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Zusammenfassung

In dieser Arbeit wird der Formalismus einer Lorentz-Quantengeometrie vorgestellt, basie-
rend auf dem Rahmen kausaler Fermionsysteme. Ausgehend von diesen Systemen wird
die Raumzeit als topologischer Raum mit einer kausalen Struktur eingeführt. Im Fall
von Spindimension zwei werden anschließend die Begriffe und Objekte der Quantengeo-
metrie definiert: Der Spinraum, der Tangentialraum, versehen mit einer Lorentzmetrik,
sowie Zusammenhang und Krümmung. Um die Verbindung zur klassischen Differential-
geometrie herzustellen, werden Beispiele kausaler Fermionsysteme durch Regularisierung
von Diracsee-Konfigurationen im Minkowskiraum und auf global-hyperbolischen Man-
nigfaltigkeiten konstruiert. Nach dem Herausnehmen der Regularisierung erhält man die
bekannten Objekte der Spingeometrie auf Lorentz-Mannigfaltigkeiten, bis auf Korrektu-
ren höherer Ordnung in der Krümmung.

Abstract

In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of
causal fermion systems is proposed. After giving the general definition of causal fermion
systems, we deduce space-time as a topological space with an underlying causal structure.
Restricting attention to systems of spin dimension two, we derive the objects of our
quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric,
connection and curvature. In order to get the correspondence to classical differential
geometry, we construct examples of causal fermion systems by regularizing Dirac sea
configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold.
When removing the regularization, the objects of our quantum geometry reduce to the
common objects of spin geometry on Lorentzian manifolds, up to higher order curvature
corrections.
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1. Introduction

“Ich komme immer mehr zu der Überzeugung, dass die Nothwendigkeit un-
serer Geometrie nicht bewiesen werden kann, wenigstens nicht vom menschli-
chen Verstande noch für den menschlichen Verstand. Vielleicht kommen wir
in einem anderen Leben zu anderen Einsichten in das Wesen des Raums, die
uns jetzt unerreichbar sind. Bis dahin müsste man die Geometrie nicht mit
der Arithmetik, die rein a priori steht, sondern etwa mit der Mechanik in
gleichen Rang setzen.”
C. F. Gauss, Letter to H. W. M. Olbers, April 28, 1817

Geometry is a subject that has been challenging the human mind for more than 5000
years1. Already the ancient Egyptians had a practically inspired geometric knowledge
which they made use of in architecture and astronomy. It were the ancient Greeks then
who established geometry as an abstract mathematical discipline. Euclid’s book “El-
ements”, written approximately 300 BC, provided a completely axiomatic account to
the geometric knowledge of his time, starting from the famous five Euclidean postulates;
thereby it is one of the foundations of mathematical reasoning per se. Despite the abstract
character of the description, the Greeks indeed were convinced that Euclidean geometry
described reality, i.e. the space surrounding them. For the next fundamental progress in
the evolution of geometry, it took almost two millenia: In the 17th century, Descartes
introduced coordinates into the geometric language, making it possible to translate ge-
ometric problems into equations and often to solve them by mere computation. Along
with the development of the infinitesimal calculus by Leibniz and Newton, the stage was
also set for a major progress in physics, namely the development of classical mechanics by
Newton. This theory describes the gravitational interactions taking place in our universe
in terms of a model based on the Euclidean space.

Soon after Euclid wrote the “Elements”, mathematicians began to wonder whether
his fifth postulate, the parallel postulate, is really necessary. For a long time, it was
supposed that the parallel postulate could be deduced as a theorem from the other pos-
tulates, but nobody was able to prove this conjecture. At the beginning of the 19th
century, Gauss was among the first to discover that the parallel postulate is logically
independent from the other postulates, and that so-called non-Euclidean geometries ex-
ist which fulfill the first four Euclidean postulates but not the fifth one (cf. [33, pp.
214ff]). Even more, Gauss was wondering whether the physical space is in fact Euclidean
or non-Euclidean; the citation at the beginning of the present introduction can be un-
derstood in this context. Some decades later, Riemann and others developed methods

1see [29] for a very comprehensible introduction to the history of geometry
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1. Introduction

which nowadays are known as Riemannian geometry and which allowed for the explicit
construction of non-Euclidean geometries. The question about the nature of physical
space was then answered (at least on the cosmological scale) by Einstein. Convinced
of the principle that Maxwell’s laws of electrodynamics should be valid in any inertial
system, he realized that the physical concepts of space and time have to be treated in a
unified way. In 1905, he published the theory of special relativity where space and time
are combined to space-time, described by a four-dimensional pseudo-Euclidean space
commonly known as Minkowski space. During the next ten years Einstein extended his
theory to the theory of general relativity: Guided by ingenious physical insight and using
Riemann’s mathematical language, he discovered that the curvature of space-time is the
source for gravitational interactions. In modern mathematical terms, on the cosmologi-
cal scale space-time is a four-dimensional Lorentzian manifold and the relation between
curvature and the energy-momentum contained in the space-time is given by the Einstein
equations.

Shortly after Einstein developed his theory of general relativity, yet another revolu-
tion took place in physics. In the 1920s, Heisenberg, Schrödinger and others developed
quantum mechanics as a new theory describing physics on the atomic scale. It gave an
explanation for phenomena such as the energy quantization in atomic spectra and the
wave-particle dualism as observed in double-slit experiments. The new theory was also
accompanied by new physical principles such as the uncertainty principle and the prob-
abilistic interpretation of the measurement process. Quantum mechanics was originally
formulated on an Euclidean background, but soon Dirac gave a generalization of the
theory which implemented Einstein’s theory of special relativity. The next step, namely
extending the principles of quantum mechanics to electromagnetic interactions, faced se-
vere difficulties, as the quantization of the Maxwell equations led to divergencies in the
resulting expressions. Not before the late 1940s, Dyson, Feynman, Schwinger, Tomonaga
and others achieved to provide a satisfactory formulation of quantum electrodynamics.
They handled the divergencies by the procedure of renormalization, i.e. divergencies
are first regularized and then absorbed into physical constants. The practical success of
quantum electrodynamics was striking and the predicted quantities, e.g. for the anoma-
lous magnetic moment of the electron or for the Lamb shift of the hydrogen atom, were
confirmed in many experiments to a high precision. The concept of renormalization how-
ever was controversially discussed because “sensible mathematics involves neglecting a
quantity when it is small not neglecting it just because it is infinitely great and you do
not want it”, as Dirac said. Nevertheless, until today it is the best theory available and
the quantum field theoretic methods have been extended to obtain appropriate models
for the strong and weak nuclear forces. All these quantum field theories are formulated
in Minkowski space and are in agreement with Einstein’s principle of special relativity.

A fundamental open question in physics is how to combine the principles of quantum
mechanics and general relativity. Such a quantum theory of gravity is necessary in order
to describe physics on the Planck scale, where the Compton wavelength of a particle is
comparable to its Schwarzschild radius. Physics near the Big Bang singularity for exam-
ple cannot be described within the present physical models. Moreover, it is also expected
that a unified theory should cure the problem of divergencies in quantum field theory and
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should not have to rely on conceptually controversial procedures such as renormalization.
The naive attempt to consider gravity as a classical field theory and then quantize it fails
because the resulting quantum field theory leads to singularities that can not even be
treated with the renormalization procedure. Therefore, in the last decades several at-
tempts were made to develop a model that implements quantum field theory on scales
of small gravitational energy and small (i.e. atomic or subatomic) distances as well as
general relativity on scales of high gravitational energy and large (i.e. cosmological) dis-
tances (see [22] for a recent overview on some of these approaches). In addition, the
new theory should allow for a description of physics on scales of high gravitational en-
ergy and small distances. A natural question is whether the continuum structure of a
Lorentzian manifold is still an appropriate model of space-time on the Planck scale, or
whether different mathematical structures have to be found that are more reasonable.
String theory as the most prominent approach (see e.g. [4]) maintains the continuum
structure of space-time, but describes matter by one-dimensional extended “strings” in-
stead of point particles. Nevertheless, string theory has interesting implications on the
geometry of space-time, e.g. it predicts additional spatial dimensions which have to be
compactified. Loop quantum gravity as another important approach starts from the ini-
tial value formulation of general relativity and, by using special variables (the Ashtekar
variables) and quantizing a non-canonical algebra of classical observables, comes to the
prediction that space-time on the Planck scale is a discrete “spin network” (see e.g. [34]).
Maybe the mathematically most advanced approach is Connes’ non-commutative geom-
etry (see [8]), where the geometry is encoded in the spectral triple (A,D,H) consisting
of an algebra A of operators on the Hilbert space H and a generalized Dirac operator D.
The correspondence to Lorentzian manifolds is obtained by choosing the algebra as the
commutative algebra of functions on the manifold, and D as the classical Dirac operator,
giving back the setting of spin geometry. By choosing A as a non-commutative algebra,
one can describe much more general geometric spaces. It is fair to say that all these
approaches suggest that our common concept of space and time should be modified in
one way or another on the Planck scale to obtain a proper framework for a “quantum
geometry”. This insight provides a big source of inspiration and also a great task for
mathematicians. Indeed, many areas of current research in mathematics – like super-
symmetry, Seiberg-Witten theory, quantum groups etc. – have their origin in the search
for a unified theory.

