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In the absence of phonon contribution, a weakly coupled single orbital noninteracting quantum dot
thermoelectric setup is known to operate reversibly as a Carnot engine. This reversible operation, however,
occurs only in the ideal case of vanishing coupling to the contacts, wherein the transmission function is delta
shaped, and under open-circuit conditions, where no electrical power is extracted. In this paper, we delve into
the thermoelectric performance of quantum dot systems by analyzing the power output and efficiency directly
evaluated from the nonequilibrium electric and energy currents across them. In the case of interacting quantum
dots, the nonequilibrium currents in the limit of weak coupling to the contacts are evaluated using the Pauli master
equation approach. The following fundamental aspects of the thermoelectric operation of a quantum dot setup are
discussed in detail: (a) With a finite coupling to the contacts, a thermoelectric setup always operates irreversibly
under open-circuit conditions, with a zero efficiency. (b) Operation at a peak efficiency close to the Carnot value is
possible under a finite power operation. In the noninteracting single orbital case, the peak efficiency approaches
the Carnot value as the coupling to the contacts becomes smaller. In the interacting case, this trend depends
nontrivially on the interaction parameter U . (c) The evaluated trends of the maximum efficiency derived from
the nonequilibrium currents deviate considerably from the conventional figure of merit zT -based results. Finally,
we also analyze the interacting quantum dot setup for thermoelectric operation at maximum power output.
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I. INTRODUCTION

Thermoelectrics are currently an object of immense in-
terest and intense research activity owing to the possi-
ble enhancement of the energy conversion efficiency via
nanostructuring1–3 and novel materials design.4 A higher
energy conversion efficiency of a thermoelectric system is
typically quantified by an increase in zT , the dimensionless
figure of merit. The figure of merit zT is defined as

zT = S2σT

κel + κph
, (1)

where S, σ , and κel (ph) are the linear response transport co-
efficients, namely, the thermopower (Seebeck coefficient), the
electrical conductivity, and the electron (phonon) thermal con-
ductivity, with T being the average operating temperature. The
proposed increase in zT is envisioned via novel approaches
toward engineering the electronic1–4 or phononic transport5–7

properties. Among various low-dimensional nanoscale sys-
tems, zero-dimensional systems such as quantum dots have
been of special interest because they may exhibit an in-
finitely high value of zT in the absence of phonon thermal
conductivity.8

The energy conversion efficiency η of a thermoelectric
system is usually defined as η = P

J in
Q

, with P being the extracted

power and J in
Q being the input heat current. Consider, for

example, a setup with a central system sandwiched between
two reservoirs held at a fixed temperature and electrochemical
potential. Under the assumption of small electrochemical po-
tential, �μ, and small temperature, �T , differences between
the reservoirs, the electric current J , and the heat current JQ

may be written as9,10

J = L11�μ + L12�T,
(2)

JQ = L21�μ + L22�T,

where Lij represents the Onsager coefficients. The Onsager
coefficients Lij , are in turn related to the linear response
parameters, namely, σ , S, and κel, that appear in the aforemen-
tioned definition of zT . The efficiency η, when maximized
with respect to J , yields its maximum ηmax to be an increasing
function of zT ,11 given by

ηmax = ηC

√
1 + zT − 1√

1 + zT + TC

TH

, (3)

where the thermoelectric material operates between two
contacts maintained at temperatures TH and TC , with ηC =
1 − TC

TH
being the Carnot efficiency. It is therefore convenient

to employ zT as a performance metric to facilitate the design
of maximally efficient thermoelectrics.

However, as noted above, the use of zT as the performance
metric in lieu of the actual efficiency relies on the assumption
of linear response. While a high figure of merit zT is often
a necessary component for a good thermoelectric, it does not
sufficiently underpin the working conditions that are involved.
For example, an analysis of the figure of merit zT of the
single orbital quantum dot system,8 under the condition of
vanishing coupling to the contacts, simply points to its infinite
value and the resulting efficiency maximum as the Carnot
value. It was pointed out only recently12–17 that this efficiency
maximum only occurs under open-circuit conditions, implying
an operating condition with a vanishing current and hence a
vanishing power output. The Carnot efficiency is reached only
due to the possibility of this reversible operation12,14 under
open-circuit conditions.

The open-circuit condition, although associated with a
vanishing current, is an operating point which has both an
electrochemical potential gradient and a temperature gradient.
The voltage VS associated with this electrochemical potential
difference ±qVS , with q being the electric charge, is known
as the Seebeck voltage. This voltage cancels the current set up
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by the applied temperature gradient. It is hence pertinent to
analyze thermoelectric operation by using a nanocaloritronic
setup, wherein the central system is subject to a bias drop, not
necessarily equal to the Seebeck voltage, and a temperature
gradient.

The central system considered in our nanocaloritronic anal-
ysis is a single orbital interacting quantum dot. Steady-state
nonequilibrium currents through the central system, rather than
linear response parameters, are used to evaluate the power and
hence the efficiency at each operating point. Each operating
point is defined by the applied bias and the applied temperature
gradient. The primary goal of our transport calculations is
to identify the operating conditions that point to a specific
operating efficiency in relation to the operating power. Some
recent works,13,16,18,19 for example, have specifically analyzed
the operation of a single orbital noninteracting quantum dot
thermoelectric setup at maximum power. A recent investi-
gation that includes Coulomb interactions15 has noted the
importance of nonlinear effects, and has focused on the role of
a phonon bath on the thermoelectric operation. Another recent
work20 has focused on the effect of Coulomb interaction on
the figure of merit zT . The main focus of this paper therefore
is a comprehensive performance analysis of a quantum dot
thermoelectric setup. The following fundamental aspects of
the thermoelectric operation of a quantum dot setup are then
discussed in detail: (a) With a finite coupling to the contacts,
a thermoelectric setup always operates irreversibly under
open-circuit conditions, with a zero efficiency. (b) Operation at
a peak efficiency close to the Carnot value is possible under a
finite power operation. In the noninteracting single orbital case,
the peak efficiency approaches the Carnot value as the coupling
to the contacts becomes smaller. In the interacting case, this
trend depends nontrivially on the interaction parameter U . (c)
The evaluated trends of the maximum efficiency derived from
the nonequilibrium currents deviate considerably from the
conventional figure of merit zT -based result. We point out in
detail the discrepancies between our nonequilibrium analysis,
and the linear response analysis that is usually based on the
figure of merit zT . Given the current experimental possibility
of thermoelectrics across zero-dimensional systems,21,22 and
the recent theoretical activity exploring nonlinear thermoelec-
tric effects12,13,15,16,18,19 across them, our paper elucidates the
importance of Coulomb interaction on their thermoelectric
performance.

