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Influence of retardation in the scattering of ultracold atoms by conducting nanowires
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We study low-energy scattering of a neutral atom by a perfectly conducting cylindrical nanowire. Based
on the exact atom-wire potential given recently by Eberlein and Zietal [Phys. Rev. A 80, 012504 (2009)] we
derive tractable expressions for both the nonretarded van der Waals limit and the highly retarded limit as well
as a realistic description of the transition between these two limits. For real atoms and wire radii greater than
a few atomic units, the nonretarded van der Waals limit is insufficient, whereas the highly retarded limit of
the atom-wire potential gives an accurate description of low-energy elastic scattering and absorption cross

sections.
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A single polarizable atom (or molecule) interacting with an
infinitely long, perfectly conducting cylindrical nanowire is a
basic example for a hybrid system involving both atomic and
nanometer scales. A thorough understanding of this system is
a first step toward the understanding of more complex setups
involving, e.g., nanogratings that are used in diffraction and
interference experiments with atoms or large molecules [1,2].
The atom-wire problem differs from the related problems of
an atom interacting with a plane surface or with a sphere in
two important features:

(i) Due to translational invariance parallel to the axis of
the wire, the system is effectively two-dimensional; scattering
theory in two dimensions is somewhat different from the better-
known cases of one or three dimensions and has been receiving
increased attention recently [3-5].

(i) In contrast to the atom-plane and atom-sphere cases, the
interaction of an atom with a conducting cylindrical nanowire
is rather complicated. Explicit expressions have been given
recently by Eberlein and Zietal, both for the nonretarded case
[6] and with full inclusion of retardation effects [7].

We recently derived a tractable expression which accurately
approximates the nonretarded atom-wire potential as given in
[6] and applied it to low-energy atom-wire scattering [8]. In this
paper we address the important question of whether retardation
effects, which were neglected in [8], have to be considered
in the description of atom-wire scattering. We analyze the
exact expression for the atom-wire potential as first derived
in [7] and confirmed by Bezerra et al. [9]. For the “highly
retarded” (HR) limit, in which all transition wavelengths in
the atom are assumed to be smaller than the separation of the
atom from the surface of the cylinder, we use a procedure
analogous to that described in [8] for the nonretarded case and
we derive a tractable expression for the atom-wire potential
which reproduces the exact potential in the highly retarded
limit to any desired accuracy. Based on a full numerical
calculation of the interaction between a hydrogen atom and the
wire, we show that a phenomenological interpolation between
the van der Waals (VDW) limit and the highly retarded limit
can reproduce the exact atom-wire potential very well in the
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intermediate regime between these two limits. We use the
resulting atom-wire potentials to study the dependence of
atom-wire scattering on the properties of the atom and the
radius of the wire. We assume incoming boundary conditions,
represented by incoming WKB wave functions, at the surface
of the wire. This implies that all atoms which are not reflected
by classical or quantum effects in the tail of the atom-wire
potential are absorbed, which is a realistic assumption for
many scenarios involving the scattering of ultracold atoms by
nanostructures. Elastic scattering and absorption cross sections
obtained in this way do not depend on details of the atom-wire
interaction in the “close” region within a few atomic units of
the surface.

The full potential for an atom interacting with a perfectly
conducting nanowire involves rather complicated expressions
and requires the knowledge of all atomic transition wave-
lengths [7]. The nonretarded van der Waals limit of the
potential is valid when the separation of the atom from the
surface of the wire is smaller than all relevant transition
wavelengths. The HR limit assumes that the atom-wire
separation is larger than all relevant transition wavelengths.
In these limits, the potential for an atom of mass @ can be
written as

h2 ﬂax—2 1 +0o o0 r
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The character x labels the VDW or HR limits, and the related
powers are aypw = 3, agr = 4. The lengths
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depend on intrinsic properties of the atom: the expectation
value of the squared dipole operator (d2) and the static dipole
polarizability «q(0). ag = 2 /(hc) is the fine-structure con-
stant. Table I lists, as examples, explicit values for hydrogen,
helium, and several alkali atoms. Values of Bypw range from
a few thousand to several million Bohr radii while values of
Bur are in the range of several thousand Bohr radii.
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TABLE 1. Explicit values for the expectation value of the squared dipole operator (d?), the static dipole polarizability aq(0) as well as the
characteristic length of the atom-wire system in the nonretarded limit Bypw/10? and in the highly retarded limit Byg /10°, and the characteristic

ratio p = Bvow/Pur-

Atom H[10] He [11,12] He(2 3$) [13] Na[14] Rb [14] Cs [14]
(d?) (a.u.) 3 2.256 22.8 22.68 40.32 49.68
24(0) (a.u.) 4.5 1.38 316 163 290 401
Bvow/10° (a.u.) 3.67 11.0 111 633 4190 8018
Bur/10% (a.u.) 1.06 1.17 17.8 30.6 82.4 115

0 3.45 9.33 6.24 20.7 50.8 69.5

The functions f;; indicate the influence of the radius of the
wire and are defined in the following way:
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where 1{®~% and K(*~3) are the derivatives of order oy — 3
of the modified Bessel functions 7,, and K,,, respectively.

