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Abstract: Process modelling has proved to be a powerful instrument to describe 
and manage the increasingly complex processes within and across enterprises. Yet, 
it requires a significant amount of manual work to create, adapt and maintain 
process models. This workload could be reduced if the process models are 
automatically generated and adapted. Semantic Business Process Management in 
combination with planning approaches can contribute to the solution. In this paper 
we describe that existing planning algorithms show drawbacks for this application 
and therefore introduce an innovative algorithm that is suitable for the semantic-
based planning of process models. 

1 Introduction 

Process modeling has proved to be a powerful instrument to describe the increasingly 
complex processes within and across enterprises in order to realize them by means of 
application systems as well as for communication and training purposes. In the past 
twenty years a number of process modeling approaches have been developed. For 
instance processes can be described using Event-driven Process Chains (EPC) or UML 
activity diagrams and can be stored in enterprise-wide process libraries. However, 
process modeling and optimization approaches still have one major drawback. Setting up 
process models is a time consuming job. Nevertheless, changing customer requirements, 
new jurisdiction, etc. make it necessary to adapt and maintain business processes 
frequently. A semantic annotation of process models as envisioned in the research area 
Semantic Business Process Management in combination with existing planning 
approaches can solve this drawback and enable a (semi-)automatic, semantic-based 
planning of process models.  

In this paper we introduce SEMPA, an approach including an algorithm suited for the 
automatic planning of process models. We specifically address the question, how 
established AI planning approaches can be used as a basis to develop an innovative 
planner for the semantic-based planning of process models. To this end we will provide 
a technical definition of the planning problem and we will describe how the specific 
characteristics of the planning problem are considered within the SEMPA approach. 

The rest of the paper is organized as follows: In section two we show how the planning 
of process models can be related to Semantic Business Process Management and define 
our prerequisites. In section three we introduce the SEMPA approach, before we go into 
more details about the automatic planning of process models. Our approach consists of 
three steps: we describe in further detail the actual planning part (second step) and its 
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result as well as the extraction of process models from this result (third step). Section 
four is dedicated to related work in AI and web service composition, before section five 
concludes with our considerations and provides an outlook for future research. 

2 Semantic Business Process Management and Basic Problem Setting 

Recently, new research activities in the area of Semantic Business Process Management 
(SBPM) based on the vision of [HL+05] have emerged (see e.g. [BK+06, BE+06, 
HD07]). One major goal of SBPM is to reach a higher level of automation in the creation 
and adaptation of process models and execution of processes by means of their semantic 
annotation. This requires that terms used in the models are technically described with 
concepts of an ontology (e.g. using OWL). As pointed out by [TF07], the semantics of 
meta-model elements for process modeling and their relations are already defined by 
well established approaches for process and enterprise modeling like ARIS. However, 
the terms used to specify individual model elements (e.g. the name of a particular 
function or an input parameter) and their semantics are still left to the modeler. Problems 
in comprehension and ambiguities are the consequence of inconsistently used terms – 
either the same term describes different elements of the problem context or different 
terms point to the same elements of the problem context. Especially in practice this leads 
to discussions or manual enhancement of the process models requiring a huge amount of 
work. By means of ontologies, terms in process models are conceptualized and their 
relations are technically defined. This allows for an advanced and automatic processing 
of semantically annotated process models and their elements.  

Most approaches in SBPM (compare [TF07]) concentrate on the annotation of process 
models. In contrast we focus on the (semi-)automated planning of process models 
enabled by the semantic annotation. Based on a given problem description feasible 
process models should be automatically generated based on a set of semantically 
annotated process actions (constituting one major element of process models) or sub-
processes. Thereby the (re-)design of processes through process models respectively 
should be accelerated. This conforms to [WM+07] describing the lifecycle of a semantic 
business process and pointing out that autocompletion of process models is an important 
issue in SBPM. However, we do not only provide the user with possibilities for an 
autocompletion of fragments of a process model (as in [BK+06]), but also with a 
(semi-)automatic planning of process models which only requires human interaction 
when the planned process models need to be evaluated by the modeler regarding 
business aspects that have not been considered for planning (e.g. cost or resources).  

