One of the main QD physical observables is the tunnel-
ing density of states (TDOS), νσ (ε) ≡ −(1/h̄π )Im[G+

d σσ (ε)]
(G+

d σσ (ε) is the QD retarded Green’s function; below the upper
indices + and − always denote, respectively, the retarded and
advanced components of matrices in the Keldysh space), with
the corresponding Keldysh field-integral representation,

νσ (ε) = 1

2πh̄

∫
dt exp

(
i

h̄
εt

)∫
D[m(t)] exp

{
i

h̄
Seff[m(t)]

}
{G+(σ t |σ0) − G−(σ t |σ0)}, (6)

Seff[m(t)] = −
∫

dtUmc(t)mq(t) − ih̄ tr{ln[G−1(αt |α′t ′)] − ln[G(0)−1(αt |α′t ′)]}, (7)

G−1(αt |α′t ′) = −
(

iG
(0)−1
d (σ t |σ ′t ′) − i

h̄
σUMHS(σ t |σ ′t ′) i

h̄
M

†
T(σ t |a′t ′)

i
h̄
MT(at |σ ′t ′) iG

(0)−1
C (at |a′t ′)

)
. (8)

Here mc(t), mq(t) are the classical and quantum magnetization fields being the Hubbard-Stratonovich fields decoupling the QD
spin channel and G(0)−1(αt |α′t ′) = G−1(αt |α′t ′) with U = 0. In Eq. (8) G

(0)−1
d (σ t |σ ′t ′), G

(0)−1
C (at |a′t ′), and MHS(σ t |σ ′t ′) and

MT(at |σ ′t ′) are the following matrices in the Keldysh space:

G
(0)−1
d (σ t |σ ′t ′) ≡ δσσ ′

([
i ∂

∂t
− εd+U/2

h̄
+ i0+]

δ(t − t ′) i0+fd(t − t ′)
0

[
i ∂

∂t
− εd+U/2

h̄
− i0+]

δ(t − t ′)

)
, (9)

G
(0)−1
C (at |a′t ′) ≡ δaa′

([
i ∂

∂t
− εa

h̄
+ i0+]

δ(t − t ′) i0+fa(t − t ′)
0

[
i ∂

∂t
− εa

h̄
− i0+]

δ(t − t ′)

)
, (10)

MHS(σ t |σ ′t ′) ≡ δσσ ′δ(t − t ′)
(

mc(t) 1
2mq(t)

1
2mq(t) mc(t)

)
, MT(at |σ ′t ′) ≡ δ(t − t ′)

(
Taσ 0
0 Taσ

)
, (11)

where fd(t) and fa(t) are the Fourier transforms of the QD and contact distribution functions, respectively.

IV. SPIN CHANNEL EFFECTIVE KELDYSH ACTION AND TDOS

The effective Keldysh action, Eq. (7), is a nonlinear functional of the magnetization fields mc(t) and mq(t). In this section
we want to investigate which kind of physics is described by this action when it is expanded up to the second order in the
magnetization fields.

In this paper we are only interested in the effective field theory for QDs in the absence of any magnetic structure. It is easy to
see that in this case Eq. (7) does not have odd powers in the magnetization fields. Indeed, the absence of any spin dependence
just results in traces of the traceless Pauli operators σ̂z, eliminating in this way all odd powers of the magnetization fields from
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Eq. (7), implying that in this case Seff[−m(t)] = Seff[m(t)].
Therefore, the second-order expansion of the effective Keldysh action cannot have linear terms. Since the zero-order term is

equal to zero, the only nonvanishing terms in this expansion are terms of the second order in the magnetization fields. Performing
the expansion of the functional Seff[m(t)] one finds

i

h̄
Seff[m(t)] = −

∫
dω

2π
[ mc(−ω) mq(−ω) ]

(
0 iU

2h̄ + U 2

h̄2 �−
V (ω)

iU
2h̄ + U 2

h̄2 �+
V (ω) U 2

h̄2 �K
V (ω)

)[
mc(ω)
mq(ω)

]
, (12)

where mc(ω) and mq(ω) are the Fourier transforms of the classical and quantum magnetization fields and �
+,−,K
V (ω) are

the retarded, advanced, and Keldysh components of the self-energy matrix. Assuming a symmetric energy-independent spin
diagonal QD-contact coupling Taσ ′ = δσσ ′T and an energy-independent contact density of states νC, we find the following
analytical expressions for �

+,−,K
V (ω) (�−

V (ω) = [�+
V (ω)]∗):

�+
V (ω) =

∑
s,s ′={+,−}

I+(sω,s ′V ), �K
V (ω) =

∑
s={+,−}

[
IK

1 (ω,sV ) + IK
2 (ω,sV )