For large radii, both limits reproduce the potential of
an atom in front of a plane conducting surface which is
proportional to 1/(r — R)? in the van der Waals case and
1/(r — R)* in the highly retarded limit. In the limit of small
radii both limits show slowly converging logarithmic series
which are not useful for practical purpose [6,8].

A hierarchy of approximations has already been derived in
the VDW limit that enables the numerical determination of this
potential to any desired accuracy as economically as possible
[8]. A similar method can also be used for the HR limit.
However, this approach is not applicable for the intermediate
region between the nonretarded and highly retarded limit.

In a realistic scenario the interaction potential between an
atom and a cylindrical wire undergoes a smooth transition from
the van der Waals limit at small distances r — R to the highly
retarded limit at large r. Accurate numerical evaluation of the
potential is difficult in this transition regime. To describe this
regime we generalize the ansatz that has already been used
for the potential of an atom in front of a plane surface [15]
or a sphere [16]. In these cases, the potential in the transition
zone between both asymptotic regimes of the potential was
expressed using a shape function v(x):

V(r) = VPOV o)/ vIRENL T @)
where v(x) has the following asymptotic properties:

1, x—0,

v(x) = )
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When the magnitudes of Vypw and Vygr are very different, V
is close to the weaker of the two, which is Vypw for r — R
and Vyr for r — oo.

For explicit applications of the atom-wire potential in
realistic systems, we use two shape functions v(x),

vi(x) =1+ x, (6)
_ /2
v2(x) = arctan[7/(2x)]’ @

which were first introduced by Shimizu [17] and by O’Carroll
and Sucher [18], respectively, and have already been applied
in similar situations [15,16].

In order to analyze the quality of the approximation (4) we
consider a hydrogen atom with the nanowire, which is the only
situation where all energy transitions are known exactly. We
calculate the potential for a wire with a radius of 1000a.u.
(=50 nm) and include 1000 transitions to bound states and
transitions into the continuum up to an energy of 1000 Ey,
with Eyg = 27.2¢V, in the exact expression of the atom-wire
potential given by Eq. (17) in [7]. The remaining transitions
contribute less than 0.001%. The corresponding summation
over the index m in the exact atom-wire potential [7] has to
be truncated and extrapolated accurately to m = oo. The full
circles in Fig. 1 are our results with their respective error
bars coming from the extrapolation procedure. The potentials
calculated with the help of the shape functions (6) and (7)
(dot-dashed and dashed curves, respectively) provide a fair
approximation to the exact potential which lies in between.
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FIG. 1. (Color online) Atom-wire potential (in arbitrary units) for
hydrogen atoms and a wire with a radius of 1000 a.u. (= 50 nm). The
dot-dashed curve shows the potential approximated using the shape
function v; from Eq. (6) and the dashed line shows the approximation
using v, from Eq. (7). The black dots show results of an explicit
calculation of the atom-wire potential.
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Fundamental properties of the interaction of ultracold
atoms with a nanowire can be illustrated by studying the
corresponding scattering process. We use incoming boundary
conditions to describe the absorption of the projectile at the
surface [15,16]. The scattering of ultracold atoms is dominated
by s-wave scattering, and in the regime of low energies
the crucial physical quantity is the scattering length which
has been defined for two-dimensional systems in [3,19]. The
dynamics of the scattering process is determined by the radius
R of the wire in relation to the characteristic lengths Sypw and
Bur. Expressing the Schrodinger equation in dimensionless
quantities leaves two dimensionless parameters which deter-
mine the dynamics, e.g., R/Bur and the characteristic ratio

_ Bvow
Bur
the latter being a property of the atom only. Explicit values for
p are listed in Table I for hydrogen, helium, and several alkali
atoms.
The nature of the atom-nanowire interaction can be charac-
terized by the quantity

®)

la(p) — avpw|
la(p) — anr| ’
where a(p) is the complex scattering length for a given atom
with characteristic ratio p and aypw (agr) is the scattering
length in the nonretarded (highly retarded) limit. If the process
is dominated by the van der Waals (highly retarded) part of the
interaction then &g < 1 (g > 1). Figure 2 shows &x(p) as a
function of the characteristic ratio p and the scaled radius of the
wire R/Byur. The green colored area to the left shows systems
where the scattering length has reached its nonretarded limit
while the blue colored area to the right shows systems where
the scattering length has reached its highly retarded limit. The
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FIG. 2. (Color online) Function £z (p) on a logarithmic scale as a
function of the characteristic ratio p and the radius of the wire R/ fyg.
The green colored area to the left shows systems where the scattering
length has reached its nonretarded limit (§x < 1) while the blue
colored area to the right shows systems where the scattering length
has reached its highly retarded limit (§¢ > 1). Realistic parameter
configurations are shown as white lines.
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scattering length a(p) was calculated using the shape functions
(6) and (7) and similar results were obtained in both cases.
These were averaged for the calculation of &g.