A recent approach on which we will focus in this work is the fermionic projector ap-
proach. It originates from the fermionic projector in the continuum which generalizes
Dirac’s concept of a sea of particles in the Minkowski space vacuum to the case where ex-
ternal fields are present. The fermionic projector approach is formulated in a very general
way via an action principle. On the most fundamental level, space-time is described by
a discrete set M , without assuming any a-priori relations between the space-time points.
Instead, these relations are generated spontaneously by the minimizer of the action prin-
ciple. It is conjectured that in a suitable limit, M with the structures induced by the
fermionic projector goes over to a Lorentzian manifold, and the fermionic projector goes
over to the fermionic projector in the continuum.

In this thesis, we will develop a mechanism how geometric structures can be induced
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1. Introduction

by the fermionic projector. Starting from the very general framework of so-called causal
fermion systems, space-time is deduced as a topological space equipped with a volume
measure. We recall how a causal structure is induced on M , and we give general defini-
tions of geometric objects like the tangent space, spinors, connection and curvature. In
the second part, we will investigate the connection to the continuum theory. However, the
exact form of the physical fermionic projector in discrete space-time (i.e. the minimizer
of the action principle) is unknown, and there is also no experimental evidence on the
structure of space-time on the Planck scale. Moreover, it is very difficult to analyze the
limit from the discrete to the continuum structure since an appropriate formalism has
not been developed yet. Instead, we will go into the opposite direction: We will consider
regularizations of the fermionic projector in the continuum as a possible description of
the microstructure of space-time and analyze the induced geometric objects in a suitable
limit.

More specifically, the present thesis is organized as follows: In Chapter 2, we recall the
basics of the fermionic projector approach, introduce the framework of causal fermion
systems and define notions of spinors as well as a causal structure. In Chapter 3, we
proceed by constructing the objects of our Lorentzian quantum geometry: We first define
the tangent space endowed with a Minkowski metric. Then we construct a spin connection
relating spin spaces at different space-time points. Similarly, a corresponding metric
connection relates tangent spaces at different space-time points. These connections give
rise to corresponding notions of curvature. We also find a distinguished time direction and
discuss the connection to causal sets. In the following Chapters 4 and 5, we explain how
the objects of our quantum geometry correspond to the common objects of differential
geometry in Minkowski space or on a Lorentzian manifold: In Chapter 4 we construct a
class of causal fermion systems by considering a Dirac sea configuration and introducing
an ultraviolet regularization. We show that if the ultraviolet regularization is removed,
we get back the topological, causal and metric structure of Minkowski space, whereas
the connections and curvature become trivial. In Chapter 5 we consider causal fermion
systems constructed from a globally hyperbolic space-time. Removing the regularization,
we recover the topological, causal and metric structure of a Lorentzian manifold. The
spin connection and the metric connection go over to the spin connection and Levi-Civita
connection on the manifold, respectively, up to higher order curvature corrections. In
order to improve the readability of the main text, some of the technical parts of Chapter 5
are outsourced to the Appendices A and B.

The results of Chapters 3–5 have already been published in the preprint [20].

Acknowledgment: I would like to thank my supervisor Prof. Dr. Felix Finster for
introducing me to the topic of this thesis and for constant encouragement and support.
I am also thankful to my colleagues Daniela Schiefeneder, Marc Nardmann, Olaf Müller
and Nicolas Ginoux for helpful discussions. I acknowledge financial support from the
Deutsche Forschungsgemeinschaft (DFG) within the program “Ein Fermionsystem in
diskreter Raumzeit und sein Kontinuumslimes”. Last but not least, I am deeply grateful
to my family, friends, and especially to Marlen for everything besides mathematics.
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2. Preliminaries

2.1. The Fermionic Projector Approach

Let us begin by shortly recalling some basic definitions and important results of the
fermionic projector approach (see [12] for details; for the physical movation see also [16,
18]): On the most fundamental level, space-time is described by a discrete set M . Ad-
missible quantum states of particles contained in the space-time are described by a finite-
dimensional complex vector space H equipped with an indefinite inner product <., .> .
Moreover, one is given a family of space-time projectors (Ex)x∈M , where each Ex : H → H
is a projector (i.e. a symmetric and idempotent linear operator) of rank (n, n), and the
family is orthogonal and complete,

ExEy = δx,yEx and
∑
x∈M

Ex = 11H .

We refer to the tuple (H, <., .> , (Ex)x∈M) as a discrete space-time. The quantum states
of a discrete space-time that are occupied by particles are given by the image of the
fermionic projector P , a projector P : H → H whose image P (H) ⊂ H is a negative
definite subspace of dimension f . We refer to the tuple (H, <., .> , (Ex)x∈M , P ) as a
fermion system in discrete space-time. The free parameters of the fermion system are
the spin dimension n, the number of space-time points m and the number of particles f .

Using the space-time projectors, one can localize the states of the system as well as
the fermionic projector,

Ψ(x) := ExΨ ∈ Ex(H) , P (x, y) := ExPEy : Ey(H)→ Ex(H) .

The dynamics of a physical system is described by the action principle

S[P ] =
∑
x,y∈M

L(Axy) −→ min (2.1)

at fixed values of the parametersm, n and f . Here, the Lagrangian L is a positive function
depending on the eigenvalues λxy1 , . . . , λ

xy
2n of the closed chain Axy := P (x, y)P (y, x),

L(Axy) :=
2n∑
j=1

∣∣λxyj ∣∣2 − 1

2n

(
2n∑
j=1

|λxyj |

)2

.

It is shown in [14] that the action (2.1) attains its minimum under general assumptions.
Moreover, the symmetry of a discrete space-time under the permutation of space-time
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2. Preliminaries

points is broken by a minimizer of the action principle. Namely, one defines an outer
symmetry group of a fermion system in discrete space-time as a subgroup O of the
symmetry group Sm, such that for any σ ∈ O there exists a unitary transformation
U ∈ U(H) with

UExU
∗ = Eσ(x) for all x ∈M and UPU∗ = P .

Then under the physically reasonable assumption n � f � m, no fermion system in
discrete space-time can have the maximal outer symmetry group Sm (see [13]). This result
implies that a minimizer of the action principle induces non-trivial relations between the
space-time points of M .

The fermionic projector approach can be reformulated in terms of local correlation
matrices. Choosing an pseudo-orthonormal basis Ψ1, . . . ,Ψf of the image of P , the local
correlation matrix F (x) at the space-time point x ∈M is defined by(

F (x)i,j
)f
i,j=1

:=
(
<Ψi, ExΨj>

)f
i,j=1
∈ Cf×f ;

it is a Hermitian f × f -matrix and has at most n positive and at most n negative
eigenvalues. The local correlation matrices describe correlations between the localized
particle wave-functions. One easily verifies that the non-trivial eigenvalues of the matrix
product F (x)F (y) and of the closed chain Axy coincide. Thus, one is led to consider the
variational principle

S[F ] =
∑
x,y∈M

L(F (x)F (y)) −→ min . (2.2)

Here, one varies in the class of mappings F : M → F, where F denotes the set of Hermi-
tian f×f -matrices having at most n positive and at most n negative eigenvalues. Indeed,
it is shown in [17, Section 3] that the action principles (2.1) and (2.2) are equivalent and
that one can reconstruct the fermionic projector from its set of local correlaction matri-
ces. Actually, in [17] the more general setting of causal variational principles on measure
spaces is discussed. One considers space-time as a measure space (M,µ) of finite volume.
The sums in the action (2.2) are to be replaced by integrals with respect to µ, i.e. the
causal variational principle is given by

S[F ] =

∫
M×M

L(F (x)F (y)) dµ(x)dµ(y) −→ min , (2.3)

where the mappings F : M → F are assumed to be measureable. The case of fermion
systems in discrete space-time is obtained by choosing M a discrete set and µ a sum of
Dirac measures supported at the respective space-time points. In this more general set-
ting, existence results for minimizers of the action principle can be proven very elegantly
using methods from functional analysis (see [17, Sections 1 and 2]).

2.2. The General Framework of Causal Fermion Systems

In this section we will recall the setting of causal fermion systems as introduced in [21,
Section 1].
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2.2. The General Framework of Causal Fermion Systems

Definition 2.2.1. Given a complex Hilbert space (H, 〈.|.〉H) (the particle space) and a
parameter n ∈ N (the spin dimension), we let F ⊂ L(H) be the set of all self-adjoint
operators on H of finite rank, which (counting with multiplicities) have at most n positive
and at most n negative eigenvalues. On F we are given a positive measure ρ (defined on
a σ-algebra of subsets of F), the so-called universal measure. We refer to (H,F, ρ) as a
causal fermion system in the particle representation.

On F we consider the topology induced by the operator norm

‖A‖ := sup{‖Au‖H with ‖u‖H = 1} . (2.4)

A vector ψ ∈ H has the interpretation as an occupied fermionic state of our system.
The name “universal measure” is motivated by the fact that ρ describes a space-time
“universe”. More precisely, we define space-time M as the support of the universal
measure, M := supp ρ; it is a closed subset of F. The induced measure µ := ρ|M
on M allows us to compute the volume of regions of the space-time. By considering the
spectral properties of the operator products xy, we get relations between the space-time
points x, y ∈M . The first relation is a notion of causality, which also motivates the name
“causal” fermion system.

Definition 2.2.2. (causal structure) For any x, y ∈ F, the product xy is an operator
of rank at most 2n. We denote its non-trivial eigenvalues (counting with algebraic mul-
tiplicities) by λxy1 , . . . , λ

xy
2n. The points x and y are called timelike separated if the λxyj

are all real. They are said to be spacelike separated if the λxyj are complex and all have
the same absolute value. In all other cases, the points x and y are said to be lightlike
separated.