This paper is organized as follows. Section II describes
the necessary formulation: first the definition of the electric
and energy currents through the quantum system, then the
formalism used to evaluate these currents and hence the power
output and efficiency across it. The quantum transport system
under consideration is a single level Anderson-impurity-type
quantum dot that is weakly coupled to the contacts in the se-
quential tunneling limit. The formulation for currents follows
from the density-matrix master equation approach under this
sequential tunneling approximation.23–26 Section III begins
by describing the thermoelectric operation of a quantum dot
setup in the absence of interactions (U = 0). Following that,
the fundamental results due to the introduction of Coulomb
interactions (finite U ) are discussed in detail. The section
concludes with an analysis of the maximum power operation.
It is shown that with Coulomb interactions the maximum

FIG. 1. (Color online) Nanocaloritronics of a quantum thermo-
electric transport setup. (a) A typical thermoelectric setup comprises
the central quantum system described by the Hamiltonian ĤS

sandwiched between two reservoirs labeled hot (cold), α = H (C).
When this central system is subject to an electrochemical potential
gradient and a temperature gradient, the resulting current J drives an
electrical power P = −JVapp via the electrical leads. Equal contact
couplings �H = �C are assumed throughout. (b) A single orbital
quantum dot is parametrized by its single-particle energy level ε

and the Coulomb interaction parameter U . Transport is represented
as transitions between states of the many-particle spectrum with
electron numbers differing by ±1. Transport channels then comprise
the energy difference ε,ε + U between those states with electron
numbers differing by ±1. (c) Schematic depicting the thermoelectric
effect under open-circuit conditions: The built-in or Seebeck voltage
VS enforces zero current in the circuit. Thermoelectric operation
occurs when the applied voltage Vapp ∈ [0,VS], where the condi-
tion Vapp = VS enforces open-circuit operation. The thermoelectric
efficiency defined in the operating region Vapp ∈ [0,VS] is strongly
affected by the energy difference ε − μα , the applied temperature
gradient �T = TH − TC , and the magnitude U of the Coulomb
interaction.

power operation is relatively unaffected in comparison with the
noninteracting case discussed in other works.16,18,19 Section IV
summarizes the results of this work.

II. THEORETICAL FORMULATION

A prototype nanocaloritronic configuration of a quantum
thermoelectric setup is shown in Fig. 1(a). In this setup, the
central quantum system is coupled to two reservoirs/contacts
α, which are labeled α = H (hot) and α = C (cold), each
of which is characterized by a temperature TH (C) and an
electrochemical potential μH (C). This setup closely relates
to that of a heat engine commonly studied in classical
thermodynamics. Under this setup, the central system plays the
role of the heat engine with the reservoirs acting as heat sources
or sinks. In the case of a thermoelectric setup, however, we also
need to invoke the additional concept of particle exchange,12

due to the fact that the reservoirs are characterized by both
temperature and electrochemical potential, thus facilitating
both energy and particle transport. An applied voltage bias
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qVapp = μC − μH , an applied temperature gradient �T =
TH − TC , or both, trigger particle flux and hence a flow of both
an electric and an energy current results. In order to describe
quantum thermoelectric transport across the system of interest,
electric and energy currents must be clearly defined.

A. Electric and energy currents

We begin with the fundamental thermodynamic equation
relating the internal energy E of a nonmagnetic system with
extensive variables such as entropy S, volume V , and particle
number N given by27

E(S,V,N ) = T S − pV + μN, (4)

where the intensive variables are the temperature T , pressure
p, and the electrochemical potential μ. The above definition
relates to the thermodynamic state of the system. The case of
thermoelectric transport involves electron transfer processes
during which the thermodynamic state of the system changes.
When such processes are involved, one measures the change in
the internal energy with respect to the change in the extensive
parameters. Specific to our case, thermoelectric transport oc-
curs at constant volume (�V = 0). Electron transfer processes
occur between either reservoir (α = H,C), each maintained
at a fixed temperature and a fixed electrochemical potential,
and the system as shown in Fig. 1(a). One may then write
an equation for the infinitesimal change in the internal energy
due to an infinitesimal charge transfer between either reservoir
(α = H,C) and the system as

dEα = TαdSα + μαdNα. (5)

Using the above definition, we can take total time derivatives
to define a current associated with the corresponding flux of
the extensive variables given by

J α
E = TαJ α

S + μαJ α
N . (6)

The quantity TαJ α
S is usually termed as the heat current

involved in the isothermal electron transfer between either
reservoir and the system. This quantity, in general, is the
contribution to the energy current that keeps track of entropy
flow as given by JS . Although the term heat current is
widely used in literature, it may not by itself be accurate
because heat is not a state function and the definition of
differentials of such quantities may not be obvious. However,
in the case of thermoelectric transport that is considered
in this work, the quantity JQ may be termed heat current,
following the arguments put forward in early works.9,10 The
central assumption is that the reservoirs are maintained in
equilibrium and hence the flow of charge and heat to and from
the reservoirs happens reversibly. All irreversible processes
are expected to occur in the interfacial region between the
reservoirs and the quantum dot. In such a reversible process,
the expression �Qα = Tα�Sα holds true, for the reservoir.
Hence, the equation may now be recast in terms of the quantity
J α