As expected, the scattering length undergoes a smooth
transition from the nonretarded limit to the highly retarded
limit, indicated by the increase of the function &; from zero
to infinity. This transition takes place around p =~ 1 and
shows only a weak dependence on the radius of the wire.
For realistic systems the ratio R/Bygr obviously becomes
unphysical for R below the Bohr radius. For all atoms listed
in Table I, these realistic systems lie in the region where
&g > 1 and therefore are dominated by the highly retarded
limit of the potential. This is illustrated in Fig. 2, where realistic
parameter configurations for these atoms are shown as white
lines.

This result is in agreement with what has already been
observed for the interaction of a neutral atom and a plane
surface. The corresponding potential is reached by the atom-
wire potential in the limit of large radii, and it has already
been shown that in this case the interaction is dominated by
the highly retarded part of the potential [15]. Decreasing the
radius of the wire has only a weak influence on the transition
between the van der Waals and highly retarded limits. For finite
and still physically meaningful values of the radius, the system
is always dominated by the highly retarded limit. This result
is not trivial and is in contrast to what has been observed for
an atom in front of an absorbing sphere [16]. In this case, the
system can either lie in the highly retarded regime for large
radii or, for small but still physically meaningful radii, it can
reach the nonretarded van der Waals regime.

To analyze the behavior of the scattering process at higher
energies where several partial waves contribute, we study
in detail the scattering of hydrogen atoms (p = 3.45). The
scattering process separates into the elastic channel for all
atoms that are elastically reflected, due to quantum or classical
reflection in the potential tail, and into the absorption channel
for all atoms that are absorbed (or inelastically scattered) in
the region close to the surface of the wire. We calculated the
cross sections for both channels with a fixed nanowire radius
of R = 50 nm as a function of the scaled momentum kByr up
to kBur = 0.1, which lies in the mK region, and with fixed
energy corresponding to 7 = 100 uK as a function of the
radius up to R/Bur = 10, for which R ~ 500 nm. Results for
the elastic cross section are shown in Fig. 3(a) as a function
of scaled momentum and in Fig. 3(c) as a function of the
radius, and results for the absorption cross section are shown
in Figs. 3(b) and 3(d). The dot-dashed (dashed) curve shows
the results for a potential approximated with the shape function
vy from Eq. (6) [v; from Eq. (7)] and the solid (dotted) curve
shows the cross section in the highly retarded (nonretarded)
limit.

The figure shows that even at higher energies, both shape
functions give results that differ significantly from the VDW
limit while only small deviations from the highly retarded limit
are observed [in Fig. 3(c) they are almost identical to the HR
result and the curves cannot be distinguished]. Changing the
projectile atom and going to higher characteristic ratios p even
decreases these deviations. The difference between the results
in the VDW and HR limit decreases with decreasing radius
but stays non-negligible for all realistic values, especially for
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FIG. 3. (Color online) Elastic cross section as a function of (a)
scaled momentum kfByg and (c) radius R /Byr and (b and d) absorption
cross sections for hydrogen atoms (p = 3.45). The red dot-dashed
(dashed) curve shows the cross section for a potential approximated
with the shape function v, from Eq. (6) [v, from Eq. (7)] and the
blue solid (green dotted) curve shows the cross section in the highly
retarded (nonretarded) limit.

the absorption cross section. Therefore, it becomes clear that
for the description of a realistic atom-nanowire system the
nonretarded limit is insufficient while accurate results can be
obtained from the highly retarded limit.
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In arealistic experimental setup, the atom-nanowire system
can be realized using a cloud of cold atoms which is brought
to full overlap with a nanotube of finite but sufficient length.
This guarantees almost perfect translational invariance along
the tube axis in the interaction region and therefore realizes the
quasi-two-dimensional situation. In this setup, the absorption
cross section can be extracted from the atom loss rate which
can be measured using state of the art techniques like time-
of-flight and absorption imaging methods. This offers a useful
possibility to verify our results, in particular as the separation
between the nonretarded and the highly retarded limit is larger
and therefore easier to resolve than for the elastic cross section.
Similar experiments have already been performed to measure
loss rates of an ion embedded in a Bose-Einstein condensate
or thermal cloud of cold atoms [20,21] or to measure the
position of a single carbon nanotube placed on an atom
chip [22].

We have presented an accurate description of the interaction
of an ultracold atom and a conducting nanowire, based on
exact expressions of the atom-cylinder potential both in the
nonretarded van der Waals limit and in the highly retarded
limit, where all relevant transition wavelengths of the atom
are assumed to be smaller than the atom-wire separation.
Analyzing the fundamental scattering process we could show
that for realistic systems the van der Waals limit is insufficient,
whereas the highly retarded limit of the potential provides
accurate results.
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