Whereas some approaches in SBPM suggest a comprehensive conceptualization of all 
model- and meta-model elements of a process model [TF07], we choose a less restrictive 
approach for the annotation of process actions and sub-processes, which is similar to 
semantic web service standards (e.g. SAWSDL). We assume that each process action is 
described by a unique name, a set of input parameters it needs to be executed and a set of 
output parameters it provides after execution. Input and output parameter names are 
defined as classes in an ontology. Moreover, for each atomic input and output parameter 
a domain is specified in the ontology, i.e. the set of feasible values the parameter can 



adopt. The domain is either given by a primitive data type (e.g. Boolean or integer) or an 
ontological class; or it is an enumeration of predefined instances. In reality, process 
actions may require input parameters of a particular value or within a certain range. 
Likewise a process action may generate an output parameter having a value that is 
restricted to a certain range. Thus the specification of the input and output parameters of 
a process action also comprises certain restrictions concerning their values.  

In our prototypical application process actions and their input and output parameters are 
directly described in a process modeling tool with regard to the ontology which is 
implemented in OWL. We will not elaborate on implementation details in this paper (for 
OWL we refer to [DG04]), but introduce a more abstract notation that is appropriate for 
planning later on. 

3 Automatic Planning of Process Models 

In this section we firstly outline our approach at a whole, before we classify the planning 
part into existing planning approaches and describe it in further detail. 

3.1 The SEMPA-Approach 

Within the project SEMPRO1 an approach called SEMPA (SEMantic-based Planning 
Approach) has been developed that proceeds in three steps:  

 In the first step, a semantic matching between input and output parameters of 
process actions takes place by evaluating the semantic relations in the ontology2. 
Besides the trivial case of an identity relation (e.g. an output parameter of one 
process action can be used as an input parameter of another process action because 
parameters are identical) also other relations are considered. For instance parameters 
connected via a sub-class-of relation in the ontology may be as well compatible 
under certain circumstances.3 The semantic information about input and output 
parameters is stored in an action dependency graph (ADG) that is employed in the 
following steps. This ADG only includes process actions that lead to one of several 
given goals. Thus semantic reasoning is mainly done in the first step and redundant 
and time-consuming analysis can be avoided.  

 In the second step, planning is accomplished by a search in the action-state space to 
achieve the given goals. The algorithm currently implements a forward-search 
starting in the initial state. In the course of planning applicable process actions are 

                                                           

1 The SEMPRO project is supported by the German Research Foundation (DFG). 
2 Here, we assume that there exists only one ontology. For several ontologies, ontology mapping techniques 
(compare [KS03]) could be applied.  
3 Consider the case that one process action requires an order as an input parameter and another process action 
produces an output parameter stock order (stock order being a sub-class of order in the ontology), then both 
parameters match.  



derived from the ADG. We call the resulting plan an action state graph (ASG). It 
forms a (language independent) basis for deriving process models in the next step. 

 Finally, in the third step process models are derived from the ASG by identifying 
control structures and considering the syntactical elements of a concrete process 
modeling language. Thereby, different process modeling languages can be 
supported at a time without adapting the fundamental search algorithm in the second 
step. Currently, we are focusing on UML activity diagrams but the intention is to 
extend the approach to other languages, e.g. Petri-Nets. 

As the focus in this paper is on the connection of SBPM and planning, we will now 
provide a technical definition of the planning problem that has to be solved in the second 
step of the SEMPA approach. 

3.2 Definition and Classification of the Planning Problem 

As already mentioned, process actions are semantically described by specifying their 
input and output parameters with respect to an ontology. We will use the term parameter 
in the following to denote the state variables for our planning problem (for state-variable 
representations of planning problems and differences in comparison to a STRIPS 
language or derivatives see e.g. [BN93], [GNT04]). For the planning of process models 
we abstract from an individual process execution and therefore the realizations of 
parameter values (and thus the current state) are not determined at the moment of 
planning. This conforms to non-deterministic planning problems [GNT04]. Likewise in 
the initial state parameters are not fully determined either, which can be regarded as a 
form of initial state uncertainty [BG01]. In order to account for non-determinism and 
initial state uncertainty, parameters are not assigned individual values but so called 
restrictions, i.e. sets of values that are currently conceivable for these parameters. This 
leads us to the following definitions: 

Definition 1: Let P be the set of all parameters. A parameter p œ P can be either an 
atomic parameter or a composite parameter. An atomic parameter is defined as a tuple 
p:=(lp, domp, rp), where lp is the parameter name, domp is the domain, i.e. the set of 
feasible values according to the data type of the parameter, and rp Œ domp is the 
restriction. A composite parameter is a tuple p:=(lp, {p1, p2, …, pm}), where 
{p1, p2, …, pm} is a set of parameters (m>1). 

