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Symmetries and the conductance of graphene nanoribbons with long-range disorder
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We study the conductance of graphene nanoribbons with long-range disorder. Due to the absence of intervalley
scattering from the disorder potential, time-reversal symmetry (TRS) can be effectively broken even without
a magnetic field, depending on the type of ribbon edge. Even though armchair edges generally mix valleys,
we show that metallic armchair nanoribbons possess a hidden pseudovalley structure and an effectively broken
TRS. In contrast, semiconducting armchair nanoribbons inevitably mix valleys and restore TRS. As a result, in
strong disorder metallic armchair ribbons exhibit a perfectly conducting channel, but semiconducting armchair
ribbons exhibit ordinary localization. TRS is also effectively broken in zigzag nanoribbons in the absence of
valley mixing. However, we show that intervalley scattering in zigzag ribbons is significantly enhanced and TRS
is restored even for smooth disorder if the Fermi energy is smaller than the potential amplitude. The symmetry
properties of disordered nanoribbons are also reflected in their conductance in the diffusive regime. In particular,
we find suppression of weak localization and an enhancement of conductance fluctuations in metallic armchair
and zigzag ribbons without valley mixing. In contrast, semiconducting armchair and zigzag ribbons with valley
mixing exhibit weak localization behavior.
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I. INTRODUCTION

The bulk electronic properties of graphene1 are modified
significantly in nanoscopic samples, where the influence of
the edges becomes decisive. Edge effects are most prominent
in narrow graphene nanoribbons (GNRs) with the boundary
structure determining whether the electronic spectrum is semi-
conducting (gapped) or metallic (gapless).2–5 The nanoribbons
with the highest symmetry with regard to the graphene
lattice exhibit zigzag and armchair edges, shown in Fig. 1.
While zigzag GNRs are always metallic, armchair GNRs are
categorized into metallic or semiconducting depending on
their width.3–5 GNRs of an orientation in between armchair
and zigzag have been shown to effectively behave as zigzag
GNRs.4,6

The first experiments on lithographically defined GNRs
failed to find conclusive evidence for these edge effects,7,8 but
since then great effort has been spent on improving the edges of
GNRs: scanning tunneling microscopy has been used to tailor
edges,9 GNRs have been chemically derived from solution
phase,10 they have been obtained by unzipping of carbon
nanotubes,11–13 cut out of graphene sheets by anisotropic etch-
ing using nickel clusters14 or by sonochemically methods,15

or they were self-assembled inside carbon nanotubes.16 (For
an extended overview we refer to a recent review.17)

In certain situations, for example when the dynamics of a
system is chaotic or diffusive, its quantum transport properties
are mainly determined by very few symmetries of the system,
in particular the presence or absence of time-reversal symmetry
(TRS).18 TRS is usually broken by magnetic fields. However,
Berry and Mondragon19 showed that in a (hypothetical)
neutrino billiard, TRS is broken even in the absence of a
magnetic field. In fact, in this case TRS is broken by the edge of
the billiard itself. The Dirac equation used in Ref. 19 to model
neutrinos corresponds exactly to the effective low-energy
Hamiltonian of a single valley of graphene, prompting efforts

to realize such an effective TRS breaking in graphene, for
example by different kinds of disorder20,21 or edges.22

Zigzag GNRs have also been shown to exhibit this kind
of effective TRS breaking when only long-range disorder is
present, such that the valleys remain uncoupled and a single-
valley Dirac equation description is applicable. In this case,
(effective) TRS is broken by the zigzag edges, placing zigzag
GNRs with long-range disorder into the unitary symmetry
class (no TRS).23 The symmetry class was also shown to
influence the conductance of zigzag GNRs dramatically: For
long-range disorder zigzag GNRs exhibit a perfectly con-
ducting channel (PCC) (i.e., a minimum of one conductance
quantum even in the strongly localized regime) whereas they
show ordinary localization for short-range disorder that mixes
the valleys and restores TRS.23 In contrast, armchair GNRs
were generally considered to be in the orthogonal symmetry
class corresponding to TRS.24,25

In this paper, we investigate carefully the symmetries of
graphene nanoribbons and their effect on the conductance
in the strongly localized and diffusive regime when only
long-range disorder (that does not mix the valleys) is present. In
particular, we show that in contrast to common belief the sym-
metry classification of armchair GNRs depends on whether
they are metallic or semiconducting. While semiconducting
armchair GNRs are found to be in the orthogonal symmetry
class, metallic armchair GNRs exhibit a hidden pseudovalley
structure, which leads to effective TRS breaking and places
metallic armchair GNRs into the unitary symmetry class. This
pseudovalley structure also leads to a perfectly conducting
channel in metallic armchair GNRs.

In addition, we show that zigzag GNRs can exhibit an
unexpected and strong source of intervalley scattering, even
for long-range, smooth potentials. When the magnitude of
the disorder potential exceeds the Fermi energy, electron-hole
puddles are formed and valley scattering can be mediated by
the edge state. In this case, TRS is restored in zigzag GNRs
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FIG. 1. (a) The graphene honeycomb lattice. The A and B
sublattices are indicated as solid and open dots, respectively.
(b) zigzag and (c) armchair graphene nanoribbons. The width W

of GNRs is measured between the first rows of missing atoms (shown
in gray).

and the PCC vanishes. This puts an additional restriction on
the disorder potential (apart from being long ranged) in order
to realize the unitary symmetry class in zigzag GNRs.

