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Electron-phonon scattering dynamics in ferromagnetic metals and their influence on
ultrafast demagnetization processes
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We theoretically investigate spin-dependent carrier dynamics due to the electron-phonon interaction after
ultrafast optical excitation in ferromagnetic metals. We calculate the electron-phonon matrix elements including
the spin-orbit interaction in the electronic wave functions and the interaction potential. Using the matrix elements
in Boltzmann scattering integrals, the momentum-resolved carrier distributions are obtained by solving their
equation of motion numerically. We find that the optical excitation with realistic laser intensities alone leads to
a negligible magnetization change, and that the demagnetization due to electron-phonon interaction is mostly
due to hole scattering. Importantly, the calculated demagnetization quenching due to this Elliot-Yafet-type
depolarization mechanism is not large enough to explain the experimentally observed result. We argue that
the ultrafast demagnetization of ferromagnets does not occur exclusively via an Elliott-Yafet type process, i.e.,
scattering in the presence of the spin-orbit interaction, but is influenced to a large degree by a dynamical change
of the band structure, i.e., the exchange splitting.
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I. INTRODUCTION

It was first demonstrated more than ten years ago that
the magnetization of ferromagnets can be “quenched” on
ultrashort time scales after ultrafast optical excitation.1 Apart
from the possibilities for the ultrafast manipulation of ferro-
magnetism in applications, this observation raised the question
of how demagnetization dynamics in ferromagnets on a time
scale of a few hundred femtoseconds can be understood.

Aside from the phenomenological three-temperature
model,1,2 which leads to quite successful comparison with
experiment, there are several theoretical models and exper-
imental results that try to explain aspects of the underlying
microscopic dynamics. For instance, the analysis of x-ray
magnetic circular dichroism measurements suggested that the
orbital magnetic moment does not play a prominent role
in the demagnetization dynamics.3,4 The authors of Ref. 3
concluded that an ultrafast spin-lattice coupling should be
operative to explain the results. It has also been argued based
on experimental results5 that the excitation of magnons should
play an important role. On the theory side, magnetic switching
due to electronic transitions during the duration of a pump
laser pulse has been analyzed in ferromagnets6,7 as well as in
oxides (including phonons),8 and the Landau-Lifshitz-Bloch
equations have been used to describe the magnetic dynamics.9

Perhaps the most popular microscopic explanations of
the effect involve variations of the so-called Elliott-Yafet
mechanism, in which demagnetization (or depolarization in
semiconductors) is due to incoherent scattering of carriers
between states that are spin-mixed due to the spin-orbit
interaction. Electron-electron scattering is a possible candidate
as the underlying scattering mechanism,10,11 but the focus
is usually on the effects of electron-phonon scattering in
quasiequilibrium.12–16 In addition, superdiffusive transport
processes can contribute to the measured Kerr-effect signal
because minority and majority electrons may simply leave the
probe area at different speeds.17

In our opinion, it has so far been impossible rule out a single
one of these mechanisms, let alone to pinpoint the dominant

one. As a first step in this direction, we analyze a parameter-
free microscopic model for ultrafast demagnetization and
compare it with experiment. To keep things simple while
allowing a conclusive statement, we exclusively treat the effect
of the optical excitation and electron-phonon scattering at
the level of Boltzmann scattering integrals while neglecting
dynamical changes in the band structure, i.e., the exchange
splitting, in the course of the dynamics. We evaluate the model
using ab initio results for the simple ferromagnets nickel and
iron. Comparison of the results of the present paper with
experimental data, which are available from many different
measurements, will show that a model without band structure
changes yields a demagnetization that is too small.

This paper is organized as follows. In Sec. II we present
the dynamical equations for the carrier distribution functions
and show how we calculate the electron-phonon and dipole
matrix elements using a first-principles approach. In Sec. III
we discuss the numerical results of this model and show that the
demagnetization using realistic parameters for the ultrashort-
pulse excitation is due to hole dynamics, but too small to
agree with experiment. A qualitative consideration shows that
this conclusion should not be altered by including additional
scattering processes. Section IV contains the conclusions and
the Appendix describes details of our numerical evaluation of
the dynamical equations.

II. THEORY

A. Dynamical equations

The basic idea of this paper is to integrate the dynamical
equations of motion for the band- and momentum-resolved
carrier distributions n

μ

�k (t). Our model includes the incoherent
scattering dynamics due to the electron-phonon interaction, as
well as the optical excitation, so that the general form of the
dynamical equation is

∂

∂t
n

μ

�k = ∂

∂t
n

μ

�k
∣∣
opt + ∂

∂t
n

μ

�k
∣∣
e−p. (1)
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The optical excitation is given by

∂

∂t
n

μ

�k
∣∣
opt = 2π

h̄

∑
ν(�=μ)

∣∣ �dμν

�k · �E(t)
∣∣2

g
(
ε

μ

�k − εν
�k − h̄ωL

)
× [

nν
�k − n

μ

�k
]
. (2)

Here, ε
μ

�k is the energy of a carrier in a single-particle state

ψ
μ

�k with band index μ and momentum �k. The dipole matrix
element for a transition connecting two such states is denoted
by �dμν

�k = 〈ψμ

�k | e�r |ψν
�k 〉. The optical excitation is characterized

by the dynamical electric-field amplitude �E(t), a central laser
frequency ωL, and the function g(ε) that includes the spectral
profile of the laser pulse.

