AUS DEM LEHRSTUHL FÜR ORTHOPÄDIE PROF. DR. DR. JOACHIM GRIFKA DER MEDIZINISCHEN FAKULTÄT DER UNIVERSITÄT REGENSBURG

PARAKRINER EINFLUSS VON OSTEOARTHROSEKNORPEL AUF DIE CHONDROGENE DIFFERENZIERUNG HUMANER RS-ZELLEN

Inaugural – Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Universität Regensburg

> vorgelegt von Florian Zirngibl

AUS DEM LEHRSTUHL FÜR ORTHOPÄDIE PROF. DR. DR. JOACHIM GRIFKA DER MEDIZINISCHEN FAKULTÄT DER UNIVERSITÄT REGENSBURG

PARAKRINER EINFLUSS VON OSTEOARTHROSEKNORPEL AUF DIE CHONDROGENE DIFFERENZIERUNG HUMANER RS-ZELLEN

Inaugural – Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Universität Regensburg

> vorgelegt von Florian Zirngibl

Dekan: Prof. Dr. Bernhard Weber

- 1. Berichterstatter: Prof. Dr. Susanne Grässel
- 2. Berichterstatter: Prof. Dr. Peter Angele
- Tag der mündlichen Prüfung: 29.02.2012

	1
2 EINLEITUNG	3
2.1 Knorpel2.1.1Hyaliner Knorpel2.1.2Elastischer Knorpel2.1.3Faserknorpel2.1.4Physiologie des Matrixstoffwechsels2.1.5Knorpelregeneration2.1.6Therapie von Gelenkknorpeldefekten	3 4 5 5 5 6 7
2.2 Mesenchymale Stammzellen 2.2.1 RS-Zellen	9 11
 2.3 Chondrogenese 2.3.1 Rekrutierung mesenchymaler Stammzellen 2.3.2 Chondrozyten-Differenzierung 2.3.3 Chondrozyten-Proliferation 2.3.4 Chondrozyten-Hypertrophie 2.3.5 Terminale Chondrozyten-Differenzierung 	12 13 15 16 16 17
2.4 MMPs und ihre Inhibitoren	17
2.5 Proinflammatorische Zytokine: TNFα und IL-1β	21
2.6 Chondrogenese in vitro	22
2.7 Zukunft des Tissue Engineering	23
2.8 Ziel der Arbeit	24
3 MATERIAL UND METHODEN	25
 3.1 Methoden der Zellkultivierung 3.1.1 Kultivierung der RS-Zellen 3.1.2 Gewinnung des Knorpels 3.1.3 Das konditionierte Pelletmodell 3.1.4 Für die Zellkultur verwendete Medien 	25 25 25 26 28
 3.1 Methoden der Zellkultivierung 3.1.1 Kultivierung der RS-Zellen 3.1.2 Gewinnung des Knorpels 3.1.3 Das konditionierte Pelletmodell 3.1.4 Für die Zellkultur verwendete Medien 3.2 Kollagenisolation und Zymographie 3.2.1 Kollagenpräparation durch Pepsinverdau 3.2.2 SDS-PAGE 3.2.3 Silberfärbung 3.2.4 Lysierung der Zellpellets 3.2.5 BCATM- Protein - Assay 3.2.6 Gelatine Zymographie 3.2.7 Färbung mit Coomassie-Brilliantblau 	25 25 26 28 29 30 31 32 32 33 33
 3.1 Methoden der Zellkultivierung 3.1.1 Kultivierung der RS-Zellen 3.1.2 Gewinnung des Knorpels 3.1.3 Das konditionierte Pelletmodell 3.1.4 Für die Zellkultur verwendete Medien 3.2 Kollagenisolation und Zymographie 3.2.1 Kollagenpräparation durch Pepsinverdau 3.2.2 SDS-PAGE 3.2.3 Silberfärbung 3.2.4 Lysierung der Zellpellets 3.2.5 BCA™- Protein - Assay 3.2.6 Gelatine Zymographie 3.2.7 Färbung mit Coomassie-Brilliantblau 3.3 Histologische Färbungen 3.3.1 Fixieren der Proben 3.3.2 Färbung mit Alzianblau 3.3 Kollagen-II-Immunhistologie 	25 25 26 28 29 29 30 31 32 32 33 33 33 33 33

3.5	Quantitative PCR	40
3	.5.1 RNA Isolation und Reverse Transcription	40
3	.5.2 Relative Quantitative PCR	41
3.6	Statistische Auswertung	42
3.7	Material	42
3	.7.1 Verbrauchsmaterial und Geräte	42
3	.7.2 Chemikalien und Reagenzien	43
4	ERGEBNISSE	46
4.1	Differenzierung der RS-Pellets	46
4.2	Kollagensekretion und Kollagenprofil	50
4.3	Genexpression von chondrogenen Markergenen	52
4.4	Genexpression von Transkriptions- und Wachstumsfaktoren	55
4.5	Sekretion von TGFB-1	57
4.6	Sekretion von proinflammatorischen Zytokinen	59
4.7	Sekretion von MMPs	60
4.8	Von den Knorpelexplantaten in den Zellkulturüberstand sezernierte Faktoren	64
5	DISKUSSION	67
6	ZUSAMMENFASSUNG	74
7	REFERENZEN	75
8	DANKSAGUNG	100
9	LEBENSLAUF	101

1 Abkürzungsverzeichnis

3-D	Dreidimensional		
ACT	Autologe Chondrozytentransplantation		
α-ΜΕΜ	Minimum Essential Medium Eagle, Alpha Modifikation		
Amp	Ampicillin		
bFGF	Basic fibroblast growth factor		
BMP	Bone morphogenic protein		
BSA	Bovines Serumalbumin		
Cbfa-1	Core binding factor-1, Transcriptionsfaktor		
COMP	Cartilage oligomeric matrix protein		
DMEM	Dulbecco's modifiziertes Eagle Medium		
DNA	Deoxyribonucleinsäure		
DGOOC	Deutsche Gesellschaft für Orthopädie und Orthopädische		
	Chirurgie		
DGU	Deutsche Gesellschaft für Unfallchirurgie		
ES	Embryonale Stammzellen		
ECM	Extrazelluläre Matrix		
EDTA	Ethylen-Diamin-Tetraessigsäure		
FCS	Fetales Kälberserum		
FGF	Fibroblast growth factor		
Hox	Homeobox enthaltende Transcriptionsfaktoren		
HEPES	2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure		
HRP	Horseradish-Peroxidase		
IFN	Interferon		
Ig	Immunoglobulin		
IGF	Insulin-like growth factor		
Ihh	Indian hedgehog		
IL	Interleukin		
ITSTM	Insulin, Transferrin und Selensäure enthaltender		
	Zellkulturzusatz		
LAP	Latency associated peptide		
MMPs	Matrix Metalloproteinasen		
mRNA	messenger RNA		

Kapitel 1	Abkürzungsverzeichnis	Seite 2
MSCs	Marrow stromal cells/ Mesenchymale Stammzellen	
OA	Osteoarthrose	
OPD	O-Phenylendiamindihydrochlorid	
PAGE	Polyacrylamid Gelelectrophorese	
PBS	Phosphate buffered saline	
PCR	Polymerase chain reaction	
PDGF	Platelet derived growth factor	
PTHrP	Parathyroid hormone-related peptide	
qPCR	Quantitative PCR	
RNA	Ribonucleinsäure	
RNase	Riboneuclease	
RT-PCR	Reverse Transkriptase PCR	
SD	Standardabweichung	
SDS	Sodiumdodezylsulphat	
Sox	Sex related homeobox containing transcription factor	
TGF-ß	Transforming growth factor β	
TEMED	Tetramethylethylendiamin	
TIMPs	Tissue inhibitors of matrix metalloproteinases	
TMB	Tetramethylbenzidin	
ΤΝFα	Tumor necrosis factor α	
VEGF	Vascular endothelial growth factor	

2 Einleitung

Die Kombination aus einer steigenden Zahl sportlich aktiver Menschen und die zunehmende Verbreitung von Risikosportarten hat die Zahl der Sportunfälle in den letzten Jahren deutlich anwachsen lassen. Von den etwa 23 Millionen sportlich aktiven Personen verletzten sich pro Jahr 1,25 Millionen so schwer, dass sie eine ärztliche Behandlung benötigten (1). Über 36% der Verletzungen betreffen das Kniegelenk, das vor allem beim Fußball und beim Skifahren sehr gefährdet ist (2). Gerade bei Verletzungen am Kniegelenk kommt es vermehrt zu schweren Band- und Meniskusverletzungen (1), die häufig von Läsionen des Knorpels begleitet sind. In einer Studie konnten Curl et al bei 63% von 31516 durchgeführten Kniegelenksarthroskopien einen behandlungsbedürftigen Knorpeldefekt nachweisen (3). Das Durchschnittsalter der Patienten mit Knorpeldefekt betrug lediglich 43 Jahre und bereits bei 5% der Patienten unter 40 Jahren konnte eine Grad IV Knorpelläsion nach Outerbridge nachgewiesen werden.

Da das Risiko einer Kniegelenksarthrose bei jungen Patienten mit Knorpelschaden um den Faktor drei erhöht ist (4), müssen vor allem diesen Patienten effektive und wenig invasive Therapieoptionen angeboten werden, um die Implantation einer Kniegelenkstotalendoprothese so lange wie möglich vermeiden zu können.

2.1 Knorpel

Es existieren drei verschiedene Knorpelarten: hyaliner, elastischer und Faserknorpel. Die Einteilung in die drei Subtypen erfolgt aufgrund der Zusammensetzung ihrer extrazellulären Matrix.

Hyaliner Knorpel

Elastischer Knorpel

Faserknorpel

Abbildung 1: Histologische Schnitte verschiedener Knorpelgewebe Die drei Knorpeltypen können mittels Hämatoxylin-Eosin-Färbung unterschieden werden. Typisch für den hyalinen Knorpel ist die Anordnung in Gruppen, sogenannten Chondronen. Die EZM des elastischen Knorpels enthält neben Kollagenfibrillen zahlreiche elastische Fasern. Faserknorpel besteht aus einer großen Anzahl Kollagen I-Fibrillen, die sich zu Bündeln zusammenlagern. Der Balken entspricht 250 µm. Abbildungen aus http://www.kumc.edu/instruction/medicine/anatomy/ histoweb/cart/cart.htm

2.1.1 Hyaliner Knorpel

Beim gesunden Erwachsenen handelt es sich um ein gefäßfreies, makroskopisch homogen erscheinendes, weiß gefärbtes, zellarmes Gewebe mit glatter Oberfläche.

Zusammen mit dem subchondralen Knochen bildet die hyaline Knorpelschicht eine funktionelle Einheit (5).

Hyaliner Knorpel übernimmt im menschlichen Organismus zahlreiche wichtige Aufgaben:

Zum Beispiel entsteht bei der enchondralen Ossifikation zunächst ein Modell aus hyalinem Knorpel, das später durch Knochen ersetzt wird (6). Darüber hinaus existiert beim Erwachsenen hyaliner Knorpel im Larynx, in der Trachea, in Bronchien, Rippen und vor allem auf der Gelenkoberfläche von Knochen.

Der Zellgehalt macht weniger als 5% der Knorpelmasse aus. Der Rest besteht aus wasserreicher extrazellulärer Matrix (EZM) (5). Die größte Zellpopulation stellen die Chondrozyten dar. Es handelt sich um reife, nur noch bedingt teilungsfähige Zellen, die aus teilungsfähigen Chondroblasten hervorgingen. Die Chondroblasten wiederum gehen aus primitiven, nicht determinierten Stammzellen hervor (7).

Histologisch charakteristisch für Gelenkknorpel ist die Anordnung der Zellen in Chondrone. Ein Chondron besteht aus 2-3 reifen Chondrozyten, die komplett von Knorpelmatrix umgeben sind. Reife Chondrozyten besitzen ein ausgeprägtes endoplasmatisches Reticulum mit Golgi-Apparaten, als Zeichen der hohen Syntheseleistung (8).

Die EZM, die von den Chondrozyten selbst synthetisiert wird, besteht überwiegend aus Kollagenfasern (60% der Trockenmasse) und Proteoglykanen (30% der Trockenmasse).

Hauptkollagen des hyalinen Knorpels ist das Typ II-Kollagen (90-95%) (9). Daneben kommen geringe Mengen der Typen VI, IX, X und XI aber kein Typ I- Kollagen (typisch für Knochen) vor (10,11). Typ II-Kollagen bildet zusammen mit den Typen IX und XI ein dreidimensionales Maschenwerk, das extrem dehnbar ist und Platz für andere Makromoleküle bietet (12).

Zu den wichtigsten Vertretern der Proteoglykane zählen Aggrecan und Hyaluronäure, die wesentlich an der Ausbildung der Quellfähigkeit des Knorpels beteiligt sind. Darüber hinaus kommen zahlreiche Small leucine rich Proteoglykane (SLRPs), wie Decorin und Biglykan, in der EZM vor (13).

Neben den Kollagenen und Proteoglykanen lassen sich in geringeren Konzentrationen weitere Gruppen von Proteinen nachweisen: die Link-Proteine, wie Fibronektin und Tenascin, die Matrilline und das Cartilage oligometric protein (COMP). Letzteres vermittelt die Fibrillenorganisation (14).

Darüber hinaus enthält hyaliner Knorpel noch zahlreiche Enzyme, die den Matrix-Turnover steuern.

2.1.2 Elastischer Knorpel

Elastischer Knorpel unterscheidet sich von hyalinem aufgrund seines hohen Gehaltes an elastischen Fasern in der EZM. Er kommt in der Ohrmuschel, im äußeren Gehörgang, im Kehldeckel und im Ohrläppchen vor.

2.1.3 Faserknorpel

Faserknorpel wird auch als Bindegewebsknorpel bezeichnet und enthält weniger Zellen als die erstgenannten beiden Arten, dafür aber viele Bündel parallel verlaufender Kollagenfibrillen, aus einem Gemisch von Typ I- und II-Kollagenen. Dies verleiht dem Knorpel hohe Zugfestigkeit. Weiterhin handelt es sich hierbei um den einzigen Knorpeltyp, der nicht von einem Perichondrium umgeben ist. Faserknorpel kommt im Anulus fibrosus der Bandscheiben und in der Symphysis pubica vor.

2.1.4 Physiologie des Matrixstoffwechsels

Hyaliner Knorpel stellt ein avaskuläres und anervales Gewebe dar. Eine Versorgung der Knorpelschicht über die Gefäße des subchondralen Knochens ist beim Erwachsenen vernachlässigbar. Aus diesem Grund muss die Knorpelmatrix vor allem mittels Diffusion aus der Synovialflüssigkeit ernährt werden (5).

Die Oberfläche des Knorpels enthält kleine Poren, die das Passieren kleiner Moleküle erleichtern. Gelenkbewegungen, die zu einer Durchwalkung führen, fördern die Passage (15). Jedoch müssen aufgrund der geringen Porengröße nahezu alle Matrixbestandteile von den Chondrozyten selbst synthetisiert werden.

Der Sauerstoffgehalt im Knorpel beträgt lediglich 1%, wodurch der Metabolismus des Knorpels vorwiegend anaerob ausgerichtet sein muss (16).

Adulter humaner Knorpel besitzt eine nur sehr geringe Umsatzrate. Einzelne Bestandteile der EZM, z.B. Kollagene, besitzen Halbwertszeiten von Jahren bis Jahrzehnten (17).

Die metabolische Aktivität der Chondrozyten wird unter anderem durch mechanische Belastung (18), das physikochemische Milieu (19) und durch die Aktivität einer Vielzahl von Zytokinen, zum Beispiel aus der Interleukingruppe, beeinflusst (20).

2.1.5 Knorpelregeneration

Knorpel hat aufgrund der fehlenden Blutversorgung und der unzureichenden Zahl an undifferenzierten Zellen eine geringe Reparaturkapazität. Deshalb können schon kleine Läsionen oder Verletzungen zu einem progressiven Schaden und letztendlich zur Degeneration des Gelenkes führen (21,22). Darüber hinaus stellen Knorpelschäden eine Schmerzquelle dar und können häufig zu einem Gelenkerguss oder zu Gelenkblockierungen führen. Des Weiteren können sie von einer Tendinitis oder Bursitis begleitet werden.

Es können zwei Arten von Knorpeldefekten, die verschiedene Reparaturmechanismen auslösen, unterschieden werden:

Oberflächliche, chondrale Defekte führen sowohl zur Proliferation der Chondrozyten, als auch zu einer gesteigerten Synthese von Matrixmolekülen. In den meisten Fällen wird der Defekt nicht oder unvollständig repariert (23).

Die Reparaturvorgänge osteochondraler Defekte unterscheiden sich grundlegend von denen oberflächlicher Defekte (24). Defekte, die den subchondralen Knochen erreichen, führen zum Einbluten und zur Hämatombildung im Defektareal mit nachfolgender Aktivierung der Thrombozyten. Diese schütten zusammen mit dem darunterliegenden Knochen zahlreiche vasoaktive Mediatoren und Wachstumsfaktoren wie TGFβ, PDGF, BMPs, IGF-I und IGF-II aus. Die inflammatorische Wirkung dieser Mediatoren beschleunigt die Reparaturvorgänge (25). Das dabei entstehende Gewebe nimmt eine Mittelstellung zwischen hyalinem Knorpel und Faserknorpel ein, dessen biomechanische und qualitative Eigenschaften dem des ursprünglichen Knorpels deutlich unterlegen sind (26).

2.1.6 Therapie von Gelenkknorpeldefekten

Zu den wichtigsten Zielen der Therapie zählen in der Akutphase die Schmerzreduktion und die Wiederherstellung der Gelenkfunktion. Langfristig soll eine traumabedingte Osteoarthrose verzögert oder ganz verhindert werden.

Die arthroskopische Gelenklavage mit Débridement stellt die Basisbehandlung bei allen arthroskopischen Knorpelbehandlungen dar (27). Ihre Wirkung beruht auf einer temporären Entfernung von Entzündungsmediatoren. Die Entwicklung einer vorzeitigen Arthrose wird nicht vermindert.

Knochenmarksstimulierende Techniken wie Pridie-Bohrung, Mikrofrakturierung oder Abrasionsarthroplastik führen über eine Eröffnung des subchondralen Knochens zur Bildung eines Blutkoagels (28) und zur Rekrutierung undifferenzierter Stammzellen (29). Die Regenerate bestehen aber überwiegend aus minderwertigem Faserknorpel. Mittlerweile konnte eine zweite Generation der Mikrofrakturierung etabliert werden, die autologe matrixinduzierte Chondrogenese (AMIC). Hierbei wird der Defekt nach der Mikrofrakturierung zusätzlich mit einem Kollagen I/III-"Scaffold" gefüllt (30,31). Diese Methode besitzt den Vorteil, dass sie sowohl die Fragilität als auch den Verlust des Koagels vermindert (32).

Bei der Mosaikplastik werden aus weniger belasteten Arealen der Femurkondyle Knorpel-Knochen-Zylinder entnommen und in den Defektbereich eingebracht. Dadurch lassen sich kleine bis mittlere Defekte sehr gut abdecken (33).

Derzeit stellt die autologe Chondrozytentransplantation (ACT) den vielversprechendsten Ansatz dar.

Die ACT wird von der DGOOC und DGOU als Methode der Wahl bei umschriebenen Knorpeldefekten, die nicht größer als 3-4cm² sind, empfohlen. In der klassischen Methode der ersten Generation nach Brittberg werden im ersten Eingriff Knorpelproben aus den wenig belasteten Regionen des Gelenkes entnommen. Die darin enthaltenen Chondrozyzten werden isoliert und anschließend in einer Monolayer-Kultur vermehrt (34). Die gewonnenen Zellen werden dann unter einen Periostlappen, der über den Defekt genäht wurde, injiziert. Bei dem entstehenden Regeneratgewebe handelt es sich dennoch nur um eine Mischung mit hyalinen und faserknorpeligen Eigenschaften. Klinisch führt die ACT zu einer deutlichen Verbesserung der Symptomatik nach 12 bzw. 24 Monaten (35,36).

Abbildung 2: Prinzip der Autologen Chondrozyten-Transplantation

Die Grafik zeigt das Prinzip der ACT nach dem Original-Protokoll von Brittberg et al.. Zuerst werden gesunde Chondrozyten arthroskopisch von der oberen, medialen Femurkondyle entnommen. Nachdem diese Chondrozyten 11 bis 21 Tage im Labor kultiviert und vermehrt werden, injiziert man diese in das Defektareal. Zusätzlich wird ein Periostlappen, der von der proximalen, medialen Tibia stammt, auf das Defektareal gelegt (37).

Bei den neueren ACT-Protokollen der zweiten Generation werden die Chondrozyten in einem "Scaffold" kultiviert und mit diesem in das Defektareal implantiert. Dieser "Scaffold" ist abbaubar und unterstützt temporär die Proliferation der Chondrozyten, bis diese ihre eigene Matrix produzieren können (38). Diese Technik erlaubt es, einen chondralen Defekt mit Hilfe eines dreidimensionalen Rahmens, der den gesamten Defekt einnimmt, vollständig auszufüllen. Bei den klassischen Protokollen ohne "Scaffold" findet der Kontakt nur an der Oberfläche statt, und die Chondrozyten müssen die Lücke ausfüllen. Weiterhin ist es bei der ACT der zweiten Generation nicht mehr notwendig, Periost zu entnehmen, um eine Abdeckung für das Transplantat zu bilden (39,40). Neben dem großen Vorteil, eine Umgebung zu schaffen, die hilft, die Chondrozyten innerhalb des Defektes zu verteilen, können innerhalb des "Scaffolds" zusätzliche Wachstumsfaktoren eingebaut werden, um die Proliferation der Chondrozyten anzutreiben (41). Gegenwärtig konnte in zahlreichen Studien ein gutes bis exzellentes Outcome nach einer ACT der zweiten Generation nachgewiesen werden (42-44). Zu den großen Nachteilen der ACT mit Chondrozyten gehören das begrenzte Proliferationspotential und die Tatsache, dass die Zahl der Zellteilungen in vitro mit dem Alter der Zellen abnimmt (45). Außerdem dedifferenzieren Chondrozyten in Monolayer-Kulturen und verlieren ihren charakteristischen chondrozytären Phänotyp. Aufgrund ihrer ausgezeichneten Wachstumseigenschaften und Regenerationskapazität erlangten mesenchymale Stammzellen (MSC) im Bereich des Tissue Engineerings vermehrt Aufmerksamkeit. Wakitani et al. waren die Ersten, die die in zahlreichen Tiermodellen bereits erprobten MSCs für die Behandlung osteoarthrotischer Knorpeldefekte beim Menschen einsetzten (46). Erste Erfolge mit MSCs konnte Kuroda et al bei einem Grad IV Knorpeldefekt eines jungen Athleten erzielen (47).