Q = TαJ α
S as

J α
E = J α

Q + μαJ α
N, (7)

where the quantity J α
Q is the heat current in the reservoir α. In

the quantum mechanical case, in order to define currents, we
define the time-dependent average current due to an operator
Ô that is associated with one of the extensive variables as
follows:

JO(t) =
〈
dÔ

dt

〉
,

(8)
dÔ

dt
= − i

h̄
[Ĥ ,Ô] + ∂Ô

∂t
,

where [Ĥ ,Ô] represents the commutator of the overall Hamil-
tonian Ĥ with the operator Ô. For a quantum-mechanical
setup, based on the schematic of Fig. 1(a), the description
of currents thus begins by describing the overall Hamiltonian
Ĥ which is usually written as Ĥ = ĤS + ĤR + ĤT , where
ĤS,ĤR , and ĤT represent the system, reservoir, and reservoir-
system coupling Hamiltonians, respectively. In this paper, the
system comprises the single orbital Anderson-impurity-type
quantum dot subject to Coulomb interaction described by the
following one-site Hubbard Hamiltonian:

ĤS =
∑

σ

εσ n̂σ + Un̂↑n̂↓, (9)

where εσ represents the orbital energy, n̂σ = d̂†
σ d̂σ is the

occupation number operator of an electron with spin σ =↑ or
σ =↓, and U is the Coulomb interaction between electrons
of opposite spins occupying the same orbital. The exact
diagonalization of the system Hamiltonian then results in
four Fock-space energy levels labeled by their total energies
0,ε↑,ε↓ and ε↑ + ε↓ + U . In this paper, we consider only
a spin-degenerate level such that ε = ε↑ = ε↓. Electronic
transport generally involves the addition and removal of
electrons. In the limit of weak contact coupling (h̄� � kBT ),
transport may be viewed as of transitions between the Fock-
space levels that differ by an electron number of ±1 as
shown in Fig. 1(c). The reservoir/contact Hamiltonian is
given by ĤR = ∑

α=H,C

∑
kσ εαkσ n̂αkσ = ∑

αkσ ĥαkσ , where
α labels the hot/cold reservoir (H or C in our case) and
the summation is taken over the single-particle states labeled
{kσ }. The tunneling Hamiltonian represents the system-
contact coupling usually written as ĤT = ∑

αkσ (tαkσ ĉ
†
αkσ d̂σ +

t∗αkσ d̂†
σ ĉαkσ ) = ∑

αkσ ĥT αkσ , where (ĉ†,ĉ) and (d̂†,d̂) denote
the creation/annihilation operators of the reservoir and system
states, respectively.

Pertinent to our problem, one can use Eq. (8) to evaluate, for
example, the steady-state electric and energy currents through
the system. The steady-state current is then derived in the
limit when t → ∞. Also, in our case the operator does not
explicitly depend on time implying that ∂Ô

∂t
= 0. We can then

write the particle current due to either contact α = H/C by
summing contributions over its one-electron states labeled
{kσ } as J α

N = 〈∑kσ Ĵ α
kσ 〉 = 〈∑kσ

dn̂αkσ

dt
〉. The expression for

the electric current due to either contact given by J α = −qJ α
N

then becomes

J α = −q

〈∑
kσ

∑
k′σ ′

− i

h̄
[ĥT αk′σ ′,n̂αkσ ]

〉
, (10)
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where q is the electronic charge. Likewise, the energy current
due to the contact α is written as

J α
E =

〈∑
kσ

dĥαkσ

dt

〉

=
〈∑

kσ

∑
k′σ ′

− i

h̄
[ĥT αk′σ ′,ĥαkσ ]

〉

=
〈∑

kσ

εαkσ

dn̂αkσ

dt

〉
. (11)

The quantity J α
Q due to the contact α then becomes

J α
Q = TαJ α

S =
〈∑

kσ

(εαkσ − μα)
dn̂αkσ

dt

〉
. (12)

The above expression is the commonly employed relationship
that connects the so-called heat currents with entropy and
particle currents.15 Calculation of the total time derivative
of the number operator n̂αkσ involves the evaluation of
its commutator with the tunneling Hamiltonian ĥT αkσ , as
described in Eq. (10). Following Eq. (8), the expectation value
of an operator is evaluated by tracing over the composite
system-reservoir density matrix, i.e., 〈Ô〉 = Tr{ρ̂(t)Ô(t)}.
The time evolution of ρ̂(t) is given by the Liouville equation.
The reduced density matrix ρ̂red(t) of the system may be
obtained by performing a trace exclusively over the reservoir
space. An expansion of the Liouville equation to the second
order in the tunneling Hamiltonian in the limit of weak contact
coupling (h̄� � kBT ), leads to the density-matrix master
equation for the reduced density matrix of the system.23–25 In
second order, coherences vanish for the considered single or-
bital model,26 and one is left with a scalar rate equation28–30 in
terms of the occupation probabilities P N

i = 〈N,i|ρ̂red(t)|N,i〉
of each N electron Fock state |N,i〉 with total energy EN

i . The
index i here labels the states within the N electron subspace.
This Pauli master equation then involves transition rates
R(N,i)→(N±1,j ) between states |N,i〉 and |N ± 1,j 〉 differing
by a single electron, leading to a set of independent equations
defined by the size of the Fock space:

dP N
i

dt
=

∑
j

[
R(N±1,j )→(N,i)P

N±1
j − R(N,i)→(N±1,j )P

N
i

]
,

(13)
along with the normalization equation

∑
i,N P N

i = 1. Notice
that, in the stationary limit considered here, where t → ∞, the
Markov approximation implicit in Eq. (13) becomes exact.25,26

At energies close to the Fermi level, metallic contacts can be
described using a constant density of states, parametrized using
the bare-electron tunneling rates γα = ∑

kσ
2π
h̄

|tαkσ,s |2δ(E −
εkσ ), with (α = H/C). We define the rate constants as

�Nr
αij = γα|〈N,i|d̂†

σ |N − 1,j 〉|2,
�Na

αij = γα|〈N,i|d̂σ |N + 1,j 〉|2. (14)

The transition rates for the removal (|N,i〉 → |N − 1,j 〉)
and addition (|N,i〉 → |N + 1,j 〉) transitions are then

given by

R(N,i)→(N−1,j ) =
∑

α=H,C

�Nr
αij

[
1 − f

(
εNr
ij − μα

kBTα

)]
,

(15)

R(N,i)→(N+1,j ) =
∑

α=H,C

�Na
αij f

(
εNa
ij − μα

kBTα

)
.