The electron-phonon contribution to the carrier dynamics
at the level of Boltzmann scattering integrals reads

∂

∂t
n

μ

�k

∣∣∣∣∣
e−p

= 2π

h̄

∑
�k′,ν

[
w(�k′,ν → �k,μ)nν

�k′
(
1 − n

μ

�k
)

−w(�k,μ → �k′,ν)nμ

�k
(
1 − nν

�k′
)]

, (3)

where the scattering rates w(�k′,ν → �k,μ) from state ψν
�k′ to

ψ
μ

�k ,

w(�k′,ν → �k,μ)

=
∑

λ

[|M �k−�k′,λ
+ (�k′,ν → �k,μ)|2ñλ

�k−�k′ δ
(
εν

�k′ − ε
μ

�k + h̄ωλ
�k−�k′

)
+ |M �k′−�k,λ

− (�k′,ν → �k,μ)|2(ñλ
�k′−�k + 1

)
× δ

(
εν

�k′ − ε
μ

�k − h̄ωλ
�k′−�k

)]
, (4)

have contributions from absorption (“+”) and emission (“−”)
processes. The (angular) frequency of a phonon mode λ

is designated by ωλ
�q and its occupation at quasimomentum

�q by ñλ
�q . The electron-phonon interaction matrix elements

M
�q,λ
± (�k′,ν → �k,μ) result from the change of the electron-

lattice interaction energy due to the vibrational motion of the
nuclei. For small displacements they are given by

M
�q,λ
± (�k′,ν → �k,μ) =

√
h̄

2MNωλ
�q

∑
j

e±i �q· �Rj

× 〈
ψ

μ

�k
∣∣�πλ

�q · ∂

∂ �Rj

V (�r; { �Ri})
∣∣ψν

�k′
〉
. (5)

The electron-lattice interaction potential V (�r; { �Ri}) depends
on the electron position �r and, in principle, on the set of the
positions of the nuclei { �Ri} in the crystal composed of N

unit cells with atomic mass M . The polarization vector of the
phonon mode (�q,λ) is denoted by �πλ

�q . The upper and lower
signs in the exponential are associated with the phonon ab-
sorption M

�q,λ
+ (�k′,ν → �k,μ) and emission M

�q,λ
− (�k′,ν → �k,μ)

matrix elements, respectively.
In our calculation, we assume that the phonon occupation

numbers are time independent and remain at their equilibrium
values,

ñλ
�q = 1

e
h̄ωλ

�q /kBT0 − 1
. (6)

This amounts to a bath assumption for the phonon system,
and in this paper we fix its temperature at T0 = 300 K, i.e.,
the temperature of the unexcited system in most studies of
demagnetization dynamics.

From the dynamical electronic occupation numbers cal-
culated according to Eq. (1), we obtain the time-dependent
magnetization by

M(t) = 2μB

h̄

∑
�k

∑
μ

〈Sz〉μ�k n
μ

�k (t), (7)

with the single-particle spin expectation value

〈Sz〉μ�k = 〈
ψ

μ

�k
∣∣Ŝz

∣∣ψμ

�k
〉

(8)

in the Bloch state |ψμ

�k 〉 and the Bohr magneton μB . In writing
these relations, we have chosen the z direction as the direction
of the ferromagnetic polarization. Orbital angular-momentum
contributions to the magnetization are neglected in Eq. (7).
Although the orbital contribution to the magnetization is
quenched in the ground state of a 3d ferromagnet, it is not
clear whether this carries over to the dynamics in excited states
as computed here. The paper by Carva et al.4 suggests that
the XMCD sum rules for spin and orbital magnetic moments
remain valid, at least under the nonequilibrium conditions
assumed in that paper. This provides an indication that the
orbital contribution to the magnetization of 3d ferromagnets
is not increased dramatically under laser-excitation conditions

B. Electron-phonon matrix elements

The numerical evaluation of Eq. (1) requires as input
material properties, in particular, the electronic band structure
ε

μ

�k , the spin expectation value of the single-particle states

〈Sz〉μ�k , the dipole-transition matrix elements �dμν

�k , the phonon

dispersion ωλ
�q , and, importantly, the electron-phonon matrix

elements M
�q,λ
± (�k′,ν → �k,μ). We obtain these quantities from

density-functional theory to avoid the introduction of ad-
justable parameters. To this end, we employ the augmented
spherical wave (ASW) method18 as described in the mono-
graph Ref. 19 (see also Ref. 20). The implementation of the
ASW method used by us was developed in the Kübler group
and relies on the scalar relativistic and local spin-density
approximations. It includes spin-orbit coupling in a second
variational correction.

The starting point for the calculation of the matrix elements
is the representation of the wave function of a single-particle
state with band index μ and momentum �k in the ASW basis.
Since we employ the atomic sphere approximation (ASA) it is
usually sufficient to know the wave functions inside the atomic
spheres where they are given by

ψ
μ

�k (�r) =
∑
L,σ

[
C

μ

Lσ (�k)il h̃lσ (r) + A
μ

Lσ (�k)il j̃lσ (r)
]
YL(r̂)χσ , (9)

where h̃lσ (r) and j̃lσ (r) are augmented spherical waves, YL(r̂)
spherical harmonics, and χσ Pauli spinors. Here, L = (l,m) is
a multiindex that includes both the angular momentum and the
magnetic quantum number. The relatively simple expression
given here is only valid for materials with a basis consisting
of a single atom, such as the simple ferromagnets investigated
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in the present paper. The augmented spherical waves, together
with the coefficients A

μ

Lσ (�k) and C
μ

Lσ (�k), are calculated self-
consistently during the iterative solution of the Kohn-Sham
equations.

