
Semantic-Based Planning of Process Models

Matthias Henneberger, Bernd Heinrich

Florian Lautenbacher, Bernhard Bauer

Abstract: Process modelling has proved to be a powerful instrument to describe
and manage the increasingly complex processes within and across enterprises. Yet,
it requires a significant amount of manual work to create, adapt and maintain
process models. This workload could be reduced if the process models are
automatically generated and adapted. Semantic Business Process Management in
combination with planning approaches can contribute to the solution. In this paper
we describe that existing planning algorithms show drawbacks for this application
and therefore introduce an innovative algorithm that is suitable for the semantic-
based planning of process models.

1 Introduction

Process modeling has proved to be a powerful instrument to describe the increasingly
complex processes within and across enterprises in order to realize them by means of
application systems as well as for communication and training purposes. In the past
twenty years a number of process modeling approaches have been developed. For
instance processes can be described using Event-driven Process Chains (EPC) or UML
activity diagrams and can be stored in enterprise-wide process libraries. However,
process modeling and optimization approaches still have one major drawback. Setting up
process models is a time consuming job. Nevertheless, changing customer requirements,
new jurisdiction, etc. make it necessary to adapt and maintain business processes
frequently. A semantic annotation of process models as envisioned in the research area
Semantic Business Process Management in combination with existing planning
approaches can solve this drawback and enable a (semi-)automatic, semantic-based
planning of process models.

In this paper we introduce SEMPA, an approach including an algorithm suited for the
automatic planning of process models. We specifically address the question, how
established AI planning approaches can be used as a basis to develop an innovative
planner for the semantic-based planning of process models. To this end we will provide
a technical definition of the planning problem and we will describe how the specific
characteristics of the planning problem are considered within the SEMPA approach.

The rest of the paper is organized as follows: In section two we show how the planning
of process models can be related to Semantic Business Process Management and define
our prerequisites. In section three we introduce the SEMPA approach, before we go into
more details about the automatic planning of process models. Our approach consists of
three steps: we describe in further detail the actual planning part (second step) and its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11552183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

result as well as the extraction of process models from this result (third step). Section
four is dedicated to related work in AI and web service composition, before section five
concludes with our considerations and provides an outlook for future research.

2 Semantic Business Process Management and Basic Problem Setting

Recently, new research activities in the area of Semantic Business Process Management
(SBPM) based on the vision of [HL+05] have emerged (see e.g. [BK+06, BE+06,
HD07]). One major goal of SBPM is to reach a higher level of automation in the creation
and adaptation of process models and execution of processes by means of their semantic
annotation. This requires that terms used in the models are technically described with
concepts of an ontology (e.g. using OWL). As pointed out by [TF07], the semantics of
meta-model elements for process modeling and their relations are already defined by
well established approaches for process and enterprise modeling like ARIS. However,
the terms used to specify individual model elements (e.g. the name of a particular
function or an input parameter) and their semantics are still left to the modeler. Problems
in comprehension and ambiguities are the consequence of inconsistently used terms –
either the same term describes different elements of the problem context or different
terms point to the same elements of the problem context. Especially in practice this leads
to discussions or manual enhancement of the process models requiring a huge amount of
work. By means of ontologies, terms in process models are conceptualized and their
relations are technically defined. This allows for an advanced and automatic processing
of semantically annotated process models and their elements.

Most approaches in SBPM (compare [TF07]) concentrate on the annotation of process
models. In contrast we focus on the (semi-)automated planning of process models
enabled by the semantic annotation. Based on a given problem description feasible
process models should be automatically generated based on a set of semantically
annotated process actions (constituting one major element of process models) or sub-
processes. Thereby the (re-)design of processes through process models respectively
should be accelerated. This conforms to [WM+07] describing the lifecycle of a semantic
business process and pointing out that autocompletion of process models is an important
issue in SBPM. However, we do not only provide the user with possibilities for an
autocompletion of fragments of a process model (as in [BK+06]), but also with a
(semi-)automatic planning of process models which only requires human interaction
when the planned process models need to be evaluated by the modeler regarding
business aspects that have not been considered for planning (e.g. cost or resources).