Weak localization effects in the conductance in the dif-
fusive regime of extended bulk graphene have been studied
extensively both theoretically and experimentally.20,26–29 In
contrast, we are aware only of a single theoretical work for
(quasi-onedimensional) GNRs that finds weak localization
behavior.30 Here we study the quantum transport properties
of GNRs in the diffusive regime systematically, and show
that their behavior is in agreement with their symmetry
classifications. In particular, we find suppression of weak
localization in zigzag GNRs without intervalley scattering
and metallic armchair GNRs. In contrast, zigzag GNRs with
strong intervalley scattering and semiconducting armchair
GNRs exhibit weak localization behavior. The symmetry
classification also reflects itself in the conductance fluctuations
of the GNRs.

The paper is organized as follows. In Sec. II we introduce
the tight-binding and Dirac Hamiltonian describing the elec-
tronic structure of graphene, and briefly describe our numerical
method. We investigate the valley scattering properties of a
long-range disorder potential in Sec. III, showing that there is
an unexpected source of valley scattering for zigzag GNRs. In
Sec. IV we classify the different types of GNRs according to
their symmetry and study their quantum transport properties.
We finally conclude in Sec. V.

II. GRAPHENE HAMILTONIAN AND
QUANTUM TRANSPORT

A. Hamiltonian

We describe the electronic structure of graphene using
a tight-binding model for the honeycomb lattice [shown in
Fig. 1(a)],

H =
∑
i,j

ti,j |i〉〈j | +
∑

i

V (xi)|i〉〈i|, (1)

with one orbital |i〉 per atom and constant hopping tij = t only
between nearest neighbors. We allow for an on-site potential
V (x) that is evaluated at the positions of the carbon atoms xi .
A magnetic field is included through the substitution tij →

t × exp[i e
h̄

∫ xi

xj
dx A(x)], where A(x) is the magnetic vector

potential.
For a sufficiently smooth potential V (x) and in the

low-energy limit, excitations with energy ε obey the Dirac
equation

H� = ε�, (2)

where the Hamiltonian

H = vFτ0 ⊗ (σ · p) + V (x) τ0 ⊗ σ0 (3)

acts on a four-component spinor wave function

� = (�A,�B,−� ′
B,� ′

A). (4)

The Hamiltonian is written in the valley-isotropic form
introduced in Ref. 31: τi and σi denote the Pauli matrices
in valley and sublattice space, respectively (τ0 and σ0 are the
respective unit matrices), and �j and � ′

j with j ∈ {A,B} are
the wave function amplitudes on the different sublattices in
the K and K ′ valley. The Fermi velocity is denoted as vF and
p = −ih̄(∂x,∂y) is the two-dimensional momentum operator,
with the orientation of x and y axis as indicated in Fig. 1(a).
A magnetic field is included through the minimal coupling
p → p + eA(x) with −e the electron charge.

B. Numerical quantum transport in the tight-binding model

To support our analytical predictions, we perform numerical
computations of the quantum transport properties of graphene
nanoribbons cut out of the graphene lattice [examples of zigzag
and armchair graphene nanoribbons are shown in Figs. 1(b)
and 1(c)].

A potential term V (x) is only introduced in a finite part
of the system (the scattering region), the remaining parts
(i.e., perfect semi-infinite nanoribbons) then serve as leads
(with a Fermi energy identical to the scattering region). We
compute the lattice Green’s function of the system using an
adaptive recursive Green’s function technique.32 From the
Green’s function we then obtain the scattering matrix using the
Fisher-Lee relation for tight-binding systems.33 In particular,
we compute the amplitudes tn,m for transmission from mode
m to mode n between two leads, and the amplitudes rn,m

for reflection from mode m to mode n in the same lead.
The electrical conductance G is then obtained using the
Landauer-Büttiker formalism,34,35

G = G0

∑
n,m

|tn,m|2 , (5)

where G0 = 2 e2

h
is the conductance quantum including the

spin degree of freedom.

III. INTERVALLEY SCATTERING IN
DISORDERED GRAPHENE

A. Impurity potential

We use a model for an impurity potential that is commonly
used in the study of disordered graphene (e.g., Refs. 27,36–39).
The potential is assumed to consist of a set of independent
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FIG. 2. (Color online) (a) Example of a realization of the impurity
potential (6). (b) Numerically computed probability distribution of the
value of the potential V (x) on a given point x. For both (a) and (b),
pimp = 0.05, ξ = 2a, and δ = 0.05 t .

impurities with a Gaussian potential profile

V (x) =
Ni∑

j=1

δj exp

(
− (x − Xj )2

2ξ 2

)
. (6)

Here Xj is the position of the j th scattering center. We use
Ni = pimp Na randomly distributed Gaussian scatterers, where
Na denotes the total number of lattice sites in the disordered
region, and pimp < 1 is a constant that determines the relative
amount of scatterers. Further, we choose the impurity strength
δj randomly from the interval [−δ,δ] and use a constant range ξ

for all impurities. Figure 2(a) shows an example of the potential
landscape of this type of impurity potential.

