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Abstract. We discuss the electronic properties of graphene and graphene
nanoribbons including ‘pseudo-Rashba’ spin–orbit coupling. After summarizing
the bulk properties of massless and massive Dirac particles, we first analyze
the scattering behavior close to an infinite mass and zigzag boundary. For low
energies, we observe strong deviations from the usual spin-conserving behavior
at high energies such as reflection acting as a spin polarizer or switch. This results
in spin polarization along the direction of the boundary due to the appearance of
evanescent modes in the case of non-equilibrium or when there is no coherence
between the two one-particle branches. We then discuss the spin and density
distribution of graphene nanoribbons.
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1. Introduction

Graphene, the single-layer allotrope of carbon, is undoubtedly one of the most active fields
in today’s experimental and theoretical condensed matter physics [1]–[3]. Among an entire
plethora of phenomena and proposals, the issue of spin–orbit coupling has generated particular
interest [4]–[9]. A detailed understanding of spin–orbit interaction in graphene is crucial for the
interpretation of ongoing experiments on spin transport performed by various groups [10]–[18].
Other issues include various device proposals [19, 20] and theoretical predictions [21]–[23]
related to spins and spin–orbit coupling in graphene.

In the present paper we investigate a single layer of graphene in the presence of spin–orbit
interaction of the ‘pseudo-Rashba’ type, coupling the sublattice or pseudo-spin to the physical
electron spin [4]–[9], [24]. Our interest is based on the fact that for graphene on Ni with
intercalation of Au, a 100-fold enhancement of ‘pseudo-Rashba’ spin–orbit coupling has been
reported [25]. Furthermore, impurities that induce an sp3 distortion will lead to ‘pseudo-Rashba’
spin–orbit coupling with a value comparable to that found in diamond and other zinc-blende
semiconductors [26]. The latter result indicates that the ‘pseudo-Rashba’ spin–orbit coupling
can be controlled via impurity coverage.

In this paper, we will concentrate on the scattering behavior of spin densities near
boundaries created by either an infinite mass or a zigzag edge. Our presentation is organized
as follows: In section 2 we introduce the basic Hamiltonian and discuss its general bulk solution
in the absence of a mass term; the technically more complicated case of a nonzero mass is
deferred to the appendices. In section 3 we investigate in detail the scattering properties and
spin dephasing at hard boundaries for various types of incoming spinors and energy ranges.
This discussion is extended in section 4 to averaged spin polarizations obtained from continuous
distributions of incoming directions. In section 5, we analyze the spin and density distribution
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of graphene nanoribbons. We close with a summary in section 6. Throughout this manuscript,
we use parameters of [25].

2. Dirac fermions with ‘pseudo-Rashba’ spin–orbit coupling

The single-particle Hamiltonian of monolayer graphene with ‘pseudo-Rashba’ spin–orbit
interaction can be formulated as [4]–[6], [24]

H= vF Ep · Eτ + λ ( Eτ × Eσ) · Eez, (1)

where, among standard notation, λ is the spin–orbit coupling parameter, and the Pauli matrices
Eτ , Eσ describe the sublattice and the electron spin degree of freedom, respectively. For a given
wave vector Ek, this Hamiltonian reads explicitly as

H( Ek)=


0 0 h̄vF(kx − iky) 0

0 0 2iλ h̄vF(kx − iky)

h̄vF(kx + iky) −2iλ 0 0

0 h̄vF(kx + iky) 0 0

. (2)

From experience with the ‘classic’ Dirac equation of relativistic quantum mechanics, it is
occasionally of use not to study just a given Hamiltonian but also its square. Here we find

H2( Ek)=


(h̄vFk)2 −2iλh̄vF(kx − iky) 0 0

2iλh̄vF(kx + iky) (h̄vFk)2 + 4λ2 0 0

0 0 (h̄vFk)2 + 4λ2
−2iλh̄vF(kx − iky)

0 0 2iλh̄vF(kx + iky) (h̄vFk)2

 .
(3)

This matrix is block diagonal with eigenvalues

(ε2)1,2 = (h̄vFk)2 + 2λ2
± 2|λ|

√
(h̄vFk)2 + λ2, (4)

where the positive sign corresponds to the eigenvectors

|α1〉 =


sin(ϑ/2)

cos(ϑ/2)eiη

0

0

 , |β1〉 =


0

0

cos(ϑ/2)

sin(ϑ/2)eiη

 , (5)

while for the negative sign we have

|α2〉 =


cos(ϑ/2)

− sin(ϑ/2)eiη

0

0

 , |β2〉 =


0

0

− sin(ϑ/2)

cos(ϑ/2)eiη

 , (6)
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where ϑ ∈ [0, π] and

cosϑ =
|λ|√

(h̄vFk)2 + λ2
, eiη

=
λ

|λ|

i(kx + iky)

k
. (7)

In the basis (|α1〉, |β1〉, |α2〉, |β2〉) the Hamiltonian reads as

H̃( Ek)=


0 q∗

+ 0 0

q+ 0 0 0

0 0 0 q−

0 0 q∗

−
0

 (8)

with

q± = ±h̄vF(kx ± iky) f±(|λ|/h̄vFk) (9)

and

f±(x)=

√

1 + x2 ± x . (10)

Now it is straightforward to obtain the full eigensystem: We find a gaped pair of eigenvalues

ε1,± = ±

(√
(h̄vFk)2 + λ2 + |λ|

)
(11)

with eigenspinors (type I)

|χ1,±( Ek)〉 =
1

√
2


sin(ϑ/2)

cos(ϑ/2)eiη

± cos(ϑ/2)eiψ

± sin(ϑ/2)eiηeiψ

 (12)

and

eiψ
=

kx + iky

k
. (13)