2.2 Mesenchymale Stammzellen

Embryonale Stammzellen (ES) sind in vivo und in vitro in der Lage, sich in Zellen aller drei Keimblätter (Entoderm, Ektoderm und Mesoderm) sowie in Zellen der Keimbahn auszudifferenzieren. Sie werden daher als omnipotent bezeichnet.

Auch beim Erwachsenen lassen sich, wenn auch schon weiter differenzierte, Stammzellen, nachweisen.

Zum Beispiel enthält das Knochenmark neben Stammzellen für hämatopoetische Zellen auch Vorläufer für nichthämatopoetische Gewebe, die mesenchymalen Stammzellen (48). Zuerst wurden MSC, die ähnliche Eigenschaften wie die ES aufweisen, 1966 in den Studien von Friedenstein et al. isoliert. Dieser gewann die MSC aus dem Knochenmark von Ratten. Diese Vorläuferzellen wurden anfänglich als Plastic-adherent cells oder Colony-unit fibroblasts (49) bezeichnet. Im weiteren Verlauf etablierte sich die Bezeichnung mesenchymale Stammzellen oder marrow stromal cells (MSCs). In den letzten Jahren erlangten mesenchymale Stammzellen zunehmendes Interesse wegen ihres großen Potentials im künftigen Bereich der Zell- und Gentherapie (50). Vorteile der Stammzellen sind:

Diese Zellen können leicht aus Knochenmarksaspiraten gewonnen und einfach in vitro expandiert werden. Ferner behalten sie in begrenztem Umfang ihr pluripotentes Differenzierungspotential. Unter geeigneten Zellkulturbedingungen haben diese Zellen die Fähigkeit, sich in Zellen verschiedener mesenchymaler Zelllinien wie Fettgewebe, Muskelgewebe, Knochen und Knorpel zu differenzieren (51).

MSCs haben die Fähigkeit sich in Knochen, Knorpel, Muskel, Knochenmark, Sehnen, Bänder, Fettgewebe und in andere Bindegewebe zu differenzieren. Jede dieser Linien besteht aus mehreren Zwischenstufen und wird durch Wachstumsfaktoren und Zytokine reguliert (52).

Normalerweiser werden MSCs aus einem Knochenmarksaspirat des oberen Beckenkamms isoliert (53). Ansonsten wurden MSCs bereits aus dem Knochenmark von Tibia und Femur, aus der Brust- und Lendenwirbelsäule, aus Umbilikalvenenblut, Zähnen, Haut, Fettgewebe, Muskel, Periost und peripherem Blut gewonnen (54). MSCs können in der Zellkultur von den anderen Zellen des Knochenmarks, aufgrund ihrer schnelleren Haftung an Zellkulturplastikoberflächen, getrennt werden (55). Im übrigen können sie aufgrund der Größe mit Hilfe eines Ficollgradienten getrennt werden. Unter Kulturbedingungen bilden sie ausgeprägte Kolonien aus fibroblastenähnlichen Zellen (56), mit charakteristischem Antigenprofil und Differenzierungspotential (56). Mit Hilfe verschiedener Kulturbedingungen können sich MSCs in vitro in Zellen der verschiedenen mesenchymalen Zelllinien differenzieren.

Zu den Nachteilen der MSCs zählen folgende Merkmale: Die Proliferationsfähigkeit ist im Vergleich zu ES eingeschränkt und nimmt mit dem Alter ab (57). Weiterhin stellen die MSCs eine sehr heterogene Population (58) mit verschieden reifen Zellen und daher sehr unterschiedlichem Potential, sich in Zellen der verschiedenen Linien zu differenzieren, dar. Problematisch ist auch die Tatsache, dass nur ein sehr geringer Teil (ca. 1 von 100.000) der Stromazellen des Knochenmarks mesenchymale Stammzellen darstellt (59).

2.2.1 RS-Zellen

Mets und Verdonk unterteilten die Zellkolonien der von ihnen untersuchten MSC-Population in 2 Gruppen: kleine, spindelförmige, schneller wachsende Typ-I-Zellen und große, flache, langsamer wachsende Typ-II-Zellen (60).

Die Ergebnisse von Colter et al. demonstrierten, dass bei humanen MSC-Kulturen mit initial sehr kleinen Zelldichten (< 3 Zellen/cm²) eine zusätzliche dritte Gruppe erscheint. Diese Zellen bezeichneten sie als Recycling stem cells (RS-Zellen). Als charakteristisch für diese Population gilt die extrem kleine Zellgröße und die hohe Replikationsrate. Darüber hinaus scheinen sie die frühesten Vorläufer der MSCs darzustellen und besitzen ein höheres osteogenes, adipogenes und chondrogenes Differenzierungspotential, als die anderen Subpopulationen (61). Im Gegensatz dazu handelt es sich bei den oben beschriebenen großen Zellen um relativ reife Zellen mit geringer Teilungsrate. Daher werden sie "mature MSCs" (mMSCs) genannt (62).

Colter et al. unterteilte die Population der RS-Zellen wiederum in 2 Gruppen. Die kleinen, agranulären RS-1-Zellen und die granulären RS-2-Zellen. Während der späten lag-Phase des Zellwachstums findet man RS-2-Zellen, die sich aus RS-1-Zellen entwickeln. In der frühen log-Phase nimmt die Zahl der RS-2-Zellen ab und die mMSCs erscheinen in großer Zahl. Diese Beobachtung lässt darauf schließen, dass sich mMSCs aus RS-2-Zellen entwickeln. Die RS-2-Zellen werden in der späten log-Phase "recycelt" und es entstehen aus ihnen wieder neue RS-1-Zellen. Eventuell sind die RS-1-Zellen auch direkt an der Entwicklung der mMSCs beteiligt (63).

Da die großen mMSCs nur eine geringe Replikationsrate besitzen, müssen sich die RS-2-Zellen, die in der lag-Phase erscheinen, aus den RS-1-Zellen entwickeln. Während der frühen log-Phase sinkt die Menge der RS-2-Zellen und die mMSCs erscheinen in großer Zahl. Deshalb sind die RS-2-Zellen wahrscheinlich Vorläufer der mMSCs. In der späten log-Phase sinkt die Zahl der RS-2-Zellen, während die Population der RS-1-Zellen wächst, was dafür spricht, dass die RS-2-Zellen zu RS-1-Zellen recycelt werden (64).

2.3 Chondrogenese

Die Chondrogenese stellt, als die früheste Phase der Skelettentwicklung bei Vertebraten, einen essentiellen Prozess dar. Als Endergebnis entstehen Knorpelanlagen, die bei der enchondralen Ossifikation als Modell für die sich später daraus entwickelnden Knochen dienen.

Den Beginn repräsentiert die Rekrutierung und Migration mesenchymaler Stammzellen und die darauf folgende Kondensation der Vorläuferzellen. Anschließend erfolgt, vor allem im Zentrum der Diaphysen langer Röhrenknochen, eine schnelle Reifung der Zellen über mehrere Zwischenstufen zu den hypertrophen Chondrozyten. Abgeschlossen wird dieser Vorgang durch die Apoptose der gereiften Chondrozyten in den Ossifikationszentren, um eine schnelle Ausbreitung zu ermöglichen.

Jede einzelne Differenzierungstufe ist durch eine für sie spezifische Histologie und Zellaktivität und ein spezifisches Genexpressionsprofil gekennzeichnet.

Die Kontrolle der einzelnen Schritte erfolgt über Zellinteraktionen mit der umgebenden Matrix und über verschiedene, oft für den jeweiligen Schritt spezifische Wachstumsund Differenzierungsfaktoren.

Abbildung 5: Schritte der Chondrogenese

Die verschiedenen Entwicklungsstufen werden schematisch dargestellt. Wachstumsund Differenzierungsfaktoren stehen über den Pfeilen, Transkriptionsfaktoren darunter. Die extrazellulären Matrixproteine, die für die einzelnen Stufen charakteristisch sind, stehen darunter (65).

2.3.1 Rekrutierung mesenchymaler Stammzellen

Die Chondrogenese wird durch die Rekrutierung und Migration mesenchymaler Stammzellen eingeleitet. Beim Embryo stammen die in das zukünftige Skelett einwandernden Zellen aus der kranialen Neuralleiste, dem paraaxialen Mesoderm und dem "lateral plate mesoderm". Dieser frühe Vorgang ist wesentlich von Signalen, die mittels Zell-Zell- oder Zell-Matrix-Kontakten ausgeschüttet werden, abhängig (66,67). Hierdurch kommt es in den Zellen zu Veränderungen des Zytoskeletts. Weiterhin steigt die Zahl der Gap-Junctions zwischen den Zellen. Die einwandernden Zellen beginnen früh mit der Synthese einer extrazellulären Matrix. Diese ist reich an Hyaluronsäure, Kollagen I und Kollagen IIa. Zusätzlich synthetisieren diese Zellen zahlreiche Zelladhäsionsmoleküle wie N-Cadherin, N-CAM, Tenascin, Versican und Thrombospondin-4 (68). Der Transkriptionsfaktor Sox9 gilt als der Master-Transkriptionsfaktor der Chondrogenese, der in der Lage ist, die gesamte Kaskade der chondrogenen Differenzierung zu regulieren. Die Expression der meisten typischen chondrogenen Gene, wie zum Beispiel COL2A1, COL9A2, COL11A2, Aggrecan und COMP, sowie die Genexpression anderer Mitglieder der Sox-Familie wird durch Sox9 reguliert (69-71). Sox9 wird von allen Chondroprogenitorzellen und auch von differenzierten Chondrozyten exprimiert. Sox9-Mutationen führen zur Kampomelen Dysplasie, die eine sehr schwere Form der

Chondrodysplasie darstellt und häufig mit Malformationen in zahlreichen inneren Organen vergesellschaftet ist (72). Die Expression von Sox9 beginnt schon in dieser frühen Phase und spielt beim Vorgang der Kondensation eine wichtige Rolle (73). Die Inaktivierung von Sox9 führt zur Apoptose der mesenchymalen Zellen (74). Im übrigen begünstigt Sox9 das Eintreten der Zellen in die chondrogene Linie, anstatt eine osteogene Differenzierung einzuschlagen (75).

Die Bone Morphogenic Proteins (BMPs) tragen wesentlich zur Knochenbildung bei, indem sie sowohl die Kondensation, als auch die Differenzierung der frühen Chondroprogenitorzellen vorantreiben (76). Die spätere Reifung zum hypertrophen Chondrozyten wird zusätzlich von ihnen gefördert.

Auch die Mitglieder der Transforming growth factor β -Familie (1-3) sind an dieser Phase der Chondrozyten-Entwicklung beteiligt. Sie werden vor allem zu Beginn der Zellkondensation benötigt.

Zusätzlich wurden noch zahlreiche Transkriptionsfaktoren entdeckt, die einen wesentlichen Einfluß auf die Migration, das Überleben und die Kondensation der mesenchymalen Zellen besitzen. Zu diesen Faktoren zählen unter anderem Pax1 und Pax9, Nkx3.2 und Nkx3.1. Versuche mit Knockout-Mäusen haben gezeigt, dass die 4 Transkriptionsfaktoren zusammen benötigt werden, um die chondrogene Differenzierung der Stammzellen voranzutreiben und die Kondensation zu fördern (77,78).

Zudem bilden die beiden Transkriptionsfaktoren Nkx3.2 und Sox9 zusammen eine positive Feedback-Schleife und können gegenseitig ihre Expression steigern. Zusätzlich kann diese Feedback-Schleife durch BMPs aufrecht erhalten werden (79,80).

Abbildung 6: Expression relevanter Transkriptionsfaktoren während verschiedener Stadien der Chondrogenese

Die Graphen beruhen auf zahlreichen veröffentlichten Studien zu dem Thema. Zusätzliche Transkriptionsfaktoren, die in den einzelnen Abschnitten als Aktivator oder Inhibitor wirken, sind unter den schematischen Abbildungen der verschiedenen Zellstadien aufgeführt (81).

2.3.2 Chondrozyten-Differenzierung

Die Differenzierung der Progenitorzellen ist charakterisiert durch die Bildung einer EZM, die vor allem Kollagen II, IX und XI und Aggrecan enthält. Häufig werden diese sehr aktiven Zellen als Chondroblasten bezeichnet (82).

Sox9 wird in dieser Phase stark exprimiert. Durch eine Inaktivierung von Sox9 konnte gezeigt werden, dass der Transkriptionsfaktor benötigt wird, um die Expression des Kollagen II und die Differenzierung der Progenitorzellen zu Chondroblasten zu fördern (83). Die Sox-Familie enthält noch zwei weitere Mitglieder: Sox5 und Sox6. Beide Transkriptionsfaktoren spielen eine Rolle bei der Differenzierung der Chondroblasten (84,85) und steigern in Zusammenarbeit mit Sox9 die Expression typischer knorpeliger EZM-Produkte (86,87). Weiterhin verhindern die drei Sox-Gene die Expression von Markern der hypertrophen Phase (88).

Die Aktivität der Sox-Familie wird unter anderem mit Hilfe der Bone morphogenic

proteins (BMPs) reguliert. In vitro konnte die Zugabe von TGF- β und BMP-2 das chondrogene Potential des Sox-Trios steigern (89).

2.3.3 Chondrozyten-Proliferation

Von diesem Zeitpunkt an beginnen sich die Chondroblasten in den Metaphysen der sich entwickelnden langen Röhrenknochen säulenförmig anzuordnen, während diejenigen in den Diaphysen zu prähypertrophen Chondrozyten reifen. Die Zellen mit der höchsten Proliferationsrate befinden sich im oberen Bereich der Säulen. Je weiter sie nach unten wandern, desto geringer wird ihre Proliferationsrate (90). Es kommt zum Wachstumsstopp, wenn sie sich zu prähypertrophen Chondrozyten differenzieren. Auf Genexpressionsebene unterscheiden sich die prähypertrophen Zellen von unreiferen Zellen hauptsächlich durch eine quantitative Erhöhung der Gene für die EZM-Produkte (91). Die Proliferationsrate und damit auch die Differenzierungsgeschwindigkeit wird durch das Gleichgewicht zwischen BMPs und FGFs reguliert (92). Die Gruppe der Fibroblast-Growth-Factors enthält mittlerweile über 20 verschiedene Mitglieder (93), deren Wirkung auf die Chondrogenese nicht nur von der Aktivität der Liganden, sondern auch von der Expression der verschiedenen FGF-Rezeptoren abhängt (94). Die Mitglieder der Sox-Familie haben unterschiedliche Wirkung auf das Proliferationsverhalten. Sox5 und Sox6 fördern die Proliferation und werden für die korrekte Säulenbildung benötigt (95). Dagegen besitzt Sox9 eine hemmende Wirkung auf die Zellproliferation (96). Der Transkriptionsfaktor RUNX2 unterstützt die Proliferation der Chondroblasten (97). RUNX2 wird bereits von mesenchymalen Zellen exprimiert, und erst später während der Proliferation reaktiviert (98). Während der hypertrophen und terminalen Phase bleibt die RUNX2-Expression erhalten. RUNX2 wirkt in erster Linie indirekt, vor allem über eine Aktivierung von Indian hedgehog (99).

2.3.4 Chondrozyten-Hypertrophie

Der Differenzierungsschritt zu hypertrophen Chondrozyten geht mit einem Phänotyp-Wechsel einher. Die Zellen verlassen den Zellzyklus und ihr Zytoplasma nimmt deutlich an Größe zu.

Während für die prähypertrophe Phase nach wie vor frühe EZM-Produkte, wie Kollagen II und Aggrecan, wenn auch in größeren Mengen, typisch sind (100), ist die Aktivierung von Kollagen X (Col10a1) und VEGF charakteristisch für die hypertrophe Phase

(101).

Wie bereits oben erwähnt, ist RUNX2 wesentlich an der Induktion der prähypertrophen und hypertrophen Phase beteiligt. RUNX2 aktiviert die COL10A und Ihh-Expression (102) und wird selbst durch PTHrP gehemmt (103). Dies lässt vermuten, dass RUNX2 Teil der Ihh/PTHrP- Feedback-Schleife ist.

Darüberhinaus spielen BMP (v.a. BMP-6)- induzierte Interaktionen zwischen Smad1 und RUNX2 eine wichtige Rolle bei der Reifung zu hypertrophen Chondrozyten (104).

2.3.5 Terminale Chondrozyten-Differenzierung

Zusammen mit einem letzten Phänotypwechsel ändert sich die Zusammensetzung der EZM erneut. Die COL10A1-Expression sinkt, und neue Proteine wie MMP-13, Osteopontin und die Alkalische Phosphatase erscheinen. Diese Faktoren sind bereits typische Marker für Osteoblasten (105). Die EZM beginnt zu verkalken und Blutgefäße wachsen ein. Die terminalen Chondrozyten gehen in die Apoptose über (106).

Es wurde gezeigt, dass die RUNX2-Expression in terminalen Chondrozyten erhalten bleibt und RUNX2 osteoblastenspezifische Gene direkt aktivieren kann (107).

Ein Mangel an MMP-13 führt zu einer Akkumulation von Kollagenen in der EZM mit verzögerter enchondraler Ossifikation und einer Zunahme der hypertrophen Zone (108). MMP-13 und MMP-9 scheinen beim Abbau der unverkalkten EZM während der primären und sekundären Ossifikation zusammenzuarbeiten (109). Des Weiteren wird die membrangebundene MT1-MMP für die Chondrozyten-Proliferation und sekundäre Ossifikation benötigt (110).

Die Angiogenese wird über Proteine der VEGF-Familie vermittelt. Es kommt zum Einsprossen neuer Blutgefäße in das Perichondrium und die hypertrophe Zone. Dies ist Vorraussetzung für die spätere Knochenbildung (111). Die VEGFs werden mit Hilfe der MMPs, die von in den Knorpel einwandernden Endothelzellen exprimiert werden, freigesetzt (112).

2.4 MMPs und ihre Inhibitoren

Die Familie der Matrix-Metalloproteinasen gehört zu den Calcium- und Zinkabhängigen Endopeptidasen und umfasst mittlerweile mehr als 20 verschiedene Mitglieder. MMPs wurden aufgrund ihrer Substratspezifität in vier Gruppen unterteilt: Kollagenasen, Gelatinasen, Stromelysine, membranständige MMPs und die Gruppe der nicht genau klassifizierten MMPs (113). In ihrer Proteinstruktur sind alle MMPs annähernd identisch. Sie besitzen alle eine katalytische Domäne, die eine Zink-Bindungsstelle enthält, und durch die Komplexbildung des Zinks mit einem Cystein-Rest des Propeptids im inaktiven Zustand verweilt (114).

MMPs werden entweder als sezernierte oder als membrangebundene Proenzyme synthetisiert und später durch Abspalten des aminoterminalen Propeptids aktiviert. Dieser Schritt erfolgt entweder durch Mitglieder der MMP-Familie oder andere Proteasen (115).

Die Aktivität der MMPs wird strikt reguliert, da eine überschießende Reaktion leicht zu einer Gewebezerstörung führt. Zu den wichtigsten endogenen Inhibitoren der MMPs gehören die TIMPs (Tissue Inhibitors of Metalloproteinases) (116). Obwohl diese Gruppe bisher lediglich vier Mitglieder enthält, sind sie in der Lage, die Aktivität aller MMPs zu regulieren.

Zu den wichtigsten Funktionen der MMPs zählt der Abbau von verschiedenen Bestandteilen der EZM. Darüber hinaus spielen sie eine wichtige Rolle bei der Migration, Proliferation, Differenzierung und Apoptose von Chondrozyten der Wachstumszone und beeinflussen die Aktivität von Wachstumsfaktoren, Zytokinen und Adhäsionsmolekülen (117).

Abbildung 7: Physiologische Funktionen der MMPs

MMPs können die Zellmigration beeinflussen, indem sie die EZM und darin enthaltene Adhäsionsmoleküle abbauen (A). MMPs verändern die EZM-Mikroumgebung und können dadurch die Proliferation, Apoptose und Morphogenese regulieren (B). MMPs modulieren die Aktivität von Wachstumsfaktoren und deren Rezeptoren, indem sie diese spalten oder aus der EZM freisetzen (C). MMPs beeinflussen die Aktivität von anderen Proteasen, indem sie diese selber oder deren Inhibitoren abbauen (D)(118).

MMP-2 (Gelatinase-A) wird überwiegend von Chondrozyten, Osteoblasten und Odontoblasten produziert und spielt unter anderem eine entscheidende Rolle bei der enchondralen Ossifikation.

MMP-9 (Gelatinase-B), die vor allem von Makrophagen produziert wird, spielt unter anderem eine Schlüsselrolle in inflammatorischen und degenerativen Gelenkerkrankungen (119). Zudem besitzt MMP-9 eine essentielle Funktion bei der enchondralen Ossifikation. Eine Inaktivierung der Protease führt zur Anhäufung hypertrophen Knorpels, zu einer verminderten Invasion neuer Gefäße und zu einer verminderten Apoptose hypertropher Chondrozyten (120).

