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Abstract.
The calculation of the nucleon strangeness form factors from Nf = 2 + 1 clover fermion lattice QCD is presented.

Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping
parameter expansion. We find that increasing the number of nucleon sources for each configuration improves the signal
significantly. We obtain Gs

M(0) = −0.017(25)(07), which is consistent with experimental values, and has an order of
magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution
function are also presented.

PACS: 13.40.-f, 12.38.Gc, 14.20.Dh

INTRODUCTION

Understanding the structure of the nucleon from QCD has been one of the central issues in hadron physics. In
particular, the strangeness content of the nucleon attracts a great deal of interest lately. It is also an ideal probe for
the virtual sea quarks in the nucleon. Extensive experimental/theoretical studies indicate that the strangeness content
varies depending on the quantum number carried by the ss̄ pair: the scalar density is about 0–20% of that of up,
down quarks, the quark spin is about −10 to 0% of the nucleon, and the momentum fraction is only a few percent of
the nucleon. In general, the uncertainties in the strangeness matrix elements are quite large in both experiments and
theories. Under these circumstances, it is desirable to provide the definitive quantitative results using lattice QCD.

The challenge in the lattice QCD calculation of strangeness matrix elements resides in the evaluation of the so-called
disconnected insertion (DI). In fact, it requires the calculation of all-to-all propagators, which is prohibitively expensive
compared to the connected insertion (CI). Consequently, there are only a few DI calculations [1, 2, 3], where the all-
to-all propagators are stochastically estimated [4]. In this proceeding, we report the improvement of the calculation
of all-to-all propagators using the stochastic method along with unbiased subtractions from the hopping parameter
expansion [5], and the increment of the number of nucleon sources [6, 7]. We present the results for the strangeness
contribution to the electromagnetic form factors [7] and the second moment of the nucleon. The preliminary result for
the first moment of the nucleon is presented in Ref. [8].

FORMALISM AND SIMULATION PARAMETERS

We employ Nf = 2 + 1 dynamical configurations with nonperturbatively O(a) improved clover fermion and RG-
improved gauge action generated by CP-PACS/JLQCD Collaborations [9]. We use β = 1.83 and csw = 1.7610
configurations with the lattice size of L3×T = 163× 32, which corresponds to (2fm)3 box in physical spacial size
with the lattice spacing of a−1 = 1.625 GeV [9]. For the hopping parameters of u,d quarks (κud) and s quark (κs),
we use κud = 0.13825, 0.13800, and 0.13760, which correspond to mπ = 0.60, 0.70, and 0.84 GeV, respectively, and
κs = 0.13760 is fixed. We perform the calculation only at the dynamical quark mass points, where 800 configurations
are used for κud = 0.13760, and 810 configurations for κud = 0.13800, 0.13825.

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2010)
AIP Conf. Proc. 1374, 598-601 (2011); doi: 10.1063/1.3647212

©   2011 American Institute of Physics 978-0-7354-0934-7/$30.00

598

Downloaded 09 May 2012 to 132.199.144.129. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



The nucleon matrix elements can be obtained through the calculation of 3pt function Π3pt
J (as well as 2pt function

Π2pt), defined by

Π3pt
J (�p, t2; �q, t1; �p′ = �p−�q, t0) = ∑

�x2,�x1

e−i�p·(�x2−�x0) · e+i�q·(�x1−�x0)〈0|T [χN(�x2, t2)J(�x1, t1)χ̄N(�x0, t0)] |0〉, (1)

where χN is the nucleon interpolating field and J is the insertion operator. Since there is no strange quark as a valence
quark in the nucleon, the 3pt is a DI which entails a multiplication of the nucleon 2pt correlator with the current quark
loop. For the evaluation of the quark loop, we use the stochastic method [4], with Z(4) noises in color, spin and space-
time indices. We generate independent noises for different configurations, in order to avoid possible auto-correlation.
We use Nnoise = 600 noises for κud = 0.13760,0.13800 and Nnoise = 800 for κud = 0.13825. To reduce fluctuations,
the charge conjugation and γ5-hermiticity (CH), and parity symmetry are used [6, 7]. We also perform unbiased
subtractions [5] to reduce the off-diagonal contaminations to the variance. For subtraction operators, we employ those
obtained through hopping parameter expansion (HPE) for the propagator M−1, 1

2κ M−1 = 1
1+C + 1

1+C (κD) 1
1+C + · · ·

where D denotes the Wilson-Dirac operator and C the clover term. We subtract up to order (κD)4 ((κD)3) term for the
form factor (second moment) calculation, and observe that the statistical errors become about 50 (70) %, compared to
the results without subtraction.

