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Conductance fluctuations in chaotic systems with tunnel barriers
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Quantum effects are expected to disappear in the short-wavelength, semiclassical limit. As a matter of fact,
recent investigations of transport through quantum chaotic systems have demonstrated the exponential suppression
of the weak localization corrections to the conductance and of the Fano factor for shot noise when the Ehrenfest
time τE exceeds the electronic dwell time τD . On the other hand, conductance fluctuations, an effect of quantum
coherence, retain their universal value in the limit τE/τD → ∞, when the system is ideally coupled to external
leads. Motivated by this intriguing result we investigate conductance fluctuations through quantum chaotic
cavities coupled to external leads via (tunnel) barriers of arbitrary transparency �. Using the trajectory-based
semiclassical theory of transport, we find that the linear τE dependence of the conductance variance shows a
nonmonotonous, sinusoidal behavior as a function of �. Most notably, we find an increase of the conductance
fluctuations with τE , above their universal value, for � � 0.5. These results, confirmed by numerical simulations,
show that, contrary to common wisdom, effects of quantum coherence may increase in the semiclassical limit,
under special circumstances.
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I. INTRODUCTION

Since the foundation of quantum physics there has been
huge interest in the nontrivial transition from the quantum
to the classical regime. An important observation in this
context is the Ehrenfest theorem stating that the dynamics
of quantum-mechanical expectation values is determined by
the classical equations of motion.1 Going beyond expectation
values, an Ehrenfest time scale has been identified as the time
below which the quantum time evolution is well approximated
by the corresponding classical dynamics.2 The Ehrenfest time
is the time it takes for the chaotic classical dynamics to stretch
an initially narrow wave packet to some relevant classical
length scale such as the system size L. Since the stretching
is exponential in classically chaotic systems, one has

τE = 1

λ
ln

pF L

h̄
, (1)

with the Lyapunov exponent λ of the classical dynamics,
the initial spread h̄/pF of the wave packet, and the Fermi
momentum pF .

In recent years, there has been much interest in determining
the influence of the Ehrenfest time on stationary transport
quantities such as the conductance,3–8 its variance,6,9 and
its behavior under decoherence,3,10–12 shot noise,13–15 and
higher moments of the current,16,17 and on time dependent
quantities such as the spectral form factor,8,18–20 the survival
probability,21,22 and the fidelity.23 Most of these papers used
the trajectory-based semiclassical approach to transport,24–26

which currently is the method of choice for investigating
Ehrenfest-time dependences of quantum observables.6,27 The
leading-order quantum correction to the conductance was
found in Refs. 3 and 5–7 to decay exponentially with the
Ehrenfest time. Qualitatively speaking this can be understood
by noting first that this contribution originates from loop
diagrams [see Fig. 3(b)], and as such depends on the return

probability, and second that, neglecting system-dependent
nongeneric processes, this return probability contribution
essentially vanishes for times shorter than the Ehrenfest
time. Such an intuitive interpretation of the Ehrenfest-time
dependence does not always work: though inherently of
nonclassical nature, the leading-order contribution to the
conductance variance of systems ideally coupled to external
leads turns out to be independent of the Ehrenfest time.6,9

In this paper, we determine semiclassically the Ehrenfest-
time dependence of the variance, var G(E), of the conductance
G(E) for a chaotic system coupled to external leads via
nonideal contacts modeled by tunnel barriers of transparency
� � 1. The situation is depicted in Fig. 1. The presence of
tunnel barriers has the dramatic effect that var G(E) increases
or decreases with τE , depending on the value of �. For � � 0.5,
we even observe an enhancement of the variance above the
universal value in the presence of time-reversal symmetry for
equal lead widths of var(G)RMT = [1 + (1 − �)2]/8,28 upon
increasing τE . This is very surprising, given the quantal nature
of the conductance fluctuations. In the range 0.5 � � < 1 we
find a reduction of var G(E) as τE increases that is strongest
around � � 0.8, and recover the τE-independent behavior of
var G(E) at � = 1 observed in Refs. 6 and 9. The precise
dependence on � is depicted in Fig. 2.

To obtain these results we first, in Sec. II, introduce
the semiclassical approximation to the conductance variance.
Then, in Sec. III, we analytically calculate the � dependence
of the diagrammatic contributions to the variance, to leading
order in the inverse total number of open channels and linear in
the Ehrenfest time. We list all relevant diagrams and calculate
their contributions. Given their number, we also identify the
most relevant ones and specify the range in � where they
are particularly important. In Sec. IV we present numerical
results that confirm our analytical results, and conclude
in Sec. V.
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FIG. 1. (Color online) A chaotic cavity coupled to external leads
via tunnel barriers of transparency � � 1 (gray boxes). A classical
trajectory traversing the system is shown by a solid (blue) line. The
second dashed (red) line on the left indicates a trajectory backreflected
at the barrier. This occurs with probability 1 − �.

II. SEMICLASSICAL APPROACH

Within the scattering approach to quantum transport,29,30

the energy averaged conductance G(E) (in units of 2e2/h)
can be expressed in terms of the transmission t as

G(E) = 〈Tr(tt†)〉 (2)

with 〈· · ·〉 denoting an average over an energy window that is
classically small but quantum mechanically large. This leads
to the following expression for the variance:

var G(E) = 〈[Tr(tt†)]2〉 − 〈Tr(tt†)〉2. (3)

The scattering matrix elements are related by the Fisher-Lee
relation31 to the projection of the Green function onto the
transverse directions in the leads. Performing the projection
to leading order in h̄ and approximating the Green function
semiclassically, one obtains

ta,b ≈ 1√
TH

∑
γ (a→b)

Aγ e(i/h̄)Sγ , (4)

α
Γ

FIG. 2. (Color online) Dependence of the transmission fluctua-
tions on cavity lead coupling �. The function ατE/τD , defined in
Eqs. (77) and (78), measures the deviation from the universal random
matrix theory (RMT) variance. In this graph the parameter α is plotted
as a function of the tunnel barrier transparency � for time-reversal
symmetric systems. The solid red line gives the analytical prediction,
Eq. (78), and the blue dots are results of numerical simulations. Error
bars indicate the standard deviation over the ensemble of calculated
data.

with the Heisenberg time TH , the time conjugate to the mean
level spacing. Here the sum is over the scattering trajectories
γ , which connect channel a in the entrance (or say left)
lead and channel b in the exit (or right) lead in Fig. 1. The
summands contain rapidly oscillating phases depending on
the classical actions Sγ of the considered classical trajectories,
and classical stability prefactors Aγ whose precise form is
given, for example, in Ref. 26.

Inserting Eq. (4) into Eq. (2) we obtain the semiclassical
expression for the conductance,

G(E) ≈
〈

1

TH

∑
a,b

∑
γ,γ ′(a→b)

Aγ A∗
γ ′e

(i/h̄)(Sγ −Sγ ′ )

〉
. (5)

Using Eq. (4) in Eq. (3) yields the semiclassical expression for
its variance,

var G(E)

≈
〈

1

T 2
H

∑
a,b

c,d

∑
γ,γ ′(a → b)
ξ,ξ ′(c → d)

Aγ A∗
γ ′AξA

∗
ξ ′e

(i/h̄)(Sγ −Sγ ′+Sξ −Sξ ′ )

〉

−
〈

1

TH

∑
a,b

∑
γ,γ ′(a→b)

Aγ A∗
γ ′e

(i/h̄)(Sγ −Sγ ′ )

〉2

, (6)

with the channel sums in Eqs. (5) and (6) running over all
open lead channels (NL in the left and NR in the right lead).
If we consider contributions in the first term in Eq. (6) where
γ and γ ′ form a correlated pair (with self-encounters) and
ξ and ξ ′ form a separate correlated pair, we simply recreate
the second term. We can thus remove the second term in the
above equation by removing such pairs from the semiclassical
treatment of the first term. In terms of trajectories we then
obtain

var G(E) ≈
〈〈

1

T 2
H

∑
a,b

c,d

∑
γ,γ ′(a → b)
ξ,ξ ′(c → d)

Aγ A∗
γ ′AξA

∗
ξ ′

× e(i/h̄)(Sγ −Sγ ′+Sξ −Sξ ′ )

〉〉
, (7)

where the trajectories γ,γ ′ go from channel a in the entrance
lead to channel b in the exit lead. Likewise trajectories ξ,ξ ′
go from channel c to channel d. Because we have removed
terms from correlated trajectories where γ ≈ γ ′ and ξ ≈ ξ ′
[this restriction is denoted by the double bracket in Eq. (7)]
we are left with quadruplets where all four trajectories interact
through encounters.

Before performing the energy average the approximations
for G(E) and var G(E) in Eqs. (5) and (7) are rapidly fluctuat-
ing as a function of energy for h̄ → 0. Thus only contributions
from very similar trajectories survive the average. The classical
contribution to Eq. (5) results from equal trajectories γ = γ ′,
the so-called diagonal approximation;24,26 for an illustration,
see Fig. 3(a). Here Eq. (5) yields

G(E)[3(a)] = 1

TH

∑
a,b

∑
γ (a→b)

|Aγ |2. (8)
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(a)

(b)

(c)

FIG. 3. (Color online) Schematic drawing of trajectory pairs
contributing semiclassically to the energy averaged conductance.
(a) A pair of identical trajectories leading to the classical contribution
to the conductance. (b) The pair depicted here differs at a self-
encounter and leads to the weak-localization quantum correction
to the conductance. (c) An additional pair of orbits that needs to
be considered in the presence of tunnel barriers. This diagram is
obtained from (b) by shrinking the left link until the encounter touches
the tunnel barrier. An analogous configuration can be formed by
removing the right link from Fig. 3(b).