With gV = 2 being valley degeneracy, the corresponding density of states reads

ρ1(ε)=
gV

2π(h̄vF)2
(|ε| − |λ|) θ

(
ε2

− (2λ)2
)
. (14)

The other pair of dispersion branches does not exhibit a gap,

ε2,± = ±

∣∣∣√(h̄vFk)2 + λ2 − |λ|

∣∣∣, (15)

and has eigenspinors (type II)

|χ2,±( Ek)〉 =
1

√
2


cos(ϑ/2)

− sin(ϑ/2)eiη

± sin(ϑ/2)eiψ

∓ cos(ϑ/2)eiηeiψ

 . (16)

The corresponding density of states reads

ρ2(ε)=
gV

2π(h̄vF)2
(|ε| + |λ|). (17)
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1 −k
2

1
y

−ky

k y ϕ

ϕσ

Figure 1. A plane wave of type I with spin perpendicular to the momentum
Ek = (kx , k1

y) (ϕ = arctan(k1
y/kx), ϕσ = ϕ +π/2) is reflected at the boundary into

a plane wave with Ek
′

= (kx ,−k1
y) and Ek ′′

= (kx ,−k2
y) with perpendicular spin,

but anti-parallel with respect to each other (see equation (24) for the definition
of k1/2

y ).

Let us now consider expectation values within the eigenstates with wave functions

〈Er | Ek, µ,±〉 =
ei Ek Er

√
A

|χµ,±〉, (18)

µ ∈ {1, 2}, and A being the area of the system. Here we find

〈 Ek, 1,±| Eτ | Ek, 1,±〉 = 〈Ek, 2,±| Eτ | Ek, 2,±〉 = ±
λ

|λ|

sinϑ cosϕ

sinϑ sinϕ

0

 (19)

and

〈 Ek, 1,±| Eσ | Ek, 1,±〉 = −〈Ek, 2,±| Eσ | Ek, 2,±〉 =
λ

|λ|

− sinϑ sinϕ

sinϑ cosϕ

0

. (20)

Here, ϕ is the usual azimuthal angle of the wave vector, Ek = k(cosϕ, sinϕ). Note that

〈 Eτ 〉 · 〈 Eσ 〉 = Ek · 〈 Eσ 〉 = 0, (21)

as usual for Rashba spin–orbit coupling, and

|〈 Eτ 〉| = |〈 Eσ 〉| = sinϑ, (22)

where for sinϑ < 1 the sublattice and electron spin degree of freedom are entangled with each
other.

3. Spin dephasing due to reflection on a hard wall

In this section, we will study the scattering behavior from a hard wall, which will lead to spin
dephasing as depicted in figure 1. For that, a general plane wave with fixed momentum kx and
energy E > 2|λ| is written as

ψE,kx (x, y)=N Ekeikx x
[

A1eik1
y y

|χ1,+(kx , k1
y)〉 + A2eik2

y y
|χ2,+(kx , k2

y)〉

+R1e−ik1
y y

|χ1,+(kx ,−k1
y)〉 + R2e−ik2

y y
|χ2,+(kx ,−k2

y)〉
]
, (23)
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with

(h̄vFkµy )
2
= (E + (−1)µ|λ|)2 − λ2

− (h̄vFkx)
2, (24)

µ ∈ {1, 2} and the normalization constant N Ek . For energies E < 2|λ|, some modifications in
equation (23) have to be made, which shall be discussed in more detail below.

In the following, we will discuss reflection at a hard wall at y = 0 for the two types of
plane waves i.e. we will first set A1 = 1, A2 = 0 (type I) and then A1 = 0, A2 = 1 (type II).
The discussion is based on the reflected spin direction, which shall be denoted by ϕ′

σ . It is
obtained from the expectation value of the spin-density operator at the boundary Eρ = Eσδ( Êr),
〈 Eρ〉 ≡ 〈ψE,kx | Eρ|ψE,kx 〉 via

ϕ′

σ = arctan(〈ρy〉/〈ρx〉)+πθ(−〈ρx〉). (25)

Owing to translational invariance in the x-direction, 〈 Eρ〉 will only depend on the y-coordinate.
For the following discussion, we will also discuss at Er = 0 the normalized expectation
value 〈 Eσ 〉 = 〈 Eρ〉/〈n〉 with 〈n〉 ≡ 〈ψE,kx |δ( Êr)|ψE,kx 〉. This shall not be confused with the bulk
expectation of Eσ as it appears in the Hamiltonian.

We will distinguish the two different cases of the half-plane y > 0 (scattering from the
lower or bottom boundary) and y 6 0 (scattering from the upper or top boundary). We shall
further assume a plane wave with kx > 0 moving in the positive x-direction. The results for
kx < 0 are then obtained by changing the bottom to top boundary and vice versa. The results for
the K ′-point can also be deduced from the following discussion (see appendix A). The sign of
λ determines the sign of the expectation value of Eτ and Eσ . In the following, we set λ= |λ|, but
in some of the following expressions we explicitly use |λ| for the sake of clarity.

We will discuss two different types of confinement. First, we use the fact that Dirac
fermions can be confined by an infinite mass boundary, first discussed by Berry and
Mondragon [27]. We then also study the reflection from a zigzag boundary first addressed
in [28].

3.1. Infinite mass boundary

With ψE,kx = (ψ1, ψ2, ψ3, ψ4)
T, the boundary conditions at the infinite mass boundary read (see

appendices B and C) as

ψ1

ψ3

∣∣∣∣
bottom

=
ψ2

ψ4

∣∣∣∣
bottom

= 1,
ψ1

ψ3

∣∣∣∣
top

=
ψ2

ψ4

∣∣∣∣
top

= −1. (26)

Note that there are different boundary conditions depending on whether one approaches the
boundary from below or above.