The potential (6) can describe both short-range and long-
range impurities by varying the impurity range ξ . For ξ � a,
the resulting potential varies smoothly on the lattice scale, and
the Dirac Hamiltonian (3) is applicable.26

The magnitude of the fluctuating impurity potential is best
described by its root mean square value. For ξ � a (in practice
it is enough to have ξ > a) it is given as

σV =
√

〈V (x)2〉 =
√

4π pimp

3
√

3
δ

ξ

a
, (7)

where 〈. . . 〉 denotes an impurity average. Figure 2 shows
the probability distribution P [V (x)] for finding a particular
potential value V (x) at a point x. The distribution is Gaussian-
like, with a width given by σV .

In the limit of λF � ξ � a (with λF the Fermi wavelength),
the transport mean free path is given in Born approximation
as26,36

ltr = 4

kFK0
= 2

√
3t

EK0
a (8a)

with the dimensionless correlator

K0 = 4π

(h̄vF)2
σ 2

V ξ 2 . (8b)

B. Bulk graphene versus zigzag nanoribbons

The parameter ξ of the impurity potential (6) determines
the smoothness of the potential. It is generally accepted that
for ξ � a there is only little intervalley scattering. However,
the evidence for this was always only indirect,23,27,36,37 and
no quantitative discussion of intervalley scattering exists for
this type of potential. Recently, it has only been attempted

to quantify the intervalley scattering for short-range lattice
defects.40 Since the knowledge of the degree of intervalley
scattering will be important in the following section, we first
investigate the intervalley scattering for the impurity potential
(6). Our findings show that caution must be exercised, as the
presence of zigzag edges may lead to enhanced intervalley
scattering even if the impurity potential is very smooth.

We can numerically measure the intervalley scattering
if we consider a wire along the x direction, using either
periodic boundary conditions in y direction (making the
system equivalent to an armchair carbon nanotube) or zigzag
boundaries. In both cases the valleys K and K ′ project
onto different values of the longitudinal momentum kx . The
scattering states in the leads have a definite Bloch momentum
kx , and a mode m can thus be uniquely assigned to a valley
(this is not possible for armchair ribbons, where the two
valleys project on the same momentum). It is then possible
to decompose the numerically computed transmission and
reflection probabilities into an intravalley and intervalley part.
The total probability of reflection into the other valley is given
as

Rinter =
∑

n ∈ K,m ∈ K ′
m ∈ K,n ∈ K ′

|rn,m|2 , (9)

while the total reflection probability is given as R =∑
n,m |rn,m|2. The intervalley transmission probability can be

defined analogously.
In Fig. 3 we show the fraction of intervalley scattering

in the reflection probability, Rinter/R, as a function of the
impurity strength δ. The rationale for measuring the intervalley
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FIG. 3. (Color online) Probability for intervalley scattering in
reflection [Eq. (9)] as a function of impurity strength δ for a ribbon
with periodic boundary conditions (left panel) and zigzag boundaries
(right panel). The ribbons have width W ≈ 500a and length L ≈
2500a, and data is shown for E = 0.017t (black solid lines) and
E = 0.1t (red solid lines). For comparison, the right panel (with
zigzag boundaries) also contains the data for E = 0.1t with periodic
boundary conditions as a red dashed line. The data was obtained by
averaging over 100 different impurity configurations with potential
parameters pimp = 0.05 and ξ = 2a.
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scattering in the reflection is that transmission may contain a
sizable part of ballistic processes without any scattering; in
contrast, reflection only occurs after at least one scattering
event. For periodic boundary conditions and ξ = 2a we
indeed find only very little intervalley scattering (left panel
of Fig. 3). The intervalley scattering rises with increasing
impurity strength δ. This is to be expected, as for fixed ξ

the potential becomes steeper as δ is increased, and hence
intervalley scattering becomes more likely. Nevertheless, for
the given parameters, the fraction of intervalley scattering
remained below 10−3.

However, we obtain a very different picture for zigzag
graphene nanoribbons (right panel of Fig. 3). Although we
use the same impurity potential as in the case of periodic
boundary conditions, we find an intervalley scattering that is
three orders of magnitude larger. The only obvious difference is
the presence of the zigzag edge. Indeed, it was shown that even
a smooth p-n junction in a zigzag nanoribbon strongly scatters
valleys, as both valleys are connected by the edge state.41

We believe that our numerical findings can be explained fully
by the fact that the impurity potential locally leads to many
smooth p-n junctions (in the bulk, but also at the zigzag edge),
when its magnitude becomes larger than the Fermi energy
E: For E = 0.1t and small δ, the intervalley scattering for the
zigzag case follows the result obtained with periodic boundary
conditions (shown for comparison as a dashed line in the
right panel of Fig. 3). For larger δ, when the maxima of the
potential become comparable or greater to E = 0.1t (which is
already the case around δ = 0.05 t as seen from Fig. 2), the
intervalley scattering rate raises rapidly and reaches up to 10%.
For smaller Fermi energy E = 0.017t , this regime is reached
already for much smaller δ, and we find perfect valley mixing
close to 50%.

Hence, although the impurity potential itself indeed does
not scatter valleys significantly if ξ � a, caution must be
exerted if zigzag edges are present. Intervalley scattering can
be very large if the impurity potential locally crosses the Dirac
point and hence locally forms p-n junctions. We believe that
this unexpected valley scattering may also explain many not
understood numerical findings of the past.

