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We report on Landauer-Büttiker studies of anomalous Hall transport in a two-dimensional electron gas with
Rashba spin-orbit coupling and a magnetization provided by localized magnetic moments. Our system is
described by a discretized tight-binding model in a four-terminal geometry. We consider both the case of
magnetically disordered systems as well as ballistic transport in disorder-free systems with spatially homoge-
neous magnetization. In the latter case we investigate both out-of-plane and in-plane magnetizations. We
numerically establish a close connection between singularities in the density of states and peaks in the Hall
conductance close to the lower band edge. Consistent with previous theoretical studies based on diagrammatic
perturbation expansions, these peaks occur at Fermi energies where only the lower dispersion branch is
occupied. Moreover, for large magnetization the Hall conductance is, along with the density of states, sup-
pressed. This numerical finding can be understood from analytical properties of the underlying model in the
limit of an infinite system.
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I. INTRODUCTION

The anomalous Hall effect �AHE� is the subject of a long
standing and partially still ongoing theoretical debate.1–7 It
amounts in a Hall conductivity which is not due to an exter-
nal magnetic field but the result of the magnetization of a
solid. A large portion of the renewed interest in this phenom-
enon is generated by research on ferromagnetic
semiconductors.8,9 In general, it is common to distinguish
between two types of mechanisms for the AHE, both relying
on spin-orbit interaction. The extrinsic mechanism requires
the presence of impurities or other imperfections and is
based on contributions to spin-orbit coupling from such scat-
tering potentials. This spin dependence of the effective scat-
tering potential gives rise to the skew-scattering2 and the
side-jump3 contributions to the anomalous Hall conductivity.
The intrinsic mechanism is independent of scattering centers
and is a result of the spin-orbit-coupled electronic band
structure, where the spin-orbit interaction stems from the or-
dered crystal lattice itself.

Among many different systems, the case of a two-
dimensional semiconductor electron gas with an intrinsic ef-
fective spin-orbit coupling of the Rashba type10 has attracted
considerable theoretical interest11–23 and was also studied ex-
perimentally in an n-doped II-VI semiconductor heterostruc-
ture containing manganese ions.24 The theoretical investiga-
tions have considered both the intrinsic effect17,18 as well as
combinations of intrinsic and extrinsic mechanisms.11–16,19–23

In the present work we shall concentrate on the purely intrin-
sic AHE.

An important tool for the theoretical description of trans-
port in such mesoscopic systems is given by the Landauer-
Büttiker formalism.25,26 In this paper we report on numerical
studies within this approach on Hall transport in a two-
dimensional electron gas �2DEG� with Rashba spin-orbit in-
teraction and magnetic impurities. Such an investigation of
the AHE seems to be missing in the previous literature al-
though several studies of this kind on the related spin Hall
effect are available.27–35

This paper is organized as follows. In Sec. II we describe
important properties of our underlying model and outline the
Landauer-Büttiker approach to transport in such systems.
More specific information on Green’s function in semi-
infinite leads used in our study can be found in Appendix. In
Sec. III we present our numerical results covering both bal-
listic transport and transport in magnetically disordered sys-
tems. We close with conclusions and an outlook in Sec. IV.

II. MODEL AND APPROACH

We consider a two-dimensional gas of noninteracting
electrons with spin-orbit interaction of the Rashba type.10

Additionally, the electron spin is coupled to magnetic impu-
rities.

A. Continuum model

The generic single-particle Hamiltonian for the continuum
system reads

H =
p�2

2m�
+

�

�
�px�

y − py�
x� + �� · �� . �1�

Here p� is the electron momentum, m� its effective band
mass, and the Pauli matrices �� describe the electron spin.
The strength of the spin-orbit interaction is described by the
Rashba parameter � and �� is the effective Zeeman splitting
due to the coupling of the electron spin to magnetic impuri-
ties. In general, this quantity will be position dependent, ��

=�� �r��. However, it is also instructive to consider the case of
spatially constant magnetization corresponding to an uniform
impurity polarization. In the following we will consider both
the case of a homogeneous magnetization perpendicular to
the plane of the electron gas, as well systems with in-plane
magnetization. We note that an in-plane magnetization can
also be interpreted as a genuine magnetic field which couples
in a strictly two-dimensional situation only to the spin of the
electron but not to its orbital degrees of freedom. For a ho-
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mogeneous magnetization the eigenstates are given by plane
waves and the energy of a given wave vector k� = p� /� reads

