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Chapter 1

Introduction

Traditionally, solid materials are separated in metals and insulators. The Fermi liquid
model and with it the modified Drude formula can be applied for metals very well and can
describe most of the observed behavior, e.g. heat capacity and resistivity. When cooling
down a metal one would expect that the resistivity is going down since the number of
phonons is decreasing and with that the electron-phonon scattering either. At very low
temperature the resistance should then saturate, at a value that is determined by the
impurities, or the system falls into a superconducting coherent state with no resistance.
The superconducting state can be destroyed by applied magnetic field and the system
is then expected to be in its metallic state again. This works for most superconducting
bulk metals. However, for very disordered systems, in particular thin films, this does
not hold. Thin films means that the film thickness is in the order or smaller than the
coherence length of the superconducting state. An important film quantity is the sheet
resistance R� = ρ · d = R · W/L. With applied magnetic fields the film develops
a highly insulating state R� >1 MΩ. This transition is called magnetic field induced
superconductor-insulator transition (B-SIT).

The transition from the superconducting state into the insulating state can be tuned
by disorder (D-SIT) too. In fact, the transition was first observed in Bismuth films [1].
Thick films go into a superconducting state and with decreasing thickness the critical
temperature decreases until the film goes into an insulating state below a critical thick-
ness without an intermediate metallic state. Moreover, the transition shows a critical
sheet resistance at the quantum resistance for Cooper pairs R� = ~/4e2 =6.5 kΩ: Above
the critical sheet resistance the sample shows insulating behavior, below the critical resis-
tance the sample is superconducting at low temperatures. In principle, superconductivity
is robust against moderate non-magnetic disorder, shown by Anderson [2], and could sur-
vive in the insulating state. However, strong fluctuations in the superconducting gap can
destroy the phase coherence even at finite gap. Therefore, it is possible that localized
superconductivity exists within the insulating regime.

In experiments, several remarkable features of the insulating state were observed:
A huge positive magneto-resistance [3–5] at low fields, a magnetoresistance peak at
intermediate fields and a smooth decay at high fields [6–8], activated temperature de-
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6 CHAPTER 1. INTRODUCTION

pendence [9, 10] and jumps in the current-voltage characteristics [10, 11]. The observed
characteristics were found in several materials, in particular amorphous indium oxide and
titanium nitride, and appear to be an inherent property of the insulating state. Other
systems with a SI transition are granular systems [12] and high Tc superconductors [13].
Common to all materials is their quasi 2D character and their weakened superconduc-
tivity compared to the bulk. The activated temperature dependence is very unusual.
In disorder driven localization, hopping transport mechanisms, known for doped semi-
conductors, are expected. The current jumps can be explained by a decoupling of the
electrons from the phonons [14,15] which leads to an electronic state much hotter than
the sample temperature, an interesting phenomenon by itself.

The mechanism for the superconductor-insulator transition in disordered films is still
an open issue. Different competing theories [16–18] try to explain the nature of the
insulating state. An overview can be found in the recent review [19]. Known from the
concept of localization, with disorder more (elastic) scattering events occur and can lead
to additional or enhanced quantum interference effects. From fermionic systems, i.e.
electron systems, several mechanisms for localizations are already known which have
their origin in quantum interferences, e.g. weak localization and Anderson localization.
One key question is whether superconductivity is the driving force of this insulating
behavior. With superconductivity, Cooper pairs are present, with bosonic wave functions
influenced by disorder or charging effects. For unpaired electrons, there are materials,
so-called Mott-insulators, where the on-site charging energy is too high for an additional
electron. This phenomenon is called Coulomb blockade. A similar mechanism exists
for Cooper pairs. Artificial Josephson junction arrays (JJA) consist of superconducting
islands connected to each other with a tunnel barrier. When the islands are small enough,
charging effects become important, similar to quantum dots in electronic systems. In
these systems two competing energies exist, the Josephson coupling and the charging
energy. If the Josephson coupling is dominant, the network will be superconducting.
If the charging energy is dominant, the network is insulating. It was early suggested
that this network theory could explain the superconductor-insulator transition, but a
mechanism for the formation of superconducting islands in a homogeneously disordered
film was lacking.

Numerical simulations [20–22] showed that phase fluctuations can destroy global
superconductivity and with high enough disorder, superconducting puddles can emerge
embedded in a state with a superconducting gap but without coherence peaks. Scanning
tunnelling spectroscopy [23–25] of the BCS superconducting gap in titanium nitride,
indium oxide and niobium nitride showed a spatially fluctuating gap and in addition a
vanishing coherence peak. The vanishing coherence peak can be explained by localized
Cooper pairs [24, 26]. These specific pairs should have a fractal wave function. In
both theoretical approaches [22,26] the concept is an on-site, Anderson-localization like,
random potential. The result is a pairing energy that survives disorder longer than
the coherence which is necessary for global superconductivity. Up to now both recent
concepts are focusing on disorder, i.e. (D-SIT). Describing all experimental findings, in
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particular incorporating the magnetic field, is still an open task. Another assumption
is that charging effects are small. Whether this is true or not has to be investigated
further.

In the case of quasi 2D superconductors, Josephson junction arrays can be used as
a numerical tool to simulate continuous films: Putting superconductivity on a lattice.
Therefore, one can expect that a charge dominated network can be used to answer the
questions whether the insulating state is dominated by the electron pairing energy or
by the charging energy. Calculations on insulating Josephson junction array [17] could
already be used to explain the non-monotonic magnetoresistance and the activated tem-
perature dependence. Additionally the model could explain the logarithmic dependence
of the activation energy on sample size, found in indium oxide [27]. At very low tem-
peratures the insulating Josephson junction array undergoes a phase transition into a
state where charges are frozen into dipoles. The mechanism of the melting is called
charge Berezinskii Kosterlitz Thouless (BKT) transition. The frozen state was dubbed
”superinsulator” [28].

The initial purpose of this thesis was to obtain high resolution I(V ) measurements
of the insulating state which can tell the origin of the current jumps of high bias. During
the subsequent investigations also low bias non-linearities in I(V ) are found. The low
bias non-linearity is expected for a charge-BKT transition. Extensive simulations of the
electron-phonon decoupling can reproduce the high bias-behavior of the isotherms and
the onset of the current jumps. Furthermore, it can be excluded that a simple electron-
overheating explains the low-bias non-linearities. The logarithmic dependence of the
activation energy on the sample size in the insulating state is observed the first time in
titanium nitride.

This thesis is organized as follows. In chapter 2 the relevant theoretical concepts are
presented. Chapter 3 presents the sample properties and the measurement schemes. The
influence of electron heating on the current-voltage characteristics and to which extent
this phenomenon can explain the non-linearities in the conductance for the measured
samples is displayed in chapter 4. Chapter 5 presents the main experimental results of
this work. The current-voltage characteristics and the extracted resistance is analysed
in the framework of the Josephson junction network model with respect to magnetic
field and sample size. Low bias non-linearities are revealed which can be attributed to
a charge BKT transition. For this low-bias non linearity was searched before, but not
found. This is the first time where it is observed experimentally. Additionally, the duality
of the charge-BKT and the vortex driven BKT transition and its similarity in the current-
voltage characteristic is highlighted. The high magnetic field data show a saturation in
the resistance at high fields and all sample sizes. Chapter 6 discusses the experimental
findings. Chapter 7 summarises the obtained results.
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2.1 Superconductor-Insulator Transition

In this section the experimental observations of the superconductor insulator transitions
are presented. It will be seen that the insulating state shows remarkable dependences
with respect to magnetic fields, temperature and applied voltage. Additionally to the
measured transport properties scanning tunnelling experiments are presented.

In 1989 Haviland et al. [1] showed that Bismuth films grown on Germanium develop
a transition from a superconducting state into an insulating state. The temperature
dependence of the resistance near the transition is presented in figure 2.1a. At high
temperatures the sheet resistance R� = R ·W/L, with W the width and L the length of
the sample, is increasing with decreasing thickness. The dependence of the resistance on
the thickness can be fitted and explained in a percolation model [29] R(d) = R0(d−dc)−t
with dc =4.08 Å and the predicted exponent t = 1.3. The separatrix in the sheet
resistance between the superconducting and the insulating state is very close to the
quantum resistance of Cooper pairs R� = ~/4e2 =6.5 kΩ. However, Pb films produced
in the same manner show a higher critical resistance [1].

In figure 2.1b the temperature dependence of the resistance near the superconductor
insulator transition in titanium nitride films is presented (Taken from [10]). The room
temperature resistance was increased by soft plasma etching. The room temperature
sheet resistance is a good criterion for the low temperature behavior. The R(T ) curves
in figure 2.1b do not cross. The sample with the lowest sheet resistance, S4, become
superconducting at '0.5 K. With increasing sheet resistance, shown from 1 K, the
critical temperature decreases until the first sample, I1, shows an dramatic increase
in the resistance at low temperatures and no superconductivity. This transition is very
sharp and no intermediate metallic state was found up to now. The insulating behavior is
increasing further with increasing sheet resistance. Note, that the superconducting state
shows an upturn in resistance, up to 30 kΩ, before the superconducting state (see inset).
The insulating state differs from the superconducting state by an activated temperature
dependence [9, 10] at low temperatures, shown in figure 2.2a,b).

The term disorder is ambiguous. In fact, disorder can increase the critical temperature
[30, 31]. These samples are produced in the same quenched condensate manner like the
Bismuth [1] films shown above but without a Germanium layer underneath. The increase
in the transition temperature is explained by an increase in the electron-phonon coupling
and thus an increase in the attractive potential of the Cooper pair mediated by the
phonons. However, common to all materials which exhibit a SI transition is their quasi
2D character. In this system ”disorder” is referred to homogeneously disordered systems
where the normal state resistance, far away from the superconducting state, is a good
qualitative measure of this specific disorder. Apparently, the transition is not connected
to crystal structure because the transition is found in amorphous (InOx), polycrystalline
(TiN), granular (Pb grains) films, and high Tc superconducting materials.

Next, we focus on two material systems, indium oxide and titanium nitride. In general,
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a) b)

Figure 2.1: Disorder driven SIT: a) Evolution of R(T ) with respect to the thickness
of Bismuth films deposited on Germanium. (Source [1]). b) R(T ) in titanium
nitride films. The room temperature resistance was tuned by soft plasma etching.
(Source [10]).

these two materials show similar features in the insulating state although the crystalline
structure is amorphous in indium oxide and polycrystalline in titanium nitride. The
similarity is displayed in figure 2.2. The indium oxide data is shown in the left column
and the titanium nitride data in the right column. Figures a,b) show the activated
temperature dependence of the resistance

R ∝ exp (T/T0))

in both materials (Taken from [9, 10]). In b) the weak superconducting TiN film is
driven into the insulating state by the magnetic field (B-SIT). The insulating state
generated by the magnetic field shows no difference compared to the one generated
by disorder. In c,d) the magnetic field evolution is shown (taken from [7, 10]). Both
materials show a huge positive magnetoresistance at low fields up to a peak at 10 T
in indium oxide and 5 T in titanium nitride. Above the peak the resistance decreases
smoothly with increasing magnetic fields. The current-voltage characteristics is shown
in e,f) (taken from [10, 11]). Here, the differential conductance is plotted against the
applied voltage. At high temperatures the differential conductance increases with high-
voltage bias. At low temperatures a jump in the current-voltage characteristics exists.
Below the correspondent threshold voltage no resistance could be measured at this time.
High resolution dc measurements revealed that the high bias increase and the jumps
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can be explained mostly by a decoupling of the electron temperature from the bath
temperature [14,15]. The high resolution dc measurements and the overheating analysis
for titanium nitride are part of this thesis.
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Figure 2.2: Overview of the experimental observations of the insulating state in the
SI transition: a,b) Arrhenius activated behavior in the resistance; c,d) magnetore-
sistance peak with huge positive slope at low fields; e,f) jumps in current-voltage
characteristics. (See text for references)
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2.2 Superconductivity in Disordered Films
In this section the concepts of the superconducting state are presented. Additionally, the
Ginzburg-Landau theory and the BCS-theory are introduced.

In general, the superconducting state can be characterized by the order parameter

Φ(~r) = ∆(~r) exp (iφ(~r)) (2.1)

with ∆ the superconducting gap amplitude and φ the phase. If the phase has a spacial
gradient, then a particle flow exists in the system. Since the particles are charges a
current is created. The density of the number of superconducting particles is given by

ns = |Φ|2 = ∆2 . (2.2)

The particle density ns and the phase are conjugate variables and follow the uncertainty
relation

∆ns∆φ ≥ ~ . (2.3)

There are two extreme cases. If the phase is fixed across the whole sample, i.e. ∆φ ' 0,
the particles are delocalized and in a superconducting coherent state with zero resis-
tance. If the particles are localized, the phase is fluctuating. The criterion for global
superconductivity is that the correlator

G(~r) = 〈Φ(~r)Φ(0)〉 (2.4)

remains finite at long distance. Three kinds of excitations can destroy the global super-
conducting order [25]:

• quasiparticle excitations (QE): primarily affect |∆|

• quantum phase fluctuations (QPF): number-phase uncertainty relation

• classical phase fluctuations (CPF): caused by thermal excitations

In conventional superconductors quasi-particle excitations are sufficient to consider. In
disordered systems superconductors are characterized by poor screening of Coulomb
interactions [32, 33] and small nS. Strong enough phase fluctuations can destroy the
superconducting order before the gap |∆| goes to zero.

In the recent years scanning tunnelling microscopy (STM) enabled the direct mea-
surement of the superconducting gap in disordered thin films. STM measurements have
found a fluctuating gap in titanium nitride [23] and indium oxide films [24], presented
in figure 2.3. Figure a) shows the gap energy in the two spacial directions in a super-
conducting TiN sample. It is seen that the gap is fluctuating and that there are puddles
(red areas) where the gap is stronger than in the surrounding. In c) the normalized
tunnel conductance of several titanium nitride films is shown. The curves are shifted for
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a) b)

c) d)

TiN InOx

Figure 2.3: Scanning tunnelling measurements of TiN [a) and c)] and InO [b) and
d)]: a) Spacial distribution of the gap ∆ in TiN; b) spacial distribution of local
density of states in InO; c) local density of states of three different TiN samples; d)
temperature evolution of the local density of states in a low disorder sample (left)
and a high disorder sample (right); Source [23,24]

visibility. The red curve has the lowest sheet resistance at room temperature, the green
curve the highest. Beside the gap the visible peaks are the coherence peaks of the super-
conducting state. With increasing disorder (higher resistance at room temperature) the
peak is broadened. In b) the tunnel spectrum along one spacial direction in an indium
oxide sample is shown. The peaks (red) besides the gap (blue region) are the coherence
peaks of the superconducting state. There are regions where there is a finite gap but no
coherence peak. Additionally, the gap, seen at the color plot at the bottom of the 3D
plot, is varying in the spacial direction. In d) the temperature evolution of the local tun-
nelling conduction in indium oxide is shown. The left sub figure shows a spectrum with a
coherence peak (low disorder sample) and the right sub figure shows no coherence peak
(high disorder sample): The dashed line indicates the critical temperature Tc. Below Tc
the coherence peak is emerging in the left figure which leads to a global superconducting
state. In the right local tunnelling conductance a gap is emerging but no coherence peak
is present. This kind of suppressed density of state was dubbed pseudo-gap.