3.1.1. Scattering behavior for plane waves of type I. We first consider a plane wave scattered
at y = 0 with A1 = 1 and A2 = 0. The boundary conditions yield the following expressions for
R1, R2:

R1 = ∓z2
1

(z1c1 ± s1)(z2s2 ± c2)+ (z1s1 ± c1)(z2c2 ± s2)z1z2

(z1s1 ± c1)(z2s2 ± c2)z1 + (z1c1 ± s1)(z2c2 ± s2)z2
, (27)

R2 = ∓z2
2

(z1c1 ± s1)
2
− (z1s1 ± c1)

2z2
1

(z1s1 ± c1)(z2s2 ± c2)z1 + (z1c1 ± s1)(z2c2 ± s2)z2
. (28)
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Figure 2. The reflected versus the incident spin direction at y = 0 for an incident
plane wave with A2 = 0 (type I) for various energies E . We use h̄vF = 5.6 eVÅ
and λ= 6 meV. Left: Reflection from the lower boundary. Right: Reflection from
the upper boundary.

Above, we introduced the abbreviations cµ = cos (ϑµ/2), sµ = sin (ϑµ/2) and zµ = (kx +
ikµy )/

√
k2

x + (kµy )2, µ ∈ {1, 2}. The upper (lower) sign holds if the electron is scattered from the
upper (lower) boundary.

Let us first discuss the scattering behavior from the lower boundary. For kx = k cosϕ, the
incident spin direction is given by ϕσ = π/2 − |ϕ|. On the left-hand side of figure 2, the reflected
spin direction ϕ′

σ of equation (25) is plotted against the incident spin direction ϕσ .
At large energies with ε = λ/(h̄vFk)� 1 and ε � sin2 ϕ, we have R1 = (1 − ε) cosϕ and

R2 = i sinϕ− 2ε cosϕ and the spin polarization is approximately conserved. The expansion of
equation (25) yields

ϕ′

σ = ϕσ + ε
cosϕσ

1 + sinϕσ
. (29)

For energies close to the band gap energy of type I-spinors, E → 2λ, scattering from the
boundary acts as a spin polarizer since ϕ′

σ → ϕ0 = arctan(1/(2
√

2))≈ 19.5◦ for all incoming
spin directions ϕσ . This angle corresponds to 〈σy〉 = 1/3. For E = λ(2 + ε2) with ε � 1, we
obtain

ϕ′

σ = arctan

(
1

2
√

2

)
+

2

3
ε cosϕ +

√
2

72
ε2 (cos(2ϕ)− 5). (30)
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This is a surprising result since R1 → −1 and the incoming and reflected waves seem
to compensate. But even though R2 → −

√
6εe−iϕ sinϕ tends to zero, its admixture has a

dominating effect.
For the upper boundary, we obtain the expansion

ϕ′

σ = π + arctan

(
1

2
√

2

)
−

2

3
ε cosϕ +

√
2

72
ε2 (cos(2ϕ)− 5). (31)

Note that the different sign compared to equation (30) results in a different asymptotic behavior
for large energies since ϕ′

σ (E = 2λ) is larger than the maximal incident spin direction ϕσ = π .
This different behavior is illustrated on the right-hand side of figure 2.

3.1.2. Scattering behavior for plane waves of type II with E > 2λ. For a plane wave scattered
at y = 0 with A1 = 0 and A2 = 1 with energy E > 2λ, the boundary conditions yield the
following expressions for R1, R2:

R1 = ∓z2
1

(z2s2 ± c2)
2
− (z2c2 ± s2)

2z2
2

(z1s1 ± c1)(z2s2 ± c2)z1 + (z1c1 ± s1)(z2c2 ± s2)z2
, (32)

R2 = ∓z2
2

(z1c1 ± s1)(z2s2 ± c2)+ (z1s1 ± c1)(z2c2 ± s2)z1z2

(z1s1 ± c1)(z2s2 ± c2)z1 + (z1c1 ± s1)(z2c2 ± s2)z2
. (33)

For (E − 2|λ|)/(E + 2|λ|) > (cosϕ)2, the abbreviations are the same as in equations (27)
and (28). For (E − 2|λ|)/(E + 2|λ|) < (cosϕ)2, the reflected momentum k1

y = ±iq is imaginary
with

h̄vFq =

√
−(E − |λ|)2 + λ2 + (h̄vFkx)2. (34)

The sign is determined to yield an exponential decay in the reflected region. In equations (32)
and (33), z1 is thus replaced by z1 → (kx ∓ q)/

√
k2

x − q2, where the upper (lower) sign holds for
reflections from the upper (lower) boundary, and s1 by s1 → i

√
(cosϑ1 − 1)/2.

First let us discuss the scattering behavior from the lower boundary. On the left-hand side
of figure 3, the reflected spin direction is plotted against the incident spin direction rotated
by π . For large energies and normal incident direction ϕ ≈ π/2, we again obtain ϕ′

σ = ϕσ .
But for nearly parallel incident direction such that (E − 2|λ|)/(E + 2|λ|) < (cosϕ)2, we obtain
ϕ′

σ = ±π/2. For energies close to the band-gap E → 2λ, all reflected modes of type I are
evanescent and scattering from the wall acts as a switch, which leads to either ϕ′