Definition 2: A process action (or sub-process) a is defined as a:=(namea, Ina, Outa), 
where namea is the name of the process action, Ina Œ P is a set of input parameters and 
Outa Œ P is a set of output parameters.  

We define that each process action is described by a unique name, a set of input 
parameters it needs to be executed and a set of output parameters it provides after 
execution. Restrictions thereby form a rather intuitive way (from a process modeling 
perspective) to express certain preconditions and effects. This is different to semantic 
web services where preconditions and effects are used instead of restrictions on inputs 
and outputs. Note, however, that in contrast to preconditions and effects, restrictions are 



always bound to single parameters. We can now specify the planning domain and the 
planning problem: 

Definition 3: The planning domain is defined as D=(P, S, libA, g), where P is the set of 
parameters, S is a set of process states, libA is a set of available process actions or sub-
processes and g is a state-transition function. A process state s œ S is defined as a set of 
parameters, i.e. s Œ P and S Œ 2P. The state transition function g : S x libA Ø S maps pairs 
of process states and process actions into the set of process states.  

It is important to mention that a process state is constituted by the restrictions that 
currently hold for the parameters rather than by individual values of the parameters. 
Similar to [PB02] a process state could thus be interpreted as a kind of knowledge base 
capturing the knowledge about the currently available parameters. In this respect a 
process state needs to be clearly distinguished from the state of the world that refers to 
an individual situation at execution time. A process state describes different conceivable 
states of the world. A process action deterministically maps one process state into 
another process state.  

Definition 4: The planning problem is defined as Prob=(D, Init, Goals), where 
« ∫ Init œ S is the initial state and Goals={G1, G2, …, Gn} are representing the goals of 
the planning problem. Each goal Gj (j=1, …, n) is again defined as a set of parameters, 
i.e. Gj Œ P. 

The intention of the second step within the SEMPA approach is to plan an action state 
graph that is suited to derive different feasible process models (that can afterwards be 
evaluated). In a feasible process model each goal should be reachable, i.e. it is possible 
to specify several (conflicting) goals for one process model (which are then achieved in 
different branches of the process model). Consequently, planning is accomplished until 
all paths from the initial state to any of the specified goals are explored.  

Case study: In the following we will illustrate our approach by a small case study of the 
financial services industry. We consider a situation where a new process model for the 
execution of orders (e.g. stock order) is needed. The overall process input is an order that 
has been entered by the customer. The overall process output is again the order that has 
to be executed now. Figure 1 depicts the corresponding initial state and the set of goals 
in the notation introduced above (for the sake of simplicity, we only consider one goal, 
thus there is only one element in the set of goals). The order is a composite parameter 
having a positive order amount, an order type which is either buy order or sell order, 
and an order state, which needs to be entered in the initial state and executed in the goal 
(state thereby represents a set of conceivable order states that are not enumerated 
explicitly here but nevertheless are defined in the ontology).  

 

Figure 1: Initial state and Goals in the case study 



Several (semantic annotated) process actions are available in a process library and can be 
used for automatic planning. The specification of these process actions provides Figure 
2.4 Input parameters have been marked in bold and are italicized; output parameters are 
printed in grey. The process action validate order for instance has exactly one 
(composite) input parameter order which is at the same time the only output parameter. 
Input parameter restrictions demand an order state that is entered; the process action on 
the other hand provides an order whose order state is restricted to valid or invalid.  

 

Figure 2: Specification of process actions 

3.3 The Planning Algorithm within the SEMPA Approach 

The algorithm conducts a forward search in the space of process states. Beginning in the 
initial state applicable process actions are identified. The ADG as result of the first step 
is used to derive process actions that are applicable for a certain set of available 
parameters in a process state (considering as well semantic relations). Thereby, we 
differentiate between applicable and strongly applicable process actions5: 

Definition 6: A process action a:=(namea, Ina, Outa) is applicable to a process state s if: 
"  (lin, domin, rin) œ Ina $  (lp, domp, rp) œ s ⁄ lin  lp ⁄ domin = domp  ⁄ rp ∩ rin ≠ ø.  