From here on, superscripts refer to the corresponding figure.
To evaluate the remaining γ summation, the sum rule for open
systems25 that transforms the sum over orbits into an integral
over their durations is applied,∑

γ

|Aγ |2 ≈
∫ ∞

0
dT e−T/τD . (9)

Here τD is the dwell time of the cavity, i.e., the typical time
a classical particle remains inside the chaotic system. This is
given by τD = TH/N with N ≡ NL + NR . This finally yields

G(E)[3(a)] ≈ NLNR

NL + NR

. (10)

Quantum corrections to this result are obtained from pairs
of slightly different trajectories. The considered trajectories
are almost identical differing only in how they are connected
within self-encounters; for the pair considered in Ref. 25, see
Fig. 3(b). Here the orbits possess close self-encounters with
one orbit crossing and the other anticrossing there leading to a
different direction of traversal of the closed loop. Considering

this pair in Eq. (5) leads to the leading-order quantum
correction to the conductance. To determine its contribution
the action difference between the partner trajectories and the
number of crossings needs to be determined. The calculation
is done here within the phase-space approach; in the context
of the conductance it was first performed in Ref. 32. We
will follow the latter approach throughout this paper. There a
Poincaré surface of section is considered inside the encounter
region and the difference along the stable and unstable
directions of the piercing points of the two stretches, s and
u, respectively, is used to characterize an encounter. In terms
of these coordinates the action difference for the orbit pair
in Fig. 3(b) is given by �S = su.32 The weight w(s,u) that
additionally depends on the duration of the orbit T measuring
the number of encounters is obtained from the ergodicity of
the flow as32

w(s,u) = (T − 2tenc)2

2	tenc
, (11)

where tenc ≡ 1/λ ln(c2/|su|) is the duration of the encounter
and 	 the volume of the energy shell of the corresponding
closed system. The c2 is a classical action of order unity that
will later be related to the Ehrenfest time. In general, the action
difference �S and the weight w(s,u) depend on the trajectory
configuration considered. In total we obtain for the quantum
correction δG(E) resulting from the diagram in Fig. 3(b)

δG(E)[3(b)] ≈ NLNR

TH

∫ c

−c

dsdu

∫ ∞

2tenc

dT w(s,u)ei�S/h̄e−(T −tenc)/τD

≈ − NLNR

(NL + NR)2 e−τE/τD (12)

with τE ≡ 1/λ ln(c2/h̄). In the first line additionally the
survival probability correction during the encounter32 is taken
into account. During the encounter the stretches are so close
that the orbit escapes either during the first stretch or does not
escape at all leading to the enhanced survival probability in
Eq. (12). The s,u integrals in Eq. (12) are performed as
described in Refs. 6 and 8, by substituting su = c2x and
σ = c/u. The σ integral then essentially cancels the tenc,

in the denominator and the x integral yields (after a partial
integration) the contribution −1/ (τDTH ) e−τE/τD .

To treat orbits differing at several places, Ref. 32 introduces
the splitting of the orbit into encounters and links. During the
encounters the orbits are close to themselves but the orbit and
its partner are differently connected. Due to the exponential
separation of neighboring trajectories in the chaotic case these
last essentially an Ehrenfest time, as will become clear from
the calculation below. The stretches are connected by the links,
where “links” denote the long parts of the trajectory where
the trajectory and its partner are essentially identical (up to
time-reversal symmetry). With a suitable change of variables
in the calculation, in the RMT limit τE → 0 one can treat
different encounters as distinct, and separate the semiclassical
contribution into a product of contributions over each of the
links and encounters. The total contribution can therefore be
obtained by diagrammatic rules.16,32 Away from this limit, and
for the Ehrenfest-time dependence, the encounters may start to
overlap and for the conductance variance the trajectories can
be seen to meet and surround periodic orbits trapped inside
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the system, i.e., they have encounters with periodic orbits, and
must be treated as part of a continuous family.6

When we include tunnel barriers (as in Fig. 1), three main
changes occur that were originally described in Ref. 33:

(i) The particles enter and leave the cavity with the
probability �, which leads to a factor �2 for each trajectory
pair.

(ii) While without tunnel barriers every particle that hits
the lead leaves the system, now only the ratio � of the
particles hitting the lead leaves the cavity. For the links, the
effective dwell time is therefore τD/� and the dwell time in
the exponential in Eq. (9) should be replaced by this effective
dwell time. However, if trajectory stretches are correlated, as
they are during encounters, then the whole configuration is
lost if just one stretch of the encounter leaves the system. This
happens with a probability pn ≡ 1 − (1 − �)n for n correlated
stretches. The dwell time in such a situation is therefore
replaced by τD/ [1 − (1 − �)n].

(iii) Additional encounter diagrams become possible; for an
example which contributes to the energy averaged conductance
G(E), see Fig. 3(c). In this case one encounter stretch can be
moved into the lead forcing the other to be backreflected at
the opening. Note that configurations where both stretches are
backreflected at the opening are already taken into account by
the modified dwell time explained above.

Although the effective dwell times are altered by the
tunnel barriers, the action difference and weight functions are
unaffected so that in the RMT limit (τE → 0) contributions
can still be obtained by diagrammatic rules: The contribution
of each link is now given by (�N)−1. The stretches of an
encounter of n orbits yield −pnN . For the Ehrenfest-time
dependence, however, these changes render the calculation
of the contributions to the conductance variance much more
difficult compared to � = 1: Due to the discontinuous form of
the effective dwell time, the contributions from diagrams with
a different number of surroundings of trapped periodic orbits
need to be split and treated separately. Also the possibility for
encounter stretches to be backreflected at the tunnel barriers
increases the number of diagrams considerably.

III. DIAGRAMMATIC CONTRIBUTIONS

Here we calculate the leading order in 1/N contributions
to the variance of the conductance for nonzero Ehrenfest time
in the presence of tunnel barriers. We show all the relevant
diagrams and calculate their contributions. The results given
here are valid in the unitary case; results for the orthogonal
case can be obtained by multiplying the total by a factor of 2.

A. Discrete encounters

We start with the contributions important in the RMT limit,
which allow us to recover the RMT result. The corresponding
RMT calculation was performed in Ref. 28 by Brouwer and
Beenakker. First we consider two two-encounters (encounters
involving two trajectory stretches) in a row, see Fig. 4(a). This
diagram also occurred in the � = 1 treatment of Ref. 6, but we
will explain how for � �= 1 other diagrams with backreflected
stretches can be derived from this one.

(a)

a

c

b

d

(b)

a

c

b

d

FIG. 4. (Color online) (a) A diagram possessing two two-
encounters in a row. This diagram does not require time-reversal
symmetry unlike the corresponding diagram in (b).

When the encounters are inside the cavity and not touching
the tunnel barriers, as depicted in Fig. 4(a), we start with
Eq. (7) and use the sum rule (9), the action difference
�S(s,u) = s1u1 + s2u2 (where the subscripts refer to the
different encounters), and the weight function,32

w(s,u) = (T1 − tenc,1 − tenc,2)2(T2 − tenc,1 − tenc,2)2

4	2tenc,1tenc,2
, (13)

containing the durations of the two trajectories indicated by
solid lines in Fig. 4(a), T1 and T2, respectively, and the
durations of the two encounters of the trajectories,34

tenc,i ≡ 1

λ
ln

c2

|siui | , i ∈ {1,2} , (14)

with a classical constant c again of the order 1. From Eqs. (6)
and (9) we write

var G[4] = �4N2
LN2

R

T 2
H

6∏
i=1

∫ ∞

0
dti e

−�ti/τD

∫ c

−c

dsdu
1

	2

× e(i/h̄)su

tenc,1tenc,2
e−p2(tenc,1+tenc,2)/τD , (15)

with the superscript again referring to the corresponding figure,
Fig. 4. As explained in Sec. II, the trajectory quadruplet
leads to the overall factor �4 while the sum over possible
channels provides N2

LN2
R . The six links have an effective

dwell time of τD/�, while each two-encounter experiences
the dwell time τD/p2 as explained at the end of the last
section. The s,u integrals are performed, as described after
Eq. (12), by substituting siui = c2xi and σi = c/ui . Each xi

integral yields (after a partial integration) the contribution
−p2/(τDTH )e−p2τE/τD as already obtained for the conductance
for � = 1. Finally the ti integrals yield

var G[4] = N2
LN2

R

(NL + NR)4

p2
2

�2
e−2p2τE/τD , (16)

which generalizes the result for � = 1 from Ref. 6. The
representation of Eq. (15) and the integrals to arrive at Eq. (16)
also nicely illustrate how the diagrammatic rules introduced
above arise in this context.

We now turn to the new diagrams that arise due to the
tunnel barriers where some of the links are shrunk until an
encounter touches a barrier. First we consider the case in
which just one link connecting the encounter to the opening is
removed and the corresponding encounter stretch now starts
in the opening, as in the example in Fig. 3(c). As the stretches
during an encounter lie very close to each other, the other
encounter stretch has to be backreflected at the opening (so
only one link is lost). This contribution can therefore only
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exist for � �= 1. The changes in the analytical calculation
mainly affect the weight function; see also Refs. 8, 21, 22,
and 33. If we shrink a link on trajectory 1 then, compared
to Eq. (13), the orbit of duration T1 now only involves
two links so the factor (T1 − tenc,1 − tenc,2)2/2 is replaced by
(T1 − tenc,1 − tenc,2). Moreover, for the encounter that touches
the barrier, tenc,i is replaced by an integration variable t ′ that
is integrated from zero to the tenc,i defined in Eq. (14). This
variable measures the length of the encounter that remains
inside the system, i.e., which has not yet been moved into
the lead. Performing again the steps described after Eq. (14)
yields an expression similar to Eq. (15) but with five instead of
six link factors and tenc,i in the exponential in the second line
replaced by an integration variable t ′ that is integrated from
zero to tenc,i . Because half of the encounter is backreflected at
the tunnel barrier, additionally this contribution is multiplied
by (1 − �). The contribution from the lower limit of the t ′
integral is zero,8,17 leading to

var G[4−1l] = − 4N2
LN2

R

(NL + NR)4

(1 − �)p2

�
e−2p2τE/τD , (17)

with the “−1l” denoting that one link was removed. The
prefactor 4 is due to the fact that there are four such links we
can remove. Analogously, the contribution where two links that
connect two different encounters to the opening are removed
is

var G[4−2l] = 4N2
LN2

R

(NL + NR)4 (1 − �)2e−2p2τE/τD , (18)

where there are again four possibilities of picking two links to
remove.

