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LOW-DIMENSIONAL SURGERY AND THE YAMABE

INVARIANT

BERND AMMANN, MATTIAS DAHL, AND EMMANUEL HUMBERT

Abstract. Assume that M is a compact n-dimensional manifold and that N
is obtained by surgery along a k-dimensional sphere, k ≤ n − 3. The smooth

Yamabe invariants σ(M) and σ(N) satisfy σ(N) ≥ min(σ(M),Λ) for Λ > 0.
We derive explicit lower bounds for Λ in dimensions where previous methods
failed, namely for (n, k) ∈ {(4, 1), (5, 1), (5, 2), (9, 1), (10, 1)}. With methods

from surgery theory and bordism theory several gap phenomena for smooth
Yamabe invariants can be deduced.
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1. Introduction and Results

Let (M, g) be a Riemannian manifold of dimension n ≥ 3. Its scalar curvature
will be denoted by sg. We define the Yamabe functional by

Fg(u) :=

∫
M

(
an|du|2g + sgu2

)
dvg(∫

M
|u|pm dvg

) 2
pn

,

where u ∈ C∞
c (M) does not vanish identically, and where an := 4(n−1)

n−2 and pn :=
2n
n−2 . The conformal Yamabe constant µ(M, g) of (M, g) is then defined by

µ(M, g) := inf
u∈C∞

c (M),u̸≡0
FG(u).

This functional played a crucial role in the solution of the Yamabe problem which
consists in finding a metric of constant scalar curvature in a given conformal class.
The Yamabe invariant of M is defined by

σ(M) := supµ(M, g),

where the supremum runs over all the metrics on M , or equivalently over all con-
formal classes on M . In order to stress that the Yamabe invariant only depends on
the differentiable structure of M , it is often called the “smooth Yamabe invariant
of M”. One motivation for studying such an invariant is given by the following
well-known result

Proposition 1.1. A compact differentiable manifold of dimension n ≥ 3 admits a
metric with positive scalar curvature if and only if σ(M) > 0.

Note that all manifolds in this article are manifolds without boundary.
We recall that classification of all compact manifolds of dimension n ≥ 3 admit-

ting a positive scalar curvature metric is a challenging open problem solved only in
dimension 3 by using Hamilton’s Ricci flow and Perelman’s methods. This is one
reason why much work has been devoted to the study of σ(M).

One of the first goals should be to compute σ(M) explicitly for some standard
manifolds M . This is unfortunately a problem out of range even for what could be
considered the simplest examples. For example, the value of the Yamabe invariant is
not known for quotients of spheres except for RP 3 (and the spheres themselves), for
products of spheres of dimension at least 2 and for hyperbolic spaces of dimension
at least 4.

One also could ask for general bounds for σ(M). The fundamental one is due to
Aubin,

σ(M) ≤ σ(Sn) = µ(Sn) = n(n− 1)ω2/n
n .

Here Sn is the standard sphere in Rn+1, and its volume is denoted by ωn.
Unfortunately, in dimension n ≥ 5, not much more is known. Even the basic

question whether there exists a compact manifold M of dimension n ≥ 5 satisfying
σ(M) ̸= 0 and σ(M) ̸= σ(Sn) is still open. It is also not known for n ≥ 4 whether
the set

Sn(0) := {σ(M) |M is a compact connected manifold of dimension n}
is finite or countably infinite, and it is also unclear whether Sn(0) is dense in
(−∞, σ(Sn)]. More is known about

Sn(i) := {σ(M) |M is a compact i-connected manifold of dimension n}
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for i ≥ 1, as we will see below.
A useful tool for understanding the Yamabe invariant is to study its change

under surgery type modifications of the manifold. The main results obtained this
way are the following.

• In 1979, Gromov-Lawson and Schoen-Yau independently proved that the
positivity of σ(M) is preserved under surgery of dimension k ≤ n − 3.
One important corollary is that any compact simply connected non-spin
manifold of dimension n ≥ 5 admits a positive scalar curvature metric. To-
gether with results by Stephan Stolz (1992) this implies Sn(1) ⊂ (0, σ(Sn)]
for n ≡ 3, 5, 6, 7 modulo 8, n ≥ 5.

• In 1987, Kobayashi proved that 0-dimensional surgeries increase σ(M).
• In 2000, Petean and Yun proved that if N is obtained by a k-dimensional
surgery (k ≤ n − 3) from M then σ(N) ≥ min(0, σ(M)). This implies in
particular that if M is simply connected and has dimension n ≥ 5 then
σ(M) ≥ 0. In other words Sn(1) ⊂ [0, σ(Sn)] for all n ≥ 5.

In [?] we proved a generalization of these three results.

Theorem 1.2 ([?], Corollary 1.4). If N is obtained from a compact n-dimensional
manifold M by a k-dimensional surgery, k ≤ n− 3, then

σ(N) ≥ min(Λn,k, σ(M))

where Λn,k > 0 depends only on n and k. In addition, Λn,0 = σ(Sn).

As a corollary we see that 0 is not an accumulation point of Sn(1), n ≥ 5,
in other words we find that for any simply connected compact manifold M of
dimension n ≥ 5

• σ(M) = 0 if M is spin and if its index in KOn does not vanish,
• σ(M) ≥ αn, otherwise, where αn > 0 depends only on n.

Many other consequences can be deduced, see [?, Section 1.4], but one could find
these results unsatisfactory, since the constant Λn,k were not computed in [?] unless
for k = 0. This effect was then reflected in the applications. For example, no explicit
positive lower bound for the constant αn above was known. The results in [?] and [?]
yield explicit positive lower bounds for Λn,k in the cases 2 ≤ k ≤ n − 4. In order
to apply standard surgery techniques, it would be helpful to have lower bounds in
the cases k = 1 and k = n− 3.