σ = π/2 or
ϕ′

σ = −π/2.
It is understood that the appearance of the two extreme values of ϕ′

σ = ±π/2 in the regime
where k1

y is imaginary. Since z1 is real and the incident and reflected waves of type |χ2,+〉

compensate, the expectation value in the x-direction 〈σx〉 = 0. For the incident wave, 〈|σy|〉incident

is negative, and for small incident angle, we thus have ϕ′

σ = −π/2. But if |R1| is large, the
admixture of |χ1,+〉 can lead to ϕ′

σ = π/2. Additionally, the spin in the z-direction 〈σz〉 assumes
a nonzero value to guarantee |〈 Eσ 〉| = 1. On the left-hand side of figure 4, this general behavior
shows whether the reflected spin angle (rotated by π ), the expectation values 〈σi〉 (i = x, y, z)
and the absolute value of the reflection amplitudes |R1| and |R2| are plotted versus the incident
spin direction at y = 0 at energy E = 3λ.
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Figure 3. The reflected versus the incident spin direction (rotated by π ) at y = 0
and A1 = 0 for various energies E > 2λ. We use h̄vF = 5.6 eVÅ and λ= 6 meV.
Left: Reflection from the lower boundary. Right: Reflection from the upper
boundary.

The scattering behavior from the upper boundary is considerably simpler. There, only two
regimes appear, which are marked by whether k1

y is real or imaginary. This can be seen on the
right-hand side of figures 3 and 4.

3.1.3. Scattering behavior for plane waves of type II with E < 2λ. For energies with E < 2λ,
one of the reflected modes becomes evanescent, which leads to 〈σx〉 = 0. For a more detailed
analysis, we have to distinguish the two cases E > λ and E < λ.

For λ < E < 2λ, the reflected momentum k1
y = ±iq is imaginary with the same expression

as in equation (34). The sign is determined to yield an exponential decay in the reflected region.
With the ansatz

ψE,kx (x, y)=N Ekeikx x
[
eik2

y y
|χ2,+(kx , k2

y)〉 + R̃1e−q|y|
|χ1,+(kx ,±iq)〉 + R2e−ik2

y y
|χ2,+(kx ,−k2

y)〉
]
,

(35)

we obtain the same expressions for R̃1 → R1 and R2 as in equations (32) and (33) with
the replacement c1 →

√
(1 + cosϑ1)/2, s1 → i

√
(cosϑ1 − 1)/2 and z1 → −i(kx ∓ q)/

√
q2 − k2

x ,
where the upper (lower) sign holds for reflections from the upper (lower) boundary.

The lower boundary is to be discussed first. For small incident spin direction, 〈σy〉> 0 and
becomes zero at ϕσ = ϕE < ϕ0 ≈ 19.5◦. The reflected spin angle is thus ϕ′

σ = π/2 for ϕ > ϕE

and ϕ′

σ = −π/2 for ϕ < ϕE and for E → λ we have ϕE→λ = 0.
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(i = x, y, z) and the absolute value of the reflection amplitudes |R1| and |R2|

versus the incident spin direction at y = 0 and A2 = 0 for energies E = 3λ. We
use h̄vF = 5.6 eVÅ and λ= 6 meV. Left: Reflection from the lower boundary.
Right: Reflection from the upper boundary.

For the upper boundary, we have 〈σy〉< 0 for all angles and energies. In both cases, we
have 〈σz〉 6= 0 to fulfill the sum rule |〈 Eσ 〉| = 1.

For energies with 0< E < λ, there is no reflected wave of type I, |χ1,+〉, but one of the
reflected momenta of |χ2,+〉 is imaginary, k2

y = ±iq with the same definition as in equation (34).
With

ψE,kx (x, y) =N Ekeikx x
[
eik2

y y
|χ2,+(kx , k2

y)+ R̃2e−q|y|
|χ2,+(kx ,±iq)〉 + R2e−ik2

y y
|χ2,+(kx ,−k2

y)〉
]
,

(36)
we have

R̃2 = ∓z̃2
2

(z2s2 ± c2)
2
− (z2c2 ± s2)

2z2
2

(z̃2s̃2 ± c̃2)(z2c2 ± s2)z2 − (z̃2c̃2 ± s̃2)(z2s2 ± c2)z̃2
, (37)

R2 = ∓z2
2

(z̃2s̃2 ± c̃2)(z2s2 ± c2)− (z̃2c̃2 ± s̃2)(z2c2 ± s2)z̃2z2

(z̃2s̃2 ± c̃2)(z2c2 ± s2)z2 − (z̃2c̃2 ± s̃2)(z2s2 ± c2)z̃2
, (38)

with c̃2 =
√
(1 + cosϑ e

2)/2, s̃2 = i
√
(cosϑ e

2 − 1)/2, z̃2 = −i(kx ∓ q)/
√

q2 − k2
x and ϑ e

2 =

|λ|/(|λ| − E). In the above equations, the upper (lower) sign holds for reflections from the
upper (lower) boundary.
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Figure 5. The reflected versus the incident spin direction at y = 0 with A2 = 0
(left-hand side) and A1 = 0 (rotated by π ) (right-hand side) for various energies
E > 2λ in the case of a zigzag boundary. We use h̄vF = 5.6 eVÅ and λ= 6 meV.

We obtain 〈σy〉 = −1 for the upper and 〈σy〉 = 1 for the lower boundary, respectively, which
is independent of the incident direction and the energy.

3.2. Zigzag boundary

Graphene can be terminated by a zigzag boundary that exposes only one sublattice to the
boundary. With ψE,kx = (ψ1, ψ2, ψ3, ψ4)

T, the boundary conditions at a zigzag boundary thus
read

ψ1 = ψ2 = 0 (for bottom boundary), ψ3 = ψ4 = 0 (for top boundary). (39)

Here, we assumed that the bottom boundary is terminated by sublattice A and the top boundary
by sublattice B.