Whereas some approaches in SBPM suggest a comprehensive conceptualization of all
model- and meta-model elements of a process model [TF07], we choose a less restrictive
approach for the annotation of process actions and sub-processes, which is similar to
semantic web service standards (e.g. SAWSDL). We assume that each process action is
described by a unique name, a set of input parameters it needs to be executed and a set of
output parameters it provides after execution. Input and output parameter names are
defined as classes in an ontology. Moreover, for each atomic input and output parameter
a domain is specified in the ontology, i.e. the set of feasible values the parameter can

adopt. The domain is either given by a primitive data type (e.g. Boolean or integer) or an
ontological class; or it is an enumeration of predefined instances. In reality, process
actions may require input parameters of a particular value or within a certain range.
Likewise a process action may generate an output parameter having a value that is
restricted to a certain range. Thus the specification of the input and output parameters of
a process action also comprises certain restrictions concerning their values.

In our prototypical application process actions and their input and output parameters are
directly described in a process modeling tool with regard to the ontology which is
implemented in OWL. We will not elaborate on implementation details in this paper (for
OWL we refer to [DG04]), but introduce a more abstract notation that is appropriate for
planning later on.

3 Automatic Planning of Process Models

In this section we firstly outline our approach at a whole, before we classify the planning
part into existing planning approaches and describe it in further detail.

3.1 The SEMPA-Approach

Within the project SEMPRO1 an approach called SEMPA (SEMantic-based Planning
Approach) has been developed that proceeds in three steps:

 In the first step, a semantic matching between input and output parameters of
process actions takes place by evaluating the semantic relations in the ontology2.
Besides the trivial case of an identity relation (e.g. an output parameter of one
process action can be used as an input parameter of another process action because
parameters are identical) also other relations are considered. For instance parameters
connected via a sub-class-of relation in the ontology may be as well compatible
under certain circumstances.3 The semantic information about input and output
parameters is stored in an action dependency graph (ADG) that is employed in the
following steps. This ADG only includes process actions that lead to one of several
given goals. Thus semantic reasoning is mainly done in the first step and redundant
and time-consuming analysis can be avoided.

 In the second step, planning is accomplished by a search in the action-state space to
achieve the given goals. The algorithm currently implements a forward-search
starting in the initial state. In the course of planning applicable process actions are

1 The SEMPRO project is supported by the German Research Foundation (DFG).
2 Here, we assume that there exists only one ontology. For several ontologies, ontology mapping techniques
(compare [KS03]) could be applied.
3 Consider the case that one process action requires an order as an input parameter and another process action
produces an output parameter stock order (stock order being a sub-class of order in the ontology), then both
parameters match.

derived from the ADG. We call the resulting plan an action state graph (ASG). It
forms a (language independent) basis for deriving process models in the next step.

 Finally, in the third step process models are derived from the ASG by identifying
control structures and considering the syntactical elements of a concrete process
modeling language. Thereby, different process modeling languages can be
supported at a time without adapting the fundamental search algorithm in the second
step. Currently, we are focusing on UML activity diagrams but the intention is to
extend the approach to other languages, e.g. Petri-Nets.

As the focus in this paper is on the connection of SBPM and planning, we will now
provide a technical definition of the planning problem that has to be solved in the second
step of the SEMPA approach.