We note that the mechanism of the enhancement of
intervalley scattering, the formation of local p-n junctions
at the zigzag edge, is generic and not due to the particular
choice of disorder potential. This is further illustrated in
Appendix where we numerically find the same behavior for
power-law-correlated disorder.

IV. SYMMETRY AND THE CONDUCTANCE
OF GRAPHENE NANORIBBONS

A. Symmetries and quantum transport in disordered wires

The quantum transport properties of disordered quantum
wires are universal and determined by their symmetries
only.18 In particular, the symmetry class is determined by
the presence or absence of time-reversal symmetry (TRS) T ,
which is an antiunitary symmetry. A system may belong to
one of the three Wigner symmetry classes: unitary if TRS is
broken, and orthogonal or symplectic if TRS is present with

T 2 = +1 or T 2 = −1, respectively. A system with TRS obeys
T HT −1 = H .

Note that a Hamiltonian may possess a TRS that is, however,
irrelevant: This is the case if the Hamiltonian decomposes into
independent blocks and the symmetry connects only between
them. In this case the TRS has no influence on the quan-
tum transport properties (except guaranteeing a degeneracy
between the blocks), and the symmetry class is determined by
intrablock symmetries only. Below, we identify the appropriate
symmetries for the case of graphene nanoribbons.

B. Symmetries of graphene nanoribbons within
the Dirac approximation

1. Bulk symmetries of graphene and boundary conditions

The bulk Dirac Hamiltonian (3) commutes with four
antiunitary symmetries20,22,26,42

Ti = τi ⊗ σyC for i ∈ 0,x,y,z, (10)

where C denotes complex conjugation. Each of these antiuni-
tary symmetries can play the role of an (effective) TRS.

It is easy to see that T 2
y = 1, whereas T 2

i = −1 for i ∈
{0,x,z}. Ty represents the (true) TRS that connects the two
valleys. Tx is the valley symmetry that guarantees the Kramer’s
degeneracy of both valleys (sinceT 2

x = −1). It should be noted
that T0 and Tz only differ by a phase in the two valleys and are
thus equivalent. In fact, one can write down a whole family of
equivalent effective intravalley TRSs43

T0z(ϑ) = (cos ϑ τ0 + i sin ϑ τz) ⊗ σyC . (11)

From this family, a single antiunitary symmetry will survive
in the case of metallic armchair nanoribbons, as we will
show below. The presence of a magnetic field breaks all four
symmetries Ti .

The other important symmetries of graphene, chiral sym-
metry (τz ⊗ σz)H (τz ⊗ σz) = −H , and particle-hole symme-
try (τ0 ⊗ σx)H ∗(τ0 ⊗ σx) = −H , are broken by the potential
term V (x). Hence, we do not expect to see universality classes
beyond the three Wigner classes.44

It is well known that bulk graphene with long-range
scatterers belongs to the symplectic symmetry class.20,26 In
this case valleys are not mixed and the true TRS Ty as well
as the valley symmetry Tx are irrelevant, and the effective
intravalley TRS T0,z determines the symmetry class.

In a graphene nanoribbon, the antiunitary symmetries
Ti must also be compatible with the boundary conditions.
Boundary conditions in the Dirac equation can be written
generally in the form6,45

�(x) = Mb�(x) for x on boundary b, (12)

where Mb is a Hermitian 4 × 4 matrix. A graphene nanorib-
bon is then symmetric with respect to Ti , if

[Mb,Ti] = 0 , (13)

where [A,B] = AB − BA denotes the commutator. Below
we now specialize to the cases of zigzag and armchair
nanoribbons.
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2. Zigzag nanoribbons

The boundary condition for a zigzag GNR reads5,6

Mb = ±τz ⊗ σz for b = 1,2. (14)

This boundary condition does not mix valleys, which thus
remain a good quantum number. The system is symmetric
with respect to Ty and Tx , but the boundary condition breaks
T0,z. However, since valleys are not mixed for long-range
impurities, the valley-offdiagonal symmetries Tx,y are not
relevant. Since all intravalley TRSs are broken by the boundary
conditions, a zigzag graphene nanoribbon resides in the unitary
symmetry class, as shown in Ref. 23.

These considerations hold as long as there is no intervalley
scattering due to local p-n junctions at the zigzag edge. If there
is, the valleys are strongly mixed, and the only remaining sym-
metry is the TRS of the tight-binding lattice (Ttb = C, T 2

tb = 1).
The Dirac equation cannot capture scattering between the
valleys via the edge state since a continuous equation cannot
represent the finite size of the zigzag GNR Brillouin zone that
is at the heart of the scattering mechanism.41 The zigzag GNR
is then in the orthogonal symmetry class.

