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Chapter 1

Introduction

In 1896 Wilhelm Ostwald described the process occurring in binary alloys, where a
originally homogeneous mixture forms areas with different phases, see [Ost97, Ost01].
This separation process can be split into three stages. The initially homogeneous
mixture develops areas consisting of pure materials and slim areas, called interfaces, in
between, where still a mixture of both is present. See Figure 1.1 for a pictorial example
of this stage.

(a) Initial mixture (t = 0). (b) Beginning of the separa-
tion process (t = 5 · 10−6).

(c) End of the first stage
with fully developed phases
(t = 8 · 10−6).

Figure 1.1: Numerical simulation of the first stage of the phase separation process.
Blue is phase A and red phase B, colors in between describe mixtures.

During the next evolutionary phase the regions consisting of the pure phases start to
conglomerate, compare Figure 1.2. This happens in such a way that the regions with
larger volume are growing at the expense of the smaller ones. These smaller regions
eventually disappear. Such a process is termed Ostwald ripening or coarsening. This
process continues in the manner of survival of the fattest until only two areas remain
with a slim interface layer in between. Finally in the last stage this remaining interfacial
layer moves until it reaches a steady state, forming for example a perfect circle, or a
quarter-circle in a corner of the surrounding container. This whole phenomenon has
been studied by many scientists. Some of the most prominent publications on this topic
are the works of Lifshitz and Slyozov [LS61], Wagner [Wag61] and Voorhees [Voo85].
Note that the three stages exhibit different time scales. The first stage is very quick,
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the second is already quite slow and the evolution in the last stage takes a very long
time.

(a) Survival of the fattest
stage (t = 4 · 10−5).

(b) Survival of the fattest
stage (t = 0.01).

(c) Only one area of each
phase remains (t = 1.0).

(d) Numerical steady state
(t = 500).

Figure 1.2: Numerical simulation of the second and third stage of the phase separation
process. Blue is phase A and red phase B, colors in between describe mixtures.

This study of phase separation in binary alloys and hence of interfacial energies lead
up to the works of Cahn and Hilliard, who introduced a Ginzburg-Landau model in
[CH58]. For this purpose the two phases present are given in terms of concentrations.
Since we require a total concentration of one hundred percent at any spatial point, a
single variable, denoted by u, is sufficient. A value of 1 at any spatial point x stands
for the one phase, a value of −1 for the other, values in between describe mixtures.
The Ginzbug-Landau model now uses this quantity to calculate the intrinsic energy of
a given state. One part of this energy is given by the free energy. In thermodynamics
this quantity describes the amount of work a current configuration can perform, e.g.
due to the energy released during demixing of the molecules, and is as such possibly
depending on the temperature.
In a similar way to van der Waals [VdW79] the surface energy, i.e. the energy used
for the formation of the interfaces separating the two phases or materials, is modeled
by adding a gradient term to the free energy. An equilibrium state is hence given
by the consideration of a stationary state of the Ginzburg–Landau energy functional
E : H1(Ω) → R given by

E(u) =

∫

Ω

εγ

2
|∇u|2 + γ

ε
ψ(u) dx, (1.1)

where the free energy is denoted by ψ. The problem we are concerned with starts
with a given initial mixture with a given mean composition denoted by um ∈ (−1, 1),
i.e.

∫

Ω
u = um|Ω|. The time evolution should then lead to steady states as large time

limits, where any steady state is a minimizer of the above energy functional with the
constraint on the mass.
The Cahn–Hilliard equation has found many other applications ranging from the classi-
cal aspects in materials science [Gar05] over image processing [DVM02], fluid dynamics
[LT98], topology optimization [ZW07], biology [KS08] up to the modeling of mineral
growth [KS07] and galaxy structure formation [Tre03]. A general overview on the topic
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of the Cahn–Hilliard equation and its applications is given by Novick-Cohen in [NC98]
as well as in her upcoming book [NCon].
The free energy for temperatures above a critical point can be modeled as a combination
of logarithmic terms as discussed in [CH58], resulting in

ψlog(u) :=
Θ

2

(

(1 + u) ln

(
1 + u

2

)

+ (1− u) ln

(
1− u

2

))

,

where Θ is the absolute temperature. The thermodynamical justification of the model
was derived by Cahn [Cah59], where the equivalence to the self-consistent thermo-
dynamic formalism of Hart [Har59] was shown. A further discussion on the physical
background can be found in the article of Gunton and Droz [GD83] and the refer-
ences therein as well as in Blowey and Elliott [BE91], where a specific derivation of the
Cahn-Hilliard model is given. We would also like to point out the book of Ratke and
Voorhees [RV01] on growth and coarsening. Quite often, the logarithmic formulation
is replaced by a differentiable double well function like, e.g. ψ(u) := c(1− u2)2, where
c > 0 is a constant. The interfacial profile of such a free energy, i.e. a cut through the
area where u changes from the value 1 to −1, can then be described by means of a
tanh term with a ε and γ dependent scaling, see, e.g. Section 7.9 of Eck, Garcke and
Knabner [EGK08] for a derivation. In Figure 1.3 we show those profiles for different
values of ε, where γ = 1.
The consideration of the so called deep quench limit, i.e. a very rapid cooling of the
mixture resulting in temperatures which are very low in comparison to the critical
temperature, leads to a non-smooth potential. In this situation the use of an obstacle
potential instead of the logarithmic free energy term was introduced by Oono and Puri
[OP88]. The mathematical background for this setting is discussed, e.g. by Blowey
and Elliott [BE91]. A regularly used choice for the double obstacle potential is given
by setting

ψ(u) :=

{
1
2
(1− u2) if |u| ≤ 1,

+∞ elsewhere.

Those two variants (with or without differentiability of the free energy) exhibit some
distinctive features. The differentiable free energy leads to a system of parabolic partial
differential equations, where the interfacial region is diffuse and not bounded to a small
area of order ε around the zero level set of u, compare Figure 1.3. The usage of the
obstacle potential omits such a feature, since the cosine type profile quickly takes on
the values ±1 without the asymptotic behavior of the tanh. This feature is also called
sharp diffuse interface. The downside of this approach lies in the resulting system of
parabolic partial differential inequalities.
The vast interest in the simulation of problems of this type pushed the development
of efficient numerical methods on. There are a large variety of different methods.
Here we would like to point out the early development of methods based on a finite
element scheme by Blowey and Elliott [BE92], as well as error estimates for linear
finite elements, formulated in the multi-component setting by Barrett and Blowey, see
[BB97]. Barrett, Nürnberg and Styles discussed in [BNS04] a Gauss-Seidel type method
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(a) Logarithmic double well potential ψlog.
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(b) Double obstacle potential ψ.

Figure 1.3: Interface profiles for different ε for two choices of ψ.

for a similar problem in the context of void electromigration. Some multigrid methods
have also been developed by Kornhuber and Gräser [Kor96, Kor94, GK07, GK09] as
well as Kay and Welford [KW06] and Banas and Nürnberg [BN09]. Finally we would
like to add the publications by Hintermüller and co-workers [HHT10] and references
therein to this list. There the authors use regularization techniques to derive optimality
conditions in function space before discretizing the problem. Finally we want to stress
that this enumeration of publications is just a small selection.

In the next chapter we present two analytical possibilities to derive the Cahn-Hilliard
problem with obstacle potential. Similar to very basic methods, a necessary condition
for the minimizers of an energy can be described with the help of the first variation.
This method results in a variational inequality due to the constraints imposed on the
concentration u. To locate a minimizer this formulation utilizes a mass flux driven
by the gradient of the first variation of the energy. Another possibility is the use of
a gradient flow structure. Starting out from any initial configuration the evolution
always decreases the inherent energy, if possible. This decrease is most profound in
direction of the negative gradient of the energy. Since the gradient depends on the used
scalar product, the resulting problem also depends on that choice. For the derivation
of the Cahn-Hilliard problem the H−1 inner product is used.

Both formulations are dependent on another influencing factor, namely the diffusional
mobility. Depending on the choice made here different evolution processes are consid-
ered. There are corresponding geometric flows, which are also called sharp interface
models, to the phase field models. They can be derived by considering the limit ε → 0
in a certain sense.

The simplest possibility is the usage of a constant mobility. The associated sharp in-
terface problem is the Mullins-Sekerka model, compare Section 2.4. We present both
methods for the derivation of the model with constant mobility in Section 2.1 and 2.3.
Subsequently we present the problems with non-constant mobility, i.e. the mobility
may depend on the concentration u, compare Section 2.5. We discern two separate
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cases. For one we consider the case of degenerate mobility. The gradient flow formula-
tion requires that the dependency of the mobility on the concentration u is discretized
explicitly in time for a well-posed problem. The corresponding sharp interface model
is the surface diffusion flow, which we will state briefly in Section 2.6. If we assume the
mobility to be non-degenerate, we can formally formulate the Lagrange formulation
and state a Lagrange-Newton method for the determination of minimizers.

Finally we give results on the existence and uniqueness of minimizers of the gradient
flow formulation with non-constant explicitly discretized mobility in Section 2.7. Those
results are applicable to the constant mobility case as well.

In Chapter 3 fully discrete versions of the above methods are derived. We present four
different algorithms. In case of constant diffusional mobility we present a projection
block sor method (pBSOR), see Algorithm 3.2, as well as the primal-dual active set
method (PDAS-II), see Algorithm 3.3. As already described above the non-constant
mobility is divided into two separate cases. First the explicit discretization, where we
can again formulate a primal-dual active set method (mPDAS-II), see Algorithm 3.5.
Then we also discretize the Lagrange-Newton method (LNM) used for the solution of
the implicitly discretized mobility, see Algorithm 3.6. Before we close the chapter with
existence and uniqueness results for the primal-dual active set algorithms, we address
various smaller problems like for example the generation of the meshes, the assembly
of the finite element matrices, the selection of the parameter for the primal-dual active
set method and the bound on the time step size in the implicitly discretized method.

The only remaining problem is the efficient solution of the arising saddle point problem
in all methods. We address this in Chapter 4. First we adapt the Gauss-Seidel type
method used for the solution of the variational inequality to derive an iterative method
for the solution of the system of equations. Subsequently we give a short introduction
on UMFPack, a state of the art direct method, which generates a LU-decomposition
of a square system.

Traditionally iterative solvers were superior to the direct methods, which are based on
the Gaussian elimination method. Modern methods are able to exploit the sparsity
pattern of the system to generate the decomposition very efficiently. In up to two spa-
cial dimensions the matrices are very sparse, due to the usage of linear finite elements
and as a result the direct solver is superior to iterative methods.

Only for simulations in three dimensions the advantage begins to shift towards the
iterative methods. On the one hand the direct solver requires a growing amount of
memory. This is caused by the fact that there are more entries per row in the 3D
systems, resulting in an increasing amount of entries generated by so called fill-in.
Furthermore, this also results in a quickly increasing computational effort, since more
entries have to be calculated. This is where the iterative methods start to catch up.
Iterative methods exploit the sparsity too, but are independent of the sparsity pattern,
resulting in a slower gain of the computational effort.

Thus we use a Schur complement formulation of the saddle point system to reduce the
problem size further and obtain a system we subsequently apply a conjugate gradient
method to, compare Chapter 5. It is well known, that those depend heavily on an
adequate preconditioning. To this end we adapt a method by Bänsch, Morin and



888

Nochetto, see [BMN10]. The analysis carried out there is not applicable here, since the
used coefficient functions degenerate in our case. However, the basic idea is transferable
to formulate a very efficient preconditioning matrix. Due to the missing general results
we discuss the necessary spectral conditions on the Schur complement system in one
spacial dimension, see Section 5.4.
Finally we show numerical results in Chapter 6. We compare the results obtained by
the phase field model to the ones given by the sharp interface models by means of
a radially symmetric setting for the Mullins–Sekerka model, see Section 6.1. Starting
out with a cylinder in three spacial dimensions, we present simulations with degenerate
mobility, related to surface diffusion in Section 6.4.
Next we present results on the efficiency of the presented primal-dual active set methods
in two and three spacial dimensions in Section 6.2. In all of these simulations the
maximum number of primal-dual active set iterations needed, stays below 10 and thus
supports the conjecture that the method is mesh independent.



Chapter 2

The Cahn–Hilliard model

2.1 Variational inequality formulation

This section contains the classical derivation of the Cahn–Hilliard model. We first
derive the Cahn–Hilliard equation with a differentiable free energy. Then we will use
similar steps for a non-smooth free energy, i.e. the obstacle potential, and obtain the
variational inequality formulation.
We consider the above Ginzburg–Landau energy given in (1.1) as a functional onH1(Ω),
where Ω ⊂ Rd is a bounded domain with Lipschitz boundary, γ > 0 a parameter related
to the interfacial energy density and ε > 0 the parameter controlling the width of the
interface. The different approaches are given via the selection of the free energy. As
we discussed earlier this results in different interfacial profiles, see Figure 1.3. Those
profiles can be derived by means of asymptotic analysis, see e.g. Eck, Garcke and
Knabner [EGK08].
The first case we derive will use the differentiable double well potential ψ(u) = (1−u2)2.
We define the first variation of E at a point u in a direction v by

δE

δu
(u)(v) := lim

δ→0

E(u+ δv)−E(u)

δ
.

For the smooth ψ the first variation of E can easily be calculated and is given by

δE

δu
(u)(v) :=

∫

Ω

εγ∇u · ∇v + γ

ε
ψ′(u)v dx.

This defines a quantity w, which is called the chemical potential in the context of phase
separation, via ∫

Ω

wv dx :=
δE

δu
(u)(v) ∀v. (2.1)

Starting out from the mass balance law the Cahn–Hilliard equation can now be stated.
Therefore we use the mass flux J := −B∇w, where B is the mobility, and obtain as
Cahn, in [Cah61], the evolution equation

∂tu = −∇ · J.

9
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Since in a closed system there is no mass flux across the boundary the following con-
dition B∂nw = 0 holds on ∂Ω, where ∂n denotes the derivative in normal direction on
the boundary. The second boundary condition needed for the resulting fourth order
problem is given by the natural boundary condition ∂nu = 0. Now taking the mobility
to be one and using (2.1) we obtain the Cahn–Hilliard equation as Elliott [Ell89] or
Novick-Cohen [NC98]:

∂tu =∆w, (2.2)

w =− εγ∆u+
γ

ε
ψ′(u) (2.3)

together with the boundary conditions ∂nu = ∂nw = 0 on ∂Ω.
This approach is valid for smooth free energies ψ. If ψ is not differentiable, as is the
case for the double obstacle potential, we introduce the scalar valued indicator function

ι[−1,1](u) :=

{

0 if u ∈ [−1, 1]

+∞ otherwise.
(2.4)

Together with the smooth function ψ0(u) :=
1
2
(1− u2) we define the free energy

ψ(u) := ψ0(u) + ι[−1,1](u) =

{
1
2
(1− u2) if |u| ≤ 1,

+∞ elsewhere
(2.5)

introduced by Blowey and Elliott [BE91], where the above approach has to be slightly
modified. The energy (1.1) is now given by

E(u) =

∫

Ω

εγ

2
|∇u|2 + γ

ε
ψ0(u) + ι[−1,1](u) dx.

The calculation of the first variation cannot be done straight forward. Note that the
indicator function can only be differentiated in the sense of subdifferentials, see e.g.
Evans [Eva10] or Zeidler [Zei85].

Definition 2.1. Let H be a Hilbert space with inner product (·, ·)H and f : H →
(−∞,+∞] be convex and proper. The subdifferential of f at a point u ∈ H is then
given by

∂f(u) = {p ∈ H | f(u)− f(z) ≥ (p, u− z)H for all z ∈ H} .
When we consider ι[−1,1] : R → R as in (2.4), the subdifferential at a point u ∈ R is
given by

∂ι[−1,1](u) =
{
p ∈ R | ι[−1,1](u)− ι[−1,1](z) ≥ p(u− z) for all z ∈ R

}
.

When calculating the first variation of the energy, the first two terms of the energy
can be handled as before. To consider the third term, we define the functional I[−1,1] :
L2(Ω) → R by

I[−1,1](u) :=

∫

Ω

ι[−1,1](u(x)) dx.
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We denote the inner product on L2(Ω) with (·, ·). Differentiating I[−1,1] : L
2(Ω) → R

in the sense of subdifferentials, we get

∂I(u) =






φ ∈ L2(Ω) |

∫

Ω

ι[−1,1](u)− ι[−1,1](z) dx ≥ (φ, u− z) for all z ∈ L2(Ω)







={φ ∈ L2(Ω) | ι[−1,1](u(x))− ι[−1,1](z(x)) ≥ φ(x)(u(x)− z(x))

almost everywhere, for all z ∈ L2(Ω)}
=
{
φ ∈ L2(Ω) | φ(x) ∈ ∂ι[−1,1](u(x)) almost everywhere

}
.

When we split the condition in cases depending on u, we obtain that µ ∈ L2(Ω) is in the
subdifferential of I at a point u ∈ L2(Ω) with |u| ≤ 1 if and only if µ(x) ∈ ∂ι[−1,1](u(x)),
i.e.

µ(x) ∈







(−∞, 0] if u(x) = −1 ,

{0} for u(x) ∈ (−1, 1) ,

[0,∞) if u(x) = 1 ,

(2.6)

is fulfilled almost everywhere. This can be rewritten in the following complementarity
form

µ = µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, µ+(u− 1) = 0, µ−(u+ 1) = 0, (2.7)

which also has to hold almost everywhere and we obtain analogously to (2.2)-(2.3) the
equations

∂tu = ∆w , (2.8)

w = −εγ∆u+ γ

ε
(ψ′

0(u) + µ) (2.9)

with µ ∈ ∂I[−1,1](u), |u| ≤ 1 and zero Neumann boundary conditions for u and w. This
formulation can be restated equivalently in a variational inequality formulation, see
e.g. Blowey and Elliott [BE91] or Kinderlehrer and Stampacchia [KS80] and Friedman
[Fri82] for other obstacle problems, as follows:

∂tu = ∆w , (2.10)

(w, ξ − u) ≤ εγ(∇u,∇(ξ − u)) +
γ

ε
(ψ′

0(u), ξ − u) ∀ ξ ∈ H1(Ω), |ξ| ≤ 1 , (2.11)

together with |u| ≤ 1 almost everywhere. This system is the variational inequality
formulation of the Cahn-Hilliard model with a Blowey-Elliott potential. It can be
shown that a unique solution (u, w) exists to (2.10), (2.11). More precisely the following
theorem, see [BE91], is true.

Theorem 2.2. Assume Ω is convex or ∂Ω ∈ C1,1, u0 ∈ H1(Ω) with |u0| ≤ 1 and
∫

Ω
− u0 = m ∈ (−1, 1). Then there exists a unique pair (u, w) such that

u ∈ H1(0, T ; (H1(Ω))′) ∩ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ,
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|u| ≤ 1 a.e. and w ∈ L2(0, T ;H1(Ω)) which solves (using the duality pairing 〈., .〉
between H−1(Ω) and H1(Ω))

〈∂tu, η〉+ (∇w,∇η) = 0 for all η ∈ H1(Ω) and t ∈ (0, T ) a.e.

together with the variational inequality (2.11) and u(0, ·) = u0.
In particular µ = ε

γ
w + ε2∆u− ψ′

0(u) ∈ L2(ΩT ).

2.2 Introduction of the Cahn–Hilliard problem as

gradient flow

We first introduce a general gradient flow setting as well as the H−1-space and scalar
product that we need. We use an Euler time step scheme for the discretization of the
time derivative, where for most terms an implicit approximation will be used. The
concave free energy term ψ′

0 poses some additional restrictions analytically if taken im-
plicitly. Hence we discuss an explicit variant here as well as an implicit discretization.
The time discrete problem features a natural variational structure and is tied to a min-
imization problem, which penalizes deviations from un−1. The gradient flow structure
enables us then to derive the primal-dual active set method after a time discretization.
Consider a vector space Z and an affine subspace U ⊂ Z, i.e. there exists a u ∈ Z and
a linear space Y ⊂ Z such that U = u+Y. We additionally choose an inner product
(·, ·)Z on Z, which induces the associated norm ‖ · ‖Z. The gradient of a sufficiently
smooth function E : U → R depends on the inner product chosen for Z. As before we
define the first variation of E at a point u ∈ U in a direction v ∈ Y by

δE

δu
(u)(v) := lim

δ→0

E(u+ δv)− E(u)

δ
.

We say that there exists a gradient of E with respect to the inner product (., .)Z on Z,
which we denote by grad

Z
E(u), if

(grad
Z
E(u), v)Z =

δE

δu
(u)(v) holds for all v ∈ Y . (2.12)

Now the gradient flow of E with respect to the inner product (., .)Z is given as

∂tu(t) = −gradZE(u(t)) . (2.13)

The energy decreases in time due to the inequality

d

dt
E(u(t)) = (grad

Z
E(u(t)), ∂tu(t))Z = −‖∂tu‖2Z ≤ 0.

Remark 2.3. The gradient flow associated to the L2 scalar product results in the so
called Allen–Cahn equation. In the above notation we set Z = L2(Ω), U = Y = H1(Ω)
and u = 0 and obtain for the energy E given in (1.1) as Blank, Garcke, Sarbu and
Styles in [BGSS09]

gradL2E(u) = −εγ∆u+ γ

ε
ψ′(u). (2.14)
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As mentioned above in the Cahn–Hilliard model the total concentration, i.e.
∫

Ω
u(x) dx

is assumed to be conserved. Denoting by
∫

Ω
− u the mean value of a function u, we now

define for a given m ∈ (−1, 1) the sets

U :=






u ∈ H1(Ω) |

∫

Ω

−u = m






, Y :=






u ∈ H1(Ω) |

∫

Ω

−u = 0






. (2.15)

In addition we introduce Z = H−1(Ω) = {u′ ∈ (H1(Ω))′ | 〈u′, 1〉 = 0}, i.e. all bounded
linear functionals onH1(Ω) that vanish on constant functions. Here and in what follows
〈., .〉 denotes the dual pairing. On Z = H−1(Ω) we define the H−1-inner product for
v1, v2 ∈ Z as

(v1, v2)H−1 :=

∫

Ω

∇(−∆)−1v1 · ∇(−∆)−1v2 (2.16)

where y = (−∆)−1v is the weak solution of −∆y = v in Ω and ∂ny = 0 on ∂Ω, i.e.
∫

Ω
∇y · ∇η = v(η) for all η ∈ H1(Ω). We remark that the solution to this elliptic

problem is only defined up to a constant and we always choose y such that
∫

Ω
− y = 0.

The function space Y is canonically embedded into Z since u ∈ Y can be related to
the linear functional y 7→

∫

Ω
uy. For v1, v2 ∈ Y we obtain using the L2–inner product,

which we denote by (., .),

(v1, v2)H−1 = (v1, (−∆)−1v2) = ((−∆)−1v1, v2) .

These identities also hold for functions v1, v2 ∈ L2(Ω) with mean value zero. To
compute the H−1-gradient of E we now need to find gradH−1E(u) ∈ Z such that

(v, gradH−1E(u))H−1 =
δE

δu
(u)(v) holds for all v ∈ Y.

From the above we obtain (v, (−∆)−1gradH−1E(u)) = (v, gradL2E(u)) and hence

gradH−1E(u) = (−∆)gradL2E(u) . (2.17)

Then, the Cahn-Hilliard equation is given as the H−1-gradient flow of the Ginzburg–
Landau energy E. If ψ is smooth we obtain the fourth order parabolic equation

∂tu = −gradH−1E(u) = ∆
(

−εγ∆u+ γ

ε
ψ′(u)

)

(2.18)

or equivalently using the chemical potential w the equation can be rewritten as a system
as follows

∂tu = ∆w , (2.19)

w = −εγ∆u+ γ

ε
ψ′(u). (2.20)

In addition the boundary conditions ∂nu = ∂nw = 0 on ∂Ω have to hold. Let us
remark, that in this formulation we do not necessarily have

∫

Ω
− w = 0, i.e. in general
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w 6= −(−∆)−1∂tu due to the definition of the inverse Laplacian, but both functions
only differ by an additive constant.
The gradient flow structure, we used for the modeling of the evolution process, has
a natural variational structure for a backward Euler time discretization scheme. Let
τ > 0 be the time step width and tn := nτ for n ∈ N0 the discrete times. We denote
un(x) := u(tn, x). The solution un of the time discretized gradient flow given by

1

τ

(
un − un−1

)
= −grad

Z
E(un) (2.21)

can also be computed as the solution of the minimization problem

min
u∈U

{

E(u) +
1

2τ

∥
∥u− un−1

∥
∥
2

Z

}

, (2.22)

i.e. the energy is minimized with an additional term penalizing the deviation of un−1

in the Z–norm. This can easily be seen by calculating the first variation in direction
v ∈ Y of the energy in (2.22) using the definition (2.12) of gradZ we get

0 =
d

ds

(

E(u+ sv) +
1

2τ

∥
∥u+ sv − un−1

∥
∥
2

Z

) ∣
∣
∣
∣
s=0

=
δE

δu
(u)(v) +

1

τ
(u− un−1, v)Z.

=(grad
Z
E(u), v)Z +

1

τ
(u− un−1, v)Z.

The Cahn–Hilliard problem considered here uses Z = H−1(Ω). The spaces U and Y
are given as in (2.15). The calculation of the H−1–norm requires the solution of a
Poisson problem with Neumann boundary conditions and a no-mass condition. We
use v ∈ Y as an auxiliary variable for the calculation of this norm. Let E be the
Ginzburg–Landau energy as in (1.1) and ψ the obstacle potential from (2.5).
The minimization problem (2.22) then reads as follows:

min
u∈U







εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ0(u) +
τ

2

∫

Ω

|∇v|2





(2.23)

such that

τ∆v = u− un−1, ∂nv = 0 on ∂Ω, (2.24)
∫

Ω

− v = 0, (2.25)

∫

Ω

−u = m, (2.26)

|u| ≤ 1. (2.27)
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Note that v now is used for the solution of the Poisson problem hidden in the H−1-
norm. The conditions (2.25) and (2.26) are the restrictions resulting from our choice
for the spaces U and Y given in (2.15). The last restriction (2.27) is due to the usage
of the obstacle potential, which would lead to infinite energy for any other u. The
above minimization problem has the form of an optimal control problem with control
u and state v. We introduce the corresponding Lagrangian

L(v, κ, u, w, µ+, µ−) :=
εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ0(u) +
τ

2

∫

Ω

|∇v|2 −
∫

Ω

τ∇w · ∇v

−
∫

Ω

(u− un−1)w − κ

∫

Ω

v − γ

ε

∫

Ω

µ+(1− u)− γ

ε

∫

Ω

µ−(1 + u) ,

where w ∈ H1(Ω) is the Lagrange multiplier for the weak formulation of (2.24) and
κ ∈ R for (2.25). The inequality constraints are incorporated with scaled multipliers
µ±. The scaling with γ

ε
will become important, when we discuss the choice of the

parameter c > 0 used for the primal-dual active sets, see Section 3.6.3. For more details
on the topic of the Lagrangian formulation of constrained minimization problems, see
e.g. Nocedal and Wright [NW06] or Geiger and Kanzow [GK02]. Now all constraints
are incorporated and can be regained as the first variation of L with respect to the
multipliers, see e.g. Tröltzsch [Trö10] for an introduction to optimal control theory.
Note that the variation of w by a constant implies

∫

Ω
− u = m :=

∫

Ω
− un−1. Hence w is

also the Lagrange multiplier for the equality constraint (2.26).
The next step is the derivation of the first order optimality conditions, which leads to
the following KKT-system, where (2.28), (2.30) and (2.31) have to be understood in
their weak forms:

τ∆(w − v) = κ in Ω, ∂nw = ∂nv on ∂Ω , (2.28)
∫

Ω

− v = 0 , (2.29)

1

τ
(u− un−1) = ∆v in Ω, ∂nv = 0 on ∂Ω , (2.30)

w + εγ∆u− γ

ε
ψ′
0(u)−

γ

ε
µ = 0 in Ω, ∂nu = 0 on ∂Ω , (2.31)

µ := µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, a.e. in Ω , (2.32)

µ+(u− 1) = 0, µ−(u+ 1) = 0, a.e. in Ω , (2.33)

and |u| ≤ 1 a.e. in Ω . (2.34)

Additionally varying v by a constant only, we get

κ = 0. (2.35)

Thus given (2.28)-(2.29) and (2.35) we obtain w−
∫

Ω
− w = v, i.e. v and w only differ by

a constant. We can replace v by w in (2.30) and we hence obtain in particular a time
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discretization of (2.8), (2.9) using the complementary formulation (2.7). The Lagrange
multiplier w coincides with the chemical potential, and the scaled Lagrange multiplier
µ lies in the subdifferential of I[−1,1]. Since the equations (2.28), (2.29) and (2.35) are
not needed we omit them in the following.

2.3 Primal–dual active set formulation

Starting from the above KKT-system (2.28)-(2.35), we obtain a reduced first order
optimality system due to the simplifications discussed previously. Thus we formulate
a primal-dual active set algorithm in a formal way for the following problem.
Find u, w, µ such that

1
τ
(u− un−1) = ∆w in Ω , ∂nw = 0 on ∂Ω (2.36)

holds together with (2.31)-(2.34).
We now introduce for a c > 0 the active sets

A+ =
{

x ∈ Ω | u(x) + µ(x)
c
> 1

}

,

A− =
{

x ∈ Ω | u(x) + µ(x)
c
< −1

}

and the inactive set I := Ω \ (A+ ∪A−). The conditions (2.32)-(2.34) can be reformu-
lated as

u(x) = ±1 if x ∈ A± and

µ(x) = 0 if x ∈ I .

Formally this leads to the following primal-dual active set strategy employing the
primal variable u and the dual variable µ.

Algorithm 2.1 Formal primal-dual active set algorithm (PDAS-I)

1. Set k = 0, initialize A±
0 and define I0 = Ω \ (A+

0 ∪ A−
0 ).

2. Set uk = ±1 on A±
k and µk = 0 on Ik.

3. Solve the coupled system of PDE’s (2.36), (2.31) to obtain uk on Ik, µk on A
+
k ∪A−

k

and wk on Ω.

4. Set A+
k+1 :=

{

x ∈ Ω | uk(x) + µk(x)
c

> 1
}

,

A−
k+1 :=

{

x ∈ Ω | uk(x) + µk(x)
c

< −1
}

and

Ik+1 := Ω \ (A+
k+1 ∪A−

k+1).

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.
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Remark 2.4. The above complementarity system (2.32)-(2.33) can be reformulated as
a semi-smooth equation by

H(u, µ) := µ− (max(0, µ+ c(u− 1)) + min(0, µ+ c(u+ 1))) = 0. (2.37)

A semi-smooth Newton method, based on results from Qi and Sun [QS93], applied in
a formal way to (2.36), (2.31) and (2.37) is equivalent to the above primal-dual active
set method, see e.g. Hintermüller, Ito and Kunisch [HIK02] for a different context.

Proof. We start out from (2.37) and checking all cases.
If µ+ c(u+ 1) < 0, then

0 = H(u, µ) = µ− µ− c(u+ 1) = −c(u+ 1)

holds. Thus u = −1 and hence µ < 0.
If µ+ c(u− 1) > 0, then

0 = H(u, µ) = µ− µ− c(u− 1) = −c(u− 1)

holds. Thus u = 1 and hence µ > 0.
Otherwise we get µ = 0 and obtain

c(u− 1) ≤ 0 and c(u+ 1) ≥ 0 ⇒ |u| ≤ 1.

If we plug the complementarity conditions (2.32)-(2.33) into (2.37) it is obvious that
H(u, µ) = 0 holds.

Remark 2.5. The iterations in the above algorithm (PDAS-I) are in general not ap-
plicable in function space since the iterates µk are only measures and not L2–functions,
see Ito and Kunisch [IK03]. In Chapter 3 we derive a fully discretized version of the
algorithm and we will show, by means of the equivalence to the semi-smooth Newton
method, that local convergence holds.