The contact electrochemical potentials and temperatures are
respectively labeled as μα and Tα , and f is the corresponding
Fermi-Dirac distribution function with single-particle removal
and addition transport channels given by

εNr
ij = EN

i − EN−1
j ,

(16)
εNa
ij = EN+1

j − EN
i .

Finally, the steady-state solution to Eq. (13), set by dP N
i

dt
= 0,

is used to obtain the terminal current associated with contact
α:

J α = −q

Ntot∑
N=1

∑
ij

[
Rα

(N−1,j )→(N,i)P
N−1
j − Rα

(N,i)→(N−1,j )P
N
i

]
,

(17)

where Ntot is the total number of electrons in the system. In
our case, for example, Ntot = 2. Likewise, the quantity J α

Q

associated with either contact can be similarly defined using
Eq. (12) as

J α
Q =

Ntot∑
N=1

∑
ij

[(
ε

(N−1)a
ji − μα

)
Rα

(N−1,j )→(N,i)P
N−1
j

−(
εNr
ij − μα

)
Rα

(N,i)→(N−1,j )P
N
i

]
. (18)

Here, the sum over reservoir indices (kσ ) in Eq. (12) has been
replaced by indices (i,j ) corresponding to the system states
because of elastic electron transfer between the reservoir and
the system, described by the energetics εkσ = ε

(N−1)a
ji for the

additive transition, and εkσ = εNr
ij for the removal transition.

Notice from Eq. (15), that the total rates R(N,i)→(N±1,j ) and
R(N±1,j )→(N,i) appearing in Eq. (13) are the sum of individual
rates associated with either contact in Eqs. (17) and (18).

B. Power and efficiency

In a classical heat engine, the efficiency of a thermodynamic
cycle is defined as η = W

Qin
, which is simply the ratio between

the work extracted and the heat supplied. However, while
working with the nanocaloritronic configuration shown in
Fig. 1(a), it is important to evaluate the efficiency under a finite
power operation because conversion of entropy currents to
electric currents is desired. In our case, in which the operation
at a finite power is desired, the efficiency is given in terms of
the rates of flow of various quantities:

η = P

J in
Q

, (19)

where the instantaneous power or just the power is defined
as P = (J in

Q − J out
Q ). Following Eq. (12), and assuming no

intrasystem or endodynamic energy changes due to inelastic
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processes, the net electrical power between the hot and cold
reservoirs can be written as

P = (
JH

Q + JC
Q

) = − 1

q
(μC − μH )J = −VappJ, (20)

where J = JH = −JC refers to the electric current whose
magnitude is conserved in steady state. It must be noted that
the above expression has both the Joule and the thermoelectric
components.31,32 For example, specific to the linear response
case, one obtains P = L11[(�μ)2 + L12�T �μ]/q, by em-
ploying Eq. (2). This combines linear and quadratic terms in
the applied voltage bias qVapp = (μC − μH ) = �μ, the linear
term being the thermoelectric part, and the quadratic term
being the Joule part.

The power generated, and hence the efficiency, is generally
evaluated at an operating point. Each operating point is
specified by the applied bias Vapp and the temperature gradient
�T = TH − TC . For the upcoming analysis, we work with
the convention that the temperature gradient is applied at the
contact labeled H , and the voltage bias Vapp is applied at the
contact labeled C. In all our calculations, we assume that half
of the applied voltage drops across the quantum dot as a result
of equal capacitive coupling to the two contacts.

III. THERMOELECTRIC OPERATION
OF A QUANTUM DOT

In the realm of molecular electronics or quantum dot
transport, it is common to start with a microscopic under-
standing of transport processes across a single spin-degenerate
orbital subject to Coulomb interactions. Often this leads
to a qualitative physical picture of various experimental
observations and the additional complexity of multiple levels
may append mainly to the quantitative aspect. Based on
the formulation discussed in the previous section, we first
elucidate the thermoelectric operation of the quantum dot setup
without Coulomb interactions. Following that, we discuss the
important results of this work that arise due to the inclusion of
Coulomb interactions.

A. Power and efficiency of a noninteracting quantum dot
thermoelectric setup

First we discuss the results that follow from the sequential
tunneling model. This model implies a delta line shape for the
quantum dot density of states and transmission function. In
this limit, the analytical results for the currents are given by

J = −2qγH γC

γH + γC

[fH (ε) − fC(ε)] ,

J α
Q = 2γHγC

γH + γC

(ε − μα) [fH (ε) − fC(ε)] , (21)

with γH,C being the contact coupling energies associated with
contacts H,C. Here, fα(ε) = f ( ε−μα

kBTα
) refers to the Fermi-

Dirac distribution of either contact. The factor of 2 appears
due to spin degeneracy in the noninteracting case.

Based on the schematic in Fig. 1(c), the basic thermoelectric
operation can be described as follows. An electric current is
set up by the applied temperature gradient. Under open-circuit
conditions, the Seebeck voltage VS is set up in order to oppose

this current. This built-in voltage can be used to drive power
across an electrical system, say a resistor. Alternatively, while
working in a circuit configuration an externally applied voltage
bias Vapp may be used as a variable electric current source. The
condition that enforces zero electric current is then equivalent
to an operating condition with an applied bias Vapp = VS . It is
now easy to see from Eq. (21) that a zero electric current may
be enforced by fH (ε) = fC(ε) or

ε − μH

kBTH

= ε − μC

kBTC

. (22)

In general, the quantity J α
Q under the above condition need not

also be identically zero. In the present case, however, J α
Q is

also zero, and is easily noted from Eq. (21). This point has an
important implication with respect to the operating efficiency.