For a general plane wave equation (23) scattered at y = 0 with energy E > 2λ, the
boundary conditions for the bottom boundary (sublattice A) equation (39) yield the following
expressions for R1, R2:

R1 = −z2
1

A1(s1s2 + c1c2z1z2)+ A2(s2c2 − s2c2z2
2)

s1s2z2
1 + c1c2z1z2

, (40)

R2 = −z2
2

A1(s1c1 − s1c1z2
1)+ A2(c1c2 + s1s2z1z2)

c1c2z2
2 + s1s2z1z2

. (41)
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The boundary conditions for the upper boundary (sublattice B) yield the following expressions
for R1, R2:

R1 = −z2
1

A1z1(c1c2 + s1s2z1z2)+ A2z2(s2c2 − s2c2z2
2)

c1c2z1 + s1s2z2
, (42)

R2 = −z2
2

A1z1(s1c1 − s1c1z2
1)+ A2z2(s1s2 + c1c2z1z2)

c1c2z1 + s1s2z2
. (43)

The abbreviations are the same as for the infinite mass boundary. Since the reflected angle is
symmetric around normal incidence, we will only discuss reflection from the bottom boundary
for kx > 0.

In figure 5, the reflected versus the incident spin direction at y = 0 is shown for the two
types of incident plane waves. As in the case of the infinite mass boundary, 〈σx〉 = 0 for incident
plane waves of type II with cos2 ϕ > (E − 2|λ|)/(E + 2|λ|). But contrary to the infinity mass
boundary, the spin polarization in the out-of-plane direction assumes a nonzero value even when
the reflected wave of type I is extended. For this case, i.e. k1

y ∈ R, we obtain

〈σz〉
I
= −

|λ|

E + |λ|
, 〈σz〉

II
=

|λ|

E − |λ|
. (44)

The K ′-point yields the opposite sign so that there is no net polarization in the z-direction. For
energies E < 2λ, a similar discussion as in the case of infinite mass boundary applies.

4. Spin polarization close to the boundary

So far we have only discussed polarization properties at the boundary y = 0. For finite y, we
expect an oscillatory behavior of the reflected spin polarization. For E → 2λ and plane wave
scattering of type I, k1

y → 0 and the period will thus be solely determined by k2
y →

√
2(2λ/h̄vF).

This oscillatory behavior is again independent of incident spin polarization and results in
a striped phase for the reflected spin polarization. For E > 2λ, two periods related to k1/2

y
contribute and a more complicated pattern emerges, which also depends on the incident spin
polarization and whether one deals with a reflection from the top or from the bottom. This hints
to the fact that a Dirac particle in a box shows quasi-chaotic behavior [29].

In the following, we will study the spin polarization averaged over the incident direction
for fixed A1, A2 and including the two K -points as a function of the y-direction. We will further
average over positive and negative kx momenta. With an incident wave of typeµ and momentum
kµ =

√
(E + (−1)µ|λ|)2 − λ2/(h̄vF), µ ∈ {1, 2}, we have

〈 Eρ〉
µ(Er)≡

1

2

∑
κ=K ,K ′

1

π

∫ π

0
dϕ〈ψE,kµ cosϕ| Eσδ(Er − Êr)|ψE,kµ cosϕ〉κ . (45)

We only discuss the spin polarization at the lower boundary, which depends on the sign of λ
(here we choose λ= |λ|). The spin polarization on the upper boundary is obtained by reversing
the sign.

In figure 6, the angle-averaged spin density A〈ρx〉
µ(Er) is shown as a function of y for

various energies E > 2λ, where A denotes the area of the sample. We show the results for an
incident plane wave of type I (left-hand side) and type II (right-hand side) with an infinite mass
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Figure 6. Spin polarization in the x-direction as a function of y for various
energies E > 2λ with an infinite mass boundary. We use h̄vF = 5.6 eVÅ and
λ= 6 meV. Left: Incident plane wave of type I. Right: Incident plane wave of
type II.

boundary. There is a clear difference between the two types for low energies, which is due to
the appearance of imaginary momenta k1

y = ±iq for type II reflections. For low energies, most
incident angles of the initial plane wave of type II lead to evanescent modes and thus to 〈σx〉 = 0.
For large energies E > 103λ, the spin polarizations of the two types have approximately the
same absolute value, but differ in sign.

Obviously, the above ensemble average breaks time-reversal symmetry since there is one
incident plane wave with fixed ky-direction and two reflected plane waves. But if there is no
coherence between the incident plane waves of types I and II, e.g. due to temperature, then
time-reversal symmetry is effectively broken and we find a net polarization in the x-direction by
adding the two contributions 〈 Eρ〉

I and 〈 Eρ〉
II (and possibly weighting them with the corresponding

density of states). This is demonstrated in figure 7, where the sum of the two contributions
A
∑

µ〈 Eρ〉
µ is shown for an infinite mass boundary (left) and for a zigzag boundary (right).

Moreover, we expect spin polarization in the x-direction for various non-equilibrium situations.
In the other two directions, we find no net spin polarization if the two inequivalent K -points

are included. We note, however, that ρy and ρz assume a finite value for one K -point, only. This
opens up the possibility of spin polarization in these directions in the presence of ripples or a
magnetic field. Especially surface states due to e.g. zigzag boundaries that effectively break the
sublattice symmetry and that are not included in our continuous model should give rise to a
finite spin polarization.
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Figure 7. Net spin polarization in the x-direction as a function of y for various
energies E > 2λ. We use h̄vF = 5.6 eVÅ and λ= 6 meV. Left: Infinite mass
boundary. Right: Zigzag boundary.