3. Metallic armchair nanoribbons

The boundary condition for an armchair GNR reads5,6

Mb = νb · τ ⊗ t · σ ; νb = (sin ϑb, cos ϑb,0), (15)

with b = 1,2, and t points in the direction of the GNR. This
boundary condition strongly mixes valleys, and the relative
valley angle ϑ2 − ϑ1 between the two boundaries of the
armchair GNR depends on the width of the ribbon. For
example, for an armchair GNR in y direction as shown in
Fig. 1(c), ϑb = −2Kxb, where K = 4π/3a.46

A metallic armchair nanoribbon has ϑ1 = ϑ2 = ϑ , i.e.,

M1 = M2 = M . (16)

In this case, ν · τ commutes with both the Hamiltonian
(including disorder) and the boundary condition, and we may
choose the solutions of the Dirac equation as eigenstates
of ν · τ . The solutions can thus be grouped into two new
pseudovalleys, KR and K ′

R, that remain uncoupled for long-
range disorder. The pseudovalley description is obtained from
the usual valleys by means of the rotation

R = e−iπτx/4e−iϑτz/2 . (17)

The metallic armchair boundary condition (16) is symmet-
ric with respect to Ty and T0z(ϑ) with ϑ equal to the valley
angle of the boundary condition, whereas Tx is broken. In the
pseudovalley space they take the form

T R
y = τy ⊗ σyC ,

(18)
T R

0z (ϑ) = −iτx ⊗ σyC ,

where T R = RT R†. Hence, both symmetries are completely
offdiagonal in valley space and are not relevant for determining
the symmetry class in the case of long-range potential. In
the absence of any intrapseudovalley TRS, metallic armchair
GNRs also belong to the unitary symmetry class. Note that
Ref. 47 already discussed effective TRS breaking in the context
of the lowest mode of metallic armchair GNRs in a ring

FIG. 4. (Color online) Pseudovalley resolved band structure of a
metallic armchair nanoribbon after rotation R [see Eq. (17)].

geometry. Our analysis shows the more general result that,
in the low-energy limit, metallic armchair GNRs belong to
the unitary symmetry class without a special geometry and
regardless of the number of modes. We will confirm this using
numerical simulations below.

A metallic armchair GNR features a band structure ε(k)
(with k the Bloch wave vector) with two nondegenerate gapless
linearly dispersing bands and pairs of twofold degenerate
hyperbolic bands (shown in Fig. 4).5 We can use the conserved
antiunitary symmetries to unravel the pseudovalley structure:
Both T R

y and T R
0z (ϑ) lead to48

εKR (k) = εK ′
R

(−k) . (19)

Hence, the two counterpropagating gapless linear modes are
(Kramer’s) partners residing in different pseudovalleys. In
addition, every pseudovalley contains a set of nondegenerate
hyperbolic bands, as shown in Fig. 4.

The pseudovalley structure also reveals that the metallicity
(i.e., absence of a gap) of metallic armchair nanoribbons is
of topological origin: In pseudovalley space, the boundary
condition reads

MR = τz ⊗ t · σ , (20)

and thus takes the form of infinite mass boundary
conditions,6,19 with an infinite mass of opposite sign on the
opposite edges (if both edges had the same sign of mass,
M1 = −M2). Hence, the metallic armchair GNR effectively
exhibits a domain wall with a sign change in mass and thus
supports a gapless linearly dispersing mode.49,50

Finally, it must be emphasized that the pseudovalley
structure is only valid for energies close to the Dirac point. For
higher energies trigonal warping breaks the symmetry between
the K and K ′ valley.20,51 It introduces terms proportional to τz

in the Hamiltonian, which then does not commute any more
with ν · τ and thus invalidates the notion of pseudovalleys. In
fact, the degeneracy of hyperbolic bands (a consequence of
the pseudovalley structure) in the tight-binding model is only
true close to the Dirac point, as shown in Fig. 5(a). For large
energies it is absent [Fig. 5(c)].

4. Semiconducting armchair nanoribbons

An armchair GNR is semiconducting, if ϑ1 �= ϑ2 in Eq. (15)
(i.e., if the two boundaries have different boundary conditions)

M1 �= M2 . (21)
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(a) (b)

(c) (d)

FIG. 5. (a), (b) Tight-binding band structures of wide armchair
graphene nanoribbons close to the Dirac point. (a) Metallic armchair
GNR with W = 501 a. The nonlinear bands are approximately
degenerate for low energies. (b) Semiconducting armchair GNR with
W = 502 a. (c) Full tight-binding band structure of a narrow metallic
armchair GNR with W = 7.5 a. Clearly the band degeneracy is lifted.
(d) Narrow zigzag GNR with W = 19/

√
3 a.

In this case, it is not possible to separate any valley structure,
and hence there is no degeneracy of bands even close to the
Dirac point [Fig. 5(b)]. Ty is the only symmetry of the problem,
and hence semiconducting armchair nanoribbons with long-
range disorder belong to the orthogonal symmetry class.

Our findings for the different types of GNRs are summa-
rized in Table I.

C. Perfectly conducting channels

1. Previous work

One of the most striking features of a zigzag GNR in
the absence of intervalley scattering is the presence of a
perfectly conducting channel (PCC).23 In this case, one of the
transmission eigenvalues is exactly one, such that G/G0 � 1,
regardless of the strength of the disorder. As explained in
Ref. 23, within a single valley, a zigzag GNR has unequal
numbers p, q of right-moving and left-moving channels,
respectively. This can only occur in the absence of TRS and

TABLE I. Summary of symmetry classification of GNRs with
long-range disorder and energies close to the Dirac point. For zigzag
GNRs we must distinguish whether there is intervalley scattering due
to local p-n junctions at the zigzag edge.

GNR Symmetry class

Metallic armchair Unitary
Zigzag, no intervalley scattering due to Unitary

p-n junctions at edge
Zigzag, intervalley scattering due to Orthogonal

p-n junctions at edge
Semiconducting armchair Orthogonal

limits the conductance from below,44

G/G0 � |p − q| . (22)

In a zigzag GNR the difference in right and left movers, |p −
q| = 1, is due to the zigzag edge state that connects the two
valleys [see Fig. 5(d)].