The method established in the present article yields explicit positive lower bounds
for all cases k = 1 ≤ n − 4 and in the cases (n, k) = (5, 2) and (n, k) = (4, 1).
However it requires as input data a lower bound on the conformal Yamabe con-
stant µ(Rk+1 × Sn−k−1). Such input data is provided in [?] and [?] in the cases
(n, k) ∈ {(4, 1), (5, 1), (5, 2), (9, 1), (10, 1)}. Unfortunately their method has to be
strongly modified for each pair of dimensions, and as a courtesy to us, Petean and
Riuz provided the above cases, as these are the ones which will lead to interesting
applications in Section 5.

We obtain in Corollary 5.3 that S5(1) ⊂ (45.1, σ(S5)], in other words: any
compact simply connected manifold of dimension 5 satisfies

45.1 < σ(M) ≤ µ(S5) < 79.

In dimensions n ≥ 6 a heavy problem persists for surgeries of codimension 3, i.e.
for n = k − 3, see [?] for details about this problem.
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This problem can be avoided by restricting to 2-connected manifolds. Together
with results from [?] we obtain an explicit positive number tn such that any com-
pact n-dimensional 2-connected manifold M with vanishing index, n ̸= 4, satisfies
σ(M) ≥ tn, see Table 2 and Proposition 5.6. We thus see Sn(2) ⊂ {0} ∪ [tn, σ(S

n)]
for all n ̸= 4.

Acknowledgments. We thank Jimmy Petean, Miguel Ruiz, and Tobias Weth for
helpful comments. Much work on this article was done during a visit of Bernd
Ammann and Mattias Dahl to the Max Planck Institute for Gravitational Physics
(Albert Einstein Institute), Golm. We thank the institute for its hospitality. Em-
manuel Humbert was partially supported by ANR-10-BLAN 0105.

2. Preliminaries

2.1. Notation and model spaces. We denote the standard flat metric on Rv by
ξv. On the sphere Sw ⊂ Rw+1 the standard round metric is denoted by ρw. The
volume of (Sw, ρw) is

ωw =
2π(w+1)/2

Γ
(
w+1
2

) .

Let Hv
c be the v-dimensional complete 1-connected Riemannian manifold with

sectional curvature −c2. The Riemannian metric on Hv
c is denoted by ηvc . We fix a

point x0 in Hv
c .

Next, we define the model spaces Mc through Mc := Hv
c × Sw, which has the

Riemannian metric Gc := ηvc +ρw. Note that in our previous articles [?, ?] we used
the notation Mv+w,v−1

c for Mc. Set n := v + w.
Let (N,h) be a Riemannian manifold of dimension n. Let ∆h denote the non-

negative Laplacian on (N,h). For i = 1, 2 we let Ω(i)(N,h) be the set of non-
negative C2 functions u solving the Yamabe equation

an∆
hu+ shu = µupn−1 (1)

for some µ = µ(u) ∈ R and satisfying

• u ̸≡ 0,
• ∥u∥Lpn (N) ≤ 1,
• u ∈ L∞(N),

and

• u ∈ L2(N), for i = 1,

or

• µ(u)∥u∥pn−2
L∞(N) ≥

(n−k−2)2(n−1)
8(n−2) , for i = 2.

For i = 1, 2 we set

µ(i)(N,h) := inf
u∈Ω(i)(N,h)

µ(u).

In particular, if Ω(i)(N,h) is empty then µ(i)(N,h) = ∞.
Finally, the constants in the surgery theorem are defined as follows. For integers

n ≥ 3 and 0 ≤ k ≤ n− 3 set

Λ
(i)
n,k := inf

c∈[0,1]
µ(i)(Mc)

and

Λn,k := min
{
Λ
(1)
n,k,Λ

(2)
n,k

}
.
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where v = k + 1 and w = n− k − 1.

2.2. Strategy of proof. The strategy we have used to find lower bounds of Λn,k

is the following.

• First prove that Λ
(2)
n,k ≥ Λ

(1)
n,k. This was the main result in [?] which holds

in the cases k ≤ n− 4 and n = k+3 ∈ {4, 5}. It remains open whether the
same holds for n = k + 3 ≥ 6.

• Find lower bounds for Λ
(1)
n,k. For this purpose, we show that µ(1)(Mc)

can be estimated by the conformal Yamabe constant of the non-compact
manifold Mc, see Section 2.3. We are reduced to find a lower bound for
conformal Yamabe constant of the product manifold Mc. As mentioned
before, there exists results in this direction; our paper [?] gives such a
bound if v ≥ 3 and w ≥ 3. Also, the work of Petean and Ruiz apply if
w = 1. In this paper, we develop a method which completes the remaining
cases.

The technical aspects of the argument in the present paper involve symmetriza-
tion and stretching maps to relate the the conformal Yamabe constants of Mc for
different values of c. This is done in Section 3.

Remark 2.1. Our methods also apply to find explicit lower bounds for the conformal
Yamabe constant of Hv

c×(W,h), where (W,h) is any compact Riemannian manifold,
i.e. if we replace the round sphere by (W,h). The case (W,h) = Sw is the only case
for which we see applications, so for simplicity of presentation we restricted to this
case.

2.3. The generalized Yamabe functional of the model spaces. For u ∈
C∞(Mc), u ̸≡ 0, we define the generalized Yamabe functional

Fb
c (u) :=

∫
Mc

(
an|du|2 + bu2

)
dv

∥u∥2Lpn (Mc)

.