5. Dirac electrons with ‘pseudo-Rashba’ spin–orbit coupling in nanoribbons

In this section, we will consider graphene nanoribbons and the quantization properties of
transverse momenta in the presence of ‘pseudo-Rashba’ spin–orbit coupling. We will then
discuss the density and spin distribution at various energies.

5.1. Quantization of the transverse momentum

First the infinite mass boundaries are considered. For a general plane wave with fixed momen-
tum kx and energy E , ψE,kx (x, y)≡ (ψ1, ψ2, ψ3, ψ4)

T, there are four conditions that have to
be satisfied, i.e. ψ1 = ±ψ3 and ψ2 = ±ψ4 at y = 0, and ψ1 = ∓ψ3 and ψ2 = ∓ψ4 at y = W ,
where the upper (lower) sign stands for the K (K ′)-point and W is the width of the nanoribbon.
For a zigzag nanoribbon that terminates on sublattice A at the bottom and on sublattice B at
the top, the four conditions read as ψ1 = ψ2 = 0 at y = 0 and ψ3 = ψ4 = 0 at y = W .

Let us first assume two propagating waves as in equation (23), see also figure 8. In order to
have a nontrivial solution, a necessary condition is

det M = det

(
A Ā

B B̄

)
= det

(
AB−1

− Ā B̄−1
)

det B det B̄ = 0, (46)

with the bar denoting the complex conjugate.
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Figure 8. A superposition of plane waves of type I and type II with constant kx

reflected at one boundary of a nanoribbon into another superposition of plane
waves of type I and type II.

For infinite mass boundaries, the above matrices read at the K -point

A =

(
s1 − c1z1 c2 − s2z2

(c1 − s1z1)z1 (−s2 + c2z2)z2

)
, B =

(
(s1 + c1z1)w1 (c2 + s2z2)w2

(c1 + s1z1)z1w1 −(s2 + c2z2)z2w2

)
, (47)

and for zigzag boundaries, we have

A =

(
s1 c2

c1z1 −s2z2

)
, B =

(
c1z1w1 s2z2w2

s1z2
1w1 −c2z2

2w2

)
, (48)

where we introduced wµ = eik y
µW and used the definitions of section 3. det M in equation (46)

is real and thus yields quantization of the transverse momentum in the y-direction.
For (h̄vFk2

y)
2 < 4Eλ, there is the appearance of evanescent modes since k1

y = ±iq is
imaginary. In this case, a general plane wave with fixed momentum kx and energy E > 2|λ|,
ψE,kx (x, y)≡ (ψ1, ψ2, ψ3, ψ4)

T, is written as

ψE,kx (x, y)=N Ekeikx x
[

A1e−q(W−y)
|χ1,+(kx ,−iq)〉 + A2eik2

y y
|χ2,+(kx , k2

y)〉

+R1e−qy
|χ1,+(kx , iq)〉 + R2e−ik2

y y
|χ2,+(kx ,−k2

y)〉
]
, (49)

with

h̄vFq =

√
−(E − |λ|)2 + λ2 + (h̄vkx)2, h̄vFk2

y =

√
(E + |λ|)2 − λ2 − (h̄vkx)2.

(50)

Again, in order to have a nontrivial solution, equation (46) must hold, but this time the
matrices for infinite mass boundaries at the K -point read

A =

(
(s1 − c1z+

1)w1 c2 − s2z2

(c1 − s1z+
1)z

+
1w1 (−s2 + c2z2)z2

)
, B =

(
s1 + c1z+

1 (c2 + s2z2)w2

(c1 + s1z+
1)z

+
1 −(s2 + c2z2)z2w2

)
, (51)

and for zigzag boundaries, we have

A =

(
s1w1 c2

c1z+
1w1 −s2z2

)
, B =

(
c1z+

1 −s2z2w2

s1(z+
1)

2
−c2z2

2w2

)
, (52)
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with w1 = e−qW , z±

1 = (kx ± q)/
√

k2
x − q2, c1 →

√
(1 + cosϑ1)/2 and s1 → i

√
(cosϑ1 − 1)/2.

The definitions for the plane wave of type II remain unchanged. Since the wave function of
the evanecent mode is now real, matrices Ā, B̄ are not the complex conjugates of A, B, but
given by

Ā =

(
s1 − c1z−

1 c2 − s2z∗

2

(c1 − s1z−

1 )z
−

1 (−s2 + c2z∗

2)z
∗

2

)
, B̄ =

(
(s1 + c1z−

1 )w1 (c2 + s2z∗

2)w
∗

2

(c1 + s1z−

1 )z
−

1 w1 −(s2 + c2z∗

2)(z2w2)
∗

)
, (53)

for infinite mass boundaries, and for zigzag boundaries they read

Ā =

(
s1 c2

c1z−

1 −s2z∗

2

)
, B̄ =

(
c1z−

1 w1 −s2(z2w2)
∗

s1(z
−

1 )
2w1 −c2(z2

2w2)
∗

)
. (54)

It is now preferable to write equation (46) in powers of w1. For zigzag boundaries, this yields

det M = 2i Im
(
det B det Ā

)
+ 2w1(z

+
1 − z−

1 )(z2 − z̄2)s1c1s2c2

−w2
1

[
z−

1 (w2z2 − w̄2 z̄2)s1c1s2c2 + (z−

1 )
2(w2 − w̄2)s

2
1s2

2 + (w2z2 − w̄2 z̄2)c
2
1c2

2

]
= 0,

(55)

which is purely imaginary and thus again yields quantization of the transverse momentum in
the y-direction. For infinite mass boundaries, we obtain a similar expression.