For the evaluation of Eq. (5), we employ the so-called
rigid-ion approximation. That is, we assume that we can write
the lattice-configuration dependence of the electron-phonon
interaction potential,

V (�r; { �Ri}) =
∑

i

v(�r − �Ri), (10)

as a superposition of the on-site potentials v(�r); see below,
Eq. (12). We also assume that the potential v vanishes outside
the atomic sphere. The rigid-ion approximation is known
to give a quite realistic description of the electron-phonon
coupling in transition metals.21

Equation (5) can then be simplified to yield

M
�q,λ
± (�k′,ν → �k,μ)

= −
√

h̄

2MNωλ
�q
δ�k′±�q−�k, �G

∫
UC

d3r ψ
μ∗
�k (�r)

[�πλ
�q · ∇v(�r)

]
×ψν

�k′(�r), (11)

where UC denotes an integral over the unit cell, which due to
the ASA is assumed to be spherical. For the on-site potential
experienced by the electrons, we include the spin-averaged
radial Kohn-Sham potential Veff(r) as well as the spin-orbit
interaction

v(�r) = Veff(r) + h̄

(2mc)2

1

r

dVeff(r)

dr
�σ · (�r × �p) . (12)

The additional spin-orbit term is often neglected for the
electron-phonon interaction, even though it has been shown
to be of importance for spin relaxation in materials with
time-inversion symmetry.22 Not much is known about the
influence of this term in ferromagnets where the time-inversion
symmetry is broken. We therefore calculate the matrix element
with and without the spin-orbit contribution and show that our
final results on ultrafast demagnetization are not qualitatively
influenced by the inclusion of the second term.

We first give the result for the calculation without the spin-
orbit contribution in Eq. (12). In this case we can directly
evaluate the integral over the unit cell in Eq. (11):∫

UC
d3r ψ

μ∗
�k (�r)∇Veff(r)ψν

�k′(�r)

=
∫

UC
d3r ψ

μ∗
�k (�r)

dVeff(r)

dr
r̂ψν

�k′(�r)

=
∑

σ

∑
L,L′

�GLL′

[
A

μ∗
Lσ (�k)Aν

L′σ (�k′)〈j̃ |dVeff

dr
|j̃〉lσ,l′σ

+C
μ∗
Lσ (�k)Aν

L′σ (�k′)〈h̃|dVeff

dr
|j̃〉lσ,l′σ

+A
μ∗
Lσ (�k)Cν

L′σ (�k′)〈j̃ |dVeff

dr
|h̃〉lσ,l′σ

+C
μ∗
Lσ (�k)Cν

L′σ (�k′)〈h̃|dVeff

dr
|h̃〉lσ,l′σ

]
. (13)

The radial matrix elements

〈f̃ |dVeff

dr
|g̃〉lσ,l′σ ′

= (−1)l il+l′
∫ rK

0
r2f̃lσ (r)

dVeff(r)

dr
g̃l′σ ′(r)dr (14)

can be calculated by integrating the gradient of the Kohn-Sham
potential and

�GLL′ =
∫

d�Y ∗
L(r̂)r̂YL′(r̂) (15)

can be evaluated in terms of Gaunt coefficients.20

The calculation of the electron-phonon interaction matrix
element (11) including the spin-orbit contribution could, in
principle, be achieved by evaluating the integral∫

UC
d3r ψ

μ∗
�k (�r)∇

[
h̄

(2mc)2

1

r

dVeff(r)

dr
�σ · (�r × �p)

]
ψν

�k′(�r)

(16)

and adding it to Eq. (13). However, straightforward numerical
evaluation of Eq. (16) runs into difficulties because of the
strong divergence of the integrand for r → 0. We circumvent
this problem by calculating the complete matrix element (11)
by rewriting the gradient of the potential including the spin-
orbit interaction [Eq. (12)] as a commutator,

∇v(�r) = i

h̄
[ �p,Heff], (17)

with the Hamiltonian Heff = p2

2m
+ v(�r). For the evaluation

of matrix elements of Heff , we will assume that it produces
the energy eigenvalues ε

μ

�k when acting on the corresponding
Kohn-Sham eigenvector, even though the eigenenergies and
eigenvectors are computed using scalar relativistic corrections
to Heff . If we now assume completeness of the ASW basis,
Eq. (17) may be used for a reformulation in terms of the
momentum matrix elements,∫

UC
d3r ψ

μ∗
�k (�r)∇v(�r)ψν

�k′(�r)

= i

h̄

∫
UC

d3r ψ
μ∗
�k (�r)[ �p Heff − Heff �p]ψν

�k′(�r) (18)

= i

h̄
εν

�k′
〈
ψ

μ

�k
∣∣ �p∣∣ψν

�k′
〉
UC − i

h̄

∑
η

ε
η

�k′
〈
ψ

μ

�k
∣∣ψη

�k′
〉
UC

〈
ψ

η

�k′

∣∣ �p∣∣ψν
�k′
〉
UC,

(19)

where the momentum matrix elements 〈ψμ

�k | �p|ψν
�k′ 〉UC are

calculated in the ASA using a consistent method developed
by Oppeneer et al.23 Since ∇v(�r) is a Hermitian operator on
the unit cell, we can derive the following expression that is
more symmetric with regard to initial and final states:∫

UC
d3rψ

μ∗
�k (�r)∇v(�r)ψν

�k′(�r)

= i

2h̄

[ ∫
UC

d3r ψ
μ∗
�k (�r)[ �p Heff − Heff �p]ψν

�k′(�r)

+
(∫

UC
d3r ψν∗

�k′ (�r)[ �p Heff − Heff �p]ψμ

�k (�r)

)∗ ]
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= i

2h̄

[
εν

�k′
〈
ψ

μ

�k
∣∣ �p∣∣ψν

�k′
〉
UC + ε

μ

�k
〈
ψν

�k′
∣∣ �p∣∣ψμ

�k
〉∗
UC

−
∑

η

ε
η

�k′
〈
ψ

μ

�k
∣∣ψη

�k′
〉
UC

〈
ψ

η

�k′

∣∣ �p∣∣ψν
�k′
〉
UC

−
∑

η

ε
η

�k
〈
ψν

�k′
∣∣ψη

�k
〉∗
UC

〈
ψ

η

�k
∣∣ �p∣∣ψμ

�k
〉∗
UC

]
. (20)

Although our assumption of completeness may yield the
matrix element only with a certain error because the ASW
method uses a rather small number of basis functions, the
qualitative conclusions discussed in the next section are not
affected by this.