Clearly Fb
c (u) ≥ Fb′

c (u) if b ≥ b′ and Fb
c (u) ≥ b

b′F
b′

c (u) if 0 < b ≤ b′.

The scalar curvature of Mc is sc := sGcw(w − 1) − c2v(v − 1). The conformal
Yamabe constant µc of Mc satisfies

µc := µ(Mc) = inf Fsc
c (u),

where the infimum is taken over all smooth functions u of compact support which
do not vanish identically.

If u is a solution of (1) as in the definition of Ω(1)(Mc), then u is L2 by assumption
and thus also in the Sobolev space H1,2. An integration by parts

∫
u∆u dv =∫

|du|2 dv may then be performed in the integral defining Fb
c (u), and we conclude

that
µ(1)(Mc) ≥ µc.

Using Λ
(2)
n,k ≥ Λ

(1)
n,k and the definition of Λ

(1)
n,k this implies positive lower bounds

for Λn,k for certain pairs (n, k), see Table 1.

2.4. Symmetrization. There is a natural action of the rotation group O(v) on the
hyperbolic space Hv

c by rotations around the point x0. A function on Hv
c is O(v)-

invariant if and only if it depends only on the distance d(·, x0) to the point x0. A
function on Mc is O(v)-invariant if and only if it depends only on d(·, x0) and the
point in Sw.
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Lemma 2.2. For each c ∈ [0, 1]

µc = inf Fsc
c (f̃)

where the infimum is taken over all O(v)-invariant functions on Mc which do not
vanish identically.

Proof. The proof uses standard arguments and we just give a sketch. We must show
that for any non-negative compactly supported smooth function u : Mc → R there
is a O(v)-invariant non-negative compactly supported smooth function ũ : Mc → R
satisfying Fsc

c (ũ) ≤ Fsc
c (u). If φ is a non-negative function on Hv

c , there is a non-
negative O(v)-invariant function φ∗ defined on the same space called the hyperbolic
rearrangement of φ, see [?]. This has the properties that for p ≥ 1

∥φ∗∥Lp(Hv
c )

= ∥φ∥Lp(Hv
c )
, (2a)

∥φ∗
1 − φ∗

2∥Lp(Hv
c )

≤ ∥φ1 − φ2∥Lp(Hv
c )
, (2b)

∥dφ∗∥Lp(Hv
c )

≤ ∥dφ∥Lp(Hv
c )
, (2c)

see [?, Section 4, Corollaries 1 and 3].
Let u be a non-negative function on Mc. We set ũ(·, y) := (u(·, y))∗. From (2a)

and (2c) we have ∥ũ∥Lpn (Mc) = ∥u∥Lpn (Mc) and ∥dHv
c
ũ∥L2(Mc) ≤ ∥dHv

c
u∥L2(Mc). Let

γ : (−ε, ε) → Sw be a curve. We apply (2b) with φ1 = u(·, γ(t)), φ2 = u(·, γ(0)),
divide by |t|, and let t tend to 0. From this we conclude

∥dSw ũ(γ′(0))∥L2(Hv
c×{γ(0)}) ≤ ∥dSwu(γ′(0))∥L2(Hv

c×{γ(0)})

and ∥dSw ũ∥L2(Mc) ≤ ∥dSwu∥L2(Mc). It follows that Fsc
c (ũ) ≤ Fsc

c (u) which ends
the proof of Lemma 2.2. �

3. Comparing Fb
c to Fb′

c′

We want to estimate Fb
c from below in terms of Fb

0 and Fb1
1 for b1 as large as

possible.

3.1. Comparing Fb
c to Fb

0 . For c ̸= 0 define shc(t) := c−1 sinh(ct). In polar
coordinates we have

Hv
0 = Rv = ((0,∞)× Sv−1, dt2 + t2ρv−1),

and
Hv

c = ((0,∞)× Sv−1, dt2 + shc(t)
2ρv−1).

Lemma 3.1. For c > 0 there is a unique diffeomorphism fc : [0,∞) → [0,∞) for
which the map Fc : Rv → Hv

c defined in polar coordinates as

Fc : (t, θ) 7→ (fc(t), θ).

is volume preserving. Further f ′
c(t) ≤ 1 for all 0 ≤ t < ∞.

The map Fc squeezes the radial coordinate, so we will call Fc the radial squeezing
map from Rv to Hv

c .

Proof. The function

φc(r) :=

(
v

ωv−1
vol
(
B

Hv
c

x0 (r)
))1/v

=

(
v

∫ r

0

shc(t)
v−1 dt

)1/v

is a smooth function [0,∞) → [0,∞). Since φ′
c(0) = 1, φ′

c(r) > 0 for r ≥ 0, and
limr→∞ φc(r) = vol(Hv

c ) = ∞ it is a diffeomorphism. We set fc := φ−1
c . Let B0(r)
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be the ball of radius r around 0 in Rv. Since Fc is assumed to be volume preserving
we have

volR
v

(B0(r)) = volH
v
c (Fc(B0(r))),

or

ωv−1

v
rv = ωv−1

∫ fc(r)

0

shc(t)
v−1 dt. (3)

Differentiating (3) we get

rv−1 = f ′
c(r) shc(fc(r))

v−1.

From (3) together with sh′c(t) = cosh(ct) ≥ 1 we find

rv =

∫ fc(r)

0

v shc(t)
v−1 dt

=

∫ fc(r)

0

(shc(t)
v)′

1

sh′c(t)
dt

≤
∫ fc(r)

0

(shc(t)
v)′ dt

= shc(f(r))
v,

so r ≤ shc(fc(r)) and we conclude that f ′
c(r) ≤ 1. �

We extend the radial squeezing map to a volume preserving map F̂c : M0 → Mc

by setting

F̂c := Fc × IdSw : Rv × Sw → Hv
c × Sw.