5.2. Spin and density distribution

The particle density 〈n〉 at energy E is now obtained by summing over all transverse modes
n that obey the above boundary conditions or the corresponding boundary conditions for the
K ′-point. Denoting the nth transverse momentum of type II by k2

y,n, we have

〈n〉(Er)=

∑
n

∑
kx

〈ψE,kx |δ(Er − Êr)|ψE,kx 〉δE,E
kx ,k2

y,n
. (56)

In figure 9, the density distribution of a graphene nanoribbon of width W = 100 nm for
various low energies with infinite mass (left) and zigzag (right) boundaries is shown. In general,
the number of modes is the same with and without ‘pseudo-Rashba’ spin–orbit coupling and
the resulting density distributions only differ slightly. But for zigzag boundaries at E = 4λ, we
observe strong deviations due to the fact that there are eight modes in the case with spin–orbit
coupling in contrast to 12 modes in the case without spin–orbit coupling. Also note that whereas
for the case without spin–orbit coupling all modes are extended, some modes for the case with
spin–orbit coupling are evanescent for the type I branch. For zigzag boundaries e.g. we have
no extended and four evanescent (type-I) modes at E = 2λ, six extended and two evanescent
modes at E = 4λ, and six extended and six evanescent modes at E = 6λ.

The spin polarization at the boundaries is in all cases zero; in the x-direction it is zero also
for only one K -point, in the y- and z-directions it is nonzero for one K -point, but averages
to zero when two K -points are included. This is an immediate consequence of time-reversal
symmetry. In [30], spin polarization in the z-direction is reported for various kx -values within
a lattice model of a zigzag nanoribbon. At equilibrium, this can only be attributed to edge
states that effectively break the sublattice symmetry and that are not included in our continuous
model.
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Figure 9. The density distribution of a graphene nanoribbon of width W =

100 nm for various low energies. We use h̄vF = 5.6 eVÅ and λ= 6 meV.
Left-hand side: Infinite mass boundaries. Right-hand side: Zigzag boundaries.
The corresponding density distributions without ‘pseudo-Rashba’ spin–orbit
coupling are also shown (dashed lines).

6. Summary

In this paper, we have investigated the spin dephasing of Dirac fermions with ‘pseudo-Rashba’
spin–orbit coupling due to reflection from a hard wall. In order to confine the Dirac electrons,
we used infinite mass and zigzag boundaries. For large energies compared to the spin–orbit
coupling, we obtained the expected result that there is hardly spin dephasing due to the scattering
process. But for energies close to the band gap for plane waves of type I, E ≈ 2λ, strong spin
dephasing is observed. If the incident plane wave is of type II (gapless branch), even stronger
effects are seen like the appearance of evanescent modes. We also observe rotation of the spin in
the out-of-plane direction away from the boundary and for incident plane waves of type II also
at the boundary. This effect will be cancelled by averaging over the two inequivalent K -points.

We also discussed the spin polarization averaged over the incident direction and including
the two K -points. We find that for energies E > 2λ, there is a finite spin polarization in the
x-direction when there is no coherence between the two branches. This polarization differs in
sign for the upper and lower boundary, respectively. Also for non-equilibrium situations, there
will be a spin polarization in this direction.

We finally analyzed the spin and density distribution of graphene nanoribbons. At
certain energies, the number of transverse modes does not match that of a corresponding
nanoribbon without ‘pseudo-Rashba’ spin–orbit coupling. This results in significant changes
in the density distribution. But generally, the ‘pseudo-Rashba’ spin–orbit coupling leads to
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marginal differences, only. Further, there is no spin polarization if both K -points are included,
but we find a finite spin polarization in the y- and z-directions for one K -point, only. Surface
states due to e.g. zigzag boundaries, which only live on one sublattice and thus break the valley
symmetry, should therefore yield a finite spin polarization.
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Appendix A. The full model including the two K -points

The full model including the two K -points reads as

H = v
(

pxκzτx + pyτy

)
+ λ

(
κzτxσy − τyσx

)
, (57)

where κz = ±1 denotes the two inequivalent K -points. For a given wave vector Ek, the
Hamiltonian around the K ′-point (κz = −1) reads as

H( Ek)= −


0 0 h̄vF(kx + iky) −2iλ

0 0 0 h̄vF(kx + iky)

h̄vF(kx − iky) 0 0 0

2iλ h̄vF(kx − iky) 0 0

. (58)

The Hamiltonian around the K ′-point can thus be obtained from the Hamiltonian around
the K -point by interchanging the pseudo-spin index and reversing the sign. All previous results
without the mass term can thus be used. The results involving the mass term are obtained by
M → −M . This leads to a change in the boundary conditions, i.e.

ψ1

ψ3

∣∣∣∣K ′

bottom

=
ψ2

ψ4

∣∣∣∣K ′

bottom

= −1,
ψ1

ψ3

∣∣∣∣K ′

top

=
ψ2

ψ4

∣∣∣∣K ′

top

= 1. (59)

Appendix B. Massive Dirac fermions with ‘pseudo-Rashba’ spin–orbit coupling

Massive Dirac fermions with ‘pseudo-Rashba’ spin–orbit interaction can be described by

H= v Ep · Eτ + λ ( Eτ × Eσ) · Eez + Mv2τz, (60)

where, among standard notation, λ is the spin–orbit coupling parameter, and the Pauli matrices
Eτ , Eσ describe the sublattice and the electron spin degree of freedom, respectively.