In the stochastic method, it is quite expensive to achieve a good signal to noise ratio (S/N) just by increasing Nnoise

because S/N improves with
√

Nnoise. In view of this, we use many nucleon point sources Nsrc in the evaluation of the
2pt part for each configuration. Since the calculations of the loop part and 2pt part are independent of each other, this is
expected to be an efficient way. We take Nsrc = 64 for κud = 0.13760 and Nsrc = 82 for κud = 0.13800,0.13825, where
locations of sources are taken so that they are separated in 4D-volume as much as possible. Details of the simulation
setup are given in Ref. [7].

STRANGENESS ELECTROMAGNETIC FORM FACTORS

The formulas for Sachs electric (magnetic) form factors Gs
E (Gs

M) are given by

R±μ (Γ
±
pol)≡

Tr
[
Γ±pol ·Π3pt

Jμ
(�0, t2; ±�q, t1; −�q, t0)

]

Tr
[
Γ±e ·Π2pt(±�q, t1; t0)

] ·
Tr

[
Γ±e ·Π2pt(�0, t1; t0)

]

Tr
[
Γ±e ·Π2pt(�0, t2; t0)

] , (2)

Gs
E(Q

2) =±R±μ=4(Γ
±
pol = Γ±e ), Gs

M(Q2) =∓E
q
N +mN

εi jkq j
R±μ=i(Γ

±
pol = Γ±k ), (3)

where Jμ(x+μ/2) = 1
2

[
q̄(x)(1− γμ)Uμ(x)q(x+μ)− q̄(x+μ)(1+ γμ)U

†
μ(x)q(x)

]
is the point-split conserved vector

operator, {i, j,k} 	= 4, Γ±e ≡ (1±γ4)/2 , Γ±k ≡ (±i)/2×(1±γ4)γ5γk and E
q
N ≡

√
m2

N +�q2. The upper sign corresponds
to the forward propagation (t2 
 t1 
 t0), and the lower sign corresponds to the backward propagation (t2 � t1 � t0).
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FIGURE 1. Rt
M (left) and Rt

E (right) with κud = 0.13760, Nsrc = 64 (circles) and Nsrc = 4 (triangles), plotted against the nucleon
sink time t2. The dashed line is the linear fit where the slope corresponds to the form factor.
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FIGURE 2. The chiral extrapolated results for Gs
M(Q2) (left) and Gs

E(Q
2) (right) plotted with solid lines. Shaded regions

represent the statistical and systematic error added in quadrature. Shown together are the lattice data for each κud .

In Fig. 1, we plot typical figures for Rt
M,E , where Rt

M,E ≡ 1
K±M,E

∑t2−ts
t1=t0+ts

R±μ with K±M,E being trivial kinematic factors

in Eq. (3). Since Rt
M,E = const.+ t2×Gs

M,E , the linear slope corresponds to the signal of the form factor. One can
observe the significant S/N improvement by increasing Nsrc. In fact, the improvement is found to be nearly a factor of√

Nsrc (ideal improvement).
We then study the Q2 dependence of the form factors. For the magnetic form factor, we employ the dipole form,

Gs
M(Q2) = Gs

M(0)/(1+Q2/Λ2)2, where reasonable agreement with lattice data is observed. For the electric form
factor, we employ Gs

E(Q
2) = gs

E ·Q2/(1+Q2/Λ2)2, considering that Gs
E(0) = 0 from the vector current conservation,

and the pole mass Λ is taken from the fit of magnetic form factor.
Finally, we perform the chiral extrapolation for the fitted parameters. Since our quark masses are relatively heavy,

we consider only the leading dependence on mK , which is obtained by heavy baryon chiral perturbation theory
(HBχPT) [10]. The chiral extrapolated results are Gs

M(0) = −0.017(25), Λa = 0.58(16), 〈r2
s 〉M ≡ −6 dGs

M

dQ2 |Q2=0 =

−7.4(71)×10−3fm2 and gs
E = 0.027(16) (or 〈r2

s 〉E ≡−6 dGs
E

dQ2 |Q2=0 =−2.4(15)×10−3fm2).