3.2 Definition and Classification of the Planning Problem

As already mentioned, process actions are semantically described by specifying their
input and output parameters with respect to an ontology. We will use the term parameter
in the following to denote the state variables for our planning problem (for state-variable
representations of planning problems and differences in comparison to a STRIPS
language or derivatives see e.g. [BN93], [GNT04]). For the planning of process models
we abstract from an individual process execution and therefore the realizations of
parameter values (and thus the current state) are not determined at the moment of
planning. This conforms to non-deterministic planning problems [GNT04]. Likewise in
the initial state parameters are not fully determined either, which can be regarded as a
form of initial state uncertainty [BG01]. In order to account for non-determinism and
initial state uncertainty, parameters are not assigned individual values but so called
restrictions, i.e. sets of values that are currently conceivable for these parameters. This
leads us to the following definitions:

Definition 1: Let P be the set of all parameters. A parameter p œ P can be either an
atomic parameter or a composite parameter. An atomic parameter is defined as a tuple
p:=(lp, domp, rp), where lp is the parameter name, domp is the domain, i.e. the set of
feasible values according to the data type of the parameter, and rp Œ domp is the
restriction. A composite parameter is a tuple p:=(lp, {p1, p2, …, pm}), where
{p1, p2, …, pm} is a set of parameters (m>1).

Definition 2: A process action (or sub-process) a is defined as a:=(namea, Ina, Outa),
where namea is the name of the process action, Ina Œ P is a set of input parameters and
Outa Œ P is a set of output parameters.

We define that each process action is described by a unique name, a set of input
parameters it needs to be executed and a set of output parameters it provides after
execution. Restrictions thereby form a rather intuitive way (from a process modeling
perspective) to express certain preconditions and effects. This is different to semantic
web services where preconditions and effects are used instead of restrictions on inputs
and outputs. Note, however, that in contrast to preconditions and effects, restrictions are

always bound to single parameters. We can now specify the planning domain and the
planning problem:

Definition 3: The planning domain is defined as D=(P, S, libA, g), where P is the set of
parameters, S is a set of process states, libA is a set of available process actions or sub-
processes and g is a state-transition function. A process state s œ S is defined as a set of
parameters, i.e. s Œ P and S Œ 2P. The state transition function g : S x libA Ø S maps pairs
of process states and process actions into the set of process states.

It is important to mention that a process state is constituted by the restrictions that
currently hold for the parameters rather than by individual values of the parameters.
Similar to [PB02] a process state could thus be interpreted as a kind of knowledge base
capturing the knowledge about the currently available parameters. In this respect a
process state needs to be clearly distinguished from the state of the world that refers to
an individual situation at execution time. A process state describes different conceivable
states of the world. A process action deterministically maps one process state into
another process state.

Definition 4: The planning problem is defined as Prob=(D, Init, Goals), where
« ∫ Init œ S is the initial state and Goals={G1, G2, …, Gn} are representing the goals of
the planning problem. Each goal Gj (j=1, …, n) is again defined as a set of parameters,
i.e. Gj Œ P.

The intention of the second step within the SEMPA approach is to plan an action state
graph that is suited to derive different feasible process models (that can afterwards be
evaluated). In a feasible process model each goal should be reachable, i.e. it is possible
to specify several (conflicting) goals for one process model (which are then achieved in
different branches of the process model). Consequently, planning is accomplished until
all paths from the initial state to any of the specified goals are explored.

Case study: In the following we will illustrate our approach by a small case study of the
financial services industry. We consider a situation where a new process model for the
execution of orders (e.g. stock order) is needed. The overall process input is an order that
has been entered by the customer. The overall process output is again the order that has
to be executed now. Figure 1 depicts the corresponding initial state and the set of goals
in the notation introduced above (for the sake of simplicity, we only consider one goal,
thus there is only one element in the set of goals). The order is a composite parameter
having a positive order amount, an order type which is either buy order or sell order,
and an order state, which needs to be entered in the initial state and executed in the goal
(state thereby represents a set of conceivable order states that are not enumerated
explicitly here but nevertheless are defined in the ontology).