Die Spaltung von Kollagen II erfolgt am effektivsten durch MMP-13 (Collagenase 3) (121). Dadurch erhält diese Protease eine wichtige Funktion bei der Chondrozyten-Differenzierung, indem sie durch den Abbau der Knorpelanlage die Bildung des neuen Knochens ermöglicht. Die Synthese von MMP-13 durch Chondrozyten erfolgt hauptsächlich in der hypertrophen Phase (122). Ferner ist die Expression von MMP-13 in osteoarthrotischem Knorpel erhöht und MMP-13 dadurch an der Zerstörung des Gelenkknorpels beteiligt (123).

Mammalian MMPs and substrates.

MMP	Non-traditional substrate	Resultant effector	Matrix substrates
Minimal domain MMP-7/Matrilysin	Pro-a-defensin [41•] Decorin [13] Cell surface bound Fas-L [27•,28•] B4 integrin [31] E-cadherin [32,33•] Plasminogen [60,61•] Pro-TNF α [39•] Pro-MMP-2.7	α-Defensin Bioavailable TG Fβ Active soluble Fas-L Inactive soluble Fas-L Release of B4 integrin Bioactive E-cadherin ectodomain Angiostatin Bioavailable TNFα MMP-2 7	Proteoglycans, laminin, fibronectin, gelatin, collagen III/IV/V/IX/X/XI, fibrin/fibrinogen, entactin, tenascin, vitronectin
MMP-26/ Matrilysin-2/Endometase	α1-proteinase inhibitor [62] MMP-9 [63]	Inactive serpin Pro-MMP-9 [63]	- Gelatin, collagen IV, fibronectin, fibrinogen [62–64]
Collagenases MMP-1/Collagenase-1	Perlecan [12] IGFBP-2,3 α1-antichymotrypsin α1-proteinase inhibitor Pro-MMP-1,2 Pro-TNFα	Bioavailable FGF Bioavailable IGF Inactive serpin Inactive serpin MMP-1,2 Bioavailable TNFα	Collagen I/II/III/VII/X, gelatin, entactin, aggrecan, tenascin
MMP-8/Collagenase-2	α1-proteinase inhibitor Pro-MMP-8	Inactive serpin MMP-8	
MMP-13/Collagenase-3	α1-antichymotrypsin Pro-MMP-9,13	Inactive serpin MMP-9,13	
Stromelysins MMP-3/Stromelysin-1 MMP-10/Stromelysin-2	Perlecan [12] Decorin [13] Pro-HB-EGF [18] Pro-IL1-B [21] Plasminogen [59] E-cadherin [33*,65] IGFBP-3 α1-antichymotrypsin α1-proteinase inhibitor Pro-MMP-1,3,7,8,9,13 Pro-TNFα Pro-MMP-1,8,10	$\label{eq:starsest} \begin{array}{c} - \\ Bioavailable FGF\\ Bioavailable TGF\beta\\ HB-EGF\\ IL1-\beta\\ Angiostatin\\ Bioactive E-cadherin ectodomain\\ Bioavailable IGF\\ Inactive serpin\\ Inactive serpin\\ MMP-1,3,7,8,9,13\\ Bioavailable TNF\alpha\\ MMP-1,8,10\\ - \end{array}$	Proteoglycans, laminin, fibronectin, gelatin, collagen III/IV///IX/XI, fibrin/fibrinogen, entactin, tenascin, vitronectin
MMP-11/Stromelysin-3	α-1-proteinase inhibitor IGFBP-1	Inactive serpin Bioavailable IGF	Laminin, fibronectin, aggrecan
Gelatinases MMP-2/Gelatinase A	Decorin [13] Pro-TGF-B2 [20•] Pro- IL1-B [21] MCP-3 [36••] IGFBP-3/5 ProTNFα FGF-R1 [23] Pro-MMP-1,2,13	- Bioavailable TGFβ TGF-β2 Active IL1-β Inactive chemoattractant Bioavailable IGF TNFα Bioactive FGF-R1 ectodomain MMP-1,2,13	Gelatin, elastin, fibronectin, collagen I/IV/V/VII/X/XI, Iaminin, aggrecan, vitronectin
MMP-9/Gelatinase B	Unknown [37••] Pro-TGF-B2 [20•] Pro-IL1-B [21] Cell-suface bound IL-2Ra [22•] Plasminogen [60,61•] α1-proteinase inhibitor [66•] Pro-TNFα	Bioavailable VEGF TGF-β2 IL1-β Release of IL-2Rα Angiostatin Inactive serpin TNFα	

Kapitel 2	Einleitung		Seite 21
Membrane associated			
MMP-14/MT1-MMP	Pro-MMP-2,13 Cell-surface bound CD44 [67] Cell-surface bound tissue transolutaminase (tTG) [68]	MMP-2,13 Release of CD44 Release of tTG	Gelatin, fibronectin, vitronectin, collagen, aggregan
MMP-15/MT2-MMP	Cell surface bound tTG [68]	Release of tTG	
MMP-16/MT3-MMP	Pro-MMP-2 Cell surface bound tTG [68]	MMP-2 Release of tTG	
MMP-24/MT5-MMP	Pro-MMP-2 [69,70]	MMP-2	
MMP-17/MT4-MMP MMP-25/MT6-MMP	Pro-MMP-2 [71] Pro-MMP-2 [72]	MMP-2 MMP-2	Gelatin [71] Gelatin, collagen IV, fibrin, fibronectin, Laminin-1 [73]
MIMP-23			Geraun [74]
Other MMPs MMP-12/ Metalloelastase	Plasminogen [57,58]	Angiostatin	Elastin, fibronectin, fibrin/fibrinogen,
MMP-19/RASI			Gelatin, tenascin, fibronectin, Collagen IV, Iaminin, entactin, Fibrin/fibrinogen, aggrecan, COMP [75.76]
MMP-20/Enamelysin MMP-28/Epilysin			Amelogenin, Aggrecan, COMP [74]

Abbildung 8: Übersicht der beim Menschen bekannten MMPs

Diese Tabelle zeigt alle derzeit beim Menschen bekannten MMPs. In den Spalten sind Substrate der einzelnen MMPs, sowie die Wirkung der MMPs auf das entsprechende Substrat dargestellt (124).

2.5 Proinflammatorische Zytokine: TNFa und IL-1ß

Ursprünglich wurde der Tumor-Nekrose Faktor alpha Mitte der 70er Jahre als Serumfaktor, welcher durch Endotoxine ausgeschüttet wird, entdeckt. TNF α wird in verschiedenen Zellen des Immunsystems, z.B. Mastzellen, Makrophagen, Lymphozyten, als auch in den Parenchymzellen vieler Organe wie beispielsweise Thymus, Milz, Niere, Herz, Darm etc. synthetisiert. Die Ausschüttung des Zytokins erfolg in den einzelnen Zellen über unterschiedliche Stimuli (125,126).

Die Bildung und Sekretion wird über Toll-like Rezeptoren und den MAP-(Mitogen Activated Protein)-Kinase-Weg sowie NFκB (Nuclear Factor Kappa B) angeregt (127). Das Interleukin 1ß gilt als eines der wichtigsten und potentesten proinflammatorischen Zytokine. IL-1 wird von verschiedenen Zellen synthetisiert: Makrophagen, neutrophile Granulozyten, Endothelzellen, Fibroblasten, Synovialzellen, Lymphozyten, etc (128). Interleukin 1 besitzt zahlreiche verschiedene Funktionen, wie zum Beispiel die Aktivierung von T-, B-Lymphozyten und neutrophilen Granulozyten, sowie multiple proinflammatorische Eigenschaften wie Fieber, Schlaf, Neutrophilie und Hypotonus (129).

Das Zytokin TNF α spielt eine wichtige Rolle im komplexen Netzwerk der Immunreaktionen. Zusammen mit den Interleukinen 1L-1 α und IL-1 β sowie Interferon γ ist TNF α ein zentraler Mediator bei der nicht-adaptiven Immunantwort. In den verschiedenen Organsystemen übt TNF α unterschiedliche Funktionen aus. Es induziert die Einwanderung und Aktivierung neutrophiler Granulozyten, fördert die Produktion von Akute-Phase-Proteinen in der Leber und stimuliert die Phagozytose von Makrophagen (130). Zusammen mit IL-1 kommt es zur Aktivierung von synovialen Fibroblasten mit konsekutiver entzündlicher Zerstörung des Gelenkkörpers. Dies erklärt die hohe Bedeutung von TNF α in der Rheumatologie (131).

Zahlreiche Studien haben gezeigt, dass IL-1 und TNF α die Ausbildung des chondrozytären Phänotyps und die Expression von knorpelspezifischen Genen, zum Beispiel für die Kollagene II, IX und XI, hemmen (132-134). Diese inhibitorischen Effekte gelten als Ursache für die Zerstörung des Gelenkknorpels im Rahmen der Osteoarthrose und der rheumathoiden Arthritis. IL-1 und TNF α werden von Synovialzellen produziert und weisen erhöhte Spiegel in der Synovialflüssigkeit bei rheumatoider Arthritis und Osteoarthrose auf (135,136). Weiterhin stimulieren beide Interleukine die Freisetzung von knorpelzerstörenden Proteinen unter anderem über die Freisetzung von MMPs (137,138). In mehreren Studien konnte nachgewiesen werden, dass die katabolischen Effekte auf den Knorpel unter anderem über eine Hemmung der die Chondrogenese fördernden Faktoren TGF-ß und SOX9 vermittelt wird (139,140).

2.6 Chondrogenese in vitro

Um eine chondrogene Differenzierung in vitro zu erreichen, müssen die Zellen in einer dichten, dreidimensionalen Umgebung kultiviert werden. Dies geschieht zum Beispiel in Form von Micromass Pellets oder als Suspension in Alginat.

Des Weiteren benötigt die chondrogene Differenzierung ein speziell zusammengesetztes Zellkulturmedium. Anstatt des häufig für die Kultur von MSCs eingesetzten fetalen Kälberserums (FCS) wird ein Zusatz mit klar definierten Bestandteilen wie ITSTM verwendet. Es enthält Insulin, Transferrin, Selensäure, Linolensäure und Rinderalbumin. Insulin als anaboles Hormon, wird für das Überleben der Zellen benötigt. Transferrin ist ein wichtiges Eisentransportprotein und wird unter in vitro-Bedingungen für das Zellwachstum benötigt. Selensäure ist ein Cofaktor der Glutathionperoxidase. Bei Linolensäure handelt es sich um eine ungesättigte Fettsäure. Sie stellt als integrale Zellmembrankomponente einen wichtigen Faktor für das Zellwachstum dar. Daneben stimuliert sie in Kombination mit Tgf β 1 oder 3 die Chondrogenese. Zusätzlich werden dem Medium noch Dexamethason und Tgf β 1 oder 3 zugefügt.

fördert die Wirkung von Tgf β 1 oder 3, das ebenfalls die chondrogene Differenzierung anregt (141).

Das Medium enthält darüberhinaus Prolin. Diese Aminosäure ist wesentlich am Aufbau aller Kollagene mit ihrer charakteristischen Pro-X-Gly-Pro-Sequenz beteiligt (X stellt in der Regel eine neutrale Aminosäure dar). Ascorbinsäure wird als Elektronendonator während der Hydroxylierung von Prolin und Lysin benötigt. Dieser Schritt der Kollagensynthese ist entscheidend für die Ausbildung der Tripel-Helix-Struktur des Kollagens (142). Des Weiteren stimuliert Ascorbinsäure die chondrogene Differenzierung, indem sie die Synthese von 1,25-Dihydroxycholecalciferol und von Knorpelmatrixprodukten fördert.

Um die chondrogene Differenzierung von MSCs in vitro zu fördern, hat sich seit mehreren Jahren das Pelletkulturmodell etabliert. Dieses System wurde das erste Mal von Holtzer et al. beschrieben und besitzt gegenüber einer zweidimensionalen Kultivierung von Chondrozyten den Vorteil, dass die Chondrozyten ihren Phänotyp beibehalten (143). Die Zellen formen mit Hilfe von Zell-Zell-Interaktionen ein festes Aggregat und haften im Gegensatz zur zweidimensionalen Kultur nicht an den Kunststoffoberflächen. Johnstone et al. konnten in Ihren Studien nachweisen, dass die Kultivierung in Pelletform unter Zugabe eines definierten chondrogenen Mediums zu einer chondrogenen Differenzierung der MSCs führt (144). Eine zweidimensionale Kultivierung der MSCs unter gleichen Bedingungen führte dagegen zu keiner chondrogenen Differenzierung der MSCs (145).

Eine besondere Form der in vitro-Kultur stellt der Kokulturansatz dar, bei dem MSCs zusammen mit reifen Chondrozyten kultiviert werden. Dadurch ist es möglich, die physiologischen Bedingungen der MSCs im Bereich des geschädigten Knorpels so genau wie möglich nachzustellen. Des Weiteren kann hiermit die Kontrolle der Chondrogenese mittels löslicher parakriner Signale näher untersucht werden, indem zum Beispiel der Kontakt zwischen den verschiedenen Zelltypen auf parakrine Signalwege beschränkt wird (146).

2.7 Zukunft des Tissue Engineering

Im Bereich des Tissue Engineerings gehört Gelenkknorpel zu den Geweben, die derzeit eine der größten Herausforderungen darstellen. Zu den Schwierigkeiten zählen seine dichte extrazelluläre Matrix, seine avaskuläre Ernährung, die begrenzte Anzahl an Zellen und die Tatsache, dass keine klar definierten Vorläuferzellen existieren. Derzeit stellen MSCs den vielversprechendsten Ansatz zur ex vivo-Regeneration von hyalinem Knorpel dar. Diese Zellen besitzen sowohl eine hohe Proliferationsrate, als auch ein hohes Differenzierungspotential. Des Weiteren können mit Hilfe der MSCs im Gegensatz zu Chondrozyten iatrogene Schäden an der Entnahmestelle der Zellen vermieden werden.

Jedoch stellt die Herstellung von funktionsfähigem artikulärem Knorpel aus MSCs nach wie vor eine Herausforderung dar.

Deshalb ist die Optimierung der parakrinen Signalwege und die Auswahl der geeigneten Zellpopulation ein wichtiges zukünftiges Ziel für eine erfolgreiche Strategie zur Knorpelregeneration.

Um dieser Herausforderung zu begegnen, müssen zuerst die Wege der chondrogenen Differenzierung beim Erwachsenen genau verstanden werden. Da vergangene Studien zeigen konnten, dass die Differenzierung stark von der Mikroumgebung beeinflusst wird, ist es Aufgabe zukünftiger Studien, die Signalmoleküle und die Kaskaden, die für das Schicksal der Zellen verantwortlich sind, im Detail zu identifizieren. Ferner muss der Einfluss der Interaktionen zwischen den Zellen, sowohl parakrin, als auch durch direkte Zellkontakte, oder auch in kombinierter Form, genau untersucht werden (146).

2.8 Ziel der Arbeit

Ziel dieser Doktorarbeit ist es, einen potentiell regulierenden Einfluss von löslichen, parakrinen Faktoren, produziert von reifen Chondrozyten, auf die chondrogene Differenzierung von humanen, mesenchymalen Stammzellen nachzuweisen. Hierfür wurde ein Zellkulturmodell etabliert, in dem Chondrozyten und rRS getrennt voneinander kultiviert werden und der Kontakt zwischen den beiden Zellgruppen auf lösliche Faktoren beschränkt ist. Dies wird durch Zugabe des bei den Chondrozyten konditionierten Zellkulturüberstandes zu den hRS erreicht.

3 Material und Methoden

3.1 Methoden der Zellkultivierung

3.1.1 Kultivierung der RS-Zellen

Die in flüssigem Stickstoff gelagerten Zellen wurden in Passage 4 aufgetaut und jeweils 300.000 Zellen pro 175 cm²-Kulturgefäß unter Standardbedingungen (wasserdampfgesättigt, 37°C, 5% CO₂) kultiviert. Als Proliferationsmedium dienten 25 ml Alpha-MEM (Minimum Essential Medium) pro 175 cm²-Flasche, welches mit FBS (20%) (fötales Rinderserum), L-Glutamin (2%) und Antibiotikum/Antimykotikum versetzt wurde. 24 Stunden nach dem Auftauen wurde das Medium, das nicht adhärente und tote Zellen enthielt, ausgetauscht. Weitere Medienwechsel folgten alle 2-3 Tage.

Die Zellen wurden bei Erreichen einer achtzigprozentigen Konfluenz passagiert. Hierfür wurden die Zellen mit 5 ml PBS gespült, um Reste des FCS zu entfernen. Danach erfolgte die Zugabe von Trypsin/EDTA und eine Inkubation für 5 Minuten bei 37°C. Die Reaktion wurde durch Zugabe von 5 ml FCS-haltigem Medium abgestoppt. Danach konnten die abgelösten Zellen aspiriert werden.

Nach anschließender Zentrifugation (300xg, 5 Minuten) wurde die Zellkonzentration mit Hilfe einer Neugebauer Zählkammer (10 µl Zellsuspension + 10 µl Trypanblau) bestimmt.

Daraufhin wurden erneut 300.000 Zellen pro 175 cm² Kulturgefäß ausgesät und diese, wie oben beschrieben, bis Passage 6 weiter kultiviert.

3.1.2 Gewinnung des Knorpels

Der Knorpel stammte von Patienten mit Gonarthrose, die sich am Lehrstuhl für Orthopädie der Universität Regensburg eine Knietotalendoprothese implantieren ließen. Das Alter der insgesamt 8, in die Versuchsreihe aufgenommenen Patienten (7 Frauen, 1 Mann) lag zwischen 49 und 82 Jahren (MW: 63,63 Jahre; SD = 10,95 Jahre) Das während der Operation entnommene Gewebe wurde steril in physiologische NaCl-Lösung gegeben und bis zur weiteren Verarbeitung, die innerhalb von 6 Stunden erfolgte, bei Raumtemperatur gelagert.

Abhängig vom Krankheitsstadium der Osteoarthrose und der damit verbundenen Destruktion des Gelenkknorpels, bot sich bei der Begutachtung der, aus dem OP erhaltenen Resektate, ein von Patient zu Patient variierender Gesamteindruck. Um eine bestimmte Gewebeprobe überhaupt verwenden zu können, musste sie ein ausreichend hohes Maß an Knorpelbesatz und möglichst viele Bereiche mit intaktem Knorpel aufweisen. Da die Einteilung in intakte und destruierte Areale auf rein makroskopischer Ebene erfolgte und somit wesentlich vom Augenschein des Untersuchers abhing, war es für die Entnahme annähernd gleichartig beschaffener Knorpelexplantate notwendig, vor der endgültigen Präparation des Knorpelgewebes Kriterien zu finden, anhand derer die Knorpelareale als intakt deklariert werden konnten.

Einen ersten Anhaltspunkt hierfür ergab der Farbeindruck der Knorpelareale: Je ausgeprägter die krankheitsbedingten Veränderungen waren, desto stärker war auch der ursprünglich eher weiße Aspekt in Richtung eines gelben Farbtons verschoben. Die große Mehrzahl der Proben wurde von diesem gelben Ton dominiert, ein noch überwiegend weißer Teint der knorpelbesetzten Gelenkflächen war nicht zu beobachten. Weiterhin erfolgte die Unterteilung anhand der Oberflächenbeschaffenheit: Die stärker destruierten Knorpelareale wiesen in unterschiedlicher Zahl und Ausprägung sowohl Usuren, als auch höckrige Stellen auf, über die man mit der Klinge des Skalpells nicht glatt hinwegstreichen konnte. Bei intakten Flächen war dies entsprechend nicht der Fall.

Auskunft gab schließlich noch der taktile Eindruck, der beim Eindringen des Skalpells in die Knorpelareale entstand. Auf intakten Flächen ließ sich die Klinge mit mäßig starkem Widerstand relativ weit in die noch dicke Knorpelschicht vorschieben. In Destruktionsgebieten dagegen war durch die aufgefaserte, weiche und letztlich auch dünnere Beschaffenheit des Gewebes kein nennenswerter Widerstand spürbar. Aus den, als intakt deklarierten Anteilen des Gelenkknorpels, wurde, unter sterilen Bedingungen, mit einem Skalpell der Gelenkknorpel vom Knochen geschabt und in kleine Stücke geschnitten. Jeweils 1,1 g dieser Knorpelstückchen wurden zusammen mit 8,5 ml chondrogenem Medium in einem 50 ml Falkon bei 37°C über 23 Tage hinweg aufbewahrt. Der Mediumwechsel erfolgte dreimal pro Woche. Der dabei entnommene Zellkulturüberstand wurde später als konditioniertes Medium weiterverwendet.

3.1.3 Das konditionierte Pelletmodell

Die hRS-Zellen wurden nach Passage 6 wie in 2.1.1 beschrieben mit Trypsin/EDTA geerntet, zentrifugiert (300xg, 5 Minuten) und das entstandene Pellet in chondrogenem Medium resuspendiert und anschließend ausgezählt. Die Zellsuspension wurde so auf 80 Eppendorf-Gefäße aufgeteilt, dass jeweils ein Pellet aus 200.000 Zellen pro Gefäß

kultiviert wurde. Die Versuchsanordnung unterschied zwei verschiedene Kulturbedingungen, die als **Konditioniertes Pelletmodell** und als **Kontroll-Pelletmodell** deklariert wurden. Beide Kulturen bestanden anfangs aus jeweils 40 Eppendorf-Gefäßen mit dem darin enthaltenen Zellpellet.

Abbildung 9: Das konditionierte Pelletmodell

Schematische Darstellung des verwendeten konditionierten Pelletmodells mit Verwendung von serumfreien, chondrogenen Medium.

In der Kontrollgruppe wurde dem Pellet ausschließlich 0,4 ml frisches, serumfreies chondrogenes Medium zugegeben. Der Mediumwechsel erfolgte dreimal pro Woche. Bei den konditionierten Proben wurde dem Pellet 0,2 ml frisches, chondrogenes Medium und zusätzlich 0,2 ml konditioniertes Medium zugegeben. Das konditionierte Medium wurde zuvor 2 bis 3 Tage zusammen mit den Knorpelstücken bei 37°C inkubiert. Der Mediumwechsel (jeweils 0,2 ml chondrogenes + 0,2 ml konditioniertes Medium) erfolgte dreimal pro Woche.