2.4 Mullins–Sekerka model as sharp interface limit

For the Cahn–Hilliard problem with non-degenerate constant mobility discussed earlier
the solution features a diffuse interfacial region, where the change of the concentration
u from 1 to −1 occurs. The shape of the transition of the phases on the interface
heavily depends on the used free energy potential. In case of a differentiable potential
Ψ(u) = c · (1 − u2)2 the interface omits no sharp boundaries since the intersection
can to leading order be described by an adequately scaled tanh-term. The obstacle
potential considered here admits a so called sharp diffuse interface, i.e. the region
where the phase change takes place is a bounded compact subset of Ω. The width of
this interfacial region is proportional to επ, i.e. in one space dimension u(x) ≈ sin(x/ε)
on the interface, where x ∈ [−επ

2
, επ

2
].
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For the investigation of the behavior when considering the limit ε→ 0, which in essence
is the study of situations with vanishing interfacial thickness, the notion of Γ–limit of
the free energy leads to a free boundary problem, namely the Mullins–Sekerka problem
(or Hele–Shaw problem) stated below. For further details we refer to Garcke [Gar05]
or Pego [Peg89]. A more general discussion of the convergence of a class of phase field
models to their corresponding sharp interface limits is given by Caginalp and Chen
[CC98].
The sharp interface limit of a differentiable free energy ψ is derived by Chen [Che96],
where also exact solutions for some radially symmetric settings are calculated. Since the
sharp interface limit of this differentiable free energy coincides with the one obtained for
the double obstacle potential, we adapt the notation used there for the formulation of
the Mullins–Sekerka model and the technique used there for the computation of those
exact solutions we use. The asymptotic analysis for the parabolic obstacle problem we
use here is executed in Blowey and Elliott [BE93]. There the phase field model under
consideration is given by the following variational inequality problem:

Find u and w such that

cwt +
l
2
ut = k∆w,

(
σ1εut − ε∆u+ 1

ε
ψ′
0(u)− σ2w, η − u

)
≥ 0, for all η with |η| ≤ 1.

To fit our choice of scaling for the parameters, we set c = 0, k = 1, l = 2, σ1 = 0 and
σ2 =

1
γ
resulting in:

Find u and w such that

ut = ∆w,
(
−εγ∆u+ γ

ε
ψ′
0(u)− w, η − u

)
≥ 0, for all η with |η| ≤ 1.

The corresponding Mullins–Sekerka model obtained is then given by the following free
boundary problem, where the free boundary is given by Γ = ∂{u = 1}∩ (Ω× (0,∞)) =
⋃

t>0

Γt × {t}. Note that Γt are suitable hypersurfaces in this context. The limit (w,Γ)

solves
∆w = 0 in Ω \ Γt, t > 0,
∂nw = 0 on ∂Ω, t > 0,
σκ = w on Γt, t > 0,
2V = [∂νw]Γt ν on Γt, t > 0.

(2.38)

Here ν denotes the normal on Γt pointing into the set {u ≡ 1}, V the normal velocity
of the interface and κ the sum of the principal curvatures of Γt. By [. ]Γt we denote the
jump across the interface. The constant σ is given by the formula

σ = γ

1∫

−1

√

ψ0(u)

2
du = γ

1∫

−1

1

2

√
1− u2 du = γ

π

4
,

which is a result of the asymptotic analysis.



2 The Cahn–Hilliard model 192 The Cahn–Hilliard model 192 The Cahn–Hilliard model 19

Remark 2.6. The different scaling with 1
ε
we used in [BBG11] for the free energy

term can also be described by the above ansatz by modifying the free energy term to
incorporate a γ term by setting ψ0(u) =

1
2γ
(1−u2). This results in a changed dependence

of the parameter σ =
√
γ π

4
with respect to the order of γ.

In the following we use a radially symmetric situation with Ω = B1(0), where explicit
solutions can be calculated. In Stoth, see [Sto96], the analysis for spherical symmetric
situations is discussed by means of energy methods. The calculations below are based
on results from Chen [Che96], where solutions to radially symmetric settings for an
arbitrary number of interfaces are discussed. We use two concentric circles (or spheres)
Γ1 and Γ2 as depicted in Figure 2.1 as scenario in our numerical experiments.

Ω0Ω1Ω2

Γ1

Γ2

Ω = B1(0)u ≡ 1

u ≡ 1

u ≡ −1

r1

r2

ν1

ν2

Figure 2.1: Radially symmetric free boundary problem in two space dimensions.

Using (2.38) and the notation used in Figure 2.1 we obtain the following conditions
respectively equations for w on the three parts of Ω.

In Ω0 :
∆w = 0 in Ω0,
∂nw = 0 on ∂Ω,
w = σκ1 on Γ1.

In Ω1 :
∆w = 0 in Ω1,
w = σκ1 on Γ1,
w = σκ2 on Γ2.

In Ω2 :
∆w = 0 in Ω2,
w = σκ2 on Γ2.

The following calculation is now done for two spatial dimensions. A similar calculation
can be done in three dimensions with an adequately adapted ansatz function.
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Since the curvature κi of circles Γi is constant, we obtain a solution by setting w|Ω2
≡

σκ2, w|Ω0
≡ σκ1 and using the ansatz w(r) = ln(r)c1(t) + c2(t) on Ω1. Use of the

boundary conditions on Ω1 given by

ln(r1)c1(t) + c2(t) = w(r1) = σκ1 and
ln(r2)c1(t) + c2(t) = w(r2) = σκ2

leads to

w(r, t) =







σκ2(t), if r ∈ [0, r2(t)],

σκ1(t) + σ(κ2(t)− κ1(t))
ln(r1(t))−ln(r)

ln(r1(t))−ln(r2(t)) , if r ∈ [r2(t), r1(t)],

σκ1(t), if r ∈ [r1(t), 1].

Finally with the velocity equation in the above free boundary problem and differenti-
ating w with respect to the variable normal direction, i.e. r, we obtain the evolution
of the radii given by the following ODE system

ṙ1(t) =V · ν =
1

2
[∂νw(r, t)]Γ1

=
σ

2

(

0− (κ2(t)− κ1(t))
− 1
r1(t)

ln(r1(t))− ln(r2(t))

)

=− σ

2

1

r1(t)

(
1

r1(t)
+

1

r2(t)

)
1

ln(r1(t))− ln(r2(t))
, (2.39)

ṙ2(t) =V · ν =
1

2
[∂νw(r, t)]Γ2

=− σ

2

1

r2(t)

(
1

r1(t)
+

1

r2(t)

)
1

ln(r1(t))− ln(r2(t))
. (2.40)

This setting provides an exact solution for the sharp interface model. Hence we can
compare the solutions we obtain from the phase field model with varying parameters
ε, γ and τ and check for convergence to the sharp interface model. Some simulation
examples will be shown in the numerics section, see Section 6.1.

2.5 Non-constant mobility

Up to this point we assumed the diffusional mobility B to be a constant. Together with
a scaling argument we used B ≡ 1. This section introduces the formulation of the model
with non-constant mobility. The assumption of the constant mobility was introduced
for ease of handling of the equations in the beginning of the development, but the
model derivation by Cahn and Hilliard [CH58, Cah61] used non-constant mobility. As
before we consider the Ginzburg-Landau energy functional

E(u) =
εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ(u) +
1

ε

∫

Ω

fu (2.41)
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extended by a force term f ∈ L∞(Ω) like Puri, Binder and Dattagupta [PBD92], similar
to the thermal fluctuation term used in [AKK10].
Again we take ψ to be the double obstacle potential given by ψ(u) = ψ0(u) + ι[−1,1](u)
as in (2.5). Similar to the preceding discussion the first variation of the energy is again
given by means of the subdifferential and we get

w :=
δE

δu
= −εγ∆u+ γ

ε
(ψ′

0(u) + µ) +
1

ε
f, (2.42)

µ ∈ ∂I[−1,1](u). (2.43)

The constant diffusional mobility B in the flow equation is replaced by a concentration
dependent function B : R → R+

0 . Thus the mass flux

J = −B(u)∇w

together with the no-flux Neumann boundary condition B(u)∂nw = 0 plugged into the
evolution equation ∂tu = −∇ · J leads, as in Section 2.1, to

∂tu− ∇ · (B(u)∇w) = 0, (2.44)

w + εγ∆u− γ

ε
(ψ′

0(u) + µ) =
1

ε
f, (2.45)

H(u, µ) = µ−min(0, µ+ c(u+ 1))−max(0, µ+ c(u− 1)) = 0. (2.46)

Here we already replaced the usual complementarity condition (2.32)-(2.33) with its
semi-smooth equivalent, see Remark 2.4. A typical choice for the diffusional mobility
would be B(u) = max(0, 1 − u2) leading to the geometric evolution equations with
surface diffusion in the sharp interface limit, see e.g. Cahn, Elliott and Novick-Cohen
[CENC96], Taylor and Cahn [TC94], Barrett, Blowey and Garcke [BBG99] as well as
the brief discussion in Section 2.6. As stated in these works, this choice is thermody-
namically reasonable. In those situations atom movement is confined to the interfacial
region and the flow is dominated by interface or surface diffusion [CENC96].
As suggested in [TC94] we use the parameter dependent mobility B(u) = 1

ε
b(u) for some

function b. This ensures insensitivity to the parameter ε. The asymptotic expansion
carried out in [CENC96] (using the unscaled mobility B) shows that the time scale is
of type ε2t. The modified variant we use results for obvious reasons in a εt time scale as
in the Mullins–Sekerka equation for the constant mobility case, see also Pego [Peg89].
Up to this point the properties of b have been formulated somewhat vague. Now we
will specify two separate assumptions we pose on the mobility function B(u) = 1

ε
b(u)

depending on the context.

Assumptions 2.7. Let the diffusional mobility b ∈ C1(R) and bmax ≥ bmin > 0
constants such that

bmax ≥ b(s) ≥ bmin > 0 ∀s ∈ R (2.47)

holds.
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If b fulfills the above conditions, we also refer to the sitiuation as non-degenerate case
with an explicit time discretization scheme. If the implicit time scheme is chosen we
require additionally b ∈ C2(R) in the gradient flow setting later on, where we need
to calculate a second derivative of the Lagrangian function for the formulation of a
Newton method.

Assumptions 2.8. If the diffusional mobility b is degenerate, we require

b ∈ C([−1, 1]), b(−1) = b(1) = 0 and b(s) > 0 ∀s ∈ (−1, 1). (2.48)

Results concerning the existence of solutions of the evolution equation with non-
constant mobility have been shown for degenerate b in one dimension by Yin [Yin92].
For higher spatial dimension we refer to the proof and discussion by Elliott and Garcke
[EG96] and references therein.
There they showed that in case of a degenerate mobility, i.e. that Assumption 2.8
holds, it is sufficient to solve the partial differential equations only on the set where b
does not degenerate. Later, when fully discretizing the problem, we will call this set
mobile set M . Due to the degeneracy the chemical potential w as well as the dual
variable µ are only uniquely given on this set. Outside of this set w and µ could be
chosen almost freely. As a result of the nature of this degenerate problem no uniqueness
proof is known.
Elliott and Garcke [EG96] showed existence of solutions for degenerate (and non-
degenerate) diffusional mobility together with a smooth free energy potential by ap-
proximating the degenerate case by non-degenerate equations. Elliott and Garcke also
showed a priori estimates for the deep quench limit, i.e. the obstacle potential case,
and thus the existence of a solutions, see Section 4.2 of [EG96].
As before we first discretize the evolution in time by employing an Euler-time dis-
cretization and subsequently obtain the elliptic system of partial differential equations

1

τ
(u− un−1) = ∇ · 1

ε
b(u∗)∇w, (2.49)

w + εγ∆u− γ

ε
(ψ′

0(u
∗) + µ) =

1

ε
f, (2.50)

H(u, µ) = 0. (2.51)

Here u∗ stands either for u or un−1 depending on the chosen time discretization for those
two terms. Note that this distinction is made due to the arising difficulties if using
the implicit form due to either the non-convexity as well as the occurring nonlinearity
respectively. We apply the semi-smooth Newton method of Qi and Sun [QS93] and
Chen, Nashed and Qi [CNQ01] to solve this system in weak formulation, which is given
by the semi-smooth function F : H1 ×H1 ×H1 → (H1)′ × (H1)′ × (H1)′ by

F (u, w, µ)(ϕ, ξ, ζ) =











τ

ε

∫

Ω

b(u∗)∇w · ∇ϕ+

∫

Ω

uϕ−
∫

Ω

un−1ϕ
∫

Ω

wξ − εγ

∫

Ω

∇u · ∇ξ − γ

ε

∫

Ω

ψ′
0(u

∗)ξ − γ

ε

∫

Ω

µξ − 1

ε

∫

Ω

fξ
∫

Ω

(µ−max(0, µ+ c(u− 1))−min(0, µ+ c(u+ 1)))ζ











.
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Thus we need to find a slanting function replacing the derivative. First we replace the
terms containing ∗ by introducing some parameters Θb, Θψ ∈ {0, 1} to switch between
implicit and semi-implicit discretizations resulting in the following formulation of the
function

F (u, w, µ)(ϕ, ξ, ζ) =










τ

ε

∫

Ω

(
Θbb(u) + (1−Θb)b(u

n−1)
)
∇w · ∇ϕ+

∫

Ω

(u− un−1)ϕ
∫

Ω

(w − γ

ε
(Θψψ

′
0(u) + (1− Θψ)ψ

′
0(u

n−1) + µ)− 1

ε
f)ξ − εγ

∫

Ω

∇u · ∇ξ
∫

Ω

(µ−max(0, µ+ c(u− 1))−min(0, µ+ c(u+ 1)))ζ











.

The explicit discretization scheme, i.e. Θb = 0 allows for both, the degenerate as well
as the non-degenerate case. The implicit scheme with Θψ = 1 is only valid for the
non-degenerate case.

The problem is that the set, where the equation for w degenerates, depends on the
iterate uk and thus on the step of the Newton iteration. Hence the new iterate wk+1 is
given on the set, where b(uk) is positive. However, to match uk+1 we require wk+1 on
the set, where b(uk+1) is positive. As a consequence the resulting formulation would
not be well posed.

Using this we can explicitly calculate the derivative, given by the slanting function
associated to F , necessary for the semi-smooth Newton method. Differentiating we get
the following slanting function, which we denote by DF .

Remark 2.9. Let F be as above. Furthermore b shall fulfill Assumption 2.7 if Θb ∈
{0, 1} or 2.8, if Θb = 0. Then a formal derivation results in

DF (u, w, µ)(ϕ, ξ, ζ)(δu, δw, δµ) =










τ

ε

∫

Ω

(Θbb(u) + (1−Θb)b(u
n−1))∇δw · ∇ϕ+

τ

ε
Θb

∫

Ω

b′(u)δu∇w · ∇ϕ+

∫

Ω

δuϕ
∫

Ω

δwξ − γ

ε
Θψ

∫

Ω

ψ′′
0(u)δuξ − εγ

∫

Ω

∇δu · ∇ξ − γ

ε

∫

Ω

δµξ

−c
∫

Ω

χ{x∈Ω||u(x)+µ(x)
c

|>1}δuζ +

∫

Ω

χ{x∈Ω||u(x)+µ(x)
c

|<1}δµζ











as slanting function for F at (u, w, µ).

Proof. The upper two components of F are classically differentiable and thus can easily
be calculated. The third component is not but has already been dealt with before, when
we formulated the method with constant mobility, see also [HIK02].

Now we have all ingredients to formally write down the semi-smooth algorithm.
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Algorithm 2.2 Semi-smooth Newton method (SSN-I)

1. Set k = 0, initialize uk, wk, µk.

2. Solve the coupled system of PDE’s

DF (uk, wk, µk)(ϕ, ξ, ζ)(δuk, δwk, δµk) = −F (uk, wk, µk)(ϕ, ξ, ζ).

3. Set wk+1 = wk + δwk, uk+1 = uk + δuk and µk+1 = µk + δµk.

4. If ‖δwk‖+ ‖δuk‖+ ‖δµk‖ ≤ tol stop, otherwise set k = k + 1 and goto 2.

The simple stopping criterion in step 4 of Algorithm 2.2 can be replaced by a more
sophisticated one. The fully discretized version of this algorithm, with Θb = 0, is
equivalent to a primal-dual active set method derived later, compare Algorithm 2.3
and 3.5. Note that this equivalence can be seen by simply using the splitting into
active and inactive sets, necessary for the assembly of the derivative and subtracting
most parts of the right hand side from the left side reverting back to an system of
equations for uk+1, wk+1 and µk+1 in place of the updates.
In case of an implicit discretization of a non-degenerate mobility the primal-dual active
set method and the semi-smooth Newton method result in different algorithms, see the
brief discussion at the end of Section 2.5.3 or the more extensive presentation of the
different discrete methods in Section 3.4.

2.5.1 Gradient flow formulation with non-constant mobility

Earlier in this chapter we reformulated the complementarity problem as a gradient
flow. Now we present such a formulation with a non-constant but uniformly positive
diffusional mobility. A short discussion of the connections of various sharp interface
and diffuse surface motion laws is given by Taylor and Cahn [TC94]. As stated there
the non-constant mobility leads to the formulation of the flow with a weighted scalar
product. We use Z = H−1(Ω) as in in Section 2.2. The weight is given by the diffusional
mobility. To simplify the notation we set ρ = B(un−1) or ρ = B(u) depending on the
type of time discretization chosen. The inner product on Z is now given by

(v1, v2)H−1
ρ

:=

∫

Ω

∇(−∇ · ρ∇)−1v1 · ρ∇(−∇ · ρ∇)−1v2, (2.52)

where y = (−∇ · ρ∇)−1v is the weak solution of −∇ · ρ∇y = v in Ω and ρ∂ny = 0 on
∂Ω. Again as in the definition of the unweighted inner product (2.16) the solution is
unique up to a constant, which we fix by

∫

Ω
− y = 0. Additionally we set

U :=






u ∈ H1(Ω) |

∫

Ω

−u = m






, Y :=






u ∈ H1(Ω) |

∫

Ω

−u = 0






(2.53)
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and derive for v1, v2 ∈ Y again with the L2-inner product (., .):

(v1, v2)H−1
ρ

= (v1, (−∇ · ρ∇)−1v2) = ((−∇ · ρ∇)−1v1, v2) . (2.54)

Thus we obtain for smooth free energy as in Section 2.2 the system

∂tu = (∇ · ρ∇)w , (2.55)

w = −εγ∆u+ γ

ε
ψ′(u) +

1

ε
f, (2.56)

with boundary conditions ∂nu = ρ∂nw = 0 on ∂Ω.

Using the obstacle potential ψ from (2.5) together with the Ginzburg–Landau energy
(2.41) and the backward Euler time discretization scheme the minimization problem
(2.22) reads now as follows:

min
u∈U







εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ0(u) +
1

ε

∫

Ω

fu+
τ

2

∫

Ω

∇v · ρ∇v






(2.57)

such that

τ(∇ · ρ∇)v = u− un−1, ρ∂nv = 0 on ∂Ω, (2.58)
∫

Ω

− v = 0, (2.59)

∫

Ω

−u = m, (2.60)

|u| ≤ 1. (2.61)

The associated Lagrangian is given as

L(v, κ, u, w, µ+, µ−) :=
εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ0(u) +
1

ε

∫

Ω

fu+
τ

2

∫

Ω

∇v · ρ∇v

− τ

∫

Ω

∇w · ρ∇v −
∫

Ω

(u− un−1)w − κ

∫

Ω

v (2.62)

− γ

ε

∫

Ω

µ+(1− u)− γ

ε

∫

Ω

µ−(1 + u) .

Before we derive the associated KKT-system we need to select the weighting function
ρ, since it influences the derivatives if it depends on u or any of the other implicit
variables.
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2.5.2 Explicit discretization, ρ = 1
ε
b(un−1)

The Euler time discretization allows for some choice for each occurring term. Quite
often the difficult terms are discretized explicitly leading to a problem, which is more
easily solvable than otherwise. Thus we discuss the explicitly discretized diffusional
mobility first, i.e. we set ρ = 1

ε
b(un−1). We require a uniformly positive diffusional

mobility, i.e. Assumption 2.7 holds. Due to the linearity of the problem the semi-
smooth Newton method introduced above is equivalent to the primal-dual active set
method we derive now. Let ρ = B(un−1) = 1

ε
b(un−1). Note that b ∈ C([−1, 1])

is sufficient here, even for the non-degenerate case. It is essential that |un−1| ≤ 1
holds, which is obviously true due to the usage of the obstacle potential. Thus no
differentiability condition is imposed on b here. We obtain the KKT system

τ

ε
(∇ · b(un−1)∇)(w − v) = κ in Ω, b(un−1)∂nw = b(un−1)∂nv on ∂Ω , (2.63)

∫

Ω

− v = 0 , κ = 0 , (2.64)

(u− un−1) =
τ

ε
(∇ · b(un−1)∇)v in Ω, b(un−1)∂nv = 0 on ∂Ω , (2.65)

w + εγ∆u− γ

ε
ψ′
0(u)−

γ

ε
µ =

1

ε
f in Ω, ∂nu = 0 on ∂Ω , (2.66)

µ := µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, a.e. in Ω , (2.67)

µ+(u− 1) = 0, µ−(u+ 1) = 0, a.e. in Ω , (2.68)

and |u| ≤ 1 a.e. in Ω . (2.69)

Note that again equations (2.63), (2.65) and (2.66) have to be understood in their weak
form. Now we continue by repeating the formal steps from Section 2.3. First we can
analogously eliminate the variable v by means of (2.63) and (2.64). We again introduce
for c > 0 the active sets

A+ =

{

x ∈ Ω | u(x) + µ(x)

c
> 1

}

,

A− =

{

x ∈ Ω | u(x) + µ(x)

c
< −1

}

and the inactive set I := Ω\(A+∪A−). Finally we get the following formal algorithm for
the non-constant mobility with explicit time discretization of the diffusional mobility
term.
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Algorithm 2.3 Formal primal-dual active set algorithm with non-
constant diffusional mobility

(mPDAS-I)

1. Set k = 0, u0. Initialize A
±
0 and define I0 = Ω \ (A+

0 ∪ A−
0 ).

2. Set uk = ±1 on A±
k and µk = 0 on Ik.

3. Solve the coupled system of PDE’s (2.65), (2.66) to obtain uk on Ik, µk on A
+
k ∪A−

k

and wk on Ω.

4. Set A+
k+1 :=

{

x ∈ Ω | uk(x) + µk(x)
c

> 1
}

,

A−
k+1 := {x ∈ Ω | uk(x) + µk(x)

c
< −1} and

Ik+1 := Ω \ (A+
k+1 ∪ A−

k+1).

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Remark 2.10. If b fulfills Assumption 2.8, i.e. the diffusional mobility is degenerate,
the equations (or inequalities) only define w and v as well as µ on the set, where b is
positive, compare Elliott and Garcke [EG96]. Thus a formulation of a gradient flow
and subsequently of the primal-dual active set method is not possible in the countinuous
case. However, in the fully discretized setting we will make use of this property to state
a primal-dual active set method, which is also valid for the degenerate case.

2.5.3 Implicit discretization, ρ = 1
ε
b(u)

This choice is only reasonable if b is non-degenerate in the sense of Assumption 2.7.
The derivation of the KKT system is similar to the explicit case discussed before. The
only real difference lies in equation (2.66), the variation of L in u. In the implicit
formulation we obtain

w + εγ∆u− γ

ε
ψ′
0(u)−

γ

ε
µ+

τ

2ε
∇v · b′(u)∇v − τ

ε
∇w · b′(u)∇v = 1

ε
f in Ω (2.70)

together with the Neumann boundary condition ∂nu = 0 on ∂Ω. Furthermore we have
to substitute the equations, where only the dependency of b changes. Hence in place
of (2.63) we use

τ

ε
(∇ · b(u)∇)(w − v) = κ in Ω, b(u)∂nw = b(u)∂nv on ∂Ω (2.71)

and instead of (2.65) we use

(u− un−1) =
τ

ε
(∇ · b(u)∇)v in Ω, b(u)∂nv = 0 on ∂Ω . (2.72)
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Now we can state a primal-dual active set method analogously to the previous discus-
sion. Note that using the identity v = w −

∫

Ω
− w equation (2.70) is reduced to

w + εγ∆u− γ

ε
ψ′
0(u)−

γ

ε
µ− τ

2ε
∇w · b′(u)∇w =

1

ε
f in Ω, ∂nu = 0 on ∂Ω . (2.73)

We get Algorithm 2.3, where the PDE’s in step 3 are replaced by (2.72) and (2.73). Due
to the nonlinearity of those equations this primal-dual active set method is no longer
equivalent to a Newton type method. Note that in comparison to Algorithm 2.2, the
only difference is the nonlinear τ and b′ dependent term in (2.73). Thus, when consid-
ering the limit τ → 0 both methods are similar and lead to consistent discretizations
of the PDE. Due to the larger computational effort of solving a nonlinear problem in
each primal-dual active set iteration, this method is probably not competitive and is
thus omitted. For a consideration of an implicitly discretized diffusional mobility we
present a Lagrange-Newton method, which leads again to an algorithm of a structure,
which is similar to the primal-dual active set methods before.

2.5.4 Newton method with implicit discretization

The fully implicit discretization of the model with non-constant mobility leads ei-
ther to a Newton-type method, where a non-symmetric linear problem for the update
remained, or to a primal-dual active set method with an embedded nonlinear prob-
lem, discussed above in Section 2.5.3. This paragraph will use a semi-smooth Newton
method to calculate critical points of the KKT system associated to the Lagrangian
function given in (2.62). Please note that the below discussion is somewhat formal
since we omit the discussion of regularity. We expect the arising system to be symmet-
ric, due to the fact that it is a second derivative. Similarly to before, when calculating
the first order conditions, we get w −

∫

Ω
− w = v and κ = 0. Thus we eliminate v and κ

from the problem formulation. Lets recall the Lagrange function (2.62) we want to find
critical points of. For the remainder of this discussion we use a reduced formulation
given by

L(u, w, µ+, µ−) :=
εγ

2

∫

Ω

|∇u|2 + γ

ε

∫

Ω

ψ0(u) +
1

ε

∫

Ω

fu− τ

2

∫

Ω

|∇w|2b(u) (2.74)

−
∫

Ω

(u− un−1)w − γ

ε

∫

Ω

µ+(1− u)− γ

ε

∫

Ω

µ−(1 + u)

together with the restriction on the multipliers µ+, µ− ≥ 0. Note that both τ de-
pendent terms have been summed up. We use a Lagrange–Newton method for the
calculation of the critical points, compare e.g. Geiger and Kanzow [GK02] or the semi-
smooth versions of De Luca, Facchinei and Kanzow [DLFK96] or Facchinei, Fischer
and Kanzow [FFK98]. Basically we use a semi–smooth Newton method to solve the
KKT problem, where the complementarity condition is replaced by the semi-smooth
formulation (2.37). The KKT system associated with (2.74) is given by the derivatives
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von L in the directions of ζu and ζw, given by

εγ

∫

Ω

∇u · ∇ζu +
∫

Ω

(
γ

ε
(ψ′

0(u) + µ+ − µ−)− w − τ

2ε
|∇w|2b′(u) + 1

ε
f

)

ζu = 0,

−τ
ε

∫

Ω

b(u)∇w · ∇ζw −
∫

Ω

(u− un−1)ζw = 0

together with the complementarity conditions

µ+ ≥ 0, (1− u) ≥ 0, µ+(1− u) = 0,

µ− ≥ 0, (1 + u) ≥ 0, µ−(1 + u) = 0.

The above multiplicators can be replaced by one single variable by setting µ := µ+−µ−.
We then denote the above directional derivatives by

Lu(u, w, µ)[ζu] := εγ

∫

Ω

∇u · ∇ζu +
∫

Ω

(
γ

ε
(ψ′

0(u) + µ)− w − τ

2ε
|∇w|2b′(u) + 1

ε
f

)

ζu,

Lw(u, w, µ)[ζw] := −τ
ε

∫

Ω

b(u)∇w · ∇ζw −
∫

Ω

(u− un−1)ζw,

The complementarity condition can be rephrased, compare Remark 2.4, as

Lµ(u, w, µ)[ζµ] :=
∫

Ω

(µ−min(0, µ+ c(u+ 1))−max(0, µ+ c(u− 1))) ζµ.

The semi-smooth Newton-method is now applied to the system

F (u, w, µ)[ζu, ζw, ζµ] := Lu(u, w, µ)[ζu] + Lw(u, w, µ)[ζw] + Lµ(u, w, µ)[ζµ] = 0.

To obtain a slanting function for this system we define the bilinear forms given by
the second derivatives. Calculating the partial derivatives of Lu(u, w, µ)[ζu] in the
directions δu, δw and δµ we get

Lu,u(u, w, µ)[ζu][δu] := εγ

∫

Ω

∇δu · ∇ζu +
γ

ε

∫

Ω

ψ′′
0 (u)δuζu −

τ

2ε

∫

Ω

|∇w|2b′′(u)δuζu,

Lu,w(u, w, µ)[ζu][δw] := −
∫

Ω

δwζu −
τ

ε

∫

Ω

∇w · b′(u)ζu∇δw,

Lu,µ(u, w, µ)[ζu][δµ] :=
γ

ε

∫

Ω

δµζu.
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The second part of the equation can also be calculated by classical methods resulting
in

Lw,u(u, w, µ)[ζw][δu] := −τ
ε

∫

Ω

∇w · b′(u)δu∇ζw −
∫

Ω

δuζw,

Lw,w(u, w, µ)[ζw][δw] := −τ
ε

∫

Ω

∇δw · b(u)∇ζw,

Lw,µ(u, w, µ)[ζw][δµ] := 0.

For the third part we again can only define a slanting function and not a derivative in
the classical sense due to the occurrence of the max and min functions. We introduce
the sets

A+ := {x ∈ Ω | µ(x) + c(u(x)− 1) > 0} ,
A− := {x ∈ Ω | µ(x) + c(u(x) + 1) < 0}

and I := Ω \ (A+ ∪ A−) afresh and get as before in the case with constant mobility:

Lµ,u(u, w, µ)[ζµ][δu] := −c
∫

Ω

χA+∪A−δuζµ,

Lµ,w(u, w, µ)[ζµ][δw] := 0,

Lµ,µ(u, w, µ)[ζµ][δµ] :=
∫

Ω

χIδµζµ.

Thus the update step for the Newton-iteration at a given iteration step k ≥ 0 with
iterate (uk, wk, µk) is given by

−F (uk, wk, µk) =DF (uk, wk, µk)(δuk, δwk, δµk) (2.75)

:=Lu,u[ζu][δuk] + Lu,w[ζu][δwk] + Lu,µ[ζu][δµk] + Lw,u[ζw][δuk]
+ Lw,w[ζw][δwk] + Lµ,u[ζµ][δuk] + Lµ,µ[ζµ][δµk],

where we omitted the dependency on uk, wk, µk of the forms Lxx for better readability
and used δuk := uk+1 − uk as notation for the update step. Define δwk and δµk
analogously. Note that we could reduce the system further, using the split into active
and inactive sets motivated from the primal-dual active set methods. Just considering
the third row of (2.75) we get u on the inactive and µ on the active set. We execute
this in detail in the discrete setting in Section 3.4.

2.6 Surface diffusion

Previously we commented on the connection of the Cahn–Hilliard evolution to a sharp
interface model, namely the Mullins–Sekerka model, see Section 2.4. Using formal
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asymptotic analysis diffuse phase field models can often be associated with a geometric
evolution equation. The Cahn–Hilliard problem with degenerate diffusional mobility
B, corresponds in this sense to the geometric motion law given by

V = −π
2

16
∆Sκ. (2.76)

Note that V is the normal velocity of a moving surface Γ(t), κ the mean curvature of
the surface. Furthermore ∆S denotes the surface Laplacian. For the complete formal
asymptotic analysis and derivation of the above motion law, see Cahn, Elliott and
Novick-Cohen [CENC96]. Both the Mullins–Sekerka flow and the motion by surface
diffusion are volume preserving and perimeter decreasing. The main difference, as
stated in Elliott and Garcke [EG97], is that the Mullins–Sekerka flow is non-local, i.e.
the velocity in each point on Γt depends on data away from this point. Due to the
degeneracy of the mobility, the diffusion process is restricted to the interfacial region
resulting in a motion by surface diffusion, see Mullins [Mul57].
Since surface diffusion is often used in many applications the development of fast and
efficient numerical methods have been of interest. Some numerical methods concerned
with the simulation of the phase field model have already been mentioned in the in-
troductory part of this chapter. Additionally there is a variety of numeric methods for
the sharp interface model, i.e. geometric evolution equations, see e.g. Barrett, Garcke
and Nürnberg [BGN07], Bänsch, Morin and Nochetto [BMN05] or Deckelnick, Dziuk
and Elliott [DDE05].
We present some numerical results in Section 6.4 and compare them to the afore men-
tioned publications.