Figure 1: Initial state and Goals in the case study

Several (semantic annotated) process actions are available in a process library and can be
used for automatic planning. The specification of these process actions provides Figure
2.4 Input parameters have been marked in bold and are italicized; output parameters are
printed in grey. The process action validate order for instance has exactly one
(composite) input parameter order which is at the same time the only output parameter.
Input parameter restrictions demand an order state that is entered; the process action on
the other hand provides an order whose order state is restricted to valid or invalid.

Figure 2: Specification of process actions

3.3 The Planning Algorithm within the SEMPA Approach

The algorithm conducts a forward search in the space of process states. Beginning in the
initial state applicable process actions are identified. The ADG as result of the first step
is used to derive process actions that are applicable for a certain set of available
parameters in a process state (considering as well semantic relations). Thereby, we
differentiate between applicable and strongly applicable process actions5:

Definition 6: A process action a:=(namea, Ina, Outa) is applicable to a process state s if:
" (lin, domin, rin) œ Ina $ (lp, domp, rp) œ s ⁄ lin  lp ⁄ domin = domp ⁄ rp ∩ rin ≠ ø.

Definition 7: A process action a:=(namea, Ina, Outa) is strongly applicable to a process
state s if: " (lin, domin, rin) œ Ina $ (lp, domp, rp) œ s ⁄ lin  lp ⁄ domin = domp ⁄ rp Œ rin.

Definition 6 describes a necessary condition that needs to be met so that a process
action a can actually be executed in a process state s. All input parameters are available
in s and the restriction of each parameter (i.e. the set of possible values) does not
contradict the restriction required by a for that parameter. The parameters of the process
state s and the input parameters of a are semantically compared () whether they are

4 Figure 2 only contains the process actions relevant for the following text. Process actions that are separated
out in the first step and are therefore not part of the final solution are not depicted here.
5 These definitions (as well as the following ones) assume only atomic parameters in order to avoid writing
overhead. Obviously the definition can be easily adapted to composite parameters.

equivalent, sub-class-of or one part of the other. However, there may still be situations
where executing a is not possible (due to the restrictions). Definition 7 in contrast
phrases a sufficient condition. All input parameters are available in s and at the same
time, the restriction of each parameter is a subset of the restriction required by a for that
parameter. To put it in other words, a process action a is applicable in a process state s,
if it can be executed in at least one of the different states of the world represented by s,
and it is strongly applicable if it can be executed in all states of the world represented by
s. Within the planning algorithm, we are first solving the “relaxed planning problem”
conveyed by definition 6, which results into an ASG. A detailed analysis of restrictions
(implied by definition 7) is deferred to the third step, when process models are derived
from the ASG. As we will see later on, this approach is advantageous as it avoids
unnecessary branches during planning.

After applying a process action a to a process state s, a new process state is determined
with the state-transition function. Output parameters that already existed in s are
“updated” considering the new restrictions and output parameters that did not exist
before are added to the process state, which is conveyed by the following definition:

Definition 8: The state-transition function is defined as: g(s,a):={p1, p2,…, po|
pj œ Outa ¤ pj œ s} with j=1,…,o, meaning that pj is an output parameter of a or, if a does
not have such an output parameter, then pj œ s.

When a new process state is determined, it is evaluated whether it satisfies one of the
specified goals. Again, we differentiate:

Definition 9: A process state s satisfies Goalj if " g:=(lg, domg, rg) œ Goalj
$ p:=(lp, domp, rp) œ s ⁄ lg  lp ⁄ domg = domp ⁄ rg ∩ rp ≠ ø.

Definition 10: A process state s strongly satisfies Goalj if " g:=(lg, domg, rg) œ Goalj
$ p:=(lp, domp, rp) œ s ⁄ lg  lp ⁄ domg = domp ⁄ rp Œ rg.

Obviously, definition 9 again conveys a necessary but not sufficient condition as there
may still be states of the world represented by process state s, that do not meet the goal.
In this case s needs to be decomposed into the states of the world that do meet the goal
and those that do not meet the goal. Planning then proceeds with the latter ones.