Definition 7: A process action a:=(namea, Ina, Outa) is strongly applicable to a process 
state s if: " (lin, domin, rin) œ Ina $  (lp, domp, rp) œ s ⁄ lin  lp ⁄ domin = domp  ⁄ rp Œ rin.  

Definition 6 describes a necessary condition that needs to be met so that a process 
action a can actually be executed in a process state s. All input parameters are available 
in s and the restriction of each parameter (i.e. the set of possible values) does not 
contradict the restriction required by a for that parameter. The parameters of the process 
state s and the input parameters of a are semantically compared () whether they are 

                                                           

4 Figure 2 only contains the process actions relevant for the following text. Process actions that are separated 
out in the first step and are therefore not part of the final solution are not depicted here. 
5 These definitions (as well as the following ones) assume only atomic parameters in order to avoid writing 
overhead. Obviously the definition can be easily adapted to composite parameters. 



equivalent, sub-class-of or one part of the other. However, there may still be situations 
where executing a is not possible (due to the restrictions). Definition 7 in contrast 
phrases a sufficient condition. All input parameters are available in s and at the same 
time, the restriction of each parameter is a subset of the restriction required by a for that 
parameter. To put it in other words, a process action a is applicable in a process state s, 
if it can be executed in at least one of the different states of the world represented by s, 
and it is strongly applicable if it can be executed in all states of the world represented by 
s. Within the planning algorithm, we are first solving the “relaxed planning problem” 
conveyed by definition 6, which results into an ASG. A detailed analysis of restrictions 
(implied by definition 7) is deferred to the third step, when process models are derived 
from the ASG. As we will see later on, this approach is advantageous as it avoids 
unnecessary branches during planning.  

After applying a process action a to a process state s, a new process state is determined 
with the state-transition function. Output parameters that already existed in s are 
“updated” considering the new restrictions and output parameters that did not exist 
before are added to the process state, which is conveyed by the following definition: 

Definition 8: The state-transition function is defined as: g(s,a):={p1, p2,…, po| 
pj œ Outa ¤ pj œ s} with j=1,…,o, meaning that pj is an output parameter of a or, if a does 
not have such an output parameter, then pj œ s. 

When a new process state is determined, it is evaluated whether it satisfies one of the 
specified goals. Again, we differentiate: 

Definition 9: A process state s satisfies Goalj if " g:=(lg, domg, rg) œ Goalj 
$ p:=(lp, domp, rp) œ s ⁄ lg  lp ⁄ domg = domp ⁄ rg ∩ rp ≠ ø.  

Definition 10: A process state s strongly satisfies Goalj if " g:=(lg, domg, rg) œ Goalj 
$ p:=(lp, domp, rp) œ s ⁄ lg  lp ⁄ domg = domp ⁄ rp Œ rg.  

Obviously, definition 9 again conveys a necessary but not sufficient condition as there 
may still be states of the world represented by process state s, that do not meet the goal. 
In this case s needs to be decomposed into the states of the world that do meet the goal 
and those that do not meet the goal. Planning then proceeds with the latter ones.  

On this basis we can now describe the planning algorithm. Planning is accomplished by 
a depth-first search. Figure 3 illustrates how the graph is iteratively built; the symbols 
marked dark grey denote the current planning state in each case. Process states are only 
described in the left graph. Parts of a process state that are marked in grey indicate 
changes in comparison to the previous process state. Because of the depth first search the 
first path is explored until a goal is reached (more precisely until a process state strongly 
satisfies a goal) or until a failure occurs (graph 3a). Then a backtracking takes place and 
the second path is explored (graph 3b) until we ultimately get a complete graph (3c).  
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Figure 3: Building the planning graph 

A specific characteristic of the algorithm is that it does not stop planning, if one of the 
given goals is reached. Instead a complete graph is build, comprising all possible paths 
from the initial state to the goals. This is necessary, as elaborated in the previous section. 
Nevertheless, the planning algorithm terminates. As we do not have conditional effects, 
a finite number of process actions can only produce a finite number of process states (see 
[He02]). As we moreover separate out infinite loops in the ASG (see below), it is 
guaranteed that the algorithm terminates. Additionally, an explosion of the graph is 
avoided. On the one hand the search space is already limited to the process actions in the 
ADG. On the other hand, we included measures in the algorithm that are suited to further 
reduce the search space. We will only describe the basic ideas:  

 Firstly, process states on the currently explored path are saved. Whenever a new 
process state is reached (in the same path), it is tested whether there is already an 
identical process state. This indicates a cycle and the algorithm initiates a 
backtracking (see [GNT04]). The graph b) in Figure 3 provides an example. In the 
process state t, the process action assess risk can be applied again which leads to an 
identical process state. This is recognized by the algorithm as a failure.  