2.7 Existence and uniqueness of minimizers

Before fully discretizing the model, we will present some results showing existence of
minimizers and give conditions for their uniqueness for constant as well as explicitly
discretized non-constant but uniformly positive mobility, i.e. we require Assumption 2.7
to hold. Note that simply choosing ρ ≡ 1 includes the constant mobility case, discussed
in [BBG11].
From now on we consider the choice ψ0(u) = 1

2
(1 − u2), f ∈ L∞(Ω) and show that

the KKT system, given either by (2.23)-(2.27) or (2.57)-(2.61) respectively, is solvable.
Defining the admissible set

Uad :=






u ∈ H1

ρ(Ω) | |u| ≤ 1,

∫

Ω

−u = m






(2.77)

the minimization problem can be reformulated. For given un−1 ∈ Uad find

min
u∈Uad

E(u) :=
εγ

2

∫

Ω

|∇u|2 + γ

2ε

∫

Ω

(1− u2) +
1

ε

∫

Ω

fu

+
1

2τ
‖∇(−∇ · ρ∇)−1(u− un−1)‖2L2

ρ
.

(2.78)
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Lemma 2.11. The minimization problem (2.78) has a solution.

Proof. Since |u| ≤ 1, we obtain
∫

Ω
ψ0(u) dx =

∫

Ω
1
2
(1 − u2) dx is non-negative. Due

to
∫

Ω
− (u − m) dx = 0 for all u ∈ Uad, we can use Poincaré’s inequality for functions

with mean value zero, see e.g. Adams and Fournier [AF03], and Young’s inequality to
obtain

1

ε

∫

Ω

fu dx ≥ −1

ε
‖f‖L2‖u‖L2 ≥ −1

ε
‖f‖L2(Cp‖∇u‖L2 + 1)

≥ −1

ε
‖f‖L2 −

C2
p

ε2
δ‖f‖2L2 − 1

4δ
‖∇u‖2L2

= −1

ε
‖f‖L2 −

C2
p

ε3γ
‖f‖2L2 − εγ

4
‖∇u‖2L2,

where δ = 1
εγ

was chosen. Thus the energy is bounded from below and there exists a

minimizing sequence (uk)k∈N ⊂ Uad for E, i.e.

E(uk) → inf
u∈Uad

E(u) ≥ −C for k → ∞.

Given that (E(uk))k∈N is uniformly bounded, we can conclude that
∫

Ω
|∇uk|2 dx is

uniformly bounded and again by the Poincaré inequality we get (uk)k∈N is a bounded
sequence in H1(Ω). Using the fact that bounded sequences in H1(Ω) have weakly
converging subsequences and applying Rellich’s theorem we obtain the existence of a
subsequence such that

ukj ⇀ u∗ in H1(Ω), ukj → u∗ in L2(Ω) for j → ∞. (2.79)

Since the terms
∫

Ω
|∇u|2 dx and

∫

Ω
|∇(−∇·ρ∇)−1u|2 dx are convex, we obtain that they

are weakly lower semi-continuous in H1(Ω), see e.g. Evans [Eva10]. Since
∫

Ω
ψ0(ukj) dx

and
∫

Ω
fukj converge strongly we conclude that u

∗ is in fact a minimum of E inUad.

Depending on the chosen time step size we can show uniqueness of the minimizer. This
is the content of the following lemma.

Lemma 2.12. Let 0 < ρ ≤ ρmax uniformly bounded. The solution of (2.78) is unique
if τ ∈ (0, 4ε3

γρmax
).

Proof. We obtain uniqueness of the solution from strict convexity of E. The functional
E is strictly convex on U if and only if F (η) := E(η + un−1) is strictly convex on Y
given by (2.53). Since F is the sum of terms which are constant or linear and of

F̂ (η) :=
εγ

2

∫

Ω

|∇η|2 − γ

2ε

∫

Ω

η2 +
1

2τ
‖∇(−∇ · ρ∇)−1η‖2L2

ρ
, (2.80)
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it is sufficient to show that F̂ is strictly convex on Y \ {0}. Using the definition of
(∇·ρ∇)−1 as well as the Cauchy-Schwarz inequality for the L2

ρ scalar product together
with Young’s inequality we obtain for all η ∈ Y

∫

Ω

η2 =

∫

Ω

(∇(−∇ · ρ∇)−1η) · ρ∇η

≤





∫

Ω

∇(−∇ · ρ∇)−1η) · ρ∇(−∇ · ρ∇)−1η





1/2



∫

Ω

∇η · ρ∇η





1/2

≤ δ

2

∫

Ω

∇(−∇ · ρ∇)−1η) · ρ∇(−∇ · ρ∇)−1η +
1

4δ

∫

Ω

∇η · ρ∇η

≤ δ

2
‖∇(−∇ · ρ∇)−1η‖2L2

ρ
+
ρmax
2δ

∫

Ω

|∇η|2.

Choosing δ = 2ε
τγ

we finally get

F̂ (η) ≥ γ

8ε2
(
4ε3 − γτρmax

)
∫

Ω

|∇η|2. (2.81)

Since all three terms of F̂ are quadratic we can use

(tx+ (1− t)y)2 = tx2 + (1− t)y2 − t(1− t)(x− y)2

to obtain

F̂ (tη1 + (1− t)η2) = tF̂ (η1) + (1− t)F̂ (η2)− t(1− t)
︸ ︷︷ ︸

>0

F̂ (η1 − η2)

for t ∈ (0, 1). Thus if τ < 4ε3

γρmax
we obtain strict convexity of F̂ and hence the

assertion.

Remark 2.13. When we consider an explicit discretized free energy term, i.e. Θψ = 0,
we don’t need the above restriction on the time step, given above due to the concave
part given by the free energy potential included in the energy functional.

We can also show that the solutions we get are the same as for the variational problem
formulation.

Lemma 2.14. A solution u ∈ Uad of (2.78) solves the variational inequality

γε

∫

Ω

∇u·∇(η−u)− γ

ε

∫

Ω

u(η−u)+ 1

ε

∫

Ω

f(η−u)+ 1

τ

∫

Ω

(−∇·ρ∇)−1(u−un−1)(η−u) ≥ 0

(2.82)
for all η ∈ Uad.
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Proof. We compute the first derivation of (2.78) in a direction (η − u) for arbitrary
η ∈ Uad and obtain by (2.54)

d

dδ
E(u+ δ(η − u))

∣
∣
∣
∣
δ=0

= γε

∫

Ω

∇u · ∇(η − u)− γ

ε

∫

Ω

u(η − u) +
1

ε

∫

Ω

f(η − u)

+
1

τ

∫

Ω

∇(−∇ · ρ∇)−1(u− un−1) · ρ∇(−∇ · ρ∇)−1(η − u)

= γε

∫

Ω

∇u · ∇(η − u)− γ

ε

∫

Ω

u(η − u) +
1

ε

∫

Ω

f(η − u)

+
1

τ

∫

Ω

(−∇ · ρ∇)−1(u− un−1)(η − u).

If u is a minimizer of (2.78), then the derivative of the functional has to be non-negative
in all directions η − u with η ∈ Uad and the assertion follows.

The following lemma gives the existence of a Lagrange multiplier for the equality
constraint

∫

Ω
− u = m.

Lemma 2.15. Let u ∈ Uad be a solution of the variational inequality (2.82). Then
there exists a λ ∈ R such that for all η ∈ H1(Ω) with |η| ≤ 1 the inequality

γε

∫

Ω

∇u · ∇(η − u)− γ

ε

∫

Ω

u(η − u) +
1

ε

∫

Ω

f(η − u)

+
1

τ

∫

Ω

(−∇ · ρ∇)−1(u− un−1)(η − u)− λ

∫

Ω

(η − u) ≥ 0

(2.83)

holds.

Proof. We argue similar as in the proof of Proposition 3.3 in Blowey and Elliott [BE91].
Let g := 2γ

ε
u − 1

τ
(−∇ · ρ∇)−1(u − un−1) − 1

ε
f . Since the absolute values of u and

un−1 are bounded by one we obtain from the theory of elliptic equations and the fact
that f ∈ L∞ that g is bounded in L∞(Ω). We define for each α ∈ R a function
uα ∈ K := {u ∈ H1(Ω) | |u| ≤ 1} such that for all η ∈ K

γε

∫

Ω

∇uα · ∇(η − uα) +
γ

ε

∫

Ω

uα(η − uα)−
∫

Ω

g(η − uα)− α

∫

Ω

(η − uα) ≥ 0. (2.84)

Using standard theory of variational inequalities we deduce that (2.84) has a unique
solution uα ∈ K, see e.g. Kinderlehrer and Stampacchia [KS80]. We now introduce a
function M : R → R by

M(α) :=

∫

Ω

−uα dx.
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For all η ∈ K and all α ∈ R we have the pointwise inequality

(
γ

ε
− g

︸ ︷︷ ︸

≤ γ
ε
+‖g‖∞

−α) (η − 1)
︸ ︷︷ ︸

≤0

≥ (
γ

ε
+ ‖g‖∞ − α)(η − 1)

as well as

(
γ

ε
− g

︸ ︷︷ ︸

≥− γ
ε
−‖g‖∞

−α) (η + 1)
︸ ︷︷ ︸

≥0

≥ (−γ
ε
− ‖g‖∞ − α)(η + 1).

Inserting η ≡ ±1 into (2.84) we obtain that u ≡ 1 is a solution of (2.84) if α ≥ γ
ε
+‖g‖∞

and u ≡ −1 is a solution of (2.84) if α ≤ −(γ
ε
+ ‖g‖∞). Thus M(±(γ

ε
+ ‖g‖∞)) = ±1.

Similar to [BE91] we show that M is monotone and continuous. Let α1, α2 ∈ R, set
α = α1, η = uα2 and α = α2, η = uα1 in (2.84). Adding the resulting inequalities we
obtain

γε

∫

Ω

|∇(uα1 − uα2)|2 +
γ

ε

∫

Ω

|uα1 − uα2|2 ≤ |Ω|(M(α1)−M(α2))(α1 − α2), (2.85)

which shows in particular that M is monotone. From the Cauchy-Schwarz inequality
we get additionally the estimate

|M(α1)−M(α2)|2 |Ω| ≤ ‖uα1 − uα2‖2L2

(2.85)

≤ ε

γ
|Ω| |M(α1)−M(α2)| |α1 − α2|.

After cancellation we obtain

|M(α1)−M(α2)| ≤
ε

γ
|α1 − α2|

and have shown both properties of M . Using the intermediate value theorem we get
the existence of a λ ∈ R such that M(λ) = m. We now choose η = uλ in (2.82) giving

γε

∫

Ω

∇u·∇(u−uλ)−
γ

ε

∫

Ω

u(u−uλ)+
1

ε

∫

Ω

f(u−uλ)+
1

τ

∫

Ω

(−∇·ρ∇)−1(u−un−1)(u−uλ) ≤ 0

and η = u in (2.84), where we set α = λ and multiply by -1, yielding

−γε
∫

Ω

∇uλ · ∇(u− uλ)−
γ

ε

∫

Ω

uλ(u− uλ) +

∫

Ω

g(u− uλ) + λ

∫

Ω

(u− uλ) ≤ 0.

Adding both resulting terms leads to

γε

∫

Ω

|∇(u− uλ)|2 +
γ

ε

∫

Ω

|u− uλ|2 ≤ 0,

where we use the fact that
∫

Ω
(u− uλ) = 0 due to

∫

Ω
− u =

∫

Ω
− uλ = m. Hence u = uλ.

Using this result and the definition of g we conclude from (2.84) that u fulfills (2.83).
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Using regularity theory for obstacle problems we obtain similar as in the proof of
Lemma 3.2 in Blowey and Elliott [BE91]

u ∈ W 2,p
loc (Ω) for all p ∈ (1,∞), u ∈ C1,α(Ω) for all α ∈ (0, 1).

Starting out from this point we get the existence of a solution (u, v, w, µ) of the KKT
system (2.63)-(2.69), (2.28)-(2.34) respectively, as for other optimization problems with
bilateral constraints, see e.g. Tröltzsch [Trö10], by setting

v = −(−∇ · ρ∇)−1

(
u− un−1

τ

)

, w = v + λ,

µ+ = ε(γε∆u+
γ

ε
u+ w)+ = εmax(γε∆u+

γ

ε
u+ w, 0),

µ− = ε(γε∆u+
γ

ε
u+ w)− = εmax(−γε∆u− γ

ε
u− w, 0),

µ = µ+ − µ−.



Chapter 3

Discretization

The primal-dual active set or semi-smooth Newton method is not applicable in func-
tion space due to the low regularity of the Lagrangian multiplier µ, see Remark 2.5.
It is possible to deal with this problem by using regularization methods, see e.g. Hin-
termüller, Hinze and Tber [HHT10]. However the fully discretized problem does not
suffer from this drawback and thus we omit the addition of a regularization term. This
chapter discussing the discrete problems is structured as follows. First we will give a
brief introduction to the linear finite element spaces used and establish some notation.
Then we present the disretization of the variational inequality formulation of the Cahn-
Hilliard problem (2.10)-(2.11). Problems of such type can be handled by a projection
type successive over-relaxation solver, see e.g. Barrett, Nürnberg and Styles [BNS04]
for a similiar problem. We use this established method to test our algorithm, resulting
from the discretization of the primal-dual active set method. Following that we present
discrete versions of the primal-dual active set method with constant and non-constant
diffusional mobility. After we state a discrete version of the Lagrange-Newton method
given in Section 2.5.4, we discuss various smaller implementational topics, like the gen-
eration of the adaptive meshes, the selection of the parameter c or the initialization of
the active sets. Finally, in Section 3.7, we proof existence and uniqueness of solutions
of the discrete primal-dual active set methods under certain assumptions.

3.1 Spatial discretization and notation

Let Ω ⊂ Rd be a polyhedral domain. This assumption can be generalized by means of
boundary finite elements with curved faces, see e.g. Braess [Bra07]. Let {Th}h>0

be a triangulation of Ω into disjoint open simplices with a maximal element size
h := maxT∈Th{diam(T )}. We denote the set of nodes of Th by Jh. Let pj ∈ Jh be
their coordinates. The finite element space of piecewise affine linear, continuous finite
elements associated to Th is now given as Sh := {ϕ ∈ C0(Ω) | ϕ|T ∈ P1(T ) ∀ T ∈
Th} ⊂ H1(Ω) where we denote by P1(T ) the set of all affine linear functions on T .
To each pj ∈ Jh we associate the nodal basis function χj ∈ Sh with the property
χj(pi) = δij . For further details on the construction of finite element spaces, see,
e.g. Braess [Bra07] or Brenner and Scott [BS08]. We replace the L2-inner product

37
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(., .) at some places by a quadrature rule given by the lumped mass inner product
(η, χ)h =

∫

Ω
Ih(ηχ) , where Ih := C0(Ω) → Sh is the standard interpolation operator

at the nodes. This is equivalent to the use of a quadrature rule to evaluate the integral.
Note that this only introduces a further approximation error of roughly the same order
as the discretization error, see Thomée [Tho06] for a thorough discussion of the topic.
We also use a purely algebraic reformulation of the discretized system to discuss the
different numerical solvers. We denote the number of nodes by N := |Jh| and introduce
the index set J := {1, . . . , N}. A finite element function v ∈ Sh is uniquely given by
the algebraic notation v = (vi)i∈J ∈ RN such that v =

∑N
i=1 viχi, hence vi = v(pi).

The stiffness and mass matrices are accordingly given by

S := ((∇χj,∇χi))i,j , M := ((χj, χi)h)i,j = diag ((χi, 1))i .

At some point when we introduce the algebraic primal-dual active set method later on
we need minors of matrices. For a matrix B and two given index sets X,Y ⊂ J we set

BXY := (Bi,j)i∈X,j∈Y . (3.1)

Occasionally we use BX := BX,X as abbreviation. Analogously we define a subvector

vX = (vi)i∈X . (3.2)

3.2 Projected block Gauss–Seidel type solver (pB-

SOR)

For the discretization of the variational inequality (2.10)-(2.11) by a semi-implicit Euler
step and piecewise linear finite elements in space, we introduce the space

Kh := {η ∈ Sh | |η(x)| ≤ 1 for all x ∈ Ω} (3.3)

similar to Blowey and Elliott [BE92]. This results in the following discrete inequality
problem.
For n = 1, 2, 3, . . . and given u0h ∈ Kh find (unh, w

n
h) ∈ Kh × Sh such that

1
τ
(unh − un−1

h , χ)h + (∇wnh ,∇χ) = 0 ∀χ ∈ Sh, (3.4)

εγ(∇unh,∇(ξ − unh))− (wnh , ξ − unh)h +
γ
ε
(Ψ′

0(u
n−1
h ), ξ − unh)h ≥ 0 ∀ξ ∈ Kh. (3.5)

There is a close connection between variational inequality problems and linear or non-
linear complementarity problems. In Karamardian [Kar71] equivalences for those types
of problems are shown. Starting out from these equivalent formulations a lot of nu-
merical solution schemes have been developed. We apply in a similar way to [BNS04] a
projected SOR type method, where also a convergence proof is given. The development
of iterative methods related to the linear complementarity problem started out with
the works of Hildreth [Hil54a] and [Hil54b], who introduced a point Gauss–Seidel iter-
ative scheme together with a suitable projection. The more general scheme attributed
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to Christopherson has been analyzed and clarified by Cryer [Cry71a] and [Cry71b].
The development leading up to a block partitioned variant of the SOR algorithm, see
Cottle, Golub and Sacher [CGS77] and citations within, is comprehensively described
by Cottle [Cot79]. Another detailed overview on the topic is given by Harker and Pang
[HP90] and the books of Facchinei and Pang [FP03a, FP03b].
In the remainder of this section we will reformulate the above problem in a purely
algebraic variational inequality problem and state a projected 2×2-block SOR method.
We use a so called hybrid method, where the inner very small problems are solved
directly.
Let K :=

{
v ∈ RN | |vi| ≤ 1 for all i ∈ J

}
be the algebraic equivalent of the set Kh

given in (3.3). Reformulating the above variational inequality problem by means of
the earlier introduced notation we obtain the following algebraic variational inequality
problem.

For n = 1, 2, 3, . . . and given u0 ∈ K find (u,w) ∈ K× RN such that

Mu + τSw −Mun−1 = 0, (3.6)

(v − u)t
(
εγSu−Mw − γ

ε
Mun−1

)
≥ 0 ∀v ∈ K. (3.7)

The next lemma uses a suitable reordering and combines the equality and inequality
into one larger block structured variational inequality.

Lemma 3.1. Let Z :=
{

v ∈ (R2)
N | |(vi)1| ≤ 1 ∀i ∈ {1, . . . , N}

}

. Together with the

definitions

z :=

((
ui
wi

))N

i=1

,

f :=

((
γ
ε
Miiu

n−1
i

Miiu
n−1
i

))N

i=1

and

A :=

((
εγSij −Mij

Mij τSij

))N

i,j=1

the system (3.6)-(3.7) is equivalent to the variational inequality

(v − z)t (Az − f ) ≥ 0 ∀v ∈ Z. (3.8)

Proof. Firstly we observe that (3.6) can equivalently be formulated as a variational
inequality of the form

(y −w)t
(
Mu+ τSw −Mun−1

)
≥ 0 ∀y ∈ RN . (3.9)

If (3.6) is fulfilled, then the inequality (3.9) is obviously satisfied for all y ∈ RN . Using
y := w+δei, where ei denotes the i-th euclidean unit vector in RN for arbitrary δ ∈ R

yields the equivalence.
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We now combine (3.7) and (3.9) into one larger inequality system

((
v

y

)

−
(

u

w

))t((
εγS −M
M τS

)(
u

w

)

−
(

γ
ε
Mun−1

Mun−1

))

≥ 0, (3.10)

which holds for all test functions

(
v

y

)

∈ K× RN .

We now introduce the permutation σ := (1, N + 1, 2, N + 2, . . . , N, 2N) with the as-
sociated orthogonal permutation matrix P. This permutation applied from the left
side to a system reorders in such a way that the rows are sorted in the same order as
prescribed by σ. Similarly an application from the right side resuts in a reordering of
the columns. Using this it is easy to see that (3.10) is equivalent to

(

P

(
v

y

)

︸ ︷︷ ︸

∈Z

−P

(
u

w

)

︸ ︷︷ ︸

z

)t(

P

(
εγS −M
M τS

)

Pt

︸ ︷︷ ︸

A

P

(
u

w

)

︸ ︷︷ ︸

z

−P

(
γ
ε
Mun−1

Mun−1

)

︸ ︷︷ ︸

f

)

≥ 0.

Together with the above notation and the fact that M is diagonal due to the mass
lumping this is exactly (3.8).

Note that the mass lumping, i.e. Mij = 0 if i 6= j, also implies the symmetry of the
block matrix A with respect to the blocks.

Let Proj[−1,1] denote the projection onto the interval [−1, 1].

When we apply the projected block SOR method by Cea and Glowinski [CG73] as
stated in Cottle, Golub and Sacher [CGS77], we get the following algorithm:

Algorithm 3.1 General projected block SOR (GPBSOR)

1. Set k = 1 and initialize z(0).

2. Solve the unrestricted 2× 2-block problem for each vertex i = 1, . . . , N :

Aiiz̃
(k)
i = f i −

i−1∑

j=1

Aijz
(k)
j −

N∑

j=i+1

Aijz
(k−1)
j . (3.11)

3. Apply projection onto Z:

z
(k)
i =

(
Proj[−1,1] 0

0 Id

)

z̃
(k)
i . (3.12)

4. If abort criterion is not fulfilled, then set k = k + 1 and continue with step 2.
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The update step (3.12) above can be replaced by a relaxed scheme for a fixed ω ∈ (0, 2)
given by

z
(k)
i =

(
Proj[−1,1] 0

0 Id

)(

ωz̃
(k)
i + (1− ω)z

(k−1)
i

)

. (3.13)

Note that the 2×2-problem (3.11) can easily be solved directly. Using the fact that only
the diagonal blocks of A feature entries on the off-diagonal due to the mass lumping
used, we can rewrite (3.11) in the variables u and w to obtain the following equation:

(
εγSii −Mii

Mii τSii

)(

u
(k)
i

w
(k)
i

)

=

(
γ
ε
Miiu

n−1
i

Miiu
n−1
i

)

−
i−1∑

j=1

(
εγSij 0
0 τSij

)(

u
(k)
i

w
(k)
i

)

−
N∑

j=i+1

(
εγSij 0
0 τSij

)(

u
(k−1)
i

w
(k−1)
i

)

Taking this into account and using Algorithm 3.1, we get the final fully practical
method below.

Algorithm 3.2 Projected block SOR (pBSOR)

1. Set k = 1 and initialize u(0) ∈ K and w(0) ∈ RN .

2. For i = 1, . . . , N calculate the right hand sides

gi := Miiu
n−1
i − τ

i−1∑

j=1

Sijw
(k)
j − τ

N∑

j=i+1

Sijw
(k−1)
j ,

hi :=
γ
ε
Miiu

n−1
i − εγ

i−1∑

j=1

Siju
(k)
j − εγ

N∑

j=i+1

Siju
(k−1)
j

and obtain the new iterates via

u
(k)
i = Proj[−1,1]

(

ω
Miigi + τSiihi
εγτS2

ii +M2
ii

+ (1− ω)u
(k−1)
i

)

(3.14)

and

w
(k)
i =

1

τSii

(

gi −Miiu
(k)
i

)

. (3.15)

3. Stop if ‖u(k) − u(k−1)‖2 < tol, else set k = k + 1 and goto 2.
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For the derivation of (3.14)-(3.15), we first use (3.12) and the abbreviations for the
right hand sides giving

εγSiiũ
(k)
i −Miiw̃

(k)
i = hi,

Miiũ
(k)
i + τSiiw̃

(k)
i = gi.

The first equation results in

w̃
(k)
i =

1

Mii

(

εγSiiũ
(k)
i − hi

)

.

The second equation after replacing w reads as follows:

M2
iiũ

(k)
i + τSii(εγSiiũ

(k)
i − hi) = Miigi.

Hence we obtain:

ũ
(k)
i =

Miigi + τSiihi
εγτS2

ii +M2
ii

.

Finally using the relaxed version of Algorithm 3.1, i.e. we replace (3.12) with (3.13)
we get the above Algorithm 3.2.

3.3 Discrete primal-dual active set method (PDAS)

As described in Section 2.2 we consider an implicit as well as an explicit discretization
of the term Ψ′

0(u), i.e. we choose Ψ′
0(u

∗), where ∗ ∈ {n − 1, n}. Then, the spatial
discretization of (2.36), (2.31)-(2.34) is given as follows:
For n = 1, 2, 3, . . . and given u0h ∈ Sh find iteratively (unh, w

n
h , µ

n
h) ∈ Sh × Sh × Sh such

that

1

τ
(unh − un−1

h , χ)h + (∇wnh ,∇χ) = 0 ∀ χ ∈ Sh, (3.16)

(wnh , χ)h − εγ(∇unh,∇χ)−
γ

ε
(ψ′

0(u
∗
h), χ)h −

γ

ε
(µnh, χ)h = 0 ∀ χ ∈ Sh, (3.17)

µnh = µnh,+ − µnh,− , µnh,+ ≥ 0 , µnh,− ≥ 0 , |unh| ≤ 1, (3.18)

µnh,+(pj)(u
n
h(pj)− 1) = µnh,−(pj)(u

n
h(pj) + 1) = 0 ∀ pj ∈ Jh. (3.19)

Note that (3.19) does in general not imply (2.33) pointwise in all of Ω.
Choosing χ ≡ 1 in (3.16) provides the mass conservation

∫

Ω
− unh =

∫

Ω
− un−1

h =
∫

Ω
− u0h.

The discretization of (2.32)-(2.34) can also be expressed in terms of sets as we did
before in Section 2.3 with the help of active nodes

An,+
h =

{

pj ∈ Jh | unh(pj) +
µnh(pj)

c
> 1

}

,

An,−
h =

{

pj ∈ Jh | unh(pj) +
µnh(pj)

c
< −1

}
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for any positive c. Then we define the set of inactive nodes as Inh = Jh \ (An,+
h ∪An,−

h )
and require

unh(pj) = ±1 if pj ∈ An,±
h ,

µnh(pj) = 0 if pj ∈ Inh .
(3.20)

In order to compute (unh, w
n
h , µ

n
h) we now choose a discretized version of the primal-

dual active set method (PDAS-I), where we iteratively update active sets An,±
h,k for k =

0, 1, 2, . . . . We drop for convenience sometimes the indices n, h. The following discrete
version of the primal-dual active set strategy is obtained by using that µnh(pj) = 0 on
Inh,k in (3.17). Then (3.17) reduces roughly spoken to a discretized PDE for unh only
on an interface given by Inh,k. For known unh, w

n
h (3.17) determines µnh on the active

set. Here one has to use that (·, ·)h is a mass lumped L2-inner product in order to
obtain that in (3.17) unknowns at different nodes only couple through the gradient
term, leading to a system split according to active and inactive nodes. For the precise
formulation we introduce the notation

S̃h,k := {χ̃ ∈ Sh | χ̃(pj) = 0 if pj ∈ An,+
h,k ∪ An,−

h,k }.

Algorithm 3.3 Discrete primal-dual active set algorithm (PDAS-II)

1. Set k = 0, initialize A±
0 and define I0 = Jh \ (A+

0 ∪A−
0 ).

2. Solve for (uk, wk) ∈ Sh × Sh the system

1

τ
(uk − un−1

h , χ)h + (∇wk,∇χ) = 0 ∀ χ ∈ Sh , (3.21)

(wk, χ̃)h − εγ(∇uk,∇χ̃)−
γ

ε
(ψ′

0(u
∗
h), χ̃)h = 0 ∀ χ̃ ∈ S̃h,k , (3.22)

uk(pj) = ±1 if pj ∈ A±
k . (3.23)

3. Define µk ∈ Sh via

µk(pj) (1, χj)h =
ε

γ
(wk, χj)h − ε2(∇uk,∇χj)− (ψ′

0(u
∗
h), χj)h ∀ pj 6∈ Ik,(3.24)

µk(pj) = 0 ∀ pj ∈ Ik. (3.25)

4. Set A+
k+1 := {pj ∈ Jh | uk(pj) + µk(pj)

c
> 1},

A−
k+1 := {pj ∈ Jh | uk(pj) + µk(pj)

c
< −1} and

Ik+1 := Jh \ (A+
k+1 ∪ A−

k+1).

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.
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Recalling the notation given in Section 3.1 and introducing an algebraic notation of
the active and inactive sets given as in step 4 of Algorithm 3.3, we use

A
n,+
k :=

{
i ∈ J | pi ∈ An,+

h,k

}
,

A
n,−
k :=

{
i ∈ J | pi ∈ An,−

h,k

}
and

Ink :=
{
i ∈ J | pi ∈ Inh,k

}
= J \

(
A
n,+
k ∪A

n,−
k

)
.

At various places the distinction between positive active set and negative active set is
not necessary and the abbreviation An

k := A
n,+
k ∪A

n,−
k will be used. Additionally we

assume that the vertices are ordered in such a way that the first indices belong to the
inactive set. This just simplifies the notation and is no restriction. The ordering could
easily be achieved by a simple renumbering or permutation of rows and columns.

Applying these algebraic notations to (PDAS-II) and using the submatrix and sub-
vector notation (3.1) and (3.2), we obtain the algebraic formulation (APDAS) of the
primal-dual active set algorithm formulated in the semi-implicit setting, i.e. u∗h = un−1

h .

Algorithm 3.4 Algebraic primal-dual active set algorithm (APDAS)

1. Set k = 0, initialize A±
0 , define I0 = J \ (A+

0 ∪A−
0 ).

2. Set uA±

k
= ±1.

3. Solve for (uIk ,wk) the system




τS

MIk

0
MIk 0 −εγSIkIk





(
wk

uIk

)

=

(
Mun−1 −MJAk

uAk

−γ
ε
MIku

n−1
Ik

+ εγSIkAk
uAk

)

.

(3.26)

4. Define µIk
,µAk

via

µAk
=

ε

γ
wAk

− ε2M−1
Ak

(SAkIkuIk + SAk
uAk

) + un−1
Ak

, (3.27)

µIk
= 0. (3.28)

5. Set A+
k+1 := {i ∈ J | uki + µki

c
> 1},

A−
k+1 := {i ∈ J | uki + µki

c
< −1} and

Ik+1 := J \ (A+
k+1 ∪A−

k+1).

6. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.
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This algorithm is used in each time step of the simulation. Note that most steps here are
very simple value assignments with the exception of 3., where the solution of (3.26) has
to be calculated. We comment on different methods to solve this system of equations
in Chapter 4. In Chapter 5 we use the saddle point structure of the system and use a
Schur complement decomposition to derive a reduced system, which is then solved by
a preconditioned conjugate gradient method. Also we present results concerning the
existence and uniqueness of solutions in Section 3.7.