Proposition 3.2. For O(v)-invariant functions u : Mc → R we have

Fb
c (u) ≥ Fb

0(u ◦ F̂c).

Proof. The differential d(u◦F̂c) decomposes orthogonally in a Rv-component dRv (u◦
F̂c) and a Sw-component dSw(u ◦ F̂c). Similarly, du splits orthogonally in a Hv

c -

component dHv
c
u and a Sw-component dSwu. Then dRv (u ◦ F̂c) = dHv

c
u ◦ dF̂c and

dSw(u ◦ F̂c) = dSwu ◦ dF̂c = dSwu. Thus

|dRv (u ◦ F̂c)| = |dHv
c
u ◦ dF̂c| = |dHv

c
u|f ′(t) ≤ |dHv

c
u|

and

|dSw(u ◦ F̂c)| = |dSwu|.

It follows that |d(u ◦ F̂c)| = |du|. Further the volume form is preserved by the map

F̂c and the Proposition follows. �

Corollary 3.3. If sc > 0 then µc ≥ sc
s0
µ0.

This corollary gives good estimates if c is sufficiently small, as then sc > 0.
However in case v > w the corollary can no longer be applied for c close to 1.
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3.2. Comparing Fb
c to Fb1

1 . For c > 0 we define a diffeomorphism Rc : Hv
c → Hv

1

by Rc(t, θ) = (ct, θ). The map Rc is a c-homothety in the sense that the Riemannian
metric of Hv

c is ηvc = c−2R∗
cη

v
1 where ηv1 is the Riemannian metric of Hv

1. Taking the

product with the identity map on the round sphere we obtain a map R̂c : Mc → M1.

The metric Gc on Mc is then given by Gc = R̂∗
c(c

−2ηv1 + ρw).
The following Proposition is an extension of [?, Lemma 3.7].

Proposition 3.4. If c ∈ (0, 1), then Fc2s1
c (u ◦ R̂c) ≥ c2w/nFs1

1 (u) for all functions
u ∈ C∞

c (M1).

Proof. We have

|d(u ◦ R̂c)|2Gc
= |R∗

c(du)|2Gc

= |du|2c−2ηv
1+ρw

= c2|dHv
c
u|2ηv

1
+ |dSwu|2ρw

≥ c2
(
|dHv

c
u|2ηv

1
+ |dSwu|2ρw

)
= c2|du|2g1 .

In addition, dvGc = c−vR̂∗
cdv

g1 . From this we find that

Fc2s1
c (u ◦ R̂c) =

∫
Mc

(
an|d(u ◦ R̂c)|2Gc

+ c2s1(u ◦ R̂c)
2
)
dvGc(∫

Rv×Sw(u ◦ R̂c)pn dvGc

) 2
pn

≥
∫
M1

(
anc

2|du|2g1 + c2s1u
2
)
c−v dvg1(∫

Rv×Sw upnc−v dvg1
) 2

pn

= c2w/nFs1
1 (u),

which is the statement of the Proposition. �

To apply the proposition, note that

sc = w(w − 1)− c2v(v − 1) ≥ c2(w(w − 1)− v(v − 1)) = c2s1.

This implies

Fsc
c (u ◦ R̂c) ≥ Fc2s1

c (u).

By taking the infimum over all non-vanishing smooth functions u ∈ C∞
c (M1) with

compact support we obtain the following.

Corollary 3.5. For c ∈ (0, 1) we have

µc ≥ c2w/nµ1.

This estimate gives uniform estimates fur µc if c is bounded away from 0. Because
of µ1 = µ(Sn) we obtain explicit bounds in any dimension. However these bounds
tend to 0 as c → 0.
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4. Conclusions

4.1. Interpolation of the previous inequalities. We now improve the bounds
obtained in Corollaries 3.3 and 3.5 by combining Propositions 3.2 and 3.4 in an
interpolation argument.

Theorem 4.1. For all c ∈ (0, 1) we have

µc ≥
(
µ0

µ1
− c2v(v − 1)

(1− c2)w(w − 1) + c2v(v − 1)

(
µ0

µ1
− c2w/n

))
µ1 (4)

and

µc ≥ c2w/nµ1. (5)

As discussed in Appendix A, Inequality (4) is stronger than Inequality (5) for
c2w/n < µ0/µ1 and Inequality (5) is stronger for c2w/n > µ0/µ1.

Proof. Inequality (5) is the statement of Corollary 3.5. Assume that λ ≥ 0 and
τ ≥ 0 satisfy

λ+ τ ≤ 1, (6)

λc2s1 + τs0 ≤ sc. (7)

Then we get

Fsc
c (u) ≥ λFc2s1

c (u ◦ R̂−1
c ) + τFs0

c (u ◦ F̂c)

≥ λc2w/nFs1
1 (u ◦ R̂−1

c ) + τFs0
0 (u ◦ F̂c)

≥ λc2w/nµ1 + τµ0,

(8)

where we used Proposition 3.4 for the second inequality. It follows that

µc ≥ λc2w/nµ1 + τµ0. (9)

The lines described by λ+ τ = 1 and λc2s1 + τs0 = sc intersect in (λ0, τ0) where

λ0 =
v(v − 1)

(c−2 − 1)w(w − 1) + v(v − 1)
∈ (0, 1), τ0 = 1− λ0, (10)

see Appendix A. Setting λ := λ0 and τ := τ0 in (9) yields Inequality (4). �

The estimates obtained by the theorem rely on explicit lower bounds for µ0.
Such lower bounds can be found in the literature in the following cases.