In the numerical calculations, we typically used a �k-point
grid of about 2000 points in the irreducible wedge of the band
structure, and the dynamical equations were solved on the same
grid (see the Appendix for details on the numerical method).
Experimental values for the lattice constants24 were used. The
phonon dispersion was calculated with QUANTUM ESPRESSO25

in the same way as by Dal Corso et al.26 The latter paper shows
that phonon dispersions obtained in this approach are in good
agreement with experimental data.

C. Dipole matrix elements

The dipole matrix elements are calculated by reformulating
them in terms of the momentum matrix elements,

�dμν

�k = 〈
ψ

μ

�k |e�r|ψν
�k
〉

= ieh̄

m
(
εν

�k − ε
μ

�k
) 〈

ψ
μ

�k
∣∣ �p + h̄

4mc2
(�σ × ∇Veff(r))

∣∣ψν
�k
〉
,

(21)

where the momentum matrix elements 〈ψμ

�k | �p|ψν
�k 〉 are again

calculated according to Oppeneer et al.23 The contribution of
the spin-orbit interaction is usually neglected. We include it
here as it may directly contribute to spin flips, even though our
numerical results in the end will show that the difference is
insignificant. It can be calculated from the wave functions as
follows:〈

ψ
μ

�k
∣∣(�σ × ∇Veff(r))

∣∣ψν
�k
〉

=
∫

UC
d3r ψ

μ∗
�k (�r) (�σ × r̂)

dVeff(r)

dr
ψν

�k′(�r)

=
∑
σ,σ ′

∑
L,L′

[ (
χT

σ �σχσ ′
) × �GLL′

][
A

μ∗
Lσ (�k)Aν

L′σ ′(�k′)〈j̃ |

× dVeff

dr
|j̃〉lσ,l′σ ′ + C

μ∗
Lσ (�k)Aν

L′σ ′(�k′)〈h̃|dVeff

dr
|j̃〉lσ,l′σ ′

+A
μ∗
Lσ (�k)Cν

L′σ ′(�k′)〈j̃ |dVeff

dr
|h̃〉lσ,l′σ ′

+C
μ∗
Lσ (�k)Cν

L′σ ′(�k′)〈h̃|dVeff

dr
|h̃〉lσ,l′σ ′

]
; (22)

cf. Eq. (14) for the definition of the matrix elements involving
Veff .

III. RESULTS

In this section, we present numerical results obtained
from the solution of the dynamical equation (1) and some
qualitative considerations on the role of scattering processes
in ultrafast demagnetization dynamics. For the calculations
we use matrix elements computed as described in the previous
sections. Further details of our numerical implementation of
the dynamics are included in the Appendix.

A. Optical excitation

We first examine the excitation process by the ultrashort op-
tical pulse without including the electron-phonon interaction.
We model a homogeneous excitation of a ferromagnetic metal
by a laser pulse with Gaussian temporal shape, full width at
half maximum of 50 fs, and a spectral width of 100 meV at a
central photon energy of h̄ωL = 1.55 eV. These parameters, as
well as the pulse intensity of 4 mJ/cm2, are chosen to match
typical experimental excitation conditions. To determine the
electric-field amplitude present in the material we note that the
chosen intensity corresponds to an electric-field amplitude of
E0 = 7.5 × 108 V/m in vacuum. Reflection at the surface as
well as the optical density of the material lead to a reduction
of the field amplitude in the material,

E′
0 = E0

2√
(1 + n)2 + κ2

, (23)

where n and κ denote the real and the imaginary part of the
refractive index, respectively. Taking n = 2.22, κ = 4.90 for
nickel and n = 2.92, κ = 3.36 for iron, this leaves us with
an amplitude in the material E′

0 of 2.6 × 108 V/m for nickel
and 2.9 × 108 V/m for iron.27 We take these values of the
field amplitude as constant throughout the sample for the
calculation and neglect the attenuation due to absorption in
the material as well as additional reflection/absorption due
to oxide and protection layers. We therefore overestimate the
field amplitude present in samples used for the experimental
determination of the magnetization dynamics.

The optical excitation contribution alone, i.e., the first term
on the right hand side of dynamical equation (1), leads to
the magnetization dynamics shown in Fig. 1. This result
should be compared to experimental values for a pulse energy
density of 4 mJ/cm2, such as those reported in Refs. 10
and 5 where a “quenching” of the magnetization down to
40% and 80% of the equilibrium magnetization was found
for nickel and iron, respectively. It is clear from Fig. 1 that the
magnetization change computed including only the incoherent
optical excitation at the photon energy of 1.55 eV is orders of
magnitude smaller than the one observed in experiment.