3.4 Primal-dual active set method for non-constant

mobility (mPDAS)

Earlier we discussed the extension of the classical Cahn-Hilliard problem by means of
a non-constant diffusional mobility, compare Section 2.5. In the following we derive
a fully discrete scheme of those problems with non-constant mobility. We restrict
ourselves to the case with explicitly discretized mobility due to the fact that the implicit
case leads to a non-linear method. Again as for the discretization of the problem with
constant mobility we assume Ω ⊂ Rd be a polyhedral domain and piecewise linear finite
elements Sh on the triangulation {Th}h>0 as in Section 3.1. To deal with the additional
restriction caused by a degenerate mobility we take a subset of the vertices pj , j ∈ Jh,
where changes are possible, and define

Mn
h :=

{
pj ∈ Jh | ∃T ∈ Th such that pj ∈ T , b(un)|T 6≡ 0

}
(3.29)

as well as the associated subset of the finite element functions

V n
h := {χ ∈ Sh | χ(pj) = 0 for all pj ∈ Jh \Mn

h} . (3.30)

Note that the remaining nodes in Jh \Mn
h remain passive, i.e. no changes in the con-

centration unh occur there. Extending the fully discrete version of the primal-dual active
set algorithm for constant mobility, see Algorithm 3.3, we first replace the definitions
of the active sets. Adding the dependency on the mobile set Mn−1

h , we define

An,+
h =

{

pj ∈ Mn−1
h | unh(pj) +

µnh(pj)

c
> 1

}

,

An,−
h =

{

pj ∈ Mn−1
h | unh(pj) +

µnh(pj)

c
< −1

}

for any positive c. Note that the added dependency is given due to the explicit dis-
cretization of the diffusional mobility term. Then we define the set of inactive nodes
as Inh = Mn−1

h \ (An,+
h ∪ An,−

h ) and require

unh(pj) = ±1 if pj ∈ An,±
h ,

µnh(pj) = 0 if pj ∈ Inh .
(3.31)
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Furthermore the immobile nodes omit the condition

unh(pj) = un−1
h (pj) if pj ∈ Jh \Mn

h. (3.32)

Plugging these into the algorithm we get the following new algorithm for one time step
with non-constant diffusional mobility.

Algorithm 3.5 Primal–dual active set algorithm with explicit non-
constant mobility

(mPDAS-II)

1. Set k = 0, initialize Mn−1
h as well as A±

0 and define I0.

2. Solve for (uk, wk) ∈ Sh × V n−1
h the system

(uk − un−1
h , χ)h +

τ

ε
(∇wk, b(un−1)∇χ) = 0 ∀ χ ∈ Sh , (3.33)

(wk, χ̃)h − εγ(∇uk,∇χ̃)−
γ

ε
(ψ′

0(u
∗
h), χ̃)h =

1

ε
(f, χ̃)h ∀ χ̃ ∈ S̃h,k , (3.34)

uk(pj) = ±1 if pj ∈ A±
k . (3.35)

3. Define µk ∈ V n−1
h via

µk(pj) (1, χj)h =
ε

γ
(wk, χj)h − ε2(∇uk,∇χj)

− (ψ′
0(u

∗
h), χj)h −

1

γ
(f, χj)h ∀ pj ∈ A±

k , (3.36)

µk(pj) = 0 ∀ pj ∈ Ik. (3.37)

4. Set A+
k+1 := {pj ∈ Mn−1

h | uk(pj) + µk(pj)

c
> 1},

A−
k+1 := {pj ∈ Mn−1

h | uk(pj) + µk(pj)

c
< −1} and

Ik+1 := Mn−1
h \ (A+

k+1 ∪A−
k+1).

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Note that (3.33) can also be split into two parts. If χ ∈ Sh \ V n−1
h the equation

is reduced to (uk − un−1, χ)h = 0, leading to a smaller system. When we rewrite
the system consisting of (3.33) and (3.34) in algebraic notation, we have to define a
modified stiffness matrix given by

Sn−1
b :=

(
(∇χj, b(un−1)∇χi)

)

i,j
, i, j ∈ Mn−1, (3.38)

where Mn−1 ⊂ J denotes the set of indices corresponding to Mn−1
h similarly to the

sets introduced in Section 3.1. For some remarks on the actual implementation of
the system assembly process see Section 3.6.6. Again we assume that the vertices are
ordered in such a way that the inactive vertices are numbered before the active ones.
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Using (3.38) we get




τ
ε
Sn−1
b

MIk

0
MIk 0 −εγSIkIk





(
wk

uIk

)

=

(
MMn−1un−1

Mn−1 −MMn−1Ak
uAk

1
ε
MIkf Ik

− γ
ε
MIku

n−1
Ik

+ εγSIkAk
uAk

)

.

(3.39)
Note that the vector wk ∈ R|Mn−1| as well as the the matrices have to be understood
in the sense that they only operate on the mobile vertices given by Mn−1. The corre-
sponding algebraic notation of Algorithm 3.5 could now be formulated analogously to
the derivation of Algorithm 3.4.

3.5 Lagrange-Newton method with non-degenerate

mobility (LNM)

Finally we present the fully implicit discrete Lagrange-Newton method with non-
degenerate diffusional mobility given in Section 2.5.4. Please note that we require
Assumption 2.7. Again we discretize with linear finite elements and use the mass
lumped inner product in place of the L2 product, compare Section 3.1. Rewriting
the Newton-update formula (2.75), we get the following weak problem by testing with
(ζu, 0, 0), (0, ζw, 0) and (0, 0, ζµ).
Find (δuk, δwk, δµk) ∈ Sh × Sh × Sh such that

εγ(∇δuk,∇ζu)−
γ

ε
(δuk, ζu)h −

τ

2ε
(|∇wk|2b′′(uk)δuk, ζu)h

− (δwk, ζu)h −
τ

ε
(∇wk, b′(uk)ζu∇δwk) +

γ

ε
(δµk, ζu)h

=− εγ(∇uk,∇ζu)h +
γ

ε
(uk, ζu)h + (wk, ζu)h

+
τ

ε
(∇wk, b′(uk)ζu∇wk)−

γ

ε
(µk, ζu)h −

1

ε
(f, ζu)h ∀ζu ∈ Sh,

−τ
ε
(∇wk, b′(uk)δuk∇ζw)− (δuk, ζw)h −

τ

ε
(∇δwk, b(uk)∇ζw)

=
τ

ε
(∇wk, b(uk)∇ζw) + (uk − un−1, ζw)h ∀ζw ∈ Sh,

−c(χA+∪A−δuk, ζµ)h + (χIδµk, ζµ)h

= (µk −min(0, µk + c(uk + 1))−max(0, µk + c(uk − 1)), ζµ)h ∀ζµ ∈ Sh.

Note that the third equation uses the earlier definitions of the active and inactive sets
for the formulation of a slanting function. It can again be split and we obtain

(δuk, ζµ)h = (±1 − uk, ζµ)h ∀ζµ ∈ Sh \ S̃h,k,
(δµk, ζµ)h = (−µk, ζµ)h ∀ζµ ∈ S̃h,k.

Due to the linearity of the equations we can easily replace the update steps, i.e. set
δuk = uk+1 − uk and so on, and eliminate most of the right hand side terms by simply
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rearranging the terms, to obtain a formulation similar to the primal-dual active set
methods. We end up with

εγ(∇uk+1,∇ζu)−
γ

ε
(uk+1, ζu)h −

τ

2ε
(|∇wk|2b′′(uk)uk+1, ζu)h

− (wk+1, ζu)h −
τ

ε
(∇wk, b′(uk)ζu∇wk+1) +

γ

ε
(µk+1, ζu)h

=− τ

2ε
(|∇wk|2b′′(uk)uk, ζu)h −

1

ε
(f, ζu)h ∀ζu ∈ Sh, (3.40)

−τ
ε
(∇wk, b′(uk)uk+1∇ζw)− (uk+1, ζw)h −

τ

ε
(∇wk+1, b(uk)∇ζw)

=− τ

ε
(∇wk, b′(uk)uk∇ζw)− (un−1, ζw)h ∀ζw ∈ Sh, (3.41)

as well as uk+1(pj) = ±1 for all pj ∈ A±
k+1 and µk(pj) = 0 for all pj ∈ Ik.

Remark 3.2. The above discrete problem (3.40)-(3.41) has some additional terms in
comparison to the standard discretization of the Cahn-Hilliard PDE. More precisely
these are the terms depending on b′ and b′′. However all of them are multiplied by τ
and hence we have again a consistent discretization of the partial differential equation.

The remaining part of this section gives the necessary notations we need for stating
the above method in algebraic notation. Extending the already introduced notation
from Section 3.1, we define the matrices

S
(k)
b :=

(
(∇χj , b(u(k))∇χi)

)

i,j
,

S
(k)
b′ :=

(
(∇χj , χib′(u(k))∇wk)

)

i,j
and

M
(k)
b′′ :=

(
(|∇wk|2b′′(uk)χj, χi)

)

i,j
.

Using this we rephrase the semi-smooth Newton method in a similar style to the primal-
dual active set methods given earlier. We obtain the method stated in Algorithm 3.6
below.

This algorithm again consists of almost only simple assignments and matrix vector
multiplications with the exception of step 3., where the solution to (3.42) has to be
calculated. The structure of the problem here is similar as before. We can also see
that in case of a constant diffusional mobility the standard method is recovered again.

The system of equations (3.42) is also symmetric due to the symmetry of the matrices
S, Sb, M and Mb′′ . Thus the same methods as before can be applied to solve this
system, see Chapter 4 and 5.
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Algorithm 3.6 Lagrange-Newton method for implicit non-degenerate
mobility

(LNM)

1. Set k = 0, initialize A±
0 , define I0 = J \ (A+

0 ∪A−
0 ).

2. Set uA±

k
= ±1.

3. Solve for (uIk ,wk) the system

(
τ
ε
Sb ( τ

ε
S
(k)
b′ +M)JIk

( τ
ε
S
(k)
b′

T
+M)IkJ −(εγS− γ

ε
M− τ

2ε
M

(k)
b′′ )IkIk

)(
wk

uIk

)

=

(

Mun−1 −MJAk
uAk

+ τ
ε
S
(k)
b′ uk−1,Ik

(εγS− γ
ε
M− τ

2ε
M

(k)
b′′ )IkAk

uAk
+ ( τ

2ε
M

(k)
b′′ uk−1)Ik +

1
ε
MIkf Ik

)

.

(3.42)

4. Define µIk
,µAk

via

µAk
= M−1

Ak

(

( τ
γ
S
(k)
b′ + ε

γ
M)wk−(ε2S−M− τ

2γ
M

(k)
b′′ )uk− τ

2γ
M

(k)
b′′ uk−1− 1

γ
Mf

)

Ak

,

µIk
= 0.

5. Set A+
k+1 := {i ∈ J | uki + µki

c
> 1},

A−
k+1 := {i ∈ J | uki + µki

c
< −1} and

Ik+1 := J \ (A+
k+1 ∪A−

k+1).

6. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

3.6 Various tasks on the discrete level

There are still some details open before the algorithms introduced here can be imple-
mented. Below we discuss those things and point out restrictions for the selection of
the various parameters.

3.6.1 The adaptive grid

For all the simulations presented here the finite element toolbox ALBERTA by Schmidt
and Siebert [SS05] was used for mesh generation, the assembly of the matrices and
administration. To generate the adaptive meshes we used the mesh adaption strategy
of Barrett, Nürnberg, Styles [BNS04]. Experiments showed that it is essential to ensure
that at least eight vertices are present across the interfaces to avoid mesh effects like
anisotropy, see also Blowey and Elliott [BE93] or [BE94]. We hence refine on the
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interface down to a level where eight vertices are present and coarsen in the areas where
the concentration u is constant. For given parameter ε this results in an upper bound
hfine ≤ επ

9
, where hfine is the refinement level on the interface. We remark here that for

the potential ψ0 in (2.5) the interfacial thickness is given by επ, compare [BE94]. Since
we want to avoid too coarse meshes we additionally define hcoarse := 10·hfine and choose
a tolerance tol = 10−6. Afterwards the mesh adaption is done in the following way: For
each element T ∈ T h calculate the indicator ηT := |min

x∈T
|u(x)| − 1|. Then, a triangle

is marked for refinement if it, or one of its adjacent elements, satisfies ηT > tol · 10−1

and if hT > hfine. A triangle is marked for coarsening if it satisfies ηT < tol · 10−3 and
hT < hcoarse. This is repeated until no further refinements or coarsenings are made.
When using adaptive meshes for the primal-dual active set algorithm a choice has to
be made for every newly created vertex if it should belong to the active or inactive set.
Due to the close link to Newton methods the selection of initial data for the iteration
process is a key ingredient for a fast and efficient method. Thus the selection of good
initial active and inactive sets is crucial.

3.6.2 Initialization of the active sets

As mentioned previously the application of a PDAS-method to the interface evolution
has the advantage that the good initialization due to the information from the previous
time step leads to a large speedup. At the first time step n = 1 the active set An,±

0

is initialized using the given initial data u0h. Since in the limit the active sets describe
the sets where u is strictly active a good approximation of A1,±

0 is given by the active
set of u0h. Hence we choose A1,±

0 =
{
pj ∈ Sh | |u0h(pj)∓ 1| ≤ 10−8

}
.

For time steps n ≥ 2 we can exploit in addition µn−1
hn−1

. Due to possible grid changes
from time step n− 1 to time step n one may have to apply additionally the standard
interpolation Ihn to the new grid Shn, i.e. with u−1 := Ihnu

n−1
hn−1

and µ−1 := Ihnµ
n−1
hn−1

initialize the active set An,±
0 as in step 4 of Algorithm 3.3.

However a less time consuming method is to initialize the active set in the following
way, which is applied in this work: if an edge between two positive or two negative
active vertices is bisected, the new vertex is set active and otherwise the new vertex is
set inactive. This is sufficient, since it is only an initial guess for the sets, and does not
need additional effort to determine the sets on each node anew.

3.6.3 Choosing of the parameter c

To determine the active sets we have to choose the parameter c > 0. In the unilateral
case the selection of c > 0 has no influence on the iterates after the first iteration and
can be chosen arbitrary, see Hintermüller, Ito and Kunisch [HIK02]. However this is no
longer true in the case of bilateral bounds. This is also discussed for similar obstacle
problems in the paper by Blank, Garcke, Sarbu and Styles, see [BGSS09]. If c is chosen
too small we observed cases in which the iterates oscillated and the algorithm did not
converge. Figure 3.1 shows the values of u at various PDAS iterations in one time step
of a simulation in one space dimension with h = 1

512
, τ = 10−5, πε = 0.2 and c = 0.01.
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In the eighth iteration the algorithm breaks down because all vertices are in the active
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Figure 3.1: Oscillations in 1D if c is too small.

set and the system no longer exhibits a valid solution, compare Remark 3.5. Redoing
the simulation with c = 0.2 fixed the problem and after two iterations the time step
was completed with only marginal changes to u since the initial data was close to a
stationary solution. The same phenomenon was observed in higher space dimensions.
An heuristic approach showed that it is sufficient to ensure that no vertex can change
from the positive active set A+ to the negative active set A− and vice versa in one iter-
ation. This can be achieved by selecting a PDAS parameter c large enough, depending
on the magnitude of the Lagrange multiplier µ.

Remark 3.3. Note that our scaling of the Lagrange multiplier µ with γ
ε
becomes im-

portant at this point. With this scaling we obtain a µ with a magnitude of roughly 1. In
some early iterations especially when starting with absolutely random initial data this
might not always be the case but there the magnitude of µ depends heavily on the mesh
size of the underlying grid. In all situations where the interfaces are well developed µ
typically takes values of roughly ±1.1 independently of γ and ε.

In all the simulations a value of c = 10 was sufficient when the interfaces were already
well developed and adequate initial guesses for the active sets were known. Therefore,
if not mentioned otherwise c = 10 is chosen in the calculation. In simulations with
distortions or jumps in the concentration u larger values depending on the mesh size
were necessary. Choosing the parameter c larger had no percievable influence on the
simulation.

3.6.4 Some remarks on the time step width

Considering the semi-implicitly time discretized problem, we show in Lemma 3.4 in
the following section that the PDAS iteration is well posed for all time step sizes. All
simulations on a suitably fine equidistant grid to resolve the interface adequately con-
verged after very few PDAS iterations. Naturally the approximation error gets larger
for large time steps and the related sharp interface problem is no longer approximated
nicely. This behavior can be seen, e.g. in the simulations comparing the numerical
solutions to the sharp interface solutions, see Section 6.1.2.
In Lemma 2.11 and Lemma 2.12 we have proven the existence and uniqueness of a
minimizer of the fully implicit time discrete scheme with a restriction on the time step
width. Naturally the same effects as above occur on the adaptive grid. However in
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almost all of our simulations no problems occurred for sensible large time steps even
above the upper bound, where we could show well-posedness of the problem. However
for comparatively large time steps significantly more primal-dual active set iterations
were necessary. To showcase this behavior we use constant mobility, i.e. ρ ≡ 1 and set
γ = 1. As initial data we use data similar to the initial data used in Figure 3.2 below.
However here we use an equidistant mesh to avoid any influence of the adaptivity on
this test. As long as the time step size is below the bound where our proof works,
the iteration numbers stay low. Simulations using a time step size larger than that
converge somewhat slower and sometimes no convergence is reached for comparatively
large time steps, see Table 3.1.

ε vertices τmax =
4ε2

γ
PDAS-iterations for various time step sizes τ

10−8 10−7 10−6 10−5 10−4 5 · 10−4 10−3

0.04 16641 6.4 · 10−5 2 2 3 5 6 14 —
0.02 66049 1.6 · 10−5 3 4 5 6 12 — —
0.01 263169 4 · 10−6 4 5 7 7 32 54 53

Table 3.1: Implicit method for different time step sizes.

Another problem arises when the grid used is adaptively generated by the method
described in Section 3.6.1. For large time steps this leads to mesh anisotropy effects due
to the fact that the interface moves beyond the finely resolved part, further decreasing
the accuracy of the time evolution process, compare Figure 3.2, where the solution after
a comparatively large time step on an adaptive mesh is shown. Please note that this
behavior occurs only when we use the implicit time discretization of the free energy
term.

Data at beginning of the time
step.

Solution after one time step
(τ = 10−4).

Figure 3.2: Solution u of the implicit method after one time step. Here the time step
τ = 10−4 leads to errors due to the adaptive mesh and fast moving interface.

The explicit method allows for large time steps, but the evolution is slowed by a
pinning effect, which also explains the slowed evolution in the comparative study we
did in Section 6.1.2. We repeated the time step shown in Figure 3.2 with the explicitly
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discretized free energy term and show the results for the same time step size as well as
for an extremely large time step size, see Figure 3.3.

Solution after one time step
(τ = 10−4).

Solution after one large time
step (τ = 104).

Figure 3.3: Explicit time steps with initial data as in Figure 3.2.

The problem with the generated meshes for the implicit method occurs due to the fact
that the explicit algorithm controls the adaptivity of the mesh with information of un−1

at the old time step. To circumvent this problem an implicit method could be used,
where the mesh also resolves un equally good. Even if we might use larger time steps
without the problems arising in the explicit method, this additional iteration leads to a
higher computational effort for a single time step. In addition to the effort for adapting
the mesh all matrices have to be adjusted or assembled anew. Since the time step size
necessary for this phenomenon to appear is quite large, we are content with the explicit
method.

3.6.5 Remark on the tolerance for the saddle point system
solver

We would like to point out that the tuning of the tolerance used for the solution of
the saddle point problem becomes very important with respect to the convergence of
the primal-dual active set iteration. If the tolerance allowed for the solution of saddle
point problem is too large, convergence for the primal-dual active set iteration is not
possible. A closely related topic, namely the control of the tolerances prescribed for an
inexact preconditioned conjugate gradient method, is extensively discussed by Golub
and co-workers [GY99], where some algorithm for the control of the tolerances of the
nested iterations there is given. Some similar problems occur when we use a Schur
complement type solver in conjunction with an iterative solver, compare Chapter 5.
The simulations using the direct solver for the solution of the saddle point problem
done during the course of this project, exhibited no problems at all, which was of course
the expected behavior. The application of an iterative solver on the other hand with a
tolerance, which is too large, leads to a diverging primal-dual active set iteration.
Some speedup was gained by the use of a heuristic decreasing of the tolerance for each
primal-dual active set iteration, i.e. we started out in the first iteration with a tolerance
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of 10−5 for the first iteration and decreased it with each iteration by the factor of 0.1
down to 10−10.

3.6.6 System matrix assembly with non-constant mobility

The assembly of the stiffness matrix with non-constant mobility can reuse values calcu-
lated for the assembly of the standard stiffness matrix. We show this by testing (3.33)
with χj and the following short calculation

(∇wk, b(un−1)∇χi) =
∑

j∈Mn−1
h

wk,j(∇χj, b(un−1)∇χi)

=
∑

j∈Mn−1
h

wk,j

∑

T∈Th

∫

T

∇χj · b(un−1)∇χi

=
∑

j∈Mn−1
h

wk,j

∑

T∈Th

1

|T |

∫

T

∇χj · ∇χi
∫

T

b(un−1),

where we used the fact that ∇χj · ∇χi is constant for piecewise linear nodal basis
functions χi, χj ∈ Sh on each element. We don’t need to evaluate the integral again,
because the scalar product of the basis functions gradients have already been calculated
for the assembly of the discrete Laplacian with constant mobility necessary for the u
term. We denote the local element stiffness matrix by sT , which is given by

sT =





∫

T

∇χj · ∇χi





i,j

for all i, j such that pi, pj ∈ T .

The indices i, j have to be interpreted correctly. To be formally correct we would
require the introduction of a mapping from local indices to global indices, which we
omit for a shorter presentation. For more details on the assembly of the matrices by
element we refer to standard finite element literature like Braess [Bra07] or Brenner
and Scott [BS08]. Finally we obtain

(
Sn−1
b

)

i,j
=
∑

T∈Th

(sT )i,j
1

|T |

∫

T

b(un−1)

for the generation of the stiffness matrix with non-constant mobility.
Thus it is sufficient to evaluate the integral over b on each element for the creation
of the modified system matrix. If the value of the integral is zero, then nothing is
added. Additionally we gain the information on the mobile set Mn−1

h , i.e. the set
where the mobility function b is positive, simply by storing the information, which
vertices are updated by the above formula. For the actual calculation of

∫

T
b(u) we use

a quadrature formula, which is exact for polynomials of degree two. Since u is linear
on each simplex T this is sufficient for the chosen mobility b(u) = (1− u2).
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The implicitly discretized mobility lead to the Lagrange-Newton method. Analogously
to before, we get

(S
(k)
b )i,j =

∑

T∈Th

(sT )i,j
1

|T |

∫

T

b(u(k)).

The calculation of the entries of M
(k)
b′′ can be done in a very similar way. The fact that

∇wk is constant on each element and a simple reformulation gives

(|∇wk|2b′′(uk)χj , χi) =
∑

T∈Th

∫

T

|∇wk|2b′′(uk)χjχi

=
∑

T∈Th

|∇wk|T |2
∫

T

b′′(uk)χjχi.

Additionally the factor on each element given by the ∇w term can easily be calculated
with the help of the local stiffness matrix. Using local numbering again and ∇wk =
∑

i∇wk,i∇χi, we get

|∇wk|T |2 =wk,j∇
(
∑

i

wk,iχi

)

· ∇
(
∑

j

wk,jχj

)

=
∑

i,j

wk,iwk,j∇χi · ∇χj =
1

|T |w
T
k|T (sT )wk|T .

Thus for the calculation we can also use the already calculated values of the local
element stiffness matrix. The remaining integral is again evaluated by a quadrature
formula. Depending on b′′ the integral is either evaluated only approximately or the
number of quadrature points and thus the degree of integrands the formula is exact for
has to be adjusted. If b′′ is constant the latter can also be evaluated by means of the
element mass matrix.
The remaining matrix S

(k)
b′ is also assembled by element, again we reduce the formula by

using precalculated parts. Replacing the finite element function by its representation
in basis functions again, we obtain

(∇χj , χib′(u(k))∇wk) =
∑

T∈Th

1

|T |

∫

T

∇χj · ∇
(
∑

l

wk,lχl

)
∫

T

b′(u(k))χi

=
∑

T∈Th

1

|T |

∫

T

(sTwk|T )j

∫

T

b′(u(k))χi.

Analogously to before we calculate
∫

T
b′(u(k))χi by means of a quadrature formula.

3.7 Existence and uniqueness of solutions

Ahead of discussing practical solution methods of the discrete saddle point system aris-
ing in (mPDAS-II), we present existence and uniqueness results for the corresponding
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system of equations (3.33)-(3.35). The diffusional mobility given by ρ = 1
ε
b(un−1) is

required to fulfill either Assumption 2.7 or Assumption 2.8. The results below are for-
mulated for the primal-dual active set method with degenerate explicit non-constant
diffusional mobility. Note that the non-degenerate case is included, due to the fact
that V n−1

h = Sh and Mn−1
h = Jh then holds. Again as before those results are also true

for (PDAS-II) by setting the diffisional mobility to ρ ≡ 1, i.e. b(u) ≡ ε, and the force
term f ≡ 0. Note that the assertion of a non-empty inactive set is crucial.

Lemma 3.4. For all un−1
h ∈ Sh and A±

k there exists a unique solution (uk, wk) ∈
Sh × V n−1

h of (3.33)-(3.35) with ∗ = (n− 1), i.e. the semi-implicit case, provided that
Ik = Mn−1

h \ (A+
k ∪ A+

k ) 6= ∅.
Proof. The idea of this proof is to consider the discretized version of the minimization
problem (2.57) under the constraints (2.58) and u = ±1 on A±

k and to use ideas similar
to the existence proof in Lemma 2.11. Hence, we define Sh,m := {χ ∈ Sh |

∫

Ω
− χ = m},

where m :=
∫

Ω
− un−1

h ,

SIh := {u ∈ Sh | u(pj) = ±1 if pj ∈ A±
k and u(pj) = un−1(pj) if pj ∈ Jh \Mn−1

h } ,
and SIh,m := SIh ∩ Sh,m. Since Ik 6= ∅ we conclude SIh,m 6= ∅. Additionally we set

V n−1
h,m := {χ ∈ V n−1

h |
∫
−Mn−1

h

χ = m}, where V n−1
h is the set of finite element functions,

whose support intersects with the one of the mobility function ρ, see (3.30).
Similar to the continuous weighted Laplacian given in (2.52), the discrete inverse
weighted Laplacian (−∇ · ρ∇)−1

h : V n−1
h,0 → V n−1

h,0 , ηh 7→ (−∇ · ρ∇)−1
h ηh is defined

via
(∇((−∇ · ρ∇)−1

h ηh), ρ∇χ) = (ηh, χ)h for all χ ∈ Sh,0 . (3.43)

The linear equation (3.43) has a unique solution, since the homogeneous problem only
has the trivial solution and V n−1

h,0 is finite dimensional. We define uk ∈ SIh,m as the
solution of the minimization problem

min
η∈SI

h,m

{
1

2τ
(∇(−∇ · ρ∇)−1

h (η − un−1
h ), ρ∇(−∇ · ρ∇)−1

h (η − un−1
h ))

+
γε

2
(∇η,∇η) + γ

ε
(ψ′

0(u
n−1
h ), η)h +

1

ε
(f, η)h

} (3.44)

which exists uniquely since the Poincaré inequality for functions with mean value zero,
similar as in the proof of Lemma 2.11, implies coerciveness. Computing the first
variation of the minimization problem (3.44) gives for the solution uk ∈ SIh,m

0 =
1

τ
(∇(−∇ · ρ∇)−1

h (uk − un−1
h ), ρ∇(−∇ · ρ∇)−1

h χ̃) + γε(∇uk,∇χ̃)

+
γ

ε
(ψ′

0(u
n−1
h ), χ̃)h +

1

ε
(f, χ̃)h

(3.45)

for all χ̃ ∈ S̃h,k with
∫

Ω
− χ̃ = 0. Now we define wk ∈ V n−1

h as

wk = −(−∇ · ρ∇)−1
h

(
uk − un−1

h

τ

)

+ λk, (3.46)
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where λk ∈ R is uniquely given with the help of any nodal basis function χj ∈ Sh with
pj ∈ Ik by

λk =

{
1

τ
((−∇ · ρ∇)−1

h (uk − un−1
h ), χj)h + γε(∇uk,∇χj)

+
γ

ε
(ψ′

0(u
n−1
h ), χj)h −

1

ε
(f, χj)h

}

/(1, χj)h.

(3.47)

Using the definition of the discrete inverse weighted Laplacian, see (3.43), and the fact
that

∫

Ω
− uk =

∫

Ω
− un−1 now gives that (3.33) holds. Furthermore (3.45), (3.43) and (3.46)

imply that (3.34) holds for all χ̃ ∈ S̃h,k with
∫

Ω
− χ̃ = 0. For χ̃ ∈ S̃h,k which do not satisfy

the integral constraint
∫

Ω
− χ̃ = 0 we set χ̂ := χ̃− αχj with pj ∈ Ik and α ∈ R such that

∫

Ω
χ̂ = 0. We use this choice of χ̂ as a test function in (3.45). We then obtain that

(3.34) holds for all χ̃ ∈ S̃h,k due to the following caluculation:

0
(3.43)
=

1

τ
((−∇ · ρ∇)−1

h (uk − un−1
h ), χ̃− αχj)h + γε(∇uk,∇(χ̃− αχj))

+
γ

ε
(ψ′

0(u
n−1
h ), χ̃− αχj)h +

1

ε
(f, χ̃− αχj)h

(3.47)
=

1

τ
((−∇ · ρ∇)−1

h (uk − un−1
h ), χ̃)h + γε(∇uk,∇χ̃) +

γ

ε
(ψ′

0(u
n−1
h ), χ̃)h

+
1

ε
(f, χ̃)h − αλk(1, χj)h

=
1

τ
((−∇ · ρ∇)−1

h (uk − un−1
h ), χ̃)h + γε(∇uk,∇χ̃) +

γ

ε
(ψ′

0(u
n−1
h ), χ̃)h

+
1

ε
(f, χ̃)h − λk(1, χ̃)h

(3.46)
= − (wk, χ̃)h + γε(∇uk,∇χ̃) +

γ

ε
(ψ′

0(u
n−1
h ), χ̃)h +

1

ε
(f, χ̃)h.

Hence (3.33)-(3.35) has a solution.
It remains to prove uniqueness. Let us assume that (3.33)-(3.35) has two solutions
(uk,1, wk,1), (uk,2, wk,2) ∈ Sh× V n−1

h . Then we obtain for the differences v = uk,1− uk,2,
z = wk,1−wk,2 by testing (3.33) with z and (3.34) with v for (uk,1, wk,2) and (uk,2, wk,2)
after taking differences:

(v, z)h + τ‖∇z‖2L2
ρ
− (z, v)h + γε‖∇v‖2L2 = 0 .

Since
∫

Ω
− uk,1 =

∫

Ω
− uk,2 =

∫

Ω
− un−1 we obtain v ≡ 0 in Ω and hence uk,1 = uk,2. The

identities (3.33), (3.34) imply that necessarily the identities (3.46) and (3.47) have to
hold. This implies that also wk is unique. We remark that this uniqueness result also
implies that the definition of λk in (3.47) does not depend on j.

Now µk ∈ V n−1
h is uniquely defined by (3.36), (3.37) and hence taking Lemma 3.4

into account we obtain that a unique solution of the linear equation system used in
(mPDAS-II), i.e. (3.33)-(3.37), exists.
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Remark 3.5.

1. We require the condition Ik = Mn−1
h \ (A+

k ∪ A−
k ) 6= ∅, which guarantees that

there is a u ∈ Sh such that
∫

Ω
− u = m. Otherwise (3.33) is not solvable.

2. In order to solve (3.33)-(3.37) the main computational effort is to solve the system
(3.33), (3.34) which has a specific structure. The discretized elliptic equation
(3.33) for w is defined on the whole of Ω whereas the elliptic equation (3.34) is
defined only on the inactive set. The two equations are coupled in a way which
leads to an overall symmetric system which will be used later when we propose
numerical algorithms.

The discretization of the complementarity condition (2.67)-(2.69) can also be formu-
lated with the help of the semi-smooth function H(u, µ) = µ− (max(0, µ+ c(u− 1))+
min(0, µ+ c(u+ 1)), see Remark 2.4, as a nonlinear equation

H(unh(pj), µ
n
h(pj)) = 0 ∀ pj ∈ Mn−1

h . (3.48)

Using the approach of Hintermüller, Ito and Kunisch, see [HIK02], we can interpret
(mPDAS-II) as a semi-smooth Newton method for the system (3.33), (3.34), (3.48) and
we obtain the following local convergence result for the semi-implicit discretization.

Theorem 3.6. Let (u, w, µ) ∈ Sh × V n−1
h × V n−1

h be a solution of (3.33), (3.34),
(3.48) with ∗ = (n − 1) such that {pj ∈ Mn−1

h | |u(pj)| < 1} 6= ∅. Then the semi-
smooth Newton method for (3.33), (3.34), (3.48) and hence (mPDAS-II) converges in
a neighborhood of (u, w, µ).