2. Armchair nanoribbons

From our previous analysis, we found that metallic armchair
GNRs also exhibit broken (effective) TRS and have |p − q| =
1 within a single pseudovalley (Fig. 4). The inequality of
left and right movers in this situation is associated with the
linearly dispersing modes of opposite velocity in the two
pseudovalleys. Hence, we also expect a PCC in this situation.
In contrast, a semiconducting armchair GNR belongs to the
orthogonal group and we expect to see ordinary localization.

This is confirmed by our numerical simulations in Fig. 6(a):
We clearly see different localization behavior for semiconduct-
ing and metallic armchair GNRs, with the latter saturating at
G/G0 = 1 for long ribbons, and thus exhibiting a PCC. It
should be emphasized that this PCC is not identical to a single

(a)

(b)

FIG. 6. (Color online) Average conductance of (a) armchair and
(b) zigzag GNRs as a function of ribbon length. In all systems the
Fermi energy corresponds to three open channels. (a) Semiconducting
armchair GNR (black) with W = 251 a and metallic armchair GNR
(blue) with W = 252 a. In both cases, Fermi energy E = 0.017 t and
the disorder parameters are pimp = 0.05, ξ = 2.0 a and δ = 0.08 t .
(b) Zigzag GNR with different widths and disorder parameters (with
pimp = 0.05 and ξ = 2.0 a fixed). Black: W = 434.5/

√
3 a ≈ 251 a,

E = 0.022 t , δ = 0.08 t . Red: W = 88/
√

3 a ≈ 51 a, E = 0.11 t ,
δ = 0.08 t . Orange: W = 88/

√
3 a ≈ 51 a, E = 0.11 t , δ = 0.04 t .

Green (inset): W = 44.5/
√

3 a ≈ 26 a, E = 0.22 t , δ = 0.08 t . The
data in (a) and (b) was averaged over 50–200 impurity configurations.
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channel of the GNR (i.e., the edge state in a zigzag GNR or the
linearly dispersing mode in a metallic armchair GNR), instead
the unit transmission eigenvalue corresponds to a superposition
of all channels.

A previous numerical study25 of metallic armchair GNRs
with long-range disorder found an only approximately unit
conductance quantization in the single-mode regime, and the
absence of a PCC in the multichannel regime. In contrast, our
numerical data shows a PCC even in the multimode regime
[three open channels in Fig. 6(a)]. This apparent contradiction
is resolved by noting that the simulations of Ref. 25 used
very narrow GNRs (W = 7.5a ≈ 1.8 nm), where the second
channel only opens at energies far from the Dirac point [around
0.3t in Fig. 5(c)]. For those high energies, trigonal warping
breaks the pseudovalley structure and the PCC vanishes.

3. Zigzag nanoribbons

In our simulations we have carefully chosen the parameters
of the disorder potential such that bulk valley scattering is
indeed negligible, as shown in Sec. III B. However, there we
also observed that valley scattering could be large in the
presence of zigzag edges. This has also consequences for
the PCC in zigzag GNRs: In Fig. 6(b) we show the average
conductance as a function of ribbon length for various energies,
disorder parameters and width. In particular, zigzag GNRs do
not show a PCC for a disorder where a metallic armchair
GNR very well did [black line in Fig. 6(b) and blue line in
Fig. 6(a), respectively]. Only if the amplitude of the disorder
potential is smaller than the Fermi energy (i.e., if no local
p-n junctions are formed) a PCC can be observed [orange
line in Fig. 6(b)]. However, as the disorder has to be chosen
weaker, the conductance saturates only for very long GNRs.
This breakdown of the PCC due to valley scattering mediated
through the zigzag edge state has not been observed in previous
studies that dealt with narrow ribbons (W ≈ 5 a ≈ 1.2 nm in
Ref. 23) at energies further away from the Dirac point [for an
example of a PCC in this case, see inset of Fig. 6(b)].

4. Zigzag versus metallic armchair nanoribbons

In summary, zigzag and metallic armchair GNRs both
exhibit a PCC. In metallic armchair GNRs, its observation
requires small energies close to the Dirac point; it vanishes
when the Fermi energy is larger and in a regime where trigonal
warping becomes effective. In contrast, for zigzag GNRs the
Fermi energy must be larger than the potential amplitude,
otherwise the valleys are coupled and the PCC vanishes.
Hence, in metallic armchair GNRs the Fermi energy should
be smaller than an intrinsic energy scale (trigonal warping),
whereas in zigzag GNRs the Fermi energy should be larger
than an extrinsic energy scale (disorder potential) in order to
observe the effective TRS breaking and a PCC.

D. Magnetoconductance

Apart from the PCC that reveals itself mainly in the strongly
localized regime, the symmetry class also influences the con-
ductance in the diffusive regime. Due to quantum-coherence
corrections, the conductance can be either smaller [weak
localization (WL)], larger [weak antilocalization (WAL)],

or equal to the classical conductance for the orthogonal,
symplectic, and unitary symmetry classes, respectively.18

These quantum coherence corrections reveal themselves in
the magnetoconductance, in particular in the change of the
disorder averaged conductance with magnetic field

〈δG(B)〉 = 〈G(B)〉 − 〈G(B = 0)〉 , (23)

where B is a magnetic field perpendicular to the GNR and
G(B) the conductance for given field B. Since a magnetic
field breaks TRS, every GNR is in the unitary symmetry class
for large enough B. Hence, for large enough B, 〈δG(B)〉 >

0 (WL) in the orthogonal class, 〈δG(B)〉 < 0 (WAL) in the
symplectic class, and 〈δG(B)〉 = 0 (suppressed WL) in the
unitary class.