Beide Ansätze wurden über 21 Tage kultiviert. An den Tagen 0, 7, 14 und 21 wurden pro Ansatz 10 Eppendorf-Gefäße für weitere Nachweisverfahren entnommen.

	Tag 0	Tag 7	Tag 14	Tag 21
Entnommen für	Je 5 Cups gepoolt			
Proteinnachweis	\Rightarrow 2 Cups mit je			
	1.0 Million Zellen	1.0 Million Zellen	1.0 Million Zellen	1.0 Million Zellen
	=> 2 Cups mit je			
	2 ml Überstand	2 ml Überstand	2 ml Überstand	2 ml Überstand
Entnommen für	Je 2 Cups;	Je 2 Cups;	Je 2 Cups;	Je 2 Cups;
Histologie	\Rightarrow 4 Pellets	\Rightarrow 4 Pellets	\Rightarrow 4 Pellets	\Rightarrow 4 Pellets
	In Paraffin	In Paraffin	In Paraffin	In Paraffin
	eingebettet	eingebettet	eingebettet	eingebettet
Entnommen zur	Je 5 Cups gepoolt			
RNA-Isolierung	\Rightarrow 2 Cups mit je			
	1.0 Million Zellen	1.0 Million Zellen	1.0 Million Zellen	1.0 Million Zellen

Tabelle 1: Übersicht der entnommenen Proben

1 Cup entspricht einem 1,5ml Eppendorf-Gefäß

3.1.4 Für die Zellkultur verwendete Medien

Medium für RS Zellen	α-Medium	77%
	FBS	20%
	L-Glutamin	2%
	Penicillin / Streptomycin	1%
Gefriermedium für RS Zellen	α-Medium	64%
	FBS	29%
	DMSO (Dimethylsulphoxid)	5%
	Penicillin / Streptomycin	1%
	L-Glutamin	0,7%

Serumfreies chondrogenes	DMEM glucose	
Medium	(4,5 g/l) +	
	1% Penicillin/Streptomycin	
	Transforming growth factor β-3	10 ng/ml
	Dexamethason	0,1 µg/ml
	Ascorbat-2Phosphat	50 µg/ml
	Prolin	40 µg/ml
	Pyruvat	110 µg/ml
	ITS + premix	
	Insulin	6,25 µg/ml
	Transferrin	6,25 µg/ml
	Selensäure	6,25 µg/ml
	BSA	1,25 µg/ml
	Linolen-Säure	5,35 µg/ml

Tabelle 2: Für die Zellkultur verwendete Medien

3.2 Kollagenisolation und Zymographie

3.2.1 Kollagenpräparation durch Pepsinverdau

Für die Kollagenpräparation wurde jeweils 2 ml des Zellkulturüberstandes verwendet. Dieser wurde für 5 Minuten zentrifugiert (14.000 g, 4°C), der Überstand auf zwei Eppendorf-Gefäße (jeweils 1 ml) aufgeteilt und das entstandene Pellet verworfen. Anschließend erfolgte die Inkubation mit 100 μl Pepsin (10 mg/ml in 1M HCl) pro 1 ml Medium für 2 Stunden bei Raumtemperatur mit Hilfe eines Rotationsmixers. Nachfolgend wurde der pH-Wert der Lösung mit Hilfe von 1 M Tris auf 7,0 eingestellt. Die Kollagenextraktion erfolgte durch Zugabe von NaCl-Kristallen bis zu einer Endkonzentration von 4,5 M und anschließender Inkubation über Nacht bei 4°C mit Hilfe eines Rotationsmixers. Als nächstes wurden die Proben 30 Minuten zentrifugiert (14.000xg, 4°C), der Überstand verworfen und das entstandene Pellet in 100 μl Wasser resuspendiert.

Die Zugabe von 300 µl absolutem Ethanol (-20°C) und Inkubation über Nacht bei -20°C führte zur Prezipitation des Pellets. Nach 30 Minuten Zentrifugieren (14.000xg, 4°C) wurde der Überstand verworfen und das Pellet für 30 Sekunden bei 95°C komplett getrocknet. Die Pellets wurden daraufhin in jeweils 30 µl denaturierendem SDS-Page Ladungspuffer resuspendiert und die vorher auf 2 Gefäße aufgeteilten Proben wieder zusammengeführt.

3.2.2 SDS-PAGE

Die Auftrennung der Kollagen-Proben erfolgte durch eine SDS-PAGE mit 4,5-15% Midi-Gradientengelen.

Nach Gießen des Stopfgels, wurde das Trenngel mit Hilfe eines Gradientenmischers zwischen zwei vertikalen Glasplatten gegossen und mit 70% Ethanol überschichtet. Nach der Polymerisation des Gels wurde das Ethanol entfernt, die Glasplatten mit Hilfe eines Filterpapiers getrocknet und anschließend das Sammelgel (4,5%) über das Trenngel geschichtet und ein Probenkamm eingelegt.

Vor dem Auftragen auf das Gel wurden die Proben 3-4 Minuten bei 95°C gekocht, und jeweils 60 μ l pro Tasche aufgetragen. Zusätzlich liefen 10 μ l eines Standards und jeweils 10 μ l reines Kollagen I bzw. II (jeweils 1 μ g/ μ l) auf dem Gel mit.

Die angelegte Stromstärke betrug 30mA bei einer Laufdauer von 4-5 Stunden.

Stopfgel	Wasser	10 ml	
	Trenngelpuffer pH 8,8	6 ml	
	Acrylamid-Lösung 30%	8 ml	
	TEMED	80 µl	
	APS 10% (frisch)	80 µl	
Trenngel 4,5%	Wasser	6 ml	
	Trenngelpuffer pH 8,8	2,5 ml	
	Acrylamid-Lösung 30%	1,5 ml	
	TEMED	7,5 μl	
	APS 10% (frisch)	75 μl	
Trenngel 15%	Wasser	2,5 ml	
	Trenngelpuffer pH 8,8	2,5 ml	
	Acrylamid-Lösung 30%	5 ml	
	TEMED	7,5 μl	
	APS 10% (frisch)	75 μl	
Sammelgel 4,5%	Wasser	5,9 ml	
	Sammelgelpuffer pH 6,8	2,5 ml	
	Acrylamid-Lösung 30%	1,5 ml	
	TEMED	30 µl	
	APS 10% (frisch)	50 μl	
2x SDS-Page Ladungspuffer	Urease	0,8 M	
---------------------------	-------------------------------	--------	--
	SDS	2%	
	Glyzerol	10%	
	Bromophenolblau	0,001%	
	Mercaptoethanol (frisch zuge-	3%	
	setzt)		
	Tris/HCl pH 6.8	0,1 M	
Kammerpuffer	Tris	0,3%	
	SDS	0,1%	
	Glyzin	1,45%	
Trenngelpuffer pH 8,8	Tris	1,5 M	
	SDS	0,4%	
Sammelgelpuffer pH 6,8	Tris	0,5 M	
	SDS	0,2%	

Tabelle 3: Zusammensetzung	der für	die SDS-PAC	GE verwendeten	Gele und Puffer
----------------------------	---------	-------------	----------------	-----------------

3.2.3 Silberfärbung

Um die Kollagenbanden deutlich darzustellen, erfolgte eine Silberfärbung. Hierfür wurden die Gele zuerst für 15 Minuten fixiert und anschließend dreimal für 5 Minuten mit destilliertem Wasser gespült. Die darauffolgende Färbung dauerte 15 Minuten. Zum Entwickeln wurden die Gele zuerst für 30 Sekunden in einem Teil der Entwicklungslösung geschwenkt, und anschließend für ca. 5 Minuten in einer neuen Lösung inkubiert. Sobald die Gele ausreichend entwickelt waren, erfolgte das Abstoppen der Reaktion durch Zugabe siebenprozentiger Essigsäure. Anschließend wurden die Gele entwässert, um eine Archivierung zu ermöglichen.

Fixierlösung	Na ₂ S ₂ O ₃	250 mg
	Ethanol absolut	75 ml
	4M NaAc-Lösung	25 ml
	Essigsäure	1 ml
	Glutardialdehyd 25%	2,5 ml
	Wasser	146,5 ml
Färbelösung	AgNO ₃	250 mg
	Formaldehyd 37%	62,5 μl
	Wasser	250 ml

Entwicklerlösung	Na ₂ CO ₃ -Lösung 5%	125 ml
	Formaldehyd 37%	100 µl
	Wasser	125 ml
Entwässerungslösung	Ethanol absolut	25%
	Glyzerol	2%

Tabelle 4: Für die Silberfärbung verwendete Lösungen

3.2.4 Lysierung der Zellpellets

Um den Proteingehalt der Pellets und die in den Pellets enthaltenen Proteine bestimmen zu können, wurden jeweils 5 Pellets der Kulturtage 7, 14 und 21 lysiert. Hierfür wurde den 5 Pellets jeweils 230 µl Lysepuffer inklusive Proteaseinhibitor (143 µl der 7x Stocklösung auf 1 ml Lysepuffer) zugesetzt. Die Zellen wurden durch mehrfaches Pipettieren aufgelöst. Anschließend erfolgte eine Inkubation von einer Stunde auf Eis in dem Lysepuffer mit regelmäßigem Vortexen. Daraufhin wurden die Proben für 15 Minuten (4000xg, 4°C) zentrifugiert und der Überstand entnommen.

Lyse-Puffer	NP 40	1%
	=Nonylphenoxypolyethoxy-	
	ethanol	
	Sodium Deoxycholate	0,5%
	SDS	0,1%
	PBS	Auffüllen

 Tabelle 5: Zusammensetzung Lysepuffer

3.2.5 BCA[™]- Protein - Assay

Der BCA[™]-Protein-Assay wurde entsprechend der mitgelieferten Anleitung durchgeführt. Zuerst wurde für den Assay eine Verdünnungsreihe mit 6 verschiedenen Konzentrationen an BSA angefertigt. Des Weiteren wurde das BCA[™] Working Reagent, mit den im Kit enthaltenen Reagenzien erstellt, und jeweils 200 µl der Lösung der zu messenden Probe zugegeben. Als Probe dienten jeweils 10 µl des aus der Zelllyse gewonnenen Überstandes, die sowohl konzentriert, als auch 1:50 verdünnt eingesetzt wurden. Alle Proben wurden zweimal angesetzt, um eine Doppelbestimmung zu ermöglichen. Anschließend erfolgte eine Inkubation im 60°C warmen Wasserbad für 30 Minuten. In der Folge wurden die Proben auf Eis heruntergekühlt und bei einer Wellenlänge von 562 nm mit dem Photometer vermessen.

3.2.6 Gelatine Zymographie

Als Proben diente der bei den Medienwechsel der Zellkultur gewonnene Überstand, von dem jeweils 50 µl verwendet und mit der gleichen Menge an Ladungspuffer gemischt wurden.

Des Weiteren wurde der in der Zelllyse gewonnene Überstand für die Zymogramme verwendet. Hierfür wurde zuerst ein Protein-Assay durchgeführt und anschließend die Volumina so gewählt, dass jede Probe genau 50 µg Protein enthielt. Zusätzlich wurde noch 6x Ladungspuffer zugegeben.

Als positive Kontrolle wurde bei allen Zymogrammen je 2,5 ng rekombinantes MMP-2 und MMP-9 mit aufgetragen.

Die Auftrennung erfolgte über ein 4,5–15 % Gradientengel das 0,1% Gelatine enthielt. Die Herstellung des Gels erfolgte nach der in 2.2.2 beschriebenen Methode.

Von jeder Probe wurden 100 µl verwendet. Nach einer Laufzeit von ca. 4 Stunden bei 30 mA, erfolgte das Auswaschen des im Gel enthaltenen SDS mit Hilfe einer 2,5 prozentigen TritonX 100-Lösung für zweimal 30 Minuten. Anschließend wurde das Gel mehrmals in destilliertem Wasser gespült und dann für 16 Stunden bei 37°C im Developing Buffer entwickelt.

2x Ladungspuffer	EDTA	2 mM
(nur für Zymographie)	SDS	2%
	Glyzerol	20%
	Bromophenol Blau	0,02%
	Tris/HCl pH 8,0	20 mM
Entwicklungspuffer	Tris/HCl pH 8,5	50 mM
	CaCl ₂ H ₂ O	5 mM

Zuletzt wurde das Gel mit Coomassie Brilliant Blau gefärbt.

Tabelle 6: Spezielle Puffer für die Gelatine-Zymographie

3.2.7 Färbung mit Coomassie-Brilliantblau

Nach der Elektrophorese wurden die Gele für 30 Minuten fixiert und anschließend 30 Minuten in der Coomassielösung gefärbt. Daraufhin folgte ein weiterer 30minütiger Fixierungsschritt. Anschließend wurden die Gele 3-4 Stunden entfärbt, wobei die Entfärbungslösung alle 30 Minuten erneuert wurde. Schließlich wurden die Gele entwässert, um eine Archivierung zu ermöglichen.

Fixierlösung	Methanol	50%
	Essigsäure	10%
Coomassie-Färbelösung	Coomassie brilliant blue R250	2,5 g
	Isopropanol	250 ml
	Essigsäure	100 ml
	Wasser	650 ml
Entfärber	Methanol	10%
	Essigsäure	10%

Tabelle 7: Für die Coomassie-Färbung verwendete Lösungen

3.3 Histologische Färbungen

3.3.1 Fixieren der Proben

Jeweils zwei der Pellets der Kulturtage 0, 7, 14 und 21 und mehrere Knorpelstückchen, sowohl vom Tag der Operation als auch vom Ende der dreiundzwanzigtägigen Kultur, wurden der histologischen Auswertung zugeführt.

Als Fixierlösung diente eine Paraformaldehydlösung (4% in PBS, pH 7,4), in welche die Proben über Nacht eingelegt wurden. Anschließend erfolgte die Wässerung der Proben über Nacht in PBS, bevor sie für jeweils 6 Stunden in eine aufsteigende Alkoholreihe (50%, 70%, 96%, 96% bei 4°C) und daraufhin zweimal für 6 Stunden in Isopropanol (4°C) überführt wurden. Nachdem die Proben jeweils über Nacht im Wärmeschrank (60°C) in eine Lösung aus 50% Isopropanol und 50% Paraffin und anschließend in 2 reine Paraffinlösungen gegeben wurden, folgte das Einbetten in flüssigem Paraplast.

Schnitte mit einer Dicke von 3 µm wurden angefertigt und nach dem Aufziehen auf Objekträger über Nacht bei 37°C getrocknet.

3.3.2 Färbung mit Alzianblau

Zum Entparaffinieren der Objekte wurden diese zuerst für zweimal 15 Minuten in Rotihistol gegeben. Anschließend folgte eine absteigende Ethanolreihe (96%, 90%, 70%, 50% jeweils 10 Minuten) und das Spülen der Objektträger für 10 Minuten in PBS (pH 7,4).

Nachdem die Proben für 3 Minuten in 0,1 M HCl eingestellt wurden, folgte die Färbung mit 1% Alzianblaulösung (in 0,1 M HCl) für 30 Minuten und anschließendes Spülen in 0,1 M HCl. Daraufhin erfolgte eine Gegenfärbung mit Kernechtrot für 3 Minuten. Nach mehrmaligem Spülen mit destilliertem Wasser folgte die Entwässerung über eine aufsteigende Alkoholreihe (50%, 70%, 90%,96%) und das Trocknen in 100% Xylol. Danach konnten die Objektträger mit DePeX eingedeckelt werden.

3.3.3 Kollagen-II-Immunhistologie

Die Schnitte wurden zuerst zweimal 15 Minuten in Rotihistol entparaffiniert und anschließend einer absteigenden Ethanol-Reihe zugeführt (99%, 96%, 90%, 70%, 50% Ethanol für je 5 Minuten). Daraufhin wurden die Schnitte mit Hilfe eines Fettstiftes umrandet und für 15 Minuten mit PBS inkubiert.

Anschließend erfolgte der Matrix-Verdau. Hierfür wurden die Proben 10 Minuten mit Protease XXIV (0,05% in PBS) bei 37°C verdaut und dann nach dreimaligem Waschen in PBS für 90 Minuten mit Hyaluronidase (0,1% in Acetatpuffer, pH 6,0) bei 37°C inkubiert und wieder dreimal mit PBS gewaschen.

Als nächstes erfolgte die Blockierung der endogenen Peroxidase durch eine fünfminütige Inkubation in 5% H₂O₂, und erneutes dreimaliges Waschen in PBS. Die Schnitte wurden dann mit Hilfe einer Lösung aus 5% Schweineserum in PBS für 60 Minuten blockiert und anschließend über Nacht bei 4°C mit dem ersten Antikörper (Kaninchenanti-Kollagen II (Acris R1039), 1:100 in Blockierungslösung) inkubiert. Am nächsten Morgen erfolgte nach dreimaligem Waschen mit PBS die Inkubation mit dem zweiten Antikörper (Schwein-anti-Kaninchen, biotinyliert (DAKO®), Verdünnung 1:500 in Blockierlösung) für 60 Minuten bei 37°C. Nach dreimaligem Waschen in PBS wurden die Proben für 60 Minuten in eine Streptavidin-HRP-Lösung (1:300 in Blockierlösung) bei 37°C überführt und danach erneut dreimal mit PBS gewaschen. Daraufhin wurden die Proben für ca. 10 Minuten mit DAKO® Liquid Substrate System unter Sichtkontrolle entwickelt und einmal in PBS gewaschen.

Zuletzt erfolgte eine Gegenfärbung mit Hämalaun. Hierfür wurden die Schnitte für ca. 5 Sekunden in der Farbstofflösung gefärbt, dreimal mit destilliertem Wasser gespült und daraufhin für 5 Minuten in lauwarmen Wasser gebläut. Die Entwässerung der Schnitte erfolgte über eine aufsteigende Alkoholreihe (50%, 70%, 90%,96%) und das Trocknen in 100% Xylol. Danach konnten die Objekträger mit DePeX eingedeckelt werden.

3.4 ELISAs

3.4.1 Übersicht ELISAs

	Hersteller	Katalognummer
IL-1ß	R&D Systems	DY201
MMP-2	R&D Systems	DMP200
MMP-13	RayBio®	ELH-MMP13-001
Tgf-β1	R&D Systems	DY240
TNFα	R&D Systems	DTA00C

Tabelle 8: Verwendete ELISA-Kits

3.4.2 MMP-2 ELISA

Vom Hersteller wurde bereits eine mit dem ersten Antikörper beschichtete 96Well-Platte mitgeliefert.

Zu Beginn wurden jeweils 100 µl der gebrauchsfertigen Verdünnungslösung RD1-74 in jedes Well pipettiert. Anschließend musste eine Standardreihe mit sieben verschiedenen Konzentrationen mit Hilfe des mitgelieferten MMP-2 Standards und der Verdünnungslösung hergestellt werden. Von den fertigen Standards und den aufgetauten Proben wurden jeweils 50 µl in jedes Well gegeben und die Platte mit einem Klebestreifen verschlossen. Nach einer Inkubation für 2 Stunden bei Raumtemperatur auf einem horizontalen Kreisschüttler wurden alle Wells abgesaugt und daraufhin 4mal mit jeweis 400 µl Waschpuffer gespült. Diese wurde 20x konzentriert mitgeliefert und musste zuerst mit destilliertem Wasser verdünnt werden. Daraufhin wurde 200 µl MMP-2-Konjugat in jedes Well pipettiert. Die Platte wurde wieder mit einem Klebestreifen verschlossen und für 2 Stunden auf einem Schüttler bei Raumtemperatur inkubiert. Inzwischen wurde die Substratlösung aus jeweils gleichen Voulmina der Farblösung A und B erstellt und lichtgeschützt aufbewahrt. Nach erneutem Waschen wurde jeweils 200 µl der fertigen Substratösung in jedes Well pipettiert und für 30 Minuten bei Raumtemperatur im Dunklen inkubiert. Die Reaktion wurde mit Hilfe der mitgelieferten Stoplösung beendet und es erfolgte ein Farbumschlag der Proben von blau nach gelb. Die Platte wurde innerhalb von 30 Minuten bei 450nm vermessen. Um eine quantitative Auswertung vornehmen zu können, wurde jedem Versuch eine

Verdünnungsreihe des entsprechenden Standards zugesetzt, und anhand der Ergebnisse eine Standardkurve erstellt.

3.4.3 MMP-13 ELISA

Die 96Well-Platte wurde bereits vom Hersteller mit einem MMP-13 Antikörper beschichtet.

Zuerst wurde die 5x konzentrierte Verdünnungslösung mit destilliertem Wasser verdünnt. Anschließend musste eine Standardreihe mit sieben verschiedenen Konzentrationen mit Hilfe des mitgelieferten MMP-13 Standards und der gebrauchstfertigen Verdünnungslösung hergestellt werden. Daraufhin wurden jeweils 100 µl der Proben bzw. der Standards in jedes Well gegeben und die Platte mit einem Klebestreifen verschlossen. Nach einer Inkubation für 2,5 Stunden bei Raumtemperatur auf einem horizontalen Kreisschüttler wurden alle Wells abgesaugt und daraufhin 4mal mit jeweis 200 µl Waschpuffer gespült. Dieser wurde 20x konzentriert mitgeliefert und musste zuerst mit destilliertem Wasser verdünnt werden. Daraufhin wurde der MMP-13 Detektionsantikörper 1:80 mit Verdünngslösung versetzt und jeweils 100 µl in jedes Well pipettiert. Die Platte wurde wieder mit einem Klebestreifen verschlossen und für 1 Stunde auf einem Schüttler bei Raumtemperatur inkubiert. In der Zwischenzeit wurde das HRP-Streptavidin-Konzentrat (35000x konzentriert) mit Verdünnungslösung vermengt. Nach erneutem Waschen wurde jeweils 100 µl der verdünnten Streptavidin-Lösung in jedes Well pipettiert. Nach 45 Minuten Inkubation bei Raumtemperatur wurde pro Well 100 µl TMB-Lösung zugegeben und schließlich erfolgte eine weitere Inkubation im Dunklen für 30 Minuten bei Raumtemperatur. Die Reaktion wurde mit Hilfe der Stoplösung beendet und die Wells innerhalb von 30 Minuten bei 450nm vermessen. Um eine quantitative Auswertung vornehmen zu können, wurde jedem Versuch eine Verdünnungsreihe des entsprechenden Standards zugesetzt, und anhand der Ergebnisse eine Standardkurve erstellt.