On this basis we can now describe the planning algorithm. Planning is accomplished by
a depth-first search. Figure 3 illustrates how the graph is iteratively built; the symbols
marked dark grey denote the current planning state in each case. Process states are only
described in the left graph. Parts of a process state that are marked in grey indicate
changes in comparison to the previous process state. Because of the depth first search the
first path is explored until a goal is reached (more precisely until a process state strongly
satisfies a goal) or until a failure occurs (graph 3a). Then a backtracking takes place and
the second path is explored (graph 3b) until we ultimately get a complete graph (3c).

check
competencies

Initial state

execute
order

validate
order

check
competencies

Initial state

execute
order

check extended
competencies

assess
risk

execute
order

t

assess
risk

check extended
competencies

Goal Goal

Goal

validate
order

s

check
competencies

Initial state

execute
order

check extended
competencies

assess
risk

execute
order

t

assess
risk

Failure

Goal

Goal

(order, {(order state, state,
{entered}), (order amount, int+,
int+), (order type, {buy order,

sell order}, {buy order, sell
order})})

(order, {(order state, state,
{valid, invalid}), (order

amount, int+, int+), (order
type, {buy order, sell order},

{buy order, sell order})})

(order, {(order state, state, {valid}),
(order amount, int+, >5000), (order
type, {buy order, sell order}, {buy

order, sell order})}),
(Risk assessment, boolean, {true})

(order, {(order state, state,
{executed}), (order amount, int+,

>5000), (order type, {buy order, sell
order}, {buy order, sell order})}),

(risk assessment, boolean, {true})

s

validate
order

s

a) b) c)

Figure 3: Building the planning graph

A specific characteristic of the algorithm is that it does not stop planning, if one of the
given goals is reached. Instead a complete graph is build, comprising all possible paths
from the initial state to the goals. This is necessary, as elaborated in the previous section.
Nevertheless, the planning algorithm terminates. As we do not have conditional effects,
a finite number of process actions can only produce a finite number of process states (see
[He02]). As we moreover separate out infinite loops in the ASG (see below), it is
guaranteed that the algorithm terminates. Additionally, an explosion of the graph is
avoided. On the one hand the search space is already limited to the process actions in the
ADG. On the other hand, we included measures in the algorithm that are suited to further
reduce the search space. We will only describe the basic ideas:

 Firstly, process states on the currently explored path are saved. Whenever a new
process state is reached (in the same path), it is tested whether there is already an
identical process state. This indicates a cycle and the algorithm initiates a
backtracking (see [GNT04]). The graph b) in Figure 3 provides an example. In the
process state t, the process action assess risk can be applied again which leads to an
identical process state. This is recognized by the algorithm as a failure.

 Secondly, process states satisfying a goal are saved. Whenever an identical process
state is derived (in another path), then the algorithm does not need to explore this
part of the search space again because the same state will always lead to the same
sub-graph. Therefore a link is established to the already explored process state and

again a backtracking is initiated. This is illustrated in graph c) in Figure 3, where the
two paths in the middle lead to an identical process state (t).

 Thirdly, if a failure occurs (e.g. a cycle is detected or no process actions are
applicable), the process state is saved and a failure entry is stored in a failure log.
For a new process state, it is tested, whether any of the failures in the failure log
apply to this process state (cp. [BC+01] for a detailed description of this feature). In
this case again a backtracking is initiated.

3.4 Extracting the Process Models from the Plan

Based on the ASG feasible process models are derived in the third step. Currently, we
focus on UML activity diagrams. They provide a vivid and plain representation of
processes and at the same time are based on a sufficiently technical definition (at least
since version 2.0). The idea here is to identify control structures in the ASG that are
essential elements of process models. So far we are able to consider the control
structures sequence, parallel split, synchronization, exclusive choice and simple merge
(compare [VT+03] for these and other control structures).