 Secondly, process states satisfying a goal are saved. Whenever an identical process 
state is derived (in another path), then the algorithm does not need to explore this 
part of the search space again because the same state will always lead to the same 
sub-graph. Therefore a link is established to the already explored process state and 



again a backtracking is initiated. This is illustrated in graph c) in Figure 3, where the 
two paths in the middle lead to an identical process state (t). 

 Thirdly, if a failure occurs (e.g. a cycle is detected or no process actions are 
applicable), the process state is saved and a failure entry is stored in a failure log. 
For a new process state, it is tested, whether any of the failures in the failure log 
apply to this process state (cp. [BC+01] for a detailed description of this feature). In 
this case again a backtracking is initiated.  

3.4 Extracting the Process Models from the Plan 

Based on the ASG feasible process models are derived in the third step. Currently, we 
focus on UML activity diagrams. They provide a vivid and plain representation of 
processes and at the same time are based on a sufficiently technical definition (at least 
since version 2.0). The idea here is to identify control structures in the ASG that are 
essential elements of process models. So far we are able to consider the control 
structures sequence, parallel split, synchronization, exclusive choice and simple merge 
(compare [VT+03] for these and other control structures). 

In the ASG exclusive choices and parallel splits cannot be identified directly, because 
the semantic of the branches is still unclear. Consider Figure 3c: There are three process 
actions applicable in s: check competencies, check extended competencies, and assess 
risk. Some process actions can be executed in parallel (e.g. check extended competencies 
and assess risk), some are mutual exclusive (e.g. check competencies and assess risk). In 
order to solve this ambiguity, process states are iteratively decomposed, so that in the 
resulting process states each process action is either strongly applicable or not applicable 
at all. This is illustrated in Figure 4. The process state s is divided into mutual exclusive 
(regarding the restrictions) sets of parameters determining different process states. We 
used UML decision node symbols to indicate a decomposition step and again marked 
changing parts of a process state in grey. The first decision node separates cases where 
the order state is invalid (in this case no process action is strongly applicable) from cases 
where the order state is valid. The second decision node differs cases where the order 
amount is less than 5000 (check competencies is strongly applicable) from cases where 
the order amount is greater or equal 5000 (check extended competencies and assess risk 
are strongly applicable).  

The decomposition has similarities with the application of sensing actions in planning 
([BG00] and [WA+98]). Sensing actions in general are applied to further investigate the 
current state of the world. Yet, the problem setting in our case is different. Firstly, most 
AI planning approaches assume that sensing is accomplished only with regard to 
Boolean variables (e.g. using binary decision trees). Secondly, we already know the set 
of applicable process actions and thus can decompose goal-oriented with respect to these 
process actions. The latter one in fact is a major advantage of doing this analysis in a 
subsequent step and not in the course of planning. 



 

Figure 4: Decomposition of process states 

After decomposing process states in the ASG, UML activity diagrams can be derived. 
Due to lack of space, we can only give a rough idea of the following steps (cp. Figure 5): 
The already identified exclusive choices (and the corresponding UML decision nodes) 
are completed by extracting the conditions (the guards) from the succeeding process 
states. Parallel splits as well as simple merges and synchronization merges are identified 
and the corresponding UML symbols are added. The initial state is replaced with an 
initial node and each process state representing a goal is replaced by a final node. To 
avoid “loose ends” process states having no outgoing edge are directly connected to a 
final node (for instance process state s1). Finally, all remaining process states are deleted 
and previous process actions are directly connected to succeeding process actions. 