��k�� =
�2k2

2m�
� ��− �ky + �x�2 + ��kx + �y�2 + �z

2. �2�

Let us first discuss the case of a purely perpendicular mag-
netization, �� = �0,0 ,��. Here one finds that, provided that the
energy scale of the Rashba coupling �Rªm��2 /�2 is larger
than the Zeeman coupling,

�R � ��� , �3�

the lower dispersion branch in Eq. �2� has a minimum at
finite k=kmin,

kmin =
1

���
��R

2 − �2 �4�

with minimum energy

�min = �−�kmin� = −
1

2
�R −

1

2

�2

�R
. �5�

This dispersion minimum at finite wave vector leads to a van
Hove singularity in the electronic density of states �DOS� at
the bottom of the lower branch, �→�min+0. Explicitly, the
density of states is given by

D��� =�
0 � � �min

m�

	�2� �R

2�� − �min�
�min 
 � � − ���

m�

2	�2�1 +� �R

2�� − �min�
� − ��� 
 � � ���

m�

	�2 ��� 
 �
� .

�6�

This quantity has obviously a square-root singularity at
�→�min+0. As we shall see below, such singularities are
intimately linked to the observation of anomalous Hall trans-
port. Note also that D��� is discontinuous �but finite� at
�= � ���. These discontinuities vanish for �=0. On the other
hand, if the Zeeman coupling dominates over the spin-orbit
interaction,

�R � ��� , �7�

the energy dispersion branches have stationary points only at
zero wave vector. Here no van Hove singularity occurs in the
density of states, apart from a steplike behavior at minimum
energy. These two cases �R� � ��� are illustrated in the left
panel of Fig. 1. Note that for �R� ��� the avoided crossing at
k=0 does not lead to a van Hove singularity since these
stationary points occur at vanishing wave vector.

In the case of an arbitrary magnetization direction, ��
= ��x ,�y ,�z�, a closer analysis shows that the stationary
points of the dispersion �fulfilling ��� /�k� =0� lie at wave
vectors perpendicular to the in-plane projection of the mag-
netization,

k� · �� = 0. �8�

However, since this very general case does not seem to allow
for further explicit results, we shall concentrate on a purely
in-plane magnetization, �� = ��x ,�y ,0�. Here the stationary
points of the dispersion correspond to energy minima and lie
at wave vectors

k�min
� = �

m��

�2

�− �y,�x�
�

. �9�

The absolute minimum is given by

�min
− = �−�k�min

− � = −
1

2
�R − � �10�

�assuming ��0� while another minimum occurs at k� =k�min
+

with

�min
+ = ���k�min

+ � = −
1

2
�R + � , �11�

where the plus �minus� sign in ��� · � applies if ���R
����R�. These two cases are depicted in the right panel of
Fig. 1. The dispersion minima at finite wave vector k� =k�min

�

are physically easily understood: In the case �=�min
− , the

Zeeman field the and spin coupling provided by the Rashba
interaction are parallel to each other leading to an energetic
minimum for the appropriate spin direction while for the
higher minimum �=�min

+ these couplings are antiparallel.
Note also that these energetic minima remain at finite wave
vector for arbitrarily large magnetization. Therefore, differ-
ently from the case of perpendicular magnetization, the van
Hove singularities in the density of states do not vanish for
large Zeeman coupling.
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FIG. 1. Energy dispersion ���k�� for �=0.2�R �solid lines� and
�=1.5�R �interrupted lines�. Left panel: perpendicular magnetiza-
tion �� = �0,0 ,��. Right panel: in-plane magnetization ��

= ��x ,�y ,0� with the wave vector k� being orthogonal to �� , �� ·k�
=0. The energies are given in units of the Rashba energy �R while
the wave vector is measured in units of the inverse “Rashba wave
length” kR=m�� /�2.
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B. Discrete system

The standard discretized version of Hamiltonian �1� on a
square lattice reads

H = − t 	
m,n;�


cm,n;�
† cm+1,n;� + cm,n;�

† cm,n+1;� + H.c.�

+ � 	
m,n;�,


− icm,n;�
† ��,

x cm,n+1; + icm,n;�
† ��,

y cm+1,n;