This definition is symmetric in x and y, since a straightforward calculation shows that
the non-trivial eigenvalues of xy and yx coincide. Restricting the causal structure of F
to M , we get causal relations in space-time.

Let us put the above definitions into the context of the previous work sketched in
Section 2.1. To this end, it is useful to introduce the inclusion map F : M ↪→ F. Slightly
changing our point of view, we can now take the space-time (M,µ) and the mapping F :
M → F as the starting point. Identifying M with F (M) ⊂ F and constructing the
measure ρ on F as the push-forward,

ρ = F∗µ : Ω 7→ ρ(Ω) := µ(F−1(Ω)) , (2.5)

we get back to the setting of Definition 2.2.1. If we assume that H is finite dimensional
and that the total volume µ(M) is finite, we recover the framework of causal variational
principles. Therefore, Definition 2.2.1 is compatible with previous work, but it is slightly
more general in that we allow for an infinite number of particles and an infinite space-
time volume. These generalizations are useful for describing the infinite volume limit of
the systems analyzed in [17, Section 2].
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2. Preliminaries

2.3. The Spin Space and the Euclidean Operator

For every x ∈ F we define the spin space Sx by

Sx = x(H) ; (2.6)

it is a subspace of H of dimension at most 2n. On Sx we introduce the spin scalar product
≺.|.�x by

≺u|v�x = −〈u|xv〉H (for all u, v ∈ Sx) ; (2.7)

it is an indefinite inner product of signature (p, q) with p, q ≤ n. A wave function ψ
is defined as a ρ-measurable function which to every x ∈ M associates a vector of the
corresponding spin space,

ψ : M → H with ψ(x) ∈ Sx for all x ∈M . (2.8)

Thus the number of components of the wave functions at the space-time point x is given
by p + q. Having four-component Dirac spinors in mind, we are led to the case of spin
dimension two. Moreover, we impose that Sx has maximal rank.

Definition 2.3.1. Let (H,F, ρ) be a fermion system of spin dimension two. A space-time
point x ∈M is called regular if Sx has dimension four.

We remark that for points which are not regular, one could extend the spin space to a
four-dimensional vector space (see [17, Section 3.3] for a similar construction). However,
the construction of the spin connection in Section 3.3 only works for regular points. With
this in mind, it seems preferable to always restrict attention to regular points.

For a regular point x, the operator (−x) on H has two positive and two negative
eigenvalues. We denote its positive and negative spectral subspaces by S+

x and S−x ,
respectively. In view of (2.7), these subspaces are also orthogonal with respect to the
spin scalar product,

Sx = S+
x ⊕ S−x .

We introduce the Euclidean operator Ex by

Ex = −x−1 : Sx → Sx .

It is obviously invariant on the subspaces S±x . It is useful because it allows us to recover
the scalar product of H from the spin scalar product,

〈u, v〉H|Sx×Sx = ≺u|Exv�x . (2.9)

Often, the precise eigenvalues of x and Ex will not be relevant; we only need to be
concerned about their signs. To this end, we introduce the Euclidean sign operator sx as
a symmetric operator on Sx whose eigenspaces corresponding to the eigenvalues ±1 are
the spaces S+

x and S−x , respectively.
In order to relate two space-time points x, y ∈M we define the kernel of the fermionic

operator P (x, y) by
P (x, y) = πx y : Sy → Sx , (2.10)
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2.4. The Connection to Dirac Spinors

where πx is the orthogonal projection onto the subspace Sx ⊂ H. The calculation

≺P (x, y)ψ(y) |ψ(x)�x = −〈(πx y ψ(y)) |xφ(x)〉H
= −〈ψ(y) | yx φ(x)〉H = ≺ψ(y) |P (y, x)ψ(x)�y

shows that this kernel is symmetric in the sense that

P (x, y)∗ = P (y, x) ,

where the star denotes the adjoint with respect to the spin scalar product. The closed
chain is defined as the product

Axy = P (x, y)P (y, x) : Sx → Sx . (2.11)

It is obviously symmetric with respect to the spin scalar product,

A∗xy = Axy . (2.12)

Moreover, as it is an endomorphism of Sx, we can compute its eigenvalues. The calcula-
tion Axy = (πxy)(πyx) = πx yx shows that these eigenvalues coincide precisely with the
non-trivial eigenvalues λxy1 , . . . , λ

xy
4 of the operator xy as considered in Definition 2.2.2.

In this way, the kernel of the fermionic operator encodes the causal structure of M . Con-
sidering the closed chain has the advantage that instead of working in the high- or even
infinite-dimensional Hilbert space H, it suffices to consider a symmetric operator on the
four-dimensional vector space Sx. Then the appearance of complex eigenvalues in Defini-
tion 2.2.2 can be understood from the fact that the spectrum of symmetric operators in
indefinite inner product spaces need not be real, as complex conjugate pairs may appear
(for details see [25]).

2.4. The Connection to Dirac Spinors

From the physical point of view, the appearance of indefinite inner products shows that
we are dealing with a relativistic system. In general terms, this can be understood from
the fact that the isometry group of an indefinite inner product space is non-compact,
allowing for the possibility that it may contain the Lorentz group.

More specifically, we have the context of Dirac spinors on a Lorentzian manifold (M, g)
in mind. In this case, the spinor bundle SM is a vector bundle, whose fibre (SxM,≺.|.�)
is a four-dimensional complex vector space endowed with an inner product of signa-
ture (2, 2). The connection to our causal fermion systems is obtained by identifying
this vector space with (Sx,≺.|.�x) as defined by (2.6) and (2.7). But clearly, in the
context of Lorentzian spin geometry one has many more structures. In particular, the
Clifford multiplication associates to every tangent vector u ∈ TxM a symmetric linear
operator on SxM . Choosing a local frame and trivialization of the bundle, the Clifford
multiplication can also be expressed in terms of Dirac matrices γj(x), which satisfy the
anti-communication relations

{γi, γj} = 2 gij 11 . (2.13)

9
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Furthermore, on the spinor bundle one can introduce the spinorial Levi-Civita connection
∇LC, which induces on the tangent bundle an associated metric connection.

The goal of the present thesis is to construct objects for general causal fermion systems
which correspond to the tangent space, the spin connection and the metric connection
in Lorentzian spin geometry and generalize these notions to the setting of a “Lorentzian
quantum geometry”. The key for constructing the tangent space is to observe that TxM
can be identified with the subspace of the symmetric operators on SxM spanned by
the Dirac matrices. The problem is that the anti-commutation relations (2.13) are not
sufficient to distinguish this subspace, as there are many different representations of these
anti-commutation relations. We refer to such a representation as a Clifford subspace.
Thus in order to get a connection to the setting of spin geometry, we would have to
distinguish a specific Clifford subspace. The simplest idea for constructing the spin
connection would be to use a polar decomposition of P (x, y). Thus decomposing P (x, y)
as

P (x, y) = U(x) ρ(x, y)U(y)−1

with a positive operator ρ(x, y) and unitary operators U(x) and U(y), we would like to
introduce the spin connection as the unitary mapping

Dx,y = U(x)U(y)−1 : Sy → Sx . (2.14)

The problem with this idea is that it is not clear how this spin connection should give
rise to a corresponding metric connection. Moreover, one already sees in the simple
example of a regularized Dirac sea vacuum (see Chapter 4) that in Minkowski space this
spin connection does not reduce to the trivial connection. Thus the main difficulty is
to modify (2.14) such as to obtain a spin connection which induces a metric connection
and becomes trivial in Minkowski space. This difficulty is of course closely related to the
problem of distinguishing a specific Clifford subspace.

The key for resolving these problems will be to use the Euclidean operator Ex in a
specific way. In order to explain the physical significance of this operator, we point out
that, apart from the Lorentzian point of view discussed above, we can also go over to the
Euclidean framework by considering instead of the spin scalar product the scalar product
on H. In view of the identity (2.9), the transition to the Euclidean framework can be
described by the Euclidean operator, which motivates its name. The physical picture is
that the causal fermion systems of Definition 2.2.1 involve a regularization which breaks
the Lorentz symmetry. This fact becomes apparent in the Euclidean operator, which
allows us to introduce a scalar product on spinors (2.9) which violates Lorentz invariance.
The subtle point in our constructions will be to use the Euclidean sign operator sx to
distinguish certain Clifford subspaces, but in such a way that the Lorentz invariance of
the resulting objects is preserved. The connection between the Euclidean sign operator
and the regularization will become clearer in the examples of Chapters 4 and 5.
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3. Construction of a Lorentzian
Quantum Geometry

3.1. Clifford Extensions and the Tangent Space

In this section, we will construct the tangent space at a given space-time point x ∈ M .
Let us denote the set of symmetric linear endomorphisms of the spin space (Sx,≺., .�x)
by Symm(Sx); it is a 16-dimensional real vector space.

We want to introduce the Dirac matrices, but without specifying a particular repre-
sentation. Since we do not want to prescribe the dimension of the resulting space-time,
it is preferable to work with the maximal number of five generators (for the minimal
dimensions of Clifford representations see for example [3]). We will explain later how
the dimension can be reduced to obtain a four-dimensional tangent space fitting into the
Lorentzian framework (see Section 3.6).