As a contribution to the magnetization change, the optical
excitation is negligible, but it is still interesting to take a
closer look at the carrier distributions created by the laser
pulse because these are essentially the starting point of the
momentum-resolved electron-phonon scattering dynamics.
To this end, we analyze the energy-dependent occupation
changes,

�Nσ (ε,t) =
∑
�k,μ

δ
(
ε − ε

μ

�k
)〈Pσ 〉μ�k

[
n

μ

�k (t) − f
(
ε

μ

�k ,T0
)]

, (24)
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FIG. 1. (Color online) Magnetization dynamics due to optical
excitation alone. The magnetization is normalized to its equilibrium
value.

between the dynamical distributions n
μ

�k (t) compared to the
equilibrium Fermi-Dirac functions f (εμ

�k ,T0) that describe the
carrier distributions in equilibrium at the sample temperature
T0 before the optical excitation. In Eq. (24) we separate
occupation changes for minority and majority spins, i.e., for
σ = + and −, respectively, by projecting on the majority and
minority spin contributions of the ASW wave functions using
the spin-dependent weights (projections),

〈Pσ 〉μ�k =
∑
L

〈
ψ

μ

�k
∣∣Pσψ

μ

�k
〉
L
, (25)

of each state ψ
μ

�k where

〈
ψ

μ

�k
∣∣Pσψν

�k
〉
L

= A
μ∗
Lσ (�k)Aν

Lσ (�k)〈j̃ |j̃ 〉lσ + C
μ∗
Lσ (�k)Aν

Lσ (�k)〈h̃|j̃ 〉lσ
+A

μ∗
Lσ (�k)Cν

Lσ (�k)〈j̃ |h̃〉lσ + C
μ∗
Lσ (�k)Cν

Lσ (�k)〈h̃|h̃〉lσ . (26)

The overlaps are given by

〈f̃ |g̃〉lσ =
∫ rK

0
r2f̃lσ (r)g̃lσ (r)dr. (27)

In this paper, we always use T0 = 300 K as a starting point
for the dynamical calculations to facilitate comparison with
typical room-temperature measurements. Moreover, room
temperature is still less than half the Curie temperature so that
we can expect the exchange splitting to be not too different
from its T = 0 K value, and therefore the DFT band structure
should be a reasonable approximation.

Figures 2(b) and 2(c) show the spin- and energy-resolved
occupation change, computed according to Eq. (24), due
to optical excitation at times well after the pump pulse. It
corresponds to the magnetization shown in Fig. 1 at 200 fs.
In both materials, mainly minority carriers are excited. The
pronounced negative and positive spikes in the minority-spin
occupation changes are separated by the photon energy 1.55 eV
and roughly coincide with maxima of the density of states [see
Fig. 2(a)] for the minority carriers. These maxima stem from

FIG. 2. (Color online) Spin-resolved density of states for nickel
and iron (a) as well as energy- and spin-resolved occupation change
after the optical excitation for nickel (b) and iron (c).

the d bands in these materials, which leads us to conclude that
they play a major role in the optical excitation process.

The information about the distribution after the optical
excitation contained in Figs. 2(b) and 2(c) allows one to
draw conclusions about the maximal magnetization change
achievable by electron-phonon scattering in our model, as this
distribution is the starting point for the scattering dynamics.
Electron-phonon scattering is a quasielastic process involving
a single-electron, i.e., there is only a small amount of energy
transferred in each scattering event. Due to the bath assumption
for the phonon system in our calculation, there are also no “sec-
ondary electrons” excited because such a transfer of energy to
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other electrons could only happen mediated by a phonon. We
therefore expect that electron-phonon scattering will lead to a
continuous relaxation of the excited carriers where the number
of nonequilibrium electrons and holes decreases as they are
scattered toward the Fermi energy. The demagnetization itself
is caused by “spin-flip” scattering processes, i.e., scattering
processes with different spin expectation values for initial and
final wave functions, that occur during the relaxation process.
Therefore the maximal demagnetization that can be caused by
scattering in a fixed band structure occurs when all excited
majority electrons and minority holes flip their spin while the
minority electrons and majority holes do not undergo spin-flip
scattering. The relative magnetization change in this physically
rather unreasonable case is then given by

max
M

Meq
= μeq − 2(N e

− + Nh
+)μB

μeq
. (28)

Here, μB is the Bohr magneton, and Meq and μeq denote
the equilibrium values of the material magnetization and of
the magnetic moment per unit cell, respectively. The number
of majority electrons N e

− (minority holes Nh
+) per unit cell

can be obtained from integrating the occupation changes in
Fig. 2 above (below) the Fermi energy. With that estimate we
find a minimal relative magnetization due to electron-phonon
scattering of 0.84 in nickel and 0.94 in iron, which is a smaller
demagnetization than observed in experiments. Without even
calculating the full dynamics, we thus expect that microscopic
electron-phonon scattering with a fixed band structure is not
responsible for the pronounced drop of the magnetization
observed in experiments.

We next take a closer look at the photon energy dependence
of the excitation process. Fig. 3 shows the magnetization
change M∞/Meq vs. the pump photon energy for a fixed
electric-field amplitude of 2 × 108 V/m. For most of the pump
photon energies between 0.1 and 4.5 eV the optical excitation
leads to negligible demagnetization, as was discussed above in
connection with Fig. 1 for a pump photon energy of 1.55 eV.
Only at a pump photon energy of about 0.7 eV for nickel
and 2.2 eV for iron one observes a magnetization change of
significantly more than 1%, because these energies correspond
to the exchange splitting of the d bands in these materials, so
that absorption at these energies is likely to be associated with
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FIG. 3. (Color online) Magnetization change achievable by opti-
cal excitation alone for a range of pump-photon energies.

a change of carrier spin. The order of magnitude of our results
for the achievable magnetization change by optical excitation
alone seems to be in agreement with those of Zhang et al.7 for
the change of magnetization due to the coherent excitation by
an optical pulse.