]
, (13)

I+(ω,V ) = 1

4π

�

iω(2� − ih̄ω)

[
i
h̄ω

�
ψ(x+

2 ) + 2

(
1 − i

h̄ω

2�

)
ψ(x+

1 ) − 2ψ(y+
1 )

]
− i

4

ez − 1

ez + 1

h̄

2� − ih̄ω
, (14)

IK
1 (ω,V ) = −iIm

{
1

8π

�

iω(2� + ih̄ω)
coth

(
h̄ω

2kT

)[
i
h̄ω

�
[ψ(x+

2 ) − ψ(y+
2 )] − 2

(
1 + i

h̄ω

2�

)
[ψ(x+

1 ) − ψ(y+
1 )]

+ 2[ψ(y) − ψ(x+
1 )]

]
− i

4

ez + ep

(ez + 1)(ep + 1)

h̄

2� + ih̄ω

}
, (15)

IK
2 (ω,V ) = −iIm

{
1

8π

�

iω(2� + ih̄ω)
coth

(
h̄ω + eV

2kT

)[
i
h̄ω

�
[ψ(x+

2 ) − ψ(x−
2 )]

− 2

(
1 + i

h̄ω

2�

)
[ψ(x+

1 ) − ψ(y−
1 )] + 2[ψ(y) − ψ(x−

1 )]

]
− i

4

ez + eq

(ez + 1)(eq + 1)

h̄

2� + ih̄ω

}
, (16)

where � ≡ πνC|T |2, ψ(x) is the digamma function, and x+
1,2 ≡ 1/2 + (i/2πkT )(εd + U/2 + eV/2) ± �/2πkT , x−

1,2 ≡ 1/2 +
(i/2πkT )(εd + U/2 − eV/2) ± �/2πkT , y±

1,2 ≡ x±
1,2 − ih̄ω/2πkT , y ≡ x+

1 + ih̄ω/2πkT , z ≡ (εd + U/2 + eV/2)/kT +
i�/kT , p ≡ z − h̄ω/kT , q ≡ z − h̄ω/kT − eV/kT .

With the effective Keldysh action (12) one obtains the following expression for the QD TDOS:

νσ (ε) = ν0(ε) + iU 2

4π2h̄3

{[
D+

(
ε

h̄

)]2∫
dω

2π

[
J K

V

(
ε

h̄
− ω

)
D+(ω) + 1

2
J+

V

(
ε

h̄
− ω

)
DK

V (ω)

]

−
[
D−

(
ε

h̄

)]2∫
dω

2π

[
J K

V

(
ε

h̄
− ω

)
D−(ω) + 1

2
J−

V

(
ε

h̄
− ω

)
DK

V (ω)

]

+ 1

2
DK

V

(
ε

h̄

)[
D+

(
ε

h̄

)
−D−

(
ε

h̄

)]∫
dω

2π

[
J+

V

(
ε

h̄
− ω

)
D−(ω) + J−

V

(
ε

h̄
− ω

)
D+(ω)

]}
, (17)

where

ν0(ε) = 1

π

�

[ε − (εd + U/2)]2 + �2
, (18)

J K
V (ω) ≡ −ih̄2π�K

V (ω)

[h̄/2 − U�+
V (ω)][h̄/2 − U�−

V (ω)]
, J±

V (ω) ≡ −ih̄2π/U

h̄/2 − U�±
V (ω)

, (19)

D±(ω) ≡ h̄

h̄ω − (εd + U/2) ± i�
, DK

V (ω) ≡ −ih̄�
∑

x Fx(ω,V )

[h̄ω − (εd + U/2)]2 + �2
, (20)

and FL,R(ω,V ) ≡ tanh[(h̄ω ± eV/2)/2kT ].
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V. RESULTS

Using Eq. (17) one can obtain the QD TDOS using a
numerical frequency integration. Since the expansion (12)
of the effective Keldysh action (7) in the classical mc(t)
and quantum mq(t) magnetization fields is an expansion
about the weak-coupling fixed point, our simple quadratic
field-integral theory is valid only for weakly interacting QDs,
U � �. Such a theory must reproduce at low temperatures
the correct value 2e2/h of the conductance maximum,
known as the unitary limit. Let us recall that this is not
the case in existing Keldysh field-integral strong-coupling
fixed-point theories, both analytical22–24 and numerical.25,26

In the analytical theories the unitary limit is either incorrectly
described quantitatively22 or it cannot be reached at all due
to temperature limitations related to proliferation of slave-
bosonic oscillations.23,24 In the numerical theories25,26 the
unitary limit is difficult to reach because the memory time
becomes infinite at zero temperature.