+ H.c� + 	
m,n;�,

cm,n;�
† �� m,n · �� �,cm,n;. �12�

Here m and n label lattice locations with respect to the x and
y axis, respectively, and � and  are spin indices. The hop-
ping parameter t is related to the effective mass m� and the
lattice constant a via t=�2 /2m�a2, and the parameter � is
given by �=� /2a. To give a specific example, for a host
material such as gallium arsenide we have an effective band
mass of m�=0.067m0 �with m0 being the free-electron mass�
and a lattice spacing of a=5.6 Å leading to a hopping pa-
rameter t=1.8 eV. Typical values for the Rashba parameter
are of order 0.1 eV Å such that we have typically �
�0.01t.

For a spatially homogeneous impurity polarization of ar-
bitrary direction, �� m,n= ��x ,�y ,�z� the energy dispersions
are given by

���k�� = − 2t
cos�kxa� + cos�kya�� � 
�x − 2� sin�kya��2

+ 
�y + 2� sin�kxa��2 + �z
2�1/2. �13�

In order to make contact to the continuum model, one has to
evaluate this dispersion for small wave vector, ka�1, corre-
sponding to the lower band edge, where it reproduces Eq. �2�
up to a rigid shift of �−4t� which is just half of the bandwidth
in the absence of magnetization.

However, these dispersion relations, Eq. �13�, of the dis-
crete system lead to very intricate conditions for stationary
points which do not seem to be explicitly solvable. We there-
fore concentrate on the case of a homogeneous polarization
perpendicular to the plane, �� m,n= �0,0 ,��. Here the lower
branch leads again to a singularity in the density of states
provided that

2�2 � t��� , �14�

which is exactly the same as the condition �3�.

C. Hall bridge and Landauer-Büttiker formalism

The above discretized system described by Hamiltonian
�12� is studied as the central region of a four-terminal Hall
bridge shown in Fig. 2. In the following, we will investigate
this system consisting of its central part and ideal semi-
infinite leads without spin-orbit coupling and magnetization
using the Landauer-Büttiker formalism.25,26 We now briefly
summarize the most important features of this method as
applied to the calculation of the Hall conductivity.

Within the Landauer-Büttiker approach, the Hall conduc-
tivity is given by

�H =
IU

VL − VR
= −

1

2
GUL +

1

2
GUR, �15�

where IU is the current flowing into lead up, and GUL and
GUR are the conductances between lead up and left and be-
tween lead up and right, respectively. These quantities can be
calculated via the following equation:

Ip = 	
q

Gpq�Vp − Vq� , �16�

which describes the current flowing in lead p, where

Gpq =
e2

h
Tpq�� f� �17�

is the charge conductance between leads p and q. This quan-
tity is proportional to the transmission function Tpq defined
as

Tpq = tr
�pGr�qGa� , �18�

where the retarded �advanced� Green’s function Gr�a� and the
linewidth function � enter. These functions are the heart of
the Landauer-Büttiker approach. Indeed, both Greens’s func-
tions

Gr = 
Ga�† = �� f − H − 	
q

�q
r�−1

�19�

and

�q = i
�q
r − �q

a� �20�

depend on the retarded �advanced� self-energy �r�a�. The re-
tarded �q,�

r and the advanced �q,�
a =�q,�

r† self-energy terms
describe the coupling between the 2DEG in the central re-
gion and the four ideal semi-infinite leads and can be formu-
lated as

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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FIG. 2. �Color online� Four-terminal Hall bridge. The central
region is described by the discretized Hamiltonian �12� incorporat-
ing Rashba spin-orbit coupling and magnetic impurities.
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�q,�
r �i, j� = t2gq,�

r �pi,pj� , �21�

where gq,�
r is the Green’s function of the isolated semi-

infinite lead. The only terms which enter into the self-energy
are the coupling terms between each lead and the 2DEG
central region. The coupling between a lead and the central
system give rise to a coupling matrix which is nonzero only
for adjacent points i �lying at the edge of the 2DEG� and pi
�lying at the lead´s edge which faces the 2DEG�. Since the
lead Green’s function can be evaluated analytically,25,26 the
self-energy method can be exploited to deal with an infinite
system, such as a semi-infinite lead, by calculating only the
Green’s function of a finite region. The analytical expression
of our Green’s function is derived in Appendix.