B. Electron-phonon scattering

In this section, we present results for the carrier dynamics
including both optical excitation and electron-phonon scat-
tering. We start by examining in Fig. 4 the magnetization
dynamics and the time evolution of the energy in the electronic
system for the same parameters that were used in Fig. 1 for the
case of optical excitation only. Comparing the magnetization
dynamics including electron-phonon scattering in Fig. 4 to
those without, cf. Fig. 1, one notices an enhanced demag-
netization of about 3–5%. Yet, this magnetization change is
smaller than the estimate of the previous section. Due to
the scattering, the dynamics now also include a relaxation
to equilibrium. This can be made visible by monitoring the
energy in the electronic system [Fig. 4(b)], which nicely
shows the sudden energy transfer from the laser pulse and
a subsequent almost exponential decay with time constants
of about 2 ps for nickel and 2.5 ps for iron. These time
constants are significantly longer than the electron-phonon
coupling times obtained from the analysis of experimental
data for these materials ranging from 0.3–0.5 ps.5,12 Likely,
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FIG. 4. (Color online) Normalized magnetization dynamics (a)
and energy difference to equilibrium of the electronic system (b)
after the optical excitation including electron-phonon scattering.
Results obtained including the spin-orbit coupling contribution in
the electron-phonon matrix element are labeled “with SOC-ME.”
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this is because we neglect other scattering mechanisms (such
as electron-electron scattering), which open up additional
scattering paths and lead to an overall speedup of the relaxation
process. The magnetization for nickel even rises above its
value at equilibrium, which is understandable because there is
no fundamental law that prohibits nonequilibrium scattering
dynamics from going through intermediate states with an
increased magnetization. Whether these are reached depends
on the band structure, the properties of the states involved, and
the initial/excitation conditions.

When comparing the calculated magnetization dynamics
to experimental results, one should keep in mind that our
calculation neglects changes in the band structure, i.e., the
exchange splitting, and the subsequent relaxation of these
changes back into equilibrium. Processes associated with
the change of the exchange splitting are expected to dominate
the dynamics after a quasiequilibrium magnetization has been
established, namely for times longer than about 5 ps.28 A
meaningful comparison with experiment of the present model
should therefore be limited to a few picoseconds, which is
the dynamical time scale for which the different microscopic
models mentioned in the Introduction have been proposed.
In that time window, we find that roughly the same results
(which for clarity reasons are only shown for nickel in Fig. 4)
are obtained if the spin-orbit term in the interaction matrix
elements [cf. Eq. (12)] is neglected.

To get a better understanding of the demagnetization in
the present model, it is instructive to look at the carrier
distributions at different stages of the dynamics. We present
only the results for nickel in this paper, as the carrier dynamics
in iron shows similar behavior. In Fig. 5 we plot the energy-
and spin-resolved occupation change at different times. Note
that after the end of the optical excitation at about 50 fs
the excited carrier density above the Fermi energy (at 0 eV)
changes only very slowly. In contrast, there is a strong change

in the density of holes around 1.4 eV below the Fermi energy.
It is the spin flip of these minority holes that leads to the
demagnetization of the material in the present model. The
faster dynamics of the holes compared to the excited electrons
are due to the difference in the density of states, cf. Fig. 2(a),
which is considerably higher below the Fermi energy than
above, so that in this energy region there is a larger scattering
phase space. In addition, in that energy region there are “spin
hot spots,” i.e., points in the Brillouin zone where the states
are completely spin-mixed. Their presence also contributes to
spin-flip scattering processes.29

C. Qualitative considerations

As we saw from the results of the last section that electron-
phonon scattering alone cannot explain the experimentally ob-
served demagnetization, the next important step seems to be to
extend the existing model to other scattering mechanisms, e.g.,
electron-electron or electron-impurity scattering. However, we
argue that their inclusion is not likely to qualitatively improve
the description of a pronounced ultrafast demagnetization,
if one retains the limitation that the model contain only
scattering, i.e., the redistribution of carriers in a fixed band
structure. The argument is based on the observation that
demagnetization in a fixed band structure involves a transfer
of occupation from majority to minority electron states or
minority to majority hole states. Since, roughly speaking,
the exchange splitting shifts the energy of (single-particle)
minority states up compared to majority states, a redistribution
process needs energy, which can only be supplied by the
exciting laser pulse.

One can make this observation quantitative by finding the
minimal magnetization that the material can attain given a
fixed amount of deposited energy �E. This leads to a linear

FIG. 5. (Color online) Energy- and spin-resolved occupation changes �Nσ at different times for nickel, as shown in Fig. 4, including the
spin-orbit coupling in the electron-phonon matrix element. The representation is in analogy to the one for the optical excitation [Figs. 2(b) and
2(c)].
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FIG. 6. (Color online) Theoretical limit for the minimal magne-
tization achievable by a pure redistribution in a fixed band structure
for a range of deposited energies �E.

optimization problem

min
{nμ

�k :0�n
μ

�k �1}

∑
�k

∑
μ

n
μ

�k 〈Sz〉μ�k (29)

with the following constraints:∑
�k

∑
μ

n
μ

�k = Neq, (30a)

∑
�k

∑
μ

n
μ

�k ε
μ

�k � Eeq + �E. (30b)

Here Neq denotes the total number of carriers and Eeq the
total energy of the system in equilibrium, i.e., before the arrival
of the laser pulse. As before, the contribution from orbital
angular momentum to the total magnetization is neglected.
We solve this problem with the ab initio results at hand for a
range of deposited energies �E, and show the results in Fig. 6.
Note that we present the normalized magnetization, i.e., the
minimum obtained from the solution of Eq. (29) divided by the
equilibrium magnetization because this value can be readily
compared to the demagnetization measured in an experiment.
These values represent the minimal magnetization for a carrier
distribution in the fixed (equilibrium) band structure given the
deposited energy. It holds for all scattering mechanisms that
could be creating this distribution provided that they either
conserve energy (such as electron-electron scattering) or lead
to a loss of energy by transferring it to other systems (such as
electron-phonon scattering).