Additionally we can, and this is a possibility which also
exists for � = 1, remove both links connecting the same
encounter to the opening. This means that the trajectories
tunnel straight into the encounter. As the encountering orbits
are so close together this means that a = c or b = d so that
there is only one channel summation in the lead where the
encounter touches. Also we have two links fewer and one
integral over the part of the encounter that remains inside the
system, yielding

var G[4−2l(s)] = −
(
N2

LNR + NLN2
R

)
(NL + NR)3 p2e

−2p2τE/τD , (19)

where the additional “(s)” in the superscript indicates that two
links were removed at the same encounter. We can further
remove one link from the other encounter to obtain

var G[4−3l] = 2
(
N2

LNR + NLN2
R

)
(NL + NR)3 �(1 − �)e−2p2τE/τD . (20)

Finally, when all four links connecting the encounter to the
leads are removed, we have

var G[4−4l] = NLNR

(NL + NR)2 �2e−2p2τE/τD . (21)

With time-reversal symmetry, however, we can also have
Fig. 4(b) where, because channels a and c are in the left lead
and channels b and d in the right lead, we cannot shrink more
than two links simultaneously. Similarly, we cannot remove
two links from the same encounter. Since p2 = 2� − �2,
the contributions Eqs. (19)–(21) actually cancel so that the

(a)

a

c

b

d

(b)

a

c

b

d

FIG. 5. (Color online) (a) A diagram possessing two independent
two-encounters with a periodic orbit (dashed-dotted line). While this
diagram does not require time-reversal symmetry, the corresponding
diagram (b) does.

diagram in Fig. 4(b) and the ones obtained by cutting links
provide the same contribution as the diagram in Fig. 4(a).
Time-reversal symmetry then still gives a factor 2 in this
case, while for all the following cases, diagrams related
by time-reversal symmetry provide the same contributions
directly.

Next we treat the diagrams with two two-encounters that
lie along a trapped periodic orbit, depicted in Fig. 5. Although
the links connect, the encounter stretches in a different way
compared to Fig. 4; these diagrams again contain two two-
encounters and the same number of links. The possibilities
for shrinking links are identical as for Fig. 4(b) and so each
diagram provides the same contributions as above and the
same total contribution as the configuration in Fig. 4(a). They
are multiplied, however, by a factor 2 since the orbits here
have two possibilities to traverse the enclosed periodic orbits
(schematically we can also reflect the diagrams horizontally).

The last relevant diagram type to obtain the RMT result is
shown in Fig. 6. This diagram contains one three-encounter
with a periodic orbit. Its contribution is calculated in an
analogous way to Eq. (15). Here we have one link fewer,
one encounter instead of two, and involving three rather than
two orbit stretches. Therefore we have

var G[6] = − 2N2
LN2

R

(NL + NR)4

p3

�
e−p3τE/τD . (22)

Alternatively this result can be obtained from the contribution
of a three-encounter, K1, in the Appendix of Ref. 8 by including
the correct dwell times as well as the contributions from the
links.

(a)

a

c

b

d

(b)

a

c

b

d

FIG. 6. (Color online) (a) A diagram with one three-encounter
with a periodic orbit (dashed-dotted line). Diagram (a) does not
require time-reversal symmetry while diagram (b) does.
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Also in this case encounter stretches can be shrunk and
removed: First removing one link connecting the encounter to
the opening yields

var G[6−1l] = 8N2
LN2

R

(NL + NR)4 (1 − �)2e−p3τE/τD (23)

and second removing both links,

var G[6−2l] = 2
(
NLN2

R + N2
LNR

)
(NL + NR)3 �(1 − �)e−p3τE/τD . (24)

Having calculated all the contributions in the RMT limit, we
can obtain the RMT result by setting τE = 0. When summing
the the results in Eqs. (16)–(24), we obtain

var GRMT = NLNR�6

(NL + NR)6

[
N2

LN2
R(4 − 8� + 6�2)

+ (
N3

LNR + NLN3
R

)
(2 − 2� + �2)

+ (
N4

R + N4
L

)
(2� − 2�2)

]
, (25)

which agrees with the RMT prediction in Ref. 28. In
Appendix B, we use these diagrams to obtain the RMT result
when each channel has a different tunneling probability and
extend this treatment to shot noise in Appendix C. In the next
subsection we turn to nonzero Ehrenfest time.

B. Periodic orbit encounters

Having gone through all the diagrams that contribute
at zero Ehrenfest time, we now turn to those diagrams
whose contribution vanishes at zero Ehrenfest time. For these
contributions, the periodic orbits in Figs. 5 and 6 become
important and we now view those diagrams as trajectories
that have an encounter with the periodic orbit, rather than
with each other. For example, in Fig. 6 we could start with
the solid trajectory, which passes from channel c to d, and
the dashed trajectory from a to b and build the rest of the
diagram from those starting points and the periodic orbit.
Both of those trajectories encounter the periodic orbit once. In
the semiclassical treatment of Fig. 6 above, it was implicitly
assumed that these encounters occur at the same point along
the periodic orbit. The resulting three-encounter can therefore
be considered as an “aligned” three-encounter, but for the
further Ehrenfest time dependence we also need to consider
the situation where the two encounters with the periodic orbit
occur at different points along the periodic orbit but still
overlap. In this case we have a “non-aligned” three-encounter,
while when the encounters no longer overlap we return to the
two separate two-encounters of Fig. 5.

We now derive the Ehrenfest-time dependence of a non-
aligned three-encounter, whose base trajectories are depicted
in Fig. 7(a). In order to obtain the complete trajectory
quadruplet that contributes in Eq. (7) we first need to include
an additional traversal of the periodic orbit with one of the
base trajectories to obtain the original trajectory pair [which
has positive action in Eq. (7)]. The partner pair (with negative
action) is then created by including the extra traversal of the
periodic orbit with the other base trajectory. In this way we
recover a diagram like Fig. 6(a) from Fig. 7(a) and a small
action difference (the action of the periodic orbit itself cancels).
After writing the contribution of a nonaligned three-encounter

FIG. 7. (Color online) Periodic orbit encounters that contribute
only for nonzero Ehrenfest time. (a) The base trajectories for a
nonaligned three-encounter and (b) for encounters that overlap at both
ends thus enclosing the periodic orbit (depicted dashed dotted). The
encounter stretches are shown thick (gray), while the links connecting
the encounter stretches to the opening are indicated by solid (blue) and
dashed (red) lines. To obtain the complete quadruplet of trajectories
(with a small action difference), an additional traversal of the periodic
orbit must be included with one of the base trajectories and included
with the other base trajectory for the partner trajectories.

in an analogous way as for the aligned three-encounter, as
explained in Eqs. (13)–(15), as a product of link and encounter
contributions, it can be evaluated by making use of the results
for K2 in the Appendix of Ref. 8. Of course, with the tunnel
barriers, the dwell times must be modified compared to Ref. 8:
The link dwell time is modified by the factor 1/�, while the
parts of the encounter where only one trajectory is correlated
to the periodic orbit—these contributions are called fringes in
Ref. 8—have the factor 1/p2 since we have two stretches close
to each other. Likewise, when both trajectories are correlated
with the periodic orbit we have three stretches in total and
the corresponding factor 1/p3. With these corrections, the
contribution is

var G[7(a)]

= 4N2
LN2

R

(NL + NR)4

p2
2

� (2p2 − p3)
(e−p3τE/τD − e−2p2τE/τD ).

(26)

In order to proceed to the additional diagrams that arise
from touching the tunnel barriers, we first reconsider this
contribution in detail along the lines of Ref. 17. As for
Eqs. (13)–(15), we start with the weight function for two
base trajectories encountering a periodic orbit, as explained
in Refs. 6 and 8,

w(s,u) =
∫ T1−tenc,1

0
dt1

∫ T2−tenc,2

0
dt2

1

	2

× 1

tenc,1tenc,2

∫
dτp

∫
dt ′. (27)

Here t1 and t2 are the durations of the links of the base
trajectories that connect the periodic orbit encounters to the
lead, while τp is the period of the periodic orbit. The integral
over the period corresponds to summing over all periodic
orbits that can be encountered. The encounter times are as in
Eq. (14), but using the stable and unstable distances between
the encounter stretches and the periodic orbit itself. Finally,
t ′ measures the time difference between the midpoints of the
two encounter stretches in Fig. 7, and the t ′ integral covers the
different arrangements of the stretches relative to each other.
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The limits of the two last integrals in Eq. (27) are not given as
they depend on the specific configuration considered below.
The first two integrals in Eq. (27) can again be transformed,
together with the integrals from the sum rule (9), into a product
of link and encounter contributions. The general expression for
the contributions to the variance from diagrams containing an
enclosed periodic orbit that does not touch the lead becomes

var Gpo = �4N2
LN2

R

T 2
H

4∏
i=1

∫ ∞

0
dti e

−�ti/τD

∫ c

−c

dsdu
1

	2

× e(i/h̄)su

tenc,1tenc,2

∫
dτp

∫
dt ′e−P (τp,tenc,1,tenc,2,t

′).

(28)

Like the limits of the τp and t ′ integrals, the function P

determining the survival probability along the periodic orbit
(and the encountering trajectory stretches) will be specified for
each contribution separately below.

For example, for the nonaligned three-encounter, we can
arrange the different alignments in terms of the durations
of the two encounters. We let tenc,max denote the longer
encounter and tenc,min the shorter. In Fig. 7(a), we do not yet
allow the encounter stretches to surround the periodic orbit
so we impose the restriction τp > tenc,max. Then we can first
consider the case where the shorter encounter lies inside the
longer. We will also refer to this case later as a “generalized”
three-encounter. The time difference between the midpoints of
the encounters therefore satisfies |t ′| < (tenc,max − tenc,min)/2,
while the survival probability function in Eq. (28) is given by

P = �(τp − tenc,max)

τD

+ p2(tenc,max − tenc,min)

τD

+ p3tenc,min

τD

.