It can be shown by using the definition of efficiency,
Eqs. (19) and (21), that the efficiency is given by

η = (μC − μH )

(ε − μH )
. (23)

Notice that the expression for the efficiency is independent
of the current J . Under open-circuit conditions, it can then
be deduced that the maximum efficiency ηmax = ηC . Thus,
a noninteracting quantum dot, under the limit of vanishing
coupling to the contacts, operates reversibly and achieves
the Carnot efficiency under open-circuit conditions. A brief
discussion of the thermodynamic aspects of this reversible
operation is carried out in the Appendix. Finally, making
another connection with8 the zero value of the quantity J α

Q

results in a zero electron thermal conductivity, i.e., κel = JQ

�T
=

0. This results in an infinitely high value of zT in the absence
of phonon contribution, and following Eq. (3), leads to the
maximum efficiency equaling that of the Carnot efficiency.

Effect of line width. The rather surprising result of achieving
a finite efficiency under zero power operation is indeed
an artifact of the sequential tunneling approximation which
implies the idealized delta form for the transmission function.
Going beyond the sequential tunneling approximation, the
delta function broadens, and hence impacts the conclusions
drawn above. In the specific case of the noninteracting limit, it
is possible to exactly evaluate the currents using for example,
the transmission formalism13 as

J = −2qγH γC

γH + γC

∫ ∞

−∞
dE D(E) [fH (E) − fC(E)] ,

J α
Q = 2γH γC

γH + γC

∫ ∞

−∞
dE D(E)(E − μα) [fH (E) − fC(E)] ,

(24)

where the broadened density of states D(E) is given by

D(E) = 1

2π

γH + γC

((E − ε)2 + [(γH + γC)/2]2)
. (25)

The efficiency, as seen in Fig. 2(b), given by the ratio of P and
JH

Q , drops to zero under open-circuit conditions. This is be-
cause unlike in the previous case, it can be noted from Eq. (24),
that JH

Q need not also vanish when J = 0. This also implies that
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FIG. 2. (Color online) Power and efficiency in the noninteracting
(U = 0) limit for Carnot efficiency ηC = 0.23 (black solid) and
ηC = 0.33 (green circles). The temperature at the cold contact is
set to TC = 100 K, and the equilibrium energy-level placement is set
to ε − μH = 2kBTH at Vapp = 0. The couplings to the reservoirs are
taken as h̄γH = h̄γC = 0.01 meV ≈ 10−3kBT . (a) Plot of extracted
power as a function of the applied bias Vapp. The span of the operating
region Vapp ∈ [0,VS] broadens with an increase in the applied
temperature gradient �T = TH − TC . Results from the sequential
tunneling approximation (dotted) and the exact calculation (bold)
are identical. (b) Corresponding plots of efficiency in the operating
region. Under the sequential tunneling approximation (dotted), the
efficiency maximizes at the Carnot efficiency ηC when the applied
bias equals the built-in voltage (Vapp = VS). This corresponds to the
reversible thermoelectric configuration (Refs. 8, 12, and 13) (see text).
In the exact calculation (bold), however, the efficiency drops to zero
under open-circuit conditions. The efficiency at maximum power lies
in an intermediate operating point corresponding to the maximum
power Pmax shown in (a).

the Carnot efficiency can never be reached in the real situation.
In our simulations, we have used h̄γH = h̄γC = 0.01 meV =
10−3kBT , such that the condition for weak coupling to the
contacts h̄� � kBT is satisfied. One can hence note from
Fig. 2(a) that there is almost no difference in the variation
of power between sequential tunneling approximation and the
exact calculation. The sequential tunneling limit thus provides
a very good approximation for the evaluation of currents in the
limit of weak coupling to the contacts, but fails to describe the
correct trend for the efficiency in this limiting case.

The efficiency under open-circuit conditions is identically
zero, because the quantity JH

Q is finite when the current J is

zero. Using Eq. (24) and J α
Q = TαJ α

S , we note that

JC
S − JH

S =
∫ ∞

−∞
dE j (E)

(
(E − μC)

TC

− (E − μH )

TH

)
,

(26)
where j (E) = 2γH γC

γH +γC
D(E)[fH (E) − fC(E)]. Physically, the

above result implies that although the flow of electrons from
the hot to the cold contact under open-circuit conditions
is balanced by the reverse flow, the net flow of entropy
is not. Entropy can then be produced while maintaining a
zero net particle flux. This entropy production thus results
in a finite entropy current under open-circuit conditions.
Therefore, it implies that unlike the special case of vanishing
coupling to the contacts that is discussed in the Appendix,
spontaneous electron exchange between the reservoirs is
inherently irreversible.

Operating region. Thus far, we have considered only
one operating condition, namely, that of the open-circuit
operation in which Vapp = VS . In order to fully characterize
the thermoelectric setup, an understanding of its operation at
an arbitrary applied bias Vapp must be considered. According
to our convention, and following the definition of efficiency in
Eq. (19), useful work may be extracted only in the region
of non-negative power (P � 0). Therefore, the domain in
which P � 0 that is represented by the applied bias 0 �
Vapp � VS , as shown in the schematic in Fig. 1(a), defines
the operating region. The extracted power in this operating
region Vapp ∈ [0,VS] is shown in Fig. 2(a) for two different
values of the applied temperature gradient, and hence of the
Carnot efficiency. Notice that the extracted power is identically
zero (P = 0) under two operating conditions: short circuit
condition when Vapp = 0, and open-circuit condition when
Vapp = VS . The first one corresponds to a zero bias and
the second one corresponds to the condition with a zero
electric current. The operating region also becomes larger as
the applied temperature gradient �T , and consequently the
associated Carnot efficiency ηC = �T

TH
is increased. This is

because an increase in �T increases the amount of current
flowing through the level, as a result of which a higher applied
voltage Vapp = VS is needed to counter it. The variation of
power in the operating region is quasiquadratic and has a
maximum (marked Pmax) in the operating region.