    

 Figure 5: Transformation to an UML activity diagram 

Figure 5 shows a resulting UML activity diagram on the right side. Obviously, not all 
paths of the ASG need to be transferred to the UML activity diagram. The choice of 
paths leads to different feasible process models. In the UML activity diagram in Figure 5 



for instance check extended competencies is applied before assess risk. Another feasible 
process model can be derived if the process actions are applied the other way around. 
Moreover also a parallelization of these process actions is possible, because they have no 
predecessor successor-relation. A critical point is that the number of feasible process 
models explodes quite quickly. Therefore in the current version only a limited number is 
presented to the user, although theoretically all feasible process models could be derived. 

4 Related Work 

We already elaborated that SBPM forms the foundation for the automatic planning of 
process models. The existing approaches in this area (e.g. [BE+06], [HD07]) however, 
do not provide a solution to the automatic planning problem. In this section we will 
therefore evaluate whether existing approaches in AI planning and web service 
composition are suited in this context. 

We characterized our problem as a planning problem in non-deterministic domains. 
Several approaches have been introduced to solve non-deterministic planning problems, 
e.g. [CRT98], [KBS97], and [Sc87]. In general they explicitly enumerate all states of the 
world that may occur after applying an action. This is not practicable in our case. 
Because of infinite and continuous data types (e.g. real number) it is not even possible. 
Therefore in our formalism, process states are defined as sets of feasible values of 
parameters and thus implicitly describe sets of conceivable states of the world. A similar 
problem occurs when planning under partial observability (also called planning with 
sensing) is applied. Planning approaches in this area are for instance [BC+01], [BG01], 
[WA+98]. They accomplish a search in the space of belief states, where a belief state 
encapsulates (explicitly) the set of states that are conceivable at a certain point in 
planning. These sets can become extremely large and therefore are as well impracticable 
in our context. The only exception to the best of our knowledge constitutes [PB02]. They 
introduce a knowledge based approach to planning. Similar to our approach, knowledge 
bases provide means to describe possible states of the world without enumerating them 
explicitly. Yet, there are other problems inhibiting the direct application of existing 
planning approaches for the planning of process models. In order to build practical 
process models, a planer must handle state variables with different data types. Especially 
numerical state variables are challenging in this context. In general numerical variables 
are considered as resources, e.g. [BG01, PB02], and thus different to the way we have to 
employ them. Moreover, planning for several (conflicting) goals is not considered so far. 

Some planning approaches have already been adapted for the composition of (semantic) 
web services (e.g. [SW+03], [LS05], [PT+05]). [BD+06] and [TB+06] try to categorize 
the nearly unmanageable amount of web service composition approaches. However, 
none of these approaches meets the requirements for process planning. Especially, non-
deterministic planning, the identification of control structures, the ability to handle 
composite input and output parameters and numerical data types seem to be most 
challenging. Yet, these issues are necessary for the planning of process models. 



5 Conclusion and Outlook 

In this paper, we introduced the semantic-based, automatic planning of process models 
as a new application for planning approaches and SBPM. We provided an intuitive (from 
a process modeling perspective) formalism for the planning problem. Based on existing 
work in AI planning, we moreover described an innovative planning algorithm. Specific 
contributions of the SEMPA planning algorithm in comparison to other planning 
approaches are the following: The algorithm is capable of handling parameters with 
numerical data types and can cope with different (conflicting) goals. Several measures 
enable an efficient search in the action-state space. For instance differentiating between 
applicable and strongly applicable actions exploits the specific structure of the planning 
problem. Moreover the search space is restricted. For instance already analyzed process 
states do not have to be explored again. Finally, the ASG (as a result of planning) forms 
a suitable basis to derive process models, as we demonstrated for the example of UML 
activity diagrams. 

The SEMPA algorithm has been prototypically implemented as a plug-in in the process 
modeling tool AgilPro. One critical point in the current implementation relates to 
resulting UML activity diagrams. The form of the diagrams depends e.g. on the order in 
which parameters are considered during the decomposition of process states (in the case 
study for instance we could first examine the order amount and then the order state). 
The resulting diagrams are in fact semantically equivalent but may differ in their 
comprehensibleness for a user. We are currently working on appropriate heuristics to 
address these issues. Additionally, future work is intended on the question how other 
advanced control structures like arbitrary cycles can be recognized during planning. 
Moreover, we want to enhance our algorithm to support also non-functional properties 
(like cost or time constraints) during the planning. 
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