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Resonant spin amplification of hole spin dynamics in
two-dimensional hole systems: experiment and simulation

T. Korn*, M. Kugler*, M. Hirmer*, D. Schuh*, W. Wegscheider’ and C. Schiiller*

*Institut fiir Experimentelle und Angewandte Physik, Universitdt Regensburg, D-93040 Regensburg, Germany
Solid State Physics Laboratory, ETH Ziirich, 8093 Zurich, Switzerland

Abstract. Spins in semiconductor structures may allow for the realization of scalable quantum bit arrays, an essential
component for quantum computation schemes. Specifically, hole spins may be more suited for this purpose than electron
spins, due to their strongly reduced interaction with lattice nuclei, which limits spin coherence for electrons in quantum dots.
Here, we present resonant spin amplification (RSA) measurements, performed on a p-modulation doped GaAs-based quantum
well at temperatures below 500 mK. The RSA traces have a peculiar, butterfly-like shape, which stems from the initialization
of a resident hole spin polarization by optical orientation. The combined dynamics of the optically oriented electron and hole
spins are well-described by a rate equation model, and by comparison of experiment and model, hole spin dephasing times of

more than 70 ns are extracted from the measured data.
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Spin dynamics in semiconductor hetero- and nano-
structures based on the GaAs material system have been
studied intensely in recent years, driven by possible ap-
plications in the fields of semiconductor spintronics [1,
2] and quantum information processing [3]. However,
electron spin dynamics have been investigated in many
more studies than hole spin dynamics. One of the rea-
sons is the rapid dephasing of hole spins in bulk GaAs:
here, the heavy-hole (HH) and light-hole (LH) valence
bands, which have different angular momentum, are de-
generate at k = 0, hence any momentum scattering can
lead to hole spin dephasing [4]. This degeneracy is lifted
in quantum well systems due to the different confinement
energies for light and heavy holes. Due to valence band
mixing for £ > 0, which again allows for hole spin relax-
ation during momentum scattering [5], long-lived hole
spin coherence has only been observed at low tempera-
tures [6, 7, 8], where holes can become localized at quan-
tum well thickness fluctuations.

In our study of hole spin dynamics, we use the res-
onant spin amplification (RSA) technique [9]. In RSA,
the interference of spin polarizations created by subse-
quent laser pulses leads to pronounced maxima in the
Faraday rotation angle, which is probed at a fixed time
delay between pump and probe pulses, as a function of
an in-plane magnetic field. Our sample is a 4 nm wide
p-modulation-doped GaAs quantum well (QW) embed-
ded in Alp3Gap7As barriers, with a doping density p =
1.1 x 10" ¢cm~2. For measurements in transmission, the
sample is glued to a sapphire support and thinned by se-
lective etching to remove the substrate and leave only the
MBE-grown layers. It is mounted in an optical cryostat

with a 3He insert, allowing for sample temperatures be-
low 500 mK and magnetic fields of up to 10 Tesla in the
sample plane. Optical experiments are performed using
a pulsed Ti-Sapphire laser system, details of the experi-
ment are published elsewhere [10].

Figure 1 (a) shows a typical RSA trace measured at
400 mK (open dots), compared to simulation (solid line).
No RSA maximum is observed in zero field, and for finite
fields, the amplitude of the RSA maxima first increases,
then decreases again, leading to a butterfly-like shape of
the signal, which stems from the complex initialization
process of a resident hole spin polarization using optical
orientation [10].

The combined dynamics of the optically oriented elec-
trons and holes, as well as the resident holes in the QW,
are modelled using two coupled differential equations:
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Here, e and h are the electron and hole spin polariza-
tion vectors, Tg is the photocarrier recombination time,
Ty is the hole spin dephasing time (SDT), g. and g
are the electron and hole g factors. Numerical simula-
tion using these equations allows us to model the RSA
measurements precisely and capture all salient features
(see simulated trace in Figure 1 (a)), if all relevant pa-
rameters are carefully tuned to the measurement. The
electron g factor can be precisely measured using time-
resolved Faraday rotation (TRFR), and the hole g fac-
tor is extracted from the spacing AB of the RSA max-
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FIGURE 1. (a) Experimental RSA trace measured at
400 mK (black circles) and simulated trace (solid line). (b)
FWHM of the RSA maxima extracted from the measurement
as a function of magnetic field (black dots) and hole SDT ex-
tracted from these values (red stars).

ima: gy = hfrep/(UBAB), Where f,,, is the laser repeti-
tion frequency. Below, we will demonstrate how the hole
SDT can be extracted from the full width at half maxi-
mum (FWHM) of the RSA maxima. The FWHM of the
measured RSA maxima (as defined in Figure 2 (a)) in-
creases monotonously with the applied magnetic field,
as Figure 1 (b) shows. This corresponds to a significant
decrease of the hole SDT, which is caused by the hole g
factor inhomogeneity,Ag;. The inhomogeneous hole spin
ensemble dephases more rapidly with increasing preces-
sion frequency [11]:
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This decrease of the measured ensemble hole SDT with
magnetic field makes it difficult to extract the single hole
spin coherence time 7, from high-field measurements
like TRFR.

In order to investigate the correlation between the RSA
maxima FWHM and the hole SDT T, we simulate RSA
traces using hole SDT calculated with equation 3. Fig-
ure 2 (a) shows such a trace for 7, = 80 ns, Ag;, = 0.0025.
The FWHM of the RSA peaks, starting at the second
peak, is extracted from this trace. In Figure 2 (b), we plot
the inverse square of the FWHM as a function of mag-
netic field (black dots). In the same figure, the hole SDT
Ty is plotted as a function of magnetic field (blue circles),
calculated using equation 3 with the same parameters as
the RSA trace. Both sets of data show the same, 1/B-like
dependence on magnetic field. This allows us to deter-
mine the proportionality constant & =7.36 x 1073 ns T2,
Iy =a/ (FWHM)?. Using this value of ¢, the hole SDT
data shown in Figure 1 (b) are calculated. We observe
a maximum hole SDT T} = 74 £ 15 ns for a magnetic
field of B~ 0.2 Tesla. This represents a lower bound for
the single hole spin coherence time 7>. From the decay
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FIGURE 2. (a) Simulated RSA trace. The definition of the
FWHM is indicated by the grey lines. (b) Comparison of
L/(FWHM)? of the simulated RSA maxima (black dots) to the
hole spin dephasing time 7, (blue circles) used in the simula-
tion as a function of magnetic field.

of the hole SDT with magnetic field, we find a g factor
inhomogeneity Ag;, = 0.003.

In conclusion, we have investigated hole spin dynam-
ics in a p-doped QW by using the RSA technique. The
RSA traces are closely modelled by a system of differen-
tial equations. By analysis of the simulated RSA traces,
we demonstrate that the hole SDT, 7', at a given mag-
netic field is inversely proportional to the square of the
FWHM of the RSA peak at that magnetic field. Using
this relation, we extract hole SDTs in excess of 70 ns
from the measured RSA traces.
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