Definition 3.1.1. A five-dimensional subspace K ⊂ Symm(Sx) is called a Clifford
subspace if the following conditions hold:

(i) For any u, v ∈ K, the anti-commutator {u, v} ≡ uv+vu is a multiple of the identity
on Sx.

(ii) The bilinear form 〈., .〉 on K defined by

1

2
{u, v} = 〈u, v〉 11 for all u, v ∈ K (3.1)

is non-degenerate.

The set of all Clifford subspaces (K, 〈., .〉) is denoted by T.

Our next lemma characterizes the possible signatures of Clifford subspaces.

Lemma 3.1.2. The inner product 〈., .〉 on a Clifford subspace has either the signa-
ture (1, 4) or the signature (3, 2). In the first (second) case, the inner product

≺. |u .�x : Sx × Sx → C (3.2)

is definite (respectively indefinite) for every vector u ∈ K with 〈u, u〉 > 0.

11
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Proof. Taking the trace of (3.1), one sees that the inner product on K can be extended
to all of Symm(Sx) by

〈., .〉 : Symm(Sx)× Symm(Sx)→ C : (A,B) 7→ 1

4
Tr(AB) .

A direct calculation shows that this inner product has signature (8, 8) (it is convenient to
work in basis of Symm(Sx) given by the matrices (11, γi, iγ5, γ5γi, σjk) in the usual Dirac
representation; see [6, Section 2.4]).

Since 〈., .〉 is assumed to be non-degenerate, it has a signature (p, 5 − p) with a pa-
rameter p ∈ {0, . . . , 5}. We choose a basis e0, . . . , e4 of K where the bilinear form is
diagonal,

{ej, ek} = 2sj δjk 11 with s0, . . . , sp−1 = 1 and sp, . . . , s4 = −1 . (3.3)

These basis vectors generate a Clifford algebra. Using the uniqueness results on Clifford
representations [28, Theorem 5.7], we find that in a suitable basis of Sx, the operators ej
have the basis representations

e0 = c0

(
11 0
0 −11

)
, eα = cα

(
0 iσα
−iσα 0

)
, e4 = c4

(
0 11
11 0

)
(3.4)

with coefficients

c0, . . . , cp−1 ∈ {1,−1} , cp, . . . , c4 ∈ {i,−i} .

Here α ∈ {1, 2, 3}, and σα are the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In particular, one sees that the ej are all trace-free. We next introduce the ten bilinear
operators

σjk := iejek with 1 ≤ j < k ≤ 5 .

Taking the trace and using that ej and ek anti-commute, one sees that the bilinear
operators are also trace-free. Furthermore, using the anti-commutation relations (3.3),
one finds that

〈σjk, σlm〉 = sjsk δjlδkm .

Thus the operators {1, ej, σjk} form a pseudo-orthonormal basis of Symm(Sx).
In the cases p = 0 and p = 5, the operators σjk would span a ten-dimensional definite

subspace of Symm(Sx), in contradiction to the above observation that Symm(Sx) has
signature (8, 8). Similarly, in the cases p = 2 and p = 4, the signature of Symm(Sx)
would be equal to (7, 9) and (11, 5), again giving a contradiction. We conclude that the
possible signatures of K are (1, 4) and (3, 2).

We represent the spin scalar product in the spinor basis of (3.4) with a signature
matrix S,

≺.|.�x = 〈.|S .〉C4 .
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Let us compute S. In the case of signature (1, 4), the fact that the operators ej are
symmetric gives rise to the conditions

[S, e0] = 0 and {S, ej} = 0 for j = 1, . . . , 4 . (3.5)

A short calculations yields S = λe0 for λ ∈ R \ {0}. This implies that the bilinear
form ≺.|e0 .�x is definite. Moreover, a direct calculation shows that (3.2) is definite for
any vector u ∈ K with 〈u, u〉 > 0.

In the case of signature (3, 2), we obtain similar to (3.5) the conditions

[S, ej] = 0 for j = 0, 1, 2 and {S, ej} = 0 for j = 3, 4 .

It follows that S = iλe3e4. Another direct calculation yields that the bilinear form (3.2)
is indefinite for any u ∈ K with 〈u, u〉 > 0.

We shall always restrict attention to Clifford subspaces of signature (1, 4). This is
motivated physically because the Clifford subspaces of signature (3, 2) only have two
spatial dimensions, so that by dimensional reduction we cannot get to Lorentzian sig-
nature (1, 3). Alternatively, this can be understood from the analogy to Dirac spinors,
where the inner product ψujγjφ is definite for any timelike vector u. Moreover, for the
Clifford subspaces of signature (3, 2) the constructions following Definition 3.1.6 would
not work.

From now on, we implicitly assume that all Clifford subspaces have signature (1, 4).
We next show that such a Clifford subspace is uniquely determined by a two-dimensional
subspace of signature (1, 1).

Lemma 3.1.3. Assume that L ⊂ K is a two-dimensional subspace of a Clifford sub-
space K, such that that the inner product 〈., .〉|L×L has signature (1, 1). Then for every
Clifford subspace K̃ the following implication holds:

L ⊂ K̃ =⇒ K̃ = K .

Proof. We choose a pseudo-orthonormal basis of L, which we denote by (e0, e4). Since
e2

0 = 11, the spectrum of e0 is contained in the set {±1}. The calculation e0(e0±11) = 11±
e0 = ±(e0± 11) shows that the corresponding invariant subspaces are indeed eigenspaces.
Moreover, as the the bilinear form ≺.|e0.�x is definite, the eigenspaces are also definite.
Thus we may choose a pseudo-orthonormal eigenvector basis (f1, . . . , f4) where

e0 = ±
(

11 0
0 −11

)
.

We next consider the operator e4. Using that it anti-commutes with e0, is symmetric
and that (e4)2 = −11, one easily sees that it has the matrix representation

e4 =

(
0 −V
V −1 0

)
with V ∈ U(2) .

13
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Thus after transforming the basis vectors f3 and f4 by(
f3
f4

)
→ −iV

(
f3
f4

)
, (3.6)

we can arrange that

e4 = i

(
0 11
11 0

)
.

Now suppose that K̃ extends L to a Clifford subspace. We extend (e0, e4) to a pseudo-
orthonormal basis (e0, . . . , e4) of K̃. Using that the operators e1, e2 and e3 anti-commute
with e0 and e4 and are symmetric, we see that each of these operators must be of the
form

eα =

(
0 Aα

−Aα 0

)
(3.7)

with Hermitian 2 × 2-matrices Aα. The anti-commutation relations (3.1) imply that
the Aα satisfy the anti-commutation relations of the Pauli matrices{

Aα, Aβ
}

= 2δαβ .

The general representation of these relations is obtained from the Pauli matrices by
an SU(2)-transformation and possible sign flips,

Aα = ±UσαU−1 with U ∈ SU(2) .

Since UσαU−1 = Oα
βσ

β with O ∈ SO(3), we see that the Aα are linear combinations of
the Pauli matrices. Hence the subspace spanned by the matrices e1, e2 and e3 is uniquely
determined by L. It follows that K̃ = K.

In the following corollary we choose a convenient matrix representation for a Clifford
subspace.

Corollary 3.1.4. For every pseudo-orthonormal basis (e0, . . . , e4) of a Clifford sub-
space K, we can choose a pseudo-orthonormal basis (f1, . . . , f4) of Sx,

≺fα|fβ� = sα δαβ with s1 = s2 = 1 and s3 = s4 = −1 , (3.8)

such that the operators ei have the following matrix representations,

e0 = ±
(

11 0
0 −11

)
, eα = ±

(
0 σα
−σα 0

)
, e4 = i

(
0 11
11 0

)
. (3.9)

Proof. As in the proof of Lemma 3.1.3, we can choose a pseudo-orthonormal basis
(f1, . . . , f4) of Sx satisfying (3.8) such that e0 and e4 have the desired representation.
Moreover, in this basis the operators e1, e2 and e3 are of the form (3.7). Hence by the
transformation of the spin basis(

f1
f2

)
→ U−1

(
f1
f2

)
,

(
f3
f4

)
→ U−1

(
f3
f4

)
,

we obtain the desired representation (3.9).
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Our next step is to use the Euclidean sign operator to distinguish a specific subset of
Clifford subspaces. For later use, it is preferable to work instead of the Euclidean sign
operator with a more general class of operators defined as follows.

Definition 3.1.5. An operator v ∈ Symm(Sx) is called a sign operator if v2 = 11 and
if the inner product ≺.|v .�x : Sx × Sx → C is positive definite.

Clearly, the Euclidean sign operator sx is an example of a sign operator.
Since a sign operator v is symmetric with respect to the positive definite inner prod-

uct ≺.|v .�x, it can be diagonalized. Again using that the inner product ≺.|v .�x is
positive, one finds that the eigenvectors corresponding to the eigenvalues +1 and −1 are
positive and negative definite, respectively. Thus we may choose a pseudo-orthonormal
basis (3.8) in which v has the matrix representation v = diag(1, 1,−1,−1). Hence in this
spin basis, v is represented by the matrix γ0 (in the usual Dirac representation). Thus
by adding the spatial Dirac matrices, we can extend v to a Clifford subspace. We now
form the set of all such extensions.

Definition 3.1.6. For a given sign operator v, the set of Clifford extensions Tv is
defined as the set of all Clifford subspaces containing v,

Tv = {K Clifford subspace with v ∈ K} .