Proof. Showing the existence of a solution to (3.33), (3.34), (3.48) is equivalent to the
problem of finding a zero of the mapping

G : Sh × V n−1
h × V n−1

h → Sh × V n−1
h × V n−1

h

where for (u, w, µ) ∈ Sh × V n−1
h × V n−1

h we define G = (G1, G2, G3) via

(G1(u, w, µ), χ)h := (u− un−1
h , χ)h + τ(∇w, ρ∇χ) ,

(G2(u, w, µ), χ)h := (w, χ)h − γε(∇u,∇χ)− γ

ε
(ψ′

0(u
n−1
h ), χ)h −

γ

ε
(µ, χ)h −

1

ε
(f, χ)h ,

(G3(u, w, µ), χ)h := (H(u, µ), χ)h .

The min-max-function H(u, µ), see (2.37), is slantly differentiable and a slanting func-
tion is given by DH(u, µ) = (0, 1) if |u+ µ

c
| ≤ 1 and DH(u, µ) = (−c, 0) otherwise, (see

[GK07]). As a consequence G is slantly differentiable. Moreover similar as in [GK07]
we can derive that the primal-dual active set method (mPDAS-II) is equivalent to a
semi-smooth Newton method for G. We now get local convergence of (mPDAS-II) if
we can show that the slanting function of G is invertible in a neighborhood of (u, w, µ)
and the inverses are uniformly bounded, see [CNQ01, HIK02].
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The semi-smooth derivative (slanting function) of G is invertible at (û, ŵ, µ̂) ∈ Sh ×
V n−1
h × V n−1

h if and only if we can show injectivity, i.e. that the solution (u, w, µ) ∈
Sh × V n−1

h × V n−1
h of the following linear system

(u, χ)h + τ(∇w, ρ∇χ) = 0, ∀χ ∈ Sh , (3.49)

(w, χ)h − γε(∇u,∇χ)− γ

ε
(µ, χ)h = 0, ∀χ ∈ V n−1

h , (3.50)

u(pj) = 0 if pj ∈ Â :=

{

pj ∈ Mn−1
h |

∣
∣
∣
∣
û(pj) +

µ̂(pj)

c

∣
∣
∣
∣
> 1

}

, (3.51)

µ(pj) = 0 if pj ∈ Î := Mn−1 \ Â , (3.52)

is unique. Testing (3.49) with w, (3.50) with u and using (µ, u)h = 0 we obtain

τ(∇w, ρ∇w) + γε(∇u,∇u) = 0 . (3.53)

This implies that u and w are constant. Then (3.49) gives u ≡ 0. Using the fact
that there exists a pj ∈ Mn−1

h with |u(pj)| < 1 and µ(pj) = 0 we can guarantee that

|û(pj) + µ̂(pj)

c
| ≤ 1 for (û, ŵ, µ̂) in a ball around (u, w, µ). Hence, Î 6= ∅ for (û, ŵ, µ̂)

out of this neighborhood. Testing in (3.50) with χj where pj ∈ Jh implies w ≡ 0 and
finally (3.52) and (3.50) yield µ ≡ 0.
The semi-smooth derivatives only differ if the active and inactive sets change. Since
only a finite number of different choices of these sets are possible we obtain that the
inverses are uniformly bounded for all (û, ŵ, µ̂) with a non-vanishing inactive set Î.
Since we can find an open neighborhood of (u, w, µ), where the condition Î 6= ∅ holds,
we proved the theorem.

Remark 3.7. Let (u, w, µ) be a solution to (3.33), (3.34), (3.48). The proof of Theorem
3.6 requires a neighborhood of (u, w, µ), where the active sets do not vanish. This can
limit the size of the neighborhood in which local convergence can be guaranteed. However
in numerical simulations the mesh size always has to be chosen such that at least eight
points lie across the interface. Hence the above mentioned condition never led to any
problems in practice.

Again as in the continuous setting we can proof results for the implicitly discretized
free energy only if we impose a constraint on the time step width.

Corollary 3.8. Theorem 3.6 holds also for the implicit discretization, i.e. ∗ = n, if
τ < 4ε3

γρmax
.

Proof. The proof follows along the lines of the proof of Theorem 3.6 if one can show
injectivity. Together with ψ′

0(u) = −u, equation (3.50) changes to

(w, χ)h − γε(∇u,∇χ)− γ

ε
(µ, χ)h +

γ

ε
(u, χ)h = 0

The same testing as above leads to τ(∇w, ρ∇w) + γε(∇u,∇u) − γ
ε
(u, u)h = 0 and

testing (3.49) with u yields (u, u)h = −τ(ρ∇w,∇u). We use Cauchy-Schwarz and
Young’s inequality similar to the proof of Lemma 2.12, and obtain∇u = 0, if τ < 4ε3

γρmax
.

Subsequently we get ∇w = 0. We can now argue as in the proof of Theorem 3.6 that
u = w = 0, which implies injectivity.
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Chapter 4

Solvers for the saddle point
problem

The previous chapter introduced in detail the discretized primal-dual active set method
applied to the Cahn–Hilliard gradient flow with obstacle potential. Most of the steps
in Algorithm 3.4 are very simple value assignments and pose no further trouble. The
only remaining challenge is the efficient solution of the arising saddle point structured
system (3.26), which reads as




τS

MIk

0
MIk 0 −εγSIkIk





(
wk

uIk

)

=

(
Mun−1 −MJAk

uAk

−γ
ε
MIku

n−1
Ik

+ εγSIkAk
uAk

)

. (4.1)

The models using non-constant diffusional mobility like Algorithm 3.5 and even Algo-
rithm 3.6 have a very similar structure. Hence all we describe below pertaining the
constant mobility case is applicable to the other situations as well.

In this chapter we present a selection of methods to tackle this linear algebra problem.
We also give some remarks on the effects the selection of this interior solver has on
the primal-dual active set method. A thorough overview on the numerical treatment
of saddle point problems is given by Benzi, Golub and Liesen [BGL05]. Firstly we will
present an adapted over-relaxation Gauß–Seidel type scheme, used previously to solve
the variational inequality problem, see Section 3.2. Instead of a projection a distinction
between two kinds of arising 2 × 2-blocks (on the active respective inactive sets) will
be necessary.

The discretization with linear finite element functions and structured meshes gives rise
to sparse matrices with very few non-zero entries, since they reflect the connection
of the vertices by edges. For calculations in upto two space dimensions the current
state of the art is the use of efficient direct solution methods. Those methods depend
on a good preordering scheme. For sensible simulations in higher dimensions the use
of direct solvers is heavily depending on the underlying hardware structure since the
arising system is still sparse, but the fill in takes its toll and a large amount of memory
for storage has to be provided.
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There is also a variety of other methods for this type of problem. Kornhuber and Gräser
use methods based on a monotone multigrid approach for the solution of the Cahn–
Hilliard variational problem, see e.g. [GK07] or [GK09]. Welford and Kay implemented
a multigrid method for the solution of the Cahn–Hilliard problem with a logarithmic
potential and present a result pertaining the mesh independence, see [KW06]. A block
multigrid solver was developed by Banas and Nürnberg, see [BN09].

In the next chapter a preconditioned Schur complement approach will be presented,
where we can use a conjugate gradient method on a suitable Hilbert space.

4.1 Block Gauss–Seidel type solver (BSOR)

The saddle point problem (4.1) has a structure akin to the variational inequality for-
mulation (3.6)-(3.7). Here in this situation the space K for the test functions omits
no constraints and hence results in an equality. However to apply the block successive
over-relaxation method from before we have to augment the system by the condition
on the active set. Thus we start out with







τSIkIk τSIkAk
MIk 0

τSAkIk τSAkAk
0 MAk

MIk 0 −γεSIkIk 0
0 0 0 IdAk













wIk

wAk

uIk

uAk







=







MIku
n−1
Ik

MAk
un−1

Ak

−γ
ε
MIku

n−1
Ik

±1Ak






. (4.2)

Applying the same reordering of the blocks to write this system in (ui,wi)
t we get

three different types of blocks in the system matrix, namely

Aij =







(

τSij −Mij

−Mij −γεSij

)

, if i ∈ Ik and j ∈ Ik,

(

τSij −Mij

0 −δij

)

, if i ∈ Ak and j ∈ Ak,

(

τSij 0

0 0

)

, otherwise.

Now we can apply the general block SOR Algorithm 3.1 from before, where Z is the
whole space. Hence the projection is no longer necessary and can be omitted. We will
still make a distinction between inactive and active vertices for the explicit solution
formula on the vertices to save computation time.
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Algorithm 4.1 Block SOR solver for PDAS saddle point system (PDAS-
BSOR)

1. Set l = 1 and uA±

k
= ±1, initialize u

(0)
I0

and w(0)

2. For i = 1, . . . , N calculate the right hand sides

gi := Miiu
n−1
i + τ

i−1∑

j=1

Sijw
(l)
j + τ

N∑

j=i+1

Sijw
(l−1)
j ,

hi :=
γ
ε
Miiu

n−1
i + γε

i−1∑

j=1

Siju
(l)
j + γε

N∑

j=i+1

Siju
(l−1)
j

and obtain the new iterates for the two cases. If i ∈ Ak we just need to update

w
(l)
i =

1

τSii

(

gi −Miiu
(l)
i

)

(4.3)

otherwise it suffices to set

u
(l)
i =

Miigi + τSiihi
γετS2

ii +M2
ii

and w
(l)
i =

1

τSii

(

gi −Miiu
(l)
i

)

. (4.4)

3. Stop if ‖u(l) − u(l−1)‖2 < tol, else set l = l + 1 and goto 2.

Note that hi needs to be computed only if i ∈ Ik in step 2.

4.2 Direct multi-frontal solver UMFPack (UMF)

In many large scale applications with sparse structured systems the use of iterative
solvers is not always the most efficient method. Depending on the structure and size
of the system as well as the amount of available fast storage space for the factorized
matrix direct solution techniques can be very competitive. Especially in lower space
dimensions, i.e. one or two, the arising system (4.1) comprises of very few entries
per column and hence the application of sophisticated sparse symmetric direct solvers
is superior to the use of iterative methods. Similar experiences have been recorded
in alike situations, see for example Janna, Comerlati and Gambolati [JCG09] for a
comparative study in the case of elastic structural problems.

Basically all direct solution methods are based on some kind of LU factorization of
the system matrix. The historical example therefore would be the Gauss–Algorithm
taught in almost every elemental linear algebra or numerics course. The dependence of
the algorithm on the ordering of the system nodes can easily be seen. A rudimentary
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method to adress this is given by pivoting strategies, like for example column pivoting.
There is a large variety of different direct solver packages available using a similar
method. In the last decades the pivoting strategies have become very advanced and
result in a huge gain in efficiency concerning the factorization algorithm. For a list of
available solvers we would like to refer the reader to the listing by Davis, see [Dav06b].
An evaluation of such solvers for symmetric systems was done by Gould, Hu and Scott
[GSH07] and in the case of unsymmetric systems by Gupta, see [Gup02].
For our application we decided to use the software package UMFPack written by Timo-
thy Davis [Dav04a], where an unsymmetric multi-frontal method for sparse LU factor-
ization is realized, see Davis and Duff [DD99, Dav04b, DD97]. The used multi-frontal
method introduced by Duff and Reid [DR83], which is a generalization of the frontal
method of Irons [Iro70], gains its speed up from the fact that the reordering, necessary
for the pivoting, is not applied directly to the matrix but aggregated into one frontal
matrix. We would like to refer the reader to the works of Liu [Liu92], where a com-
prehensive presentation of the method is given, as well as to the book of Davis on the
direct solution methods for sparse systems [Dav06a].
We want to point out the applicability of this software package to indefinite systems.
The most important point is the use of a mixture of 1 × 1 and 2 × 2 pivots, see Duff,
Reid, Munksgaard and Nielsen [DRMN79]. Essentially this deals with occurring zero
pivots. This property will be very important later, when we use this package for the
Schur complement solver.
In this work we applied this package to solve the whole saddle point system (4.1) at
once by reassembling the system in each primal-dual active set iteration and factorizing
this updated system. Despite this overhead the direct solver is competitive, which can
be seen in the chapter on numerical experiments.



Chapter 5

Schur complement type solvers

The numerical experiments we present in Chapter 6 show that the iterative solver based
on the block successive over-relaxation method is not competitive in comparison to the
primal-dual active set method together with the direct method, i.e. UMFPack, in two
spatial dimensions. However, especially in simulations with three spatial dimensions,
the direct solver requires huge amounts of memory for the storage of the factorized
system due to fill-in and subsequently the efficiency is vastly decreased. The primal-
dual active set method replaces the variational inequality problem by an iterative
process, where only linear systems of equations have to be solved. Just using the block
SOR method here does not lead to better results than the pBSOR method, but we
now can use stronger iterative methods, like for example just a conjugate gradient or
a multigrid method.

The symmetry and the saddle point structure of the system of equations (4.1), i.e.
(3.26), and those given in the non-constant mobility case (3.39) and (3.42) allow for
a further reduction of the problem by means of a Schur complement decomposition.
The resulting system is again symmetric and positive definite and can thus be solved
using a conjugate gradient method. The convergence speed depends heavily on a good
preconditioning of the system. Due to the special structure of our problem we can
adapt the ideas of Bänsch, Morin and Nochetto, see [BMN10]. The theoretical results
there are not directly applicable due to the degeneracy of one of the operator parts,
caused by the fact that it is given by the Laplacian on the inactive set only. We
illustrate this point in the discussion in one spatial dimension, see Section 5.4.

Ahead of applying the Schur complement decomposition, we introduce a simple refor-
mulation by shifting the variables by a constant in such a way that they carry no longer
any mass. Due to this reformulation we can easily invert the blocks of (4.1) separately
and subsequently eliminate one of the unknowns. Note that the following results are
formulated for the constant mobility case only, but are analogously applicable to the
other formulations with non-constant mobility as well.

65
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We begin by restating the saddle point problem of (PDAS-II), i.e. the finite element
formulation of the system of equations corresponding to (4.1), used in step 3 of Algo-
rithm 3.3:

Determine (uk, wk) ∈ Sh × Sh for given un−1
h and A±

k such that

1

τ
(uk − un−1

h , χ)h + (∇wk,∇χ) = 0 ∀ χ ∈ Sh , (3.21)

(wk, χ̃)h − εγ(∇uk,∇χ̃)−
γ

ε
(ψ′

0(u
∗
h), χ̃)h = 0 ∀ χ̃ ∈ S̃h,k , (3.22)

uk(pj) = ±1 if pj ∈ A±
k (3.23)

holds.

5.1 Reformulation of the saddle point system

The Schur complement formulation of the saddle point problem given by equations
(3.21) and (3.22) requires the inverse of the Laplacian with Neumann boundary con-
ditions in equation (3.21). It is well known that additional conditions are necessary to
obtain a unique solution, see e.g. Bochev and Lehoucq [BL05].
In our context the natural condition is given by the subspace defined by the mass re-
strictions we already imposed on u and w. To obtain a more unified notation we make
a change in variables to obtain a system stated in variables that carry no mass, i.e.
variable w is replaced by v := w −

∫

Ω
− w. Note that this quantity has already occurred

naturally in the derivation of the gradient flow formulation. Something similar will
be done to the variable u to ensure that both variables, which the Schur complement
system is formulated in, are given on the same subspace. Even without such a trans-
formation of the problem, a Schur complement decomposition would still be possible,
but the Laplacian operator on the upper left block would map from one space with
a mass restriction to one with another mass restriction and thus lead to complicated
expressions.
Ahead of replacing the variables, we need some additional notation.

5.1.1 Notation

We introduce characteristic finite element functions 1Ak , 1Ik ∈ Sh for the active and
inactive sets and a signed function 1A±

k
∈ Sh fulfilling

1Ak(pj) =

{
1 if pj ∈ Ak,
0 otherwise

and 1Ik(pj) =

{
1 if pj ∈ Ik,
0 otherwise

1A±

k
(pj) =

{
±1 if pj ∈ A±

k ,
0 otherwise.
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Additionally we denote the restriction of uk onto the active set by uAk := Ih(uk1Ak),
where Ih : C0(Ω) → Sh denotes the standard interpolation operator at the nodes as
in Section 3.1. Analogously we define uIk := Ih(uk1Ik). As a result we can define the
mass m := (un−1

h , 1)h, the active mass mAk := (uAk , 1)h = (1A±

k
, 1)h due to (3.23), the

inactive mass mIk := m−mAk = (un−1
h −1A±

k
, 1)h as well as the constant mk :=

mIk

(1Ik ,1)h
.

Having all these constants we can define an admissible concentration distribution dk by
fixing the active part and distributing the remaining mass equally across the inactive
set, i.e.

dk := 1A±

k
+mk1Ik . (5.1)

The splitting of Ω into active and inactive sets and the fact that the second equation
is only used on a subset of Ω, makes it very convenient to use not only the standard
finite element space Sh, as introduced in Section 3.1, but also some other spaces. For
any given subset ω ⊂ Ω we define

Sω := {χ ∈ Sh | χ(pj) = 0 if pj ∈ Ω \ ω} . (5.2)

Additionally we use the mass constrained finite element space, similar to the definition
used in Section 3.7 to derive existence and uniqueness results, by setting

Sω,m := {χ ∈ Sω | (χ, 1)h = m} . (5.3)

Later the subset ω will be the active or inactive set as necessary. Hence the space of
test functions S̃h,k, used in (3.22), is also denoted by SIk , i.e. the space of the finite
element functions with support on the inactive set.

5.1.2 Introduction of the mass free variables

Previously we already had a formulation with a mass free chemical potential w−
∫

Ω
− w.

We revert back to this formulation in v replacing wk by using a constant wk :=
(wk ,1)h
(1,1)h

and setting

vk := wk − wk1. (5.4)

Note that this way vk is orthogonal to the kernel of the Laplacian, see Section 5.1.3.

Testing (3.21) with χ ≡ 1 results in a restriction on the mass of the variable uk.
Furthermore a part of it is already fixed by the condition on the active sets (3.23),
namely this quantity is given by the active mass mAk . Thus we obtain a restriction on
the mass of uIk , which is given by the constant mIk defined above.

Equation (3.22) is only used to determine uk on the inactive set. With the aim of mass
free variables in mind, we add a constant to uk such that the resulting restriction is
given by a 0–mass condition on the inactive set. We replace the variable uk in the
system of equations by defining the new variable zk ∈ Sh by

zk := uk −mk1Ω.
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For the actual reformulation we split the finite element function zk into two parts, one
on the active set, the other on the inactive set by multiplication with the characteristic
functions 1Ak and 1Ik . In the following we use

zk = zAk + zIk ,

where zAk := Ih(zk1Ak) ∈ SAk and zIk := Ih(zk1Ik) ∈ SIk .
Due to the definition of the constant mk, we attain a new formulation of the problem
in the variable zIk ∈ SIk,0 with the desired property, i.e. (zk, 1Ik)h = 0. This will be a
key property when we split the operator later on.
Utilizing definition (5.1) as well as the information on the active set due to (3.23),
namely zAk = 1A±

k
− mk1Ak , we can rewrite the relation between uk and zk with the

help of the admissible distribution dk and obtain

uk = zk +mk1Ω = zIk + zAk +mk(1Ik + 1Ak)

= zIk + (uAk −mk1Ak) +mk(1Ik + 1Ak)

= zIk + (1A±

k
+mk1Ik)

= zIk + dk.

Since uk, zk and dk are piecewise linear functions, ∇uk = ∇zIk +∇dk holds.
Plugging both variable transformations in the first equation of (PDAS-II), i.e. (3.21),
we obtain an equivalent formulation by the following short calculation:

0 = τ(∇wk,∇χ) + (uk − un−1
h , χ)h

= τ(∇(vk + wk1Ω),∇χ) + (zIk + dk − un−1
h , χ)h

= τ(∇vk,∇χ) + (zIk , χ)h − (un−1
h − dk, χ)h. (5.5)

Ahead of transforming (3.22) we introduce the parameterΘψ ∈ {0, 1} for the distinction
between the implicit (Θψ = 1) and semi-implicit (Θψ = 0) time discretization and
replace the term previously marked by an asterisk by two terms and obtain

(wk, χ̃)h − εγ(∇uk,∇χ̃)−
Θψγ

ε
(ψ′

0(uk), χ̃)h =
(1−Θψ)γ

ε
(ψ′

0(u
n−1
h ), χ̃)h ∀ χ̃ ∈ SIk .

Finally we replace wk and uk with the new variables and reorder the terms, giving

0 = (wk, χ̃)h − εγ(∇uk,∇χ̃)−
Θψγ

ε
(ψ′

0(uk), χ̃)h −
(1−Θψ)γ

ε
(ψ′

0(u
n−1
h ), χ̃)h

= (vk + wk1, χ̃)h − εγ(∇(zIk + dk),∇χ̃)−
Θψγ

ε
(ψ′

0(zIk + dk), χ̃)h

− (1− Θψ)γ

ε
(ψ′

0(u
n−1
h ), χ̃)h

= (vk, χ̃)h − εγ(∇zIk ,∇χ̃)−
Θψγ

ε
(ψ′

0(zIk + dk), χ̃)h

− (1− Θψ)γ

ε
(ψ′

0(u
n−1
h ), χ̃)h + wk(1, χ̃)h − εγ(∇dk,∇χ̃). (5.6)

The new variables introduced in (5.4) and (5.1) satisfy the desired restrictions on the
mass by construction. We recapitulate the essential key properties in the following
lemma.
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Lemma 5.1. The above variables pertain the following conditions:

1. (zIk , 1)h = 0 ⇐⇒ (uIk , 1)h = mIk .

2. (vk, 1)h = 0.

3. (un−1
h − dk, 1)h = 0.

4. If ψ0(u) =
1
2
(1− u2) then

wk =
(vk, 1Ik)h − εγ(∇(zIk − dk),∇1Ik) +

(1−Θψ)γ
ε

(un−1
Ik , 1Ik)h

(1Ik , 1Ik)h
+
Θψγmk

ε
.

Proof. 1. This equivalence follows directly from the linearity of the scalar product
used in the following short computation:

(zIk , 1)h = (uk −mk1, 1Ik)h = (uk, 1Ik)h −mk(1, 1Ik)h = (uIk , 1)h −mIk .

2. Recalling the definition of vk given by (5.4), we obtain

(vk, 1)h = (wk, 1)h −
(wk, 1)h
(1, 1)h

(1, 1)h = 0.

3. The way the variable dk was designed, some terms in (5.5) vanish, when we test
the equation with 1. Utilizing the definition of mk we obtain

(un−1
h − dk, 1)h =(un−1

h − (1A±

k
+mk1Ik), 1)h

=(un−1
h − 1A±

k
, 1)h −mk(1Ik , 1)h

=(un−1
h − 1A±

k
, 1)h −

mIk
(1Ik , 1)h

(1Ik , 1)h

=(un−1
h − 1A±

k
, 1)h −mIk

=(un−1
h − 1A±

k
, 1)h − (un−1

h − 1A±

k
, 1)h = 0.

4. The last assertion follows by testing (5.5) with χ̃ = 1Ik and using ψ0(u) =
1
2
(1− u2), which leads to

0 = (vk, 1Ik)h − εγ(∇zIk ,∇1Ik) +
Θψγ

ε
(uIk , 1Ik)h

+
(1− Θψ)γ

ε
(un−1

Ik , 1Ik)h + wk(1Ik , 1Ik)h − εγ(∇uk,∇1Ik)

= (vk, 1Ik)h − εγ(∇(zIk − dk),∇1Ik) +
Θψγmk

ε
(1Ik , 1Ik)h

+
(1− Θψ)γ

ε
(un−1

Ik , 1Ik)h + wk(1Ik , 1Ik)h.
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Finally we formulate the primal-dual active set algorithm in the new variables. We
replace the system of equations used in step 2 of (PDAS-II) by the equivalent equations
given by (5.5) and (5.6). Please note that we use an additional step to calculate uk
and wk from the new variables before we continue in the algorithm. This additional
computational effort is not necessary, but allows the use of the same implementation
as for the earlier given algorithm.

Algorithm 5.1 Mass free primal-dual active set algorithm (mfPDAS)

1. Set k = 0, initialize A±
0 and define I0 = Jh \ (A+

0 ∪A−
0 ).

2. Solve for (zIk , vk, wk) ∈ SIk,0 × Sh,0 × R

τ(∇vk,∇χ) + (zIk , χ)h = (un−1
h − dk, χ) ∀ χ ∈ Sh , (5.7)

(vk,χ̃)h − εγ(∇zIk ,∇χ̃)−
Θψγ

ε
(ψ′

0(zIk + dk), χ̃)h

=
(1− Θψ)γ

ε
(ψ′

0(u
n−1
h ), χ̃)h + εγ(∇dk,∇χ̃)− wk(1, χ̃)h ∀ χ̃ ∈ SIk , (5.8)

wk =
(vk, 1Ik)h − εγ(∇(zIk − dk),∇1Ik) +

(1−Θψ)γ
ε

(un−1
Ik , 1Ik)h

(1Ik , 1Ik)h
+
Θψγmk

ε
. (5.9)

3. Set uk = zIk + dk and wk = vk + wk1.

4. Define µk ∈ Sh via

(µk, χ)h =
ε

γ
(wk, χ)h − ε2(∇uk,∇χ)

−Θψ(ψ
′
0(uk), χ)h − (1− Θψ)(ψ

′
0(u

n−1
h ), χ)h ∀ χ ∈ SAk , (5.10)

µk(pj) = 0 ∀ pj ∈ Ik. (5.11)

5. Set A+
k+1 := {pj ∈ Jh | uk(pj) + µk(pj)

c
> 1},

A−
k+1 := {pj ∈ Jh | uk(pj) + µk(pj)

c
< −1} and

Ik+1 := Jh \ (A+
k+1 ∪A−

k+1).

6. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Before further discussing the Schur complement formulation of the saddle point prob-
lem, we rephrase the above algorithm again by means of an algebraic notation. The
associated matrix representation of the Laplacian is not given by the stiffness matrix
only, but also uses the mass matrix. We denote the discrete Laplacian by L := M−1S
and set e := (1, 1, . . . , 1)T ∈ R|J |. Note that the vector eIk has to be understood,
as before, as the restriction of the vector onto the index set Ik. Furthermore with
eA±

k
∈ R|Ak| we denote the vector consisting of ±1 depending on which active set the
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vertex is associated with. Additionally we use the following abbreviations

C :=LIk −
Θψ

ε2
IdIk ∈ R|Ik |×|Ik|,

E :=

(
IdIk

0

)

∈ R|Ik|×|J|,

g :=
(
un−1 − dk

)
∈ R|J |,

h := εγM−1
Ik

(Sd)Ik −
(1− Θψ)γ

ε
un−1

Ik
= εγETLd− (1−Θψ)γ

ε
un−1

Ik
∈ R|Ik |.

Applying the algebraic notation to (mfPDAS) and multiplying the equations with M−1

and M−1
Ik

respectively, we obtain the algebraic formulation (mfAPDAS) of the primal-
dual active set algorithm, see Algorithm 5.2.

Algorithm 5.2 Mass free algebraic primal-dual active set algorithm (mfAPDAS)

1. Set k = 0, initialize A±
0 , define I0 = J \ (A+

0 ∪A−
0 ).

2. Calculate mk =
et

(

Mun−1−MJAk
e
A

±

k

)

et
Ik

MIk
eIk

.

3. Solve for (zIk , vk, wk) with etIkMIkzIk = etMv = 0 the system

(
τL E
Et −εγC

)(
vk
zIk

)

=

(
g

h+ (wk −mk
Θψγ

ε
)eIk

)

(5.12)

together with

wk =
etIkMIk

(

vIk +
(1−Θψ)γ

ε
un−1

Ik

)

+ εγetIk (S(zIk + dk))Ik +
Θψγmk

ε

etIkMIkeIk

. (5.13)

4. Set uAk
= ±1, uIk = zIk +mkeIk and wk = vk + wke.

5. Define µIk
,µAk

via

µAk
=
ε

γ
wAk

− ε2M−1
Ak

(SAkJuk) + (1− Θψ)u
n−1
Ak

+ΘψuAk
, (5.14)

µIk
=0. (5.15)

6. Set A+
k+1 := {i ∈ J | uki + µki

c
> 1},

A−
k+1 := {i ∈ J | uki + µki

c
< −1} and

Ik+1 := J \ (A+
k+1 ∪A−

k+1).

7. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.
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Remark 5.2. Note that the mass matrix M is a regular diagonal matrix due to the
projected scalar product (·, ·)h we use. This scalar product has its algebraic equivalent
·m defined by x ·m y := x ·My =

∑

j∈J xjMjjyj.

Also equation (5.13), defining wk, can be evaluated on one arbitrary inactive vertex
only. A few experiments showed no difference in comparison to the original formulation
using the average over all inactive vertices, which might be slightly more stable.
Similarly to the original formulation (4.1), the system of equations (5.12) has saddle
point structure. Also the system is self-adjoint with respect to the scalar product ·m.
The difference is given by the 0-mass condition on the variable vk. On the correspond-
ing subspace the upper left block L can be inverted. This is the concern of the following
section. Using this we can subsequently eliminate the variable vk from the system.
At some point in the following discussion it is more convenient to use a symmetric
formulation of the saddle point problem (5.12). We obtain it by multiplication of the
system with the square root of the mass matrix and inserting a product of this root of
the mass matrix with its inverse on the right side of the matrix. We obtain the following
equivalent system, which is now symmetric with respect to the l2 scalar product:

(
τ L̂ E

Et −εγ(L̂− Θψ
ε2
Id)I

)(

M
1
2vk

M
1
2
I zIk

)

=

(

M
1
2g

MI
1
2 (h+ (wk −mk

Θψγ

ε
)eIk)

)

, (5.16)

where we denote the rephrased matrix representation of the discrete Laplacian by
L̂ := M− 1

2SM− 1
2 .

5.1.3 Inverse Laplacian with Neumann boundary conditions

With the aim of splitting the system of equations (5.12), we have to discuss how to solve
the Laplace problem in equation (5.7). More precisely we need to take a closer look
at the upper row of (5.12). The Neumann boundary conditions require an additional
constraint to ensure uniqueness of the solution. That is why the assembled stiffness
matrix L is only positive semi-definite. This can easily be verified since ker(L) =
span{e}.
Since we already imposed the 0-mass condition on both of our variables we will deal with
this problem by restricting the operator to the subspace U := {x ∈ R|J | | x ·m e = 0}.

Remark 5.3. As shown in Lemma 5.1 the mass of the vector g vanishes, i.e. e·mg = 0.
The same is true for e ·m EzI = 0, namely we get that g, EzI ∈ span{e}⊥m.

Remark 5.4. The discrete Laplacian L is self-adjoint with respect to ·m. Since M
is a positive definite diagonal matrix and S maps all constant vectors to 0, we get
ker(L) = ker(S) = span(e) = U⊥m as well as im(L) = (ker(L))⊥m = (span(e))⊥m.

Similar statements are true for the symmetric version L̂, where the corresponding
subspace is given by Û := {x ∈ R|J | | x · M− 1

2e = 0}. There is also a very close
connection between both operators L and L̂. When we use Y := M

1
2 and Z := M

1
2S,

then L = YZ and L̂ = ZY. Hence both matrices have exactly the same eigenvalues
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and the eigenvectors are given by multiplication with the inverse of Y, see Lemma 5.5
below.

Lemma 5.5. Let Y, Z : H → H be linear operators on a Hilbert space H. Additionally
we assume that Y is invertible and denote the point spectrum of an operator by σ(Y).

1. Then σ(YZ) = σ(ZY).

2. If v ∈ H is an eigenvector of YZ, then Y−1v is an eigenvector of ZY.

Proof. We prove both assertions simultaneously. Let v be an eigenvector of YZ with
eigenvalue λ. Then we get:

ZY(Y−1v) = (Y−1Y)Z(Y−1Y)v = Y−1YZv = Y−1λv = λY−1v.