In Fig. 1 we show the temperature dependence of the
differential conductance maximum. This figure confirms the
consistency of the results obtained in the previous section.
Indeed, at low temperatures they give the correct value of the
differential conductance maximum 2e2/h, as it must be for the
expansion about the weak-coupling Fermi liquid fixed point.
Additionally, we plot the universal temperature dependence
of the differential conductance maximum obtained in the
numerical renormalization group theory. The comparison
between the curves demonstrates that when U increases
so that at the symmetric point the system becomes closer
to the Kondo regime, the low-temperature behavior of the
differential conductance maximum obtained from the spin-
channel Keldysh field-integral theory becomes closer to the
universal temperature dependence of the differential conduc-
tance maximum obtained in the numerical renormalization
group theory.

The results of our spin-channel Keldysh field-integral
theory show that in the weak-coupling fixed-point regime both
finite voltages and finite temperatures have a similar impact on
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FIG. 3. (Color online) Equilibrium QD TDOS (17) at zero and
finite temperatures, U = 0.8 �, εd = U/2. As one can see, the effect
of a finite voltage in Fig. 2 is similar to the effect of a finite temperature
in this figure.
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FIG. 4. (Color online) Zero-temperature QD differential con-
ductance as a function of the applied voltage. Both interacting
and noninteracting cases are shown. Due to the electron-electron
interaction, the QD is in the resonant many-particle state where its
differential conductance is enhanced at low voltages in comparison
with the noninteracting counterpart. The maximum is equal to the
correct value 2e2/h.

the QD TDOS, making it lower and broader in comparison with
the zero temperature equilibrium QD TDOS, as one can see
from Figs. 2 and 3. This behavior is different from the one in
the strong-coupling fixed-point regime where the finite voltage
splits the Kondo resonance as soon as it becomes bigger than
its width.8,12,23,24

Finally, the quadratic spin-channel Keldysh field-integral
theory can also be used to calculate the QD differential
conductance as a function of the applied voltage. In Fig. 4
the zero temperature differential conductance is shown for the
noninteracting U = 0 and interacting, U = 0.8�, U = 1.0�

QDs. Once again, as in Fig. 1, the correct value of the maximum
in Fig. 4 proves the consistency of the quadratic spin-channel
Keldysh field-integral theory.

VI. CONCLUSION

We have developed a spin-channel Keldysh field-integral
theory for nonequilibrium interacting QDs. To describe
nonequilibrium interacting states of the QD, we have in-
troduced a collective degree of freedom, a magnetization
field, being the Hubbard-Stratonovich field decoupling the
spin channel of the electron-electron interaction. The complex
QD dynamics has been reduced to the magnetization field
dynamics governed by the effective Keldysh action being
a nonlinear functional of the magnetization field. We have
expanded this action up to the second order in the magne-
tization field. This expansion represents an expansion about
the weak-coupling fixed point and thus must reproduce the
unitary limit of weakly correlated QDs. The QD TDOS
has been derived and the differential conductance has been
calculated as a function of the temperature and voltage.
These calculations have correctly reproduced the conductance
maximum and thus confirmed the consistency of our theory,
establishing an alternative versatile and simple tool to explore
nonequilibrium weakly interacting QDs, in particular, in the
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unitary limit which becomes more and more relevant in modern
experiments.
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17R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 (2003).
18R. Gezzi, T. Pruschke, and V. Meden, Phys. Rev. B 75, 045324

(2007).

19R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
20F. B. Anders, Phys. Rev. Lett. 101, 066804 (2008).
21F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev. B

79, 235336 (2009).
22Z. Ratiani and A. Mitra, Phys. Rev. B 79, 245111 (2009).
23S. Smirnov and M. Grifoni, Phys. Rev. B 84, 125303 (2011).
24S. Smirnov and M. Grifoni, Phys. Rev. B 84, 235314 (2011).
25S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77,

195316 (2008).
26J. Eckel, F. Heidrich-Meisner, S. G. Jakobs, M. Thorwart,

M. Pletyukhov, and R. Egger, New J. Phys. 12, 043042 (2010).
27A. Altland and B. Simons, Condensed Matter Field Theory, 2nd ed.

(Cambridge University Press, Cambridge, UK, 2010).
28S. E. Barnes, J. Phys. F 6, 1375 (1976).
29P. Coleman, Phys. Rev. B 29, 3035 (1984).
30G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
31P. Coleman, Phys. Rev. B 35, 5072 (1987).
32Z. Zou and P. W. Anderson, Phys. Rev. B 37, 627 (1988).
33A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl,

A. Weichselbaum, J. von Delft, T. Costi, and D. Mahalu, Phys.
Rev. B 84, 245316 (2011).

34J. A. Hertz, Phys. Rev. B 14, 1165 (1976).
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