Figure 7 summarizes our results of magnetotransport
simulations for zigzag and armchair GNRs. As expected from
our symmetry considerations in Sec. IV B, we observe WL
behavior for semiconducting armchair GNRs (black curve),
whereas the WL correction is suppressed in the metallic
armchair GNR (blue curve). The results for the zigzag GNRs
demonstrate again the importance of intervalley scattering: For
small Fermi energy (red line) the intervalley scattering is large
[parameters as for the black line in Fig. 3(b)] leaving only the
tight-binding TRS Ttb. Thus we observe WL behavior just as in
the case of the semiconducting armchair GNR, as both belong
to the orthogonal symmetry class. Only if valley scattering is
suppressed for larger energies (violet curve), we also observe a
suppression of the WL correction, as expected from the unitary
symmetry class (there is some residual intervalley scattering
in this case, preventing complete suppression as in the metallic
armchair GNR).

Previous studies20,30 assumed that the role of edges is only
to introduce valley scattering and hence expected WL behavior
in GNRs. In contrast, our study has shown that the type of edge,
and even the distance between opposite edges is crucial to

FIG. 7. (Color online) Normalized magnetoconductance of dis-
ordered GNRs: semiconducting armchair GNR (black) with W =
502 a, and E = 0.017 t (six open channels), metallic armchair GNR
(blue) with W = 501 a, and E = 0.017 t (seven open channels), and
zigzag GNR with W = 865.5/

√
3 a ≈ 500 a and E = 0.017 t (red,

five open channels) and E = 0.1 t (violet, 35 open channels). In all
cases, the GNR length was L ≈ 2500 a, and the disorder parameters
pimp = 0.05, ξ = 2.0 a and δ = 0.08 t [as in Fig. 6(a)]. The data was
averaged over 600 impurity configurations, lines are guide to the eye.
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understand the magnetoconductance of GNRs in the quantum
regime.

Random matrix theory18 (RMT) predicts a universal value
of the quantum-coherence correction in the limit of a large
channel number. This value only depends on how far the
system has approached the diffusive limit measured by the
parameter s = 2L/πltr. From Eq. (8) we obtain s ≈ 1.6
for the chosen disorder parameters (see caption of Fig. 7),
which agrees well with the value estimated from the average
conductance in the simulation (s ≈ 2). The value of the
WL correction in the orthogonal symmetry class is then18

limB→∞〈δG(B)/G0〉 ≈ 0.26. The WL correction obtained
from our numerical simulations agrees reasonably with this
prediction, given that the number of channels is still small.

E. Universal conductance fluctuations

In addition to the quantum-coherence correction to the
(average) conductance, RMT also predicts universal values
of the conductance fluctuations Var(G/G0) [universal conduc-
tance fluctuations (UCF)].18 Both zigzag and metallic armchair
GNRs are in the unitary symmetry class but have degenerate
(pseudo)valleys. As a consequence, we expect UCFs of four
times the universal value of the unitary class. In magnetic field,
the (pseudo)valleys remain independent, but their degeneracy
is broken, since all of the antiunitary symmetries (10) are
broken by magnetic field. Hence the UCFs take twice the value
of the unitary class. A semiconducting armchair GNR does not
allow for a decomposition into independent blocks and thus the
UCFs take the value of the orthogonal and unitary class in the
absence and presence of a magnetic field, respectively. Since
the UCFs in the orthogonal symmetry class are twice as large as
in the unitary symmetry class, the UCFs in zigzag and metallic
armchair GNRs are twice as large as for semiconducting
armchair nanoribbons, both in the absence and presence of
a magnetic field.

Figure 8 shows the universal conductance fluctuations as
obtained from our numerical simulations. We indeed observe
that the UCFs of metallic armchair GNRs and zigzag GNRs

FIG. 8. (Color online) Universal conductance fluctuations as a
function of magnetic field for semiconducting armchair (ac) GNRs
(black), metallic armchair GNRs (blue), and zigzag GNRs (red: E =
0.017t , large intervalley scattering; violet: E = 0.1t , small intervalley
scattering). The dashed lines show the RMT predictions for the value
of the UCFs for s = 1.6. Parameters as in Fig. 7.

with little intervalley scattering are always significantly larger
than the UCFs of semiconducting armchair GNRs and zigzag
GNRs with large intervalley scattering. We even find good
quantitative agreement with the RMT values. Only the UCFs
for semiconducting armchair GNRs and zigzag GNRs with
large intervalley scattering are somewhat larger than the
theoretical prediction, probably due to the still small number
of channels.

V. CONCLUSION

We have carefully investigated the symmetry classifications
of graphene nanoribbons with long-range disorder in the Dirac
limit, and studied their imprints on the conductance. Table I
summarizes our findings.