In microscopic models the vanishing coherence peak is explained by a pairing po-
tential that survives disorder longer than the coherence of the BCS state. Bouadim,
Trivedi et al. [22] showed in Monte-Carlo simulation that, with high enough disorder,
superconducting puddles can emerge embedded in a state with a superconducting gap
but without coherence peaks.
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2.2.1 Ginzburg-Landau Equation
The order parameter Φ can be treated in the Ginzburg-Landau (GL) model. The free
energy is given by

F (~r, T ) = F0 + α(T )|Φ|2 + 1
2β|Φ|

4 + 1
2m |

(
−i~∇− 2e ~A

)
Φ|2 + 1

2µ0
B2 ,(2.5)

with α(T ) = α1(T − Tc) close to the critical temperature Tc. If α < 0, there is a
minimum of the free energy at the non-zero vacuum expectation value for Φ at

|Φ|2 = ∆2 = ns = α1

β
(Tc − T ) . (2.6)

Performing a Taylor expansion of the free energy 2.5 around the found minimum |Φ|
yield a ”mass” term for the vector field ~A, the so called London penetration length

λL =
√

m

2e2µ0ns
. (2.7)

In thin films the penetration length in parallel magnetic fields is modified to

λeff ≈ λL

(
ξ′0
d

)1/2

, (2.8)

where ξ′0 is the modified Pippard coherence and d the thickness of the film. In perpen-
dicular fields the penetration length is given by

λ⊥ = λ2
eff/d (2.9)

Varying the free energy with respect to Φ∗+δΦ∗ yield the first Ginzburg-Landau equation

α(T )Φ + β|Φ|3 + + 1
2m

(
−i~∇− 2e ~A

)2
Φ = 0 . (2.10)

The Ginzburg-Landau coherence length ξ can be interpreted as the shortest distance
over which the wave function can vary without generating pair breaking

ξ =

√√√√ ~2

2mα(T ) . (2.11)

The value κ = λ/ξ determines whether the material is a type-I (κ < 1/
√

2)superconductor,
without a vortex state, or type-II (κ > 1/

√
2) with a vortex state. In type-II supercon-

ductors the value for destroying the vortex state is given by the maximum density of
vortices. In this limit one flux quantum is trapped in minimal area of 2πξ2. Therefore,
the critical field is given by

Bc2 = φ0

2πξ2 . (2.12)



2.2. SUPERCONDUCTIVITY IN DISORDERED FILMS 17

2.2.2 Bardeen-Cooper-Schrieffer Model
The superconducting state can be derived microscopically by the Bardeen-Cooper-Schrieffer
(BCS) theory. The introduction here is taken from [34] and modified. In the simplest case
(no disorder, no magnetic field, no boundary conditions) only singlet, zero-momentum
states interact and scatter. These states can be described as

bk = c−k↓ck↑

b†k = c†k↑c
†
−k↓ ,

where ck↑ is the fermionic annihilation operator. The reduced Hamiltonian is given by

H =
∑
k<kf

2|εk|bkb†k +
∑
k>kf

2|εk|b†kbk +
∑
k,q

Vk,qb
†
kbq , (2.13)

where kf is the fermi momentum, εk = E − Ef the single-electron energy in respect to
the Fermi energy, and Vk,q the scattering matrix element between the pair states k and
q.

The ground state of the superconductor is the linear combination of pairs (k ↑,−k ↓)
which are occupied (state Ok) of unoccupied (state O(k))

ψ = ukO(k) + vkOk , (2.14)

where vk (uk) is the probability amplitude to find a state occupied (unoccupied). The
amplitudes are normalized such that |u|2 + |v|2 = 1. The phase of the Ground state can
be chosen such that uk is real:

u =
√

1− h; v =
√
h exp (iφ) ,

with 0 ≤ h ≤ 1 . The phase φ is the same phase as in the order parameter. The
complete BCS ansatz should include all k pairs and is given by

ψ0 =
∏
k

(
ukO(k) + vkOk

)
.

Minimizing the energy 〈ψ0|H|ψ0〉 with respect to the variational parameters hk and vk
yield

hk = 1
2

(
1− εk

Ek

)
, (2.15)

with εk = Ee(k)− EF the energy difference of a single electron from the Fermi energy
and

Ek =
√
ε2k + |∆(k)|2 . (2.16)

The energy Ek is the single electron excitation energy. The complex value of ∆ is
determined by the famous self-consistent gap equation

∆(k) = −1
2
∑
q

Vk,q
∆(q)
Eq

. (2.17)
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The Cooper-pair size can be estimated by

ξ0 = hvF
π|∆| , (2.18)

where vF is the Fermi velocity. The BCS theory connects the critical temperature with
the gap

|∆| = 1.75kBTc . (2.19)
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2.3 Josephson Junction Array Model
In this section Josephson Junction arrays are introduced. The properties of the arrays
are determined by two competing energies: The Josephson junction energy and the
charging energy. It will be shown that there is a phase transition from superconducting
arrays to insulating arrays determined whether the Josephson coupling is dominating or
the charging energy. Interestingly, Cooper pairs are enhancing the charging energy and
thus the insulating state. A conceptual phase diagram will be sketched for both low
temperature states. An overview of Josephson junction arrays and their models can be
found in Ref. [35].

The Josephson relations describe the dynamics of the junctions

V (t) = ~
2e
∂∆φ
∂t

(2.20)

I(t) = Ic sin(∆φ(t)) , (2.21)

where ∆φ(t) is the phase difference of the two superconductors, V (t) and I(t) is the
voltage and the current across the junction. The Josephson energy is the accumulated
potential energy in the junction. The energy accumulated across the junction is deter-
mined by the work over a certain time t

E =
∫ t

0
V · Idt′ = I(t) ~2e

∂∆φ
∂t

= Ic
~
2e

∫ ∆φ(t)

0
sin(∆φ′)d∆φ′

= Ic
Φ0

2π [1− cos(∆φ)] .

The prefactor

EJ = Ic
Φ0

2π (2.22)

is called the Josephson junction energy and sets the characteristic energy scale of the
junction. The energy will be optimized if the two phases are the same. Ambegaokar and
Baratoff [36, 37] derived the relation between the Josephson energy and the supercon-
ducting gap

IcRn = π∆
2e tanh

(
∆

2kBT

)
, (2.23)

where Rn is the normal-state resistance of the tunnel junction and Ic the critical current
of the tunnel junction. For T = 0 the critical current is given by Ic = π∆(0)

2eRn
.

The Josephson junction arrays consist of metallic islands coupled to each other with
tunnel barriers. When cooled below the critical temperature Tc of the superconductor,
the tunnel barrier forms a superconductor-insulator-superconductor (SIS) junction, a
Josephson junction. As an example, a scanning electron micrograph of typical array is
shown in figure 2.4 (From [38]). The islands are made of Al electrodes with a Al2O3
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tunnel barrier. The tunnel junction is the overlap of the base electrode (dark gray area)
and the top electrode (lighter area). Thus, a SQUID geometry is formed, indicated by
the red box. The result is an one dimensional chain of SQUIDs. The energy of a single

Figure 2.4: Scanning electron micrograph from Josephson junction array. The tunnel
junctions are at the overlap between the base electrode (darker gray area) and the top
electrode (lighter gray area). The red box indicates the SQUID geometry forming a
1D chain of SQUIDs. Source [38]

Josephson junction is given by

H = EJ [1− cos (∆φ)] + EC , (2.24)

with EJ the Josephson energy and ∆φ = φ1− φ2 the difference of the superconducting
phase in both islands and EC the charging energy of an island. When the dimensions of
the islands is small, the capacitance is small and the charging energy

EC = q2/2C (2.25)

is large and has to be taken into account. The schematics of a Josephson junction array is
displayed in figure 2.5, taken from [28]. The green circles represent the superconducting
islands and the crossed rectangles the Josephson coupled weak link between the islands.
The energy of the array is given by

H = EC
2

∑
<i,j>

ninj + EJ
2

∑
<i,j>

[1− cos (∆φi,j)] + . . . , (2.26)

with ni the number of particles on island i and ∆φi,j = φi − φj. There are more
terms in 2.26, including finite voltage and the lead electrodes [17] but, for the sake of
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l

Figure 2.5: Schematics of a 2D Josephson junction array. The superconducting
islands are indicated as green circles, the Josephson coupled weak link between the
islands as crossed rectangles. Source [28]

clarity, omitted. First, the scenario EJ � EC is discussed. The second term in (2.26)
resembles the classical Heisenberg XY-model, intentionally developed for ferro-magnets.
A peculiar feature in 2D is that there is no phase transition accompanied by spontaneous
symmetry breaking at T > 0 (Mermin-Wagner theorem). Instead the system undergoes
a vortex driven Berezinskii Kosterlitz Thouless transition, explained in section 2.4: At
low temperature there is a vortex anti-vortex lattice mediating superconductivity across
the array. At high temperature there are free moving vortices contributing to a finite
resistance. The resulting temperature dependence of the resistance shows a continuous
transition into the superconducting state, compared to the sharp transition in the clean
bulk.

When EC � EJ the system develops an insulating state at low temperatures. The
total charging energy of one island is determined by the capacitance between two islands
EC and the capacitance to the ground EC0. The case EC � EC0 is considered first.
Astonishingly, Cooper pairs with the charge q = 2e enhance the charging energy from
EC = e2/2C for electrons to ECS = 4e2/2C and thus strengthen the insulating state.
This effect can be seen in figure 2.6 taken from [39]. The conductance is plotted
against the temperature. The superconductivity (S) is turned off by applying a finite
magnetic field and the array returns in the normal state (N). At low temperatures the
conductance is decreasing, i.e. the array becomes insulating for the superconducting
array and the normal state array. However, the superconducting array shows a higher
transition temperature into the insulating state than the normal one, which is due to the
large charging energy of Cooper pairs.
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Figure 2.6: Conductance in the insulating state of artificial JJA. N is in the normal
state (applied field 3 T) and S in the superconducting state. Source [39].
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2.3.1 Charging Energy vs. Josephson Energy

With the vortex and the charge BKT mechanisms, the superconductor-insulator tran-
sition can be explained by a quantum phase transition [28, 39, 40], i.e. a change of a
parameter in the Hamiltonian, and not the temperature, which leads to a change in the
ground state. The phase diagram of the charge-unbinding and the vortex-unbinding in
the superconducting array is shown in figure 2.7, taken from [40]. For ratios EJ/EC � 1
the array undergoes a charge-BKT transition, with the low temperature insulating charge
dipole phase. The transition temperature T (0)

CS is reduced by vortex interaction [40](Tun-
nelling of Cooper pairs), which become stronger with increasing EJ . Analogously, the
vortex-unbinding transition temperature is reduced by charge interaction. The transition
between the two low temperature phases occur at EJ/EC = a(2/π2), with a larger but
close to 1. Above the transition temperatures free charges or free vortices are present,
which lead to dissipation and to a finite conductance and resistance, respectively. The
transition between the free charges and free vortices above the transition temperatures
was not well developed at this time and is still an open question.

Figure 2.7: Phase diagram of the vortex-unbinding and charge-unbinding transition
of a Josephson junction array. The two transitions meet at T = 0 at a value of
EJ/EC = a2/π2 with a larger but close to 1. Source [40]

It was shown in calculations that in arrays on the insulating side above the transition
temperature a collective charging energy ∆C emerges [17]. The charging energy depends
on the number of islands and the dimensions of the array. Taking into account the
charging energy EC0 to ground the collective charging energy is given by

∆C =
EC min{λC , L}/d 1D
EC ln min{λC , L}/d 2D ,

(2.27)

with EC the charging energy between two islands and the screening length to the ground
λC = d

√
EC0/EC . In the temperature range EC ≤ kBT ≤ ∆C the temperature
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dependence of the resistance follows an activated behavior

R ∝ exp (∆C/(2kBT )) . (2.28)

First order perturbation theory of the charging energy with respect to EJ/EC yield [17]

∆c(B) = ∆c [1− αEJ(B)/Ec] , (2.29)

where the parameter α is of the order of unity and depends on the geometry of the
lattice. The Josephson junction magnetic field dependence can be calculated in a SQUID
geometry, similar to the sample in figure 2.4. The field modulation of the Josephson
coupling energy is given by [41]

EJ =
EJ | cos(πf)| 1D
EJ {1− 4f sin2 (π(1− f)/4)} 2D ,

(2.30)

with f = eBAloop/πh, Aloop the area of either the SQUID or the plaquette in the 2D
array. In figure 2.8, taken from [17], the fits to experimental data with the derived
formulas are shown. In 2.8a the length dependence of the activation energy, found in
indium oxide [27], as a function of lnL is shown. The linear slope of the data (squares) is
consistent with the predicted dependence for a 2D array from equation 2.27. Figure 2.8b
shows the magnetic field dependence of the activation energy and the threshold voltage
in the data from [10]. From the peak in the measured activation energy kBT0 (circles)
the area Aloop = 1.3 · 10−3µm2 can be determined. The activation energy is modeled
in the 2D array. The value αEJ/C = 0.8 is chosen to fit T0(B = 0). The resulting fit
(solid line) matches the data below the peak. At higher fields deviations occur. Also the
periodicity in EJ(B) is not found. The threshold voltage is approximately

eVT ' ∆C . (2.31)

The threshold path is determined by the weakest link in 1D and therefore the charging
energy in a 1D chain determines the threshold. Using the same Aloop and a modified
different α̃EJ/EC = 0.96, due to different geometries, matches the measured threshold
voltage (squares) below the threshold peak and slightly above.

In summary, the Josephson junction array model can reproduce the superconducting
state as well as the insulating state in artificial arrays. Employing the JJA model to
homogeneously disordered thin films can reproduce some of the observed properties of
its insulating state: The Arrhenius activated behavior and its magnetic field and sample
size dependence can be explained. Additionally, the threshold voltage can be reproduced
as well.
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Figure 2.8: Josephson junction array model fits to measured data: (a) Activation en-
ergy extracted from [27] (squares) vs the sample size. (b) magnetic field dependence
of the activation energy (circles) and the threshold voltage (squares) from [10]. The
lines correspond to the fits within the Josepshon junction network model. Source [17]
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2.4 Berezinskii-Kosterlitz-Thouless Transition
In 1972 Kosterlitz and Thouless [42] introduced a model for the phase transition from
a liquid without long range order into a state with ”topological” long range order. It
was proposed for the XY-model and liquid Helium, and excluded for superconductors.
Berezinskii already made similar considerations earlier. The model was refined and ex-
tended to thin superconducting films by Halperin and Nelson [43] and even further
generalized by Young for arbitrary vector Coulomb gases [44].