3.4.4 TNFα ELISA

Im gelieferten ELISA-KIT wurde bereits eine gebrauchsfertige, mit dem ersten Antikörper beschichtete 96Well-Platte mitgeliefert.

Zu Beginn wurden jeweils 50 µl Verdünnungslösung RD1F in jedes Well pipettiert. Anschließend mussten 20 ml der Kalibratorlösung RD6-35 in 80 ml destilliertem Wasser verdünnt werden. Diese wurde für das Resuspendieren der zuvor zentrifugierten (1000xg) Proben des Zellkulturübestandes benötigt. Weiterhin musste eine Standardreihe mit sieben verschiedenen Konzentrationen unter Verwendung des mitgelieferten TNFα-Standards und der Kalibratorlösung, hergestellt werden. Von den fertigen Standards und den aufgetauten Proben wurden jeweils 200 µl in jedes Well gegeben und die Platte mit einem Klebestreifen verschlossen. Nach einer Inkubation für 2 Stunden bei Raumtemperatur auf einem horizontalen Kreisschüttler wurden alle Wells abgesaugt und daraufhin 4mal mit jeweis 400 µl Waschpuffer gespült. Dieser wurde 20x konzentriert mitgeliefert und musste zuerst mit destilliertem Wasser verdünnt werden. Daraufhin wurde 200 µl TNFα-Konjugat in jedes Well pipettiert. Die Platte wurde wieder mit einem Klebestreifen verschlossen und für 1 Stunde auf einem Schüttler bei Raumtemperatur inkubiert. Mittlerweile wurde die Substratlösung aus jeweils gleichen Voulmina der Farblösung A und B erstellt und lichtgeschützt aufbewahrt. Nach erneutem Waschen wurde jeweils 200 µl der fertigen Substratösung in jedes Well pipettiert und für 20 Minuten bei Raumtemperatur im Dunklen inkubiert. Die Reaktion wurde mit je 50 µl der mitgelieferten Stoplösung beendet und es erfolgte ein Farbumschlag der Proben von blau nach gelb. Die Platte wurde innerhalb von 30 Minuten bei 450nm vermessen. Um eine quantitative Auswertung vornehmen zu können, wurde jedem Versuch eine Verdünnungsreihe des entsprechenden Standards zugesetzt, und anhand der Ergebnisse eine Standardkurve erstellt.

3.4.5 TGF-ß1 ELISA

Für den TGF-β1-ELISA musste die 96well ELISA-Platte zunächst mit dem ersten Antikörper beschichtet werden. Hierfür wurde die Platte über Nacht mit dem Antikörper inkubiert und anschließend dreimal mit 0,05% Tween in PBS gewaschen. Der Antikörper wurde zuvor in 1ml PBS auf eine Konzentration von 360 μl/ml verdünnt. Danach erfolgte eine einstündige Inkubation mit 300 μl Blockierungspuffer pro well und ein erneutes Waschen.

Um die Proben für den ELISA verwenden zu können, musste das latente TGF-ß1 erst aktiviert werden. Hierfür wurden zu 500 µl Zellkulturüberstand 100 µl 1 M HCl zugegeben und für 10 Minuten bei Raumtemperatur inkubiert.Anschließend wurden die Proben durch Zugabe von 100ml einer Lösung aus 1,2 M NaOH und 0,5 M HEPES neutralisiert.

Für den ELISA wurden je 100µl der aktivierten Proben pro Well aufgetragen, die Platte mit einer Folie abgeklebt und für 2 Stunden bei Raumtemperatur inkubiert. Weiterhin wurde eine Standardreihe mit 7 verschieden Konzentrationen erstellt, wobei die einzelnen Proben jeweils mit Verdünnungslösung versetzt wurden. Von jedem Standard wurden 100 μ l pro Well aufgetragen. Nach einem Waschschritt erfolgte die Inkubation mit jeweils 100 μ l des verdünnten zweiten Antikörpers pro Well für zwei Stunden bei Raumtemperatur. Dieser wurde zuvor auf eine Konzentration von 54 μ g/ml verdünnt. Nach einem erneuten Waschschritt wurden in jedes Well 100 μ l einer verdünnten Streptavidin-HRP-Lösung (1:200 in Blockierungspuffer) pipettiert und für 30 Minuten im Dunklen bei Raumtemperatur inkubiert. Es folgte ein weiterer Waschschritt, daraufhin wurden 100 μ l Substratlösung in jedes Well gegeben. Nach weiterer Inkubation für 20 Minuten im Dunklen bei Raumtemperatur wurde der Vorgang durch Zugabe von 50 μ l Stopplösung (2 M Schwefelsäure) pro Well abgestoppt. Abschließend wurden die ELISA-Platten mit Hilfe eines Photometers bei 450 nm vermessen.

3.4.6 IL-1ß ELISA

Die 96well-ELISA-Platte musste zunächst mit dem ersten Antikörper beschichtet werden. Hierfür wurde diese über Nacht mit dem Antikörper inkubiert und anschließend dreimal mit 0,05% Tween in PBS gewaschen. Der Antikörper wurde zuvor in 1ml PBS auf eine Konzentration von 720 µl/ml verdünnt. Danach erfolgte eine einstündige Inkubation mit 300 µl Blockierungspuffer pro well und ein erneutes Waschen. Für den ELISA wurden je 100µl Zellkulturüberstand pro Well aufgetragen, die Platte mit einer Folie abgeklebt und für 2 Stunden bei Raumtemperatur inkubiert. Weiterhin wurde eine Standardreihe mit 7 verschieden Konzentrationen erstellt, wobei die einzelnen Proben jeweils mit Verdünnungslösung versetzt wurden. Von jedem Standard wurden 100 µl pro Well aufgetragen. Nach einem Waschschritt erfolgte die Inkubation mit jeweils 100 µl des verdünnten zweiten Antikörpers pro Well für zwei Stunden bei Raumtemperatur. Dieser wurde zuvor auf eine Konzentration von 36 µg/ml verdünnt. Nach einem erneuten Waschschritt wurden in jedes Well 100 µl einer verdünnten Streptavidin-HRP-Lösung (1:200 in Blockierungspuffer) pipettiert und für 20 Minuten im Dunklen bei Raumtemperatur inkubiert. Es folgte ein weiterer Waschschritt und daraufhin wurden 100 µl Substratlösung in jedes Well gegeben. Nach weiterer Inkubation für 20 Minuten im Dunklen bei Raumtemperatur wurde der Vorgang durch Zugabe von 50 µl Stopplösung (2 M Schwefelsäure) pro Well abgestoppt. Abschließend wurden die ELISA-Platten mit Hilfe eines Photometers bei 450 nm vermessen.

Waschpuffer	Tween	0,05%	
	PBS	100ml	
Blockierpuffer /	BSA	1%	
Verdünnungslösung	PBS 100ml		
Streptavidin-HRP	1:200 in Verdünnungslösung		
Substratlösung für	OPD	5 mg	
	Dest. Wasser	9 ml	
	10x Peroxid-Puffer	1 ml	

Tabelle 9: Puffer und Substratlösungen für ELISAs

3.5 Quantitative PCR

3.5.1 RNA Isolation und Reverse Transcription

Die RNA der Zellen wurde mit Hilfe des Ambion RNAqueous4-PCR Kit isoliert. Hierfür musste zuerst eine 64-prozentige Ethanollösung mit Hilfe von RNase-freiem Wasser erstellt, sowie die mitgelieferten Waschkonzentrate 2 und 3 in 100% Ethanol resuspendiert werden. Zu Beginn wurden die Zellpellets der einzelnen Kulturtage in 500 µl des mitgelieferten Lysepuffers aufgelöst und anschließend 500 µl Ethanol (64%) zugegeben. Das Ethanol-Lyse-Gemisch wurde in ein Eppendorfgefäß mit Filter gegeben und für 60 Sekunden bei 15000xg zentrifugiert. Anschließend erfolgte die Zugabe von 700 μl Waschlösung 1, sowie die Zugabe von jeweils 500 μl Waschlösung 2 und 3, wobei das Gemisch zwischen jedem Waschschritt erneut für 60 Sekunden bei 15000xg zentrifugiert wurde. Nach den Waschschritten wurde der Filter in ein neues Eppendorfgefäß gegeben und 50 µl Elutionslösung mit einer Temperatur von 80°C auf den Filter pipettiert. Nach erneutem Zentrifugieren (30 Sekunden, 15000xg) wurde 50 µl Elutionslösung zugegeben und die Lösung erneut für 30 Sekunden zentrifugiert. Um Kontaminationen der DNA zu entfernen wurde "DNaseI enzyme" (DNA-free, Ambion, USA) benutzt. Hierfür musste der Elutionslösung 10 µl des mitgeliferten DNaseI Puffers und 1 µl rDNaseI zugegeben werden und das Gemisch 30 Minuten bei 37°C inkubiert werden. Anschließend wurde 10 µl DNase Inaktivierungslösung zugegeben und die Lösung für 2 Minuten unter mehrmaligem Schütteln bei Raumtemperatur inkubiert. Zuletzt wurde die Lösung für 90 Sekunden bei 10000xg zentrifugiert und die RNA in ein frisches Eppendorfgefäß gegeben.

Die RNA-Konzentration wurde mit dem RiboGreen RNA Quantification Kit (Molecular

Probes, USA) bestimmt. Mit Hilfe des mitgelieferten ribosomalen RNA Standards wurde eine Standardkurve (1 μ l/ml, 500 ng/ml, 100 ng/ml, 20 ng/ml) erstellt und diese, sowie eine Negativkontrolle mit einer Wellenlänge von 520 nm, mit Hilfe eines Mikroplattenlesegerätes vermessen. Von den Proben der einzelnen Kulturtage wurden jeweils 100 μ l in 900 μ l 10 mM Tris-HCL verdünnt und daraufhin 1 ml Ribo-Green RNA Quantifizierungslösung zugegeben. Nach einer Inkubation für 5 Minuten bei Raumtemperatur wurden die Proben ebenfalls bei 520 nm vermessen.

Anschließend erfolgte die Konversion von 0,5-1µg RNA zu cDNA mit Hilfe des Super-Script II reverse transcriptase kit (Invitrogen, UK) mit einem gesamten Reaktionsvolumen von 20 µl. Hierfür wurde den Proben 4 µl des 5x VILO[™] Reaktionsgemisches sowie 10 µl des SuperScript® Enzymgemisches zugegeben und mit DEPC-behandeltem Wasser zu einem Gesamtvolumen von 20 µl verdünnt. Die Lösungen wurden sanft geschüttelt und für 10 Minuten bei 25°C inkubiert. Daraufhin erfolgte eine Inkubation für 60 Minuten bei 42°C, schließlich wurde die Reaktion mit einer Inkubation für 5 Minuten bei 85°C abgestoppt.

3.5.2 Relative Quantitative PCR

Die relative quantitative PCR wurde mit Hilfe des SYBR Green Dye I am ABI 7000 Prism Sequence Detection System entsprechend der mitgelieferten Anleitung des Herstellers durchgeführt. Für den qPCR-Ansatz wurden 25 µl SYBR Green Dye I, 1 µl Forward Primer und 1 µl Reverse Primer verwendet. Anschließend erfolgte die Zugabe von 10 µl cDNA die 50ng RNA enthält. Dem Reaktionsgemisch wurde 13 µl destilliertes Wasser zugefügt, um ein Gesamtvolumen von 50 µl pro Well zu erreichen. Für alle verwendeten Proben erfolgte eine Zweifachbestimmung um Pipettierfehler auszugleichen. Die PCR erfolgte in 40 Zyklen mit jeweils 15 Sekunden bei 95°C und 1 Minute bei 60°C. Die anschließende Schmelzkurve wurde mit einer Inkubation für 15 Sekunden bei 95°C, für 20 Sekunden bei 60°C und wieder für 15 Sekunden bei 95°C durchgeführt.

Daraufhin wurden die Δ Ct-Werte, zum Beispiel die Differenz zwischen der mRNA Expressionsmenge der Zielgene und der endogenen Kontrolle ß-actin bestimmt. Die RQ-Werte (relative quantification) wurden mit der Software "RQ study application v1.1" (ABI Prism 7000 SDS software v1.1) entsprechend der $\Delta\Delta$ Ct-Methode und ßactin als endogener Kontrolle ermittelt. Die undifferenzierten MSCs am Tag 0 dienten hierbei als Kalibrator.

Die Primer wurden entweder mit freeware Primer3 (http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi) oder mit der Software PrimerExpress von ABI entwickelt.

Α

qPCR Ansatz (50 µl pro well)	SYBR Green Dye I	25 µl
	Forward Primer	1 μl
	Reverse Primer	1 μl
	Wasser	13 µl
	cDNA (enthält 50 ng RNA)	10 µl

В

Gene	RefSeq#	Amplicon	Forward primer	Reverse primer
	-	(bp)	(147)	(148)
AGGR	NM_022190	224	-ggccttccctctggatttag	-ccgcactactgtccaac
BMP-2	AF100787	167	-gaaaacagcagcagtgacca	-gtggcgttcatgtaggagt
ß-Actin	NM_031144	104	-gtagccatccaggctgtgtt	-ccctcatagatgggcagagt
RUNX2	XM_34016	86	-gccgggaatgatgagaacta	-agatcgttcaacctggccact
COL1A1	RGD61817*	59	-tccagggctccaacgaga	-ctgtaggtgaatccactgttgc
				-
Col2A1	NM_012929	60	-ccctgcagtacatgcgg	ctcgacgtcatgctgtctcaag
COMP	NM_012834	167	-tgacttcgatgctgacaagg	-gaacgatctccattccctga
SOX9	XM_343981	140	-ctgaagggctacgactggac	-tactggtctgccagcttcct
	*Locus ID			

Tabelle 10: Ansatz für die quantitative PCR (A); Verwendete Primer (B)

3.6 Statistische Auswertung

Die statistische Auswertung der Ergebnisse erfolgte mit Hilfe des One Way ANOVA und des Student T-Testes.

3.7 Material

3.7.1 Verbrauchsmaterial und Geräte

ABI 7000 Prism	ABI, Foster City
Brutschrank	Heraues, Hanau
Deckgläser	Wenzel-Gläser, Dilsberg

ELISA-Platten, 96well	Immulon, Freiburg
ELISA-Reader	Tecan, Männedorf
Einbettgerät	Leica, Wetzlar
Kühlplatte	Leica, Wetzlar
Kryoröhrchen	Eppendorf, Hamburg
Magnetrührer	Sigma Aldrich, Steinheim
Microtom	Leica, Wetzlar
Neubauer Zählkammer	Brand, Giessen
Nitrocellulose Membran	Schleicher & Schüll, Dassel
Objektträger	Wenzel-Gläser, Dilsberg
Pipetboy acu	IBS Integra Biosciences
Pipetten (1/5/10/25/50 ml)	Eppendorf, Hamburg
Pipettensets (10/100/1000 µl)	Eppendorf, Hamburg
Pipettenspitzen epTips filter	Eppendorf, Hamburg
(10/100/200/100 µl)	
Powerpack	
Präzisionswaage	Sartorius, Göttingen
Reaktionsgefäße	Eppendorf, Hambueg
Schüttler	Sigma Aldrich, Steinheim
Skalpelle Nr.11	Feather, Köln
Sterilarbeitsbank	Heraeus Instruments, Nürnberg
Vortex Genie	Roth, Karlsruhe
Waage	Sartorius, Göttingen
Wasserbad 37°C	Medite Medizintechnik
Wasserbad 50°C	Medite Medizintechnik
Whatman-3MM-Filterpapier	Whatman, Maidstone
Zellkulturflaschen	BD Biosciences, San Jose
Zentrifuge	Sigma Aldrich, Steinheim
Zentrifugenröhrchen (15ml/50ml)	Falcon, Heidelberg

3.7.2 Chemikalien und Reagenzien

Aceton	Roth, Karlsruhe
Acrylamid (Rotiphorese Gel)	Roth, Karlsruhe
Alzian Blau 8 GX	Sigma Aldrich, Steinheim
Ammoniumpersulfat (APS)	Serva, Heidelberg
Bromophenolblau	Roth, Karlsruhe
Bovines Serum Albumin	Biomol, Hamburg

Calciumchloriddihydrate	Sigma Aldrich, Steinheim
Coomassie R250	Serva, Heidelberg
DePeX	Serva, Heidelberg
DNaseI enzyme	Ambion, Carlsbad
ECL-Kit	Pierce, Rockford
EDTA	AppliChem, Gatersleben
Essigsäure 100%	AppliChem, Gatersleben
Ethanol >99%	Roth, Karlsruhe
Formaldehyd 37%	AppliChem, Gatersleben
Gelatine von Porcine skin	Sigma Aldrich, Steinheim
Glutardialdehyd 25%	Merck, Darmstadt
Glyceringelatine	Merck, Darmstadt
Glycerol 99%	Sigma Aldrich, Steinheim
Glycin	AppliChem, Gatersleben
Isopropanol 99%	Sigma Aldrich, Steinheim
Kernechtrot – Aluminiumsulfatlösung	Roth, Karlsruhe
Mercaptoethanol-2 98%	Sigma Aldrich, Steinheim
Methanol 99%	Roth, Karlsruhe
Natriumacetat	Sigma Aldrich, Steinheim
Natriumcarbonat	AppliChem, Gatersleben
Natriumchlorid	Roth, Karlsruhe
Natriumsulfat	Merck, Darmstadt
OPD Substrat	Pierce, Rockford
Paraformaldehyd	AppliChem, Gatersleben
PBS	Gibco, Karlsruhe
Pepsin	Roth, Karlsruhe
Peroxid-Puffer, 10x	Pierce, Rockford
Precision Plus All Blue Protein Standard	Bio-Rad, Hercules
RiboGreen RNA Quantification Kit	Molecular Probes, Eugene
RNAqueous4-PCR Kit	Ambion, Carlsbad
Roti-Histol	Roth, Karlsruhe
Roti-Plast	Roth, Karlsruhe
Salzsäure rauchend 37%	AppliChem, Gatersleben
Schwefelsäure, 2,5M	Roth, Karlsruhe
SDS ultra pure	Roth, Karlsruhe
Silbernitrat	AppliChem, Gatersleben
SuperScript II reverse transcriptase kit	Invitrogen, Carlsbad
SYBR Green Dye I	ABI, Foster City
TEMED	Sigma Aldrich, Steinheim
Trichloressigsäure	Roth, Karlsruhe

Tris	AppliChem, Gatersleben
Triton X-100	Sigma Aldrich, Steinheim
Trypanblau-Lösung	Sigma Aldrich, Steinheim
Trypsin/EDTA	Sigma Aldrich, Steinheim
Tween 20	Sigma Aldrich, Steinheim
Urease	Sigma Aldrich, Steinheim
Xylol >98%	Roth, Karlsruhe

4 Ergebnisse

4.1 Differenzierung der RS-Pellets

Die chondrogene Differenzierung der RS-Pellets wurde mit Hilfe von histologischen Färbungen nachgewiesen. Hierfür wurden aus beiden Kulturbedingungen jeweils Pellets der Tage 7, 14 und 21 mit Alzian-Blau gefärbt. Außerdem wurde der Gehalt an Kollagen II in der EZM immunhistologisch nachgewiesen.

Als positive Kontrolle wurden Schnitte von den Knorpelexplantaten zu Beginn und zum Ende der Zellkultur angefertigt und gefärbt. Diese zeigten bei den Alzian-Blau-Färbungen eine deutlich gefärbte extrazelluläre Matrix, reich an Proteoglykanen. Die Intensität der Färbung nahm im Verlauf der 23 Zellkulturtage tendenziell etwas ab. Die Größe der untersuchten Pellets variierte zwischen den einzelnen Kulturtagen nur sehr wenig. Ein deutliches Wachstum der Pellets während der Zellkulturperiode ließ sich in keiner der beiden Kulturbedingungen nachweisen.

Mit Hilfe der Alzian-Blau-Färbung wurde der Proteoglykangehalt in der extrazellulären Matrix der Zellpellets qualitativ bestimmt. Sowohl bei den konditionierten Proben, als auch bei den Kontrollen zeigte sich an den Tagen 7 und 14 eine geringe Färbung der extrazellulären Matrix. Zwischen Tag 14 und 21 der Zellkultur ließ sich eine deutliche Steigerung des Proteoglykangehalts erkennen. Deutliche Unterschiede zwischen den beiden Kulturbedingungen bestandem zu keinem der verschiedenen Zeitpunkte. Mit Hilfe der Gegenfärbung mit Kernechtrot wurde die Zellkerndichte bestimmt. Diese nahm im Verlauf der 21 Tage in beiden Kulturbedingungen tendenziell ab.

Der Kollagengehalt war in beiden Zelllinien zu Beginn der Kulturperiode eher gering und nahm bis Tag 14 leicht zu. Anschließend ließ sich in beiden Zellkulturlinien ein deutlicher Anstieg zwischen Tag 14 und 21 nachweisen. Ein qualitativer Unterschied zwischen konditionierten Zellen und Kontrollen ließ sich zu keinem der drei Zeitpunkte erkennen.

Abbildung 10: Untersuchung der chondrogenen Differenzierung der hRS-Zellen Hierfür wurden Pellets der Tage 7, 14 und 21 der konditionierten Proben und der Kontrollen untersucht. Der Proteoglykangehalt der EZM wurde mit Hilfe der Alzian-Blau-Färbung und anschließender Gegenfärbung mit Kernechtrot ermittelt (A). Der Gehalt an Kollagen II in den Pellets wurde immunhistologisch untersucht (B). Die Negativkontrolle wurde ohne den entsprechenden Kollagen II-Antikörper inkubiert (C). Als positive Kontrolle wurden für die Alzian-Blau-Färbung Knorpelexplantate von Tag 0 und 23 der Zellkulturperiode verwendet (D).