In principle, all of the considered graphene nanoribbons
are time-reversal symmetric in the absence of a magnetic
field. However, if intervalley scattering is absent (hence the
condition of long-range disorder), this true TRS that connects
the two valleys is irrelevant, and the type of boundary is
decisive for the symmetry properties.

In particular, we have found that in the case of armchair
GNRs (that up to now were generally assumed to be in the or-
thogonal symmetry class) it is necessary to distinguish between
semiconducting and metallic variants: While semiconducting
armchair GNRs inevitably mix valleys and thus belong to the
orthogonal symmetry class, metallic armchair GNRs have a
hidden pseudovalley structure that together with the boundary
conditions places them into the unitary symmetry class.

Zigzag graphene nanoribbons have already previously23

been identified to belong to the unitary symmetry class.
However, we have shown for this classification it is necessary
that the Fermi energy is larger than the disorder potential
fluctuations. Otherwise, local p-n junctions at the zigzag edge
act as strong intervalley scatterers.41 We have demonstrated
numerically that the intervalley scattering due to this mecha-
nism can lead to complete valley mixing, although the disorder
potential alone would not scatter valleys. Hence, for zigzag
nanoribbons to be in the unitary class it is not enough to be in
the Dirac limit and to have long-range disorder, there is also
a restriction on the magnitude of the potential with respect to
the Fermi energy.

The symmetries of the GNRs also have a strong influence
on their quantum transport properties. In a metallic armchair
GNR, the pseudovalley structure manifests itself most conspic-
uously in a perfectly conducting channel (i.e., a lower bound
of one conductance quantum even in a strongly disordered
nanoribbon).

The perfectly conducting channel reveals itself most clearly
in the strongly localized regime, but the symmetries of the
GNRs also manifest themselves in the diffusive regime.
We showed that weak localization is strongly suppressed in
metallic armchair GNRs as well as zigzag GNRs with little
intervalley scattering. In contrast, semiconducting armchair
GNRs and zigzag GNRs with a disorder potential amplitude
larger than the Fermi energy exhibit weak localization (instead
of weak antilocalization expected for bulk graphene with long-
range disorder) due to intervalley scattering at the armchair
edges and local p-n junction at the zigzag edge, respectively.
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In addition, the interplay of symmetry classes and the de-
generacy of the (pseudo)valley structure of metallic armchair
GNRs and zigzag GNRs with little intervalley scattering leads
to larger conductance fluctuations than in semiconducting
armchair GNRs and zigzag GNRs with intervalley scattering.
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APPENDIX: INTERVALLEY SCATTERING AND ZIGZAG
EDGES FOR COULOMB DISORDER

In Sec. III B we discussed that the presence of zigzag edges
can drastically enhance intervalley scattering when local p-n
junctions are formed at the edge due to the disorder amplitude
being comparable to the Fermi energy. In order to further
demonstrate the generality of this mechanism, we show here
that this behavior persists also for other types of disorder
potentials, in particular power-law-correlated potentials.

For this we use a disorder potential consisting of randomly
placed Coulomb potentials

V (x) =
Ni∑

j=1

δ√
(x − Xj )2 + d2

− 〈V 〉 . (A1)

Xj is the position of the j th impurity, and d its distance from
the graphene sheet. We use Ni = pimp Na randomly distributed
scatterers, where Na denotes the total number of lattice sites
in the disordered region, and pimp < 1. δ is used to control
the strength of the impurities (and for real Coulomb impurities
determined by the dielectric constant and the charge of the
impurity). In order to avoid trivial shifts of the Fermi energy,
we choose the disorder potential such that it has zero mean
[obtained by subtracting the mean in Eq. (A1)].

(a) (b)

FIG. 9. (Color online) (a) Example of a realization of the
Coulomb-like impurity potential (A1) for δ = 0.5ta. Note the
different spatial scale compared to Fig. 2(a). (b) Probability for
intervalley scattering in reflection as a function of impurity strength
δ [Coulomb-like impurities (A1)]. The data for zigzag boundaries
(black solid line) and for periodic boundary conditions (red dashed
line) were obtained by averaging over 100 impurity configurations.
The ribbons had width W ≈ 500a and length L ≈ 2500a, the Fermi
energy was E = 0.1t . In both (a) and (b), d = 10a and pimp =
5 × 10−4.

In Fig. 9(a) we show an example realization of the
Coulomb-like disorder potential, showing variations on a
larger length scale compared to Gaussian disorder potential
in Fig. 2(a). Nevertheless, we see very similar behavior for
the intervalley scattering [Fig. 9(b)]: As for the Gaussian
disorder potential, we observe a similar intervalley scattering
probability for both zigzag and periodic boundary conditions
at small impurity strengths δ. However, when the potential
amplitude becomes comparable to the Fermi energy [around
δ = 0.4 − 0.5t , cf. Fig. 9(a)], the intervalley scattering rate
raises dramatically for zigzag boundaries and is an order of
magnitude larger than for periodic boundary conditions.

The reason is again the formation of local p-n junctions
at the zigzag edge, which happens generically for every type
of disorder, when the disorder potential amplitude becomes
comparable to the Fermi energy. The relative enhancement
due to the zigzag edges depends on the geometry of the ribbon
and the details of the potential: For example, it is smaller
in Fig. 9(b) compared to Fig. 3, as there are fewer local
p-n junctions due to the slower fluctuations of the disorder
potential.
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