After these preparations, we want to study how different Clifford subspaces or Clifford
extensions can be related to each other by unitary transformations. We denote the group
of unitary endomorphisms of Sx by U(Sx); it is isomorphic to the group U(2, 2). Thus
for given K, K̃ ∈ T (or Tv) we want to determine the unitary operators U ∈ U(Sx) such
that

K̃ = UKU−1 . (3.10)

Clearly, the subgroup exp(iR11) ' U(1) is irrelevant for this problem, because in (3.10)
phase transformations drop out. For this reason, it is useful to divide out this group by
setting

G(Sx) = U(Sx)/ exp(iR11) . (3.11)

We refer to G as the gauge group (this name is motivated by the formulation of spinors
in curved space-time as a gauge theory; see [10]). It is a 15-dimensional non-compact Lie
group whose corresponding Lie algebra is formed of all trace-free elements of Symm(Sx).
It is locally isomorphic to the group SU(2, 2) of U(2, 2)-matrices with determinant one.
However, we point out that G it is not isomorphic to SU(2, 2), because the four-element
subgroup Z4 := exp(iπZ11/2) ⊂ SU(2, 2) is to be identified with the neutral element in G.
In other words, the groups are isomorphic only after dividing out this discrete subgroup,
G ' SU(2, 2)/Z4.

Corollary 3.1.7. For any two Clifford subspaces K, K̃ ∈ T, there is a gauge transfor-
mation U ∈ G such that (3.10) holds.

Proof. We choose spin bases (fα) and similarly (̃fα) as in Corollary 3.1.4 and let U be
the unitary transformation describing the basis transformation.

15
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Next, we consider the subgroups of G which leave the sign operator v and possibly a
Clifford subspace K ∈ Tv invariant:

Gv =
{
U ∈ G with UvU−1 = v

}
Gv,K =

{
U ∈ G with UvU−1 = v and UKU−1 = K

}
.

(3.12)

We refer to these groups as the stabilizer subgroups of v and (v,K), respectively.

Lemma 3.1.8. For any Clifford extension K ∈ Tv, the stabilizer subgroups are related
by

Gv = exp(iRv)× Gv,K .

Furthermore,
Gv,K ' (SU(2)× SU(2))/Z2 ' SO(4) ,

where the group SO(4) acts on any pseudo-orthonormal basis (v, e1, . . . , e4) of K by

ei →
4∑
j=1

Oj
i ej , O ∈ SO(4) . (3.13)

Proof. The elements of Gv are represented by unitary operators which commute with v.
Thus choosing the spin frame from Corollary 3.1.4 where

v =

(
11 0
0 −11

)
, (3.14)

every U ∈ Gv can be represented as

U =

(
V1 0
0 V2

)
with V1,2 ∈ U(2) .

Collecting phase factors, we can write

U = eiα
(
eiβ 0
0 e−iβ

)(
U1 0
0 U2

)
with α, β ∈ R and U1,2 ∈ SU(2) .

As the two matrices in this expression obviously commute, we obtain, after dividing out
a global phase,

Gv ' exp(iRv)× (SU(2)× SU(2))/Z2 , (3.15)

where Z2 is the subgroup {±11} of SU(2)× SU(2).
Let us consider the group SU(2) × SU(2) acting on the vectors of K by conjugation.

Obviously, UvU−1 = v. In order to compute UejU
−1, we first apply the identity

ei~u1~σ (iρ 11 + ~w~σ) e−i~u2~σ = iρ′ 11 + ~w′~σ .

Taking the determinant of both sides, one sees that the vectors (ρ, ~w), (ρ′, ~w′) ∈ R4

have the same Euclidean norm. Thus the group SU(2) × SU(2) describes SO(4)-trans-
formations (3.13). Counting dimensions, it follows that SU(2) × SU(2) is a covering
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of SO(4). Next it is easy to verify that the only elements of SU(2) × SU(2) which
leave all γi, i = 1, . . . , 4, invariant are multiples of the identity matrix. We conclude
that (SU(2)×SU(2))/Z2 ' SO(4) (this can be understood more abstractly from the fact
that SU(2)× SU(2) = Spin(4); see for example [23, Chapter 1]).

To summarize, the factor SU(2)×SU(2) in (3.15) leaves K invariant and describes the
transformations (3.13). However, the only elements of the group exp(iRv) which leave K
invariant are multiples of the identity. This completes the proof.

Our method for introducing the tangent space is to form equivalence classes of Clifford
extensions. To this end, we introduce on Tv the equivalence relation

K ∼ K̃ ⇐⇒ there is U ∈ exp(iRv) with K̃ = UKU−1 . (3.16)

According to Corollary 3.1.7 and Lemma 3.1.8, there is only one equivalence class. In
other words, for any K, K̃ ∈ Tv there is an operator U ∈ exp(iRv) such that (3.10) holds.
However, we point out that the operator U is not unique. Indeed, for two choices U,U ′,
the operator U−1U ′ is an element of exp(iRv) ∩ Gv,K , meaning that U is unique only up
to the transformations

U → ±U and U → ±iv U . (3.17)

The operator U gives rise to the so-called identification map

φv
K̃,K

: K → K̃ : w 7→ UwU−1 . (3.18)

The freedom (3.17) implies that the mapping φv
K̃,K

is defined only up to a parity trans-

formation P v which flips the sign of the orthogonal complement of v,

φv
K̃,K
→ P v φv

K̃,K
with P vw = −w + 2〈w, v〉 v . (3.19)

As the identification map preserves the inner product 〈., .〉, the quotient space Tv/ ∼ is
endowed with a Lorentzian metric. We now take v as the Euclidean sign operator, which
seems the most natural choice.

Definition 3.1.9. The tangent space Tx is defined by

Tx = Tsx/ exp(iRsx) .

It is endowed with an inner product 〈., .〉 of signature (1, 4).

We point out that, due to the freedom to perform the parity transformations (3.19),
the tangent space has no spatial orientation. In situations when a spatial orientation is
needed, one can fix the parity by distinguishing a class of representatives.

Definition 3.1.10. A set of representatives U ⊂ Tsx of the tangent space is called parity
preserving if for any two K, K̃ ∈ U, the corresponding identification map φsx

K̃,K
is of the

form (3.18) with U = eiβsx and β 6∈ π
2

+πZ. Then the parity preserving identification
map is defined by (3.18) with

U = U sx
K̃,K

:= eiβsx and β ∈
(
− π

2
,
π

2

)
. (3.20)
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By identifying the elements of U via the parity preserving identification maps, one can
give the tangent space a spatial orientation. In Section 3.4, we will come back to this
construction for a specific choice of U induced by the spin connection.

3.2. Synchronizing Generically Separated Sign Operators

In this section, we will show that for two given sign operators v and ṽ (again at a fixed
space-time point x ∈M), under generic assumptions one can distinguish unique Clifford
extensions K ∈ Tv and K̃ ∈ Tṽ. Moreover, we will construct the so-called synchronization
map U ṽ,v, which transforms these two Clifford extensions into each other.

Definition 3.2.1. Two sign operators v, ṽ are said to be generically separated if their
commutator [v, ṽ] has rank four.

Lemma 3.2.2. Assume that v and ṽ are two generically separated sign operators. Then
there are unique Clifford extensions K ∈ Tv and K̃ ∈ Tṽ and a unique vector ρ ∈ K ∩ K̃
with the following properties:

(i) {v, ρ} = 0 = {ṽ, ρ} (3.21)

(ii) K̃ = eiρK e−iρ (3.22)

(iii) If {v, ṽ} is a multiple of the identity, then ρ = 0. (3.23)

The operator ρ depends continuously on v and ṽ.

Proof. Our first step is to choose a spin frame where v and ṽ have a simple form. Denoting
the spectral projector of v corresponding to the eigenvalue one by E+ = (11 + v)/2, we
choose an orthonormal eigenvector basis (f1, f2) of the operator E+ṽE+, i.e.

E+ṽE+|E+(Sx) = diag(ν1, ν2) with ν1, ν2 ∈ R .

Setting f3 = (ṽ − ν1)f1 and f4 = (ṽ − ν2)f2, these vectors are clearly orthogonal to f1
and f2. They are both non-zero because otherwise the commutator [ν, ν̃] would be singu-
lar. Moreover, being orthogonal to the eigenspace of v corresponding to the eigenvalue
one, they lie in the eigenspace of v corresponding to the eigenvalue −1, and are thus both
negative definite. Moreover, the following calculation shows that they are orthogonal,

≺f3|f4� = ≺(ṽ − ν1)f1|(ṽ − ν2)f2� = ≺f1|(ṽ − ν1)(ṽ − ν2)f2�
= ≺f1| (1 + ν1ν2 − (ν1 + ν2)ṽ) f2� = 0 ,

where in the last step we used that f2 and ṽf2 are orthogonal to f1. The image of f3 (and
similarly f4) is computed by

ṽf3 = ṽ(ṽ − ν1)f1 = (1− ν1ṽ)f1 = −ν1f3 + (1− ν2
1) f1 .
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We conclude that after normalizing f3 and f4 by the replacement fi → fi/
√
−≺fi|fi�,

the matrix v is diagonal (3.14), whereas ṽ is of the form

ṽ =


coshα 0 sinhα 0

0 cosh β 0 − sinh β
− sinhα 0 − coshα 0

0 sinh β 0 − cosh β

 with α, β > 0. (3.24)

In the case α = β, the anti-commutator {v, ṽ} is a multiple of the identity. Thus by
assumption (iii) we need to choose ρ = 0. Then K = K̃ must be the Clifford subspace
spanned by the matrices e0, . . . , e4 in (3.9).