(i) v = 1, w ≥ 2. Then µ0 = µ1 = µc = µ(Sn) for all c ∈ (0, 1). This case is
trivial as R × Sw is conformal to a round sphere of dimension n = w + 1
with two points removed.

(ii) (v, w) ∈ {(2, 2), (2, 3), (2, 7), (2, 8), (3, 2)}. In these cases bounds have been
derived in [?, ?] using isoperimetric profiles.

(iii) v ≥ 3 and w ≥ 3. See [?] where an explicit lower bound of the Yamabe
functional of Rv × Sw in terms of the Yamabe functionals of Rv and Sw is
used.

(iv) v ≥ 4 and w = 2. This case is not explicitly written in [?] but can be
deduced from the main result of that paper. We just observe that this
result implies that

µ0 ≥ nan

(3a3)
3
n ((n− 3)an−3)

n−3
n

µ(Rn−3)
n−3
n µ(R× S2)

3
n
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where ak := 4(k−1)
k−2 for k ≥ 3. Next, note that µ(Rn−3) = µ(Sn−3) and

since R × S2 is conformally equivalent to S3 with two points removed we
have µ(R× S2) = µ(S3). Hence, we get

µ0 ≥ nan

24
3
n ((n− 3)an−3)

n−3
n

µ(Sn−3)
n−3
n µ(S3)

3
n .

As similar argument also yields lower bounds for µ0 in the cases v − 2 ≥
w ≥ 3. These bounds on µ0 are slightly stronger than the ones in (iii).

The estimate is optimal in Case (i). In this case nothing remains to be proven,
and we will not discuss it further. In Cases (ii) and (iii) the bound is not likely to
be optimal. Any improvement of the lower bound for µ0 would improve the bounds
obtained in Theorem 4.1. In [?] a lower bound on µc is derived which is uniform
in c. Thus Theorem 4.1 does not currently yield improved estimates in Case (iii).
However, if a better lower bound for µ0 is available, it might be relevant as well,
and will be also considered in the following. The most important applications thus
come in Case (ii).

4.2. Analytical Conclusions. We now want to derive concrete bounds on Λv+w,v−1

for special values of v and w.

Corollary 4.2. For all c ∈ [0, 1] and all v ≥ 2 and w ≥ 2 we obtain

µc ≥

1− v(v − 1)(√
v(v − 1) +

√
w(w − 1)

)2
µ0. (11)

Proof. Using (4) and the facts that µ1 > µ0 and c2w/n ≥ c2 we deduce

µc ≥
(
1− (1− c2)c2v(v − 1)

(1− c2)w(w − 1) + c2v(v − 1)

)
µ0

for general values of v and w. The right hand side attains its minimum over c ∈ [0, 1]
for

c2 =

√
w(w − 1)√

v(v − 1) +
√

w(w − 1)
,

from which (11) follows. �

Example 4.3. v = 2, w = 3: In [?, Theorem 1.4] Petean and Ruiz have obtained
µ(R2 × S3) ≥ 0.75µ(S5), that is µ0 ≥ 0.75µ1. Using (11) we obtain

µc ≥
√
3

2
µ0 ≥ 0.649µ1 ≥ 51.2

Thus Λ5,1 ≥ 51.2.
Compare this value with µ(S5) = 78.996...

Example 4.4. v = 2, w = 7: In [?, Theorem 1.6] Petean and Ruiz have obtained
µ(R2 × S7) ≥ 0.747µ(S9), that is µ0 ≥ 0.747µ1. Using (11) we obtain

µc ≥
(
1− 2

(
√
2 +

√
42)2

)
µ0 ≥ 0.723µ1 ≥ 106.9

Thus Λ9,1 ≥ 106.9
Compare this value with µ(S9) = 147.87...
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(v, w) (n, k) µ0/µ1 Analytic Numeric µ1 = µ(Sn)
(2, 2) (4, 1) 0.68 38.9 38.9 61.56
(2, 3) (5, 1) 0.75 51.2 56.6 79.00
(2, 7) (9, 1) 0.747 106.9 109.2 147.87
(2, 8) (10, 1) 0.622 100.6 102.6 165.02
(3, 2) (5, 2) 0.63 29.7 45.1 79.00

Table 1. Lower estimates for inf µc = Λn,k. The fourth column
shows the analytic estimates from Corollary 4.2 and 4.6. The fifth
column shows the numerical estimates from Subsection 4.3. The
value for µ1 is approximate, whereas the lower bounds are rounded
down.

Example 4.5. v = 2, w = 8: In [?, Theorem 1.6] Petean and Ruiz have obtained
µ(R2 × S8) ≥ 0.626µ(S10), that is µ0 ≥ 0.626µ1. Using (11) we obtain

µc ≥
(
1− 2

(
√
2 +

√
56)2

)
µ0 ≥ 0.610µ1 ≥ 100.69

Thus Λ10,1 ≥ 100.69.
Compare this value with µ(S10) = 165.02...

In the case v = w we find better estimates for the right hand side of (4).

Corollary 4.6. Assume v = w ≥ 2 and µ0/µ1 ≥ γ > 0. Then

inf
c∈[0,1]

µc ≥
(
γ − 4

27
γ3

)
µ1

Proof. Using v = w we obtain directly from (4):

µc ≥
((

c− µ0

µ1

)
1

c−2
+

µ0

µ1

)
µ1 =

(
c3 − c2

µ0

µ1
+

µ0

µ1

)
µ1 ≥

(
c3 − c2γ + γ

)
µ1

for any γ ∈ (0, µ0/µ1]. On the interval [0, 1] the right hand side attains its minimum
in c = 2

3γ. This yields the statement of the corollary. �
Example 4.7. For v = w = 2 Petean and Ruiz [?, Theorem 1.2] have derived the
bound γ = 0.68. This yields

Λ4,1 ≥ 0.63µ1 ≥ 38.9.