(29)

The different terms simply correspond to the parts of the peri-
odic orbit, which are followed by one, two, and three trajectory
stretches, respectively. As this survival probability is indepen-
dent of t ′, the t ′ integral simply yields

(
tenc,max − tenc,min

)
.

Performing the remaining integrals, we obtain

− 2N2
LN2

R

(NL + NR)4

p3 − 2p2

�
e−p3τE/τD . (30)

Of course, the range of t ′ includes 0, the case in which
the encounters are perfectly aligned. Equation (30) therefore
includes the contribution of the three-encounter in Fig. 6(a),
and for just the nonaligned three-encounter we subtract Eq.
(22) to give

4N2
LN2

R

(NL + NR)4

p2

�
e−p3τE/τD . (31)

Now we consider the case in which the shorter encounter is
no longer fully inside the longer, but where the two encounters
still overlap. This can be further separated according to the
total length of the encounters, tencs = tenc,1 + tenc,2, compared
to the periodic orbit. When τp > tencs, we have the range

|t ′| ∈ [(tenc,max − tenc,min)/2,tencs/2] (32)

and the survival probability

P = �τp

τD

+ (p2 − �)

τD

(
tencs

2
+ |t ′|

)

+ (p3 − p2)

τD

(
tencs

2
− |t ′|

)
, (33)

where the terms are now expressed as corrections due to
additional correlated stretches. Integrating the exponential
depending on this survival probability in Eq. (28) with respect
to t ′ yields

2τD

p3 − 2p2 + �
(e−[(p2−�)tencs+�τp]/τD

− e−[p3tenc,min+p2(tenc,max−tenc,min)+�(τp−tenc,max)]/τD ). (34)

Performing the remaining integrals in Eq. (28) leads to

4N2
LN2

R

(NL + NR)4

1

� (p3 − 2p2 + �)

× [
p2

2e
−2p2τE/τD − p2 (p3 − p2 − �) e−(p3+�)τE/τD

]
(35)

If the encounters are longer than the periodic orbit,
tenc,max < τp < tencs, but we still do not allow them to overlap
at both ends, we have the restriction

|t ′| ∈ [(tenc,max − tenc,min)/2,τp − tencs/2], (36)

while the survival probability remains as in Eq. (33). The t ′
integral yields

2τD

p3 − 2p2 + �
(e−[(p3−p2)tencs+(2p2−p3)τp]/τD

− e−[p3tenc,min+p2(tenc,max−tenc,min)+�(τp−tenc,max)]/τD ), (37)

which finally leads to

4N2
LN2

R

(NL + NR)4

{
1

(2p2 − p3)(p3 − 2p2 + �)

× [
(p3 − p2)p2e

−p3τE/τD − p2
2e

−2p2τE/τD
]

− 1

�(p3 − 2p2 + �)
[(p3 − p2)p2e

−p3τE/τD

−p2(p3 − p2 + �)e−(p3+�)τE/τD ]

}
. (38)

As can be easily checked, the sum of the contributions of
the nonaligned three-encounter in Eqs. (31), (35), and (38)
equals the contribution calculated directly in Eq. (26). The
reason why we have discussed this more complicated route is
that we can use it to easily calculate the contributions when
we start to shrink links and allow the encounter to touch the
tunnel barriers. For example, if we remove one link, then by
performing analogous steps as explained before Eq. (17), we
obtain

var G[7(a)−1l] = 8N2
LN2

R

(NL + NR)4

p2 (1 − �)

(2p2 − p3)
[1 + (1 − �)]

× (e−2p2τE/τD − e−p3τE/τD ), (39)

where in the square brackets, the 1 results from configura-
tions where the enclosed periodic orbit touches the tunnel
barrier where only one encounter stretch is correlated with the
orbit, and the (1 − �) from configurations where the periodic
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orbit touches the tunnel barrier while both encounter stretches
are correlated with it. Likewise, if two links connecting
different stretches to the lead are removed, we obtain the
contribution

var G[7(a)−2l] = 4N2
LN2

R

(NL + NR)4

� (1 − �)2 (2 − �)2

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (40)

Next we turn to the configuration in Fig. 7(b) with encounter
stretches overlapping at both ends. We still have tenc,max <

τp < tencs, but a different restriction on t ′:

|t ′| ∈ [τp − tencs/2,τp/2,]. (41)

The survival probability is again independent of t ′, and given
by

P = (p3 − p2) tencs

τD

+ (2p2 − p3) τp

τD

(42)

so that the t ′ integral yields (tencs − τp). Performing the
remaining integrals we obtain

var G[7(b)] = 2N2
LN2

R

(NL + NR)4

[
p2

2

(2p2 − p3)2

× (e−2p2τE/τD − e−p3τE/τD )

+ p2(p3 − p2)τE

(2p2 − p3)τD

e−p3τE/τD

]
. (43)

Again the encounter stretches can be brought to the lead by
first removing one link,

var G[7(b)−1l] = 8N2
LN2

R

(NL + NR)4

[
p2�(1 − �)2

(2p2 − p3)2

× (e−p3τE/τD − e−2p2τE/τD )

− p3�(1 − �)2τE

2 (2p2 − p3) τD

e−p3τE/τD

]
, (44)

and second by removing two links connecting different
stretches to the opening,

var G[7(b)−2l] = 8N2
LN2

R

(NL + NR)4

[
�2(1 − �)4

(2p2 − p3)2

× (e−2p2τE/τD − e−p3τE/τD )

+ �2(1 − �)4τE

(2p2 − p3) τD

e−p3τE/τD

]
. (45)

C. Touching both leads

As the durations of the encounters are of the order of
the Ehrenfest time, for vanishing Ehrenfest time we only
considered the situation where the encounter stretches could
be partially reflected from the tunnel barriers in one lead.
However, for increasing Ehrenfest time configurations where
encounter stretches are partially reflected from the tunnel
barriers in both leads, i.e., where they touch the opening at
both ends, become important. If one of the two-encounters
in Fig. 4 were to be partially reflected at both ends then
one of the links between the two encounters would need to
tunnel through the barrier and exit the system so that the rest
of the diagram could not be completed. In Figs. 5 and 6,

however, as long as the trajectory stretches which follow the
periodic orbit are reflected at the tunnel barriers and remain
in the system, we can allow the other links to tunnel through
the barrier and exit the system. For the base trajectories in
Fig. 7(a) this means we can allow both links of one of the base
trajectories, on either side of the same encounter, to shrink
into the start and end lead. We start with the configuration
in Fig. 5. We first note that the contributions of the different
orbit parts in Eq. (7) are multiplicative.32 We can therefore
reconnect the orbits in such a way that they split into parts
whose contributions have previously been calculated. First
there is the remaining base trajectory, with a two-encounter
with the enclosed periodic orbit and two links connecting it to
the opening. This contributes the factor

− NLNR

(NL + NR)2 p2e
−p2τE/τD . (46)

The rest of the diagram involves the periodic orbit itself and
the encountering stretch that tunnels through to start and end
in the leads. The contribution is calculated by summing over
all enclosed periodic orbits, using the sum rule (9). Remember
that when allowing the encounter to move into the lead an
additional time integral occurred measuring the part of the
stretch that lies still inside the system. Now there are two
time integrations representing the amount of the encounter
that is cut short in each of the two leads. The first time integral
cancels tenc,i , while the second essentially yields a factor [1 −
exp(−p2tenc,i/τD)]. For the details of the calculation we refer
to Refs. 17 and 27. This part of the diagram then contributes

NLNR

(NL + NR)2

(1 − �)2

p2
(1 − e−p2τE/τD ), (47)

so that this configuration of Fig. 5 altogether yields

var G[5−2l(s)]

= − 4N2
LN2

R

(NL + NR)4 (1 − �)2e−p2τE/τD (1 − e−p2τE/τD ), (48)

where the “(s)” in the superscript denotes that the two links
were removed along the same base trajectory from the same
encounter stretch. One factor 2 in the last equation derives
again from the mirror symmetry of this configuration explained
after Eq. (21), the other from the fact that each of the two
stretches can touch the opening at both ends.

Furthermore, one of the links of the other base trajectory
may also be shrunk so that the other encounter tunnels into the
lead at one end. This contribution is

var G[5−3l] = 8N2
LN2

R

(NL + NR)4

�(1−�)3

p2
e−p2τE/τD (1 − e−p2τE/τD ).

(49)

Removing all four links, so that both encounter stretches on
the base trajectories tunnel into the leads at both ends, is
also possible. The contribution is simply given by the square
of Eq. (47).

We can repeat this treatment for the aligned three-encounter
of Fig. 6. If one encounter stretch tunnels into the leads at both
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ends we obtain

var G[6−2l(s)] = 8N2
LN2

R

(NL + NR)4

�(1 − �)4

p3
(1 − e−p3τE/τD ),

(50)

where, because of the alignment and proximity of the two
encounter stretches, the periodic orbit and the other encounter
stretch must be backreflected at the tunnel barriers. Allowing
the ends of the second encounter stretch to progressively tunnel
through into the leads as well, we have, if it tunnels into the
lead at one end,

var G[6−3l] = 4
(
NLN2

R + N2
LNR

)
(NL + NR)3

�2(1 − �)3

p3
(1 − e−p3τE/τD ),

(51)

and at both ends

var G[6−4l] = 2NLNR

(NL + NR)2

�3(1 − �)2

p3
(1 − e−p3τE/τD ).

(52)

Such configurations can be also considered for the diagrams
in Fig. 7 and their contributions can be calculated analogously.
To simplify the results, however, we will later perform an
expansion of the contributions in powers of the Ehrenfest
time and only retain terms up to linear order. As the results
for the diagrams of Fig. 7 are all of higher order in τE

than the linear one, we will not focus on their explicit form
here.