In the XY-model in 2D, a conventional second order phase transition is not expected
because of the Mermin-Wagner theorem: Continuous symmetries cannot undergo spon-
taneous symmetry breaking at finite temperatures in systems with sufficiently short-range
interaction and system dimensions d ≤ 2. This is because if a spontaneous symmetry
breaking occurs, the corresponding Goldstone-boson will show a logarithmic infra-red
divergence in the correlator. The destruction of the long range order can be intuitively
understood that long range fluctuations can be created with little energy costs and since
they increase the entropy they are favored and thus destroy the long range order.

So how is a long range order still possible? Consider the lattice sites as small vectors
rotating in the plane of the lattice which, for simplicity, is a simple square lattice with
spacing a. The Hamiltonian of the XY-model is given by

H = −J
∑
〈i,j〉

~Si · ~Sj = −J
∑
〈i,j〉

cos (φi − φj) (2.32)

where J > 0 and the sum 〈i, j〉 over lattice sites is over nearest neighbours only. We
will see later, that this Hamiltonian is much more general and can be applied not only to
spin systems but also to Josephson junction arrays. To minimize the energy one would
expect that all vectors would be parallel to each other but this, as already mentioned, is
forbidden due to the Mermin-Wagner theorem. Nevertheless, one can generate a quasi-
long range order by vortices. These topological objects are stable in time and do not
decay because changing a single vector of the vortex would increase the total energy.
For a single vortex the energy is given by

EV ortex = J ln (R/a) , (2.33)

where R is the size of the system and a the lattice spacing. The number of possible core
locations is proportional to (R/a) and therefore the entropy is

S = 2kB ln (R/a) +O(1). (2.34)

Thus, the free energy is given by

F = E − TS = (J − 2kBT ) ln (R/a) . (2.35)

At the temperature TBKT = J/2kB the sign of the free energy is changing: At the free
energy is F > 0, below TBKT , a vortex is not favored thermodynamically. At F < 0,
above TBKT , a vortex is thermodynamically favored and can be excited.
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2.4.1 Vortex-BKT
Now we focus on thin, quasi 2D, superconducting films. Since a superconductor is a
charged super-fluid, one vortex would create a finite magnetic field and therefore not
allowed as an excitation at zero magnetic field. The solution for this problem is a vortex-
antivortex pair [43]. This object would not have any visible total magnetic field. The
force between two vortices, obtained by Pearl [45], is given by

dU

dr
= π

2
ns~2

m

1
r
, r � Ls, (2.36)

= π

2
ns~2

m

Ls
r
, r � Ls, (2.37)

where Ls is the magnetic ”screening length”

Ls = mc2

2πnse2 (2.38)

= 2λ
2
L

d
, (2.39)

where λL is the bulk London penetration length and d is the film thickness. Therefore,
for a sufficient thin film, the screening length Ls can exceed the sample size. Ignoring
the area r > Ls one finds the relation [46]

kBTc = 1
8πns~

2/m = c2~2/16e2Ls, (2.40)

where ns is the number of electrons in the superconducting state per unit area. The
transition separates a phase with bound vortex anti-vortex pairs (T < TBKT ) and a phase
with free vortices (T > TBKT ). Free moving vortices will contribute to the resistance
with

σs = e2

~2π2
1
nfµ

,

where nf is the number of free vortices and µ the vortex mobility µ = 2πξ2
0c

2ρn/φ
2
0,

ξ0 is the vortex lattice spacing. The important part in 2.41 is the number of vortices.
It can be rewritten as 2πnf = 1/ξ2 with ξ the correlation length. When T → TBKT
the correlation length is dominated by BKT fluctuations and follows ξ ∼ exp(b/

√
t)

with the reduced temperature t ≡ (T − TBKT )/TBKT . However, this region can be
influenced by Ginzurg-Landau fluctuations which complicates the analysis. Qualitatively,
the resistance is dominated by the number of free vortices. At temperature above TBKT
there are thermally excited free vortices. Below TBKT the vortices are frozen and are
bound and do not contribute anymore to the conduction. Besides the temperature a
finite current can separate a vortex anti-vortex pair due to the opposite vorticity. In
general, the V (I) characteristic near TBKT is given by

V ∝ I1−πJs(T )/T = Iα(T ) , (2.41)
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where Js is the superfluid density. Just below TBKT the number of free vortices at
finite current is proportional to πJs(TBKT )/TBKT = 2 which leads to V ∝ I3. In the
thermodynamic limit, the superfuild densitiy should jump to zero above TBKT , however,
in a real system finite-size effects and inhomogeneity are producing a smooth downturn
of Js [47, 48].

As an example, R(T ) and V (I) in the crossover region are presented in figure 2.9
(source [49]). The sample consists of proximity coupled Pb-Sn junctions. The 100 nm
thick tin was deposited on 106 planar Pb discs arranged on a triangular lattice. The
temperature is in the region where the lead is already superconducting but the tin is
still in the normal state. In the upper graph we see the resistance plotted logarithmically
against t =

√
TBKT/(T − TBKT ). The resistance shows the predicted linear dependence

on t. In the V (I), shown in the lower graph, we see at high temperatures linear current-
voltage characteristics. With decreasing temperature the V (I) acquires a non-linear
term which is superimposed upon the linear term. When reaching TBKT the linear term
vanished and the V (I) follows a simple power law V ∝ I3. Below TBKT the exponent
in the current increases further.

In many experiments [48], it was found that the temperature dependence of the re-
sistance can be influenced by fluctuations and excitations, for instance thermal activated
single vortices [50] which leads to an exponential decrease of the resistance. However,
the non-linear resistance can be viewed as a fingerprint of the BKT-transition.
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Figure 2.9: Pb-Sn junctions at temperatures where the lead is superconducting
but not tin producing a proximity coupled Josephson junction network. upper:
Logarithmic plot of the resistance vs the reduced temperature t ≡ TBKT/(T−TBKT ).
lower: Logarithmic plot of the voltage-current characteristic. At high temperatures
the V (I) is almost linear while at TBKT V ∝ I3. Source [49]
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2.4.2 Charge-BKT
Introduced for Josephson junction arrays [39, 40] the charge-BKT transition is based on
the idea of a logarithmic Coulomb interaction. In a pure 2D system, this condition is
fulfilled and, following the mechanism of the BKT transition, leads to a phase with bound
charge anti-charge pairs and a phase with free charges. In figure 2.10 the schematic
distribution of a charge anti-charge pair in a Josephson junction array is shown. The
array consists of superconducting island coupled to each other via tunnel junctions. Two
islands, separated by the distance d, are containing a net charge of opposite sign. The
neighbouring islands are polarized by the pair but not contain any net charge. The
potential, solved in a quasi-continuous approximation, is given by [39]

φ(r) = αK0(r/λC), (2.42)

with the screening length λC = d(C/C0)1/2, where C0 is the capacity to the ground
from the islands and C the capacity of the tunnel junction and K0 the modified Bessel
function. For r � λC the Bessel function drops off exponentially. For r � λC the
potential is φ(r) = − ln (r/λC) and again the BKT-mechanism can be used and yield a
transition temperature of

kBTBKT = EC/4πεc,

with εc a non-universal constant slightly larger than one [39]. In the superconducting
state the charge is 2e and the transition temperature kBTBKT = EC/πεc. Above TBKT
the number of free charges is given by

nc = exp
(
−2b/(T/TBKT − 1)1/2

)
(2.43)

which has a structure similar to the number of free vortices in the vortex BKT transition.
Below TBKT the charges are frozen and the array is insulating. Applying a finite voltage
across the array can break apart dipoles resulting in a non-linear conductance [40]

I ∝ V α(T ). (2.44)

The exponent α is one above TBKT and shows a universal jump at TBKT to three.
This current-voltage characteristics displays the duality of the vortex and charge BKT,
meaning that replacing current and voltage and resistance with conductance will lead to
very similar observables.
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Figure 2.10: Schematic distribution of a charge anti-charge pair in a Josephson
junction array. The neighbourhood of the actual charge is polarized but do not
contain a net charge. Source [39]
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2.5 Electron-Phonon-Decoupling
A consistent description of threshold behavior requires the consideration of heating insta-
bilities which usually accompany a dielectric breakdown. Analyzing the I-V characteristics
of an amorphous InO film in the field-tuned insulating state at the magnetic field slightly
exceeding the upper critical field, Bc2, Ovadia and collaborators [14] showed that they
are consistent with an overheating of the electron system above the lattice temperature.
A similar I−V characteristics was observed before, e.g., in YSi [51] which does not show
any superconducting behavior. Importantly, the treatment of [14], explained in detail
in [52], was based solely on the experimentally determined temperature dependence of the
resistance (depending on the electron temperature) and the electron-phonon relaxation
rate, and did not contain any information or specifics about the superconductivity-related
nature of the high resistive state and the magnetic field effects. In this section, we will
provide a comprehensive guide sufficient to do a self-consistent analysis of experimental
data.

Several assumptions are made:

• The electron-electron (e-e) interaction is strong enough for electrons being mutu-
ally thermalized; i.e., one can introduce their temperature Tel although the system
is driven out of equilibrium by a finite voltage;

• The electron-phonon interaction is weak so that electrons can be out of equilibrium
with the phonon bath of temperature Tph, i.e., Tel > Tph;

• R(T ) dependence at a finite voltage is the same as in the Ohmic regime but Tel(V )
is substituted for T ;

The starting point is a general heat balance equation

V 2

R(Tel)
= IoutE − I inE , (2.45)

where R(Tel) is the sample resistance which depends only on the electron temperature,
IoutE is the energy flow between the charge current carriers (electrons) and the phonon
bath and I inE is the back flow from the phonon bath to the charge carriers. Thus, the
right-hand side of equation 2.45 is merely the total power that the electronic system
loses to the phonon bath:

P = ΓΩ(T βel − T
β
ph) , (2.46)

where Tph is the phonon temperature, Γ the electron-phonon relaxation rate, Ω the
volume of the sample, β = n + 2, where n is the power describing the temperature
dependence of the electron-phonon relaxation rate: τ−1

e−ph ∝ T n. The value n = 3 was
first calculated in and found in most metals. The value n = 4 was calculated in for
very disordered conductors. Following the self-consistent procedure described in [14]
and will be explained in the following we will find exponents β ≈ 6 which are close this
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disordered conductor scenario. Using equation 2.46 in 2.45 yields an equation applicable
to electronic systems:

V 2

R(Tel)
= ΓΩ(T βel − T

β
ph), (2.47)

with the two parameters ΓΩ and β. Next, we have to extract the specific electron
temperature for the applied voltage bias in the I − V , I(V ) → Tel(V ). Therefore, we
invert R(T ) → T (R) in order to get a measure for the electron temperature. With
this relation and using Rloc = Vloc/Iloc locally we obtain a Tel(V ). In Figure 2.11 the
Tel transformation of the I − V from [14] is shown. The sample is amorphous InO
which is superconducting in zero field. The magnetoresistance peak is at B = 8 T. The
shown data is measured above it. For isotherms below 100 mK, discontinuities in I of
up to 5 orders of magnitude are observed. There are two jumps in each isotherms which
show hysteric behavior. We denote by VLH the transition from the low resistive (LR)
state to the high resistive (HR) state and from HR to LR by VHL, respectively. When
using the explained transformation we see the discontinuity exists in Tel(V ) too. This is
guaranteed by the used method since R(T ) is a continuous function.
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Figure 2.11: left: I − V isotherms measured on the magnetic field-tuned insulator
at B = 11 T. The voltage is swept from −0.25 to 0.25 V, indicated by the arrows
on one of the curves.
right: Tel vs V, extracted from the I − V curve and calibrated using the measured
R(T ) at V = 0. The sweep direction is indicated by the arrows. Points near V = 0
have been omitted due to the large relative noise in I which causes excessive errors
in the calculation of Tel. Pictures taken from [14]

Now, the parameters ΓΩ and β can be determined: Above the threshold voltage
the electrons are decoupled from the phonon bath and therefore the total heating power
is absorbed by the electrons, whereas the phonon cooling remains constant. Thus, for
sufficient high bias, equation 2.46 yields

I · V = ΓΩT βel, (2.48)
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and we can extract β from the data fit. This can be seen in figure 2.12. The inset shows
the power plotted versus Tel in log-log scale for T = 0.05 K. We see that the power yield
P ∝ T βel with β = 6, asymptotically. For low power Tel goes to Tel = Tph = T due to
the gauge of Tel. By adjusting the parameter ΓΩ Ovadia and collaborateurs can obtain
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Figure 2.12: Plot of IV + ΓΩT βph versus Tel. A single adjustable parameter ΓΩ is
used for all Tph, and a dotted line with slope 6 is plotted alongside the data for
comparison (shifted for clarity). [inset] Plot of P = IV versus Tel for T = 0.05. At
high P, P ∝ T βel (dotted line has slope 6 for comparison) Pictures taken from [14]

a collapse of the entire data onto a single power-law curve in log-log scale with slope
β = 6 which can be seen in figure 2.12. The obtained β = 6 was also calculated for
very disordered systems and the determined Γ measured also in a heavily doped silicon
on insulator film [53] with Γ in the same range of values and β = 6.
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3.1 Sample Properties
Two samples are investigated made from the same TiN film. The film is approximately
5 nm thick grown on a 10 nm thick silicon dioxide layer on a silicon wafer. A transmission
electron microscope micrograph of the TiN film can be seen in figure 3.1. The micrograph
was taken by Gutakovskii and Latyshev, Novosibirsk. The black bar corresponds to
10 nm. It is seen that the film is polycrystalline with a typical grain size of 5 nm. The
carrier density is roughly n ≈ 2-4 · 1022. The untreated wafer is superconducting with a
coherence length ξd =9 nm.

Figure 3.1: Transmission electron microscope micrograph of TiN film performed
by Gutakovskii and Latyshev, Novosibirsk. The scale bar corresponds to 10 nm.
Published in [54]

In figure 3.2 an optical microscope picture of sample S is shown. The sample is
patterned into a Hall bar by UV lithography and subsequent plasma etching through
the TiN film by Baturina et al. [10]. The red area indicates the current path across
the sample. The blue area indicates the voltage probe leads of the four-point current
bias setup. The width of the current path is 50 µm and the maximum length between
the voltage probes is 450 µm resulting in nine squares sheet resistance in series. When
measuring two-point between the current leads one measures 26 squares in series. The
contacts to the chip carrier is realized by soldering silver wires with indium onto the TiN
contact pad and to the chip carrier. The resulting contact shows a good electric contact
and is very robust against thermal and mechanical stress and easy to repair. Employing
controlled oxidation in air at' 270◦C sample S was pushed very close to superconductor-
insulator transition. The sheet resistance at room temperature is 4.26 kΩ. Sample S
also allowed a fine tuning into the insulating state by applying a small magnetic field.