In the ASG exclusive choices and parallel splits cannot be identified directly, because
the semantic of the branches is still unclear. Consider Figure 3c: There are three process
actions applicable in s: check competencies, check extended competencies, and assess
risk. Some process actions can be executed in parallel (e.g. check extended competencies
and assess risk), some are mutual exclusive (e.g. check competencies and assess risk). In
order to solve this ambiguity, process states are iteratively decomposed, so that in the
resulting process states each process action is either strongly applicable or not applicable
at all. This is illustrated in Figure 4. The process state s is divided into mutual exclusive
(regarding the restrictions) sets of parameters determining different process states. We
used UML decision node symbols to indicate a decomposition step and again marked
changing parts of a process state in grey. The first decision node separates cases where
the order state is invalid (in this case no process action is strongly applicable) from cases
where the order state is valid. The second decision node differs cases where the order
amount is less than 5000 (check competencies is strongly applicable) from cases where
the order amount is greater or equal 5000 (check extended competencies and assess risk
are strongly applicable).

The decomposition has similarities with the application of sensing actions in planning
([BG00] and [WA+98]). Sensing actions in general are applied to further investigate the
current state of the world. Yet, the problem setting in our case is different. Firstly, most
AI planning approaches assume that sensing is accomplished only with regard to
Boolean variables (e.g. using binary decision trees). Secondly, we already know the set
of applicable process actions and thus can decompose goal-oriented with respect to these
process actions. The latter one in fact is a major advantage of doing this analysis in a
subsequent step and not in the course of planning.

Figure 4: Decomposition of process states

After decomposing process states in the ASG, UML activity diagrams can be derived.
Due to lack of space, we can only give a rough idea of the following steps (cp. Figure 5):
The already identified exclusive choices (and the corresponding UML decision nodes)
are completed by extracting the conditions (the guards) from the succeeding process
states. Parallel splits as well as simple merges and synchronization merges are identified
and the corresponding UML symbols are added. The initial state is replaced with an
initial node and each process state representing a goal is replaced by a final node. To
avoid “loose ends” process states having no outgoing edge are directly connected to a
final node (for instance process state s1). Finally, all remaining process states are deleted
and previous process actions are directly connected to succeeding process actions.

 Figure 5: Transformation to an UML activity diagram

Figure 5 shows a resulting UML activity diagram on the right side. Obviously, not all
paths of the ASG need to be transferred to the UML activity diagram. The choice of
paths leads to different feasible process models. In the UML activity diagram in Figure 5

for instance check extended competencies is applied before assess risk. Another feasible
process model can be derived if the process actions are applied the other way around.
Moreover also a parallelization of these process actions is possible, because they have no
predecessor successor-relation. A critical point is that the number of feasible process
models explodes quite quickly. Therefore in the current version only a limited number is
presented to the user, although theoretically all feasible process models could be derived.

4 Related Work

We already elaborated that SBPM forms the foundation for the automatic planning of
process models. The existing approaches in this area (e.g. [BE+06], [HD07]) however,
do not provide a solution to the automatic planning problem. In this section we will
therefore evaluate whether existing approaches in AI planning and web service
composition are suited in this context.

We characterized our problem as a planning problem in non-deterministic domains.
Several approaches have been introduced to solve non-deterministic planning problems,
e.g. [CRT98], [KBS97], and [Sc87]. In general they explicitly enumerate all states of the
world that may occur after applying an action. This is not practicable in our case.
Because of infinite and continuous data types (e.g. real number) it is not even possible.
Therefore in our formalism, process states are defined as sets of feasible values of
parameters and thus implicitly describe sets of conceivable states of the world. A similar
problem occurs when planning under partial observability (also called planning with
sensing) is applied. Planning approaches in this area are for instance [BC+01], [BG01],
[WA+98]. They accomplish a search in the space of belief states, where a belief state
encapsulates (explicitly) the set of states that are conceivable at a certain point in
planning. These sets can become extremely large and therefore are as well impracticable
in our context. The only exception to the best of our knowledge constitutes [PB02]. They
introduce a knowledge based approach to planning. Similar to our approach, knowledge
bases provide means to describe possible states of the world without enumerating them
explicitly. Yet, there are other problems inhibiting the direct application of existing
planning approaches for the planning of process models. In order to build practical
process models, a planer must handle state variables with different data types. Especially
numerical state variables are challenging in this context. In general numerical variables
are considered as resources, e.g. [BG01, PB02], and thus different to the way we have to
employ them. Moreover, planning for several (conflicting) goals is not considered so far.