The efficiency in the sequential tunneling case increases
monotonically and quasilinearly17,18 from 0 to ηC in the
operating region. In the exact calculation, however, the
efficiency reaches a maximum that is close to the Carnot
value and then drops to zero at the open-circuit operation
point Vapp = VS . The abruptness of this behavior depends on
how large the coupling to the contacts is. This deviation of the
maximum efficiency obtained via the exact calculation from
the ideal Carnot value obtained via the sequential tunneling
approximation will become more pronounced as the contact
coupling is increased.

B. Power and efficiency of an interacting quantum dot
thermoelectric setup

With the same initial configuration as in the previous case,
we now study the effect of varying U . Referring to the state
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transition diagram in Fig. 1(b), the transport spectrum now
consists of the addition and removal levels {ε} = {ε1a

00 ,ε1r
00},

where ε1r
00 = E1

0 − E0
0 = ε and ε1a

00 = E2
0 − E1

0 = ε + U . The
expressions for the steady-state currents15,20,29 through the hot
contact (say) α = H , based on Eqs. (12) and (17), are given
by

JH = −q
(
RH

0→1P
0 − RH

1→0P
1 + RH

1→2P
1 − RH

2→1P
2
)
,

JH
Q = (ε − μH )

(
RH

0→1P
0 − RH

1→0P
1
)

+ (ε + U − μH )
(
RH

1→2P
1 − RH

2→1P
2
)
, (27)

where P N ’s are the occupation probabilities of the many-body
state with 0, 1, or 2 electrons. We have dropped the index
i within each N electron subspace, because only ground
states exist within the framework of our spin-degenerate single
orbital system. The solution for the set of master equations for
this system based on Eq. (13) is straightforward and yields the
following expressions for the occupation probabilities:

P 0 = 1

�
R1→0R2→1,

P 1 = 1

�
R0→1R2→1, (28)

P 2 = 1

�
R0→1R1→2,

with � being the normalization factor that ensures the sum of
probabilities to be equal to unity. Here the total rate Ri→j =∑

α Rα
i→j , given by the sum of the rates due to each contact

α = H,C. To be specific, the addition rates due to contact
α = H in Eq. (27) are given by RH

0→1 = γHf (ε − μH ) and
RH

1→2 = γHf (ε + U − μH ), and the removal rates are given
by RH

1→0 = γH [1 − f (ε − μH )] and RH
2→1 = γH [1 − f (ε +

U − μH )].
We now plot the power [Eq. (20)] and efficiency [Eq. (19)]

in the operating region in Fig. 3. In comparison with the
noninteracting case, the domain of the operating region in
the finite U case (green circles) is slightly different. This is
because a finite U introduces a transport channel at ε + U

in addition to the already existing one at ε as shown in
Fig. 1(c). For very small values of the interaction parameter U ,
specifically when U ≈ h̄�, higher order tunneling processes
may become relevant. Such processes may only be captured
by a perturbative expansion beyond the second order in the
tunneling Hamiltonian.26

We now plot the variation of the efficiency along the
operating region Vapp in Fig. 3(b) for different values of U . The
trend of the variation of the efficiency with finite U is similar
to what was noted in the noninteracting case. The efficiency
reaches a maximum ηmax before becoming zero. However, we
also note from Fig. 3(b) that the abruptness of this variation
is less stark in comparison with the noninteracting case. In
other words, the maximum efficiency ηmax occurs well within
the domain of finite power. The introduction of interactions
therefore also results in maximum efficiency within a finite
power operation. This observed trend of the efficiency with
applied voltage as noted in Fig. 3(b) may be qualitatively
understood by analyzing the variation of currents with the
applied voltage Vapp. Based on Eq. (27), one may recast an

FIG. 3. (Color online) Power and efficiency at finite U for ηC =
0.23. (a) Power extracted in the operating region. The span of the
operating region in the case of U = kBTC (green circles) can be
different from that of the noninteracting case (black solid). In general,
the quantity J H

Q (see inset) is not identically zero when the electric
current vanishes. (b) Variation of the efficiency in the operating region
for different values of U : (i) U = 0 (black solid), (ii) U = kBTC

(green solid), and (iii) U = 2.5kBTC (gray dashed). Note that with
finite U such that U > h̄�, the efficiency is identically zero when the
electric current vanishes under open-circuit conditions (Vapp = VS).
The efficiency also reaches a maximum ηmax at finite power operation.

expression for the currents as

J = −q [J1(ε) + J2(ε + U )] ,
(29)

JH
Q = (ε − μH )J1(ε) + (ε + U − μH )J2(ε + U ),

where J1(ε) and J2(ε + U ) denote the contribution to the
electric currents due to the transport channels at ε and ε + U

and are given by

J1(ε) = γHγCR2→1

�
[fH (ε) − fC(ε)] ,

(30)

J2(ε + U ) = γHγCR0→1

�
[fH (ε + U ) − fC(ε + U )] .

Likewise,

JC
Q = (ε − μC)J1(ε) + (ε + U − μC)J2(ε + U ). (31)

When Vapp is large enough to allow double occupancy in
the quantum dot, the second transport channel ε + U begins
to conduct. The electrical current then redistributes between
the two transport channels. From Eq. (29), we note that the
magnitude of JH

Q becomes more prominent as the contribution
J2(ε + U ) increases. This causes the JH

Q to approach the
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zero value less rapidly with increasing bias than how the
electric current would, thereby resulting in an overall decrease
in the ratio J

JH
Q

between them. This causes the efficiency

η = −JVapp

JH
Q

= P

JH
Q

to decrease with increasing Vapp once the

maximum ηmax is reached. The applied bias at which this
happens depends on U , and the above effect of the second
transport channel will vary as U is increased.