By comparing the experimental demagnetization with the
calculated minimal magnetization at the amount of energy
deposited in experiment one can see whether the experimental
results can, in principle, be explained in terms of scattering
alone. This comparison turns out to be not so easy as quite a lot
of parameters (e.g., the spot size, absorption, and reflectivity)
are necessary for the estimate of the deposited energy from
the measured laser intensity and some of them are known
only with a considerable uncertainty. That is why we chose to
estimate the deposited laser energy directly from the measured
magnetization dynamics. This is possible if one relies on two
assumptions:

(1) At about 5 ps after the laser excitation the scattering
processes have locally thermalized the material, so that the
initial nonequilibrium dynamics has evolved into a quasiequi-
librium dynamics, in which the magnetization at that time
can be characterized by the temperature dependence of the
magnetization in the ferromagnet M(t ≈ 5 ps) = M(T ) where
T = T (t ≈ 5 ps).

(2) The coupling to the substrate and other losses are so
weak that almost all of the energy deposited by the laser is still
in the material at that point (t ≈ 5 ps). However, it has been
evenly distributed among the inner degrees of freedom.

These assumptions are consistent with interpretations of
measured data by Koopmans et al.30 and seem to be especially
well fulfilled for measurements on thin films. They can now
be used to extract the deposited energy from the measured
magnetization at 5 ps, and to read off the corresponding
achievable minimum magnetization from Fig. 6. This can be
compared with the “quenched” magnetization reached in the
same measurement. In typical data for nickel31 and iron32 at
high intensities we find for the normalized magnetization after
thermalization values of MNi(5 ps) = 0.1 and MFe(5 ps) =
0.8. Using the equilibrium temperature dependence of the
magnetization M(T ), we conclude that the temperature after
local thermalization is about 625 K for nickel and about 800 K
for iron, respectively. As we assume an even distribution
among the material’s degrees of freedom, we can calculate the
deposited energy as an integral over the heat capacity Cp(T ):

�E =
∫ T (5 ps)

300 K
dT Cp(T ), (31)

which we solved using experimental data for Cp(T ),33 yielding
�E(Ni) = 100 meV/cell and �E(Fe) = 160 meV/cell. For
these energies, Fig. 6 yields 0.26 and 0.77 as minimal achiev-
able magnetizations for nickel and iron, respectively. These
values should be compared to the experimentally observed
quenched magnetizations of 0.1 for nickel and 0.7 for iron. As
the experimentally measured minima only slightly violate the
theoretical bounds, one could be inclined to conclude that
this argument does not rule out a demagnetization on the
basis of pure redistribution in a fixed band structure. That
view changes, however, if one looks at the corresponding
distribution functions that are necessary to attain the theoretical
magnetization minima. The one for nickel is shown in Fig. 7(a)
and should be compared to the distribution that is created
by pure optical excitation [Fig. 7(b)]. As discussed before,
the optically excited distribution is the starting point for all
scattering processes and we would expect these to bring
the system back to a Fermi-Dirac distribution (at a higher
temperature), which is also displayed in the figure. It is
not at all likely that in the course of this process there
will be an intermediate state that has a distribution that is
anywhere close to the one shown in Fig. 7(a) for two reasons:
First, for a magnetization close to the theoretical limit a
highly “ordered” distribution is necessary, which is unlikely
to be reached by random scattering processes. Second, the
state shown in Fig. 7(a) lies very far off from the direct
continuous transition from the distribution in Fig. 7(b) to the
equilibrium distribution, both in terms of a simple relaxation
time approximation and if one considers a quasielastic process,
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FIG. 7. (Color online) Energy- and spin-resolved occupation
distributions for nickel. (a) shows the distributions that is necessary
to attain the minimal magnetization for �E = 100 meV/cell while
(b) shows a typical distribution that would be created by the optical
excitation (this is a slightly different representation of the data shown
in Fig. 2(b). Here we show the occupation distribution, which allows
an easier comparison with the equilibrium distribution).

such as electron-phonon scattering, where we have a slow, but
continuous energy relaxation of the exited carriers toward the
Fermi energy where eventually nonequilibrium electrons and
holes cancel out.

Even though this argument is not a rigorous, we find it
convincing enough to draw the conclusion that scattering
dynamics in a fixed band structure cannot explain the observed
ultrafast demagnetization. We therefore believe that it is
important to include dynamical changes in the “magnetic
structure.” It is conceivable that the band structure, i.e.,
the exchange splitting, changes during the demagnetization
process. For instance, there are time-resolved photoemission
experiments34 that point to a collapse of the magnetic exchange
splitting for the Ni 3d valence states with a time constant
of about 300 fs. We stress that our arguments above apply
to extended systems without disorder. There may also be
contributions that reduce the magnetization due to a finite

thickness of the film, e.g., by superdiffusive transport of
carriers out of the film into the substrate, or if one considers
finite systems where the “band structure” consists of discrete
levels, so that coherent processes may play a much bigger role.

Finally, we would like to comment on the relation of our
results to an earlier paper,10 in which we computed electron-
electron scattering dynamics in a fixed band structure with
spin-orbit splitting and analyzed its contribution to ultrafast
demagnetization in 3d ferromagnets. The present results make
it seem likely that in Ref. 10 we overestimated the energy
deposited by the excitation pulse and thus the magnetization
quenching achievable by electron-electron scattering in a fixed
band structure. Electron-electron scattering certainly plays
an important role in the demagnetization process, but its
quantitative assessment should be done using a dynamical
calculation that includes a change in the “magnetic structure.”