The explicit values deduced from the above corollaries are summarized in Table 1.

4.3. Numerical Conclusions. Numerical computations yield better bounds. Such
improved bounds are important for applications, especially for some particular val-
ues, as for example the case v = 3, w = 2.

Using the procedure “Minimize” from the “Optimization” package of the pro-
gram Maple 13.0 we numerically minimized the right hand side of (4). The results
of this calculation provided the bounds given in the column “Numeric” of Table 1.

Example 4.8. Assume v = 3 and w = 2. In [?, Theorem 1.4] Petean and Ruiz have
obtained µ(R3 × S2) ≥ 0.63µ(S5), that is µ0 ≥ 0.63µ1. A numerical evaluation of
(4) yields

inf
c∈[−1,1]

µc ≥ 0.571µ1 > 45.1,

and we conclude that Λ5,2 > 45.1.
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Example 4.9. Assume v = 2 and w = 7. In [?, Theorem 1.6] Petean and Ruiz have
obtained µ(R2 × S7) ≥ 0.747µ(S9), that is µ0 ≥ 0.747µ1. A numerical evaluation
of (4) yields

inf
c∈[−1,1]

µc ≥ 0.739µ1 > 109.2,

and we conclude that Λ9,1 > 109.2.

Example 4.10. Assume v = 2 and w = 8. In [?, Theorem 1.6] Petean and Ruiz have
obtained µ(R2 × S8) ≥ 0.626µ(S10), that is µ0 ≥ 0.626µ1. A numerical evaluation
of (4) yields

inf
c∈[−1,1]

µc ≥ 0.622µ1 > 102.6

and we conclude that Λ10,1 > 102.6.

Similar bounds for other dimensions could also be obtained using the same
method. We will see that the cases derived as examples above have interesting
topological applications.

5. Topological applications

The lower bounds for Λn,1, n ∈ {4, 5, 9, 10}, and Λ5,2 lead to estimates of the
Yamabe invariant for certain classes of manifolds.

5.1. Applications of the lower bound for Λ5,2. The following two proposi-
tions are standard consequences of the methods developed for the proof of the
h-cobordism theorem. A proof for a similar statement can be found in [?, Theorem
IV.4.4, pages 299–300]. As we do not know of a reference for the formulations given
here we include their proofs.

Proposition 5.1. Let M0 and M1 be non-empty, compact, connected, and simply
connected spin manifolds of dimension n ≥ 5. Assume that M0 and M1 are spin
bordant. Then one can obtain M1 from M0 by a sequence of surgeries of dimensions
ℓ where 2 ≤ ℓ ≤ n− 3.

Proof. Let W be a spin bordism from M0 to M1. By surgeries in the interior we
simplify W to be connected, simply connected, and have π2(W ) = 0 (one then
says W is 2-connected). Then Hi(W,Mj) = 0 for i = 0, 1, 2. We apply [?, VIII
Thm. 4.1] for k = 3 and m = n+1. One obtains that there is a handle presentation
of the bordism such that for any i < 3 and any i > n− 2 the number of i-handles
is given by bi(W,M0). Any i-handle corresponds to a surgery of dimension i − 1.
It remains to show that bi(W,M0) = 0 for i ∈ {0, 1, 2, n + 1, n, n − 1}. This is
trivial for i ∈ {0, 1, 2}. By Poincaré duality Hn+1−i(W,M0) is dual to Hi(W,M1)
which vanishes for i = 0, 1, 2. On the other hand the universal coefficient theorem
tells us that the free parts of Hi(W,M0) and Hi(W,M0) are isomorphic. Thus
bi(W,M0) which is by definition the rank of (the free part of) Hi(W,M0) vanishes
for i ∈ {n+ 1, n, n− 1}. �

Proposition 5.2. Let M0 and M1 be non-empty compact connected and simply
connected non-spin manifolds of dimension n ≥ 5, and assume that these manifolds
are oriented bordant. Then one can obtain M1 from M0 by a sequence of surgeries
of dimensions ℓ, 2 ≤ ℓ ≤ n− 3.
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Proof. The proof is similar to the proof in the spin case. However the bordism
W cannot be simplified to π2(W ) = 0, but only to π2(W ) = Z/2Z with surjective
maps π2(Mj) → π2(W ). This implies again that Hi(W,Mj) = 0 for i = 0, 1, 2, and
j = 1, 2. The proof continues exactly as in the spin case. �

Corollary 5.3. Let M be a compact simply connected manifold of dimension 5,
then

45.1 < σ(M) ≤ µ(S5) < 79.

Proof. The upper bound for σ(M) is standard.
To prove the lower bound we consider first the case when M is spin. As the

5-dimensional spin bordism group ΩSpin
5 is trivial, M is the boundary of a compact

6-dimensional spin manifold. By removing a ball we obtain a spin bordism from
S5 to M . Using Proposition 5.1 we see that M can be obtained by 2-dimensional
surgeries from S5. As a consequence σ(M) ≥ Λ5,2 > 45.1.

Next we consider the case when M is not spin. The oriented bordism group
ΩSO

5 is isomorphic to Z/2Z, and the Wu manifold SU(3)/SO(3) represents a non-
trivial element in ΩSO

5 . Thus M is either oriented bordant to the empty set or to
SU(3)/SO(3).