Some planning approaches have already been adapted for the composition of (semantic)
web services (e.g. [SW+03], [LS05], [PT+05]). [BD+06] and [TB+06] try to categorize
the nearly unmanageable amount of web service composition approaches. However,
none of these approaches meets the requirements for process planning. Especially, non-
deterministic planning, the identification of control structures, the ability to handle
composite input and output parameters and numerical data types seem to be most
challenging. Yet, these issues are necessary for the planning of process models.

5 Conclusion and Outlook

In this paper, we introduced the semantic-based, automatic planning of process models
as a new application for planning approaches and SBPM. We provided an intuitive (from
a process modeling perspective) formalism for the planning problem. Based on existing
work in AI planning, we moreover described an innovative planning algorithm. Specific
contributions of the SEMPA planning algorithm in comparison to other planning
approaches are the following: The algorithm is capable of handling parameters with
numerical data types and can cope with different (conflicting) goals. Several measures
enable an efficient search in the action-state space. For instance differentiating between
applicable and strongly applicable actions exploits the specific structure of the planning
problem. Moreover the search space is restricted. For instance already analyzed process
states do not have to be explored again. Finally, the ASG (as a result of planning) forms
a suitable basis to derive process models, as we demonstrated for the example of UML
activity diagrams.

The SEMPA algorithm has been prototypically implemented as a plug-in in the process
modeling tool AgilPro. One critical point in the current implementation relates to
resulting UML activity diagrams. The form of the diagrams depends e.g. on the order in
which parameters are considered during the decomposition of process states (in the case
study for instance we could first examine the order amount and then the order state).
The resulting diagrams are in fact semantically equivalent but may differ in their
comprehensibleness for a user. We are currently working on appropriate heuristics to
address these issues. Additionally, future work is intended on the question how other
advanced control structures like arbitrary cycles can be recognized during planning.
Moreover, we want to enhance our algorithm to support also non-functional properties
(like cost or time constraints) during the planning.

References

[BC+01] Bertoli, P.; Cimatti, A.; Roveri, M.; Traverso, P. (2001b): Planning in Nondeterministic
Domains under Partial Observability via Symbolic Model checking. In: IJCAI01. pp.
473-478.

[BD+06] Berardi, D.; De Giacomo, G.; Mecella, M.; Calvanese, D.(2006): Automatic Web
Service Composition: Service-Tailored vs. Client-Tailored Approaches. In: AISC2006.

[BE+06] Brockmans, S.; Ehrig, M.; Koschmider, A.; Oberweis, A.; Studer, R. (2006): Semantic
Alignment of Business Processes. In: ICEIS 2006. pp. 191-196.

[BG00] Bonet, B.; Geffner, H.(2000): Planning with Incomplete Information as Heuristic Search
in Belief Space. In: AIPS00. pp. 52-61.

[BG01] Bonet, B.; Geffner, H. (2001): GPT: A Tool for Planning with Uncertainty and Partial
Information. In: IJCAI01. pp. 82-87.

[BK+06] Betz, S.; Klink, S.; Koschmider, A.; Oberweis, A.(2006): Automatic User Support for
Business Process Modelling. In: Workshop on SBPM 2006. pp. 1-12.

[BN93] Bäckström, C.; Nebel, B. (1993): Complexity results for SAS+ planning. In: IJCAI-93.
pp. 1430-1435.