D. Encounter fringes

A further effect, and one that actually causes the in-
dependence of the conductance variance of the Ehrenfest
time for � = 1, are correlations during fringes near periodic
orbits. Encounter fringes refer to regions where the two base
trajectories that encounter the periodic orbit are correlated with
each other, but are no longer correlated with the periodic orbit
itself; see Fig. 8 for a schematic depiction.

As the two base trajectories leave the periodic orbit
correlated with each other, we can consider the encounters
with the periodic orbit to be aligned. The encounter of both
trajectories with the periodic orbit has length tenc while the

FIG. 8. (Color online) A periodic orbit encounter with fringe
correlations, i.e., correlations between the two trajectories that
encounter the periodic orbit (shown dashed dotted) with each other,
but not with the periodic orbit itself. The fringe regions are indicated
by the black lines perpendicular to the trajectories. The encounter
stretches are shown thick (gray), while the links connecting the
encounter stretches to the opening are indicated by solid (blue) and
dashed (red) lines.

fringes, during which the base trajectories are correlated, have
lengths ts and tu where the subscripts refer to the fact that
the stable and unstable distances between the base trajectories
must be small for them to remain correlated. Here, we treat the
case in which the encounter length is shorter than the periodic
orbit. By this we generalize the calculation of Ref. 6 to � �= 1.
There it was shown that the contribution derived from Eq. (28)
can be expressed as

var G[8] = 2N2
LN2

Rc2λ

(πh̄)2 (NL + NR)4

∫ b−1

1−b

ds ′du′
∫ 1

0
du u

×
∫ ∞

tenc

dτpe−[(p3−�)tenc+�τp]/τD

×
(∣∣∣∣ s ′

b − 1

∣∣∣∣
p2/λτD

− 1

)(∣∣∣∣ u′

b − 1

∣∣∣∣
p2/λτD

− 1

)

× cos

[
c2u

(
s ′ − u′)
h̄

]
, (53)

where b is again a classical constant of order unity. The stable
and unstable coordinates u,s ′,u′ occurring in Eq. (53) are
defined as in Ref. 6 and are slightly different than the s,u
before in this paper, especially in Eq. (28). To understand the
definition in Ref. 6 note first that correlation effects away
from the periodic orbits only become important when the
encountering orbits approach the periodic orbit together at
one point and likewise leave together at a later point. At these
two points we now place the Poincaré surfaces of sections.
This situation is illustrated in Fig. 9. In the first section we
first measure the distance u in the unstable direction between
the two approaching orbits and the central periodic one. This
distance can be considered equal for the two approaching
trajectories as they later leave the dashed-dotted orbit at the
same point. The distance in the stable direction measured in
the first section of the two approaching orbits with respect
to the central periodic orbit is c as where this distance falls
below c defines the starting point of the encounter. Second
we determine in the first section the distance s ′ in the stable

FIG. 9. (Color online) Illustration of the definition of the coordi-
nates u,s ′,u′ used in Eq. (53). The two orbits indicated by the full
(blue) and dashed (red) line are assumed to approach and leave the
central dashed-dotted periodic orbit together at one point. At these two
points the Poincaré surfaces of sections (PSSs) are placed. In the first
section first the distance u in the unstable direction between the two
approaching orbits and the central periodic one is measured. Second
the distance s ′ in the stable direction between the two approaching
orbits is determined. Analogously in the second section the distance s

of the two approaching orbits with respect to the central periodic orbit
and the distance u′ of these two orbits is measured. The encounter
stretches are again indicated by thick (gray) lines.
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direction between the two approaching orbits. Analogously in
the second section the distance s of the two departing orbits
with respect to the central periodic orbit is measured. The
unstable distance is again c so that the encounter time tenc

of the approaching orbits with the central periodic orbit is
given by tenc = 1/λ ln (c/|u|) = 1/λ ln (c/|s|), then we have
|u| = |s| and we do not need to consider s as an additional
variable in Eq. (53). Finally the distance u′ in the unstable
direction between the two orbits departing from the central
periodic orbit is determined. The two primed coordinates s ′
and u′ characterize the time the encountering orbits remain
correlated before and after they are correlated with the periodic
orbit, respectively.

In Eq. (53), we included the correct dwell times for the
different parts of the trajectory: τD/� for the isolated links,
τD/p2 for the fringes, and τD/p3 for the encounter stretches
correlated with the periodic orbit. Following the steps in Ref. 6,
this contribution evaluates to

var G[8] = 2N2
LN2

R

(NL + NR)4

p2
2

� (2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (54)

Without tunnel barriers, as shown in Ref. 6, further contri-
butions can be obtained when the fringes start in the leads.
Similarly, with tunnel barriers, we can have the fringes tunnel
into the leads. This leads to an additional time integral over the
duration of the fringe that remains inside the system. When
one fringe tunnels into the lead, two links are removed and the
contribution becomes

var G[8−2l(s)] = −2
(
N2

LNR + NLN2
R

)
(NL + NR)3

�p2

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (55)

The “(s)” in the superscript refers to the fact that the links
were removed from the same side of the encounter. When
both fringes and all four links are removed, we have

var G[8−4l] = 2NLNR

(NL + NR)2

�3

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (56)

With the tunnel barriers though, new possibilities also arise.
For example, when a fringe tunnels into the lead, one of the
trajectories could be backscattered, as for the two-encounters
previously. Similarly to Eq. (17), we obtain here

var G[8−1l] = − 8N2
LN2

R

(NL + NR)4

(1 − �)p2

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (57)

Furthermore, we can move additionally one fringe into the
lead yielding

var G[8−3l] = 4
(
NLN2

R + N2
LNR

)
(NL + NR)3

(1 − �)�2

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (58)

If both fringes are partially backscattered at the leads, we have
the contribution

var G[8−2l] = 8N2
LN2

R

(NL + NR)4

�(1 − �)2

(2p2 − p3)

× (e−p3τE/τD − e−2p2τE/τD ). (59)

Next we can allow the periodic orbit itself, rather than the
fringes, to touch the lead and be reflected from the tunnel
barriers. The encounter stretches may then both tunnel into the
lead, or one may be reflected. We recall that the case in which
both are reflected is already included in the survival probability
of the encounter. One fringe is therefore removed from the
systems, while the fringe that remains could then be inside the
system, tunnel into the lead, or be partially backreflected at
the opening. If the periodic orbit touches both leads during the
encounter, we return to the situation in the previous subsection,
so here we only consider the cases in which at least some of
the second fringe remains.

The removal of one fringe entirely implies the following
changes in Eq. (53): With only one fringe time left, we only
have one of the factors in the third line of Eq. (53). Also the
encounter time is replaced by an integration variable (with
a range from 0 to tenc) that accounts for the amount of the
encounter left after the periodic orbit is reflected from the
tunnel barriers. Performing, with these changes, again the
steps in Ref. 6 analogous to those following Eq. (53) above,
we obtain the contributions for the various different cases.
First, when the remaining fringe lies inside the system, we
could have the encounter (which touches the lead) partially
reflected,

var G[8−1f −1l] = − 4N2
LN2

R

(NL + NR)4

(1 − �)2p2

p3

× (1 − e−p3τE/τD )e−p2τE/τD , (60)

where “−1f − 1l” refers to the fact that one fringe and one
link were removed. Likewise, both encounter stretches could
tunnel directly into the lead so that two links are removed on
the same side of the encounter,

var G[8−1f −2l(s)] = −
(
NLN2

R + N2
LNR

)
(NL + NR)3

(1 − �)p2�

p3

× (1 − e−p3τE/τD )e−p2τE/τD . (61)

The remaining fringe could also be partially reflected from the
tunnel barriers. For the encounter stretches we have the same
two possibilities as above. This leads to

var G[8−1f −2l] = 8N2
LN2

R

(NL + NR)4

(1 − �)3�

p3

× (1 − e−p3τE/τD )e−p2τE/τD , (62)

and

var G[8−1f −3l(s)] = 2
(
N2

LNR + NLN2
R

)
(NL + NR)3

(1 − �)2�2

p3

× (1 − e−p3τE/τD )e−p2τE/τD . (63)
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Finally the remaining fringe can tunnel directly into the lead,
giving the contributions

var G[8−1f −3l] = 2
(
N2

LNR + NLN2
R

)
(NL + NR)3

(1 − �)2�2

p3

× (1 − e−p3τE/τD )e−p2τE/τD , (64)

and

var G[8−1f −4l] = 2NLNR

(NL + NR)2

(1 − �)2�3

p3

× (1 − e−p3τE/τD )e−p2τE/τD . (65)

E. Multiple periodic orbit traversals

Having treated all encounter configurations with periodic
orbits where the encounter stretches are shorter than the
enclosed periodic orbit, we now turn to the corresponding
contributions where the encounter stretches are longer than
the enclosed periodic orbit. In this context only diagrams
with stretches that both possess the same number of traversals
around the enclosed periodic orbit yield a contribution; for
a justification see Ref. 6. In this context we consider that
each encounter stretch has k full windings around the enclosed
periodic orbit. We take here the two encounter times tenc,1, tenc,2

and the corresponding primitive times t
p

enc,i ≡ tenc,i − kτp.
These primitive times are again shorter than the enclosed
periodic orbit and we can now also consider the different
cases depicted in Figs. 5–8, and how they can be arranged.
We start with the case in which the two primitive encounter
times t

p

enc,i do not overlap. When k = 0, the corresponding
diagram is depicted in Fig. 5. To explain the calculation we
begin with Eq. (28) for k = 0 and perform the integrals over
the links ti , and over t ′ where the latter integral leads to the
factor (τp − tencs):

var G
[5]
k=0 = N2

LN2
R

(NL + NR)4

∫ c

−c

dsdu
T 2

H

	2

e(i/h̄)su

tenc,1tenc,2

×
∫ ∞

tencs

dτp(τp − tencs)e
−[(p2−�)tencs+�τp]/τD .