Another important quantity which can be calculated
within the Landauer-Büttiker formalism is the DOS given by

D��� =
1

2	N2a2 tr
A���� = −
1

2	N2a2 tr
Im�Gr�� , �22�

where A���= i
Gr−Ga� is the spectral function and N2 is the
number of lattice sites in the central region taken to be a
square. The above expression is identical to another standard
textbook result,

D��� =
1

�2	�2� d2k��
� − ��k��� �23�

=
1

�2	�2�
��k��=�

dk
1

��k���
, �24�

which can be used to derive, e.g., Eq. �6�. For an infinite
2DEG with dispersion ��k��=−2t
cos�kxa�+cos�kya�� the
DOS can be calculated analytically leading to a logarithmic
divergence at �=0 and a saturation to constant values at the
edges of the band, i.e., D��= �4t�= 1

4	 ta2. On the other
hand, in the case of a finite 2DEG central region and no
coupling to the leads, the DOS is just given by a sum of
�—peaks for values of � f which match the eigenvalues of the
Hamiltonian of the central conductor. As we shall see below,
the anomalous Hall conductance is closely related to the
DOS.

III. RESULTS

Let us now describe our numerical results based on the
Landauer-Büttiker formalism outlined before. We first con-
centrate on disorder-free ballistic systems.

A. Ballistic Hall transport

Here we present our results for a disorder-free central
region with homogeneous magnetization �� . We will both
cover the case of magnetization perpendicular to the plane of
the 2DEG, �� = �0,0 ,�� and the case of in-plane magnetiza-
tion of various directions. In the latter scenario, the magne-
tization �� can also be interpreted as a proper magnetic field
B� which, in a strictly two-dimensional system, couples only

to the spin but not to the orbital degrees of freedom of charge
carriers.

1. Magnetization perpendicular to the 2DEG

Let us first turn to the case of systems magnetized perpen-
dicularly to the plane of the 2DEG. We consider a magneti-
zation �� = �0,0 ,�� and have evaluated the Hall conductance
and the density of states according to Eqs. �15� and �22�,
respectively. As is must be, the Hall conductance vanishes
for zero magnetization since the conductances GUL and GUR
are identical and cancel out. With a finite Zeeman coupling,
however, a charge current IU starts to flow in lead up signal-
ing a finite Hall conductance. Figure 3 shows the Hall con-
ductance along with the DOS for a Zeeman coupling �
=0.001t and a Rashba parameter of �=0.01t as a function of
Fermi energy � f � 
−4t−� ,4t+��. Both quantities plotted
are perfectly symmetric with respect to the band center � f
=0. The Hall conductance is characterized by an oscillatory
behavior over the entire energy range with particularly domi-
nating peaks near the band edges; a smaller peak occurs also
at the band center. On the other hand, the DOS shows the
predicted logarithmically divergence at � f =0 and in addition
even more pronounced singularities near the band edges at
exactly the same positions as the peaks of the Hall conduc-
tance.

As we wish to make contact to previous theoretical inves-
tigations on anomalous Hall transport in 2DEGs described
by continuum models,11–23 we will concentrate in the follow-
ing on the peaks of Hall conductance and DOS close to the
lower band edge. In Fig. 4 we have plotted both quantities
near the lower band edge for the same Rashba parameter and
system size as before but different Zeeman couplings �. As
seen in the figure, extrema of the DOS and the Hall conduc-
tance occur at the same position in energy, independently of
the regime of Zeeman coupling. The close correspondence
between extrema of the DOS and the Hall conductance will
be an important finding for our further analysis of anomalous

−4 −2 0 2 4

0

0.5

1

1.5

ε
f

/t

−4 −3.95 −3.9

0

0.5

1

1.5

ε
f

/t

DOS (1/(t a2))
σ

H
(e2/h)

∆=0.001 t
λ=0.01 t
N=30

FIG. 3. �Color online� Hall conductance and DOS for a Zeeman
coupling �=0.001t and a Rashba parameter �=0.01t as a function
for Fermi energy � f � 
−4t−� ,4t+�� and a linear system size of
N=30. The inset shows the behavior of the Hall conductance and
the DOS close to the lower band edge. Both quantities are charac-
terized by a simultaneous peak.
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Hall transport. Note that the maxima of the DOS at lower
energies become weaker with increasing Zeeman coupling
�. Such a behavior can indeed be expected from the analyti-
cally accessible properties of the infinite system discussed in
Sec. II. Here the divergent van Hove singularities in the DOS
vanish if the magnetization dominates the spin-orbit cou-
pling. The systems investigated in this work numerically are
obviously different as they are finite and coupled to semi-
infinite leads lacking spin-orbit interaction. However, the
above observations shall still guide our intuition regarding
the interplay between magnetization and spin-orbit coupling.