In the remaining case α 6= β, a short calculation shows that any operator ρ which anti-
commutes with both v and ṽ is a linear combination of the matrix e4 and the matrix ie0e3.
Since ρ should be an element of K, its square must be a multiple of the identity. This
leaves us with the two cases

ρ =
τ

2
e4 or ρ =

τ

2
ie0e3 (3.25)

for a suitable real parameter τ . In the first case, we obtain

eiρve−iρ = e2iρv =

(
11 cosh τ 11 sinh τ
−11 sinh τ −11 cosh τ

)
.

A straightforward calculation yields that the anti-commutator of this matrix with ṽ is a
multiple of the identity if and only if

cosh(α− τ) = cosh(β + τ) ,

determining τ uniquely to τ = (α−β)/2. In the second case in (3.25), a similar calculation
yields the condition cosh(α− τ) = cosh(β− τ), which has no solution. We conclude that
we must choose ρ as

ρ =
α− β

4
e4 . (3.26)

In order to construct the corresponding Clifford subspaces K and K̃, we first replace ṽ
by the transformed operator e−iρṽeiρ. Then we are again in case α = β > 0, where the
unique Clifford subspace K is given by the span of the matrices e0, . . . , e4 in (3.9). Now
we can use the formula in (ii) to define K̃; it follows by construction that ṽ ∈ K̃.

In order to prove continuity, we first note that the constructions in the two cases α = β
and α 6= β obviously depend continuously on v and ṽ. Moreover, it is clear from (3.26)
that ρ is continuous in the limit α− β → 0. This concludes the proof.

Definition 3.2.3. For generically separated signature operators v, ṽ, we denote the unique
Clifford extension K in Lemma 3.2.2 as Kv,(ṽ) ∈ Tv and refer to it as the Clifford
extension of v synchronized with ṽ. Similarly, K ṽ,(v) ∈ Tṽ is the Clifford ex-
tension of ṽ synchronized with v. Moreover, we introduce the synchronization map
U ṽ,v := eiρ ∈ U(Sx).

According to Lemma 3.2.2, the synchronization map satisfies the relations

U ṽ,v = (U v,ṽ)−1 and K ṽ,(v) = U ṽ,vKv,(ṽ)U v,ṽ .
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3.3. The Spin Connection

For the construction of the spin connection in this section we need a stronger version of
Definition 2.2.2.

Definition 3.3.1. The space-time points x, y ∈ M are said to be properly timelike
separated if the closed chain Axy has a strictly positive spectrum and if the corresponding
eigenspaces are definite subspaces of Sx.

The condition that the eigenspaces should be definite ensures that Axy is diagonalizable
(as one sees immediately by restricting Axy to the orthogonal complement of all eigenvec-
tors). Let us verify that our definition is symmetric in x and y: Suppose that Axyu = λu
with u ∈ Sx and λ ∈ R \ {0}. Then the vector w := P (y, x)u ∈ Sy is an eigenvector
of Ayx again to the eigenvalue λ,

Ayxw = P (y, x)P (x, y)P (y, x)u = P (y, x)Axy u = λP (y, x)u = λw . (3.27)

Moreover, the calculation

λ≺u|u� = ≺u|Axyu� = ≺u |P (x, y)P (y, x)u�
= ≺P (y, x)u |P (y, x)u� = ≺w|w�

(3.28)

shows that w is a definite vector if and only if u is. We conclude that Ayx has the same
eigenvalues as Axy and again has definite eigenspaces.

According to (3.28), the condition in Definition 3.3.1 that the spectrum of Axy should
be positive means that P (y, x) maps positive and negative definite eigenvectors of Axy
to positive and negative definite eigenvectors of Ayx, respectively. This property will be
helpful in the subsequent constructions. But possibly this condition could be weakened
(for example, it seems likely that a spin connection could also be constructed in the case
that the eigenvalues of Axy are all negative). But in view of the fact that in the examples
in Chapters 4 and 5, the eigenvalues of Axy are always positive in timelike directions, for
our purposes Definition 3.3.1 is sufficiently general.

For given space-time points x, y ∈M , our goal is to use the form of P (x, y) and P (y, x)
to construct the spin connection Dx,y ∈ U(Sy, Sx) as a unitary transformation

Dx,y : Sy → Sx and Dy,x = (Dx,y)
−1 = (Dx,y)

∗ : Sx → Sy , (3.29)

which should have the additional property that it gives rise to an isometry of the corre-
sponding tangent spaces.

We now give the general construction of the spin connection, first in specific bases and
then in an invariant way. At the end of this section, we will list all the assumptions
and properties of the resulting spin connection (see Theorem 3.3.7). The corresponding
mapping of the tangent spaces will be constructed in Section 3.4.

Our first assumption is that the space-time points x and y should be properly timelike
separated (see Definition 3.3.1). Combining the positive definite eigenvectors of Axy,
we obtain a two-dimensional positive definite invariant subspace I+ of the operator Axy.
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3.3. The Spin Connection

Similarly, there is a two-dimensional negative definite invariant subspace I−. Since Axy
is symmetric, these invariant subspaces form an orthogonal decomposition, Sx = I+⊕I−.
We introduce the operator vxy ∈ Symm(Sx) as an operator with the property that I+

and I− are eigenspaces corresponding to the eigenvalues +1 and −1, respectively. Obvi-
ously, vxy is a sign operator (see Definition 3.1.5). Alternatively, it can be characterized
in a basis-independent way as follows.

Definition 3.3.2. The unique sign operator vxy ∈ Symm(Sx) which commutes with the
operator Axy is referred to as the directional sign operator of Axy.

We next assume that the Euclidean sign operator and the directional sign operator are
generically separated at both x and y (see Definition 3.2.1). Then at the point x, there

is the unique Clifford extension Kxy := K
vxy ,(sx)
x ∈ T

vxy
x of the directional sign operator

synchronized with the Euclidean sign operator (see Definition 3.2.3 and Definition 3.1.6,
where for clarity we added the base point x as a subscript). Similarly, at y we consider

the Clifford extension Kyx := K
vyx,(sy)
y ∈ T

vyx
y . In view of the later construction of the

metric connection (see Section 3.4), we need to impose that the spin connection should
map these Clifford extensions into each other, i.e.

Kxy = Dx,yKyxDy,x . (3.30)

To clarify our notation, we point out that by the subscript xy we always denote an object
at the point x, whereas the additional comma x,y denotes an operator which maps an
object at y to an object at x. Moreover, it is natural to demand that

vxy = Dx,y vyxDy,x . (3.31)

We now explain the construction of the spin connection in suitably chosen bases of
the Clifford subspaces and the spin spaces. We will then verify that this construction
does not depend on the choice of the bases. At the end of this section, we will give a
basis independent characterization of the spin connection. In order to choose convenient
bases at the point x, we set e0 = vxy and extend this vector to an pseudo-orthonormal
basis (e0, . . . , e4) of Kxy. We then choose the spinor basis of Corollary 3.1.4. Simi-
larly, at the point y we set e0 = vyx and extend to a basis (e0, . . . , e4) of Kyx, which
we again represent in the form (3.9). Since vxy and vyx are sign operators, the inner
products ≺.|vxy .�x and ≺.|vyx .�y are positive definite, and thus these sign operators
even have the representation (3.14). In the chosen matrix representations, the condi-
tion (3.31) means that Dx,y is block diagonal. Moreover, in view of Lemma 3.1.8, the
conditions (3.30) imply that Dx,y must be of the form

Dx,y = eiϑxy
(
D+
x,y 0
0 D−x,y

)
with ϑxy ∈ R and D±x,y ∈ SU(2) . (3.32)

Next, as observed in (3.27) and (3.28), P (y, x) maps the eigenspaces of vxy to the cor-
responding eigenspaces of vyx. Thus in our spinor bases, the kernel of the fermionic
operator has the form

P (x, y) =

(
P+
x,y 0
0 P−x,y

)
, P (y, x) =

(
P+
y,x 0
0 P−y,x

)
with P±y,x = (P±x,y)

∗ (3.33)
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3. Construction of a Lorentzian Quantum Geometry

with invertible 2×2 matrices P±x,y (and the star simply denotes complex conjugation and
transposition).

At this point, a polar decomposition of P±x,y is helpful. Recall that any invertible 2×2-
matrix X can be uniquely decomposed in the form X = RV with a positive matrix R
and a unitary matrix V ∈ U(2) (more precisely, one sets R =

√
X∗X and V = R−1X).

Since in (3.32) we are working with SU(2)-matrices, it is useful to extract from V a phase
factor. Thus we write

P s(x, y) = eiϑ
s
xyRs

xy V
s
x,y (3.34)

with ϑsxy ∈ R mod 2π, Rs
xy > 0 and V s

x,y ∈ SU(2), where s ∈ {+,−}. Comparing (3.34)
with (3.32), the natural ansatz for the spin connection is

Dx,y = e
i
2

(ϑ+xy+ϑ−xy)

(
V +
x,y 0
0 V −x,y

)
. (3.35)

The construction so far suffers from the problem that the SU(2)-matrices V s
x,y in the

polar decomposition (3.34) are determined only up to a sign, so that there still is the
freedom to perform the transformations

V s
x,y → −V s

x,y , ϑsxy → ϑsxy + π . (3.36)

If we flip the signs of both V +
x,y and V −x,y, then the factor e

i
2

(ϑ+x,y+ϑ−x,y) in (3.35) also flips
its sign, so that Dx,y remains unchanged. The relative sign of V +

x,y and V −x,y, however,
does effect the ansatz (3.35). In order to fix the relative signs, we need the following
assumption, whose significance will be clarified in Section 3.5 below.