An important consequence of the introduction of this extra
transport channel at ε + U is that both the currents defined
in Eq. (27) do not vanish at the same operating point. Here,
as shown in the inset of Fig. 3(a), JH

Q is finite even when
the electric current J vanishes when Vapp = VS . The open-
circuit condition from Eq. (29) can be deduced as J1(ε) =
−J2(ε + U ). It then follows from Eqs. (30) and (31), that
J α

Q = TαJ α
S = UJ2(ε + U ), and hence

JC
S − JH

S =
(

U

TC

− U

TH

)
J2(ε + U ). (32)

It is thus noted that similar to the noninteracting case, under
open-circuit conditions a net entropy generation occurs, thus
making spontaneous electron transfer processes irreversible.

In order to further probe as to how the interaction U

influences the achievable maximum efficiency, we plot the
variation of ηmax (shown bold) with U in Fig. 4. We notice
that with increasing U , the maximum efficiency reaches its
global minimum around U ≈ 2.7kBT , and asymptotically
approaches Carnot efficiencies at very large values of U . As U

is increased beyond U ≈ 2.7kBT , the second transport channel
ε + U becomes less accessible, and transport resembles the
previous case with only one transport channel ε. Thus, the
important implication here is that the variation of maximum
efficiency with the introduction of interactions is nontrivial
and nonmonotonic.

Our results are based on the evaluation of nonequilibrium
currents and hence go beyond linear response. It is hence
desirable to compare our results directly with the conventional
zT -based evaluation which is valid only in the linear response
limit. Using Eq. (3), the linear response maximum efficiencies
calculated from zT are also plotted in Figs. 4(a) and 4(b)
(brown circles). It must be noted from Figs. 4(a) and 4(b) that
the nonequilibrium calculation deviates from the zT -based
calculation20 (brown circles), and that this discrepancy is more
pronounced for larger values of the Carnot efficiency. Also,
comparing Figs. 4(a) and 4(b), it is seen that the deviation of
the nonequilibrium efficiency from the Carnot efficiency with
increasing U is less pronounced for larger values of the Carnot
efficiency.

To elucidate better, the discrepancy between the nonequi-
librium evaluation and a zT -based evaluation, we plot in
Fig. 5, the variation of the nonequilibrium evaluation (gray
squares) and the zT -based evaluation (brown circles) of the
maximum efficiency as a function of ηC , the Carnot efficiency.
We note from Fig. 5(a) that the nonequilibrium calculation
of ηmax deviates less from the Carnot value for both small
and large values of ηC , with the maximum deviation in the
intermediate region. On the contrary, the zT -based calculation
deviates from both ηC and the nonequilibrium evaluation with
increasing Carnot efficiency. From Eq. (3), in the zT -based
evaluation of the maximum efficiency, ηC is modulated by

FIG. 4. (Color online) Variation of the maximum efficiency with
Coulomb interaction U . The maximum efficiency is equal to the
Carnot efficiency for U = 0 and asymptotically approaches it when
U � kBT . It reaches a minimum around U ≈ 2.7kBT . This variation
is shown for (a) ηC = 0.23 and (b) ηC = 0.5. Also shown in each case
is the comparison between the nonequilibrium calculation (bold) and
that based on the figure of merit zT (brown dotted). Note that the
difference between them becomes more prominent for larger values of
ηC or larger temperature gradients �T , thereby making the transport
nonlinear and hence the concept of zT less useful. The inset in (a)
shows the variation of 1/zT with U for the chosen level configuration
ε − μH = 2kBTH at Vapp = 0.

an increasing function of zT and is not strongly dependent
on the operating conditions. Thus as ηC is increased, thereby
increasing the applied temperature gradient, nonequilibrium
effects become prominent and transport cannot be adequately
captured by the zT -based calculation. The inset in Fig. 4(a)
shows the variation of 1/zT with U , illustrating that zT → ∞
in the two opposite limits U � kBT and U � kBT . The
percentage deviation between the nonequilibrium calculation
and the zT -based calculation of ηmax as a function of ηC is
plotted in Fig. 5(b).

C. Maximum power operation of an interacting quantum dot
thermoelectric setup

While Carnot efficiency poses the ultimate limit for any
heat engine, there may or may not be other fundamental limits
involved under finite power operation. It has been shown that
the maximum power operation of any Carnot engine is limited
by the Curzon-Ahlborn efficiency ηCA = 1 − √

1 − ηC .33 The
study of the maximum power operation of a noninteracting
quantum dot setup has been pursued previously.16,18,19 Here,
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FIG. 5. (Color online) Variation of maximum efficiency with
respect to ηC . (a) The maximum efficiency (gray dotted) approaches
the Carnot efficiency and deviates more from the figure of merit zT -
based calculation (brown dotted) as the Carnot efficiency increases.
(b) Plot of the percentage deviation of maximum efficiency between
the nonequilibrium evaluation and the zT -based evaluation. The
maximum efficiencies at each value of ηC here are taken from the
respective global minimum (U ≈ 2.7kBT ) in their variation with
respect to U in Fig. 4.

we analyze the maximum power operation of the quantum dot
system with the inclusion of Coulomb interactions.

Analyzing maximum power operation implies maximizing
the electrical power output P = −JVapp. The efficiency at
maximum power ηMP is calculated with respect to the
operating point that maximizes the power output. We consider
how this efficiency at maximum power ηMP compares with
various limits discussed in earlier works.16,18,19 Also, the
efficiency at maximum power is evaluated for U ≈ 2.7kBT ,
which corresponds to the maximum deviation of the efficiency
from ηC in Fig. 4. We plot in Fig. 6 the calculation of
the quantity ηMP under two setup conditions: (a) symmetric
electrostatic coupling that is used throughout the paper (shown
by black diamonds) and (b) a fully asymmetric setup in which
the voltage applied across the cold contact is electrostatically
decoupled to the quantum dot (shown by brown circles). In
Fig. 6, we note that for smaller values of the temperature
difference, and hence smaller values of the Carnot efficiency
ηC , the efficiency at maximum power ηMP remains close
to the Curzon-Ahlborn limit and is approximately linear.
In this limit, the curves follow a linear law. An important
observation is that, similar to what was inferred in Ref. 16, the
efficiency at maximum power ηMP need not be bounded by the

FIG. 6. (Color online) Comparison between the efficiency at
maximum power and various other limits for the interacting quantum
dot setup. The efficiency at maximum power is evaluated at
U ≈ 2.7kBT , which corresponds to the maximum deviation from
ηC in Fig. 4. The nonequilibrium evaluation for our setup using
both symmetric electrostatic coupling (black diamonds) and fully
asymmetric electrostatic coupling (brown circles) is shown. The
nonequilibrium evaluation assuming no electrostatic coupling to
the cold contact resembles the curves discussed in Ref. 16. The
nonequilibrium evaluation of the efficiency at maximum power, in
general, is dependent on the details of the setup and need not be
strictly bound by limits discussed in Ref. 19.