Figure 5 displays the Hall conductance near the bottom of
the band for a Rashba parameter of �=0.01t and various
Zeeman couplings � with the linear system size varying
from N=30 to 50. For small magnetization ��0.001t the
height of the Hall conductance peaks is approximately inde-
pendent of the system size while for larger Zeeman cou-
plings 0.001���0.0075t slightly grows with increasing
system size. For even larger ��0.0075t a decrease is ob-
served for large system sizes. This qualitative behavior per-
sists in a range of Rashba parameters �� 
0.005t ,0.02t� with
the above threshold values for the Zeeman coupling � being
approximately unchanged. While our above finite-size data
for the height of the Hall conductance peaks does not seem
to allow for an unambiguous extrapolation to the thermody-
namic limit, the suppression of the Hall conductance at large
Zeeman splittings ��0.0075t is certainly consistent with the
analytical observations in the infinite system. At large Zee-
man couplings, the singularity in the DOS close to the band
edge disappears and, in turn, the Hall conductance vanishes.

Moreover, as also seen in Fig. 5, for all Zeeman cou-
plings, the position �N

� of the peak shifts to lower energies,
i.e., toward the bottom of the band, with increasing system
size. Figure 6 shows the finite-size behavior of the peak po-

sition for same six data sets as in Fig. 5. All data sets can be
smoothly fitted by an exponential function which allows for
an extrapolation to the limit of an infinite system,
��=limN→� �N

� . The dependence of �� on the magnetization
� is shown in Fig. 7. Clearly, �� linearly decreases with
increasing �. Note, however, that for large Zeeman splitting
the Hall conductance peaks are suppressed with increasing
system size although their position can still be followed as a
function of N. On the other hand, even for the smallest Zee-
man gap of �=0.001t considered here, the infinite-volume
peak position �� lies at an energy where only the lower dis-
persion branch of Eq. �13� is occupied. This is in accordance
with recent theoretical predictions based on diagrammatic
perturbation theory by Nunner et al.18,20 who concluded that
a finite Hall conductance can only occur at low Fermi ener-
gies such that only the lower subband is occupied.

0
4
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(e2/h)

FIG. 4. �Color online� DOS �red dashed line� in units 1 / ta2 and
Hall conductance �blue solid line� in units of e2 /h near the lower
band edge for the same system size and Rashba coupling as in Fig.
3 but various Zeeman couplings �. In all cases an obvious corre-
spondence between the extrema DOS and Hall conductance occurs.
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FIG. 5. �Color online� Hall Conductance near the bottom of the
band for a Rashba parameter of �=0.01t and various Zeeman cou-
plings �. The linear system size varies from N=30 �blue, right�,
N=35 �red�, N=40 �green�, N=45 �yellow�, and N=50 �black, left�.
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FIG. 6. �Color online� Dependence of the position �N
� of the Hall

conductance peak on the system size for same data sets as in Fig. 5.
The Rashba parameter is �=0.01t.
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2. In-plane magnetization

We now turn to the case of magnetic impurities polarized
in the plane of the 2DEG. As shown in Fig. 2, the Hall
current is measured along the y direction in leads up and
down while the Hall voltage is applied along the x direction
between leads left and right. Here we do not observe a Hall
current if the in-plane magnetization is parallel to the voltage
since here for charge carriers with wave vector along the y
direction the spin coupling resulting from the Rashba inter-
action and the Zeeman coupling are just parallel to each
other. However, a finite Hall current can occur for other in-
plane directions of the magnetization.