We examine the systematic uncertainties in the result of form factors. For the ambiguity of Q2 dependence, we
reanalyze the data using the monopole form, and obtain the results which are consistent with those from the dipole
form. For the uncertainties in chiral extrapolation, we test two alternative extrapolations [7], and find that all results
are consistent with each other. For the contamination from excited states, we employ the new projection operator [7]
which eliminates the S11 state, and conclude that such contaminations are negligible.

Our final result for the magnetic moment is Gs
M(0) = −0.017(25)(07), where the first error is statistical and

the second is systematic from uncertainties of the Q2 extrapolation and chiral extrapolation. We also obtain Λa =
0.58(16)(19) for dipole mass or Λ̃a = 0.34(17)(11) for monopole mass, and gs

E = 0.027(16)(08). These lead to
Gs

M(Q2) =−0.015(23), Gs
E(Q

2) = 0.0022(19) at Q2 = 0.1GeV2, where error is obtained by quadrature from statistical
and systematic errors. In Fig. 2, we plot Gs

M(Q2), Gs
E(Q

2), where the shaded regions correspond to the square-summed
error. Compared to the global analysis of the experimental data, e.g., Gs

M(Q2) = 0.29(21) and Gs
E(Q

2) =−0.008(16)
at Q2 = 0.1GeV2 [11], our results are consistent with them, with an order of magnitude smaller error [7].

SECOND MOMENT OF THE NUCLEON

The (asymmetry of) strangeness second moment of the nucleon 〈x2〉s−s̄ =
∫ 1

0 dxx2(s(x)− s̄(x)) can be obtained by

Tr
[
Γ±e ·Π3pt

T4ii
(±�p, t2; �0, t1; ±�p, t0)

]

Tr
[
Γ±e ·Π2pt(±�p, t2; t0)

] =±p2
i · 〈x2〉s−s̄, (4)
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FIGURE 3. LEFT: The ratio of 3pt to 2pt with κud = 0.13760, Nsrc = 64 (circles) and Nsrc = 4 (triangles), plotted against the
nucleon sink time t2. The dashed line is the linear fit where the slope corresponds to the second moment. RIGHT: The lattice bare
results for the second moment at each valence quark mass κud for the nucleon, plotted against (mKa)2. The dashed line corresponds
to the linear chiral extrapolation, and the red point is the chiral extrapolated result.

with the three-index operator defined as

T4ii ≡−1
3

[
q̄γ4
←→
D i
←→
D iq+ q̄γi

←→
D 4
←→
D iq+ q̄γi

←→
D i
←→
D 4q

]
, (5)

where i 	= 4, and the upper (lower) sign corresponds to the forward (backward) propagation as before.
In Fig. 3 (left), we plot the ratio of 3pt to 2pt for 〈x2〉s−s̄ in terms of t2 for κud = 0.13760, �p2 = (2π/La)2, where

the summation of operator insertion time t1 is taken as was done for the form factor analysis. Note that the linear slope
corresponds to the signal for 〈x2〉s−s̄. One can clearly see that increasing Nsrc reduces the error bar significantly again
(about a factor of

√
Nsrc, i.e., almost ideally). In Fig. 3 (right), we plot the bare value of the 〈x2〉s−s̄ in terms of (mKa)2,

and perform the chiral extrapolation. We find that the result at each κud and the chiral extrapolated result are basically
consistent with zero within the error-bar. For the final quantitative result, it is necessary to take the renormalization
factor into account. Systematic uncertainties have to be examined as well. The study along this line is in progress.
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