Since L̂ is symmetric positive semi-definite, the singular value decomposition is given
by the principal axis transformation. Thus we get the singular value decomposition of
L also. We now consider the mapping L : U → U and aim to define an inverse mapping
L−1 : U → U.
Let λ1 ≥ . . . ≥ λn−1 > λn = 0 be the eigenvalues of L and (v1, . . . , vn−1, e) an
orthonormal system of eigenvectors, where e := e/‖e‖. Then the pseudo inverse

L† :=VΣVt = (v1, . . . , vn−1, e)










λ−1
1

λ−1
2

. . .

λ−1
n−1

0










(v1, . . . , vn−1, e)
t

=

n−1∑

i=1

λ−1
i viv

t
i

is a representation of the inverse mapping L−1. Note that for arbitrary right hand
side b the representation L†b =

∑n−1
i=1 βiλ

−1
i vi ∈ U holds, where βi := vtib. Thus the

eigenvectors of L† are given by (v1, . . . , vn−1, e) with eigenvalues λ−1
1 , . . . , λ−1

n−1 and 0.
There is a variety of possibilities to solve this problem numerically and a good overview
is given by Bochev and Lehoucq [BL05]. To apply a direct method successfully without
modifications to a semi-definite system the solver must be able to handle zero pivots.
Since UMFPack has zero pivot strategies implemented we can use it as solver for this
problem, compare Section 4.2. The returned solution y may still contain some parts
which lie in the kernel. To ensure a well defined solution we will remove these by means
of the projection

v = ΠΩy := y − e ·m y

e ·m e
e. (5.17)

Hence v ∈ span{e}⊥m = U. In the same way it is possible to apply a conjugate
gradient method as well as a multigrid solver which works fine even for positive semi-
definite systems if the right hand side and the initial guess fulfill the constraint and
are orthogonal to the kernel of the system matrix with respect to the scalar product,
compare Remark 5.3.
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5.2 Schur complement solver (SC)

To solve the system of equations (5.12) we formulate the Schur complement in the
variable zI . Omitting the subscript k the first row is transformed to

v =
1

τ
L−1(g −EzI) =

1

τ
L−1g − 1

τ
L−1EzI ,

where L−1 denotes the inverse operator of L with respect to the 0-mass constraint, see
Section 5.1.3. It is essential here that g as well as zI don’t posses any mass. Otherwise
the second transformation would not be well defined.
Using the above for v and reordering the terms in the second row of (5.12) yields

(
1

τ
EtL−1E+ εγC

)

zI =
1

τ
EtL−1g − h− (w −m

Θψγ

ε
)eI . (5.18)

The preconditioning by Bänsch, Morin and Nochetto, see [BMN10], is based on the
idea that both parts of the operator, i.e. 1

τ
EtL−1E and εγC, are similar. This simi-

larity is expressed by a spectral condition, compare Section 5.3. The efficiency of the
preconditioning depends on this relation between them. Since L and C are indepen-

dent of ε, γ and τ , at least for Θψ = 0, we multiply equation (5.18) by
√

τ
εγ
, resulting

in the Schur complement equation

(
1√
τεγ

EtL−1E+
√
τεγC

)

︸ ︷︷ ︸

=:F

zI =
1√
τεγ

EtL−1g −
√

τ

εγ
h−

√
τ

εγ
(w −m

Θψγ

ε
)eI .

︸ ︷︷ ︸

=:f

(5.19)
Recalling the previously defined subspace U =

{
x ∈ R|J | | x ·m e = 0

}
and the con-

struction of zI , we want to stress that (5.19) has to be solved with regards to the
0-mass constraint on the inactive set for zI , i.e. zI ·MIeI = 0.
The operator F, as in (5.19), is symmetric, with respect to the ·m scalar product, and
positive definite and can as such be solved by a CG method. We proof this assertion
after introducing some notation, see Lemma 5.11. Analogously to the discussion of the
Laplacian on the whole space, we define the space H := {x ∈ R|I| | Ex ·m e = 0}. The
CG iteration will be carried out on this Hilbert space. Therefore we apply a projected
CG method and define the orthogonal projection

Π : R|I| → H, y 7→ y − ytMIeI

etIMIeI

eI . (5.20)

Lemma 5.6. The above projection given by (5.20) is the algebraic equivalent of the

mapping y 7→ y − (y,1I)h
(1I ,1I)h

1I . This projection has the following properties:

1. Π∗ = Π, i.e. y ·m Πz = Πy ·m z for all y, z ∈ R|I|.

2. Πy = y for all y ∈ H.
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3. ΠeI = 0.

Proof. The mapping Π is a orthogonal projection with respect to the ·m product and
thus has these properties. We can verify them in the following way.

1. Rewriting the mapping in matrix form, we get

Π(y) =

(

IdI −
eIe

t
IMI

etIMIeI

)

y,

which is a symmetric matrix with respect to the ·m inner product.

2. Let y ∈ H be given. Then the assertion follows from ytMIeI = Ey ·m e = 0.

3. Simple calculation yields
ΠeI = eI − 1eI = 0.

The second property is important to enable the incorporation of the projection in front
of the variable zI , transforming FzI = f to

ΠFΠzI = Πf . (5.21)

We want to remark that the term containing w andm is canceled out by the projection.
To derive the Algorithm we can treat the projection as a kind of preconditioning and
apply the algorithm for the preconditioned CG method, see e.g. Greenbaum [Gre97]
or Meister [Mei05]. Setting P = Π∗Π = Π we obtain the following iteration in each
step.

Algorithm 5.3 Projected conjugate gradient method (PCG)

1. Choose z0 ∈ H and set r0 := f − Fz0.

2. d0 := Pr0, α0 := (r0,d0)M .

3. For m = 0, . . . , n− 1:

If αm < tolerance → STOP.

vm := Fdm, βm := αm
(vm,dm)M

.

zm+1 := zm + βmdm.

rm+1 := rm − βmvm.

If ‖rm+1‖ < tolerance → STOP.

pm+1 := Prm+1, αm+1 := (rm+1,pm+1)M .

dm+1 := pm+1 +
αm+1

αm
dm.

4. Return the zm+1.
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Remark 5.7. After obtaining the solution zI we use Lemma 5.1 and compute

w =
etI

(

MI(vI +
(1−Θψ)γ

ε
un−1

I )− εγ(SIJu)
)

etIMIeI

+
Θψγm

ε
.

As a final step we compute a solution to τLv = M (g −EzI). With zI, v and w we
solved the saddle point system (3.26).

The above formulation made use of the symmetry of the discrete Laplacian with respect
to the M-inner product. It is again easily transferable to a symmetric system with

respect to the l2-product as before. Multiplying (5.19) with M
1
2
I as well as adding the

factor M
1
2
I to the variable zI the Schur complement would then be given by

(
1√
τεγ

Et(M− 1
2SM− 1

2 )−1E+
√
τεγM

− 1
2

I SIM
− 1

2
I − Θψ

√
τεγ

ε2
IdIk

)

(M
1
2
I zI) = f̃ .

Note that the variables are again scaled with the square root of the mass matrix. Note
that the subspace H has to be modified together with the projection Π. Additionally
we would like to point out that the resulting conjugate gradient method with the l2
product gives the same iterates than the Algorithm 5.3. This becomes apparent, when
the mass matrix M used in the scalar product is also split by means of its root and
incorporated into the variables.
Furthermore the associated preconditioning, which we derive in the next section, is
essentially the same as for (5.19), again with the exception of an additional factor

M
− 1

2
I , which appears on the left as well as on the right side. Overall this results in a

symmetric preconditioning with respect to the l2 product.

5.3 Preconditioning of the Schur complement sys-

tem (PrecSC)

Let us recall the system (5.19) we have to solve, which is given by

F =
1√
τγε

EtL−1E+
√
τγεC =: S−1 + T (5.22)

defined on U. Using σ :=
√
τγε, the two parts of the operator F are denoted by

S−1 := σ−1EtL−1E = σ−1
(
L−1

)

II
and T := σC = σ

(

LII −
Θψ

ε2
IdII

)

.

It is a well known fact that iterative solvers greatly benefit from an adequate pre-
conditioning. A preconditioner for a saddle point system, which is alike to (3.26), is
constructed by Bänsch, Morin and Nochetto, see [BMN10]. The theory there poses
conditions on the spectra of the operators S and T , compare Theorem 5.16.
For a better understanding of the operator S we require some additional notation
and preliminary results. We use the representation of S−1 as a block of the inverse
Laplacian. There are two essential properties of the Laplacian matrix which we need.
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Lemma 5.8. For every non-empty index set α ( J the sub-matrix Lαα is positive
definite.

Proof. This fact follows from the observation that Lαα is equivalent to the Laplacian
where the vertices not belonging to the index set α are Dirichlet boundary nodes and
as such is positive definite.

Furthermore the Schur complement of Hermitian matrices has some definiteness prop-
erty inherited from the original matrix. In case of the Laplacian the following is true:

Lemma 5.9. For each index set ∅ 6= α ( J and β := J \ α the Schur complement

L/Lαα := Lββ − Lβα (Lαα)
−1 Lαβ

is positive semi-definite.

Proof. This assertion follows directly from the previous Lemma and Theorem 1.12, see
Zhang [Zha05].

The inverse of a block partitioned matrix omits a distinct structure similar to the

solution formula of 2×2 matrices. To this end let X =

(
X11 X12

X21 X22

)

be a partitioned

regular matrix. Under the assumption that X , X11 and X22 are regular we can give an
explicit formula for the inverse, namely

X−1 =

(
(X/X11)

−1 −X11X12(X/X11)
−1

−X−1
22 X21(X/X22)

−1 (X/X22)
−1

)

,

where X/X11 and X/X22 denote the Schur complements analogously to the definition
in Lemma 5.9. Similar formulae have been derived for various types of generalized
inverses, see e.g. Ben-Israel and Greville [BIG04], Rhode [Rho65] or Groß [Gro00].
Redefining the Schur complement by X/X22 = X11−X12X

†
22X21, where we extend the

definition by using the pseudo inverse, the pseudo inverse of the discrete Laplacian can
be written as

L† =

(
L†

AA + L†
AALAI(L/LAA)

†LIAL
†
AA −L†

AALAI(L/LAA)
†

−(L/LAA)
†LIAL

†
AA (L/LAA)

†

)

. (5.23)

Hence we can associate S with a Schur complement quotient of the Laplacian and
obtain

S = σL/LAA = σ
(
LII − LIAL

−1
AALAI

)
. (5.24)

Scroggs and Odell, see [SO66], constructed the pseudo inverse of a matrix via the Jordan
canonical form, retaining the spectral property that if µ is an eigenvalue corresponding
to the eigenvector v, then µ−1 is an eigenvalue of the pseudo inverse corresponding to
v. Their definition and the classical definition by Moore, see [Moo20], and Penrose, see
[Pen55], coincide for symmetric matrices. Thus the eigenvalues of S are given by the
modified Laplacian given in (5.24).
At this point a useful link between S and T is presented in the following lemma.
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Lemma 5.10. Let I 6= ∅, Θψ = 0, S and T as above. Then

0 ≤ (Sw,w) ≤ (T w,w) ∀w ∈ R|I|.

Proof. If A = ∅, the assertion is trivial, since S = T = σL. Let w ∈ R|I| arbitrary. By
means of the representation (5.24) and the symmetry of L we obtain

(Sw,w) = σ(LIIw,w)− σ(LIA(LAA)
−1LAIw,w)

= (T w,w)− σ((LAA)
−1LAIw,LAIw) ≤ (T w,w),

where we used that LAA is positive definite, see Lemma 5.8. Due to Lemma 5.9 the
operator S is positive semi-definite and thus the assertion follows.

The use of the semi-implicit discretization of the free energy, i.e. setting Θψ = 1, allows
for no such general estimate. The additional term, can also be understood as a spectral
shift applied to L−1.

Lemma 5.11. Let I 6= ∅ and Θψ = 0. The system F, given in (5.19), is positive
definite on U.

Proof. We show that F is positive definite due to the fact that it is composed of a
positive definite and positive semi-definite part.
As discussed before the first part of the operator, i.e. EtL−1E, has a one dimensional
kernel spanned by the constant vector. In Section 5.1.3 we used the restriction unto U

to define the inverse Laplacian. Further restricting the positive definite operator L−1 by
means of the extension E and associated restriction Et the remainder is also a positive
definite operator. The second part, given by C, is obviously positive definite in case of
an explicit discretization of the free energy term, i.e. Θψ = 0, due to Lemma 5.8.

In case of an implicit discretization, i.e. Θψ = 1, we require the additional condition on
the smallest eigenvalue λmin(LII) >

1
ε2

to ensure that T remains positive semi-definite.
This can also be understood as a restriction on the shape of the inactive set. In the
following we give a short motivation on how this restriction can be seen.
Considering one spatial dimension we calculate the occurring eigenvalues of the re-
stricted Laplacian below, see Section 5.4. When we introduced the adaptive mesh in
Section 3.6.1, we stated that a minimum number of eight vertices across the interface
is required to avoid any mesh anisotropy effects. Since the diameter of the interface
is given by επ, we get πε = 9h, where h is the mesh width. Denoting the size of the
largest inactive set in vertices by n, we get the following approximation by means of
the discontinued sum representation of cos:

λmin(LII) =
2

h2

(

1− cos

(
π

n + 1

))

≈ 2

h2
π2

2(n+ 1)2
=

π2

h2(n + 1)2
=

81

(n+ 1)2
1

ε2
.

If the largest inactive set only includes eight vertices, i.e. n ≤ 8, we have the desired
property. Additionally the final iteration uses the system with the projection onto the
space with mean value zero, further improving the above estimate.
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5.3.1 Eigenvalue estimates for the Laplacian

Zhang discusses various eigenvalue estimates for Schur complements, see [Zha05]. In
this section the results required later will be given. We denote the eigenvalues of a
matrix by λi(L) and assume the ordering λ1(L) ≥ λ2(L) ≥ . . . ≥ λn−1(L) > λn(L) = 0.
Recalling the construction of L−1 via L†, we get

λj(L
−1) = λj(L

†) = λn−j(L)
−1 for j = 1, . . . , n− 1 (5.25)

together with λn(L
−1) = λn(L) = 0.

Theorem 5.12. For every non-empty index set I ( J = {1, . . . , n} the eigenvalues of
the sub-matrix LII satisfy

λi(L) ≥ λi(LII) ≥ λi+n−|I|(L) for i = 1, 2, . . . , |I|.

Proof. This Theorem by Zhang, see [Zha05], is an application of the Cauchy eigenvalue
interlacing theorem. A proof is given by Lancaster and Tismentsky, see [LT85].

Transferring these results to the inverse of the Laplacian, we get an interleaving prop-
erty which will be useful later.

Corollary 5.13. For every non-empty index set I ( J the eigenvalues of the inverse
of the sub-matrix LII satisfy

λi−1(L
−1) ≥ λi(L

−1
II ) ≥ λi+n−1−|I|(L

−1) for i = 2, . . . , |I|

as well as
λ1(L

−1
II ) ≥ λn−|I|(L

−1).

Proof. Due to Lemma 5.8 the operator LII is positive definite

λj(LII) =
(
λ|I|−j+1(L

−1
II )
)−1

holds for j = 1, . . . , |I|. (5.26)

Since |I| < n, we obtain from (5.25) that

λj(L) =
(
λn−j(L

−1)
)−1

for j = 1, . . . , n− 1.

Using these identities together with Theorem 5.12 we get

(
λn−j(L

−1)
)−1

= λj(L) ≥ λj(LII) =
(
λ|I|−j+1(L

−1
II )
)−1

for j = 1, . . . , |I|.

Inverting this inequality and applying the substitution i = |I| − j + 1 we obtain

λi(L
−1
II ) ≥ λi+n−|I|−1(L

−1) for i = 1, 2, . . . , |I|.

The second estimate is derived analogously by using

(
λ|I|−j+1(L

−1
II )
)−1

= λj(LII) ≥ λj+n−|I|(L) =
(
λn−(j+n−|I|)(L

−1)
)−1

for j = 1, . . . , |I| − 1. The assertion then follows again with i = |I| − j + 1.
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We use a similar interlacing theorem concerning pseudo inverse of hermitian matrices
and their minors for the estimation of the eigenvalues of S. Note that the fact that
we deal with a pseudo inverse becomes helpful since a similar theorem regarding just
the Schur complement of a hermitian matrix does not hold, see Zhang [Zha05] for a
counter example.

Theorem 5.14. Let H be an hermitian square matrix of size n and A be an arbi-
trary square sub-matrix of H of size k. Using the Moore–Penrose pseudo inverse the
eigenvalues satisfy

λi(H
†) ≥ λi

(
(H/A)†

)
≥ λi+k(H

†) i = 1, 2, . . . , n− k.

Proof. See Theorem 2.2 in [Zha05].

Thus setting H = L̂ and A = L̂AA and using the afore mentioned relationship between
eigenvalues of a matrix and its pseudo inverse discussed by Scroggs and Odell, see
[SO66], we obtain an interleaving property for L̂. Since the eigenvalues are exactly the
same as those of L, compare Lemma 5.5, we simultaneously obtain the interleaving
property

λi(L
†) ≥ λi

(
S†) ≥ λi+n−|I|(L

†) i = 1, 2, . . . , |I|.
Note that Corollary 5.13 gives a very similar property for the operator T −1 in the
semi-implicit case with Θψ = 0.

5.3.2 Symmetric preconditioning

Bänsch, Morin and Nochetto introduced a symmetric preconditioning of problems sim-
ilar to F = S−1 + T . The preconditioner PS := (Id+S)2S−1 is based on the fact that
if both parts of F are roughly the same, i.e. T ≈ S, we can conclude that

F = S−1 + T = S−1 (Id+ ST ) ≈ S−1
(
Id+ S2

)
≈ S−1 (Id+ S)2 = PS .

In the semi-implicit case, i.e. Θψ = 0, the order of the operators with respect to the
mesh size ∆x, the time step size τ and to the parameters γ and ε is roughly the same
(note that they correspond to a Laplacian with Neumann resp. Dirichlet boundary
data). In this case the symmetric preconditioner works really well and a good speed
up is obtained. When we consider the implicit case T additionally carries a spectral
shift and the estimates, as we show below, do not necessarily hold. Despite the lack
of general theoretical results the method works very well and the numerical results we
present in Section 6.3, seem to be mesh independent.
As before we do not consider the operators S and T with a projection already included,
but instead, add the projection operator afterwards by combining it with the obtained
preconditioning to one final preconditioner.
The condition of the preconditioned system is estimated with the help of the following
elementary lemma stated in Lemma 3.2 [BMN10].
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Lemma 5.15. Let A, B be symmetric positive definite operators in a Hilbert space H.
If there exist two positive constants C1, C2 such that

C1(Aw,w) ≤ (Bw,w) ≤ C2(Aw,w) for all w ∈ H,

then the condition number cond(A− 1
2BA− 1

2 ) with respect to the H-norm is bounded by
C2

C1
.

Using this, the above preconditioning gives the following result by Bänsch, Morin and
Nochetto, see Theorem 4.1 in [BMN10].

Theorem 5.16. Let S and T be self-adjoint positive definite operators on U, and
0 < λ ≤ Λ constants such that

(
S−1w,w

)
+ (Sw,w) ≥λ

((
S−1w,w

)
+ (T w,w)

)
, (5.27)

(
S−1w,w

)
+ (Sw,w) ≤Λ

((
S−1w,w

)
+ (T w,w)

)
(5.28)

holds for all w ∈ U. Then

cond
(

S− 1
2FS− 1

2

)

≤ 2Λ

λ
.

The required inequalities, stated as assumptions in Theorem 5.16 above, hold due to
the following lemma, which is a weaker result than that given by Bänsch, Morin and
Nochetto. They don’t use the eigenvalues of the operator, but those of the coefficient
functions, which might degenerate in our setting.

Lemma 5.17. Let S and T be as in (5.22). Then S and T are self-adjoint positive
definite operators on U and there exist constants 0 < λ ≤ Λ such that (5.27) and (5.28)
hold for all w ∈ U.

Proof. Let λS and ΛS be the smallest and largest eigenvalue of S on U and λT and ΛT
those of T . Then, we get:

(
S−1w,w

)
+ (Sw,w) ≥ 1

ΛS
(w,w) + λS(w,w) =

(
1

ΛS
+ λS

)

(w,w) =
1 + λSΛS

ΛS
(w,w),

(
S−1w,w

)
+ (T w,w) ≤

(
1

λS
+ ΛT

)

(w,w) =
1 + λSΛT

λS
(w,w).

Putting both inequalities together (5.27) follows with

λ :=
1 + λSΛS
1 + λSΛT

· λS
ΛS

.

Omitting the additional S−1 term, we can also choose λ := λS
ΛT

by a similar argument.
To obtain (5.28) we use Lemma 5.10 and set Λ = 1.
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Remark 5.18. Theorem 5.16 shows that cond(PS
−1/2(T + S−1)PS

−1/2) ≤ 2Λ
λ

holds
due to Lemma 5.17. We would like to remark that the estimate involving the largest
and smallest eigenvalue are too crude to obtain a satisfying theoretical result. Using
the variant with Λ = 1, we get

2
Λ

λ
= 2

ΛT
λS

= 2
ΛS
λS

ΛT
ΛS

≤ 2 cond(S).

However, recalling the definition of S and T , we immediately see that both carry the
same factor σ. The parameters ε, γ as well as the time step size τ only influence both
operators via σ. Thus we can expect independence of the algorithm of those quantities,
compare the experiments in Section 6.3.

An easy reformulation allows for the utilization of S−1 in place of S for the precondi-
tioning, which we prefer in our case. The preconditioner we get is the same since

PS = (Id+ S)2S−1 = (Id+ S)(S−1 + Id) = (S−1 + Id)(Id+ S) = (S−1 + Id)2S.

The fact that the basic idea hinges on S ≈ T makes the use of T for the construction
of the preconditioning equally sensible. For the solution of (5.22) it is more convenient,
because S involves the solution of the Laplacian on the whole domain Ω, whereas for

PT := (Id+ T )2T −1 = (Id+ T −1)2T (5.29)

it suffices to solve LII , which is essentially the Laplacian on the inactive set. For
situations with fully developed interfaces this is effectively one dimension smaller than
the whole domain. Extending the theory of [BMN10] for this change is quite straight
forward. Exchanging the places of S and T we now require the spectral equivalence of
S−1 and T . Note that both operators omit interleaving properties with respect to the
inverse Laplacian on the whole domain pointing to a strong similarity. Analogously to
Theorem 4.1 [BMN10] the following is true:

Theorem 5.19. Let S and T be as above self-adjoint positive definite operators on U,
and 0 < λ < Λ constants such that

(
T −1w,w

)
+ (T w,w) ≥λ

((
S−1w,w

)
+ (T w,w)

)
, (5.30)

(
T −1w,w

)
+ (T w,w) ≤Λ

((
S−1w,w

)
+ (T w,w)

)
(5.31)

hold for all w ∈ U. Then

cond
(

PT
− 1

2FPT
− 1

2

)

≤ 2Λ

λ
.

Proof. We repeat the steps of the proof given in [BMN10] with the slight change of the
used operators. In place of S and T we now need to use the inverse operators. Due to
the following short computation

PT
− 1

2 (S−1 + T )PT
− 1

2 =(Id+ T −1)−1T − 1
2 (S−1 + T )T − 1

2 (Id+ T −1)−1

=
[
(Id+ T −1)2

]− 1
2 (T − 1

2S−1T − 1
2 + Id)

[
(Id+ T −1)2

]− 1
2 ,
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the boundedness of the preconditioned system, namely cond(PT
− 1

2 (S−1 + T )PT
− 1

2 )
follows by proving the existence of constants such that

1

2Λ

(
(Id+ T −1)2v, v

)
≤ (v, v) +

(

T − 1
2S−1T − 1

2v, v
)

≤ 1

λ

(
(Id+ T −1)2v, v

)

holds for all v ∈ U. Setting w := T− 1
2v and using (5.30) we get

(
(Id+ T −1)2v, v

)
=(v, v) + 2(T −1v, v) + (T −1v, T −1v) ≥ (v, v) + (T −1v, T −1v)

=(T w,w) + (T −1w,w) ≥ λ
((
S−1w,w

)
+ (T w,w)

)

=λ
((

Id+ T − 1
2S−1T − 1

2

)

v, v
)

.

Similarly using (5.31) together with the elementary inequality 2(a, b) ≤ (a, a) + (b, b)
for arbitrary a, b ∈ U, we get the final estimate

(
(Id+ T −1)2v, v

)
=(v, v) + 2(T −1v, v) + (T −1v, T −1v) ≤ 2(v, v) + 2(T −1v, T −1v)

=2
(
(T w,w) + (T −1w,w)

)
≤ 2Λ

((
S−1w,w

)
+ (T w,w)

)

=2Λ
((

Id+ T − 1
2S−1T − 1

2

)

v, v
)

.

To finalize the theory we require constants λ and Λ fulfilling the above conditions. One
possibility to find such constants is again the use of the smallest and largest eigenvalues
for S−1 and T −1 analogously to the proof of Theorem 5.16. Similar to the estimate
needed for the preconditioning involving S earlier, this resulting estimate is not very
strong.
To gain a better understanding we discuss the eigenvalues and eigenvectors of S and
T in one spatial dimension, see Section 5.4 below.

5.3.3 Implementation of the symmetric preconditioning

To sum up the preconditioning given by PT = (Id+T −1)2T , we give a short comment
on the practical implementation. Additionally we combine it with the projection onto
H, as in (5.20), and obtain

PL := PT
− 1

2Π = T − 1
2 (Id+ T −1)−1Π (5.32)

as the left preconditioning matrix. When deriving the preconditioned conjugate gradi-
ent method the relevant system we need is given by:

P :=Pt
L ·PL = ΠPT

− 1
2PT

− 1
2Π = Π(Id+ T −1)−1T −1(Id+ T −1)−1Π. (5.33)

Hence we obtain:

P =Π(σC+ Id)−1(σC)(σC+ Id)−1Π. (5.34)
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To actually apply this preconditioning, i.e. calculate Py = x for given y, we use the
following step by step algorithm:

Algorithm 5.4 Symmetric Preconditioning (PREC)

1. Set y(1) = Πy.

2. Solve (σC+ IdI)y
(2) = y(1).

3. Set y(3) = σCy(2).

4. Solve (σC+ IdI)y
(4) = y(3).

5. Return Πy(4).

The application of the preconditioner requires the solution of σC+Id for each iteration.
There is a variety of fast solvers for this kind of equation system. In our case we used
the direct solver package UMFPack in most cases. There are two reasons for this.
Firstly the system doesn’t change during one PDAS iteration and the once generated
factorization can be reused in every iteration of the conjugate gradient method. Hence
the computational effort for each iteration besides the first one, is optimal. The second
reason is the fact that the system of equations defining the preconditioning is given on
the interface only, which results in a comparatively small system and can be computed
very fast by means of a direct solver.
For situations, where we don’t want to use the direct solver, we also implemented a
conjugate gradient method as solver for σC + Id. This was necessary for simulations
in three space dimensions with fine grids due to memory restrictions. The convergence
of this conjugate gradient method is very fast and in all studied test cases up to eight
iterations were sufficient.

5.4 Spectral comparison in one space dimension

We consider an equidistant mesh on Ω = [0, 1] with N vertices, i.e. with h = 1
N−1

the
nodes are given by xi = h · i for all i ∈ {0, . . . , N − 1}. Using linear Finite Elements
the discrete Laplacian L on Ω is given by

L = M−1S =
1

h2












2 −2 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 −1 2 −1
0 · · · · · · 0 −2 2












.

The primal-dual active set method now splits Ω into three subsets, where for our
consideration we can recombine both active sets and hence omit the sign distinction
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in this section. We need to consider the spectral properties of both operator parts S
and T . The spectral shift added to the operator T if the free energy is discretized
implicitly, is not essential for the derivation of the eigenvalues and eigenvectors. Thus
we set Θψ = 0 initially. Without loss of generality we drop the scalar factor σ in both
operators S and T . Hence we use

S = LII − LIAL
−1
AALAI and T = LII .

Note that this representation is derived from the observation that S is essentially a
block of the inverse Laplacian and can as such be represented by a suitable Schur
complement, see (5.24). Hence it suffices to show the spectral similarity of LII and
LII − LIAL

−1
AALAI .

Additionally we remark that S has to be understood as operator on a mass free space
again. Later, we show that LII − LIAL

−1
AALAI has the characteristics of a suitable

Laplacian with Neumann boundary conditions and as such omits an eigenvalue of 0 for
the constant eigenvector.

5.4.1 Sub-matrices of the discrete Laplacian

For any non-empty set of indices I the sub-matrix LII is given as a diagonal block
matrix

LII =
1

h2











L
(n1)

L 0

L
(n2)

M
. . .

L
(nk−1)

M

0 L
(nk)

R











,

where ni denotes the block sizes consisting of connected inactive vertices. Hence the
amount k of diagonal blocks is also the number of disjoint inactive sets. Note that we
don’t necessarily require n1 6= 0 or nk 6= 0. If n1 = 0 the left boundary of Ω belongs
to the active set. If the right boundary is part of the active set nk = 0 holds. If they
are positive the inactive set touches the boundaries. The three different block types
consist of the left and right border block

L
(n)

L =












2 −2 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 −1 2 −1
0 · · · · · · 0 −1 2












, L
(n)

R =












2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 −1 2 −1
0 · · · · · · 0 −2 2
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and the middle blocks

L
(n)

M =












2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 −1 2 −1
0 · · · · · · 0 −1 2












.

Remark 5.20. The eigenvalues and their eigenvectors of LII are obviously given by
the eigenvalues of each of the blocks making up the matrix. The blocks themselves
are again discrete Laplacian matrices on the smaller interfacial areas. Those interior
interfaces omit a Dirichlet boundary condition where they touch active sets.

Those eigenvalues and eigenvectors can be explicitly calculated as shown in the follow-
ing lemma.

Lemma 5.21. For fixed but arbitrary n ∈ N the above small block Laplace type matrices
omit the following eigenvalues and eigenvectors using homogeneous boundary conditions
for k = 1, . . . , n:

µ
(n,k)
M = 2

(
1− cos( k

n+1
π)
)
, v

(n,k)
M =

(
sin( kπi

n+1
)
)n

i=1
,

µ
(n,k)
L = 2

(
1− cos(2k−1

2n
π)
)
, v

(n,k)
L =

(

sin( (2k−1)πi
2n

)
)n

i=1
,

µ
(n,k)
R = 2

(
1− cos(2k−1

2n
π)
)
, v

(n,k)
R =

(

sin( (2k−1)π(n+1−i)
2n

)
)n

i=1
.

Proof. The eigenvalues and eigenvectors can be derived from the continuous formula-
tion. It suffices to simply multiply the eigenvectors with the block matrices to obtain
the assertion. Note that the factor in the eigenvalues is just 2 and not 2

h2
due to the

definition of the blocks. We will briefly show the calculations for L
(n)

M and v
(n,k)
M for

fixed but arbitrary n and k. With the exception of the first and last entry, i.e. for

i = 2, . . . , n− 1,
(

L
(n)

M v
(n,k)
M

)

i
is given by:

−v(n,k)M,i−1+2v
(n,k)
M,i − v

(n,k)
M,i+1 = − sin

(
kπ
n+1

(i− 1)
)
+ 2 sin

(
kπ
n+1

i
)
− sin

(
kπ
n+1

(i+ 1)
)

=2 sin
(
kπ
n+1

i
)
− 2 sin

(
kπ
n+1

i
)
cos
(
kπ
n+1

)

=2
(
1− cos

(
kπ
n+1

))
sin
(
kπ
n+1

i
)
= µ

(n,k)
M v

(n,k)
M,i .

The first and last row can be calculated analogously, since the additional terms are
0.

Hence we can explicitly calculate the smallest and largest eigenvalues of the Laplacian
restricted to the inactive set.
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Theorem 5.22. Let ∅ 6= I ( J with nI := |I|. We denote the size of the smallest
consecutive block of interior elements by nm and the largest by nM . Without loss of
generality, we assume that the only boundary vertices belong to the left bound and
denote the size of this block by nL. The smallest eigenvalue of LII , and thus of T , is
given by

µ(1)(LII) =

{
2
h2
(1− cos( 1

2nL
π)) if 2nl − nm ≥ 1

2
h2
(1− cos( 1

nm+1
π)) otherwise.