Sample I has the purpose to investigate the size dependence of the superconductor-
insulator transition in thin TiN films. The challenge for size dependent measurements
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Figure 3.2: Optical microscope picture of sample S: The Hall bar is defined by plasma
etching through the TiN film. The red area indicates the current path across the
sample. The blue area indicates the voltage probe leads. Sample patterened by
Baturina et al. in Novosibirsk

is that the material in all sizes should be the same. Additionally, the steep temperature
dependence of the resistance demands a very stable and reproducible temperature. To
avoid these problems, several square shaped samples were patterned by electron beam
lithography on a single chip. The final design and the sample is made by myself in the
clean room facilities at Prof. Weiss chair at the University of Regensburg. Figure 3.3
shows an optical picture of the whole chip (a) and the square sizes 5 µm (b) and 240 µm
(c) of sample I. The patterned sizes are 0.5, 1, 2, 5, 10, 20, 60, 120, 240 and 500 µm. The
width to length ratio is kept for each size 1:1. Thus, the sample is more suitable for
measuring high resistive state than sample S at the same sheet resistance. Additionally,
the sheet resistance is the measured total resistance which makes analysis more conve-
nient. The squares are aligned such that the access for the bonding wires is maximized
and easy, i.e. without crossing bonding wires. The length of the samples is defined
by broad gold contacts 100 nm thick with a 5 nm titanium adhesion layer [golden area
in a) and b)] and the width is defined by a trench etched with directed argon plasma
[light gray area in b) and c)]. The gold contacts are narrowing from the pad to the
actual sample, when the sample size is much smaller than the bonding pad. The gold
contact is at the end slightly broader than the desired width but the distance between
the contacts are designed to be exact at the desired distance. Thus, there is a larger
alignment tolerance for the etching which overlaps with the excess gold contact. With
this setup, it is possible to measure several samples simultaneously, at the same fields
and temperatures.
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Figure 3.3: Optical microscope picture of sample I: a) picture of the whole chip.
The patterned sizes are 0.5, 1, 2, 5, 10, 20, 60, 120, 240 and 500 µm. b) and c) Closer
pictures of the sample 5 µm and 240 µm. The length of each sample is defined by
gold contacts (golden area) and the width is defined by etched trench (light gray
area). Chip patterned at the University of Regensburg by D. Kalok
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3.2 Measurement Setup
When measuring near the superconductor-insulator transition, i.e. the transition be-
tween a low resistive, even ”zero” resistance, state and a high resistive state one has to
be vigilant about the used setup. Using the wrong measurement scheme can lead to
astonishing but wrong results. For instance, the sample is superconducting and hence-
forth has zero resistance below a critical current and therefore no voltage drop across
the sample. However, if we use a measurement setup which fixes a voltage we will mea-
sure the current that is needed to produce this voltage drop and therefore the current
is above the critical current. Hence, we would never see the superconducting region,
especially, if the voltage sweep is too rough or the current is measured in an ac setup.
In general, a too steep function in I(V ) and V (I), respectively, is hard to measure and
it is better to change from I(V ) to V (I) and vice versa. Additionally, when measuring
at temperatures below 100 mK one has to take into account the Joule power heating
originated from applied currents or voltages. For a fixed current the Joule power is

PJoule = R · I2 (3.1)

and for a fixed voltage

PJoule = V 2

R
. (3.2)

As a rule of thumb, the power below 100 mK should not exceed 1 pW. Therefore, for a
sample with a low resistance a current bias setup minimize the Joule heating and for a
high resistance sample a voltage bias setup is optimal.

3.2.1 Low Resistance - Current Bias
When searching for a weak superconducting state one has to take precautions not de-
stroying superconductivity by the measurement. First, consider Johnson-Nyquist noise
[55, 56] (thermal noise). The voltage variance (power spectral density) per Hertz band-
width is given by v̄2

n = 4kBTR. This can be rewritten as root mean square of the voltage
as

vn =
√

4kBTR∆f, (3.3)

where ∆f is the bandwidth. The resulting current noise is obtained by simply dividing
vn by the resistance

in =
√

4kBT∆f
R

. (3.4)

It is important to know that thermal noise is intrinsic to all resistors and is not a con-
sequence of a bad setup. However, a bad setup can add additional noise on top of
it. As a rule of thumb a 50 Ω resistor at 1 Hz bandwidth has a voltage noise of 1 nV
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at room temperature, i.e. a current noise of 0.02 nA. The found critical current of
sample S is of the order of 10 nA. Therefore, a bandwidth above 1 kHz can destroy
the superconducting state. This can be avoided by additional filtering (dampening the
high frequencies) of the lines and higher resistive lines. In a four point contact setup,
i.e. two contacts for the current and two contacts measuring the voltage drop, the
lines of the voltage measurements can be high resistive because no current is flowing
through these lines. The standard lines have a cut-off frequency of 500 MHz due to room
temperature pi-filters and low temperature cooper-powder filters. In the used setup an
additional low-pass filters at the mixing chamber temperature are used in series with a
resistance of 2 kΩ. Thus the incoming current noise from room temperature is reduced
to i300 =

√
4kBTR300/RG∆f . Hence, the current noise is reduced significantly due to

the series resistance and additionally due to the lower cut-off frequency of the low-pass
filter.

The setup for the low resistive/superconducting state, used for sample S (see chapter
5 ), can be seen in figure 3.4. The setup is a 4-point current bias setup where V (I)
and dV/dI is measured simultaneously. The sample is placed in a dilution system with
a base temperature of 25 mK electromagnetic shielded with a grounded copper box.
All feed-throughs have a pi-filter rf filtering. The dc-current is defined by an external
voltage source and a series resistor. The additional ac-current, used by the lock-in, is
superimposed by the SR830 internal ac-source and an additional series resistor. The series
resistors are connected directly to the cryostat. The other end of the line is terminated
at room temperature with a ground cap. The voltage drop across the sample is amplified
by an NF LI-75A low noise differential pre-amplifier (Fixed gain x100) which is placed
inside the copper box. Measuring the superconducting state directly with a multimeter
were not successful because the additional noise destroyed the weak superconducting
state. The amplified dc signal is separated from the ac signal by an SR560 pre-amplifier
outside the copper box and measured by an Agilent 3458A multimeter. The ac voltage
signal is measured after the pre-amplifier by the SR830 lock-in.
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Figure 3.4: Current Bias setup IV +dI/dV : The dc-current is defined by an external
voltage source and a series resistor. The additional ac-current is superimposed by the
SR830 internal ac-source and an additional series resistor. The resulting voltage drop
across the sample is amplified by an NF LI-75A low noise differential pre-amplifier.
The amplified dc signal is separated from the ac signal by a SR560 pre-amplifier and
measured by an Agilent 3458A multimeter.
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3.2.2 High Resistance - Voltage Bias

The insulating state was measured in the same dilution system: Base temperature of
25 mK electromagnetic shielded with a grounded copper box, all feed-throughs have a
pi-filter HF filtering. Since the applied voltages are less than one mV a voltage divider
is attached directly to the bias input line of the cryostat. Thus, the voltage delivered
by the voltage source can be a factor of 100 − 10000 larger and therefore the ratio of
the collected voltage noise, usually of the order of 10 µV, to the signal voltage is also
a factor 100 − 10000 better. Since the resistances can be very high the corresponding
current is very low and therefore a current to voltage transimpedance amplifier is used
with a very tiny noise level.

The typical setup, used for sample S (see chapter 5 ), is presented in figure 3.5.
As the main voltage source a Yokogawa7651 was used which is decoupled from the
common ground and grounded to the copper shield which enclose the entire cryostat
and the sensitive measurement lines. A voltage divider (1:1000) with the resistances of
≈ 680Ω and ≈ 0.7Ω was attached to the input line of the cryostat. The outgoing current
was measured by a low noise DL1211 current to voltage transimpedance amplifier with
a typical gain of 10−9−10−11 A/V and rise time of 0.3−1 second for dc measurements.
The resulting voltage was then measured outside the copper box by an Agilent 3458A
digital voltmeter. In order to reach the specified noise level of the amplifier one has to
be aware of external noise sources. The main contributions are 50 Hz ground loop noise,
power consuming devices, e.g. heat guns, and mechanical vibrations.

The 50 Hz noise cancellation is a very tricky and not always an obvious task and I
would like to note that finding ground loops is usually a try and error task since the exact
internal connections scheme inside a device are sometimes well hidden in the manuals or
just not specified. In general, a star point grounding is advised but not always achieved;
especially, when many devices are connected to the measurement, e.g. thermometers,
parallel sample measurement. The second best method and sometimes easier to achieve
is the ”heavy grounding” approach. This means that all devices are grounded with a
very low Ohmic (copper cables) to one ”star point” but the interconnection between
the devices, e.g. BNC and GPIB cables, can add another grounding. This copper cable
grounding has happened to be the most reliable grounding since it can occur that the
outer shield of a BNC cable can do a bad connection (R > 1Ω) between two devices.
For the frequency range of the performed measurements (< 1 kHz) this method was
sufficient.

Mechanical vibrations can lead to voltage noise due to piezoelectric effects in the
flexible BNC cables. Therefore, the sensitive, non-amplified connections should be as
short as possible and they should be mechanical decoupled from the lab floor which is
fulfilled inside the copper box.

In order to simplify the setup and to shorten the sensitive part of the setup between
the voltage divider and the pre-amplifier the Femto DDPCA-300-S was bought and used
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Figure 3.5: Voltage bias setup: The external voltage is provided by an Yokogawa
7651 voltage source. The voltage applied to the sample is the external voltage
divided with a voltage divider. The resulting current is amplified by a current to
voltage DL1211 transimpendance amplifier and measured by an Agilent 3458A DC
multimeter.

for the measurements of sample I (see chapter 5). The device was customized by the
company such that the bias current can be applied to the non-inverting input of the
operation amplifier. Additionally a divider (1:-100), a 8 Hz low pass and a voltage buffer
is used for the bias input for a stable biasing. With the biasing already inside the amplifier,
only one side is needed and the other side of the sample just needs a ground cap or a
cold mass connection inside the cryostat. Another advantage is that the gain can be
set by the measurement PC which was not possible before. This feature was not used
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Figure 3.6: Improved voltage bias setup: The voltage bias is applied through the
amplifier. The other end of the sample is terminated by a ground cap. The needed
current employing the voltage is then amplified by the Femto DDPCA-300. The
resulting voltage is measured by an Agilent 3458A multimeter.

yet but should not be a problem. The final setup is displayed in figure 3.6. Since the
device is very small it could be put directly onto the input connection of the cryostat
using a sponge as an additional suspension. Thus, all cables could be removed from the
sensitive part of the measurements. With this method it was much easier to achieve
a setup which was within the specified noise level of the amplifier and as good as the
DL1211 noise or even better.
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3.2.3 Magnetoresistance
The resistance is changing dramatically with applied magnetic field. Additionally, the
regime where the resistance can be extracted is strongly field dependent. The resistance
as a function of the magnetic field is measured in an ac setup. When the resistance
is small, a current excitation is used and the voltage response is measured. When the
resistance is high, a voltage excitation is used and the resulting current is measured. In
the low resistance regime the current bias is used setup shown already in figure 3.4. The
bias is set to zero and the ac excitation has to be big enough to measure a resistance at
very small resistances but small enough to be still in the linear regime.

At high resistances a voltage bias ac setup is used. The ac excitation is applied via
a voltage divider (1:10000). The external ac voltage is provided by the SR830 lock-in.
Since with increasing resistance the cut-off resistance of the system is decreasing, the
used frequencies are between 1-3 Hz.
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Chapter 4

Electron-Phonon Decoupling

The overheating analysis described well the I − V jumps in InO [14]. But is it the
only mechanism that leads to I − V current jumps? The shown data in [14] were taken
above the upper critical field where the superconductor is considered to be destroyed and
just a normal, but very disordered, metal remains. Consequently, we need to investigate
the region where the superconductor-insulator transition happens, i.e., the area below
the critical field where the resistance increases several orders of magnitude from zero
magnetic field to its maximum. In this region the current-voltage relation shows a strong
non-linear behavior below the threshold voltage which supports a charge-anticharge BKT
like transitions originated from a Josephson junction array. From this model a threshold
voltage is expected too where the voltage exceeds the global charging energy of the
network.

First, we take a look at the I − V isotherms. The sample S is an etched hall bar
with 26 squares in series. The resistance was tuned by heating in ambient air such that
it is close but below the disordered driven superconductor insulator transition. Since the
sample is highly resistive an 2-point voltage bias setup was used. The measurement was
performed in dilution fridge with a base temperature of ≈25 mK. The magnetic field
was applied parallel and perpendicular to the sample. The presented I−V ’s in figure 4.1
shows the magnetic field with the broadest threshold voltage at base temperature. In the
left graph we see the isotherms measured in parallel field at 1.5 T. As the temperature
drops the resistance increases. Below 100 mK the I − V ’s start to bend until a jump in
the current arises below 40 mK with hysteresis and current upturn below the threshold
voltage similar to the isotherms in [14].

Now, let us focus on the perpendicular field. The right graph in figure 4.1 show
the isotherms at 0.9 T in perpendicular field. First, we see a smooth opening of a high
resistive state with hysteresis in the threshold voltage but the threshold voltage is larger
than in parallel field. Moreover, the current below the threshold is much smaller too and
does not always show an upturn. Additionally, the jump from the high resistive state to
the low resistive state fluctuates whereas in parallel field it increases monotonously with
lower temperature.

49
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Figure 4.1: left: I − V isotherms measured in parallel magnetic field at B = 1.5T ,
below the maximum in R(B). The voltage is swept from left to the right. right:
I − V isotherms measured in perpendicular magnetic field at B = 0.9T , below the
maximum in R(B).

For a quantitative heating analysis we need to transform I−V into Tel−V . Since the
resistance rises above the experimental limit or the I − V is intrinsic non-linear at zero
bias, and thus the resistance is not defined, the transformation can only be done above
a certain temperature and local resistance. In figure 4.2 we see the extracted Tel(V )
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Figure 4.2: left: Tel vs V for parallel magnetic field extracted from the I(V ) by
determining locally the electron temperature from the R(T ) and R = V/I(V ). right:
Tel vs V for perpendicular field orientation down to the bath temperature where a
zero bias resistance could still be measured.

for both B-field orientations. In the parallel field we see that the electron temperature
is bending down at low bias and thermalize with the bath. At high bias the curves
converge to one temperature which is determined by the local Joule power heating.
With decreasing temperature the down bending gets stronger and stronger until the
discontinuity, visible in I − V , occurs at ≈ 38 mK too. Below the threshold Tel − V
show similar characteristics as the I − V ’s, i.e. hysteresis, monotonic increase of VHL
with decreasing temperature and in particular the upturn in Tel(V ) before VHL. The
increase of the threshold voltage VHL with decreasing temperature is due to the fact
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that the resistance is rising steep enough such that the Joule power P = V 2/R is
decreasing faster for fixed V than the electron-phonon cooling in eq. 2.47 is decreasing.
Henceforth, a higher voltage is needed to decouple the electrons from the phonon bath.
In total the findings are qualitatively in good agreement with the ones in InO [14]. For
higher temperature above 70 mK in perpendicular field orientation Tel−V is qualitatively
similar to the parallel field. In perpendicular field and low temperatures we see a different
picture. The first jump at T = 70 mK shows the expected hysteresis and the upturn
before VHL but at T = 60 mK there is no upturn and moreover VHL is even smaller.
When we go to lower temperatures the randomness of VHL becomes visible and we
see that an upturn occurs only when VHL is large whereas VLH is almost temperature
independent and is similar to the parallel field behavior and InOx, respectively.