Figure 8 shows the Hall conductance for several direc-
tions of magnetization. For magnetization along the x direc-
tion no Hall current occurs and for a magnetization pointing
in the y direction with �y =0.0075t we observe a maximum
of the Hall conductance which occurs at the same energy as
for the previous case of strictly out-of-plane magnetization
�z=0.0075t but is smaller in magnitude. For a magnetization
pointing in the �1,1,0� direction with �x=�y =0.0053t �ful-
filling ��� �=0.0075t� we find a conductance peak at the same
position in energy but of different shape. If the magnitude of

the Zeeman splitting is increased to �x=�y =0.0075t the
peak approximately maintains its shape but is shifted toward
lower energies. We focus now on an in-plane magnetization
totally polarized along the y direction. Figure 9 in the “in-
plane analog” of Fig. 4 and shows the correspondence be-
tween the extrema of the DOS and those of the Hall conduc-
tance for an in-plane magnetization totally magnetized along
the y direction for a system of linear size N=30 and for three
different values of the magnitude of the Zeeman splitting. As
in the case of a perpendicular magnetization, see Fig. 4, we
observe a correspondence between the extrema of the DOS
and the Hall conductance at the same Fermi energy.

In Fig. 10 we show the Hall conductance for an in-plane
magnetization along the y direction varying between �y
=0.001t and �y =0.01t, and linear system sizes between N
=30 and 50. The Rashba parameter is again �=0.01t. Obvi-
ously, the position of Hall peaks shifts to lower energy with
increasing systems size, analogously as in Fig. 5 for the case
of a perpendicular magnetization. Moreover, for the smallest
Zeeman coupling considered here, �y =0.001t, the height of
the peaks clearly grows with systems size while for the larg-
est Zeeman coupling of �y =0.01t the opposite behavior is
observed. However, we cannot outline any trend for interme-
diate values of the Zeeman coupling, see Figs. 10�b�–10�e�.
Another interesting finding is that the energetic position of
the Hall signal coincides for in-plane and perpendicular mag-
netization of the same magnitude. This result is shown in
Fig. 11, where the linear size of the system is N=40 and the
Zeeman coupling is chosen to be �z=�y =0.01t. Here, in the
two cases of perpendicular and in-plane magnetization the
shape of the DOS and Hall conductance peaks varies but
their maxima exactly coincide. The dependence of the Hall
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conductance on direction and magnitude of the in-plane
magnetization is to be explored further in the future.

B. Magnetically disordered systems

So far we have studied homogeneously magnetized sys-
tems with each lattice site carrying a magnetic ion whose
spin provides a Zeeman field for the carrier spins. We now
consider the case where only a given fraction � of lattice
sites is occupied by a magnetic ion. This scenario accounts
for the situation in real ferromagnetic semiconductor nano-
structures. We will concentrate again on magnetizations
along the z direction perpendicular to the plane of the 2DEG.
To be specific, we choose at random a given fraction of
lattice sites to be occupied with a magnetic ion and average

our results for the Hall conductivity over typically 20 of such
disorder realizations, which, by inspection of the data, turns
out to be sufficient. In order to facilitate the comparison with
our previous results for magnetically homogeneous systems
we adjust the magnitude of each local coupling �m,n such
that the average Zeeman coupling �ª �	m,n�m,n� /N2 is con-
stant, i.e., �m,n=� /�. Figure 12 shows the Hall conductance
for different fractions of magnetically occupied sites for a
Rashba parameter of �=0.01t and an average magnetization
of �=0.001t. The data are averaged over 20 random disorder
configurations. Figure 13 shows the dependence of the Hall
conductance both on the fraction of magnetized sites as well
as on system size. Again, the energetic position of the hall
maxima moves toward lower energies with increasing sys-
tem size, cf. Figs. 5 and 10. Moreover, for fractions �
=0.3, . . . ,0.9 of magnetized sites, the position of the Hall
peaks is very close to that of the uniform magnetization,
�=1, and the height of peaks is approximately constant in all
cases. This is different from the smallest fraction considered
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here, �=0.1, where height increases with system size and
also the energetic positions differ from the other cases.

IV. CONCLUSIONS AND OUTLOOK

Anomalous Hall transport is still the subject of a long-
standing theoretical discussion. In the present paper we have
reported on the, to our knowledge, investigation of this phe-
nomenon using the Landauer-Büttiker formalism. Specifi-
cally, we have studied a two-dimensional electron gas with
Rashba spin-orbit coupling and a magnetization provided by
localized magnetic moments. Our system is described by a
discretized tight-binding model in a four-terminal geometry.
We have considered both the case of ballistic transport in
disorder-free systems with homogeneous magnetization as
well as magnetically disordered systems. In the former case
we have also distinguished between different directions of
the magnetization. In particular, a magnetization lying en-
tirely in the plane of the 2DEG can also be interpreted as a
genuine magnetic field which couples, in a strictly two-
dimensional system, only to the spin of the electron but not
to its orbital degrees of freedom.