(5.35)

Similarly we get the largest eigenvalue

µ(nI)(LII) =

{
2
h2
(1− cos(2nL−1

2nL
π)) if 2nl − nm ≥ 1

2
h2
(1− cos( nm

nm+1
π)) otherwise.

(5.36)

Proof. Note that the discrete eigenvalues of each block are increasing in k, i.e. µ(n,1)

denotes the smallest and µ(n,n) the largest eigenvalue for a fixed n. Furthermore the
smallest eigenvalues are descending as a function in n, i.e. µ(n+1,1) ≤ µ(n,1). The largest
eigenvalues are ordered ascending with respect to n, i.e. µ(n,n) ≤ µ(n+1,n+1). Hence the
smallest eigenvalue of the operator LII is given by min(µ

(nm,1)
M , µ

(nL,1)
L ). Recall that

the earlier calculated smallest eigenvalues of the blocks are given by

µ
(nm,1)
M = 2

(

1− cos( 1
nm+1

π)
)

,

µ
(nL,1)
L = 2

(

1− cos( 1
2nL

π)
)

.

The smallest eigenvalue is given by

µ(1)(LII) = h−2min(µ
(nm,1)
M , µ

(nL,1)
L )

= 2
h2
(1− cos(π ·min( nm

nm+1
, 2nL−1

2nL
))). (5.37)

Using the monotonicity of cos on (0, π) and the estimate 1
2nL

≥ 1
nm+1

⇔ 2nL−nm ≥ 1,
we can write the minimum in an explicit formula with two cases and obtain (5.35).
With similar calculations for the largest eigenvalue we obtain

µ(nI)(LII) = h−2max(µ
(nM ,nM )
M , µ

(nL,1)
L )

= 2
h2
(1− cos(π ·min( nM

nM+1
, 2nL−1

2nL
))) (5.38)

=

{
2
h2
(1− cos(2nL−1

nL
π)) if 2nL − nM ≥ 1

2
h2
(1− cos( nM

nM+1
π)) otherwise,

(5.39)

where we used 2nL−1
2nL

≥ nm
nm+1

⇔ 2nL − nm ≥ 1 completing the proof.

5.4.2 Schur complement representation of S
Recalling the definition of S, we can see that it is a modification applied to LII , which
involves the inverse of LAA. Naturally LAA has a similar structure than LII . To get



88 5.4 Spectral comparison in one space dimension88 5.4 Spectral comparison in one space dimension88 5.4 Spectral comparison in one space dimension

the inverse of such a matrix, we need the inverse of each of the blocks. Using Gauss
elimination we derive an explicit formula for them. Note that for these calculations
it is convenient to split the discrete Laplacian into mass matrix and stiffness matrix,
do the calculations on the stiffness matrix and then incorporate the diagonal mass
matrix again. Below we just state the results. To verify the statement, the block and
its inverse can easily be multiplied and the result is the identity. We obtain for the
inverses of the boundary blocks

(

L
(n)

L

)−1

=












n
2

n− 1 n− 2 · · · 2 1
n−1
2

n− 1 n− 2 · · · 2 1
n−2
2

n− 2 n− 2
...

...
...

...
. . .

...
...

1 2 · · · · · · 2 1
1
2

1 · · · · · · 1 1












,

(

L
(n)

R

)−1

=












1 1 · · · · · · 1 1
2

1 2 · · · · · · 2 1
...

...
. . .

...
...

...
... n− 2 n− 2 n−2

2

1 2 · · · n− 2 n− 1 n−1
2

1 2 · · · n− 2 n− 1 n
2












and the middle blocks

(

L
(n)

M

)−1

=
1

n + 1














n n− 1 n− 2 · · · 3 2 1
n− 1 2n− 2 2n− 4 · · · 6 4 2
n− 2 2n− 4 3n− 3 · · · 9 6 3

...
...

...
...

...
...

3 6 9 · · · 3n− 3 2n− 4 n− 2
2 4 6 · · · 2n− 4 2n− 2 n− 1
1 2 3 · · · n− 2 n− 1 n














.

It can easily be seen that the matrices below are the inverse matrices of the Laplacian
block type matrices by multiplication of the blocks.

The matrices of type LIA and LAI consist of negative standard euclidean basis vectors.
Later on we will be interested in LIA(LAA)

−1LAI . Hence it suffices to study −LIA and
−LAI respectively. In the following we need a more detailed notation for the size of the
sets the mesh is split into. We denote the existing blocks with nI1 , nA1 , nI2 , nA2 . . ..
Again we do not require nI1

> 0. Let nI =
∑

i nIi and nA =
∑

i nAi
. Considering now
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the whole discrete Laplacian we split it into blocks like

h2L =










II IA 0 0 · · ·
AI AA AI 0
0 IA II IA

0 0 AI AA
...

. . .










nI1

nA1

nI2

nA2

...

nI1 nA1 nI2 nA2 · · ·

and thus using ei ∈ RnI we obtain the following representation

−h2LAI =






























0 · · · 0 1 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
... 0

...
...

...
...

...
...

... 1
...

... 0
...

...
...

... 0
...

... 1
...

...
...

...
...

...
... 0

... . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... 0

...
...

...
...

...
...

... 1
...

...
...

...
...

...
... 0

...
...

...
...

...
...

... 0
0 · · · 0 0 0 0 · · · 0 0 0






























︸ ︷︷ ︸

nI1

︸ ︷︷ ︸

nI2

=
(
0 . . . 0 e1 enA1

0 . . . 0 enA1
+1 enA1

+nA2
. . .
)
.

Thus building LIAXLAI for an arbitrary matrix X ∈ RnA×nA we get

h2LIAXLAI =























0nI1
−1

X1,1 X1,nA1

XnA1
,1 XnA1

,nA1

X1,nA1
+nA2

XnA1
,nA1

+nA2

0nI2
−2

X1,nA1
+nA2

XnA1
,nA1

+nA2
XnA1

+nA2
,nA1

+nA2

. . .























,

where 0k denotes a square zero matrix of size k. When we now employ the shape of
LAA as block diagonal matrix we find that all the offdiagonal blocks only contain zeros
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and hence

h2LIAL
−1
AA

LAI =





































0nI1
−1

nA1

nA1
+1

1
nA1

+1

1
nA1

+1

nA1

nA1
+1

0nI2
−2

nA2

nA2
+1

1
nA2

+1

1
nA2

+1

nA2

nA1
+1

. . .

1





































(5.40)

Finally using the block representation of LAA we obtain a tridiagonal representation
of S. For example for arbitrary nIi, nAi

, i = 1, 2 we get

LII − LIAL
−1
AA

LAI = h−2









































2 −2
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + 1

nA1
+1

− 1
nA1

+1

− 1
nA1

+1
1 + 1

nA1
+1

−1

−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1









































.

5.4.3 The Laplacian of a weighted path graph

We continue by studying a quite simple situation, where no boundary interfaces are
present with three active and two inactive sets in between, i.e. nI1 = 0, nA1 , nA3 > 0
arbitrary, nI2 and nI3 determine the block sizes below and finally nA2 , describing the
size of the active set in between the two interfaces, will be denoted by n resulting in

h2S =





















1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + 1

n+1
− 1
n+1

− 1
n+1

1 + 1
n+1

−1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1





















. (5.41)

If n = 0, i.e. if no interior active set is present, the system reduces to the stiffness
matrix of a discrete Laplacian operator with Neumann boundary conditions multiplied
by h.
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There are three different possibilities to view the matrix given in (5.41). We start out
with the graph theoretical point of view. The following brief introduction of the used
terminology is kept alongside of the survey article of Mohar, see [Moh91]. In this sense
a graph G = (V,E,W ) is a set of vertices V = {vi} and edges E in between. We
additionally assign a weight ωij = ωji ≥ 0 to the edge connecting the vertices vi and
vj. The degree of vertex vi ∈ V is given by d(vi) =

∑

j ωij. The Laplacian matrix of G
is then given by Q(G) = D(G)− A(G), where A(G) := (ωij)i,j denotes the adjacency
matrix and D(G) := diag(d(vi)).
To derive (5.41) as Laplacian matrix of a graph, we use the given finite element tri-
angulation, cut out the active sets and reconnect them by a weighted edge across the
removed interior active sets, compare Figure 5.1. Using this graph, where almost all

0 1

(a)

(b)

(c)

Figure 5.1: (a) Finite element mesh, (b) Inactive set, (c) Weighted graph G related
to S.

weights are set to 1 with the exception of the longer edge, which is set to 1
n+1

, we get
Q(G) = h2S. Additionally, as an immediate result, we obtain that Q(G) is positive
semi definite and ker(Q(G)) = span(e), see e.g. Mohar [Moh91].
This point of view is very useful when calculating the eigenvalues and eigenvectors,
especially for the case n = 0. Starting out from a ring graph Rm with m vertices,
which essentially consists of a polygon with m edges, where the eigenvectors are given
by

x(m,k) =
(
sin(2πki

m
)
)m

i=1
and y(m,k) =

(
cos(2πki

m
)
)m

i=1

for 1 ≤ k ≤ m
2
and their corresponding eigenvalues 2

(
1− cos(2πk

m
)
)
. The Laplacian of

the path graph Pm omits the same eigenvalues as R2m, which can be verified gluing
together two copies of Pm and a splitting argument, see e.g. Spielman [Spi09].

Lemma 5.23. The eigenvectors of (5.41) with n = 0 are given by

z(N,k) := sin(πk
N
)
(

x
(2N,k)
i

)N

i=1
+ (1 + cos(πk

N
))
(
y(2N,k)

)N

i=1
for 0 ≤ k ≤ N − 1,

where N denotes the sum of all inactive sets or equivalently the size of the system. The
corresponding eigenvalues are given by the eigenvalues on the ring graph

µ(N,k) := 2
(
1− cos(πk

N
)
)
.
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Proof. Making the ansatz z(N,k) = a · x(2N,k) + b · y(2N,k) and using the condition that
z
(N,k)
i = z

(N,k)
2N+1−i has to hold for i = 1, . . . , N . We get

a · x(2N,k)i + b · y(2N,k)i = a · x(2N,k)i + b · y(2N,k)i

= a · sin(2πk
N

(2N + 1− i)) + b · cos(2πk
N

(2N + 1− i)).

Using the periodicity of sin and cos as well as the trigonometric addition formulas we
get

a · x(2N,k)i + b · y(2N,k)i =

= a · sin(2πk
N

(1− i)) + b · cos(2πk
N
(1− i))

= a
(
sin(2πk

N
) cos(2πk

N
i)− sin(2πk

N
i) cos(2πk

N
)
)

+ b
(
cos(2πk

N
) sin(2πk

N
i)− cos(2πk

N
i) sin(2πk

N
)
)

=
(
b · sin(2πk

N
)− a · cos(2πk

N
)
)
sin(2πk

N
i) +

(
a · sin(2πk

N
) + b · cos(2πk

N
)
)
cos(2πk

N
i).

Hence we obtain an 2 × 2 system for the determination of a and b. With the solution
a = sin(2πk

N
) and b = 1 + cos(2πk

N
) the assertion is shown.

In case of n > 0, this construction heavily depends on the size of the sets, or position
of the active sets, and thus gives no general formula. The construction of the weighted
graph suggests to consider the graph without the weighted edge, reconnection the
inactive sets, first and then use existing results to incorporate the missing edge. This
gives some control over the eigenvalues due to an interlacing theorem, which holds
here, compare Theorem 3.2 [Moh91]. The basic idea to this result is the idea that the
Laplacian of the new graph is given as a rank-one update of the Laplacian of the graph
without the edge.

5.4.4 Weighted Laplacian on an equidistant mesh

Considering a weighted Laplacian operator on an equidistant mesh enables us to show a
relation to the theory given by Bänsch, Morin and Nochetto in [BMN10]. The operator
S can be expressed as the discretization of a weighted Laplacian, i.e.

S =
σ

h
((a(x)∇φj,∇φi))i,j∈I ,

where a is a piecewise constant function. For a given mesh in one dimension with ver-
tices xi, i ∈ {1, . . . , n}, we assume a(x) ≡ ai ∈ R if x ∈ [xi−1, xi), where ai is the inverse
of the distance to the next inactive vertex, i.e. a=̂(1 + Distance in active vertices)−1,
see Figure 5.2 for an example.
The main problem here is caused by the fact that a is zero, at the boundaries. Thus
the positivity of the coefficient function a, which is required in [BMN10] to estimate
the constants λ or Λ, does not hold here. The handling of the operator T is much
simpler, since we can set b ≡ 1.
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−0.5 0 0.5 1 1.5
 

 

inactive vertex
active vertex
a

Figure 5.2: Example mesh and coefficient function associated to S.

However, if we assume that the boundary vertices are inactive, the coefficient func-
tion is bounded such that 1

1+n
≤ a(x) ≤ 1, where n denotes the size of the largest

active set. Then Corollary 4.2 from [BMN10] shows that the condition number of the
preconditioned system is bounded by 2(n + 1). The numerical results we present in
Section 6.3.5, suggest that the preconditioning works even better than suggested by
this result.

5.4.5 S as rank-one update of the stiffness matrix

Starting out from the Laplacian matrix of the graph given by the inactive set only, we
obtain the corresponding Laplacian matrix

Q(I) =




















1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1




















. (5.42)

Using the results from Section 5.4.3 for n = 0 with the appropriate size of the system, we
already know the spectrum as well as the eigenvectors of this matrix, or more precisely
the spectrum and eigenvalues of its blocks. Adding a weighted edge to the graph can

be expressed as a rank-one update with u := (0, . . . , 0,
√

1
n+1

,−
√

1
n+1

, 0, . . . , 0)t, i.e.
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the update of the matrix is given by

uut =








. . .
1

n+1
− 1
n+1

− 1
n+1

1
n+1

. . .







.

After normalizing the vector we get

Q(I) = h2S − 2

n+ 1
vvt,

where v = (0, . . . , 0, 1√
2
,− 1√

2
, 0, . . . , 0)t. Note that Q(I) can also be motivated as the

stiffness matrix associated to the triangulation given by the reconnected inactive sets,
i.e. the one depicted in Figure 5.1.(c).
Bunch, Nielsen and Sorensen extended results of Golub and stated an algorithm for
the calculation of the eigensystem of rank-one updated matrices, see [BNS78].
Again, as before, we get no general result. Just calculating the eigenvalues of the
updated system requires the solution of a nonlinear equation. We consider a special
symmetric case, consisting of two inactive sets of the same size, similar to the situation
depicted in Figure 5.1. Using inactive sets of size three and adopting the denotaions
of [BNS78], we get

B = Q(I) =











1 −1
−1 2 −1

−1 1
1 −1
−1 2 −1

−1 1











, b =
2

n+ 1





0
0

1√
2
,− 1√

2
, 0, 0



 ,

such that h2S = B+ 2
n+1

bbt. By means of Lemma 5.23, we obtain the eigenvectors and
values of the two blocks. For each of the 3× 3-blocks we have

z(3,1) =
1√
3





1
1
1



 , z(3,2) =
1√
2





1
0
−1



 and z(3,3) =
1√
6





1
−2
1



 ,

together with the eigenvalues

µ(3,1) = 0, µ(3,2) = 1 and µ(3,3) = 3.

Let

Q :=











0 0 0
z(3,1) 0 z(3,2) 0 z(3,3) 0

0 0 0
0 0 0
0 z(3,1) 0 z(3,2) 0 z(3,3)

0 0 0











and z := Qtb =












1√
6

− 1√
6

−1
2

−1
2

1√
12

− 1√
12












,
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then B + 2
n+1

bbt = Q(D + 2
n+1

zzt)Qt, where D is a diagonal matrix, whose entries
are given by the eigenvalues. Since we have duplicate eigenvalues, we can apply the
deflation method and reduce the problem with the help of an elementary reflector

H =
1√
2

(
1 1
−1 1

)

.

For the first and third eigenvalue we can use H as is. To handle the second eigenvalue
we use H t. After applying this reflexions and permuting the columns of Q, we get

Q :=












1√
6

1
2

1√
12

− 1√
6

1
2

− 1√
12

1√
6

0 − 1√
3

− 1√
6

0 1√
3

1√
6

−1
2

1√
12

− 1√
6

−1
2

− 1√
12

1√
6

−1
2

1√
12

1√
6

1
2

1√
12

1√
6

0 − 1√
3

1√
6

0 − 1√
3

1√
6

1
2

1√
12

1√
6

−1
2

1√
12












and z := Q
t
b =












0
0
0

− 1√
3

− 1√
2

− 1√
6












.

At this point we already know three of the eigenvalues and eigenvectors given by the first
three columns of Q and the original eigenvalues µ

(n,1)
S = 0, µ

(n,3)
S = 1 and µ

(n,5)
S = 3,

which are independent of the size of the active set n. The remaining problem is to
compute the eigensystem of





0
1

3



 +
2

n+ 1






− 1√
3

− 1√
2

− 1√
6











− 1√
3

− 1√
2

− 1√
6






t

. (5.43)

The remaining eigenvalues are given as the roots of

fn(λ) :=1 +
2

n+ 1

( 1
3

0− λ
+

1
2

1− λ
+

1
6

3− λ

)

(5.44)

or equivalently as solutions to the cubic equation

(n+ 1)λ3 + (−4n− 6)λ2 + (3n+ 9)λ− 2 = 0.

Since we are only interested in the case with n ≥ 1, we get three real solutions by means
of a solution formula for cubic equations. We omit the general explicit fomula, since it
is quite lengthy. What we obtain is that the eigenvalues are monotonically decreasing
for increasing n ≥ 1. Additionally there is an interleaving property discussed by Buch,
Nielsen and Sorensen, such that we have also µ

(n,6)
S ≥ 3, µ

(n,4)
S ≥ 1 and µ

(n,2)
S ≥ 0. Thus

we have basically two extreme cases given by n = 1 and n = ∞. We get

n = 1: µ
(1,6)
S = 3.2469, µ

(1,4)
S = 1.5549 and µ

(1,2)
S = 0.1980 and the coresponding eigen-

vectors

v
(1,6)
S =











−0.23
0.52
−0.41
0.41
−0.52
0.23











, v
(1,4)
S =











−0.41
0.23
0.52
−0.52
−0.23
0.41











and v
(1,2)
S =











−0.52
−0.41
−0.23
0.23
0.41
0.52











.
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n = 100: µ
(100,6)
S = 3.0066, µ

(100,4)
S = 1.0198 and µ

(100,2)
S = 0.0128 and the coresponding

eigenvectors

v
(100,6)
S =











0.28
−0.57
0.29
−0.29
0.57
−0.28











, v
(100,4)
S =











−0.49
0.00
0.50
−0.50
−0.00
0.49











and v
(100,2)
S =











−0.41
−0.40
−0.39
0.39
0.40
0.41











.

n→ ∞: µ
(∞,6)
S = 3, µ

(∞,4)
S = 1 and µ

(∞,2)
S = 0 and the coresponding eigenvectors

v
(∞,6)
S =











−1
2
−1
1
−2
1











, v
(∞,4)
S =











−1
0
1
−1
0
1











and v
(∞,2)
S =











−1
−1
−1
1
1
1











.

Thus we have determined all eigenvalues and eigenvectors of S. To obtain the desired
constants λ and Λ for the preconditioning, we require also those of T . They are of
course independent of n and are given by µ

(1)
T = µ

(2)
T = 2 −

√
2, µ

(3)
T = µ

(4)
T = 2 and

µ
(5)
T = µ

(6)
T = 2 +

√
2, see Lemma 5.21, together with

v
(1)
T =











1√
2

1
1√
2

0
0
0











, v
(2)
T =











0
0
0
1√
2

1
1√
2











, v
(3)
T =











1
0
−1
0
0
0











,

v
(4)
T =











0
0
0
1
0
−1











, v
(5)
T =











1√
2

−1
1√
2

0
0
0











and v
(6)
T =











0
0
0
1√
2

−1
1√
2











.

The extremal case, where n = ∞, no longer admits a constant λ > 0 such that
(Sw,w) ≥ λ(T w,w). Just setting w = v

(∞,2)
S gives (Sw,w) = 0, whereas (T w,w) = 4.

Using the above, we get the following representation for the eigenvectors of S:

v
(n,1)
S =

2−
√
2

4
(v

(1)
T + v

(2)
T ) +

2 +
√
2

4
(v

(5)
T + v

(6)
T ),

v
(n,3)
S =v

(3)
T − v

(4)
T ,

v
(n,5)
S =(1−

√
2)(v

(1)
T + v

(2)
T ) + (1 +

√
2)(v

(5)
T + v

(6)
T ).
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However, the eigenvectors of S, which are depending on n, require all eigenvectors of

T in their representation, thus the best estimate we can use to this end, is λ =
µ
(n,6)
S

µ
(1)
T

,

compare also Lemma 5.17. Similar results can be obtained for the preconditioning with
T in place of S.
We can improve on this estimate a bit, with the help of the S−1 term occurring in
(5.27). We require the following basic estimate.

Lemma 5.24. Let c > 0 be a constant. Then
(
1

x
+ x

)

≥ λ

(
1

x
+ c

)

, (5.45)

with λ :=
2(

√
1+c2−1)
c2

, holds for arbitrary x ∈ (0,∞).

Proof. We consider the real valued function

f(x) :=
1
x
+ x

1
x
+ c

=
1 + x2

1 + cx

and show that its minimal value is bounded by λ from below. The derivatives of f are
given by:

f ′(x) =
cx2 + 2x− c

(1 + cx)2
,

f ′′(x) =
2c2 + 2

(1 + cx)3
.

We obtain two critical points of f ′, namely x1,2 = 1
c

(
−1±

√
1 + c2

)
. It suffices to

consider x1 since x2 < 0. Since f ′′(x1) > 0, the minimal value of f is given at x1 and
we obtain:

f(x1) =
1 + 1

c2

(
−1 +

√
1 + c2

)2

1 + c
c

(
−1 +

√
1 + c2

)

=
2
(√

1 + c2 − 1
)

c2
.

Let v be an arbitrary eigenvector of S with eigenvalue µ. Furthermore we denote the
largest eigenvalue of T by µ such that T v ≤ µv holds. Then we obtain the following
estimate due to Lemma 5.24:

(Sv, v) + (S−1v, v) =

(

µ+
1

µ

)

(v, v)

≥ λ

(

µ+
1

µ

)

≥ λ
(
(T v, v) + (S−1v, v)

)
.
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Since this holds for all eigenvectors of S, we get (5.27). And finally obtain

cond(PS
−1/2(T + S−1)PS

−1/2) ≤ 2Λ

λ
=

µ2

√

1 + µ2 − 1
, (5.46)

where µ = σ
h2
4 due to Theorem 5.12. With σ =

√
εγτ and the assumption that ε ≈ 9h

π

this leads to a h independent bound if τ ∼ h3.



Chapter 6

Numerical results

Finally we report on various numerical results. First we study the convergence of the
phase field model with constant mobility to the corresponding sharp interface model,
i.e. the Mullins–Sekerka model. Additionally we use this setting, where exact solutions
are known, to study the quality of approximation of the implicit and semi-implicit time
discretization scheme with respect to the time step size.

The evolution with constant mobility separates nearly homogeneous mixtures very
quickly. Thus we start out with a constant mixture with a stochastic disturbance.
During the initial phase all of Ω is inactive and hence one primal-dual active set iteration
is sufficient. Initially, when the first active vertices start to appear the necessary amount
of iterations is slightly higher than in later stages, but remained below 10 in all our
experiments with sensible initial data for the active and inactive sets.

Since the initial phase of the above process is not very important for the study of the
method, we use a setting where the interface consists of 4 circles. There all interesting
situations appear, namely convex and concave interface sections and the appearance
and disappearance of inactive and active sets. Here we compare iteration counts and
runtime of our method, see Section 6.2.

Following that, we extend this configuration to three spatial dimensions and finally
present a comparison of the various implemented linear Algebra solvers.

We close the presentation of the constant mobility simulations with an extensive study
of the preconditioning described in the previous chapter.

In Section 6.4 we present some results for the model with non-constant diffusional
mobility and compare the results of the degenerate method to the results of Barrett,
Blowey and Garcke, see [BBG99], and Bänsch, Morin and Nochetto, see [BMN05].

6.1 Radially symmetric situations

Let Ω = B1(0) ⊂ R2 and the initial data shall describe two concentric circles around
0 with r1 = 0.3 and r2 = 0.15. The time evolution results in a shrinking of both radii
until the smaller one vanishes at time tc = 1.85 · 10−3. We obtain an exact solution to
the Mullins–Sekerka problem, compare Section 2.4, by solving the system of ordinary

99
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differential equations (2.39)-(2.40) with a numerical method. Figure 6.1 shows the
progression of the sum of the radii over time.

 

 0.45

0.35

r 1
+
r 2

0.25
0.0030.002

Time t
0.0010

Figure 6.1: Evolution of the radii of two concentric circles given via the Mullins–
Sekerka Problem in two spatial dimensions.

Figure 6.2: Initial data and mesh for γ = 1, ε = 0.025
π in two space dimensions.

For our simulations we choose the initial data in a way that the zero level sets coincide
with the desired circles or spheres and the diffuse interfaces with a width of επ are
already present, see Figure 6.2.
At some point in time the smaller one of the circles vanishes, resulting in a singularity in
the sharp interface model. In each simulation there is a deviation from this exact critical
time tc, where the smaller of the circles should vanish, depending on the underlying
mesh, the time step size and obviously the parameters ε and γ. When the zero level
set of the smaller circle has vanished, the concentration changes for a few more time
steps, where the remaining mass of the smaller circle is transported to the outer area
Ω0. After that the configuration remains constant. Figure 6.3 and Figure 6.4 show
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the values of u and the underlying mesh of such an evolution process with γ = 1.0,
ε = 0.00625

π
and τ = 10−7 for the implicit and semi-implicit discretization scheme. Note

that in the semi-implicit simulation the smaller circle vanishes later in time than in the
more precise implicit case, which is discussed later in this section.

Figure 6.3: Evolution of two concentric circles with the fully implicit time discretiza-
tion scheme at times t = 1.2 · 10−3, 1.8 · 10−3 and 2.1 · 10−3.

Figure 6.4: Evolution of two concentric circles with the semi-implicit time discretiza-
tion scheme at times t = 1.2 · 10−3, 1.8 · 10−3 and 2.1 · 10−3.
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6.1.1 Spatial approximation error in mesh coupled to the in-

terface width

In this first experiment one can see the expected behavior, that the spatial approxima-
tion error influences the exactness of the evolution process. As general setup we use a
fixed very small time step size of τ = 10−8, surface tension of γ = 1.0 and a mesh width
coupled to the varying interfacial parameter ε. Below we present the graph showing
the results for the fully implicit time discretization scheme. The same experiment con-
ducted with the semi-implicit time discretization essentially leads to the same graphic
and is thus omitted. In Figure 6.5 we show the evolution of the sum of the radii of the
circles given by the zero level sets of the concentration u for simulations on an adaptive
grid. One can see that the general behavior is correct for all of the simulations. The
velocity of the movement is dependent on the curvature of the interfaces and speeds up
the smaller the circles get. Also the monotone convergence of the model with respect
to the parameter ε can be observed nicely.

 

 

exact
επ = 0.05
επ = 0.025
επ = 0.00625

0.45

0.35

r 1
+
r 2

0.25
0.0030.002

Time t
0.0010

Figure 6.5: Influence of ε on the quality of the approximation.

6.1.2 Comparison of implicit and semi-implicit time discretiza-
tion

Naturally the implicit and semi-implicit Euler time discretization of the free energy
term Ψ(u) omits a different approximation quality. We fix γ = 1.0 and ε = 0.025

π
,

such that the interface has an approximate width of 0.025. The figures below show
again the sum of the level set radii versus the time. Figure 6.6 uses the semi-implicit
discretization, whereas Figure 6.7 uses the fully implicit model. In Figure 6.6 we can
see that the approximation is very crude for larger time steps and very small time
steps are necessary to capture the evolution of the sharp interface model. The implicit
discretization omits an almost perfect approximation even for large time steps, if it
converges. There are some problems for large time step sizes, as we already discussed
in Section 3.6.4.
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exact
τ = 5.0 · 10−5

τ = 1.0 · 10−5

τ = 1.0 · 10−6

τ = 1.0 · 10−7

τ = 1.0 · 10−8
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0.35
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+
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0.25
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Time t
0.0010

Figure 6.6: Progression of the sum of the radii with semi-implicit discretization and
ε = 0.025

π for different time step sizes on an adaptive mesh.
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Figure 6.7: Progression of the sum of the radii with implicit discretization and ε =
0.025
π for different time step sizes on an adaptive mesh.
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6.1.3 Influence of γ on the evolution speed

The sharp interface model suggests, that the surface tension parameter γ influences the
velocity of the zero level sets movement, see Section 2.4. The analysis there suggests
a linear dependency. We now use an adaptive mesh, for a fixed parameter ε = 1

160π
=

0.00625
π

and a time step size τ = 10−6 together with an implicit scheme. Figure 6.8 shows
the exact solutions given by the Mullins-Sekerka model and those given by the phase
field model for three parameter γ. We can see that for γ = 1.0 the solution given by the
simulation approximates the sharp interface almost exactly. The approximate solution
using a smaller parameter γ is a little bit too quick but still tracks the evolution quite
nicely. Increasing the size of the parameter γ leads to a slightly too fast simulation.

 

 

exact
γ = 0.75
γ = 1.0
γ = 2.0

0.45

0.35

r 1
+
r 2

0.25
0.0030.002

Time t
0.0010

Figure 6.8: Influence of γ on the evolution process, with ε = 1
160π and τ = 10−6 on

an adaptive mesh.

6.2 The primal-dual active set method with con-

stant mobility

The following simulations show the efficiency of the primal-dual active set method
applied to the Cahn–Hilliard problem with constant diffusional mobility, i.e. Algo-
rithm 3.3. We study different initial concentration distributions, describing either a
nearly homogeneous mixture or a configuration with well developed interfaces, to apply
the numerical methods described in this work, too.

6.2.1 Randomly perturbed initial data

In applications one often has to consider initial data which are a random perturbation
of an equally distributed concentration u. Therefore we give results on an equally
distributed mass on Ω = (0, 1)2 with a stochastic distortion. We define u0(x) := 0.5 ·
σ(x) + 0.2, where σ : Ω → [−1, 1] denotes a random number generator. Consequently
there is no pure phase initially, i.e. all vertices are inactive, and the resulting equation
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system (3.21)-(3.23) is as large as possible. For this simulation we used the implicit
discretization and a uniform mesh with h = 0.00552, τ = 10−5, Tend = 0.005, πε = 0.05
and c = 10. In each time step where a new active set emerges, we observe large values
in the Lagrangian multiplier µ, however max |µ| ≤ 20. Figure 6.9 shows u, w and µ
after 0, 5, 50 and 500 time steps. Already after 5 time steps the phase separation can
be clearly seen.

u

1
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−1

1

0

−1

1

0

−1

1

0

−1

w

3870

−3440

30
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−16

−2
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µ

2

0

−2

n = 0

2

0

−2

n = 5

2

0

−2

n = 50

2

0

−2

n = 500

Figure 6.9: 2D simulation with random initial data.

In Figure 6.10 we see that in the early stage of this simulation one PDAS iteration is
sufficient since there is no active set present and we just have to solve a linear system.
After that a larger number of iterations is neccessary because there are quite a few
topological changes and a huge amount of vertices changes from inactive to active.
However there have never been more than 10 PDAS-iterations necessary. Afterwards
when the interfaces are well developed an average amount of 2-3 iterations is sufficient.

As we described in the introduction, the next phase of the evolution process is dom-
inated by the so called survival of the fattest stage, where already well developed
interfaces are present.

6.2.2 Circular interfaces in two spatial dimensions

In this example we choose initial data with a concave as well as a convex section of the
interface. The initial data on Ω = (0, 1)2 consist of four circular interfaces of width επ.
The centres and radii are chosen in such a way that three of circles intersect and one
is detached. The values ±1 are connected by a sine profile which is given as the lowest
order term in an asymptotic expansion of the Cahn–Hilliard variational inequality, see
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Figure 6.10: PDAS-iterations and vertices changing sets per time step for random
initial data.

e.g. Blowey and Elliott [BE94]. In Figure 6.11 we show the inital data for two different
interface width. The initial active sets show a value of 0 on each inactive vertex and a
positive resp. negative value on each active vertex.