4.1 Simulation of I − V characteristics
From all the experimental findings in both field orientations the question arises how much
is quantitatively explainable within the electron-phonon decoupling model. The beauty
of this model is that there are only two free parameters in eq. 2.47 for a given R(T ).
First, the β is determined by the slope in the high Joule power region of the isotherms, in
a double logarithmic plot as seen in figure 4.3 where the Joule power is plotted versus the
electron temperature. The dashed line shows the slope for β = 5. Performing these fits
for several temperatures yield a beta of β ≈ 5 and a electron-phonon coupling strength
ΓΩ ≈ 70 nW/K5.

With these two parameters we can compute I − V . First, equation 2.47 can be
rewritten as

V =
√
R(Tel)ΓΩ(T βel − T

β
ph) (4.1)

and so we can calculate V as a function of Tel. The corresponding I is obtained by
locally applying

I(V ) = V (Tel)/R(Tel) (4.2)

on V −Tel. In figure 4.4 the calculation for B⊥ = 0.9 T with β = 5 ΓΩ = 70 nW/K5 is
shown. In the upper graph we see the electron temperature vs. the applied voltage. The
most prominent feature is the S-shaped region. Here, the I − V jumps occur. When
approaching this region from low bias the electron temperature is close to the bath
temperature until the backbending starts. The following path is forbidden, the so-called
instability region, and the next possible temperature is the overheated one, decoupled
from the bath temperature. When approaching from high bias, i.e. from the decoupled
region, the electron temperature decreases with lower bias until the left backbending
occurs and the electrons thermalize with the bath. The corresponding transformed
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I − V is shown in the lower graph. The dashed lines indicate the two jumps. Whereas
the jump from the hot state to the cold state, VLH , is almost temperature independent,
the jump from the cold state to the hot state, VHL, moves to higher voltages with lower
temperatures. At 42 mK the model curve shows a bump in the instability region which
is in the Tel vs. V and is caused by the extreme sensitivity about R(T ) and its error
margin at high resistances. Remeasuring the resistance in the I−V and an interpolation
between the data points resolve the problem.

In the previous fits, seen in figure 4.3, the power β could be determined well; However,
only ln(ΓΩ) could be determined and therefore the absolute value has a considerable
error margin. Since VLH is almost temperature independent in the simulation and in the
measurement it is suitable to fine tune the electron phonon coupling, leaving β fixed. In
figure 4.5 VLH for different powers of β at T = 50 mK is shown. Since, the electron
phonon coupling changes its dimension with different β the threshold voltage is plotted
vs. ΓΩT βph, which is the power coming from the phonon bath. The horizontal dashed line
indicates the measured threshold voltage. For β = 6, VLH shows the steepest increase.
For smaller β the back-flowing power is higher for the desired VLH . This may seem first
counterintuitive. It can be explained by rewriting the heat balance equation to

P = ΓΩT βph

( Tel
Tph

)β
− 1

 .

The Taylor expansion around Tel ≈ Tph yield

P ≈ βΓΩT β−1
ph [Tel − Tph] . (4.3)

Therefore, for a fixed Joule power P and fixed phonon temperature the prefactor in (4.3)
is larger such that the difference Tel − Tph has to be smaller in order to compensate the
Joule power. Hence, a strong deviation of the electron temperature from the phonon
temperature occurs at higher applied Joule power for a larger β and the overheating
jump occurs at a higher voltages.
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4.2 Final Results

After several iterations of the fitting scheme, described in section 4.1, we obtain the
optimized values of β and ΓΩ in respect to the matching of the I(V ). The question arises
whether the electron-phonon decoupling can describe the I(V ) at low temperatures.
In figure 4.7 we see the results calculated for sample S at four representative fields.
This final simulation was performed by A. Bilušić and myself. The model describes
well the I(V ) curves at Tph > 60 mK in B⊥ (showing B⊥ = 0.9 T fig. 4.7a) with
switching from HR to LR state and all I(V )s for all temperatures in parallel magnetic
field orientation (B‖ = 0.7 and 1.5 T in fig. 4.7c,d) and in all I(V )s in B⊥ without
switching (B⊥ = 1.75 T, fig.4.7b). Furthermore, the model describes well the LR and
the value VLH even at T < 60 mK and correctly predicts the temperature where the first
discontinuity occurs. In perpendicular field the model fails to predict the high resistive
state at low temperatures (plots for Tph = 50 and 40 mK in fig. 4.7a). In particular,
the model strongly underestimates the magnitude of the current in the HR state and
also overestimates the value of the jump from the HR to the LR state VHL. This is
clearly seen in fig. 4.7a, where V ∗LH the calculated value in the electron phonon model
significantly exceeds the variance of the experimental VHL, indicated by the gray shaded
area, at T = 40 mK. From figure 4.5 we see that for higher ΓΩ the threshold voltage
is increasing. Therefore, in order to move the I(V ) simulations closer to the measured
isotherms the electron-phonon coupling has to be lowered.

Figure 4.8 presents the comparison between the measured I(V ) isotherms of sample
I at zero magnetic field and the overheating simulations for the length L = 2, 5, 20 and
240 µm at T = 80 (left column) and 150 mK (right column). The value for the electron-
phonon strength Γ = 1.46 · 10−10W/(K5µm3) and β = 5 was determined by using the
high bias heating power analysis (see section 4.1) for L =240 µm. The corresponding
simulated I(V) are displayed in red. At the temperature T =150 mK fig 4.8b) the
simulated isotherm matches the data for the specific length L =240 µm. At the lower
temperature T =80 mK (fig 4.8a)), the simulation fails to reproduce the low bias data
for. The simulated low-bias current is too low and it predicts a threshold voltage while
the measured isotherm shows none. However, the simulated isotherm for L =20 µm over
the whole voltage range for both temperatures (c)-d)) matches the measured isotherm,
although the fit values are determined for the bigger sample. For the smaller samples
L = 2 and 5 µm the fixed Γ produces a too high current in the simulation at low bias
compared to the data (e-h), the opposite effect than in fig. a). When using the electron-
phonon coupling determined at the specific length (green curves) the simulations match
the measured data better. The reason of the readjustment can be seen in figure 4.8.
The electron-phonon coupling strength, extracted from the high bias fit, is plotted vs
the system size. With decreasing system size the coupling strength Γ seems to increase.
Since the length L = 20 and L =240 µm share almost the same coupling strength
the simulations in 4.8 c-d) match the measured isotherms. Furthermore, the extracted
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electron-phonon coupling for L = 2 and 5 µm are larger than for 240 µm which explains
the large deviation of the simulated isotherms for fixed electron-phonon coupling in 4.8
e-h). With the notion that the smaller samples can be simulated with the extracted
electron-phonon coupling for the specific sample size even at T =80 mK, the coupling
strength at low temperatures for L =240 µm should be adjusted to lower values in order
to match the isotherms.
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Figure 4.7: Comparison of the experimental I(V ) isotherms of sample S for different
fields and temperatures with the curves calculated from the electron-phonon decou-
pling model. The voltages have been swept from negative to positive values. The
gray shaded area in panel (a) indicates the variance interval of the measured VHL.
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Figure 4.8: Comparison of the experimental I(V ) isotherms (black) and the simu-
lation (red and green) in the overheating model for sample I in zero magnetic field
for the length L = 2, 5, 20 and 240 µm at T = 80 and 150 mK. The voltage have
been swept from negative to positive values. The red curves are simulations us-
ing the electron-phonon coupling strength Γ = 1.46 · 10−10W/(K5µm3) determined
for the sample L =240 µm. The green curves (e-h) are the simulations using the
electron-phonon coupling determined at the specific length at high bias.



4.2. FINAL RESULTS 61

1 1 0 1 0 01 0 0 p

1 n

1 0 n

 

 

Γ(
W/

K5 µm
3 )

L  ( µm )

Figure 4.9: Extracted electron-phonon coupling strength Γ vs the sample size L of
sample I



62 CHAPTER 4. ELECTRON-PHONON DECOUPLING

4.3 Discussion
To summarize the above observations, the high bias voltage non-linearities can be ex-
plained in the electron-phonon coupling model. Furthermore, the onset of the linear
low-bias characteristics and current jumps at moderate temperatures can be explained
as well in both samples.

We note that the high resistive state of sample S in B⊥ deviates from the electron-
phonon decoupling model and moreover that this deviation develops in the temperature
range where the power law dependence of I(V ) deviates from linear Ohmic law, seen in
section 5.3.

The heating analysis of the different length of sample I revealed that the non-
linearities at temperatures T >100 mK can be explained within this model. But for the
biggest sample, L =240 µm, the simulations with the temperature independent electron-
phonon coupling underestimate the current at low bias although the isotherms show
qualitatively heating behavior. However, the same electron-phonon coupling strength is
still sufficient to describe the isotherms for L =20 µm. It will be seen in section 5.3 that
the length L =240 µm shows also non-linear low bias current-voltage characteristics at
low temperatures.

These deviations in both samples can be due to a phase transition charge BKT tran-
sition. However, a change in the electronic density of states with T cannot be excluded.
This change can come from a phase transition, the charge BKT transition included, which
affects the electron density of states and leads to an temperature dependent Γ(T ): If
electrons are bound in a Cooper pair, they do not contribute any more to the electronic
state and would decrease the electron phase space for the scattering, thus reducing the
electron-phonon coupling strength even at a constant transition matrix element. Note,
that in the analysis and the subsequent considerations the exponent β is fixed. However,
a change in β with temperature is again a manifestation of a change of the system.
The high bias extraction of the electron-phonon coupling revealed a decreasing strength
Γ with increasing system size for sample I. The activation energy is decreasing with
decreasing system size as well and therefore pushing a possible significant change of
the electronic density of states to lower temperatures. This consideration is consistent
with the experimental observation of the simple electron-phonon coupling. In order to
prove the electron-overheating model a direct measurement of the electron temperature
is desirable.

Additionally, it can be speculated that local fluctuations in the resistance across the
sample creates areas with lower resistance where the current is flowing. The interplay be-
tween temperature dependent highly insulating areas and low resistive current, described
by percolation, can lead to a decrease in the volume where the current is flowing. Thus,
the term ΓΩ in the heat balance equation should be replaced by ΓΩeff (T ). For further
analysis samples with varying aspect ratios of length and width should be investigated.



Chapter 5

Superconductor-Insulator
Transition in TiN

The superconductor-insulator transition (SIT) in homogeneously disordered films is con-
sidered to be a quantum phase transition which can be driven by disorder (D-SIT) or
magnetic field (B-SIT). Its underlying mechanism is however still under intense debate
with competing theories. In this chapter the measurement results of two samples are
presented. The results will be checked against the Josephson junction array model. The
first sample is still superconducting (”sample-S”) and is just below the disordered in-
duced SIT so that a small magnetic field already turns the sample into the insulating
state. The second sample is already insulating at zero magnetic field (”sample-I”). This
sample consists of several squares with different length (0.5, 2,5,20,240,500 µm) and is
probing the system size dependence of the transition.

For both samples dc I − V measurements were performed as a function of tem-
perature and magnetic field. In the insulating state a dc-voltage bias was used and
in the superconducting/low resistivity state a ac+dc current bias setup. The detailed
measurement scheme can be found in chapter 3.2. Sample S was measured in parallel
and perpendicular field and sample I in perpendicular field orientation, in respect to the
sample plane.

5.1 Overview

At zero magnetic field sample S is superconducting. Figure 5.1 displays the V (I)
isotherm evolution in temperature at zero magnetic field. The voltage is taken at the
most outer voltage leads of the Hall bar. The current is swept from left to the right.
At 1 K the isotherm is linear and with lower temperature becomes non-linear. A jump
in the voltage is visible at 50 mK indicating the superconducting state. This super-
conducting state is more visible in the simultaneously performed dV/dI measurements,
shown in figure 5.2. The temperatures range from 500 (red) down to 28 mK (dark blue).
With decreasing temperatures the low bias resistance is decreasing until below 100 mK
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a superconducting state emerges with three critical currents. These currents can be as-
sociated with different domains inside the sample by measuring the inner voltage leads.
The smallest critical current has has a value of Ic =10 nA. The zero bias resistance for
R(T ) is taken from the dV/dI measurements at I = 0.
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Figure 5.1: V vs I in linear scale of sample S at zero magnetic field. The current is
swept from left to the right.

With applied magnetic field sample S is driven into the insulating state. In figure
5.3 the current-voltage isotherm evolution in temperature is presented. The voltage
is swept from the left to the right. The upper graph shows the isotherms in parallel
field orientation. The field is chosen to be close to the resistance maximum in R(B).
The I(V ) shows linear behavior at 300 mK between −5 and 5 mV. With lower tem-
perature the I(V ) develops a continuously growing non-linear behavior, clearly visible
between −2.5 and 2.5 mV. This non-linearity can be explained by electron-overheating,
presented in chapter 4. In the lower graph the isotherms in perpendicular field orien-
tation are presented. Again, the non-linearities are growing with lower temperature.
At temperatures below 70 mK the isotherms exhibit a discontinuity and a pronounced
hysteresis. This jump is also there in parallel field at the lowest temperatures but not
visible in a linear plot. A detailed investigation concerning electron-overheating and low
bias non-linearities can be found in 4.2 and 5.3, respectively. In both field orientation
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Figure 5.2: dV/dI vs. I in linear scale of sample S at zero magnetic field mea-
sured simultaneously with V (I). The current is swept from left to the right. The
temperatures range from 500(red) down to 28 mK (dark blue). Below 100 mK a
superconducting state emerges with a critical current of 10 nA.

the isotherms are converging at high bias voltages. The blue circle emphasize that from
each I(V ) the zero bias resistance was extracted for R(T )
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Figure 5.3: Current-voltage isotherms of sample S in the insulating state in both field
orientations close to the resistance peak in R(B): Upper: Temperature evolution
in parallel field orientation with respect to the sample plane B‖ =1.5 T. Lower:
In perpendicular field orientation at B⊥ =0.9 T. The circle is a guide to the eye
indicating the low bias regime where the resistance was taken.
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5.2 Activation Energy and Size Dependence
The temperature dependence of the sheet resistance of sample S and I vs. 1/T is
presented in figure 5.4a,b. Each data point depicts the zero-bias resistance extracted
from dc I(V ) characteristics either as a slope in the linear response regime or a secant
line near V =0 V for temperatures and fields with non-linear conductance (see section
5.3). For sample S the resistance (see fig. 5.4a) in perpendicular field turns out to be
several orders of magnitude larger than in parallel field. A similar results were found in
amorphous InO [57] which shows a significant anisotropy in its B-SIT behavior. Note that
between the measurements of the two field orientations the sample was warmed up at
room temperature in order to rotate the stage manually which could change the sample.
However, a difference in the room temperature sheet resistance was not observed. The
superconducting state is very fragile and can be destroyed by small magnetic fields B ≤ 5
mT. The resistance of sample I for different length L can be seen in figure 5.4b. Striking
differences occur at low temperatures where the resistance of the smaller samples are
saturating. In Josephson junction arrays [58] a similar saturation of the resistance was
found. Common for all R(T ) curves is an Arrhenius activated behavior

R�(T ) = R0 exp(T0/T ) (5.1)

for a certain temperature range. The superconducting state of sample S shows also
an activated behavior in the conductance (negative slope in Arrhenius plot 5.4a, 0 T).
The origin of this acitvated behavior at zero field is not clear. Interestingly, assum-
ing that the activation energy of the negative slope is equal to the Josephson coupling
EJ/kB =970 mK the theoretical critical current is Ic = EJ/(φ0/2π) =20 nA which is
close to the measured critical current at base temperature (10 nA). As a crude estimate
we use the Ambagaokar-Baratoff [36,37] formula for ∆(0) = 2eIcRn/π, where Rn is the
resistance of the tunnel junction. Using Rn =4.26 kΩ the sheet resistance at room tem-
perature as estimate for the tunnelling resistance yield a gap energy of ∆ =27 µeV and
54 µeV for the measured critical current and the slope of the Arrhenius fit, respectively.
For reference, the bulk energy gap is ∆bulk =760 µeV. The determined values are in the
vicinity of the values determined by STM [23] measurements for superconducting sam-
ples (∆ = 160-260 µeV). In this paper a gap energy is estimated near the SI transition
of ∆ ≈90 µeV for TiN; even closer to the determined value for sample S.