Squaring the Hamiltonian, we obtain the same eigenvectors as for massless Dirac fermions
given in equations (5) and (6). In the basis (|α1〉, |β1〉, |α2〉, |β2〉), the Hamiltonian reads

H̃( Ek)=


m q∗

+ 0 0

q+ −m 0 0

0 0 m q−

0 0 q∗

−
−m

 (61)
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with

q± = ±h̄vF(kx ± iky) f±(|λ|/h̄vFk), m = Mv2 (62)

and

f±(x)=

√

1 + x2 ± x . (63)

Again we find two types of solutions. The first type has eigenvalues

ε1,± = ±

√
M2v4 + (h̄vFk)2 + 2λ2 + 2|λ|

√
(h̄vFk)2 + λ2 (64)

with eigenspinors

|χ1,+( Ek)〉 =


sin(ϑ/2) cos(ζ1/2)

cos(ϑ/2) cos(ζ1/2)eiη

cos(ϑ/2) sin(ζ1/2)eiψ

sin(ϑ/2) sin(ζ1/2)eiηeiψ

, |χ1,−( Ek)〉 =


sin(ϑ/2) sin(ζ1/2)

cos(ϑ/2) sin(ζ1/2)eiη

− cos(ϑ/2) cos(ζ1/2)eiψ

− sin(ϑ/2) cos(ζ1/2)eiηeiψ

 (65)

with ζ1/2 ∈ [0, π] and

cos ζ1/2 =
Mv2√

|q±|2 + M2v4
, eiψ

=
kx + iky

k
. (66)

The second type has eigenvalues

ε2,± = ±

√
M2v4 + (h̄vFk)2 + 2λ2 − 2|λ|

√
(h̄vFk)2 + λ2 (67)

with eigenspinors

|χ2,+( Ek)〉 =


cos(ϑ/2) cos(ζ2/2)

− sin(ϑ/2) cos(ζ2/2)eiη

sin(ϑ/2) sin(ζ2/2)eiψ

− cos(ϑ/2) sin(ζ2/2)eiηeiψ

, |χ2,−( Ek)〉 =


cos(ϑ/2) sin(ζ2/2)

− sin(ϑ/2) sin(ζ2/2)eiη

− sin(ϑ/2) cos(ζ2/2)eiψ

cos(ϑ/2) cos(ζ2/2)eiηeiψ

. (68)

Let us now consider expectation values within the eigenstates with wave functions

〈Er | Ek, µ,±〉 =
ei Ek Er

√
A

|χµ,±〉, (69)

µ ∈ {1, 2} and A being the area of the system. Here we find

〈 Ek, µ,±| Eτ | Ek, µ,±〉 = ±

sinϑ sin ζµ cosϕ

sinϑ sin ζµ sinϕ

cos ζµ

 (70)

and

〈 Ek, 1,±| Eσ | Ek, 1,±〉 = −〈Ek, 2,±| Eσ | Ek, 2,±〉 =

 − sinϑ sinϕ

sinϑ cosϕ

∓ cosϑ cos ζ1/2

. (71)
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Here we have assumed a positive spin–orbit coupling parameter, λ= |λ|, and ϕ is the usual
azimuthal angle of the wave vector, Ek = k(cosϕ, sinϕ). Note that massive Dirac fermions
assume a nonzero expectation value for the pseudo-spin and spin in the z-direction.

Appendix C. Scattering from infinite mass boundary

Dirac fermions can be confined by an infinite mass boundary, first discussed by Berry and
Mondragon [27]. In the following, we will study the scattering behavior from a boundary located
at y = 0 and W . Within the strip 0< y < W , the mass of the Dirac fermions shall be zero;
outside the strip, the mass shall be infinite.

A general plane wave within the strip with fixed momentum kx and energy E > 0 can be
written as

ψE,kx (x, y)= eikx x
[

A1eik1
y y

|χ1,+(kx , k1
y)〉 + A2eik2

y y
|χ2,+(kx , k2

y)〉

+R1e−ik1
y y

|χ1,+(kx ,−k1
y)〉 + R2e−ik2

y y
|χ2,+(kx ,−k2

y)〉
]
, (72)

with

h̄vFkµy =

√
(E + (−1)µ|λ|)2 − λ2 − (h̄vFkx)2 , (73)

µ ∈ {1, 2}.
The wave function of the transmitted electron is also decomposed by the two

eigenfunctions |χµ,+〉,

ψ̃E,kx (x, y)= eikx x
[
T1eik1

y y
|χ1,+(kx , k1

y)〉 + T2eik2
y y

|χ2,+(kx , k2
y)〉
]
, (74)

with

h̄vFkµy =

√
(
√

E2 − M2v4 + (−1)µ|λ|)2 − λ2 − (h̄vFkx)2 . (75)

In the limit M → ∞, the transmitted plane wave simplifies as

ψ̃E,kx (x, 0)= eikx x T̃1


1

−sλ
1

−sλ

+ eikx x T̃2


1
sλ
1
sλ

 (76)

and

ψ̃E,kx (x,W )= eikx x T̃1


1

−sλ
−1
sλ

+ eikx x T̃2


1
sλ
−1
−sλ

 , (77)

with sλ = λ/|λ|. The different expressions at y = 0 and W originate from the different sign of
h̄vFky → ±iMv2 that has to be chosen to yield an exponential decay in the infinite mass region.
It therefore only depends on whether one deals with the upper or lower boundary.

At the boundaries y = 0 and W , the four components have to be continuous to guarantee a
continuous current, which leads to the following two sets of equations:

ψE,kx (x, 0)= ψ̃E,kx (x, 0), ψE,kx (x,W )= ψ̃E,kx (x,W ). (78)
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WithψE,kx = (ψ1, ψ2, ψ3, ψ4)
T, this translates to the familiar boundary condition from [27]

for the two spin channels, respectively:

ψ1

ψ3

∣∣∣∣
y=0

=
ψ2

ψ4

∣∣∣∣
y=0

= 1,
ψ1

ψ3

∣∣∣∣
y=W

=
ψ2

ψ4

∣∣∣∣
y=W

= −1. (79)
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