Curzon-Ahlborn efficiency for larger values of the Carnot
efficiency ηC , and may indeed be larger. This questions the
regime of applicability of the Curzon-Ahlborn limit, which
may only be valid for working conditions close to linear
response. Consider an expansion for the Curzon-Ahlborn ef-
ficiency ηCA = 1 − √

(1 − ηC) in powers of ηC = �T
TH

written
as

ηCA = ηC

2
+ η2

C

8
+ · · · , (33)

from which it can be noted that for smaller values of �T

and hence smaller values of the Carnot efficiency ηC , the
nonequilibrium efficiency follows the linear term after which
the quadratic term dominates. Notably, the deviation of the
nonequilibrium efficiency at maximum power with respect to
the Curzon-Ahlborn limit in Fig. 6 elucidates the fact that this
limit need not be a fundamental limit as the Carnot limit is.
Physically, this implies that under nonequilibrium conditions,
the leading term in the power expansion for ηCA deviates from
a nonequilibrium evaluation, and importantly is specific to the
setup. It has been pointed out in a recent work19 that in the limit
of low dissipation, the efficiency at maximum power ηMP for a
Carnot engine is bounded as η− � ηMP � η+, where η− = ηC

2
with η+ = ηC

(2−ηC ) . Note that our curve of the efficiency at
maximum power is also not necessarily bound between the
above two extrema.

We thus note that the trend of the efficiency at maximum
power shown in Fig. 6 is similar to that of the noninteracting
case analyzed in previous works16,18,19 when the quantum dot is
electrostatically decoupled with the cold contact. The fact that
the efficiency at maximum power, under these conditions, can
approach the Carnot limit at certain larger values of �T (and
hence ηC), points to the possibility of high power operation at
high efficiencies. While a large ratio of �T

TH
is not feasible

at higher operating temperatures, it may be an interesting
possibility in low-temperature applications.
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IV. CONCLUSIONS

In this paper, we analyzed the performance of an interacting
quantum dot thermoelectric setup. This study was based on the
evaluation of power and efficiency from the nonequilibrium
currents in the sequential tunneling limit. The operating region
of the thermoelectric setup was defined and a general trend
of the efficiency in this operating region was identified. We
showed that the much discussed aspect of reversible operation
with Carnot efficiency, under open-circuit conditions, in the
case of noninteracting single orbital quantum dot systems,
only occurs in the limit of vanishing coupling to the contacts.
In a general case, the efficiency reaches a maximum in the
operating region before dropping to zero at the open-circuit
operating point. In the noninteracting single orbital case,
the efficiency can become very close to the Carnot value,
if the coupling to the contacts is sufficiently weak. In the
interacting case, we showed that this trend depends nontrivially
on the interaction parameter U . We also pointed out the clear
discrepancy between our nonequilibrium evaluation of the
maximum efficiency ηmax and the figure of merit zT -based
calculation, which is only valid in the linear response limit.
Comparisons of the efficiency at maximum power with the
Curzon-Ahlborn limit and other related bounds were also
discussed. Here, it was shown that the inclusion of Coulomb
interactions did not alter the already noted conclusions in the
noninteracting case.16,18,19 However, the trend of variation
of the efficiency at maximum power is setup dependent.
Our current theoretical treatment, however, is in the limit
of weak coupling to the contacts, and symmetric contact
coupling. In the regime of asymmetric and strong contact
coupling, we expect novel physics that may be introduced by
asymmetric charging34,35 to affect the thermoelectric transport
processes.
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APPENDIX: REVERSIBLE OPERATION

The following important aspects of the so-called reversible
operation in the case of a noninteracting quantum dot setup
under vanishing coupling to the contacts must be noted.
First, the fact that Carnot efficiency is achieved points to a
reversible operation in an infinite time thermodynamic cycle.
This naturally implies that no power is drawn, although
the cycle achieves the highest possible Carnot efficiency by
performing work for an infinite period of time. Secondly, the
term reversible has the following implication with respect to
electronic transport. Let us consider the entropy generated
when an electron is transferred from the hot to the cold
reservoir via the energy state ε in the quantum dot. This
involves the electron transfer (i) from the hot reservoir to
the quantum dot and (ii) from the quantum dot into the
cold reservoir. The entropy change in the hot reservoir due
to process (i) is given by �SH = − ε−μH

kBTH
, because the hot

reservoir has lost an electron of energy ε. Similarly, the entropy
change of the cold reservoir due to process (ii) is given by
�SC = ε−μC

kBTC
, because the cold reservoir has gained an electron

of energy ε. Thus, the entropy change per electron for the
forward (hot to cold) (�Sf ) and the reverse (cold to hot) (�Sr )
transfer processes between the two reservoirs can be written as

�Sf =
(

ε − μC

TC

− ε − μH

TH

)
,

(A1)

�Sr =
(

ε − μH

TH

− ε − μC

TC

)
.

Therefore, as pointed out in Ref. 14, the open-circuit
condition in the present case, namely, ε−μH

kBTH
= ε−μC

kBTC
, ensures

zero entropy production in either the forward or the reverse
electron transfer process. Normally, either forward or reverse
transfer processes involve the generation of entropy in the setup
as a whole. This case, however, implies that given only a single
orbital energy ε, one can have a unique bias configuration given
by the open-circuit condition that can result in a spontaneous
exchange of electrons reversibly without entropy generation.
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