The activated behavior in the conductance of the superconducting state could be
due to single vortex excitation known from artificial Josephson junction arrays [50].
Additionally, such ”inverse Arrhenius law ” is known for granular films [12]. Up to now,
in quasi-homogeneous system, like our system, such activated behavior have not been
observed [19] yet. In these granular films the global superconductivity is a competition
between Josephson coupling and phase fluctuations [59]. The fluctuation can be thermal
or quantum. The quantum fluctuation are due to the charging energy, which is the
quantum equivalent to the phase.

The magnetic field dependence of the activation energy kBT0 for both field orien-
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tations for sample S is given in fig. 5.4c . A non-monotonic B-dependence with the
maximum at Bmax

⊥ = 0.9 T and Bmax
‖ = 1.5 T, respectively, is observed. Employing

the Josephson junction array model [17], explained in section 2.3, on T0(B⊥), we can
extract the plaquette size of the array by the maximum of the activation energy

2kBT0 = ∆c(B) = ∆c [1− αEJ(B)/Ec] , (5.2)

where the parameter α is of the order of unity and depends on the geometry of the
lattice. The field dependent Josephson coupling energy is given by [41]

EJ =
EJ | cos(πf)| 1D
EJ {1− 4f sin2 (π(1− f)/4)} 2D ,

(5.3)

with f = eBAloop/πh, Aloop the area of either the SQUID or the plaquette in the 2D
array. The maximum of T0 is at f = 1. The resulting size in a 2D array of one plaquette
is 30-40 nm, which is approximately 4ξ, where ξ is the superconducting coherence length
of the initial wafer.

Figure 5.4d shows the size dependence of T0 for sample I at zero magnetic field. The
observed linearity of T0 vs. lnL is consistent with the JJA model. Using the equation

∆2D
C = (EC/2) ln(L/d) (5.4)

yield a single island charging energy EI
C/kB = 0.2 K and a elemental Josephson junction

size of dI = 3 nm. It is remarkable that the logarithmic size dependence reaches from
1 µm up to 500 µm, i.e. 2 orders of magnitude. Thus, a robust experimental value
of slope 1/dI is obtained. The size dI is very close to the average grain size of the
polycrystalline film. Following the analysis the electric screening length seems to be
larger than 500 µm, huge compared to conventional screening lengths. Interestingly, the
value dI is a factor 10 smaller than the determined value of sample S from the magnetic
field dependence.
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Figure 5.4: Temperature dependence of the resistance: (a) Superconducting sample
for both field orientations (b) Insulating sample for different length (c) Activation
Energy for superconducting sample vs. magnetic field (d) Activation Energy for
insulating sample vs. sample length
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5.3 Non-Linear Conductance
In figure 5.5 the log I vs. log V isotherms of sample S and I are plotted for selected
magnetic fields. Sample S was measured using voltage bias setup and a DL1211 (see fig.
3.5) pre-amplifier while sample I was measured using a Femto-DDPCA-S amplifier and
a voltage bias directly applied to the pre-amplifier (see fig. 3.6). Panel (a) and (b) show
the isotherms of sample S at the maximum in the activation energy in perpendicular
(B⊥ =0.9 T) and parallel (B‖ =1.5 T) field. Panel (c) the isotherms of sample I in zero
field. Both samples and orientations show a jump from a high resistive state at low
voltage bias to a low resistive state at high bias VHL. At high temperature all I − V ’s
show Ohmic behavior at low bias but develop a characteristic steep with increasing
voltage. At high voltages all I(V )’s are converging. Below T ≈ 50 mK the switching
voltages increase on average for sample S at B⊥ but begin to scatter randomly over a
finite temperature dependent voltage interval (see below). The high bias behavior and
the onset of the I(V ) jumps can be modelled with a electron-phonon decoupling model,
presented in chapter 4 .

While the Ohmic behavior at low voltage remains in parallel field orientation the
current-voltage relation transforms into a power law dependence

I ∝ V α(T ) (5.5)

in sample I and in the perpendicular field orientation of sample S. The lines in panel
(a) indicate the slope α. In panel (d) the extracted α for sample S and I are shown
and we see a continuous transition from the power 1 at high temperatures to the power
3 and above at low temperatures which is an expected feature for a charge-induced
BKT transition: In superconductors the change of the slope in V (I) is an indicator for
the vortex BKT transition. Additionally, the deviation from the Ohmic law coincides
with the failure of the electron-phonon decoupling model predicting VHL, presented in
chapter 4 which is a indication for a transition occurring inside the sample. Since these
non-linearities occur in the highly-insulating state, leakage currents are an experimental
concern. The samples were measured with two different measurement schemes and
different pre-amplifiers. The sample S scheme measured the current coming from the
sample and the sample I scheme measured the current flowing in the sample. Therefore,
a leakage current would have been detected in the last measurement scheme but was
not found.

Having in mind the duality between superconductor and superinsulator in the SIT [28],
a similar evolution of the I(V ) ∝ V α with decreasing temperature and the corre-
sponding temperature dependence of α is expected to be a characteristic of a charge
BKT-transition. Analogue to the vortex BKT transition the transition temperature can
be determined from the condition α(TBKT ) = 3. From figure 5.5d we can conclude
T SBKT = 37 mK and T IBKT = 26 mK for sample S and I, respectively.
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I

Figure 5.5: I−V isotherms measured at fixed magnetic fields for parallel and perpen-
dicular field orientation (a) isotherms of sample S in perpendicular field orientation
close to the magnetoresistance resistance peak (b) isotherms in parallel field orienta-
tion close to the magnetoresistance resistance peak (c) low bias area of the isotherms
of sample I. (d) extracted low bias exponent α(T ) in I ∝ V α(T ) from the isotherms
in (a) and (b)
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Figure 5.6: I(V ) isotherms of sample S at T = 40 mK for B⊥ (panel a) and B‖
(panel b). The voltage is swept fom negative to positive values, and only the the
positive voltage is presented. The solid lines indicate the different values of α in
I ∝ V α. Panel (c) α(B) vs. B⊥/Bmax at T = 40 mK, the line is a guide to the eye.

Figure 5.6 focuses on the magnetic field evolution of I(V ) for sample S at T = 40 mK
in perpendicular (a) and parallel (b) field. In perpendicular field the high resistivity state
accompanying VHL is opening with increasing field and closing again after the maximum
around 0.9 T. Similarly, the power dependence α, shown in panel (c), increases from a
simple Ohmic dependence at low fields to α = 2.5 at 0.9 T and decreasing again to 1.
The maximum shows a double peak which is present for all temperatures. The origin of
it is yet unknown.
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The parallel field in panel (b) shows no discontinuity at 40 mK and, in contrast
to B⊥, shows always Ohmic behavior at low bias. The resistance has its maximum at
B‖ = 1.5 T and therefore the high bias increase in I due to heating is at higher magnetic
fields.

Next, we focus on the length dependence of sample S. In figure 5.7 I/L vs. V/L

at base temperature for sample size L = 0.5, 5, 20, 240 µm is shown. The axis
are normalized by the sample size L for better comparison. In absence of long range
Coulomb effects the sheet resistance should be size independent and all I(V ) should
collapse. However, this is clearly not the case: For the shortest three samples the I(V)
isotherms is linear at low bias but with a very different resistivity. The size dependence
of the I(V ) curves and the saturation of the sheet resistance (cf. fig. 5.4b) at the
lowest temperature is much more dramatic than expected from the weak logarithmic
size dependence of the activation energy, presented in fig. 5.4d. Again, at high bias a
step-like behavior is seen which originates from Joule heating. The corresponding electric
field increases with decreasing sample size. Only the largest sample displays a strongly
non-linear I(V ) characteristic at low V with a very high power-law exponent α ≈ 5.
The inset displays R(L) at higher temperatures T > 4 K, where the size dependence is
reverted: The resistance decreases with L. While the precise reason is yet not known it is
plausible that the patterning process, which already pushed the sample into the insulating
side, affects strongly the sample edges. A locally suppressed or increased conductivity
at the sample edges affects more strongly the smaller samples. An overall gradient of
the local conductivity over the whole chip can be excluded since the smallest sample is
placed next to the largest one.

We have seen in figure 5.5 that random switching of VHL occurs at low temperatures
in sample S for perpendicular field while in parallel field the VHL increases monotonously
with decreasing temperature. Figure 5.8 displays a close up view on the I(V ) of sample
S in linear scale. The sweeping rate is kept slow. The points in the plots represents
the real measurement points which are ' 1.2 seconds apart from each other. In a) the
isotherm evolution in temperature in parallel field B‖ =1.5 T is shown. At temperatures
T <50 mK the isotherms develop a current jump at lower voltages identified earlier with
the overheating scenario. At higher voltages a jump like feature is developing. The
second feature is not yet discontinuous but is bending stronger with lower temperatures.
In b) the isotherm in perpendicular field B⊥ =0.9 T is shown. Below T ≤60 mK several
jumps occur. In several steps the curves are reaching the high temperature curves. Note
that the voltages where the jumps occur show a random behavior and do not increase
monotonously with decreasing temperature, which is expected in the simple overheating
model. The isotherms at very low temperature show less multiple jumps. This can
be due to the fact that the isotherms are more influenced by overheating effects since
the phonon cooling is less. The same observation and argument holds for jumps at
high bias. If a jump occurs at high bias the system overheats and the I(V ) follows
the high temperature isotherms. However, the randomness of the jumps remains. The
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Figure 5.7: Normalized I-V-curves I/L vs. V/L at 28 mK for different sample sizes:
The lines indicate power law behavior α = 1 for L = 0.5, 5 and 20 µm and α ≈ 5
for 240 µm. Inset: R(L) at higher temperatures 4 K and room temperature.

randomness of the jump in perpendicular field is not observed in parallel field orientation.
At intermediate temperatures 45 ≤ T ≤60 mK the most multiple jumps are visible. In
c) the up (black) and the down (red) sweep is shown at T =27 mK at B⊥ =0.9 T. The
arrows indicate the sweeping direction. The isotherms show a strong hysteresis. The
up-sweep jumps much later than the down-sweep. At high bias the isotherms are the
same. The down sweep shows multiple jumps until it falls into the high resistive state.
In d) the isotherms at T =45 mK and the same field as c) are shown. In this figure
the jumps at negative and positive voltages are shown. At positive voltages the up and
the down-sweep show similar but smaller hysteresis as in c). At negative voltages the
hysteresis is there as well but the up-sweep shows a intermediate jump plateau which is
absent in the down-sweep. This time difference between the two jumps is 11 s, which is
large compared to conventional electronic relaxation mechanisms.

For further investigation, we measured repeatedly I(V ) and extracted VHL at repre-
sentative temperatures and magnetic fields in B⊥. The sweeping time for one I(V ) was
reduced to < 1 minute (≈ 20 minutes for the regular isotherms). Figure 5.9 displays
the resulting histograms of VHL (panel a,b); panel c and d the temperature and field
dependence of the maximum and minimum value of VHL. The following observations
are: (i) The histograms show sharp cut off at the maximal observed VHL and the most
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Figure 5.8: Close up view on the I(V ) of sample S in linear scale: a) parallel field
B‖ =1.5 T. The dots highlight the measurement points which are ' 1.2 second apart
in time from each other. b) perpendicular field B⊥ =0.9 T; c) I(V ) characteristics
at T =27 mK. Up (black) and down (red) sweep is shown. The sweeping direction is
indicated by the arrows. d) same as c) at T =45 mK. The voltage axis is truncated
at low voltages in order to show the jumps at negative and positive voltages.

probable value close to it. (ii) The field dependence of the most probable value show
a non-monotonic behavior and the values are close to the observed ones in insulating
samples B = 0. (iii) The ratio of max{VHL(B)} /min{VHL(B)} ≈ 2 in magnetic fields
below the field where the maximum of VHL is reached and drops rapidly upon further
field increase. (iv) With increasing temperature the minimal and maximal values get-
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ting closer and the random distribution ceases but VHL survives much longer. In the
I(V ), in sample S, a random distribution is visible: the isotherms with a jump at the
maximum show an upturn before the jump while the ones switching earlier show no
upturn. Therefore, it is plausible that there are two switching mechanisms one coming
from the overheating which shows no measurable random switching and an increasing
VHL with lower temperatures and one which show a switching distribution over a larger
area and its maximal value is limited by the previous mechanism. A probable candidate
for the second one could be an arc-discharge like threshold voltage of localized charge,
in particular cooper pairs, which exists on the insulating side of the Josephson junction
network model.

A similar I(V ) behavior with current jumps and hysteresis has been also observed
in a variety of other systems including insulating amorphous YSi [51] and 2D Josephson
junction networks [58, 60] in the insulating state. Note that the YSi is not supercon-
ducting but shows a low temperature transition from Mott variable range hopping to
an activated temperature dependence due to Coulomb blockade. It was remarked that
switching in YSi at very low temperatures resulted from the interplay between depinning
transition of the high resistive state and overheating of electronic system, but cannot be
explained by the overheating alone.

Similar multiple jumps were observed before in, non-superconducting, quantum dot
arrays [61] and recently in indium oxide [62]. The multiple steps in indium oxide are
interpreted as an indication of inhomogeneities of the insulating phase near the SIT. The
I steps results from different current path through the sample. With increasing voltage
each path can switch from the ”cold” high resistive state to the ”hot” low resistive state.
It was found that the sweep from high bias to low bias revealed more multiple jumps. It
is explained that the channels are closing one by one when reducing the voltage. Coming
from low voltages, a jump into a hot state from one channel can produce an avalanche
which creates a big jump into the global overheated state.