We consider now the case that M is oriented bordant to SU(3)/SO(3). By
Appendix B we see that σ(SU(3)/SO(3)) > 64. Since SU(3)/SO(3) is not spin
Proposition 5.2 implies that we can obtain M from SU(3)/SO(3) by a finite number
of 2-dimensional surgeries. Thus

σ(M) ≥ min (Λ5,2, σ(SU(3)/SO(3))) > 45.1.

It remains to consider the case that M is oriented bordant to the empty set,
or equivalently to S5. However, S5 is spin and cannot be used to apply Propo-
sition 5.2. Instead we use the space SU(3)/SO(3)#SU(3)/SO(3) which is simply
connected, non-spin and an oriented boundary. By [?, Theorem 2] we know that
σ(SU(3)/SO(3)#SU(3)/SO(3)) ≥ σ(SU(3)/SO(3)). We apply Proposition 5.2 with
M0 = SU(3)/SO(3)#SU(3)/SO(3) and M1 = M and thus we obtain M from M0

by a finite number of 2-dimensional surgeries. From this we find

σ(M) ≥ min (Λ5,2, σ(SU(3)/SO(3))) > 45.1

which concludes the proof of the corollary. �

Let us compare the lower bound 45.1 for simply connected 5-manifolds to the
expected values for the smooth Yamabe invariant on non-simply-connected spher-
ical space forms in dimension 5. Assume that M = S5/Γ where the finite group
Γ ⊂ SO(6) acts freely on S5. It was conjectured by Schoen [?, Page 10, lines 6–11]
that on such manifolds the supremum in the definition of the smooth Yamabe num-
ber is attained by the standard conformal structure. If this is true, then σ(RP 5)
would be equal to 45.371 . . . . Except S5 and RP 5 all 5-dimensional space forms
would have σ-invariant below 45.1.

5.2. Applications of the lower bound for Λ9,1 and Λ10,1 to spin manifolds.
For a compact spin manifold M of dimension n the alpha-genus α(M) ∈ KOn is
equal to the index of the Clifford-linear Dirac operator on M . It depends only on
the spin bordism class of M .
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Lemma 5.4. Let M be a compact 2-connected spin manifold of dimension n ∈
{9, 10} which has α(M) = 0. Then M is obtained from S9 or HP 2×S1 (for n = 9)
or from S10 or HP 2×S1×S1 (for n = 10) by a sequence of surgeries of dimensions
k ∈ {0, 1, . . . , n − 4}. All these surgeries are compatible with orientation and spin
structure.

Note that S1 carries two spin structure. One spin structure is obtained from the
spin structure on D2 by restriction to the boundary S1 = ∂D2, and it is called the
bounding spin structure. In the above lemma we assume that all manifolds S1 are
equipped with the other spin structure, the non-bounding spin structure.

Proof. From the description of the Spin bordism group in [?] and [?] we know that
M is spin bordant to P = ∅ or to P = HP 2 × S1 (if n = 9) and M is spin bordant
to P = ∅ or to P = HP 2 × S1 × S1 (if n = 10).

Now letW be a spin bordism from P toM . By performing surgeries of dimension
0, 1, 2, and 3 one can find a spin bordismW ′ from P toM which is 3-connected, that
is W ′ is connected and π1(W

′) = π2(W
′) = π3(W

′) = 0. The inclusion i : M → W
is thus 3-connected, that is bijective on πi for i ≤ 2 and surjective on π3. This
implies that W ′ can be decomposed into handles each of which corresponds to a
surgery of dimension ≤ n− 4. �

The following corollary extends similar results from [?] which hold in dimension
n = 7, n = 8 and n ≥ 11. We define s1 := σ(HP 2×S1) and s2 := σ(HP 2×S1×S1).

Corollary 5.5. Let M be a 2-connected compact spin manifold of dimension n = 9
or n = 10 with α(M) = 0. Then

σ(M) ≥

{
min{Λ9,1,Λ9,2,Λ9,3,Λ9,4,Λ9,5, s1} > 109.2 for n = 9,

min{Λ10,1,Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6, s2} ≥ 97.3 for n = 10.

Proof. Lemma 5.4 implies

σ(M) ≥ min{Λ9,1,Λ9,2,Λ9,3,Λ9,4,Λ9,5, s1}

if n = 9 and

σ(M) ≥ min{Λ10,1,Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6, s2}

if n = 10. The relations Λ9,1 > 109.2 and Λ10,1 > 102.6 follow from Examples 4.9
and 4.10. The relations

min{Λ9,2,Λ9,3,Λ9,4,Λ9,5} > 109.4 > 109.2

and

min{Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6} > 126.4 > 102.6

follow from the product formula, see [?, Corollary 3.3]. From [?, Theorem 1.1] it
follows that sk ≥ µ(HP 2 × Rk). To estimate s1 for n = 9 we apply results of [?].
The quantities V and V8 in that paper satisfy

(
V

V8
)2/9 = 0.9370...,

see Appendix C. Thus, [?, Theorem 1.2] tells us that

s1 ≥ µ(HP 2 × R) ≥ 0.9370µ(S9) = 138.57... > 109.2.
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n = 3 4 5 6 7 8 9 10 11
σ(M) ≥ tn = 43.8 ? 78.9 87.6 74.5 92.2 109.2 97.3 153.9

σ(Sn) = 43.8 61.5 78.9 96.2 113.5 130.7 147.8 165.0 182.1

Table 2. Lower estimates for the smooth Yamabe invariant of
2-connected manifolds with vanishing index. Values of σ(Sn),
rounded down, for comparison

An estimate for s2 when n = 10 is provided by [?, Example after Theorem 1.7],
namely

s2 ≥ µ(HP 2 × R2) ≥ 0.59µ(S10) > 97.3 < Λ10,1.