4.2 Kollagensekretion und Kollagenprofil

Um festzustellen, inwieweit die Knorpelexplantate die Kollagenproduktion und Komposition der RS-Zellen beeinflussen, wurden die in das Zellkulturmedium sezernierten Kollagene näher untersucht. Dies geschah mittels Pepsin-Verdau, Salzpräzipitation und anschließender Auftrennung durch SDS-Page-Gelelektrophorese. Hierfür wurden die jeweils gleichen Volumina des Zellkulturüberstandes der Kontrollen, der konditionierten Pellets und der Knorpelexplantate untersucht.

Abbildung 11: Analyse des Kollagenprofils im Zellkulturüberstand

Die Kollagene wurden aus dem Zellkulturmedium präzipitiert, mit Pepsin verdaut und anschließend durch eine 4,5-15%-Gradienten-SDS-Gelelektrophorese unter reduzierenden Bedingungen aufgetrennt. Daraufhin erfolgte eine Silberfärbung. K=Kontrollen, Kond=Konditionierte Zellen, Kn=Überstand der Knorpelexplantate. Kol I und II=Standards der beiden Proteine.

Im Verlauf der Zellkulturperiode zeigte sich eine Abnahme der sezernierten Kollagenfragmente unter beiden Kulturbedingungen. In beiden Kulturformen war an den Tagen 2 und 4 die Sekretion am höchsten und nahm anschließend kontinuierlich ab. An den Tagen 11 und 14 schienen die konditionierten Zellpellets mehr Kollagen als die Kontrollen zu sezernieren. An Tag 21 ließ sich in beiden Kulturansätzen fast kein Kollagen mehr im Überstand nachweisen. Die Knorpelexplantate produzierten über die gesamte Zellkulturperiode annähernd konstante Mengen an Kollagen, überwiegend Kollagen II. Des Weiteren sollte untersucht werden, ob die Knorpelexplantate einen Einfluss auf die Sekretion des chondrogenen Markers Kollagen II ausüben.

Die Unterscheidung zwischen Kollagen I und II sollte mit Hilfe der beiden mituntersuchten Kollagenstandards etwas erleichtert werden. Von den Fragmenten des Kollagen I kommt sowohl die $\alpha 1(I)$, als auch die $\alpha 2(I)$ -Kette, zur Darstellung. Kollagen II besteht aus drei homologen $\alpha 1(II)$ -Ketten. Die in den Überstand sezernierte Menge an Kollagen I lässt sich anhand der Stärke der $\alpha 2(I)$ -Bande abschätzen. Die Menge an Kollagen II im Zellkulturüberstand entspricht in etwa der Differenz zwischen der gemeinsamen Bande aus dem $\alpha 1(II)$ - / $\alpha 1(I)$ -Fragment und der $\alpha 2(I)$ -Bande, da Typ I Kollagen aus zwei $\alpha 1(I)$ - und einer $\alpha 2(I)$ -Ketten besteht.

Die Kontrollen sezernierten von Anfang an etwa gleiche Mengen an Kollagen I und II. Beide Kollagensubtypen ließen sich bis Tag 14 der Zellkultur in einem etwa gleich bleibenden Verhältnis nachweisen. Die konditionierten Zellen produzierten an Tag 2 annähernd gleiche Mengen an Kollagen I und II. Ab Tag 4 nahm die sezernierte Menge an Kollagen I deutlich ab, bis an Tag 11 Kollagen I nicht mehr im Medium nachgewiesen werden konnte. Die Menge an Kollagen II im Zellkulturüberstand der konditionierten Zellpellets blieb bis Tag 14 nahezu konstant. Es muss allerdings berücksichtigt werden, dass ein Teil des im Kulturüberstand der konditionierten Zellen nachgewiesenen Kollagens aus dem Medium, welches zuvor für 3 Tage mit den Knorpelexplantaten inkubiert wurde, stammte.

Kollagen X konnte in keinem der Kulturüberstände nachgewiesen werden.

Zusammenfassend lässt sich feststellen, dass sowohl bei den Kontrollen, als auch bei den konditionierten Pellets, die sezernierte Kollagenmenge im Verlauf der Zellkulturperiode abnahm. Weiterhin ließ sich in beiden Kulturansätzen Kollagen II nachweisen. Unter dem Einfluss der Knorpelexplantate scheint die Kollagen I-Produktion in den ersten beiden Wochen der Kulturperiode gehemmt zu werden.

4.3 Genexpression von chondrogenen Markergenen

** = p<0.01

* = p<0.05

Abbildung 12: Relative Genexpression von Aggrecan, COMP, COL2A1 und COL1A1

Ergebnisse der relativen quantitativen mRNA Expression der chondrogenen Markergene Aggrecan (A), COMP (B) und COL2A1 (C), sowie der Expression von COL1A1 (D). Die Genexpression wurde mittels quantitativer RT-PCR mit der $\Delta\Delta$ CT Methode ermittelt. Die Graphen repräsentieren den Quotienten aus der mRNA-Menge der konditionierten Zellen und der Kontrollen an den Tagen 7, 14 und 21 der Zellkulturperiode. Als Kalibrator diente der mRNA-Level der Kontrollen des entsprechenden Tages der Zellkulturperiode. Die Balken zeigen eine signifikante Änderung des Quotienten im Verlauf der Zellkulturperiode (mit p<0,05). Die Sterne repräsentieren einen signifikanten Unterschied zwischen den beiden Kulturbedingungen zu einem bestimmten Tag der Zellkultur.

Um den Einfluss der Knorpelexplantate auf die chondrogene Differenzierung der hRS-Zellen näher zu untersuchen, wurde die mRNA-Expression von typischen Markergenen der Chondrogenese untersucht. Für die einzelnen Kulturtage wurde jeweils der Quotient aus dem mRNA-Spiegel in den konditionierten Zellen und den Kontrollen ermittelt. Die Genexpression von Aggrecan war an Tag 21 in den konditionierten Zellen signifikant höher als bei den Kontrollen. Zudem zeigte sich ein signifikanter Anstieg des Quotienten zu Gunsten der konditionierten Zellen im Verlauf der Kulturperiode. COMP wurde in den ersten 14 Tagen der Kulturperiode in den konditionierten Zellen im Vergleich zu den Kontrollen in signifikant geringeren Mengen exprimiert. Auch hier kam es unter dem Einfluss der Knorpelexplantate zu einem Anstieg der Genexpression in den konditionierten Zellen gegen Ende der Kultur, mit einem signifikanten Anstieg des mRNA-Quotienten zwischen Tag 7 und 21.

Dagegen blieb die Genexpression von COL1A1 über die gesamte Kulturperiode annähernd konstant, ohne von den Knorpelexplantaten beeinflusst zu werden. Im Gegensatz dazu stieg der Quotient der mRNA-Menge von COL2A1 zwischen konditionierten Zellen und Kontrollen zwischen Tag 14 und 21 signifikant an. Darüber hinaus wurde COL2A1 an Tag 21 der Zellkultur in den konditionierten Zellen im Vergleich zu den Kontrollen in signifikant höheren Mengen exprimiert.

4.4 Genexpression von Transkriptions- und Wachstumsfaktoren

С

Abbildung 13: Relative Genexpression von SOX9, RUNX2, BMP-2 und TGF-B1

Ergebnisse der relativen quantitativen mRNA Expression der Transkriptionsfaktoren SOX9 (A), RUNX2 (B), BMP-2 (C) und TGF- β 1. Die Genexpression wurde mittels quantitativer RT-PCR mit der $\Delta\Delta$ CT Methode ermittelt. Die Graphen repräsentieren den Quotienten aus der mRNA-Menge der konditionierten Zellen und der Kontrollen an den Tagen 7, 14 und 21 der Zellkulturperiode. Als Kalibrator diente der mRNA-Level der Kontrollen des entsprechenden Tages der Zellkulturperiode. Die Balken zeigen eine signifikante Änderung des Quotienten im Verlauf der Zellkulturperiode (mit p<0,05). Die Sterne repräsentieren einen signifikanten Unterschied zwischen den beiden Kulturbedingungen zu einem bestimmten Tag der Zellkultur.

Um die Einflüsse des konditionierten Zellüberstandes auf die Genexpression von SOX9, RUNX2 und BMP-2 zu untersuchen, wurde die Genexpression mittels qRT-PCR bestimmt, anschließend wurde das Verhältnis der mRNA-Mengen der konditionierten Zellen und der Kontrollen für die Tage 7, 14 und 21 berechnet. Alles in allem übte der konditionierte Zellkulturüberstand während der gesamten Zellkulturperiode keinen signifikanten Einfluss auf die Genexpression der drei Faktoren aus.

TGF-ß1 wurde zu Beginn der Zellkultur in deutlich größeren Mengen von den konditionierten Zellen exprimiert. An Tag 7 der Zellkultur ließ sich eine signifikant höhere Genexpression von TGF-ß1 in den konditionierten Zellpellets nachweisen. Dies änderte sich im Verlauf der Zellkultur. An Tag 21 war die Expression von TGFß-1 in den konditionierten Zellen signifikant niedriger als in den Kontrollen. Dies spiegelte sich auch im Vergleich zwischen der aus den mRNA-Mengen ermittelten Quotienten von Tag 7 und 21 wieder. Hier zeigte sich im Verlauf der 14 Tage eine signifikante Abnahme des Quotienten.

ELISA TGFß-1

4.5 Sekretion von TGFß-1

Abbildung 14: Sekretion von TGFB-1 in den Zellkulturüberstand

Die Sekretion von TGF β -1 in den Zellkulturüberstand wurde mittels ELISA bestimmt. Die Graphen repräsentieren den Quotienten aus der sezernierten Proteinmenge von konditionierten Zellen und Kontrollen an den Tagen 7, 14 und 21 der Zellkulturperiode. Als Kalibrator diente die Menge an TGF β -1 der Kontrollen vom entsprechenden Tag der Zellkulturperiode. Der Balken zeigt eine signifikante Änderung des Quotienten im Verlauf der Zellkulturperiode (mit p<0,05).

Die Menge an TGF-ß1im Zellkulturüberstand nahm bei den Kontrollen im Verlauf der Kultur kontinuierlich ab, während die konditionierten Zellen die gesamte Zeit annähernd konstante Mengen sezernierten. Aus den ermittelten Proteinmengen wurden wieder für die Tage 7, 14 und 21 die Quotienten zwischen konditionierten Zellen und den Kontrollen ermittelt. Hierbei ließ sich eine signifikante Zunahme des Quotienten zwischen Tag 7 und 14 nachweisen. Ab Tag 14 blieb der Quotient dann konstant.

4.6 Sekretion von proinflammatorischen Zytokinen

Abbildung 15: Sekretion von TNF α und IL-1 β in den Zellkulturüberstand Die Sekretion von TNF α (A), IL-1 β (B) und TGF β -1 (C) in den Zellkulturüberstand wurde mittels ELISA-Assay bestimmt. Die Graphen repräsentieren den Quotienten aus der sezernierten Proteinmenge der konditionierten Zellen und Kontrollen an den Tagen 7, 14 und 21 der Zellkulturperiode. Als Kalibrator diente die Proteinmenge der Kontrollen vom entsprechenden Tag der Zellkulturperiode.

Α

Um die Auswirkungen von proinflammatorischen Zytokinen, die auch einen Einfluss auf die chondrogene Differenzierung der hRS-Zellen ausüben können, zu untersuchen, wurde die Menge an TNF α und IL1- β mittels ELISA im Zellkulturüberstand bestimmt. Anschließend wurde das Verhältnis der Proteinmengen von konditionierten Zellen und Kontrollen bestimmt. Die Produktion von TNF α blieb während der gesamten Kulturzeit konstant, ohne vom konditionierten Medium beeinflusst zu werden. Dagegen nahm die Menge an IL1- β im Überstand der konditionierten Zellen im Vergleich zu den Kontrollen tendenziell ab.

4.7 Sekretion von MMPs

Die Sekretion von MMP-2 und MMP-13 in den Zellkulturüberstand wurde mit Hilfe eines ELISA-Kits bestimmt, das von beiden Proteasen, sowohl die inaktive, als auch die aktive Form erkennt. Zusätzlich wurden Gelatine-Zymogramme erstellt, um insbesondere bei MMP-2 den Aktivierungszustand der Protease näher zu untersuchen. Für die gemessenen Mengen an MMP-2 und MMP-13 wurde jeweils für die Kulturtage 7, 14 und 21 der Quotient zwischen konditionierten Zellen und den Kontrollen ermittelt.

ELISA MMP-2

Abbildung 16: Sekretion von MMP-2 und MMP-13 in den Zellkulturüberstand

Die Sekretion von MMP-2 (A) und MMP-13 (B) in den Zellkulturüberstand wurde mittels ELISA-Assay bestimmt. Die Graphen repräsentieren den Quotienten aus der sezernierten Proteinmenge der konditionierten Zellen und Kontrollen an den Tagen 7, 14 und 21 der Zellkulturperiode. Als Kalibrator diente die Proteinmenge der Kontrollen vom entsprechenden Tag der Zellkulturperiode.

Die Balken zeigen eine signifikante Änderung des Quotienten im Verlauf der Zellkulturperiode (mit p<0,05). Die Sterne repräsentieren einen signifikanten Unterschied zwischen den beiden Kulturbedingungen zu einem bestimmten Tag der Zellkultur.

Im Zellkulturüberstand konnte zu Beginn der Kulturperiode MMP-2 vor allem in den Kontrollen nachgewiesen werden. Diese produzierten jedoch im Laufe der Kultur deutlich weniger MMP-2, wohingegen die Produktion in den konditionierten Zellen über die gesamte Zellkulturperiode konstant blieb. Hierdurch zeigte sich ein signifikanter Anstieg des ermittelten Quotienten zwischen den Zellkulturtagen 7 und 21. Ähnliche Ergebnisse konnten für die Sekretion von MMP-13 nachgewiesen werden. Auch hier sezernierten zu Beginn der Kultur die Kontrollen deutlich größere Mengen. An Tag 14 produzierten die Zellen beider Kulturbedingungen annähernd gleiche Mengen, wohingegen gegen Ende der Zellkulturperiode die konditionierten Zellen signifikant mehr MMP-13 sezernierten. Weiterhin ließ sich hierdurch ein signifikanter Anstieg des Quotienten, gebildet aus den in das Medium sezernierten MMP-13 Mengen der konditionierten Zellen und Kontrollen zwischen Tag 7 und 21 nachweisen. Jeweils 5 Pellets (entspricht 1x10⁶ Zellen) der einzelnen Kulturtage wurden mit Hilfe eines Lysepuffers lysiert. Anschließend wurden nach der Durchführung eines BCATM-Protein–Assay gleiche Proteingesamtmengen, jeweils 50 µg, untersucht. Als positive Kontrolle diente rekombinantes MMP-2- und MMP-9.

Hierbei konnte eine konstante Menge an MMP-2 in den Lysaten während der kompletten Kulturperiode nachgewiesen werden. Es ließ sich weder ein Unterschied zwischen den beiden Kulturbedingungen, noch eine Veränderung der Menge an aktiviertem MMP-2 nachweisen.

Abbildung 17: Gelatine Zymographie der Zelllysate

Jeweils 5 Pellets wurden mit Lysepuffer gelöst und anschließend wurde ein BCATM-Protein–Assay durchgeführt. Dann wurden jeweils gleiche Proteinmengen der einzelnen Proben durch eine SDS-Page-Gelelektrophorese unter nicht reduzierenden Bedingungen mit einem 4,5-15% Gradientengel, das 1% Gelatine enthält, aufgetrennt. Das Zymogramm zeigte mehrere proteolytische Aktivitäten. Dabei handelt es sich um die latente (72kDa; obere Bande), und die aktive Form (66kDa; untere Bande) von MMP-2. K=Kontrollen, Kond=Konditionierte Zellen, MMP-2 und -9 je 2,5ng des rekombinanten Proteins.

Mit Hilfe der Gelatine-Zymogramme konnte MMP-2 sowohl in seiner latenten Form (72kDa), als auch in seiner aktiven Form (66kDa) in allen Proben nachgewiesen werden. Die Gesamtmenge an sezerniertem MMP-2 nahm dabei in beiden Zellkulturansätzen und auch bei den Knorpelexplantaten im Verlauf der Zellkulturperiode ab. An Tag 21 zeigte sich unter dem Einfluss der Knorpelexplantate eine Zunahme der Bandenstärke der aktiven Form im Vergleich zu den Kontrollen. Auch das Verhältnis zwischen latenter und aktiver Form kehrte sich im Verlauf der Zellkulturperiode unter Einfluss des konditionierten Zellkulturüberstandes zu Gunsten der aktiven Form um.

Abbildung 18: Gelatine Zymographie des Zellkulturüberstandes

Aliquots des Zellkulturmediums wurden durch eine SDS-Page-Gelelektrophorese unter nicht reduzierenden Bedingungen mit einem 4,5-15% Gradientengel, das 1% Gelatine enthält, aufgetrennt. Das Zymogramm zeigt mehrere proteolytische Aktivitäten. Dabei handelt es sich um die latente Form von MMP-2 (72kDa) und die aktive Form (66kDa). K=Kontrollen, Kond=Konditionierte Zellen, Kn=Medium der Knorpelexplantate.

4.8 Von den Knorpelexplantaten in den Zellkulturüberstand sezernierte Faktoren

Α

Abbildung 19: Sekretion von IL1- β , TNF α , TGF- β 1, MMP-2 und MMP-13 Die Sekretion von IL1- β , TNF α , TGF- β 1, MMP-13 (A) und MMP-2 (B) in den Zellkulturüberstand der Knorpelexplantate wurde mittels ELISA bestimmt. Die Graphen repräsentieren die Proteinkonzentrationen in pg/ml an den Tagen 7, 14 und 21 der Zellkulturperiode.

Die Konzentrationen von IL1- β , TNF α , TGF- β , MMP-2 und MMP-13 im Zellkulturüberstand der Knorpelexplantate von 4 Patienten wurden mittels ELISA bestimmt. Die ermittelten Konzentrationen entsprechen den Konzentrationen im konditionierten Medium, das für das konditionierte Pelletmodell weiterverwendet wurde.

Die Knorpelexplantate sezernierten über die gesamte Zellkulturperiode hinweg in etwa konstante Mengen der proinflammatorischen Zytokine IL1-β und TNFα. Insgesamt waren die Proteinmengen der beiden Zytokine im Vergleich zu den anderen Faktoren sehr gering. Im Durchschnitt sezernierten die Knorpelexplantate in den 21 Tagen der Zellkultur 24,7 pg/ml IL1- β (SD = 6,6pg/ml) und 42,5 pg/ml TNF α (SD = 9,8 pg/ml). Auch die Menge an sezernierten TGF- β 1 blieb im Verlauf der 21-tägigen Zellkulturperiode weitgehend konstant. Bei den beiden Matrix-Metalloproteinasen MMP-2 und MMP-13 zeigte sich dagegen eine tendenzielle Abnahme der sezernierten Proteinmenge.

Bei allen fünf untersuchten Proteinen waren die Schwankungen zwischen den Knorpelexplantaten der einzelnen Patienten sehr ausgeprägt. Dies wird auch durch die hohen Standardabweichungen weiter verdeutlicht. Hierdurch ließen sich keine signifikanten Veränderungen im Verlauf der Zellkulturperiode nachweisen.
5 Diskussion

Hyaliner Knorpel ist ein avaskuläres, hochspezialisiertes Bindegewebe, das von der mesenchymalen Stammzellreihe abstammt. Typischerweise ist hyaliner Knorpel auf Oberflächen von Gelenken als permanenter Knorpel zu finden. Dort ist er für die Funktionsfähigkeit der Gelenke unerlässlich. Interessanterweise wird Knorpel mittlerweile als parakrines Organ eingestuft, da Chondrozyten in der Lage sind, humorale Faktoren zu produzieren, die unter anderem die Proliferation und Differenzierung benachbarter Gewebe beeinflussen. Diese Faktoren spielen beispielsweise bei der Degeneration des Gelenkknorpels und während der Frakturheilung eine wesentliche Rolle (149-152). Darüber hinaus konnten Jikko et al. in ihren Studien nachweisen, dass bei einer Ko-Kultur von Gelenk- und Wachstumsfugenknorpel die terminale Differenzierung der Chondrozyten unterdrückt wird (153).

Ziel dieser Arbeit war es, die Auswirkungen der von den osteoarthrotischen Chondrozyten produzierten, löslichen, parakrinen Faktoren auf die chondrogene Differenzierung der MSCs näher zu untersuchen. Hierfür wurde ein Zellkultursystem etabliert, in dem Chondrozyten und menschliche RS-Zellen getrennt voneinander kultiviert wurden. Dieses Zellkultursystem erlaubte weder einen direkten Zell-Zell-Kontakt, noch eine direkte parakrine Kommunikation zwischen den beiden Zellpopulationen. Die einzige Kommunikationsmöglichkeit zwischen MSCs und Knorpelexplantaten war daher auf lösliche, parakrine Faktoren, die von den OA-Chondrozyten produziert und in den Zellkulturüberstand sezerniert wurden, beschränkt. Da die Mediumwechsel nur alle 2-3 Tage erfolgten, mussten diese Faktoren darüberhinaus die Fähigkeit besitzen, über mehrere Tage hinweg stabil bleiben zu können.

Für die Zellkultur wurden humane RS-Zellen, die eine Subpopulation der mesenchymalen Stammzellen darstellen, verwendet. Colter et al. konnten in ihren Studien demonstrieren, dass diese Zellen eine hohe Replikationsrate und zudem ein größeres adipogenes, osteogenes und chondrogenes Differenzierungspotential als andere MSC-Subpopulationen besitzen (154,155). Die hRS wurden für drei Wochen unter serumfreien Bedingungen in einer 3D-Umgebung als Micromass-Pellets kultiviert. Ein Teil von ihnen wurde regelmäßig mit konditioniertem Medium, das von den Knorpelexplantaten stammte, versorgt. Dieses konditionierte Medium wurde hierfür jeweils drei Tage lang mit den Knorpelexplantaten inkubiert und anschließend für die konditionierte Zelllinie verwendet. Der Vorteil des Kultursystems mit Micromass-Pellets ist, dass dieses sowohl den Phänotyp der Chondrozyten erhält, als auch die Differenzierung des chondrogenen Phänotypes induziert (156,157).