From the former observations of the switching we can conclude that hysteresis and
switching only due to electron-phonon decoupling is dominant at samples with a weak
insulating state: In theses samples (In this context, sample is referred to the state created
by disorder or magnetic field) the insulating state is present at very low temperatures
where the electron-phonon cooling is already weak. Additionally, since the resistance
is smaller at this temperatures than in a higher insulating sample the Joule heating
P = V 2/R is also larger and so supports heating. For higher insulating samples, the
insulating state is present at higher temperatures where the phonon cooling is larger. At
these temperatures a switching mechanism is visible which shows an abrupt jump from
the high insulating state with a broad switching voltage distribution. This explanation
is consistent with our observations where the broad distribution is found in the higher
insulating states. A higher resistance means that the Joule power is smaller and thus a
switching only due to electron-phonon decoupling is expected at higher voltages. The
high voltage cut-off in the switching histograms can interpreted as the global electron-
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Figure 5.9: Switching histograms for the VHL distribution in sample S, out of plane
field orientation: (a) fixed field B = 0.9 T for T = 28 mK (total sampling number
930) and T = 55 mK (296 samplings); (b) fixed temperature T = 28 mK for
B = 0.3T (776 samplings), 0.5 T (299 samplings), 1.1 T (708 samplings), 1.3 T
(300 samplings). (c)-(d): Temperature (at B = 0.9 T) and field (at T = 28 mK)
dependence of the variance range of VHL, maximal and minimal values shown by
solid and open symbols. Horizontal lines indicate intervals containing 75% of the
data. The solid line marked by V ∗HL corresponds to the conventional overheating
model.

overheating jump.
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5.3.1 Comparison of Vortex and Charge Berezinskii-Kosterlitz-
Thouless Transition

In this section, the duality between a vortex driven BKT transition and the supposed
charge BKT transition will be presented further. This section is a modified version of
the paper [54] by Kalok et al. . Both samples were made from the same 5 nm thick
TiN wafer. Sample A is unoxidized and was measured by Baturina et al. Employing
controlled oxidation in air at ' 270◦C sample S was pushed very close to SIT. Sample
S also allowed for a fine tuning into the insulating state by applying a small magnetic
field. The two samples differed in sheet resistance R�(300 K) ' 2.52 kΩ and 4.26 kΩ,
respectively

The temperature dependence of the sheet resistance (R�) of samples A (B = 0 T)
and S (B⊥ = 0 and 0.9 T) are shown in Fig. 5.10. R� first increases from 300 K down to
' 3.5 K (' 1 K) for sample A (S), and then drops to zero. The transition is fluctuation
broadened [23]. The estimated transition temperatures are TC ' 1.3 K for sample A
and 0.3 K for sample S, which are both significantly lower than that of thicker TiN-films
(4.7-6K). In perpendicular magnetic field sample S turns insulating.The superconducting
state of sample S is very fragile and suppressed by small magnetic fields B . 5 mT.

Current-voltage characteristics for samples A and S at different temperatures are
plotted in Fig. 5.11: panel (a) shows V (I) for sample A at B = 0, and (b) I(V ) for
sample S at B⊥ = B⊥max = 0.9 T. Sweeping the current from zero, voltage jumps occur
for sample A indicating switching from low- to high-resistive state, while sample S ex-
hibits the opposite behavior: sweeping the voltage from zero, current jumps for several
orders of magnitude as sample switches from high- to low -resistive state. The current
jumps are seen over rather wide magnetic field range: from B⊥ = 0.3 T = B⊥max/3 to
B⊥ = 1.3 T ≈ 1.5B⊥max for sample B. Note that these fields are well below the upper crit-
ical field in TiN superconducting films, Bc2(0) = 2.8 T. At relatively high temperatures
(T & 1.190 K and T & 70 mK for sample A and S, respectively) I(V ) is linear at low
current/voltage but develops a characteristic steep, but continuous increase with increas-
ing current/voltage. At high current/voltages all the characteristics for different bath
temperatures merge for both sample A and S. Such high bias nonlinearities are typical
for electron overheating phenomena, both on the insulating [14] and the superconducting
side [63] of the transition.

Most remarkable, is the dual behavior of the low bias current-voltage characteristics,
where both samples develop a power-law behavior (V ∝ Iα for sample A, and I ∝ V α for
sample S), with a strongly temperature dependent exponent α(T ) in the pre-switching
regime (Fig. 5.11c). Similar behavior is observed for sample S in perpendicular magnetic
field between 0.3 and 1.1 T. For magnetic field oriented parallel to the sample plane, no
power-law I(V )s was observed at low bias even at the lowest temperatures reachable
by our experimental setup (T ≈ 26 mK) (See fig. 5.5b). The low T , low bias I(V )-
characteristics of sample S in perpendicular magnetic field cannot be reproduced by
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Figure 5.10: R�(T ) at zero magnetic field [samples A (green dots) and S (red dots)]
and at 0.9 T [sample S (orange dots)]. Sample A was measured by Baturina et al.

means of the heating analysis of [14] (See section 4.2).
The low-bias power-law dependences of sample A are characteristic to strictly 2-

dimensional superconducting films with a thickness below the superconducting coherence
length and a magnetic (Pearl) penetration depth, λ, exceeding the lateral dimension, d,
of the sample [in our case λ ' 1.5 mm and d = 50µm]. In such films the transition to the
zero-resistance superconducting state is of the Berezhinskii-Kosterlitz-Thouless (BKT)
type and occurs at TBKT < Tc, where Tc is the temperature where the superconducting
order parameter appears. At B = 0 thermally excited free vortices and antivortices
cause dissipation in the interval TBKT < T < Tc. Below TBKT vortices and antivortices
get bound into dipole pairs and cannot move independently and thus the resistance
vanishes. Below TBKT the pair-dissociation energy depends on the applied current giving
rise to the non-linear V (I)-characteristics [64]. The BKT-transition is also characteristic
to planar Josephson junction arrays (JJAs) [49] whose behavior is controlled by the
ratio of two energy scales, the Josephson coupling energy EJ and the charging energy
EC . For EJ � EC JJAs are superconducting, for EJ � EC charging effects become
dominant and the arrays turn insulating [35, 60]. In this limit, charges take up the
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S

S

Figure 5.11: (a) V (I) characteristics of sample A at indicated tempera-
tures. (b) I(V ) characteristics of sample B at B⊥ = 0.9 T and T =
150, 100, 80, 70, 60, 50, 45, 42, 40, 37 and 32 mK from top to bottom. Solid lines indi-
cate the slopes corresponding to different values of power α in the V ∝ Iα (sample
A) I ∝ V α (sample B). (c) α(T ) for sample A (B = 0 T) and sample B (B⊥ = 0.9 T)
(line is a guide for an eye). Horizontal lines indicate Ohmic regime (α = 1) and
charge/vortex BKT-transition condition (α = 3).

role of vortices. At low bias voltage and low temperature the current is mediated by
tunneling of charges (Cooper pairs) and anti-charges (a deficit in Cooper pairs) between
the superconducting granules. As long as the lateral system size does not exceed the
electrostatic screening length the attraction between charges and anti-charges varies
logarithmically with distance and a charge-BKT transition occurs [35,60]. For the charge
BKT transition similar non-linear I(V ) characteristics as for the vortex BKT transition
are expected, as the number of dissociated charge - anticharge pairs increases with bias
voltage. In the thermodynamic limit, the exponent α should jump from α = 1 to
α = 3 at TBKT. In a real system this jump is smeared by finite size effects, and by
inhomogeneities [47, 48]. The transition from superconducting to insulating behavior in
JJA can be controlled by a magnetic field [60] analogously to the films. Because of these
strong similarities, it was recently suggested that the mechanism of the superconductor-
insulator transition in TiN may be of similar nature as that in JJAs [17, 28].

The striking duality of the behavior of our TiN films observed in the experiments
supports the interpretation of the data in terms of Josephson junction arrays and the
notion of the superinsulating state as the low-temperature charge-BKT phase. This in-
terpretation is further supported by the strongly non-monotonic magnetoresistance (see
Fig. 5.4c) and the absence of power-law I(V ) characteristics in parallel magnetic field.
The charge BKT transition is expected to lead also to profound changes in the elec-
tronic excitation spectrum of the films. In order to prove the importance of long-ranged
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Coulomb interaction in our films, which are an essential element of the charge-BKT
transition, a tuning of the electromagnetic environment of the samples, e.g., by means
of a conducting ground plane would be highly desirable.
The measurements of I(V ) characteristics of thin TiN films revealed a power law de-
pendences at low temperature on either side of the superconductor-insulator transition.
This dual behavior corresponds to the picture of superconductor-superinsulator transition
derived in the framework of the Josephson junction array model.
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5.4 Magnetoresistance
In this chapter, the magnetic field dependence of the resistance is probed further. As
seen already in the I(V )’s, the resistance is changing dramatically and moreover the low
bias linear regime, where the resistance can be extracted, is strongly field dependent.
The resulting experimental challenge, when measuring in the AC setup, is to ensure that
the AC excitation is within the linear regime but big enough to measure high resistances
and small resistances, respectively.

In figure 5.12 the magnetoresistance close to zero field is presented. The low field,
low resistance data was taken applying a current excitation (IAC = 0.4 nA) much lower
than the critical current at zero field (Ic ≈ 9 nA). The high resistance data was measured
employing a voltage excitation (VAC = 4 µV) small enough to be in the linear regime in
the I(V ). At zero field the sample is still superconducting but is getting insulating with
applied field. When the resistance is getting bigger the setup is changed from current to
voltage bias such that the sensitivity is high enough and the Joule power is kept low. The
crossover between these setups is overlapping which indicates that the Joule power was
small enough in both setups. Between 10-130 mT the resistance shows an exponential
increase B ∝ exp (B/B0) (dashed line is guide to the eye) with B0 = 25.8 mT. The
inset shows a zoom near B = 0. Around zero field the magnetoresistance is linear.

The high field magnetoresistance was measured in the High Field Magnet Laboratory
(HFML) in Nijmegen. The dilution unit has a base temperature of 50mK and is designed
to minimize eddy currents. The resistive magnet can reach magnetic fields up to 30
T. The usual sweep rate was 1 T/min, reducing further eddy current heating. The
magnetoresistance traces for out of plane field orientation are presented in fig. 5.13.
At zero field the resistance is decreasing with lower temperature because it is still a
superconducting sample. With lower temperature, the resistance develops a peak at
1.1 T with a steep positive magnetoresistance (five orders of magnitude increase between
zero to one Tesla) at the lower field side and long decay of the resistance at the higher
field side. The resistance is increasing with lower temperature for all fields above the
magnetoresistance peak. The resistance is saturating at the high field side at ≈ 30 kΩ
for temperatures below 150 mK. This resistance value is close to the quantum resistance
h/e2 = 25.8kΩ and much higher than for zero field.

Next, we focus on the size dependence of the magnetoresistance. As a reminder, it
is crucial for size dependent measurements that the material in all sizes should be the
same. Additionally, the steep temperature dependence of the resistance demands a very
stable and reproducible temperature. Since on the chip of sample I several squares of
several sizes are patterned the problems can be avoided when measuring simultaneously:
The sizes 240, 20, 5, 2, 0.5 µm were also measured in the HFML laboratory. In fig. 5.14
the magnetoresistance curves at T = 82 mK is presented. We see that there is still an
increase in resistance at low fields and a maximum at ≈ 1.3 T except for 0.5 µm. After
the maximum the resistance decreases and all curves, with sizes below 240 µm, converge
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Figure 5.12: Low field magnetoresistance sample S: The low field, low resistance
data was taken applying a current excitation (IAC = 0.4 nA) much lower than the
critical current at zero field (Ic ≈ 9 nA). The high resistance data was measured
employing a voltage excitation (VAC = 4 µV) small enough to be in the linear regime
in the I(V ). Dashed line shows exponential increase of the resistance. Inset: Zoom
around B = 0

in a resistance window between 50 − 70kΩ at high fields. This value is again close to
the quantum resistance h/e2 = 25.8kΩ. We note that, the L = 240µm sample shows
an exponential decrease between 10 and 30 T.

The high field saturation was already observed for TiN up to 16T before [8] but these
measurements confirm it for an insulating sample, several sample sizes and up to 30T
magnetic fields. As mentioned in [8] the saturation in the order of the magnetoresistance
is known for many other materials as well, e.g. Be [65] and InO [4] and High Tc
superconductors [66]. This high field state was named ”quantum metallicity” due to its
metallic behavior and its apparent quantum origin.
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Figure 5.13: Sample S high field magnetoresistance: R� in perpendicular field for
temperatures T = 60, 83, 100, 150, 240, 940 mK. The maximum is reached at ≈ 1.3 T
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Figure 5.14: Size dependence of magnetoresistance of sample I in perpendicular
magnetic fields: Isotherms at T =82 mK for sample sizes 240, 20, 5, 2, 0.5 µm
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Chapter 6

Discussion

In this thesis high resolution dc measurements were presented from TiN-films close to
the transition. Sample S is superconducting and shows a magnetic field induced SI
transition. Sample I is already insulating at zero magnetic field and is above the disorder
induced SI transition.

R(T )

The temperature dependence of the resistance of the insulating state follows an Arrhenius
law at low temperatures for both samples. For sample S the resistance (see fig. 5.4a) in
perpendicular field turns out to be several orders of magnitude larger than in parallel field.
Similar results were found in amorphous InO [57] which shows a significant anisotropy
in its B-SIT behavior.1 One main result is the observation that the activation energy
of sample I is increasing logarithmically with the sample size. So far, such behavior
with logarithmic increasing activation energy with system size was observed only in InO
films [27], where the temperature range was much smaller than in our case. Striking
differences between sample S and I occur at low temperatures where the resistance of the
smaller samples of I are saturating. In Josephson junction arrays [58] a similar saturation
of the resistance was found.

The superconducting state of sample S shows an activated behavior in the conduc-
tance. Such ”inverse Arrhenius law” behavior is known for artificial Josephson junction
arrays [50] and for granular films [12]. In quasi-homogeneous system, like the measured
film, such dependences have not been observed [19] at zero magnetic fields. Inter-
estingly, associating the extracted activation energy with a Josephson coupling energy
yield a critical current close to the measured critical current. It is remarkable that the
used assumptions in the Josephson junction picture yield good agreements with the ex-

1Note that between the measurements of the two field orientations the sample has to be warmed
up at room temperature in order to rotate the stage manually which could change the sample. A
difference in the room temperature sheet resistance was not observed. Since the sample is near
the transition a small, not observable change in the sample could lead to a change in the low
temperature behavior. For future experiments an in-situ rotation is desirable.