In particular, we have demonstrated numerically a close
connection between singularities in the density of states and
peaks in the Hall conductance close to the lower band edge.
Consistent with previous theoretical studies based on dia-
grammatic perturbation expansions, these peaks occur at
Fermi energies where only the lower dispersion branch is
occupied.18,20 Moreover, for large magnetization the Hall
conductance is, along with the density of states, suppressed.
This numerical finding can be understood from analytical
properties of the underlying model in the limit of an infinite
system.

Future investigation will include a more detailed under-
standing of anomalous Hall transport in the presence of an
in-plane magnetization and the effects of magnetic disorder.
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APPENDIX: GREEN’S FUNCTION OF A
SEMI-INFINITE LEAD

Here we give some more technical details regarding the
calculation of the Green’s function of Eq. �21� for a semi-
infinite lead. For a semi-infinite noninteracting lead with
hard wall confinement and a constant width L, the transverse
wave functions are

�̃m�y� =�2

L
sin�m	y

L
� �A1�

or

�m�yj� =� 2

M + 1
sin� m	j

M + 1
� , �A2�

where yi= ja and M is the number of sites in the trans-
verse direction, such that L= �M +1�a. The longitudinal lat-
tice wave functions are

�k�x� =�2

L
sin�kx� , �A3�

which by substituting x=a, which means that we are consid-
ering points x at the first slice of the semi-infinite lead, trans-
forms into

�k�x = a� =�2a

L
sin�ka� . �A4�

Finally, at the first slice x=a the total wave function reads

�m,k =�2a

L
�m�y�sin�ka� , �A5�

which is an eigenfunction of the Hamiltonian H0�m,k
=Em,k�m,k, where the dispersion relation is given by

Em,k = 2t�1 − cos
m	

M + 1
� + 2t
1 − cos�ka�� . �A6�

Inserting the wave function in the eigenfunctions expres-
sion of the Green’s function, see Ref. 25, the Green’s func-
tion at the first slice x=a is

Gr�a,yi;a,yj� =
2a

L
	

m,k�0

�m�yi��m
� �yj�sin2�ka�

E − Em,k + i�
. �A7�

In the limit L→�, we may replace the sum over k by the
integral �L /	��0

	/adk and substitute ka=� to obtain

Gr�a,yi;a,yj� = 1/	t	m
�m�yi��m

� �yj�

��
0

	

d� sin2 �/�Q + cos � + i�� , �A8�

where we made the following replacement

Q =
E

2t
− 2 + cos

m	

M + 1
. �A9�

In Eq. �A8� the integrand function sin2 � / �Q+cos �+ i�� is
an even function of �, therefore the integral can be written as
a symmetric integral from −	 to 	. By writing in the integral
the sine and cosine functions in terms of their exponential
form and performing the substitution z=exp�i��, the integral
turns into a closed contour integral along the unit circle in
the complex plane, allowing us to write the Green’s function
as
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Gr�a,yi;a,yj� = 1/�2	it�	
m

�m�yi��m
� �yj�

��
C

dz�1 − z2�/�z2 + 2zQ + 1� ,

�A10�

where �C stands for the integration on a closed circuit of
radius �z�=1. By solving the integral with the use of the
theorem of residues, we obtain

Gr�a,yi;a,yj� = 1/�2	it�	
m

�m�yi��m
� �yj�2	iRz0

��1 − z2�/�z2 + 2zQ + 1� , �A11�

where Rz0
indicates the residual calculated at the pole z=z0

which depends on Q, i.e.,

z0 = �− Q + �Q2 − 1 for Q � 1

− Q − �Q2 − 1 for Q � − 1

− Q + i�1 − Q2 for �Q� 
 1
� . �A12�

Inserting the pole in Eq. �A11�, we obtain the final expres-
sion for the Green’s function

Gr�a,yi;a,yj� =
1

t
	
m

�m�yi��m
� �yj�F�Q� �A13�

with

F�Q� = �Q − �Q2 − 1 for Q � 1

Q + �Q2 − 1 for Q � − 1

Q − i�1 − Q2 for �Q� 
 1
� . �A14�
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