(66)

To turn to k �= 0, tenc,i is then replaced only inside the
integrand of the τp integral by t

p

enc,i ; these times are shorter than
τp by definition. The tenc,i before the τp integral compensate the
overcounting of equivalent positions of the Poincaré surface
of sections by the si,ui integrals and thus do not need to be
altered. The possibilities for placing these stretches around the
periodic orbit are the same as they were for tenc,i for k = 0.
This allows us to treat k > 0 in essentially the same way we
treated k = 0 before. As t

p

enc,i = tenc,i − kτp, we reexpress the
primitive encounter times in terms of tenc,i and τp. The limits
of the τp integration are also altered for k �= 0: As the primitive
encounters do not (yet) overlap, we have the condition t

p

enc,1 +
t
p

enc,2 � τp so that the lower limit is now tencs/(2k + 1). Since
we remove all k complete windings of the periodic orbit from
both encounter times, the shorter encounter must be tenc,min �
kτp so that the upper limit is tenc,min/k. Finally pj is replaced
by p2k+j (where in this context � is defined as p1) since
during the primitive encounter stretches we have a total of
2k + 2 correlated stretches while elsewhere we have 2k + 1.

All these replacements finally yield

var G
[5]
mt = N2

LN2
R

(NL + NR)4

∫ c

−c

dsdu
T 2

H

	2

e(i/h̄)su

tenc,1tenc,2

×
∫ tenc,min/k

tencs/(2k+1)
dτp[(2k + 1)τp − tencs]

× e−[(p2k+2−p2k+1)(tencs−2kτp)+p2k+1τp]/τD , (67)

where the additional index “mt” indicates that this contribution
results from multiple traversals k > 0. Performing now the
remaining integrals in the same way as, for example, in
Eqs. (34)–(38) we obtain this contribution. As the full
expression is rather involved we just give here terms up to
linear order in τE :

var G
[5]
mt = − 2N2

LN2
R

(NL + NR)4

∞∑
k=1

(p2k+2 − p2k+1) τE

k2(2k + 1)τD

+ O
(
τ 2
E

)
.

(68)

We also omitted here terms that are also nonzero for pk = 1
as they all cancel with the contributions below. Also in this
case one link can be removed leading to a configuration where
one encounter stretch touches the opening. This implies that
in Eq. (67) one factor τD/� is removed, the duration of the
encounter stretch that touches the tunnel barrier is replaced
by an integration variable integrated from 0 to tenc,i , and
additionally a factor (1 − �)2k+1 arises to account for the
probability that all the 2k + 1 orbital parts surrounding the
periodic orbit are backreflected when they hit the lead. This
contribution then yields

var G
[5−1l]
mt = 4N2

LN2
R

(NL + NR)4

∞∑
k=1

(p2k+2 − p2k+1) τE

k2(2k + 1)τD

+ O
(
τ 2
E

)
.

(69)

Shrinking two links connecting two different encounter
stretches to the opening, we obtain (following the same steps
as just described also for the other tenc,i) no contribution
that is linear in τE . Shrinking two links connecting the
same encounter we need again to introduce in Eq. (67) two
additional time integrals as described before Eq. (47). This
also finally yields zero contribution linear in τE , because the
terms resulting from the two limits of the τp integral cancel.
The same also holds for the following contributions.

Similar contributions are also obtained in the other cases
where we give more details of the calculation in Appendix A.
For a generalized three-encounter introduced around Eq. (29)
we obtain the integrals given in Eq. (A1), which provide the
contribution

var G
[6]
mt = 2N2

LN2
R

(NL + NR)4

∞∑
k=1

τE

k(k + 1)τD

× (2p2k+2 − p2k+1 − p2k+3) + O
(
τ 2
E

)
(70)

when the encounters lie inside the system and

var G
[6−1l]
mt = − 4N2

LN2
R

(NL + NR)4

∞∑
k=1

τE

k(k + 1)τD

× (2p2k+2 − p2k+1 − p2k+3) + O
(
τ 2
E

)
, (71)
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when one link is removed. Additionally we can shrink both
links connecting the three-encounter to the opening on one
side. This amounts to removing two links, and introducing an
additional integral over the part of the encounter that remains
inside the system, in Eq. (A1), yielding

var G
[6−2l]
mt = 2

(
NLN2

R + N2
LNR

)
(NL + NR)3

∞∑
k=1

τE

k(k + 1)τD

× (2p2k+2 − p2k+1 − p2k+3) + O
(
τ 2
E

)
. (72)

Again zero contribution is obtained when more links are
removed.

For a nonaligned three-encounter, when the encounter lies
inside the system we obtain from Eqs. (A2) and (A3)

var G
[7(a)]
mt = 4N2

LN2
R

(NL + NR)4

∞∑
k=1

[
(p2k+3 − p2k+2) τE

(k + 1)(2k + 1)τD

− (p2k+2 − p2k+1) τE

k(2k + 1)τD

]
+ O

(
τ 2
E

)
, (73)

and when one link is removed,

var G
[7(a)−1l]
mt = − 8N2

LN2
R

(NL + NR)4

∞∑
k=1

[
(p2k+3 − p2k+2) τE

(k + 1)(2k + 1)τD

+ (2p2k+2 − p2k+1 − p2k+3) τE

2k(k + 1)τD

− (p2k+2 − p2k+1) τE

k(2k + 1)τD

]
+ O

(
τ 2
E

)
. (74)

Finally we treat the configuration in which the encounter
stretches overlap at both ends. When k = 0 this configuration
is depicted in Fig. 7(b). With multiple traversals of the periodic
orbit, the contribution given in Eq. (A4) provides, when the
stretches lie inside the system,

var G
[7(b)]
mt = − 2N2

LN2
R

(NL + NR)4

∞∑
k=1

(p2k+3 − p2k+2) τE

(k + 1)2(2k + 1)τD

+O
(
τ 2
E

)
(75)

and when one link is removed

var G
[7(b)−1l]
mt = 4N2

LN2
R

(NL + NR)4

∞∑
k=1

(p2k+3 − p2k+2) τE

(k + 1)2(2k + 1)τD

+O
(
τ 2
E

)
. (76)

No further contributions are obtained when taking into account
fringes as in Fig. 8. This can be checked from Eq. (53) by
adjusting the limits of the τp integral appropriately. Then, the
terms from the two limits of the τp integral cancel to linear
order in τE .

F. Linear Ehrenfest-time dependence

Having calculated all the contributions we can now sum
them to obtain the overall contributions to the conductance
variance, to leading order in the inverse number of open
channels in the leads. First we can check that all the terms
after Sec. III A are zero for τE = 0, so that the RMT result
(25) is preserved. The case that is especially interesting for
the comparison with the numerics is the contribution to the

conductance variance when NL = NR , for arbitrary � and
of linear order in τE . We therefore expand the terms in
Eqs. (16)–(24), (26), (39), (40), (43)–(45), (48)–(52), and
(54)–(65) up to linear order in τE/τD . The first term then
yields the RMT contribution, the second we obtain by adding
additionally Eqs. (68)–(76). We write it as τE/τD times a
�-dependent prefactor α(�) and obtain

var GNL=NR
≈ var GRMT + α

τE

τD

+ O
(

τ 2
E

τ 2
D

)
+ O

(
1

N

)

≈ 1

8
[1 + (1 − �)2] + α

τE

τD

+ O
(

τ 2
E

τ 2
D

)

+O
(

1

N

)
(77)

and

α(�) = �

4

[
(� − 1) (7�3 − 6�2 + 4� − 2) + ln(2� − �2)

× �2 (2 − �)

(1 − �)
− �Li2[(1 − �)2]

]
. (78)

The parameter regime for this prediction to be valid is thus
τE/τD � 1 and N � 1. Here Li2(x) denotes the polylogarith-
mic function, which arises when performing the k summations
above. The function α(�) is shown as the solid (red) line in
Fig. 2.

Having derived the complete set of contributions, we now
discuss the main terms that lead to the two extrema in Fig. 2.
First we note that the contributions from multiply traversed
periodic orbits are quite small. When � = 1 they provide no
contribution linear in τE , as can be checked from Eqs. (68)–
(76). For most of the contributions for � �= 1 the index k of
the pk’s in the sum is much larger than 1. In this case the
differences of the pk’s in Eqs. (68)–(76) tend to 1 and thus the
contributions from these equations tend to 0. Then the result
is almost equal to the vanishing value for � = 1.

In Fig. 2, the maximum lies in a region of small �. In
this regime, most of the diagrams approximately cancel each
other as can be seen by expanding their contributions in a
Taylor series for small �: The ones from diagrams containing
encounters inside the system [e.g., the contribution (16)] are
canceled by the contributions obtained when one and two
links are shrunk [e.g., the contributions (17)–(21)]. However,
this cancellation does not hold for the three-encounter with
the periodic orbit (see Fig. 6). In this case we have two
possibilities: First that the encounter lies inside the system
or touches the lead at one end [see Eqs. (22)–(24)]. In
total this leads to an Ehrenfest-time-dependent factor of
e−p3τE/τD . Additionally, we also need to take into account
the contributions from encounters touching the leads on both
sides leading to an increasing contribution proportional to
1 − e−p3τE/τD with a larger prefactor than the first one [see
Eqs. (50)–(52)]. The increasing contribution from similar
diagrams also partially canceled the decrease of the Fano
factor and S-matrix correlation functions in Refs. 14 and 17 in
systems without tunnel barriers. This term is usually referred
to as “classical” as it also survives for τE → ∞ and increases
with increasing τE . Together, the two possibilities for the
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three-encounter with the periodic orbit compete to cause the
first peak in Fig. 2.

In the case of the dip the factor (1 − �), i.e., the probability
for the particle to be backreflected at the opening, is quite
small. This implies that we get the main contributions from
diagrams with encounters inside the system (i.e., the ones also
obtained for � = 1) depicted in Figs. 4–8. These together yield
a negative contribution.