Definition 3.3.3. The space-time points x and y are said to be time-directed if the
phases ϑ±xy in (3.34) satisfy the condition

ϑ+
xy − ϑ−xy 6∈

Zπ
2
.

Then we can fix the relative signs by imposing that

ϑ+
xy − ϑ−xy ∈

(
− 3π

2
,−π

)
∪
(
π,

3π

2

)
(3.37)

(this convention will become clear in Section 4.2).
We next consider the behavior under the transformations of bases. At the point x,

the pseudo-orthonormal basis (vxy = e0, e1, . . . , e4) of Kxy is unique up to SO(4)-trans-
formations of the basis vectors e1, . . . , e4. According to Lemma 3.1.8, this gives rise
to a U(1) × SU(2) × SU(2)-freedom to transform the spin basis f1, . . . , f4 (where U(1)
corresponds to a phase transformation). At the point y, we can independently perform
U(1) × SU(2) × SU(2)-transformations of the spin basis. This gives rise to the freedom
to transform the kernel of the fermionic operator by

P (x, y)→ Ux P (x, y)U−1
y and P (y, x)→ Uy P (y, x)U−1

x , (3.38)
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3.3. The Spin Connection

where

Uz = eiβz
(
U+
z 0
0 U−z

)
with β ∈ R and U±z ∈ SU(2) . (3.39)

The phase factors e±iβz shift the angles ϑ+
xy and ϑ−xy by the same value, so that the

difference of these angles entering Definition 3.3.3 are not affected. The SU(2)-matrices Uz
and U−1

z , on the other hand, modify the polar decomposition (3.34) by

V s
x,y → U s

x V
s
x,y (U s

y )−1 , Rs
xy → U s

x R
s
xy (U s

x)−1 .

The transformation law of the matrices V s
x,y ensures that the ansatz (3.35) is indeed

independent of the choice of bases. We thus conclude that this ansatz indeed defines a
spin connection.

The result of our construction is summarized as follows.

Definition 3.3.4. Two space-time points x, y ∈ M are said to be spin-connectable if
the following conditions hold:

(a) The points x and y are properly timelike separated (see Definition 3.3.1).

(b) The directional sign operator vxy of Axy is generically separated from the Euclidean
sign operator sx (see Definitions 3.3.2 and 3.2.1). Likewise, vyx is generically
separated from sy.

(c) The points x and y are time-directed (see Definition 3.3.3).

The spin connection D is the set of spin-connectable pairs (x, y) together with the
corresponding maps Dx,y ∈ U(Sy, Sx) which are uniquely determined by (3.35) and (3.37),

D = {((x, y), Dx,y) with x, y spin-connectable} .

We conclude this section by compiling properties of the canonical spin connection and
by characterizing it in a basis independent way. To this end, we want to rewrite (3.34)
in a way which does not refer to our particular bases. First, using (3.33) and (3.34), we
obtain for the closed chain

Axy = P (x, y) P (x, y)∗ =

(
(R+

xy)
2 0

0 (R−xy)
2

)
. (3.40)

Taking the inverse and multiplying by P (x, y), the operators R±xy drop out,

A
− 1

2
xy P (x, y) =

(
eiϑ

+
xy V +

x,y 0

0 eiϑ
−
xy V −x,y

)
.

Except for the relative phases on the diagonal, this coincides precisely with the defini-
tion of the spin connection (3.35). Since in our chosen bases, the operator vxy has the
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3. Construction of a Lorentzian Quantum Geometry

matrix representation (3.14), this relative phase can be removed by multiplying with the
operator exp(iϕxyvxy), where

ϕxy = −1

2

(
ϑ+
xy − ϑ−xy

)
. (3.41)

Thus we can write the spin connection in the basis independent form

Dx,y = eiϕxy vxy A
− 1

2
xy P (x, y) . (3.42)

Obviously, the value of ϕxy in (3.41) is also determined without referring to our bases by
using the condition (3.30). This makes it possible to reformulate our previous results in
a manifestly invariant way.

Lemma 3.3.5. There is ϕxy ∈ R such that Dx,y defined by (3.42) satisfies the condi-
tions (3.29) and

(Dx,y)
−1KxyDx,y = Kyx . (3.43)

The phase ϕxy is determined up to multiples of π
2
.

Thus, Definition 3.3.3 can be rewritten in terms of ϕxy.

Definition 3.3.6. The space-time points x and y are said to be time-directed if the
phase ϕxy in (3.42) satisfying (3.43) is not a multiple of π

4
.

We then uniquely determine ϕxy by the condition

ϕxy ∈
(
− 3π

4
,−π

2

)
∪
(π

2
,
3π

4

)
. (3.44)

Theorem 3.3.7. (characterization of the spin connection) Assume that the points
x, y are spin-connectable (see Definitions 3.3.4 and 3.3.6). Then the spin connection of
Definition 3.3.4 is uniquely characterized by the following conditions:

(i) Dx,y is of the form (3.42) with ϕxy in the range (3.44).

(ii) The relation (3.30) holds,

Dy,xKxyDx,y = Kyx .

The spin connection has the properties

Dy,x = (Dx,y)
−1 = (Dx,y)

∗ (3.45)

Axy = Dx,y AyxDy,x (3.46)

vxy = Dx,y vyxDy,x . (3.47)
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Proof. The previous constructions show that the conditions (i) and (ii) give rise to a
unique unitary mapping Dx,y ∈ U(Sy, Sx), which coincides with the spin connection of
Definition 3.3.4. Since ϕxy is uniquely fixed, it follows that

ϕyx = −ϕxy ,

and thus it is obvious from (3.42) that the identity Dy,x = D−1
x,y holds.

The identity (3.46) follows from the calculation

Dx,y Ayx =
(
eiϕxy vxy A

− 1
2

xy P (x, y)
)
Ayx = eiϕxy vxy A

− 1
2

xy Axy P (x, y)

= Axy

(
eiϕxy vxy A

− 1
2

xy P (x, y)
)

= AxyDx,y ,

where we applied (3.42) and used that the operators Axy and vxy commute.
The relations (3.46) and (3.45) show that the operators Axy and Ayx are mapped to each

other by the unitary transformation Dy,x. As a consequence, these operators have the
same spectrum, and Dy,x also maps the corresponding eigenspaces to each other. This
implies (3.47) (note that this identity already appeared in our previous construction;
see (3.31)).

3.4. The Induced Metric Connection, Parity-Preserving
Systems

The spin connection induces a connection on the corresponding tangent spaces, as we now
explain. Suppose that x and y are two spin-connectable space-time points. According to
Lemma 3.2.2, the signature operators sx and vxy distinguish two Clifford subspaces at x.
One of these Clifford subspaces was already used in the previous section; we denoted it

by Kxy := K
vxy ,(sx)
x (see also Definition 3.2.3). Now we will also need the other Clifford

subspace, which we denote by K
(y)
x := K

sx,(vxy)
x . It is an element of Tsx and can therefore

be regarded as a representative of the tangent space. We denote the corresponding
synchronization map by Uxy = U vxy ,sx , i.e.

Kxy = UxyK
(y)
x U−1

xy .

Similarly, at the point y we represent the tangent space by the Clifford subspace K
(x)
y :=

K
sy ,(vyx)
y ∈ Tsy and denote the synchronization map by Uyx = U vyx,sy .

Suppose that a tangent vector uy ∈ Ty is given. We can regard uy as a vector in K
(x)
y .

By applying the synchronization map, we obtain a vector in Kyx,

uyx := Uyx uy U
−1
yx ∈ Kyx . (3.48)

According to Theorem 3.3.7 (ii), we can now “parallel transport” the vector to the Clifford
subspace Kxy,

uxy := Dx,y uyxDy,x ∈ Kxy . (3.49)
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Finally, we apply the inverse of the synchronization map to obtain the vector

ux := U−1
xy uxy Uxy ∈ K(y)

x . (3.50)

As K
(y)
x is a representative of the tangent space Tx and all transformations were unitary,

we obtain an isometry from Ty to Tx.

Definition 3.4.1. The isometry between the tangent spaces defined by

∇x,y : Ty → Tx : uy 7→ ux

is referred to as the metric connection corresponding to the spin connection D.

By construction, the metric connection satisfies the relation

∇y,x = (∇x,y)
−1 .

We would like to introduce the notion that the metric connection preserves the spatial
orientation. This is not possible in general, because in view of (3.19) the tangent spaces
themselves have no spatial orientation. However, using the notions of Definition 3.1.10
we can introduce a spatial orientation under additional assumptions.

Definition 3.4.2. A causal fermion system of spin dimension two is said to be parity
preserving if for every point x ∈M , the set

U(x) := {K(y)
x with y spin-connectable to x}

is parity preserving (see Definition 3.1.10).

Provided that this condition holds, the identification maps φsx
K̃,K

with K, K̃ ∈ U(x) can be

uniquely fixed by choosing them in the form (3.18) with U according to (3.20). Denoting

the corresponding equivalence relation by
⊕∼, we introduce the space-oriented tangent

space T⊕x by

T⊕x = U(x)/
⊕∼ .