87
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perimental and predicted values. Whether the supposed Josephson junction is due to
inhomogeneities in the sample or dynamically generated remains so far unclear. We note
that there are several other effects leading to an activated behavior, e.g, single vortex
excitation and flux creep, but they exists only at finite magnetic field.

The charge dominated Josephson junction network analysis of the activated temper-
ature behavior described most of the data with respect to sample size and magnetic
field dependence in perpendicular fields. The magnetoresistance peak of the activation
energy vs. magnetic field is explained by the constraints (analogous to the SQUID)
for the phase (∆φloop = 2πn) of four junctions forming a loop. However, this scheme
cannot explain the SI transition in the parallel field. Even in perpendicular field only one
magnetoresistance peak is observed in the samples. This can be due to inhomogeneities
in the junctions such that the smallest loop dominates. The above described magnetic
field correction to the Josephson junction energy assumes a constant order parameter
∆S in magnetic field. This assumption is valid only if the oscillations are far away of
the critical field. Therefore, the bare Josephson energy has to incorporate the magnetic
field dependence of the order parameter ∆S. Concluding from the Ambagaokar-Baratoff
formula, the Josephson energy depends linearly on the superconducting gap at low tem-
peratures. Therefore, the Josephson junction energy is modulated by the magnetic field
dependence of the order parameter ∆(B), provided the normal tunnelling resistance re-
mains constant with magnetic fields. In Ref. [67] the Josephson energy is modulated by√

1− (B/Bc)2. The fact that there is also a peak in parallel field orientation, where
no phase difference is acquired from the magnetic field in the smallest loop, supports a
change in the order parameter.

The activation energy in the insulating Josephson junction network is given by the
activation of Cooper pair charge solitons Ea = ∆C . However, if the charging energy is
large compared to the gap ∆S it is energetically easier to break the pair and creating a
single electron soliton, thus reducing the charging energy to 1/4∆C with ∆C the charging
energy of a cooper pair. The resulting activation energy is given by

Ea = ∆C/4 + ∆S(B) (6.1)

This transition from Cooper pair solitons to single-electron solitons was found in artificial
Josephson junction arrays [58]. The transition occurs at ∆S/∆C = 2: For larger values,
∆S/∆C > 2, Cooper pair solitons are responsible for the charge transport while for
smaller values ∆S/∆C < 2 single electron solitons are created by breaking up Cooper
pairs. For sample I a charging energy can be extracted from the logarithmic sample size
dependence (see Fig. 5.4) of the activation energy of EC/kB =0.2 K. Unfortunately,
there is no direct measurement of the superconducting gap ∆S in sample I. From the
activated behavior in the conductance of the superconducting state at zero field of
sample S a gap can be estimated by the Ambagaokar-Baratoff formula of ∆S/kB ≈ 0.3-
0.6 K. This value is close to the expected value at the SI transition [23]. We note that
the normal resistance of the tunnel junction for this analysis is unknown. As a crude
estimate the normal sheet resistance at room temperature was used for the calculation
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Figure 6.1: Schematic activation energy crossover with magnetic field dependent su-
perconducting gap in parallel field orientation. The green line corresponds to Cooper
pair excitations.The red line correspond to electron excitations. The superconduct-
ing gap ∆S(B) is assumed to decrease monotonously with increasing magnetic fields.

of the superconducting gap. Assuming EC as a a lower limit of the charging energy, a
ratio of ∆S/EC = 1.5-3 can be estimated. This means that a transition from Cooper
pair excitations to single electron excitations can occur in magnetic fields. Even with the
extrapolated superconducting gap near the SI transition [23] of ∆S/kB =1 K the ratio
∆S/∆C is only 5. This value is above the critical value and Cooper pair excitations are
expected. For the microscopic models [25,26], with their Anderson like on site disorder,
the previous estimates imply that the charging energy cannot be neglected and should
be incorporated.

If the charging energy and the gap energy are comparable, a crossover between
Cooper pair excitation and electron excitations can happen. In parallel magnetic field
phase corrections in the Josephson array do not exist. However, the gap energy ∆S can
be reduced. In figure 6.1 the following scenario is sketched. With increasing magnetic
fields the superconducting gap is decreasing monotonously. The Josephson Energy is
given by EJ = Icφ0/(2π) = ∆S(0)φ0/(4eRN). At small field ∆S > 2∆C and therefore
Cooper pair excitations are preferred. Hence, the corrected charging energy (see equation
(5.2)) with respect to the Josephson coupling is given by

kBT0 = ∆C −m∆S(B) (6.2)

m = α
φ0

4eRN

∆C

EC
. (6.3)

The superconducting gap can be approximated in a Taylor series around zero field with
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∆S(B) = ∆S0 − ∆′| B
BC
| + . . .. Therefore, the change of the activation energy with

small increasing magnetic field is linear and positive. At high fields ∆S < 2∆C , thus
electron excitations are preferred (red line) and the activation energy is given by (6.1).
The activation energy is decreasing with increasing magnetic fields because ∆S(B) is
decreasing. The dashed line indicates the crossover region between the two excitations.
With this scenario it is possible to explain the observed non-monotonic behavior of the
activation energy even with a monotonously decreasing pairing energy of the Cooper
pairs in magnetic fields. Furthermore, it is possible to explain qualitatively why the
most insulating samples do not show a positive magnetoresistance at low fields. In these
sample the charging energy is already too high at zero field and electron excitations are
preferred.

I(V )

Non-linear behavior in the isotherms is found at high and low-bias in the insulating state
of both samples. The low-bias non-linearity can be an indication for a charge-BKT
transition, explained in section 2.4.

Another main result is the analysis of the low-bias non-linearities in the highly in-
sulating state of sample S and I. The exponent α in I ∝ V α increases continuously
from the power 1 at high temperatures to the power 3 and above at low temperatures.
With the notion of the vortex-BKT transition this increase is an expected characteristic
signature for a charge-BKT transition. In the thermodynamic limit, the exponent α
should jump from α = 1 to α = 3 at TBKT. In a real system on the vortex side this
jump is smeared by finite size effects, and by inhomogeneities [47,48] and thus a similar
effect can be expected for the charge BKT-transition. From the electron-overheating
simulation it can be excluded that this non-linearity is due to simple overheating. The
duality between the vortex-BKT transition and the charge-BKT transition is presented
in 5.3.1. Recently, similar current-voltage characteristics were found in charge-ordered
layered organic molecular crystals [68]. Its temperature dependence of the resistance
shows activated behavior and a smooth increase of the exponent of the I(V ) as well.
The cusp like temperature dependence of the resistance near the supposed charge-BKT
transition was not found too. This absence can be due to inhomogeneities and finite size
effects. In this work it is pointed out that the Poole-Frenkel effect, known from trapped
charges in semiconductors and insulators, creates the identical [68] non-linear behav-
ior. This argument is valid for our low-bias non-linearity too. However, in the above
considerations the Poole-Frenkel effect implies a 2D long range Coulomb interaction as
well.

The high bias non-linearity and in particular the current jumps can be mainly at-
tributed to electron overheating. The high resistive state of sample S in B⊥ deviates
from the electron-phonon decoupling model and moreover this deviation develops in the
temperature range where the low-bias non-linearity emerges (see section 5.3). The same
observation is made in sample I. For samples which show the low-bias non-linearity the
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electron-phonon decoupling model deviates from the measured isotherms at low temper-
atures. However, the model is sufficient to reproduce the isotherms even at low low-bias
non-linearity if the electron-phonon coupling is used as a free parameter and is extracted
from the high-bias analysis of the specific length . Interestingly, the extracted electron-
phonon coupling appears to decrease with increasing system size. From the performed
simulations we can conclude that the electron-phonon coupling Γ has to be replaced by
a temperature dependent Γ(T ) which has to decrease at low temperatures for a better
fit of the maximal switching voltage. Note, that in this reasoning the exponent in the
heat balance equation was assumed fixed. The system size dependence of Γ may in-
dicate more dramatic changes compared to metallic behavior in the electron excitation
spectrum. The change in the electronic spectrum leads to a reduced phase space of the
scattering integral of the electron-phonon coupling, thus to smaller values of Γ. This
reasoning can explain why the electron-phonon coupling is decreasing with increasing
system size in sample I: The activation energy is increasing with increasing system size
and therefore pushing a significant change of the electronic density of states to higher
observable temperatures. In order to prove the electron-overheating model further a
direct measurement of the electron temperature or the density of states is desirable.

A possible mechanism for the random switching can be an electric breakdown mech-
anism with depinning of charges or charge-anti-charge pairs that creates an avalanche.
Similar I(V ) behavior with current jumps and hysteresis has been also observed in a vari-
ety of other systems including insulating amorphous YSi [51] and 2D Josephson junction
networks [58, 60] in the insulating state. It was remarked that switching in YSi at very
low temperatures resulted from the interplay between depinning transition of the high
resistive state and overheating of electronic system, but cannot be explained by the
overheating alone. Similar multiple jumps were observed before in non-superconducting,
quantum dot arrays [61] and recently in indium oxide [62]. These similarities support
further the important role of electron-electron interaction effects in the insulating state
of the SI transition.

Concluding remarks

The activated temperature dependence of the resistance and its size and magnetic field
dependence, the multiple current jumps and the broad threshold voltage distribution
suggest a charge dominated scenario. A charge-BKT transition can explain these findings
consistently. The logarithmic scaling of the activation energy with the system size over
more than two orders of magnitude (see Fig.5.4) indicates a formation of a long ranged
highly correlated state. The fact that there is no observed saturation of the effect at the
half a millimetre reaching samples are astonishing and unexpected because conventional
electrostatic screening lengths are much smaller. In fact the insulating character is
pronounced better at the larger samples. Deviations occur at the smaller samples. The
absence of the cusp like temperature dependence of the resistance near the transition
temperature is an open question but with the notion of the observations in the vortex-
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BKT transition [48] not unusual. There are other mechanism which can create the
found low-bias non-linearity, e.g., a change in the electronic density of states or the
Poole-Frenkel effect, but they can explain only this specific dependency and not all
dependences. Whether the excitations of the activated behavior are electrons or Cooper
pairs cannot be determined. From the approximated ratio between charging energy
and superconducting gap both scenarios are possible and moreover a transition from
Cooper pair to electron excitations can occur as well. For further investigation a direct
measurement of the superconducting gap in the insulating regime and its magnetic field
dependence is desirable. In order to prove the importance of long-ranged Coulomb
interaction in our films, which are an essential element of the charge-BKT transition, a
tuning of the electromagnetic environment of the samples, e.g., by means of a conducting
ground plane, would be highly interesting.



Chapter 7

Summary and Outlook

In this thesis the superconductor-insulator transition in titanium nitride films was investi-
gated. In particular, the non-linear conductance was examined. The results were analyzed
in the framework of Josephson junction arrays. The effect of electron overheating was
investigated and current-voltage characteristics simulations were performed.

Two types of samples were measured. Sample S is on the superconducting side just
below the disorder driven SI transition and the magnetic field dependence was examined.
Sample I consists of different square shaped samples of different length on one chip.
These samples are already insulating at zero magnetic field and the length dependence
of the insulating state is probed.

As an experimental achievement, the dc current resolution could be improved down
to a few femto amperes which enabled the measurement of a finite current below the
current jumps in the insulating state. Below the current jumps at finite bias voltage in the
insulating state at low temperatures low bias non-linearities in I(V ) are discovered. The
current jumps in the I(V ) develop a broadened switching distribution with decreasing
temperatures. Above the first jump multiple jumps are found. Extensive simulations of
the electron-phonon decoupling could reproduce the high bias-behavior of the isotherms
and the onset of the current jumps. With these simulations it can be excluded that a
global electron-heating can explain the low-bias non-linearities. The appearance of low-
bias non-linearities coincides with deviations between the electron-phonon decoupling
simulated isotherms and the measured isotherms. Investigating further the low-bias non-
linearities revealed a temperature dependence of the exponent in I ∝ V α, which is
dual (swapping current and voltage) to the vortex BKT transition. This increase in the
exponent is found in both samples.

The insulating state shows activated temperature dependence of the resistance. The
logarithmic sample size dependence of the activation energy in the insulating state was
measured for the first time in titanium nitride. The evolution of the activation energy in
magnetic field and in sample size can be explained within the framework of 2D Josephson
junction arrays: The activation energy in this model is determined by a collective charging
energy and first order perturbation theory with respect to the Josephson coupling. In
insulating arrays a low temperature state with frozen charge dipoles is postulated. The
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melting process in 2D in this model is described by the charge BKT-transition. We
note that a hallmark in the vortex BKT transition in superconductors is a change in the
exponent in the non-linear I(V ) characteristics V ∝ Iβ(T ). The experimentally found
temperature dependence of the exponent I ∝ V α(T ) can be attributed to the charge-
BKT transition. The temperature dependence can differ from the pure thermodynamic
limit due to additional thermal excitations.

The high-bias non-linearities, including the jump in the current-voltage characteris-
tics, can be explained and simulated within the electron overheating model. However,
the high resistive state of sample S in B⊥ and for the larger squares of sample I at low
temperatures deviates from the electron-phonon decoupling model and moreover this
deviation develops in the temperature range where the low-bias power law dependence
of I(V ) deviates from linear Ohmic law.

Recent scanning tunnelling measurements revealed pseudo-gapped regions in the su-
perconducting state. Calculations showed that this gap can be reproduced by on-site,
Anderson like, disorder. It is assumed that charging effects can be neglected. However,
in this thesis the insulating state dependence on magnetic fields, temperature, length
of the sample and low-voltages could be explained with a charge dominated Josephson
junction array model. The increase of the exponent in the power law dependence is a
strong evidence for the charge Berezinskii-Kosterlitz-Thouless transition. The current
jumps in the highly insulating state support a charge driven switching mechanism as
well. Therefore, the results suggest that charging effects must be included into mi-
croscopical models, to reach a satisfactory understanding. In particular, the dielectric
properties of the pseudo-gapped regions, found in scanning tunnelling measurements and
in calculations, are of interest.

In order to test the charge dominated regime, future experiments should probe the
gate dependence of the transport properties. Additionally, systematic investigations of
different length-width ratios should reveal the relevance of percolation effects. Smaller
samples should probe further the system size effects.
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[14] M. Ovadia, B. Sacépé, and D. Shahar. Electron-Phonon Decoupling in Disordered
Insulators. Physical Review Letters, 102(17):1–4, 2009.

[15] B.L. Altshuler, V.E. Kravtsov, I.V. Lerner, and I.L. Aleiner. Jumps in current-voltage
characteristics in disordered films. Physical Review Letters, 102(17):176803, 2009.

[16] Matthew P. A. Fisher. Quantum phase transitions in disordered two-dimensional
superconductors. Physical Review Letters, 65:923–926, Aug 1990.

[17] M. Fistul, V. Vinokur, and T. Baturina. Collective Cooper-Pair Transport in the
Insulating State of Josephson-Junction Arrays. Physical Review Letters, 100(8):1–4,
2008.

[18] M. V. Feigel’man, L. B. Ioffe, and M. Mézard. Superconductor-insulator transition
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