[CFB04] Constantinescu, I.; Faltings, B.; Binder, W.(2004): Large scale, type-compatible service
composition. In: ICWS04. pp. 506-513.

[CRT98] Cimatti, A.; Roveri, M.; Traverso, P. (1998): Automatic OBDD-based Generation of
Universal Plans in Non-Deterministic Domains. In: AAAI/IAAI. pp. 875-881.

[DG04] Dean, M.; Guus, S. (2004): OWL Web Ontology Language Reference.
[GNT04] Ghallab, M.; Nau, D.; Traverso, P. (2004): Automated Planning. Elsevier, San Francisco.
[HD07] Hepp, M.; Dumitri, R. (2007): An Ontology Framework for Semantic Business Process

Management. In: Wirtschaftsinformatik07. pp. 423-440.
[He02] Helmert, M. (2002): Decidability and Undecidability Results for Planning with

Numerical State Variables. In: AIPS02.
[HL+05] Hepp, M.; Leymann, F.; Domingue, J.; Wahler, A.; Fensel, D.(2005): Semantic Business

Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In: IEEE ICEBE 2005. pp. 535-540.

[KBS97] Kabanza, M.; Barbeau, M.; St-Denis, R. (1997): Planning Control Rules for Reactive
Agents. In: Artificial Intelligence 95 (2), pp. 409-438.

[KS03] Kalfoglou, Y.; Schorlemmer (2003): Ontology Mapping: The State of the Art. In:
Knowledge Engineering Review Journal 18 (1), pp. 1-31.

 [LS05] Lang, Q.; Su, S.. (2005): AND/OR Graph and Search Algorithm for Discovering
Composite Web Services. In: International Journal of Web Services Research 2 (4), pp.
46-64.

[Ma04] Martin, D.; et al. (2004): OWL-S: Semantic Markup for Web Services, W3C Member
Submission 22 November 2004. last called: 2007-04-16.

[PB02] Petrick, R..; Bacchus, F. (2002): A Knowledge-Based Approach to Planning with
Incomplete Information and Sensing. In: AIPS02. pp. 212-221.

[PT+05] Pistore, M.; Traverso, P.; Bertoli, P.; Marconi, A. (2005): Automated Synthesis of
Composite BPEL4WS Web Services. In: ICWS05. pp. 293–301.

[Sc87] Schoppers, M. J. (1987): Universal Plans for Reactive Robots in Unpredictable
Environments. In: IJCAI87. pp. 1039-1046.

[SW+03] Sirin, E.; Wu, D.; Hendler, J.; Nau, D.; Parsia, B. (2003): Automatic Web Services
Composition Using SHOP2. In: ICAPS03.

[TB+06] ter Beek, M.; Bucchiarone, A.; Gnesi, S. (2006): A Survey on Service Composition
Approaches: From Industrial Standards to Formal Methods. Technical report, 2006-15.
last called: 2007-01-16.

 [TF07] Thomas, O.; Fellmann, M. (2007): Semantic Business Process Management: Ontology-
based Process Modeling Using Event-Driven Process Chains. In: Journal IBIS, 2 (1),
2007

[VT+03] van der Aalst,W.; ter Hofstede, A.; Kiepuszewski, B.; Barros, A. (2003): Workflow
patterns. In: Distributed and Parallel Databases 14 (3), pp. 5-51.

[WA+98] Weld, D..; Anderson, C.; Smith, D. (1998): Extending graphplan to handle uncertainty
and sensing actions. In: AAAI98 and IAAI98. pp. 26-30.

[WM+07] Wetzstein, B.; Ma, Z.; Filipowska, A.; Kaczmarek, M.; Bhiri, S.; Losada, S.; Lopez-
Cobo, J.; Cicurel, L. (2007): Semantic Business Process Management: A Lifecycle
Based Requirements Analysis. In: SBPM07, Innsbruck, Austria, June 7, pp. 1-11.