Die histologischen und immunhistologischen Ergebnisse bestätigen die chondrogene Differenzierung der hRS gegen Ende der Zellkulturperiode. Bei allen Pellets lässt sich eine EZM, die große Mengen an Proteoglykanen und Kollagen II enthält, nachweisen. Zwischen konditionierten Pellets und Kontrollen lassen sich in der EZM keine Unterschiede bezüglich des Proteoglykangehaltes oder des Gehaltes an Kollagen II nachweisen.

Die histologischen Färbungen der Knorpelexplantate weisen über die gesamte Zellkulturperiode einen konstanten Proteoglykangehalt nach. Auch die Sekretion von Kollagen II in den Zellkulturüberstand, sowie die Sekretion der beiden Matrixmetalloproteinasen MMP-2 und MMP-13 und des Wachstumsfaktors TGFB-1 bleibt über die 21 Tage hinweg annähernd konstant. Diese Ergebnisse sprechen dafür, dass im Rahmen der Zellkultur mit serumfreiem chondrogenem Medium der chondrogene Phänotyp der Knorpelexplantate erhalten bleibt. Jedoch zeigen sich bei allen im Zellkulturüberstand der Knorpelexplantate nachgewiesenen, sezernierten Faktoren ausgeprägte interindividuelle Schwankungen. Die Ursache hierfür ist wahrscheinlich die unterschiedliche Ausprägung der Gonarthrose und die damit verbundene Destruktion des Gelenkknorpels bei den verschiedenen Patienten. Hierdurch variiert auch die Zusammensetzung des konditionierten Mediums, das jeweils drei Tage mit den Knorpelexplantaten inkubiert wurde, erheblich. Eine Korrelation zwischen der Sekretion der proinflammatorischen Zytokine IL1-ß und TNFa als Marker der entzündlichen Aktivität der Gonarthrose und der sezernierten Menge an MMP-2 und MMP-13 lässt sich bei den in den Versuchen verwendeten Knorpelexplantaten nicht nachweisen.

Weiterhin zeigen die Ergebnisse, dass lösliche Faktoren, die von Knorpelexplantaten produziert wurden, die chondrogene Differenzierung der hRS wesentlich beeinflussen. Um dies zu beweisen, wurde die Expression von charakteristischen Markergenen reifer Chondrozyten, wie zum Beispiel COL2A1, Aggrecan und COMP untersucht (158,159). Im Verlauf der Zellkulturperiode konnte für alle drei Markergene unter Einfluss der Knorpelexplantate ein signifikanter Anstieg der Genexpression in den konditionierten Zellen nachgewiesen werden. Weiterhin konnte im Zellkulturüberstand der beiden Kulturansätze Kollagen II nachgewiesen werden. Qualitative Unterschiede zwischen den beiden Kulturbedingungen bezüglich des Kollagen II-Gehaltes gab es nicht. Lediglich die Sekretion an Kollagen I nahm in den konditionierten Kulturen ab. Interessanterweise nimmt die in den Zellkulturüberstand sezernierte Menge an Kollagen II in beiden Zelllinien kontinuierlich ab.

Eine mögliche Erklärung hierfür könnte sein, dass insbesondere die Genexpression von Kollagen II sehr schnell beeinflusst und durch die parakrinen Faktoren stimuliert werden kann, während die Veränderung der Proteinsekretion einen langwierigen Prozess darstellt.

Transforming growth factor ß (TGF- ß) kommt ubiquitär in der Wachstumsfuge vor. Chondrozyten sind in der Lage, zahlreiche verschiedene Isoformen zu produzieren. TGF-ß stabilisiert den chondrozytären Phänotyp und verhindert oder verzögert die Hypertrophie der Chondrozyten (160,161). Weiterhin konnte nachgewiesen werden, dass TGF-ß1 in osteoarthrotischem Knorpel die Proliferation und die Synthese einer neuen Matrix fördert (162). Studien, in denen Chondrozyten kultiviert wurden, haben gezeigt, dass exogenes TGF-ß die Zellproliferation stimuliert und darüber hinaus das chondrogene Potential des Transkriptionsfaktors Sox9 erhöht (163). Aus diesem Grund ist dem Medium von beiden Zellkulturansätzen jeweils 10 ng/ml exogenes TGF-ß3 zugegeben worden.

Grässel et al. konnten in ihren Studien nachweisen, dass parakrine, in der EZM gespeicherte, Faktoren in einem Kokulturmodell zwischen Chondrozyten und Periostexplantaten sowohl die Genexpression, als auch die Proteinsekretion von TGFB-1 signifikant steigern (164). Im Rahmen dieser Doktorarbeit konnten im Verlauf der Zellkulturperiode signifikant größere Mengen an TGF-ß1 im Kulturüberstand der konditionierten Zellen nachgewiesen werden. Auf der anderen Seite nahm jedoch die Genexpression von TGF-ß1 am Ende der Zellkultur in den konditionierten Zellen ab. Diese Ergebnisse korrelieren gut mit Studien von Grässel et al., die nachweisen konnten, dass sich die Konzentration von löslichem TGF-ß im Zellkulturüberstand erheblich von der Genexpression unterscheiden kann. Ursache hierfür ist im wesentlichen der komplexe Speicherungs- und Aktivierungsmechanismus von TGF-ß (165). Im Rahmen dieser Versuche könnte dies dadurch erklärt werden, dass zu Beginn der Zellkultur in beiden Kulturbedingungen gleiche Mengen an TGF-ß1 produziert und gespeichert werden. Aufgrund der höheren MMP-Level in den konditionierten Zellen gegen Ende der Kultur, sind diese Zellen in der Lage, mehr TGF-ß1aus seiner gespeicherten und latenten Form in den Überstand freizusetzen. Dieses freigesetzte TGF-ß1 kann wiederum die Genexpression von Sox9 steigern und dadurch die chondrogene Differenzierung der konditionierten Zellen unterstützen, entweder auf direktem Weg oder indirekt mit Unterstützung von anderen Transkriptionsfaktoren (166,167).

Jedoch muss berücksichtigt werden, dass die Konzentration des exogen zugeführten TGF-ß3 (10ng/ml) höher war als die Konzentration des endogen produzierten TGF-ß1, die durchschnittlich bei 2 ng/ml lag. In mehreren Studien konnte nachgewiesen werden, dass geringe Konzentrationen an TGF-ß1 (0,2-1ng/ml) im Zellkulturüberstand, ohne Zugabe von exogenem TGFß-3, die chondrogene Differenzierung hemmen und die Genexpression von COL2A1 supprimieren (168,169). Da aber im Rahmen dieser Studie ein signifikanter Anstieg der chondrogenen Markergene COL2A1 und Aggrecan nachgewiesen werden konnte, scheinen die Mengen an TFGß-1 in Kombination mit dem konstant zugeführtem TGF-ß3 und zusätzlichen, hier nicht näher identifizierten Faktoren, auszureichen, um die chondrogene Differenzierung zu fördern.

Matrix-Metalloproteinasen (170) sind eine Gruppe von Endopeptidasen, die zahlreiche verschiedene Funktionen übernehmen. Sie spielen eine wichtige Rolle bei physiologischen Prozessen, wie Wachstum, Entwicklung und Wundheilung. Aber sie sind genauso an pathologischen Vorgängen wie Arthritis, Arthrose und Tumorwachstum beteiligt. MMPs werden als die wichtigsten Proteasen im Abbau von Proteinen der extrazellulären Matrix angesehen und spielen außerdem eine wichtige Rolle in der Regulation der Zellmigration. Weiterhin scheinen sie eine wichtige Stellung in der Adhäsion, Proliferation, Differenzierung und Apoptose von Zellen einzunehmen. Eine Methode, wie MMPs in die verschiedenen physiologischen und pathologischen Abläufe eingreifen können, ist ihre Fähigkeit, die Aktivität von Wachstumsfaktoren, wie zum Beispiel TGF-ß und deren Rezeptoren, zu kontrollieren (171-173).

Im Zellkulturüberstand konnte sowohl MMP-2, als auch MMP-13 nachgewiesen werden. Es ist allgemein bekannt, dass beide Proteasen entscheidende Funktionen im Verlauf der Chondrogenese übernehmen.

Die Bedeutung von MMP-2 konnte anhand von Mutationen innerhalb des MMP-2 Gens, die mit einem Fehlen der proteolytischen Aktivität einhergehen, demonstriert werden. Bei Individuen mit einer MMP-2 Mutation kommt es immer zu gravierenden Fehlfunktionen mit charakteristischen Gesichtsdeformitäten, lytischen Knochenläsionen, Arthrose und subcutanen Knotenbildungen (174). Auch in physiologischen Entwicklungsprozessen, wie der chondrogenen Differenzierung von MSCs konnten zahlreiche Funktionen von MMP-2 nachgewiesen werden. Zum Beispiel ist MMP-2 in der Lage, TGF-ß aus der EZM freizusetzen und anschließend das latente Protein zu aktivieren, indem es die latente Form vom latency-associated peptide (LAP) abspaltet (175-178).

Immunohistochemische Studien von Wachstumsfugenknorpel konnten MMP-2 in der Proliferationszone, der matrixbildenden Zone und auch in der hypertrophen Zone nachweisen (179). Ein Mangel an MMP-2 führt bei der enchondralen Ossifikation zu gravierenden Folgen. Es kommt zu einer abnormalen Akkumulation von Kollagen II in der hypertrophen Zone, was wiederum das Wachstum der terminalen Chondrozyten einschränkt, wodurch die für die weitere hypertrophe Differenzierung nötige Zellvergrößerung ausbleibt. Anschließend wird die Gefäßeinsprossung in den Knorpel vermindert (180).

MMP-2 besitzt zahlreiche regulatorische Fähigkeiten, unter anderem indirekt über die Freisetzung und Aktivierung anderer Proteasen, insbesondere auch über die Aktivierung von anderen MMPs. So konnten Knäuper et al. demonstrieren, dass MMP-2 an der Aktivierung von MMP-13 beteiligt ist, indem es die intermediäre Form in die vollständig aktive Endform umwandelt (181,182).

Auf die Produktion von MMP-2 in den Zellen der Pellets üben die von den Knorpelexplantaten sezernierten, parakrinen Faktoren keinen Einfluss aus, da in beiden Ansätzen über die kompletten 21 Tage der Zellkultur gleiche Mengen nachgewiesen werden konnten. Lediglich die Sekretion wird durch die parakrinen Faktoren wesentlich beeinflusst.

Im Zellkulturüberstand konnte über den gesamten Verlauf der Zellkulturperiode ein signifikanter Anstieg der MMP-2-Sekretion der konditionierten Zellen in Relation zu den Kontrollen nachgewiesen werden. Die Knorpelexplantate produzierten über die gesamte Zellkulturperiode in etwa gleiche Mengen an MMP-2 wie die Zellpellets in beiden Kulturansätzen, wobei die Sekretion im Verlauf der Kulturperiode etwas abnahm. Für die gesteigerte Sekretion von MMP-2 in den konditionierten Zelllinien sind deshalb sowohl lösliche Faktoren, die die MMP-2-Freisetzung in den konditionierten Pellets fördern, als auch direkt von den Knorpelexplantaten zugeführte MMPs verant-wortlich. Die löslichen Faktoren können ihre Funktion entweder direkt ausüben, oder indirekt über die Aktivierung von Transkriptionsfaktoren wie zum Beispiel PTH/PTHrp

(183) oder TGF-ß (184).

Weiterhin zeigen die Ergebnisse der Gelatine-Zymogramme gegen Ende der Zellkulturperiode in den konditionierten Zelllinien eine vermehrte Aktivierung der in den Zellkulturüberstand sezernierten MMP-2. Dagegen lässt sich bei den Kontrollen, ohne Einfluss der stimulierenden Faktoren, nur eine sehr geringe Aktivierung von MMP-2 nachweisen.

Überdies stimulieren die von den Knorpelexplantaten produzierten, löslichen Faktoren die MMP-13 Sekretion der konditionierten Zellen gegen Ende der Zellkulturperiode. In zahlreichen vergangenen Studien konnte nachgewiesen werden, dass die MMP-13-Produktion in hypertrophen Chondrozyten hochreguliert wird (185). Eine MMP-13-Defizienz führt zu einer signifikanten, gestiegenen interstitiellen Kollagen-Ansammlung, was wiederum mit einer Verzögerung der enchondralen Ossifikation einhergeht und zu einer Größenzunahme der hypertrophen Zone in der Wachstumsfuge führt (186). Trotzdem konnten in keinem der beiden Ansätze charakteristische Markerproteine für hypertrophe Chondrozyten, wie zum Beispiel Kollagen X, nachgewiesen werden. Dies korelliert gut mit Ergebnissen aus zahlreichen vergangenen Studien, die zeigen konnten, dass in Kokulturen von MSCs und Gelenkknorpel die terminale Differenzierung der Chondrozyten mit Hilfe von löslichen Faktoren unterdrückt wird (187). Eine Rolle könnte hierbei MMP-13 spielen, deren Sekretion in den konditionierten Zellen signifikant anstieg. Hierdurch wäre es möglich, dass die Protease sowohl die Genexpression, als auch die Biosynthese von Kollagen X reguliert. Dieses Ergebnis würde gut mit den Ergebnissen von Ahmed et al. korrelieren, die in ihren Studien vorschlagen, dass MMP-13 die Kollagen X-Biosynthese supprimiert (188).

Des Weiteren sollte näher untersucht werden, welche Faktoren im Detail für die gestiegene Produktion der beiden MMPs bei konditionierten Zellen verantwortlich sein könnte. Hierfür wurde die Konzentration von proinflammatorischen Zytokinen im Zellkulturüberstand näher bestimmt. Da für die Zellkulturen Knorpelexplantate von Osteoarthrosepatienten verwendet wurden, können proinflammatorische Zytokine eine wesentliche Rolle besitzen. Dies wird dadurch untermauert, dass bereits zahlreiche Studien beweisen konnten, dass MMPs, insbesondere MMP-13, eine entscheidende Rolle in der Zerstörung des Gelenkknorpels bei der Osteoarthrose besitzen und, dass inflammatorische Zytokine wie IL-1ß und TNF α die Synthese von MMPs fördern (189-191). Diese Zytokine sind in diesem Zellkultursystem nicht für die erhöhten MMP-Spiegel verantwortlich, da beide über den Zeitraum der gesamten Zellkulturperiode hinweg in beiden Zellkulturansätzen in ähnlichen Mengen sezerniert wurden.

6 Zusammenfassung

Im Rahmen dieser Doktorarbeit sollte ein potentiell regulierender Einfluss von löslichen, parakrinen Faktoren, produziert von reifen Chondrozyten auf die chondrogene Differenzierung von humanen, mesenchymalen Stammzellen nachgewiesen werden. Hierfür wurde ein Zellkulturmodell etabliert, in dem Chondrozyten und hRS getrennt voneinander kultiviert wurden und der Kontakt zwischen beiden Zelltypen auf lösliche Faktoren beschränkt war. Dies wurde durch die Zugabe des bei den Chondrozyten konditionierten Zellkulturüberstandes zu den MSCs erreicht.

Das etablierte Zellkultursystem ist gut dazu geeignet, die chondrogene Differenzierung von humanen RS-Zellen zu unterstützen, da in beiden Kulturansätzen typische chondrogene Markerproteine im Zellkulturüberstand nachgewiesen werden konnten. Die Ergebnisse zeigen weiterhin, dass lösliche Faktoren die chondrogene Differenzierung der hRS fördern. Eine Schlüsselrolle in diesem System könnten die beiden Matrixmetalloproteinasen MMP-2 und MMP-13 einnehmen. Beide Proteinasen besitzen zahlreiche wichtige Funktionen im Prozess der chondrogenen Differenzierung, beispielsweise die Fähigkeit, von MMPs latentes TGF-ß aus der extrazellulären Matrix freizusetzen, um auf diesem Weg die Chondrogenese zu fördern. Dies korreliert gut mit den Ergebnissen dieser Arbeit, da im Zellkulturüberstand der konditionierten Pellets signifikant höhere Mengen an TGF-B1 nachgewiesen wurden. Zusammen mit dem exogen zugeführten TGF-ß3 ist dieser Wachstumsfaktor in der Lage, die Genexpression der chondrogenen Markergene wie COL2A1 und Aggrecan zu steigern. Dass auf der Ebene der Proteinsekretion keine Unterschiede zwischen den beiden Kulturbedingungen bestehen, liegt in erster Linie an der Dauer der Zellkulturperiode, die zu kurz ist, um die langwierigen Veränderungen auf Ebene der Proteinsekretion darzustellen. Analog zu vergangenen Studien mit artikulären Chondrozyten, wie zum Beispiel die von Jikko et al., konnte auch im Rahmen dieser Arbeit keine hypertrophe Differenzierung der Chondrozyten nachgewiesen werden.

7 Referenzen

- Gläser H, Henke T. Sportunfälle Häufigkeit, Kosten, Prävention. 2001. Ref Type: Report
- Steinbrück K: Aktuelle Themen der Sportmedizin. Deutsche Zeitschrift für Sportmedizin 10: 2002
- 3. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG: Cartilage injuries: a review of 31,516 knee arthroscopies. *Arthroscopy* 13:456-460, 1997
- 4. Messner K, Maletius W: The long-term prognosis for severe damage to weightbearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. *Acta Orthop Scand* 67:165-168, 1996
- Spahn G: Knorpelschaden und Gonarthrose. *Aktuelle Traumatologie*195-207, 2006
- Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell Biochem 97:33-44, 2006
- 7. Caplan AI: Mesenchymal stem cells. J Orthop Res 9:641-650, 1991
- Benninghoff A: Über den funktionellen Bau des Knorpels, pp 250-267. Anat Anz, 1922
- Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR: Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. *J Clin Invest* 93:1722-1732, 1994
- 10. Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P: Carti-

lage contains mixed fibrils of collagen types II, IX, and XI. *J Cell Biol* 108:191-197, 1989

- Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S: Composition and structure of articular cartilage: a template for tissue repair. *Clin Orthop Relat Res*S26-S33, 2001
- Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P: Cartilage contains mixed fibrils of collagen types II, IX, and XI. *J Cell Biol* 108:191-197, 1989
- Iozzo RV: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. *J Biol Chem* 274:18843-18846, 1999
- Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen HW, Wagener R, Ala-Kokko L, Paulsson M, Bruckner P, Grassel S: Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. *Mol Cell Biol* 25:10465-10478, 2005
- Lai WM, Hou JS, Mow VC: A triphasic theory for the swelling and deformation behaviors of articular cartilage. *J Biomech Eng* 113:245-258, 1991
- Zhou S, Cui Z, Urban JP: Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. *Arthritis Rheum* 50:3915-3924, 2004
- Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM: Effect of collagen turnover on the accumulation of advanced glycation end products. *J Biol Chem* 275:39027-39031, 2000

- Guilak F, Mow VC: The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. *J Biomech* 33:1663-1673, 2000
- Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ: The mechanobiology of articular cartilage development and degeneration. *Clin Orthop Relat Res*S69-S77, 2004
- Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell Biochem 97:33-44, 2006
- 21. Burr DB: Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. *Osteoarthritis Cartilage* 12 Suppl A:S20-S30, 2004
- Coutts RD, Healey RM, Ostrander R, Sah RL, Goomer R, Amiel D: Matrices for cartilage repair. *Clin Orthop Relat Res*S271-S279, 2001
- Buckwalter JA, Mankin HJ: Instructional Course Lectures, The American Academy of Orthopaedic Surgeons Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions*{{dagger}}. *J Bone Joint Surg Am* 79:600-611, 1997
- 24. Buckwalter JA, Brown TD: Joint injury, repair, and remodeling: roles in posttraumatic osteoarthritis. *Clin Orthop Relat Res*7-16, 2004
- 25. Mitchell N, Shepard N: Healing of articular cartilage in intra-articular fractures in rabbits. *J Bone Joint Surg Am* 62:628-634, 1980
- 26. Buckwalter JA, Mankin HJ: Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. *Instr Course Lect* 47:487-504, 1998

- Hubbard MJ: Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. *J Bone Joint Surg Br* 78:217-219, 1996
- Johnson LL: Arthroscopic abrasion arthroplasty: a review. *Clin Orthop Relat Res*S306-S317, 2001
- Buckwalter JA, Mankin HJ: Instructional Course Lectures, The American Academy of Orthopaedic Surgeons Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions*{{dagger}}. J Bone Joint Surg Am 79:600-611, 1997
- Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J: In vivo matrix-guided human mesenchymal stem cells. *Cell Mol Life Sci* 63:616-626, 2006
- Steinwachs MR, Guggi T, Kreuz PC: Marrow stimulation techniques. *Injury* 39 Suppl 1:S26-S31, 2008
- Richter W: Mesenchymal stem cells and cartilage in situ regeneration. *J Intern* Med 266:390-405, 2009
- Outerbridge HK, Outerbridge RE, Smith DE: Osteochondral defects in the knee.
 A treatment using lateral patella autografts. *Clin Orthop Relat Res*145-151, 2000
- Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. *N Engl J Med* 331:889-895, 1994
- 35. Mithofer K, Peterson L, Mandelbaum BR, Minas T: Articular cartilage repair in soccer players with autologous chondrocyte transplantation: functional outcome

and return to competition. Am J Sports Med 33:1639-1646, 2005

- Mithofer K, Minas T, Peterson L, Yeon H, Micheli LJ: Functional outcome of knee articular cartilage repair in adolescent athletes. *Am J Sports Med* 33:1147-1153, 2005
- Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. *N Engl J Med* 331:889-895, 1994
- Clair BL, Johnson AR, Howard T: Cartilage repair: current and emerging options in treatment. *Foot Ankle Spec* 2:179-188, 2009
- 39. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G: Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. *J Bone Joint Surg Br* 87:640-645, 2005
- 40. Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M: Second generation issues in cartilage repair. *Sports Med Arthrosc* 16:221-229, 2008
- Chou CH, Cheng WT, Lin CC, Chang CH, Tsai CC, Lin FH: TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. *J Biomed Mater Res B Appl Biomater* 77:338-348, 2006
- Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S: Articular cartilage engineering with Hyalograft C: 3-year clinical results. *Clin Orthop Relat Res*96-105, 2005
- 43. Marcacci M, Kon E, Delcogliano M, Filardo G, Busacca M, Zaffagnini S: Ar-

throscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. *Am J Sports Med* 35:2014-2021, 2007