IV. NUMERICAL SIMULATION

We numerically confirm our main analytical prediction,
Eqs. (77) and (78). The model we use is the open kicked
rotator with time-dependent Hamiltonian35

Ĥ = (p + p0)2

2
+ K cos (x + x0)

∞∑
n=−∞

δ(t − nτf ), (79)

with τf the free flight time, which we set to 1. Depending on
the kicking strength K the dynamics changes from integrable
for K = 0 to fully chaotic for K � 7. In the latter regime,
local exponential instability is characterized by the Lyapunov
exponent

λ = ln

(
K

2

)
. (80)

The quantities p0 and x0 are introduced to break the
Hamiltonian’s two symmetries,35 and investigate different
symmetry classes with (p0 or x0 = 0) and without (p0 �= 0 �=
x0) time-reversal symmetry. The Ehrenfest time in this system
is determined, up to a constant of little relevance, by τE ≡
λ−1 ln(M/c) with M the size of the Hilbert space, determined
by the quantization of the Hamiltonian via discretization of
the coordinates as, e.g., pl = 2πl/M , l = 1, . . . M . Here c

is again a system-dependent constant of order 1 that is of
classical origin, and as such does not depend on M . A quantum
representation of the Hamiltonian (79) is then provided by the
unitary M × M Floquet matrix U , giving the time evolution
for one iteration of the map defined by Ĥ in a time interval
[t0,t0 + 1). For our specific choice of the kicked rotator, the
Floquet operator has matrix elements

Ul,l′ = Me−(πi/M)[(l+l0)2+(l′+l0)2]

×
∑
m

e2πim(l−l′)/Me−(iMK/4π) cos[2π(m+m0)/M] (81)

with l0 = p0M/2π and m0 = x0M/2π . Transport can finally
be investigated once absorbing phase-space strips are intro-
duced to model contacts to leads. This is achieved by means
of projection operators P . In our case of tunnel-coupled
leads, the latter are N × M diagonal matrices with entries
Pij = δij

√
�, assuming that the system is coupled to all N =

NL + NR channels with the same transparency 0 < � � 1.
The scattering matrix is finally defined as36

S(ε) = (1 − P T P )1/2−P [exp(−iε) − U (1 − P T P )]−1UP T .

(82)

The kicked rotator model is particularly well suited to
investigate the semiclassical limit with τE � τD , as it allows
for a rather large variation of the system size and hence the
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FIG. 10. (Color online) Conductance variance var G(E) as a
function of τE/τD for various values of �. In the horizontal axis,
we use τE = λ−1 ln(M/c), with c of the order 1 and λ as defined in
Eq. (80). The uncertainty in the Lyapunov exponent due to finite-time
effects and the arbitrariness of the constant c are fixed by requiring
that analytical and numerical data agree for � = 0.2, as described
in the text. The straight lines are linear fits constrained to go to
[1 + (1 − �)2]/8 at τE = 0. Their slopes give the parameter α defined
in Eqs. (77) and (78). The extracted values of α are plotted as a
function of � in Fig. 2.

Ehrenfest time. Previous such investigations of the open kicked
rotator are presented, e.g., in Refs. 7, 9, 37, and 38, and we
refer the reader to these works for further details of the model.
The variance of the conductance is calculated by varying the
quasienergies ε at given lead position. Averages of var G(E)
are further performed with different lead positions.

We first show in Fig. 10 the behavior of var G(E) as a
function of τE/τD . To reach the largest possible values of
τE/τD , while still remaining in the chaotic regime λτD � 1,
we take values K = 10 and τD = M/2N = 5 �, but stress
that further numerical data, which we do not show for K = 20
and/or τD = 10 �, corroborate our conclusions. The Ehrenfest
time is varied at fixed classical dynamics by varying M as
powers of 2 between 128 and 2048, with the additional value
of M = 4096 for � = 1. We calculate var G(E) for 50 to 100
different values of E at fixed position of the leads, and repeat
the operation for 500 (for M = 128) to 50 (for M = 4096)
different lead positions. The error bars in Fig. 10 reflect the
maximal obtained spread of var G(E) as lead positions are
changed, for each value of �. We clearly see �-dependent
behaviors, as var G(E) increases for small � and decreases
for larger � until it becomes independent of τE for � = 1.
We extract the linear slope of the var G(E) vs τE/τD curve
via a linear fit, setting τE = 0 where the curves intersect the
RMT universal value var(G)RMT = [1 + (1 − �)2]/8.28 There
is still an uncertainty in α due to an uncertainty in the precise
value of the Lyapunov exponent—the latter has been found
numerically to deviate in open systems from its exact value
(80), which has been attributed to finite-time effects—and
because of the arbitrary constant c of order 1 in the definition
of τE . We remove this uncertainty by forcing numerical
and analytical data to agree for � = 0.2. Once this is done,
there is no free parameter left. We compare the so-obtained
numerical values for α with the analytical prediction of
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Eq. (78) in Fig. 2. The excellent agreement between numerical
data and the analytical curve fully confirms our theory. We
also checked, but do not show, that the linear τE depen-
dence of var G(E) is halved when time-reversal symmetry is
broken.

V. CONCLUSIONS

In this paper we determined the dependence of the conduc-
tance variance of a chaotic cavity with tunnel barriers on the
tunneling probability �. In particular we find an Ehrenfest-
time dependence for the general case � < 1 of nonperfect
coupling. We focused on the contribution that is linear in the
Ehrenfest time and leading order in the inverse total number of
open channels 1/N . We predict a nonmonotonous sinusoidal
behavior with one maximum at � ≈ 0.2 and a (roughly 50%)
deeper minimum at � ≈ 0.8. This analytical result was derived
semiclassically by systematically considering a rather large
number of possible configurations, but the general behavior
derives from a much smaller set. We discussed the main
contributions, which lead to each of the two peaks to provide a
better intuitive understanding of the overall structure. Finally,
we compared these analytical predictions with numerical
simulations performed for the kicked rotor (in the chaotic
regime). There was good agreement between the two, with
the analytical curve within the error bars of all the numerically
determined data points.

Although, even at leading order, we treated a large number
of possible semiclassical diagrams, they could be constructed,
as we showed in this paper, in a controlled way from the
diagrams that exist when the tunnel barriers are absent. This
calculation could therefore possibly be extended to higher-
order contributions in 1/N and τE , but a more natural next
step would be to extend the Ehrenfest-time dependence of the
(leading order in 1/N) results for the full counting statistics of
transport moments17 to include tunnel barriers in the leads and
to account for the extra diagrammatic possibilities that then
arise.

On the numerical side, we emphasize that the agreement
observed in this paper between numerics and analytics could
neither be obtained concerning the analytical results for
the conductance nor for shot noise in Ref. 33. Further
numerical investigation in this area would therefore be highly
desirable. Finally it would be interesting to check the observed
phenomena experimentally. Although Ehrenfest-time effects
in antidot superlattices were observed more than ten years
ago,4 none of the other Ehrenfest-time dependencies predicted
for chaotic systems have been checked so far experimentally.
A candidate was worked out by Tian, Larkin, and Kamenev in
Ref. 39 for the Ehrenfest-time dependence of weak localization
in kicked rotors as being suitable for experimental verifications
in the cold atomic gas context. The difficulty to observe these
effects is mainly due to the small range through which the
system size can be varied in quantum dots. However, with
the additional parameter of the tunneling probability and in
view of the expected double peak structure, the prediction
in this paper could be amenable to experimental verification.
In the case of electron based transport it is an interesting
question of how our calculations are affected by interaction
effects that are known to be especially relevant in the

regime � � 1.26 However, such effects could be avoided by
considering other realizations such as microwave or cold-atom
billiards.
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APPENDIX A: PERIODIC ORBIT ENCOUNTERS

Here we give the necessary integrals for obtaining the
contributions from diagrams containing enclosed periodic
orbits that are surrounded k times by each encounter stretch.
In these expressions the link and t ′ integrals in Eq. (28)
have already been performed, but not yet the τp and the s,u
integrals. These expressions are especially useful because they
not only allow one to obtain the contributions from encounters
inside the system but (via integrations with respect to the
corresponding encounter times) also the contributions when
encounters touch the openings.

The corresponding expression obtained for two indepen-
dent two-encounters was already given in the main text in
Eq. (67). In the case of a generalized three-encounter we
obtain

var G
[6]
mt = 2N2

LN2
R

(NL + NR)4

∫ c

−c

dsdu
∫ tenc,min/k

tenc,max/(k+1)
dτp

T 2
H

	2

× e(i/h̄)su

tenc,1tenc,2
(tenc,max − tenc,min)

×e−(p2k+3−p2k+2)(tenc,min−kτp)/τD

×e−[(p2k+2−p2k+1)(tenc,max−kτp)+p2k+1τp]/τD . (A1)

For a nonaligned three-encounter, similar to Eqs. (34) and (37),
it is given first for τp > t

p

enc,1 + t
p

enc,2 by

var G
[7(a)]
mt(1) = 2N2

LN2
R

(NL + NR)4

2τD

(p2k+3 + p2k+1 − 2p2k+2)

×
∫ c

−c

dsdu
T 2

H

	2

e(i/h̄)su

tenc,1tenc,2

∫ tenc,min/k

tencs/(2k+1)
dτp

× e−p2k+1τp/τD [e−(p2k+2−p2k+1)(tencs−2kτp)/τD

− e−(p2k+3−p2k+2)(tenc,min−kτp)/τD

× e−(p2k+2−p2k+1)(tenc,max−kτp)/τD ], (A2)

and second for t
p
enc,max < τp < t

p

enc,1 + t
p

enc,2 by

var G
[7(a)]
mt(2) = 2N2

LN2
R

(NL + NR)4

2τD

(p2k+3 + p2k+1 − 2p2k+2)

×
∫ c

−c

dsdu
T 2

H

	2

e(i/h̄)su

tenc,1tenc,2

∫ tencs/(2k+1)

tenc,max/(k+1)
dτp

× [e−(2p2k+2−p2k+3)τp/τD
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× e−(p2k+3−p2k+2)(tencs−2kτp)/τD

− e−(p2k+3−p2k+2)(tenc,min−kτp)/τD

× e−(p2k+2−p2k+1)(tenc,max−kτp)/τD

× e−p2k+1τp/τD ]. (A3)

In the case of the two encounters overlapping at both ends the
contribution is obtained to be

var G
[7(b)]
mt = 2N2

LN2
R

(NL + NR)4

∫ c

−c

dsdu
∫ tencs/(2k+1)

tenc,max/(k+1)
dτp

T 2
H

	2

× e(i/h̄)su

tencs
[tencs − (2k + 1) τp]

× e−(p2k+3−p2k+2)(tencs−2kτp)/τD e−(2p2k+2−p2k+3)τp/τD .