IV. CONCLUSIONS

The main objective of this paper was to analyze in detail the
dynamics due to one of the proposed mechanisms for ultrafast
demagnetization: the Elliott-Yafet process based on electron-
phonon scattering. To this end, we carried out a numerical
analysis without adjustable parameters including the laser ex-
citation and the scattering dynamics on the level of Boltzmann
scattering integrals. We evaluated the model for the elementary
ferromagnets nickel and iron utilizing realistic band structures
and matrix elements obtained from ab initio calculations. As
in other studies,10,14,16 we kept the band structure fixed. In this
case, the computed demagnetization for realistic pump-laser
intensities is smaller by almost a factor of 10 than what
is observed in experiments. An additional argument shows
that this bound for the achievable magnetization “quenching”
is likely to hold as well for other scattering mechanisms,
such as electron-electron or electron-impurity scattering. We
interpret our numerical results that any microscopic model
that tries to explain ultrafast demagnetization by scattering
dynamics really should include a dynamical change of the
magnetic structure. It seems that without the latter ingredient,
the demagnetization process cannot be explained by an Elliott-
Yafet-type mechanism alone.
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APPENDIX: NUMERICAL METHOD

For the numerical solution of Eq. (1) we replace the energy
δ function in the scattering rates, Eq. (4), by a Gaussian of finite
width to allow a Brillouin-zone integration on the chosen grid
of �k points. The full width at half maximum of this broadened
distribution is taken to be 15 meV for the DFT grid at hand,
and convergence of the results with respect to grid size and
distribution width was checked.
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1. Reducing the dimensionality of the problem

Two simplifications help to reduce the numerical effort for
the solution of Eq. (1). The first is based on the fact that
only the states in a limited energy range around the Fermi
energy will experience an occupation change in the course
of the dynamics. Due to the structure of the equilibrium
distribution, (

n
μ

�k
)

eq = 1

e
(εμ

�k −μ)/kBT0 + 1
, (A1)

the states far (�200 meV for T0 = 300 K) above the Fermi
energy (μ ≈ EF ) will be empty while those far below the
Fermi energy will be fully occupied. As the incoming laser
pulse will only cause resonant transitions between occupied
and unoccupied states, the occupation change due to the optical
excitation is limited to an energy range around the Fermi
energy. This is clearly seen in the energy resolved occupation
change due to the optical excitation in Fig. 2. States far
away from the Fermi energy (|εμ

�k − EF | � Elas) remain at
their equilibrium values. As the electron-phonon scattering
transfers only small amounts of energy in each scattering
process, the occupation of these states is not influenced by
the following scattering dynamics either. That is why one can
safely assume the occupation of these states to remain constant
in time. Only states in an energy range |εμ

�k − EF | � δE

are actually included in the dynamical calculation of the
occupation numbers. So, for each �k point, we only include
the subset of bands n

μj

�k into the dynamical calculation that fall
in the chosen energy range δE. For the calculations including
only the optical excitation in Sec. III A we took δE to be 5 eV,
but for the photon energy under investigation (1.55 eV) a much
smaller range actually suffices. We therefore reduced it to 2
eV for the calculations including scattering in Sec. III B.

The second simplification can be made due to the crystal
symmetries of the materials under investigation. These sym-
metries imply that the wave functions of two states at different
�k points that are related by a crystal symmetry operation
are also connected by the same symmetry operation. From
that one can deduce that the modulus of an electron-phonon
matrix element between two states does not change if one
applies a crystal symmetry operation on the initial and the
final state. In other words, electron-phonon scattering will not
break the symmetry of an occupation distribution that has the

same symmetry as the crystal (e.g., the thermal distribution
before optical excitation). The optical excitation could break
that symmetry as it involves the scalar product with an
external electric field. In our paper, we restrict ourselves to
the description of the typical experimental case where the
laser field is parallel to the material magnetization so that
the symmetry of the occupation distribution is not broken
by the optical excitation. In this case, it is not necessary to
compute all occupation numbers n

μ

�k . Rather, all information
about the occupation distribution is contained in any subset
{�kj } of �k points, which constitutes an irreducible wedge of the
Brillouin zone.

2. Numerical evaluation

With these two simplifications we are left with a subset
of occupation numbers nj , which need to be calculated
dynamically. Here j = (�kj ,μj ) denotes a multi-index that
includes the �k point as well as the band index of the state.
With the help of this notation, Eq. (1) can be reformulated to
yield

∂nj

∂t
= ∂nj

∂t

∣∣∣∣
opt

+ ∂nj

∂t

∣∣∣∣
e−p

= | �E(t)|2
∑

i

Bopt
ji ni

+
∑

i

(
nj Ae−p

ji (1 − ni) − (1 − nj )Ae−p
ij ni

)
, (A2)

where all nj -independent quantities are contained in the
constant matrices Ae−p and Bopt, which can be precomputed for
the chosen set of states. Interpreting the occupation numbers
nj as a vector �n we can alternatively write this as

∂

∂t
�n = | �E(t)|2Bopt�n

+ diag(�n)Ae−p(�1 − �n)

− diag(�1 − �n)(Ae−p)T �n, (A3)

where diag(�n) is a matrix with the occupation numbers on the
diagonal. �1 denotes a vector with all entries set to 1. In the form
of Eq. (A3) the differential equation is especially well suited
for a numerical evaluation. We used a MATLAB algorithm35 for
the solution.
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18A. R. Williams, J. Kübler, and C. D. Gelatt Jr., Phys. Rev. B 19,
6094 (1979).
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