- 44. Ossendorf C, Kaps C, Kreuz PC, Burmester GR, Sittinger M, Erggelet C: Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. *Arthritis Res Ther* 9:R41, 2007
- 45. Cancedda R, Dozin B, Giannoni P, Quarto R: Tissue engineering and cell therapy of cartilage and bone. *Matrix Biol* 22:81-91, 2003
- 46. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M: Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. *Osteoarthritis Cartilage* 10:199-206, 2002
- 47. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M: Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. *Osteoarthritis Cartilage* 15:226-231, 2007
- Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA: Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. *Blood* 56:289-301, 1980
- 49. Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. *Cell*

Tissue Kinet 3:393-403, 1970

- 50. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ: Cultured adherent cells from marrow can serve as longlasting precursor cells for bone, cartilage, and lung in irradiated mice. *Proc Natl Acad Sci U S A* 92:4857-4861, 1995
- 51. Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. *Tissue Eng* 11:1198-1211, 2005
- 52. Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. *Tissue Eng* 11:1198-1211, 2005
- 53. DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. *Br J Haematol* 107:275-281, 1999
- 54. DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. *Br J Haematol* 107:275-281, 1999
- 55. Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. *Cell Tissue Kinet* 3:393-403, 1970
- 56. Bianco P, Riminucci M, Gronthos S, Robey PG: Bone marrow stromal stem cells: nature, biology, and potential applications. *Stem Cells* 19:180-192, 2001
- 57. McCulloch CA, Strugurescu M, Hughes F, Melcher AH, Aubin JE: Osteogenic

progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture. *Blood* 77:1906-1911, 1991

- Bruder SP, Jaiswal N, Haynesworth SE: Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. *J Cell Biochem* 64:278-294, 1997
- D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA: Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. *J Bone Miner Res* 14:1115-1122, 1999
- Mets T, Verdonk G: In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev 16:81-89, 1981
- 61. Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. *Proc Natl Acad Sci U S A* 98:7841-7845, 2001
- Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues.
 Science 276:71-74, 1997
- Colter DC, Class R, DiGirolamo CM, Prockop DJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. *Proc Natl Acad Sci U S A* 97:3213-3218, 2000
- Colter DC, Class R, DiGirolamo CM, Prockop DJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. *Proc Natl Acad Sci U S A* 97:3213-3218, 2000
- 65. Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell

Biochem 97:33-44, 2006

- 66. DeLise AM, Fischer L, Tuan RS: Cellular interactions and signaling in cartilage development. *Osteoarthritis Cartilage* 8:309-334, 2000
- 67. Hall BK, Miyake T: All for one and one for all: condensations and the initiation of skeletal development. *Bioessays* 22:138-147, 2000
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- 69. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* 16:2813-2828, 2002
- Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM: Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. *Dev Biol* 257:292-301, 2003
- 71. de Crombrugghe B, Lefebvre V, Nakashima K: Regulatory mechanisms in the pathways of cartilage and bone formation. *Curr Opin Cell Biol* 13:721-727, 2001
- 72. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, .: Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. *Cell* 79:1111-1120, 1994
- 73. Wright E, Hargrave MR, Christiansen J, Cooper L, Kun J, Evans T, Gangadha-

ran U, Greenfield A, Koopman P: The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. *Nat Genet* 9:15-20, 1995

- 74. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* 16:2813-2828, 2002
- 75. Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B: Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. *Proc Natl Acad Sci U S A* 100:9360-9365, 2003
- 76. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM: Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. *Proc Natl Acad Sci U S A* 102:5062-5067, 2005
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- Tribioli C, Lufkin T: The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. *Development* 126:5699-5711, 1999
- Tribioli C, Lufkin T: The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. *Development* 126:5699-5711, 1999
- Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB: Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. *Genes Dev* 16:1990-2005, 2002

- Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell Biochem 97:33-44, 2006
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- 83. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* 16:2813-2828, 2002
- Lefebvre V: Toward understanding the functions of the two highly related Sox5 and Sox6 genes. *J Bone Miner Metab* 20:121-130, 2002
- Tribioli C, Lufkin T: The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. *Development* 126:5699-5711, 1999
- Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS: SOX9 directly regulates the type-II collagen gene. *Nat Genet* 16:174-178, 1997
- Tribioli C, Lufkin T: The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. *Development* 126:5699-5711, 1999
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005

- 90. Smits P, Dy P, Mitra S, Lefebvre V: Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. *J Cell Biol* 164:747-758, 2004
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- 92. Minina E: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. *Dev Cell* 3:439-449, 2002
- Itoh N, Ornitz DM: Evolution of the Fgf and Fgfr gene families. *Trends Genet* 20:563-569, 2004
- 94. Ornitz DM: FGF signaling in the developing endochondral skeleton. *Cytokine Growth Factor Rev* 16:205-213, 2005
- 95. Smits P, Dy P, Mitra S, Lefebvre V: Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. *J Cell Biol* 164:747-758, 2004
- 96. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B: Interactions between Sox9 and beta-catenin control chondrocyte differentiation. *Genes Dev* 18:1072-1087, 2004
- Defebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- Kim IS, Otto F, Zabel B, Mundlos S: Regulation of chondrocyte differentiation by Cbfa1. *Mech Dev* 80:159-170, 1999

- 99. Minina E: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. *Dev Cell* 3:439-449, 2002
- 100. Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell Biochem 97:33-44, 2006
- 102. Zheng Q, Zhou G, Morello R, Chen Y, Garcia-Rojas X, Lee B: Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocytespecific expression in vivo. *J Cell Biol* 162:833-842, 2003
- 103. Iwamoto M, Koyama E, Enomoto-Iwamoto M, Pacifici M: The balancing act of transcription factors C-1-1 and Runx2 in articular cartilage development. *Biochem Biophys Res Commun* 328:777-782, 2005
- 104. Leboy P, Grasso-Knight G, D'Angelo M, Volk SW, Lian JV, Drissi H, Stein GS,
 Adams SL: Smad-Runx interactions during chondrocyte maturation. *J Bone Joint Surg Am* 83-A Suppl 1:S15-S22, 2001
- 105. Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- 106. Adams CS, Shapiro IM: The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. *Crit Rev Oral Biol Med* 13:465-473, 2002
- 107. Hess J, Porte D, Munz C, Angel P: AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. *J Biol*

Chem 276:20029-20038, 2001

- 108. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM: Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. *Proc Natl Acad Sci U S A* 101:17192-17197, 2004
- Ortega N, Behonick DJ, Werb Z: Matrix remodeling during endochondral ossification. *Trends Cell Biol* 14:86-93, 2004
- 110. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K: Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. *Proc Natl Acad Sci U S A* 97:4052-4057, 2000
- Colnot C, Lu C, Hu D, Helms JA: Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. *Dev Biol* 269:55-69, 2004
- 112. Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. *J Cell Biochem* 97:33-44, 2006
- 113. Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. *Circ Res* 92:827-839, 2003
- 114. Mannello F, Tonti GA, Bagnara GP, Papa S: Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. *Stem Cells* 24:475-481, 2006
- Vu TH, Werb Z: Matrix metalloproteinases: effectors of development and normal physiology. *Genes Dev* 14:2123-2133, 2000

- 116. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP: Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. *Eur J Cell Biol* 74:111-122, 1997
- 117. Stamenkovic I: Extracellular matrix remodelling: the role of matrix metalloproteinases. *J Pathol* 200:448-464, 2003
- Vu TH, Werb Z: Matrix metalloproteinases: effectors of development and normal physiology. *Genes Dev* 14:2123-2133, 2000
- 119. Martel-Pelletier J, Welsch DJ, Pelletier JP: Metalloproteases and inhibitors in arthritic diseases. *Best Pract Res Clin Rheumatol* 15:805-829, 2001
- 120. Haeusler G, Walter I, Helmreich M, Egerbacher M: Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. *Calcif Tissue Int* 76:326-335, 2005
- 121. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR: Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. *J Clin Invest* 99:1534-1545, 1997
- 122. Haeusler G, Walter I, Helmreich M, Egerbacher M: Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. *Calcif Tissue Int* 76:326-335, 2005

- 123. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE: Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761-768, 1996
- 124. McCawley LJ, Matrisian LM: Matrix metalloproteinases: they're not just for matrix anymore! *Curr Opin Cell Biol* 13:534-540, 2001
- 125. Diaconu NC, Kaminska R, Naukkarinen A, Harvima RJ, Nilsson G, Harvima IT: Increase in CD30 ligand/CD153 and TNF-alpha expressing mast cells in basal cell carcinoma. *Cancer Immunol Immunother* 56:1407-1415, 2007
- 126. Giroir BP, Brown T, Beutler B: Constitutive synthesis of tumor necrosis factor in the thymus. *Proc Natl Acad Sci U S A* 89:4864-4868, 1992
- 127. Hehlgans T, Pfeffer K: The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. *Immunology* 115:1-20, 2005
- 128. Dinarello CA: Interleukin-1 and interleukin-1 antagonism. *Blood* 77:1627-1652, 1991
- 129. Dinarello CA: Interleukin-1 and interleukin-1 antagonism. *Blood* 77:1627-1652, 1991
- 130. Vilcek J, Lee TH: Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. *J Biol Chem* 266:7313-7316, 1991
- 131. Vilcek J, Lee TH: Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. *J Biol Chem* 266:7313-7316, 1991

- 132. Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM: Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. *J Clin Invest* 82:2026-2037, 1988
- 133. Lefebvre V, Peeters-Joris C, Vaes G: Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. *Biochim Biophys Acta* 1052:366-378, 1990
- 134. Vilcek J, Lee TH: Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. *J Biol Chem* 266:7313-7316, 1991
- 135. Fontana A, Hengartner H, Weber E, Fehr K, Grob PJ, Cohen G: Interleukin 1 activity in the synovial fluid of patients with rheumatoid arthritis. *Rheumatol Int* 2:49-53, 1982
- Wood DD, Ihrie EJ, Dinarello CA, Cohen PL: Isolation of an interleukin-1-like factor from human joint effusions. *Arthritis Rheum* 26:975-983, 1983
- 137. Brenner DA, O'Hara M, Angel P, Chojkier M, Karin M: Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. *Nature* 337:661-663, 1989
- Sirum-Connolly K, Brinckerhoff CE: Interleukin-1 or phorbol induction of the stromelysin promoter requires an element that cooperates with AP-1. *Nucleic Acids Res* 19:335-341, 1991
- 139. Murakami S, Lefebvre V, de Crombrugghe B: Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha.

J Biol Chem 275:3687-3692, 2000

- Roman-Blas JA, Stokes DG, Jimenez SA: Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. *Osteoarthritis Cartilage* 15:1367-1377, 2007
- Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. *Exp Cell Res* 238:265-272, 1998
- 142. Chepda T, Cadau M, Girin P, Frey J, Chamson A: Monitoring of ascorbate at a constant rate in cell culture: effect on cell growth. *In Vitro Cell Dev Biol Anim* 37:26-30, 2001
- 143. Holtzer H, Abbott J, Lash J, Holtzer S: THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. *Proc Natl Acad Sci U S A* 46:1533-1542, 1960
- 144. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. *Exp Cell Res* 238:265-272, 1998
- 145. Solursh M: Formation of cartilage tissue in vitro. *J Cell Biochem* 45:258-260, 1991
- 146. Grassel S, Ahmed N: Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. *Front Biosci* 12:4946-4956, 2007
- 147. Diaconu NC, Kaminska R, Naukkarinen A, Harvima RJ, Nilsson G, Harvima IT: Increase in CD30 ligand/CD153 and TNF-alpha expressing mast cells in basal cell carcinoma. *Cancer Immunol Immunother* 56:1407-1415, 2007

- 148. Diaconu NC, Kaminska R, Naukkarinen A, Harvima RJ, Nilsson G, Harvima IT: Increase in CD30 ligand/CD153 and TNF-alpha expressing mast cells in basal cell carcinoma. *Cancer Immunol Immunother* 56:1407-1415, 2007
- 149. Bos PK, van Osch GJ, Frenz DA, Verhaar JA, Verwoerd-Verhoef HL: Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model. *Osteoarthritis Cartilage* 9:382-389, 2001
- 150. Cheung WH, Lee KM, Fung KP, Lui PY, Leung KS: TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. *J Cell Biochem Suppl* Suppl 36:79-88, 2001
- 151. Dreier R, Wallace S, Fuchs S, Bruckner P, Grassel S: Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). *J Cell Sci* 114:3813-3822, 2001
- 152. Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y: Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. *J Orthop Res* 21:511-520, 2003
- 153. Jikko A, Kato Y, Hiranuma H, Fuchihata H: Inhibition of chondrocyte terminal differentiation and matrix calcification by soluble factors released by articular chondrocytes. *Calcif Tissue Int* 65:276-279, 1999
- 154. Colter DC, Class R, DiGirolamo CM, Prockop DJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. *Proc Natl Acad Sci U S A* 97:3213-3218, 2000

- 155. Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. *Proc Natl Acad Sci U S A* 98:7841-7845, 2001
- 156. Boskey AL, Stiner D, Binderman I, Doty SB: Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system. *J Cell Biochem* 64:632-643, 1997
- 157. Denker AE, Nicoll SB, Tuan RS: Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. *Differentiation* 59:25-34, 1995
- Goldring MB, Tsuchimochi K, Ijiri K: The control of chondrogenesis. J Cell Biochem 97:33-44, 2006
- Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.
 Birth Defects Res C Embryo Today 75:200-212, 2005
- 160. De Luca F, Barnes KM, Uyeda JA, De Levi S, Abad V, Palese T, Mericq V, Baron J: Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. *Endocrinology* 142:430-436, 2001
- 161. Schmitt JM, Hwang K, Winn SR, Hollinger JO: Bone morphogenetic proteins: an update on basic biology and clinical relevance. *J Orthop Res* 17:269-278, 1999
- 162. Iwamoto M, Shimazu A, Pacifici M: Regulation of chondrocyte maturation by fibroblast growth factor-2 and parathyroid hormone. *J Orthop Res* 13:838-845, 1995
- 163. Lefebvre V: Transcriptional control of chondrocyte fate and differentiation.

Birth Defects Res C Embryo Today 75:200-212, 2005

- 164. Grassel S, Rickert M, Opolka A, Bosserhoff A, Angele P, Grifka J, Anders S: Coculture between periosteal explants and articular chondrocytes induces expression of TGF-beta1 and collagen I. *Rheumatology (Oxford)* 49:218-230, 2010
- 165. Grassel S, Rickert M, Opolka A, Bosserhoff A, Angele P, Grifka J, Anders S: Coculture between periosteal explants and articular chondrocytes induces expression of TGF-beta1 and collagen I. *Rheumatology (Oxford)* 49:218-230, 2010
- 166. Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H: Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. *J Biol Chem* 280:8343-8350, 2005
- Pateder DB, Rosier RN, Schwarz EM, Reynolds PR, Puzas JE, D'Souza M,
 O'Keefe RJ: PTHrP expression in chondrocytes, regulation by TGF-beta, and interactions between epiphyseal and growth plate chondrocytes. *Exp Cell Res* 256:555-562, 2000
- 168. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. *N Engl J Med* 331:889-895, 1994
- 169. Grassel S, Rickert M, Opolka A, Bosserhoff A, Angele P, Grifka J, Anders S: Coculture between periosteal explants and articular chondrocytes induces expression of TGF-beta1 and collagen I. *Rheumatology (Oxford)* 49:218-230, 2010
- 170. Haeusler G, Walter I, Helmreich M, Egerbacher M: Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a

role for MMPs in human postnatal growth and skeletal maturation. *Calcif Tissue Int* 76:326-335, 2005

- Ortega N, Behonick D, Stickens D, Werb Z: How proteases regulate bone morphogenesis. *Ann N Y Acad Sci* 995:109-116, 2003
- 172. Stamenkovic I: Extracellular matrix remodelling: the role of matrix metalloproteinases. *J Pathol* 200:448-464, 2003
- Vu TH, Werb Z: Matrix metalloproteinases: effectors of development and normal physiology. *Genes Dev* 14:2123-2133, 2000
- 174. Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA, Sheth KV, Eid WA, Dowling O, Harris J, Glucksman MJ, Bahabri S, Meyer BF, Desnick RJ: Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. *Nat Genet* 28:261-265, 2001
- 175. Dangelo M, Sarment DP, Billings PC, Pacifici M: Activation of transforming growth factor beta in chondrocytes undergoing endochondral ossification. J Bone Miner Res 16:2339-2347, 2001
- 176. Mott JD, Werb Z: Regulation of matrix biology by matrix metalloproteinases.*Curr Opin Cell Biol* 16:558-564, 2004
- 177. Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, Sheppard D, Broaddus VC, Nishimura SL: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157:493-507, 2002
- 178. Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis.

Genes Dev 14:163-176, 2000

- 179. Kawashima-Ohya Y, Satakeda H, Kuruta Y, Kawamoto T, Yan W, Akagawa Y, Hayakawa T, Noshiro M, Okada Y, Nakamura S, Kato Y: Effects of parathyroid hormone (PTH) and PTH-related peptide on expressions of matrix metalloproteinase-2, -3, and -9 in growth plate chondrocyte cultures. *Endocrinology* 139:2120-2127, 1998
- 180. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC: Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. *J Cell Biol* 126:1611-1623, 1994
- 181. Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G: Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. *J Biol Chem* 271:17124-17131, 1996
- 182. Knauper V, Cowell S, Smith B, Lopez-Otin C, O'Shea M, Morris H, Zardi L, Murphy G: The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. *J Biol Chem* 272:7608-7616, 1997
- 183. Kawashima-Ohya Y, Satakeda H, Kuruta Y, Kawamoto T, Yan W, Akagawa Y, Hayakawa T, Noshiro M, Okada Y, Nakamura S, Kato Y: Effects of parathyroid hormone (PTH) and PTH-related peptide on expressions of matrix metalloproteinase-2, -3, and -9 in growth plate chondrocyte cultures. *Endocrinology* 139:2120-2127, 1998

- 184. Munshi HG, Wu YI, Mukhopadhyay S, Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC, Stack MS: Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1induced pericellular collagenolysis. *J Biol Chem* 279:39042-39050, 2004
- 185. Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van Wart HE, Poole AR: Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. *J Bone Miner Res* 17:639-651, 2002
- 186. Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T: Maturational disturbance of chondrocytes in Cbfa1-deficient mice. *Dev Dyn* 214:279-290, 1999
- 187. Jikko A, Kato Y, Hiranuma H, Fuchihata H: Inhibition of chondrocyte terminal differentiation and matrix calcification by soluble factors released by articular chondrocytes. *Calcif Tissue Int* 65:276-279, 1999
- 188. Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S: Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. *Cell Physiol Biochem* 20:665-678, 2007
- 189. Curran S, Murray GI: Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. *Eur J Cancer* 36:1621-1630, 2000
- 190. Mix KS, Mengshol JA, Benbow U, Vincenti MP, Sporn MB, Brinckerhoff CE:A synthetic triterpenoid selectively inhibits the induction of matrix metallopro-

teinases 1 and 13 by inflammatory cytokines. *Arthritis Rheum* 44:1096-1104, 2001

191. Westermarck J, Kahari VM: Regulation of matrix metalloproteinase expression in tumor invasion. *FASEB J* 13:781-792, 1999

8 Danksagung

Mein Dank gilt zuallererst Frau Prof. Dr. rer. nat. Susanne Grässel, Abteilung Experimentelle Orthopädie, Orthopädische Klinik für die Universität Regensburg, die mir die Möglichkeit gegeben hat, diese Arbeit unter ihrer Leitung durchzuführen. Weiterhin danke ich Frau Prof. Grässel für ihre stetige Unterstützung und umfassende, fundierte Hilfe.

Besonders möchte ich mich noch bei Frau Dr. rer. nat. Nazish Ahmed und Frau Dr. rer. nat. Sabine Ratzinger für die tatkräftige Unterstützung und für die Einarbeitung in die diversen Verfahrensweisen bedanken.

Ein großer Dank gilt Benedikt Fütterer, der mir die Rohdaten seiner quantitativen PCR für meine Arbeit zur Verfügung stellte.

Des Weiteren möchte ich mich herzlich bei allen Mitarbeitern der Arbeitsgruppe des Labors für experimentelle Orthopädie für das tolle Arbeitsklima und die Hilfsbereitschaft bedanken.

9 Lebenslauf

Persönliche Daten

Name: Geburtstag: Familienstand:	Florian Zirngibl 27.06.1982 verheiratet
Schulbildung	
09/1988 - 07/1992 09/1992 - 06/2001	Besuch der Grundschule am Napoleonstein in Regensburg Besuch des Werner-von-Siemens Gymnasiums in Regensburg
Hochschulstudium	
10/2002	Immatrikulation und Studium der Humanmedizin an der Universität Regensburg
09/2004	Ärztliche Vorprüfung
08/2007 - 07/2008	Praktisches Jahr
	1. Tertial: Wahlfach Orthopädie an der Universität Regensburg
	2. Tertial: Innere Medizin an der Universität Regensburg
	3. Tertial: Chirurgie am Krankenhaus Barmherzige Brüder Regensburg
12/2008	Zweiter Abschnitt der ärztlichen Prüfung

Approbation

01.12.2008 Erteilung der Approbation als Arzt

Beruflicher Werdegang

02/2009 - 07/2009	Anstellung als Assistenzarzt in der Abteilung für
	Neuroradiologie am Universitätsklinikum Erlangen
07/2009	Anstellung als Assistenzarzt am Institut für diagnostische und
	interventionelle Radiologie des Klinikum St. Marien Amberg