(A4)

APPENDIX B: DIFFERENT TUNNELING PROBABILITIES

Here we generalize Eq. (25) to the case of different �j for
the different lead modes. Factors like �N are then replaced by
a sum over the �j with respect to the N open channels. An
analogous replacement is made for the pj for j � 1. In order
to keep the notation compact we introduce

G(i) ≡
Ni∑

j=1

�j , Gi ≡
NL+NR∑

j=1

pj . (B1)

For example, the contribution from the diagram in Fig. 4(a),
previously given in Eq. (16), becomes

var G[4] = G2
(1)G

2
(2)G

2
2

G6
1

, (B2)

where the Ehrenfest-time dependence is the same as in
Eq. (16) although we set τE = 0 here. The first two terms in
the numerator result from the channel summations. The third
term replaces the factor p2

2N
2 in Eq. (16) and the denominator

replaces the previous (�N)4.
To keep the contributions from configurations where one

link connecting the encounter to the opening is removed in a
compact form, we define

H(i),k ≡
Ni∑

j=1

�j (1 − �j )k−1. (B3)

Considering again the corresponding contribution from
Fig. 4(a), previously given in Eq. (17), we have

var G[4−1l] = −2[H(1),2G(2) + G(1)H(2),2]G2G(1)G(2)

G5
1

.

(B4)

The first term derives from when the link connecting the en-
counter to lead 1 is shrunk while the second term corresponds
to when the link connecting an encounter to lead 2 is removed.
Compared to Eq. (B2), the factor H(i),k takes into account that
the particle is entering the system in a certain channel and
returns to the same channel after traversing a link.

Removing two links from different encounters likewise
leads to

var G[4(a)−2l] = 4G(1)H(1),2H(2),2G(2)

G4
1

. (B5)

For the diagram in Fig. 4(a) we can also remove two links from
the same encounter, and for this we define

I(i),k ≡
Ni∑

j=1

�2
j (1 − �j )k−1, (B6)

so that we obtain

var G[4(a)−2l(s)] = −
[
I(1),1G

2
(2) + G2

(1)I(2),1
]
G2

G4
1

, (B7)

var G[4(a)−3l] = 2[G(1)H(1),2I(2),1 + I(1),1H(2),2G(2)]

G3
1

, (B8)

var G[4(a)−4l] = I(1),1I(2),1

G2
1

. (B9)

For the diagram in Fig. 4(b), we cannot shrink two links
attached to the same encounter (or more than two links) and
because of the way the encounters are arranged when we shrink
two links we obtain

var G[4(b)−2l] = 2G(1)H(1),2H(2),2G(2)

G4
1

+ H 2
(1),2G

2
(2) + G2

(1)H
2
(2),2

G4
1

. (B10)

Using the definitions above, this is equal to Eq. (B5) plus the
results from Eqs. (B7)–(B9) so that time-reversal symmetry
still leads simply to a factor of 2.

In an analogous manner, we can show that each diagram in
Fig. 5 gives twice the contribution of the diagram in Fig. 4(b)
while for the diagrams in Fig. 6 we obtain

var G[6] = −2G2
(1)G

2
(2)G3

G5
1

, (B11)

var G[6−1l] = 4
[
G(1)H(1),3G

2
(2) + G2

(1)H(2),3G(2)
]

G4
1

, (B12)

var G[6−2l] = 2
[
I(1),2G

2
(2) + G2

(1)I(2),2
]

G3
1

. (B13)

Summing all these contributions, we obtain the RMT
result28 for the leading order in 1/N contribution to the
conductance variance

var GRMT = 1

(g1 + g′
1)6

[
2g5

1g
′
2 − 2g4

1g
′
2g

′
1 − 4g3

1g
′
2g

′
1

2

− 4g2
1g2g

′
1

3 − 2g1g2g
′
1

4 + 2g2g
′
1

5 + 2g4
1g

′
1

2

+ 4g3
1g

′
1

3 + 2g2
1g

′
1

4 + 3g4
1g

′
2

2 + 6g2
1g2g

′
2g

′
1

2

+ 3g2
2g

′
1

4 − 2g5
1g

′
3 − 2g4

1g
′
3g

′
1 − 4g1g3g

′
1

4

− 2g3g
′
1

5]
, (B14)
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for systems without time-reversal symmetry, and twice
this result for those with. Here the notation introduced
in Ref. 28

gk =
NL∑
n=1

�k
n, g′

k =
NR∑
n=1

�k
n (B15)

was used.

APPENDIX C: SHOT NOISE

Here we calculate the shot-noise power. It can be written
as40

P = G − h = 〈Tr[tt†]〉 − 〈Tr[(tt†)2]〉. (C1)

The average conductance G(E) has previously been
calculated,33,41 and the first few terms for systems with
time-reversal symmetry can be written as

G(E) = G(1)G(2)

G1
−

(
2

β
− 1

)
G(1)G(2)G2

G3
1

+
(

2

β
− 1

)
G(1)H(2),2 + H(1),2G(2)

G2
1

+ · · · , (C2)

using the notation of Appendix B. The second two terms
derive from the diagrams in Fig. 3 so that without time-
reversal symmetry only the first term in Eq. (C2) remains.
This is included as β = 2 for systems without time-reversal
symmetry and β = 1 for those with time-reversal symmetry.
The function h is given semiclassically in terms of four
trajectories,

h =
〈

1

T 2
H

∑
a,b

c,d

∑
γ (a → b)
γ ′(c → b)

∑
ξ (c → d)
ξ ′(a → d)

Aγ A∗
γ ′AξA

∗
ξ ′

× e(i/h̄)(Sγ −Sγ ′+Sξ −Sξ ′ )

〉
, (C3)

where the main difference from the conductance variance (7)
is that the trajectories connect different channels and the sum
is unrestricted. We start with the diagram from Fig. 11, where
since the partner trajectories cross over in the encounter they
automatically travel from and to the correct channels and all
four channels are unrestricted. This means that this structure
is now lower order (in inverse channel number) than it was
for the conductance variance (it was there contained by taking
into account the diagram in Fig. 4(a) and removing two links
connected to the same encounter). For the diagram in Fig. 11,
we therefore have

h[11] = −G2
(1)G(2)

2G2

G4
1

+ 2
[
G(1)H(1),2G

2
(2) + G2

(1)H(2),2G(2)
]

G3
1

+ G2
(1)I(2),1 + I(1),1G

2
(2)

G2
1

. (C4)

This contribution, along with its Ehrenfest-time dependence,
was previously calculated in Ref. 33.

FIG. 11. (Color online) Two trajectories with a single encounter
and two partner trajectories.

Moving to the next order term, which has recently been
calculated using RMT,42 we again simply need to look at
the corresponding structures and consider the possible ways
of shrinking links. Without time-reversal symmetry there are
no possible structures at this order, so we therefore consider
systems with time-reversal symmetry. The structures that
contribute are depicted in Fig. 2 of Ref. 15. There is also, in
Fig. 2(d) there, a quadruplet involving two independent pairs,
one of which is simply a diagonal pair, while the other involves
a single two-encounter, as in Fig. 3 of this paper. Because the
start (or end) channels must coincide with a = c (or b = d)
there is a subtlety when we consider shrinking one link. If we
shrink the link on the left (or right) side of the two-encounter
so that it moves into the lead where the diagonal pair emanates
(or terminates) we actually have the same case as when the
three-encounter from Fig. 2(c) (of Ref. 15) moves into the
lead. As such, we include this case there [i.e. in the contribution
from Fig. 2(c)], leaving for Fig. 2(d) a contribution of

h[2(d)] = −2
[
G2

(1)I(2),1 + I(1),1G
2
(2)

]
G2

G4
1

+ 2[G(1)H(1),2I(2),1 + I(1),1H(2),2G(2)]

G3
1

. (C5)

The diagram in Fig. 2(a) of Ref. 15 is similar to the diagram
in Fig. 4(b) here and we obtain

h[2(a)] = 4G2
(1)G

2
(2)G

2
2

G6
1

+ 8G(1)H(1),2H(2),2G(2)

G4
1

− 8
[
G(1)H(1),2G

2
(2) + G2

(1)H(2),2G(2)
]
G2

G5
1

+ 2
[
G2

(1)H
2
(2),2 + H 2

(1),2G
2
(2)

]
G4

1

. (C6)

For the diagram in Fig. 2(b) of Ref. 15 we obtain twice the
result of Fig. 5(a) here [or four times the result of Fig. 4(b)]
for the conductance variance. For the diagram in Fig. 2(c) of
Ref. 15 we likewise obtain twice the result of Fig. 6(a) here for
the conductance variance. With all the next-to-leading-order
shot-noise contributions, we can combine them and indeed
find the same result as in Ref. 42.
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We can simplify the result by setting all of the tunneling
probabilities equal to �:

P (�) = �(1 − �)N1N2

(NL + NR)
+ �(3� − 2)N2

1 N2
2

(NL + NR)3

+
(

2

β
− 1

) (
�(4� − 3)N1N2 (N1 − N2)2

(NL + NR)4

)
+ · · · . (C7)

Setting � = 1, we also recreate the first two terms,

P (� = 1) = N2
1 N2

2

(NL + NR)3

+
(

2

β
− 1

) (
N1N2 (N1 − N2)2

(NL + NR)4

)
+ · · · ,

(C8)

of the result in Ref. 15.
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