�
In the case that α(M) ̸= 0 for 2-connected M it was shown in [?, Theorem 1]

that σ(M) = 0.
In dimensions n ≤ 6, n ̸= 4, there are only a few 2-connected compact manifolds,

namely S3, S5, S6, and connected sums of S3 ×S3, all with their standard smooth
structures. The conformal Yamabe constant for the product metric on S3 × S3,

µ(S3 × S3, ρ3 + ρ3) = 12(2π2)2/3 = 87.64646...,

follows from Obata’s theorem [?, Proposition 6.2]. Using Theorem C or more
precisely the third conlusion in the following unnumbered corollary of [?] we find

σ(S3 × S3) > 12(2π2)2/3 = 87.64646...

In all dimensions ̸= 4 we thus obtain lower bounds for the smooth Yamabe
invariant. In dimensions n = 7, n = 8, and n ≥ 11 an explicit lower bound for
the smooth Yamabe invariant of 2-connected compact manifolds with vanishing
index was obtained in Corollaries 6.6, 6.7 and Proposition 6.9 of [?, Corollary 6.6].
Summarizing we have the following proposition.

Proposition 5.6. Let M is a 2-connected compact manifold of dimension n ̸= 4.
If α(M) ̸= 0, then σ(M) = 0. If α(M) = 0, then σ(M) ≥ tn, where tn is an explicit
positive number only depending on n.

Some values of tn are collected in Table 2.
The situation for n = 4 is not so clear as it is unknown whether exotic 4-spheres,

i.e. manifolds homeomorphic but not diffeomorphic to S4, do exist. The smooth
Poincaré conjecture in dimension 4 claims that exotic 4-spheres do not exist.

Appendix A. Optimal values of λ and τ

We now optimize λ and τ for the inequality (8). We define the convex polygon
Pc of admissible pairs (λ, τ) as

Pc := {(λ, τ) | satisfying (6), (7), λ ≥ 0, τ ≥ 0}.
For λ = 1, τ = 0, one has λc2s1 + τs0 < sc so (1, 0) is a corner of Pc. Similarly
one sees that (0, 1) is never a corner of Pc unless c = 0. Because of c2s1/s0 < 1,
the equations λ+ τ = 1 and λc2s1+ τs0 = sc have a common solution (λ0, τ0) with
λ0 ∈ (0, 1) for c ∈ (0, 1). From

c2w/nµ1

µ0
≥ c2w/n >

c2s1
s0
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one easily sees that the optimal estimate is obtained in the point (1, 0) for c2w/n ≥
µ0/µ1, and in the point (λ0, τ0) for c

2w/n ≤ µ0/µ1.
Next we compute λ0.

−λ0c
2v(v − 1) + λ0c

2w(w − 1) + (1− λ0)w(w − 1) ≤ −c2v(v − 1)

Factoring out, removing w(w−1) on both sides, then dividing by λ0c
2w(w−1) one

obtains the equivalent equation

− v(v − 1)

w(w − 1)
+ 1− 1

c2
≤ − 1

λ0

v(v − 1)

w(w − 1)
,

which is further equivalent to(
1− 1

c2

)
≤
(
1− 1

λ0

)
v(v − 1)

w(w − 1)
.

This yields (10).

Appendix B. The Wu manifold SU(3)/SO(3)

We equip SU(3) with the bi-invariant metric such that the matrix0 −1 0
1 0 0
0 0 0

 ∈ su(3)

has length 1. Then (SU(3),SO(3)) is a symmetric pair, and the associated involu-
tion of su(3) is complex conjugation. Let M be SU(3)/SO(3) equipped with the
quotient metric g. The manifold M is orientable, but not spin. Complex conjuga-
tion of SU(3) induces an orientation reversing isometry of M . Thus M ⨿M is (up
to orientation-preserving diffeomorphisms) the oriented boundary of M × [0, 1]. It
follows that M#M is an oriented boundary as well.

An elementary calculation on the Lie algebra level shows that g is an Einstein
metric, Ricg = 6g. Obata’s theorem [?, Proposition 6.2] then tells us that µ(M, g) =
30vol(M, g)2/n. The volume vol(M, g) is calculated in [?], and we conclude the
following Lemma.

Lemma B.1. The conformal Yamabe constant of SU(3)/SO(3) is

µ(SU(3)/SO(3), g) = 30 ·

(√
3

8
π3

)2/5

= 64.252401...

Appendix C. Quaternionic projective spaces HPn

Let gn be the metric on HPn such that the Hopf map S4n+3 → HPn is a
Riemannian submersion. With O’Neill’s formula one easily calculates that the
scalar curvature of gn is sgn = 4n(4n + 8), and the volume is vol(HPn, gn) =
ω4n+3/ω3.

As a consequence

g̃n :=
sgn

sρ4n gn =
4n(4n+ 8)

4n(4n− 1)
gn

is a metric whose scalar curvature is equal to 4n(4n− 1) = sρ
4n

. Its volume is

V4n := vol(HPn, g̃n) =

(
4n+ 8

4n− 1

)2n
ω4n+3

ω3
.
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In the special case n = 2 this yields V8 = 213π4/(74 ·5·3) where we used ω11 = π6/60
and ω3 = 2π2. Using ω8 = 32π4/(7·5·3) we obtain V8/ω8 = 28/73 = 0.74635569 . . ..
These numbers play a crucial role for the lower bounds of µ(HP 2×R) and µ(HP 2×
R2).
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