1
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h

2
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A0,±
h

,I0
h

Figure 6.11: Initial data for ε = 0.1
π (left) and ε = 0.05

π (right).

We set Tend = 0.02 for all the following simulations. In Figure 6.12 and Figure 6.13 the
evolution of u, w and µ in time is plotted. Here we used a semi-implicit discretization
with an adaptive mesh with hfine = 0.01 for ε = 0.1

π
and hfine = 0.005 for ε = 0.05

π

respectively, the time step τ = 10−5. Simulations with equidistant mesh give the same
results. The columns from left to right show the values of u, w, µ and the mesh after
5, 50, 100 and 200 time steps.
In our numerical experiments we use the projected block sor-method (pBSOR) with
overrelaxation using ω = 1.3 for comparison with the PDAS-method. As stopping
criteria ‖uk − uk−1‖2 ≤ 10−7 and a maximum of 50000 iterations is used.
Table 6.1 shows that for a small number of vertices the pBSOR algorithm is still fast
but with an increasing number of vertices its performance quickly deteriorates. Here
the columns showing CPU times for the primal-dual active set method were generated
with the direct method (UMF) as linear algebra solver for the saddle point system,
since this is the fastest one of the implemented methods, compare Section 6.2.4. Using
the corresponding BSOR-method in combination with the PDAS-method, the resulting
solver is even a bit slower for large time steps. The direct solver on the other hand
lowers the runtime considerably. Moreover we see that there is nearly no difference
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Figure 6.12: Time evolution of the example with four circular interfaces with ε = 0.1
π .
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Figure 6.13: Time evolution of example with four circular interfaces with ε = 0.05
π .
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επ h τ CPU–Time in seconds PDAS-iterations

(N) semi-impl. impl.
pBSOR PDAS PDAS total average max

0.2 0.02210 10−4 57.1 10.7 11.2 74 3.5 5
(4225) 10−5 270.9 29.7 63.6 450 2.2 4

10−6 703.3 195.0 202.6 2958 1.5 3
0.01105 10−4 1071.6 69.4 39.5 100 4.7 7
(16641) 10−5 5522.9 203.3 199.2 577 2.8 4

10−6 13506.2 1353.6 1325.6 3795 1.9 3
adaptive 10−4 5.2 2.9 2.9 72 3.4 5
(≈ 2000) 10−5 23.1 17.6 17.5 447 2.2 4

10−6 70.2 117.9 117.8 2968 1.5 3

0.1 0.01105 10−4 1374.6 17.9 17.8 70 3.3 6
(16641) 10−5 4179.5 103.4 105.6 409 2.0 5

10−6 10111.0 793.1 727.6 2922 1.5 4
0.00552 10−4 — 130.3 134.5 91 4.3 10
(66049) 10−5 — 750.7 754.5 524 2.6 6

10−6 181285.1 4905.4 4813.2 3362 1.7 5
adaptive 10−4 45.1 5.1 5.1 69 3.3 7
(≈ 3600) 10−5 74.5 27.7 28.2 403 2.0 4

10−6 390.2 198.7 194.0 2897 1.4 3

0.05 0.00552 10−4 11145.0 126.6 — 88 4.2 7
(66049) 10−5 72715.0 592.0 597.3 497 2.4 6

10−6 192554.4 3911.3 4013.2 3275 1.7 5
adaptive 10−4 737.1 13.6 — 85 4.0 7
(≈ 7000) 10−5 602.3 76.8 73.4 503 2.5 6

10−6 1478.2 467.6 478.1 3260 1.6 5

Table 6.1: CPU–Runtimes and iteration counts for the example with four circular
interfaces.

in CPU-time between the semi-implicit and the implicit discretization. The severe
restriction on the time step for the implicit case as stated in Lemma 2.12 has not been
observed. Only for ε = 0.05

π
the choice τ = 10−4 failed even for very large parameter

c = 1010.

When we compare the runtimes used on the fixed mesh with 16641 vertices we notice
that the simulations with ε = 0.2

π
used up almost double the time of the one with

ε = 0.1
π
. The reason lies in the size of the inactive set, which is roughly spoken the

interface with width επ. Hence for ε = 0.2
π

the system (3.21)-(3.22), which has to be
solved, is of larger dimension.

In addition in Table 6.1 the total, the averaged and the maximal number of PDAS-
iterations are listed for the semi-implicit discretization. The numbers for the implicit
discretization are nearly the same except for the failures and hence not listed. The
average number of PDAS-iterations depend more on the time step than on the mesh.
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This is an expected behavior since when we use larger time steps the active sets change
on a bigger scale than with smaller time steps. In most of the above simulations the
maximum number of iterations was needed in the first time step. The reason is that the
mean curvature of the interface is high in the beginning of the time evolution, resulting
in fast movement of the interface region. Even taking a rather large time step, like for
example τ = 10−4 for ε = 0.05

π
, the maximum number of necessary iterations per time

step keeps low and never exceeded 11. The averaged numbers of iterations are much
smaller since the time evolution of the interface becomes slow for larger t, resulting in
only one or two PDAS-iterations.
In Figure 6.14 we plot the time against the number of used PDAS-iterations per time
step as well as against the number of changed vertices per time step for the above
simulation with ε = 0.1

π
, τ = 10−5, in the semi-implicit and implicit case for an adaptive

mesh with hfine = 0.00552.
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Figure 6.14: PDAS-iterations and vertices changing sets per time step.

In the first few time steps the evolution smoothens the interfaces and the concave part
is moving quickly. These two facts result in an increased number of neccessary PDAS-
iterations. After that typically two to four iterations are sufficient. The steps where we
only need two iterations are optimal in a way that if there is any change in the active
set we need at least these two iterations. Only when there are no changes in the sets
just one iteration is sufficient. What we can observe in these plots is the expected rise
in iteration numbers when there is a big change in the active set. The second peak
is due to the disappearance of the bubble in the upper right quadrant. If we use an
equidistant mesh for the above example, the results and numbers of PDAS-iterations
stay nearly the same, although in the adaptive case we have to adapt the starting active
set due to a grid change in time, see Section 3.6.1.
However, instead of roughly 10 minutes CPU-time for an equidistant grid only 76
seconds CPU-time is needed in the adaptive case to determine a solution up to T = 0.02.

6.2.3 Spherical interfaces in three spatial dimensions

Finally we give an example in 3D. Therefore we expand the example with circular
interfaces above, see Section 6.2.2, to initial data consisting of four balls in Ω = (0, 1)3.
Figure 6.15 shows the zero–level sets of u of such a simulation with τ = 10−5, πε = 0.1
and c = 10 after 0, 20, 50, 100, 300 and 700 time steps on an adaptive mesh with



6 Numerical results 1116 Numerical results 1116 Numerical results 111

the semi-implicit primal-dual active set solver. For these examples in three dimensions
we use the conjugate gradient method with a simple diagonal preconditioning for the
solution of the saddle point problem, i.e. we apply Algorithm 5.3, where F and f are
given by the full saddle point system (4.1) and P by its diagonal entries.

t = 0 t = 2 · 10−4

t = 5 · 10−4 t = 1 · 10−3

t = 3 · 10−3 t = 7 · 10−3

Figure 6.15: Zero–level sets of a 3D simulation with 4 spheres as initial data on an
adaptive mesh for πε = 0.1 and a slice, showing the mesh.

The simulation up to Tend = 0.015, i.e. 1500 time steps, where a coupled system
corresponding to roughly 96000 grid points has to be solved, took 1.2 hours with a total
of 2537 PDAS-iterations. This is only five percent of the computation time used by
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the pBSOR method which took 23.5 hours. Additional speed up -which is not possible
for the pBSOR-method- can be obtained by a different linear algebra solver. Even for
this three dimensional problem with the topological changes a maximal number of only
five PDAS-iterations in each time step is sufficient for the simulation. In Figure 6.16
we plot the time against the number of primal-dual active set iterations as well as the
number of vertices changing from one set to another. The highest number of iterations
occured again in the first time step, where the initial data for the active and inactive
sets had to be guessed and hence a larger number of vertices needs to change sets. Also
the second peak, where a larger number of vertices changes occurs at the point in time,
where the three connected spheres merge completely.
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Figure 6.16: PDAS-iterations and vertices changing sets per time step for four spher-
ical interfaces as initial data with επ = 0.1 on an adaptive mesh.

Computation times of simulations using different meshes and time step sizes are shown
in Table 6.2. There we stop the simulations earlier since the evolution process slows
down considerably. This is expected since this final stage adheres to a slower time scale
as we discussed in the introduction. We set Tend = 0.0015 and hence omit the time
steps, where almost no changes occur. For the generation of the table we only used
the diagnoally preconditioned conjugate gradient method as solver for the sadde point
problem. The effects of the use of other linear algebra solvers is studied in the next
subsection.

επ h τ CPU–Time in seconds PDAS-iterations

(N) pBSOR PDAS-CG total average max

0.2 0.01969 10−4 10927.1 558.6 72 4.5 6
(170081) 10−5 58112.6 2216.1 382 2.5 5

10−6 375175.1 10874.9 3260 2.2 5
adaptive 10−4 928.6 156.9 69 4.6 7

(≈ 33000) 10−5 4231.1 581.2 378 2.5 5
10−6 18334.5 3126.1 2091 1.4 4

0.1 adaptive 10−4 4186.5 196.9 63 3.9 8
(≈ 96000) 10−5 17277.7 584.3 377 2.5 5

10−6 54251.9 2575.4 2790 1.8 4

Table 6.2: CPU–Runtimes and iteration counts for the example with four spherical
interfaces.
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6.2.4 Study of the different interior linear algebra solvers

Up to this point we just compared the runtimes for the projected block sor solver to
the primal-dual active set method with the direct solver for two spacial dimensions or
a conjugate gradient method applied directly to the full saddle point problem, in case
of three spatial dimensions. Now we will use the first two time steps of the four circles
resp. spheres setting to compare the different linear algebra solvers. We restrict the
investigation to γ = 1.0 and use equidistant as well as adaptive meshes. Furthermore
we fix the time step size to match the mesh size, i.e. we set τ ≈ 4ε2

1000γ
.

Both Schur complement formulations require the solution of the discrete Laplacian in
each iteration. In two spatial dimensions we use the direct solver UMFPack for this.
This is very efficient, since the mesh does not change during one time step and thus
the factorization can be reused. In three dimensions a conjugate gradient method is
used instead. At this point a further improvement on the performance of the outer
conjugate gradient method could be obtained by the use of a stronger method, i.e. a
geometric multigrid method, which is not available to us in ALBERTA.
The times given in Tables 6.3 and 6.4 show that in two spatial dimensions the direct
solver is very strong. Later in the simulation, when the evolution slows down, the
iterative methods gain an advantage in comparison to the direct solver, whose effort
is independent of the quality of the initial guess for the solution. Comparing the
classical (pBSOR) solver to the primal-dual active set methods, we can see, that with
the exception of very crude approximations with large ε the efficiency of the pBSOR
method deteriorates quickly and for the simulation with επ = 0.025 no convergence is
obtained within 50000 iterations. The number of iterations required could eventually
be decreased with the help of a smaller time step size, but then the number of time
steps required increases too. The primal-dual active set method in conjunction with
the BSOR method is even slower, however a reformulation allows for stronger methods.
If we consider the simulations in three dimensions the direct method is no longer
competitive due to the huge amount of fill in. The simulations with επ ≥ 0.05 required
more than 8 Gigabytes of memory. Nevertheless again the possibility to use good
linear algebra solvers for the system of equations instead of an inequality allows for a
significant speed up.
The performance of the Schur complement solver depends heavily on the solver used
for the Laplacian required in each iteration. In upto two spatial dimensions this can
be done very efficiently with the direct solver, since it is sufficent to create the LU-
decomposition only once in each time step. After that a simple forward-backward
sweep generates the solution. In three dimensions this option is no longer viable and
we use a standard conjugate gradient method. This is obviously not good enough to
beat the conjugate gradient method applied directly to the whole saddle point problem
and more sophisticated methods are required to improve the results.
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επ τ vertices pBSOR PDAS-it. BSOR UMF CG SC PrecSC

2D 0.2 2 · 10−4 1012 0.09, 0.07 4, 4 0.13, 0.11 0.07, 0.07 0.03, 0.03 0.16, 0.15 0.07, 0.07
0.1 4 · 10−5 2228 0.52, 0.54 5, 4 1.07, 1.02 0.21, 0.15 0.07, 0.07 0.75, 0.54 0.18, 0.15
0.05 1 · 10−5 4852 1.89, 2.23 5, 4 4.52, 5.37 0.51, 0.36 0.37, 0.24 2.34, 1.53 0.42, 0.29
0.025 2 · 10−6 10457 9.71, 7.71 5, 5 27.64, 27.21 1.05, 0.97 0.81, 0.79 5.19, 3.69 1.07, 0.84
0.01 4 · 10−7 33310 140.22, 111.43 6, 6 875.40, 863.90 4.22, 4.08 5.19, 4.80 10.23, 8.63 3.55, 3.33
0.005 1 · 10−7 75227 674.97, 524.99 6, 6 1587.14, 1391.22 9.78, 9.65 18.25, 15.76 23.98, 18.93 13.79, 11.28
0.001 4 · 10−9 890787 — 7, 7 — 262.51, 267.53 404.48, 318.87 385.04, 307.12 156.18, 128.22

3D 0.2 2 · 10−4 33210 40.50, 25.61 7, 4 193.70, 70.92 296.11, 188.12 12.29, 6.46 96.04, 52.30 65.33, 44.34
0.1 4 · 10−5 95924 345.01, 268.02 7, 4 1507.14, 888.27 1642.12, 1313.91 41.06, 41.79 161.14, 124.11 109.49, 83.23
0.05 1 · 10−5 347204 1511.40, 1180.20 6, 4 3226.92, 2289.67 — 149.05, 72.05 968.84, 665.69 547.82, 368.27
0.025 2 · 10−6 1334773 9151.11, 7914.22 5, 4 28935.04, 14273.33 — 544.34, 168.88 3515.14, 3157.97 1642.41, 1432.7

Table 6.3: CPU–Runtimes in seconds for various linear algebra solvers of the fist two time steps of the example with four
circular/spherical interfaces on an adaptive mesh.

επ τ vertices pBSOR PDAS-it. BSOR UMF CG SC PrecSC

2D 0.2 2 · 10−4 4225 5.89, 4.79 5, 5 12.21, 10.67 0.35, 0.33 0.38, 0.36 0.96, 0.94 0.43, 0.39
0.1 4 · 10−5 16641 97.18, 87.88 4, 5 140.72, 158.34 1.12, 1.34 2.03, 2.26 3.46, 4.18 1.26, 1.35
0.05 1 · 10−5 66049 — 6, 5 — 7.67, 6.32 17.37, 16.90 29.58, 22.66 6.56, 4.50
0.025 2 · 10−6 263169 — 5, 6 — 34.34, 41.04 107.89, 101.88 100.06, 97.34 32.57, 26.50

3D 0.2 2 · 10−4 170081 1222.54, 934.12 6, 4 4403.61, 3152.11 — 63.98, 45.27 467.01, 385.54 222.85, 143.67
0.1 4 · 10−5 1335489 — 5, 6 — — 645.48, 847.88 4121.11, 4099.15 1935.80, 1602.10

Table 6.4: CPU–Runtimes in seconds for various linear algebra solvers of the fist two time steps of the example with four
circular/spherical interfaces on an equidistant mesh.
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6.3 Performance of the preconditioned Schur com-

plement solver

In this section we test the efficiency of the preconditioning with some numerical ex-
periments in two different settings, which we have already used before. Both are given
on Ω = [0, 1]d, where d = 2, 3, and we set γ = 1.0. The parameter c, which controls
the primal-dual active set strategy, is set to a fixed value of 10. The implemented
boundaries for the iteration counts are set to 20 for the primal-dual active set itera-
tions and to 1000 for the conjugate gradient method iterations. We use the following
two configurations:

1. The radially symmetric setting, where the interface describe two concentric circles
around the point (0.5, 0.5) and in R3 two concentric spheres around the point
(0.5, 0.5, 0.5) respectively, describes an easy situation, where exact solutions to
the sharp interface model are known. We choose the radii r = 0.05 and R = 0.15.
The Mullins-Sekerka model, which is the corresponding sharp interface model to
our phase field approach, see Section 2.4, predicts, that at time Te = 1.21 · 10−4

the smaller circle has vanished and the remaining system remains stable. Hence
we set the final time T = 2 ·10−4 to allow for the deviation caused by the explicit
approximation. This setting is similar to the one used in Section 6.1, see also
Figures 6.2-6.4.

2. In the second setting, the interface consists of four circular shapes as described
in Section 6.2.2, see Figure 6.11 for a depiction. The final time, where the state
is nearly steady, is given by T = 1.2 · 10−3.

In each PDAS iteration we initially calculate a solution uexact by means of the direct
solver UMFPack and use ‖u − uexact‖2 < tolcg := 10−7 as abort criterion for the
projected conjugate gradient methods with and without preconditioning. This is not
a useful condition in practice, but it provides us with a good environment to compare
the unpreconditioned and preconditioned solver independently.
We want to stress that in each iteration of the conjugate gradient method a Laplace-
type problem has to be solved, when we calculate the application of F. Our experiments
show the method, solving this subproblem, must be able to reach a small tolerance in
comparison to tolcg. This is similar to the required tolerance for the solver of the saddle
point problem to obtain a converging primal-dual active set iteration, see Section 3.6.5.
When we use the direct solver UMFPack this is no restriction. When we use the
standard multigrid solver from ALBERTA we need to prescribe a tolerance of at least
10−10 to obtain a converging CG iteration. If the tolerance is set adequately the method
is independent of the type of solver we use. For the generation of the tables in this
section we used the direct solver. As we discussed earlier, the advantage is given by
the very good re-usability of the generated factorizations.
The same is true for the part of the program that takes care of the solution of the
subproblem, when applying the preconditioner, given by Id + σC. Thus we use the
direct solver again, where possible.
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6.3.1 Comparison type 1 - adaptive mesh, fixed τ ≈ ∆x · 10−2

and variable interface width επ

With this first simulation series we will test the behavior of the CG solver with respect
to a shrinking parameter ε. Note that επ is approximately the interface width. The
mesh is generated by an adaptive algorithm, which refines the mesh on the interface
to a level that ensures the existence of at least eight vertices across the interface and
coarsens outside of the interface region. For decreasing parameter ε the mesh size
∆xmin is reduced by the same factor and the time step size is adjusted accordingly.

επ τ avg Unpreconditioned SC Preconditioned SC

vertices total max avg CPU total max avg CPU

0.2 2 · 10−4 1974 no convergence 382 12 10 7
0.1 1 · 10−4 3724 3808 84 56 21 583 12 9 13
0.05 5 · 10−5 7191 9615 108 64 89 1187 11 8 52
0.025 2.5 · 10−5 14627 20811 127 72 369 2139 11 8 200
0.0125 1.25 · 10−5 30565 39977 140 73 1605 3496 10 7 833

Table 6.5: Comparison type 1 - 4 circles setting.

Table 6.5 shows that for decreasing ε the maximal as well as the average number of
iterations increases steadily in the unpreconditioned case, whereas with the precon-
ditioner in place, they stay low and are even decreasing. Also we can observe the
quadruplication of the CPU time needed when we divide the parameter ε by two for
the preconditioned as well as the unpreconditioned method. This is an expected be-
havior, because the number of vertices, i.e. the dimension of the equation system, and
the number of time steps are both doubled.

επ τ avg Unpreconditioned SC Preconditioned SC

vertices total max avg CPU total max avg CPU

0.2 2 · 10−5 1203 517 35 26 1.7 159 10 8 1.7
0.1 1 · 10−5 2391 1346 44 34 9 307 10 8 8
0.05 5 · 10−6 5020 3484 54 41 42 639 10 8 34
0.025 2.5 · 10−6 10501 10432 68 53 235 1465 9 8 164
0.0125 1.25 · 10−6 22927 26752 71 64 1362 2920 8 7 789

Table 6.6: Comparison type 1 - Radially symmetric setting.

In Table 6.6 the same behavior can be observed. Here we can see additionally that for
decreasing ε the shortening of the used CPU time with the use of the preconditioning
increases more and more.
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6.3.2 Comparison type 2 - equidistant mesh, τ = 10−6 and

ε = 0.1
π

fixed

Now we want to study the behavior of the solver with respect to a varying mesh
size. Therefore we fix the other parameters τ and ε and carry out the simulation for a
changing number of global refinements of the initial macro mesh. The mesh we use here
is not an adaptive mesh, but an equidistant mesh generated by a number of bisection
steps given by the number of global refinements.

glob. vertices ∆x PDAS Unpreconditioned SC Preconditioned SC

ref. it. total max avg CPU total max avg CPU

11 4225 0.02 1640 24349 24 15 242 20503 18 13 276
13 16641 0.01 2060 39530 34 20 1750 25472 19 13 1767
15 66049 0.005 2385 79524 61 34 14590 32157 20 13 9758

Table 6.7: Comparison type 2 - 4 circles setting.

glob. vertices ∆x PDAS Unpreconditioned SC Preconditioned SC

ref. it. total max avg CPU total max avg CPU

10 2113 0.03 218 1765 11 9 12 1449 8 7 12
11 4225 0.02 220 2216 13 11 30 1598 9 8 30
12 8321 0.015 245 3103 18 13 82 1764 10 8 78
13 16641 0.01 253 4416 24 18 227 1888 10 8 192
14 33025 0.007 273 6511 34 24 660 2067 10 8 512

Table 6.8: Comparison type 2 - Radially symmetric setting.

Table 6.7 and Table 6.8 show that there is only a slight dependency of the precondi-
tioned algorithm with respect to the mesh. We want to note that the bisection of the
mesh effectively doubles the amount of inactive vertices across the interface. There-
fore the number of vertices contained in the interface, i.e. the width of the interface
measures in the number of vertices, has almost no influence on the condition of the pre-
conditioned system matrix. In the radially symmetric simulation the situation is not
as bad as for the 4 circles case but essentially this case is a one dimensional problem.

6.3.3 Comparison type 3 - τ = 10−5, adaptive mesh and vari-
able interface width επ

Here we can see that the additional computational effort used for the preconditioning is
too large to achieve a faster simulation for relatively large ε. As we have seen before the
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number of CG iterations doesn’t increase for the preconditioned system in comparison
to the unpreconditioned method, hence the computational costs stay at an adequate
level and for επ > 0.05 we can observe an increasing speed up. Comparing the CPU

επ avg. PDAS Unpreconditioned SC Preconditioned SC

vertices it. total max avg CPU total max avg CPU

0.2 2043 260 5513 31 22 36 2993 15 12 44
0.1 3329 285 9459 51 34 81 2924 16 11 72
0.05 6509 346 17362 82 51 250 3413 16 10 168
0.025 13922 390 25584 116 66 720 3329 13 9 410
0.0125 30262 428 30955 138 73 1884 2859 10 7 951

Table 6.9: Comparison type 3 - 4 circles setting.

times of Table 6.9 with the corresponding rows of Table 6.1 we can see that even
the unpreconditioned SC method is superior to the pBSOR method. However since
the examples are still in two spacial dimensions the direct solver remains the fastest
method.

6.3.4 Preconditioning with implicitly discretized free energy

All simulations above were done with an explicit time discretization of the free energy
term. To show the efficiency of the preconditioning also in case of an implicit dis-
cretization, we repeat comparison type 1 with the implicit method. Table 6.10 shows
the results for the 4 circles setting, whereas Table 6.11 concerns the radially symmetric
data.

επ τ PDAS Unpreconditioned SC Preconditioned SC

it. total max avg CPU total max avg CPU

0.2 2 · 10−4 29 no convergence 210 11 8 1.1
0.1 4 · 10−5 100 1862 48 19 8.5 461 10 5 6.4
0.05 1 · 10−5 345 5024 55 15 50.5 1285 11 4 47.1
0.025 2 · 10−6 1536 13060 59 9 345.7 4140 11 3 281.5

Table 6.10: Comparison type 1 - 4 circles setting with implicit free energy.

In Table 6.10 we used smaller time step sizes to avoid a strong influence of the adaptive
mesh due to the fast movement of the interface, compare Section 3.6.4. The results
are not as strong as in the explicit case, which is caused by the smaller time step
sizes. The unpreconditioned method deteriorates for larger time steps, as we have seen
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before. The preconditioned system on the other hand suffer no such drawback, as we
will see below.
The radially symmetric simulation with ε = 0.025

π
and the same time step as in the

explicit test, resulted in one time step, where the primal–dual active set did not con-
verge, since one vertex oscillated between active and inactive set. After aborting the
time step due to the maximum iteration count and continuing in the simulation, the
next time step smoothed out the problem and the simulation finished without any
more problems. Simply using a smaller time step size fixed this problem. Here the
preconditioning still works, but the number of iterations is no longer independent of
the refinement. However changing the time step size has no discernible influence on
the required number of iterations per time step for the solution of the preconditioned
system. This is illustrated by the additional simulations with ε = 0.025

π
using different

time step sizes.

επ τ avg Unpreconditioned SC Preconditioned SC

vertices total max avg CPU total max avg CPU

0.2 1 · 10−5 1203 553 37 30 1.8 185 12 10 1.6
0.1 5 · 10−6 2391 1441 54 42 8.0 366 13 11 6.9
0.05 5 · 10−6 5020 3976 69 52 47.4 849 14 12 32.2
0.025 2.5 · 10−6 10501 13591 115 82 296.3 2218 17 14 157.3

0.025 1 · 10−6 10501 21265 88 62 498.9 4203 16 13 306.1
0.025 5 · 10−7 10501 31094 69 50 786.6 7522 17 13 560.9

Table 6.11: Comparison type 1 - Radially symmetric setting with implicit free energy.

6.3.5 Condition numbers

Finally to round out the numerical study of the preconditioning, we study two configu-
rations and calculate the condition number and spectral radius of the Schur complement
operator with an explicit discretization of the free energy. First we consider the ex-
ample with four circular interfaces in two spacial dimensions, i.e. Ω = [0, 1]2. We set
ε = 0.1

π
, γ = 1.0, τ = 4 · 10−5 and c = 10 and use the adaptive mesh, which results in

approximately 2216 vertices. Table 6.12 shows the values for some selected time steps.
We can see that the largest eigenvalue of the preconditioned system is always exactly
one and the condition number is very close to one.
As a second example, we use initial data, where the interface describes two circles of
the same radius r = 0.1 in Ω = [0, 1]2. We set ε = 0.1

π
, γ = 1.0 and τ = 4 · 10−5 as well

as c = 10. Furthermore we use an adaptive mesh resulting in roughly 3300 vertices.
Table 6.13 shows the condition numbers and spectral radii of the unpreconditioned
and preconditioned Schur complement operator at the second primal-dual active set
iteration of the first time step for different distances d between the two shapes. We
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Time step PDAS iteration cond(SC) ρ(SC) cond(PrecSC) ρ(PrecSC)

First 1 113.4317 73277 1.0003 1.0
2 117.0272 71473 1.0007 1.0
3 4299.7184 63588 1.1347 1.0
4 299.7184 68164 1.0089 1.0

Second 1 116.4975 73293 1.0031 1.0

Table 6.12: Condition numbers and spectral radii of the (un-)preconditioned Schur
complement operator for the four-circles setting in two dimensions.

would like to point out, that the inactive sets are connected in the last case with
d = 0.08. Similar values have been observed for the other time and iteration steps.

d cond(SC) ρ(SC) cond(PrecSC) ρ(PrecSC)

0.65 88.8369 294250 1.0006 1.0
0.35 88.8369 294250 1.0005 1.0
0.08 88.8371 294250 1.0005 1.0

Table 6.13: Condition numbers and spectral radii of the (un-)preconditioned Schur
complement operator for two circular interfaces with variing distance.
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6.4 Surface diffusion

We restrict ourselves to simulations, where the diffusional mobility is discretized explic-
itly in time. Subsequently the movement of the mobile set is confined to a layer of one
additional vertex along the boundary of the mobile set. This can also be understood
as a restriction on the velocity of the surface movement or similarly as an upper bound
on the time step size, compare [BBG99].
Let Ω = [0, 4] × [0, 1]d−1, where d = 2, 3. We use initial data, where the zero–level
set describes a dumbbell, see Figure 6.17. We set ε = 0.1

π
, γ = 1.0, c = 100 for all

simulations below. Additionally we fix the diameter of the handle at 0.04 and vary
the time step size as well as the type of time discretization used for the free energy
term. Furthermore we use the adaptive mesh, resulting in roughly 14000 vertices
in two spatial dimensions and two million vertices in three. The same experiment
employing an equidistant mesh lead to similar results. The diffusional mobility b(u) :=
max(1−u2, 0) is discretized explicitly in time, i.e. we use the corresponding primal-dual
active set method (mPDAS-II), where we use either the direct solver or a conjugate
gradient method for the solution of the saddle point system in two and three dimensions
respectively.

1

0

−1

Figure 6.17: Initial data describing a dumbbell in two spatial dimensions for ε = 0.1
π .

The evolution process governed by surface diffusion, leads to a pinch-off in finite time
for initial configurations like the dumbbell given here, compare e.g. Bänsch, Morin and
Nochetto, see [BMN05].
In Figure 6.18 the different time steps of the evolution using an explicit discretization
of the free energy term are depicted in each row from left to right. Each row shows the
evolution process for a different time step size. The same simulations with an implicit
discretization of the free energy term leads to a better approximation for larger time
step sizes than the explicit version, see Figure 6.19, where the number of droplets in
the numerical steady state varies. Note that the first two pictures of the upper row are
missing due to the time step size of τ = 10−5, i.e. the depicted image is the state after
one time step.
The number of necessary primal-dual active set method iterations stayed below 6 for
the explicit discretization. In case of the largest time step, i.e. τ = 10−5, an average
of four iterations was sufficient. However the implicit discretization behaves differently
in the first time step, mostly due to the significant change which occurs there. For
the time step size τ = 10−7, and smaller sizes, the number of primal-dual active set
iterations is the same as with the explicit discretization.
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Figure 6.18: Evolution of a two dimensional dumbbell using an explicit time discretization of the free energy for different time
step sizes τ = 10−5, 10−6, 10−7, 10−8 and 10−9 from top to bottom row.
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Figure 6.19: Evolution of a two dimensional dumbbell using an implicit time discretization of the free energy for different time
step sizes τ = 10−5, 10−6, 10−7 and 10−8 from top to bottom row.
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The simulation with τ = 10−6 requires 27 and with τ = 10−5 121 iterations in the first
time step. After that 5 primal-dual active set iterations per time step suffice. This is
probably related to the uniqueness result we have, where we require a bound on the
time step size such that τ ∈ (0, 4ε4) ≈ (0, 4 · 10−6), see Lemma 2.12 or Corollary 3.8.
The behavior does not continually worsen, for example, 38 iterations are sufficient for
a time step size of τ = 5 · 10−5.
Extending the above result to three spatial dimensions we get similar results. We use
the same parameters as before, with the exception of the the diameter of the dumbbells
handle, which was set to 0.08 leading to better visible results. Figure 6.20 shows the
evolution of the 0–level set of the simulation with τ = 5 ·10−7. Again the discretization

t = 0.0 t = 2.5 · 10−6

t = 5.0 · 10−6 t = 2.5 · 10−5

t = 5.0 · 10−5 t = 1.0 · 10−4

Figure 6.20: Evolution of a three dimensional dumbbell using an implicit time dis-
cretization of the free energy with a time step size of τ = 5 · 10−7.

of the free energy with an implicit method, leads to the correct steady state with
a larger time step size in comparison to the explicit method, compare Figure 6.21,
showing the numerically steady states for different time step sizes for explicit and
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implicit discretization of the free energy term. The existence and uniqueness theory
for solutions with an explicitly discretized free energy require no restriction of the time
step size, but from this experimental point of view the error of approximation of the
model or more precisely the differences in the final states for larger time steps require
a bound on the time step size here too.

Implicit τ = 5 · 10−5 Explicit τ = 5 · 10−5

Implicit τ = 5 · 10−6 Explicit τ = 5 · 10−6

Implicit τ = 5 · 10−7

Figure 6.21: Final states of a three dimensional dumbbell with explicit and implicit
time discretization of the free energy with different time step sizes.
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