Considering the Clifford subspaces K
(x)
y and K

(y)
x as representatives of T⊕y and T⊕x , respec-

tively, the above construction (3.48)-(3.50) gives rise to the parity preserving metric
connection

∇x,y : T⊕y → T⊕x : uy 7→ ux .

3.5. A Distinguished Direction of Time

For spin-connectable points we can distinguish a direction of time.
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Definition 3.5.1. (Time orientation of space-time) Assume that the points x, y ∈M
are spin-connectable. We say that y lies in the future of x if the phase ϕxy as defined
by (3.42) and (3.44) is positive. Otherwise, y is said to lie in the past of x.

We denote the points in the future of x by I∨(x). Likewise, the points in the past of y
are denoted by I∧(x). We also introduce the set

I(x) = I∨(x) ∪ I∧(x) ;

it consists of all points which are spin-connectable to x.

Taking the adjoint of (3.42) and using that D∗x,y = Dy,x, one sees that ϕxy = −ϕyx.
Hence y lies in the future of x if and only if x lies in the past of y. Moreover, as all the
conditions in Definition 3.3.4 are stable under perturbations of y and the phase ϕxy is
continuous in y, we know that I∨(x) and I∧(x) are open subsets of M .

On the tangent space, we can also introduce the notions of past and future, albeit
in a completely different way. We first give the definition and explain afterwards how
the different notions are related. Recall that, choosing a representative K ∈ Tsx of
the tangent space Tx, every vector u ∈ Tx can be regarded as a vector in the Clifford
subspace K. According to Lemma 3.1.2, the bilinear form ≺.|u.�x on Sx is definite
if 〈u, u〉 > 0. Using these facts, the following definition is independent of the choice of
the representatives.

Definition 3.5.2. (Time orientation of the tangent space)

A vector u ∈ Tx is called


timelike if 〈u, u〉 > 0
spacelike if 〈u, u〉 < 0
lightlike if 〈u, u〉 = 0 .

We denote the timelike vectors by Ix ⊂ Tx.

A vector u ∈ Ix is called

{
future-directed if ≺.|u .�x > 0
past-directed if ≺.|u .�x < 0 .

We denote the future-directed and past-directed vectors by I∨x and I∧x , respectively.

In order to clarify the connection between these definitions, we now construct a map-
ping which to every point y ∈ I(x) associates a timelike tangent vector yx ∈ Ix, such
that the time orientation is preserved. To this end, for given y ∈ I(x) we consider the
operator

Lxy = −iDx,y P (y, x) : Sx → Sx

and symmetrize it,

Mxy =
1

2

(
Lxy + L∗xy

)
∈ Symm(Sx) .

The square of this operator need not be a multiple of the identity, and therefore it
cannot be regarded as a vector of a Clifford subspace. But we can take the orthogonal
projection prKxy of Mxy onto the Clifford subspace Kxy ⊂ Symm(Sx) (with respect to
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the inner product 〈., .〉), giving us a vector in Kxy. Just as in (3.50), we can apply the

synchronization map to obtain a vector in K
(y)
x , which then represents a vector of the

tangent space Tx. We denote this vector by yx and refer to it as the time-directed
tangent vector of y in Tx,

yx = U−1
xy prKxy(Mxy)Uxy ∈ K(y)

x . (3.51)

Moreover, it is useful to introduce the directional tangent vector ŷx of y in Tx by
synchronizing the directional sign operator vxy,

ŷx := U−1
xy vxy Uxy ∈ K(y)

x . (3.52)

By definition of the sign operator, the inner product ≺.|vxy.�x is positive definite. Since
the synchronization map is unitary, it follows that the vector ŷx is a future-directed unit
vector in Tx.

Proposition 3.5.3. For any y ∈ I(x), the time-directed tangent vector of y in Tx is
timelike, yx ∈ Ix. Moreover, the time orientation of the space-time points x, y ∈ M (see
Definition 3.5.1) agrees with the time orientation of yx ∈ Tx (see Definition 3.5.2),

y ∈ I∨(x)⇐⇒ yx ∈ I∨x and y ∈ I∧(x)⇐⇒ yx ∈ I∧x .

Moreover,

yx =
1

4
sin(ϕxy) Tr

(
A

1
2
xy

)
ŷx . (3.53)

Proof. From (3.42) one sees that

Lxy = −ieiϕxy vxy A
1
2
xy and Mxy = sin(ϕxy) vxy A

1
2
xy .

We again choose the pseudo-orthonormal basis (e0 = vxy, e1, . . . , e4) of Kxy and the
spinor basis of Corollary 3.1.4. Then vxy has the form (3.14), whereas Axy is block diago-
nal (3.40). Since the matrices e1, . . . e4 vanish on the block diagonal, the operators ejMxy

are trace-free for j = 1, . . . , 4. Hence the projection of Mxy is proportional to vxy,

prKxy(Mxy) =
1

4
sin(ϕxy) Tr

(
A

1
2
xy

)
vxy .

By synchronizing we obtain (3.53).

The trace in (3.53) is positive because the operator Axy has a strictly positive spectrum
(see Definition 3.3.1). Moreover, in view of (3.44) and Definition 3.5.1, the factor sin(ϕxy)
is positive if and only if y lies in the future of x. Since ŷx is future-directed, we conclude
that yx ∈ I∨x if and only if y ∈ I∨(x).

28



3.6. Reduction of the Spatial Dimension

3.6. Reduction of the Spatial Dimension

We now explain how to reduce the dimension of the tangent space to four, with the
desired Lorentzian signature (1, 3).

Definition 3.6.1. A causal fermion system of spin dimension two is called chirally
symmetric if to every x ∈ M we can associate a spacelike vector u(x) ∈ Tx which is
orthogonal to all directional tangent vectors,

〈u(x), ŷx〉 = 0 for all y ∈ I(x) ,

and is parallel with respect to the metric connection, i.e.

u(x) = ∇x,y u(y) for all y ∈ I(x) .

Definition 3.6.2. For a chirally symmetric fermion system, we introduce the reduced
tangent space T red

x by
T red
x = 〈ux〉⊥ ⊂ Tx .

Clearly, the reduced tangent space has dimension four and signature (1, 3). Moreover,
the operator ∇x,y maps the reduced tangent spaces isometrically to each other. The local
operator e5 := −iu/

√
−u2 takes the role of the pseudoscalar matrix.

3.7. Curvature and the Splice Maps

We now introduce the curvature of the metric connection and the spin connection and
explain their relation. Since our formalism should include discrete space-times, we cannot
in general work with an infinitesimal parallel transport. Instead, we must take two space-
time points and consider the spin or metric connection, which we defined in Sections 3.3
and 3.4 as mappings between the corresponding spin or tangent spaces. By composing
such mappings, we can form the analog of the parallel transport along a polygonal line.
Considering closed polygonal loops, we thus obtain the analog of a holonomy. Since on a
manifold, the curvature at x is immediately obtained from the holonomy by considering
the loops in a small neighborhood of x, this notion indeed generalizes the common notion
of curvature to causal fermion systems.

We begin with the metric connection.

Definition 3.7.1. Suppose that three points x, y, z ∈ M are pairwise spin-connectable.
Then the metric curvature R is defined by

R(x, y, z) = ∇x,y∇y,z∇z,x : Tx → Tx . (3.54)

Let us analyze this notion, for simplicity for parity-preserving systems. According
to (3.48)-(3.50), for a given tangent vector uy ∈ K(x)

y we have

∇x,yuy = UuyU
−1 ∈ K(y)

x with U = U−1
xy Dx,y Uyx .
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Composing with ∇z,x, we obtain

∇z,x∇x,yuy = UuyU
−1 ∈ K(x)

z

with
U = U−1

zx Dz,x

(
Uxz U

sx

K
(z)
x ,K

(y)
x

U−1
xy

)
Dx,y Uyx ,

where U sx

K
(z)
x ,K

(y)
x

is the unitary operator (3.20) of the identification map. We see that the

composition of the metric connection can be written as the product of spin connections,
joined by the product of unitary operators in the brackets which synchronize and identify
suitable Clifford extensions. We give this operator product a convenient name.

Definition 3.7.2. The unitary mapping

U (z|y)
x = Uxz U

sx
Kxz ,Kxy

U−1
xy ∈ U(Sx)

is referred to as the splice map. A causal fermion system of spin dimension two is
called Clifford-parallel if all splice maps are trivial.

Using the splice maps, the metric curvature can be written as

R(x, y, z) : K(z)
x → K(z)

x : ux 7→ UuxU
−1 ,

where the unitary mapping U is given by

U = U−1
xz U (z|y)

x Dx,y U
(x|z)
y Dy,z U

(y|x)
z Dz,x Uxz . (3.55)

Thus two factors of the spin connection are always joined by an intermediate splice map.
We now introduce the curvature of the spin connection. The most obvious way is to

simply replace the metric connection in (3.54) by the spin connection. On the other
hand, the formula (3.55) suggests that it might be a good idea to insert splice maps. As
it is a-priori not clear which method is preferable, we define both alternatives.

Definition 3.7.3. Suppose that three points x, y, z ∈ M are pairwise spin-connectable.
Then the unspliced spin curvature Rus is defined by

Rus(x, y, z) = Dx,yDy,zDz,x : Sx → Sx . (3.56)

The (spliced) spin curvature is introduced by

R(x, y, z) = U (z|y)
x Dx,y U

(x|z)
y Dy,z U

(y|x)
z Dz,x : Sx → Sx . (3.57)

Clearly, for Clifford-parallel systems, the spliced and unspliced spin curvatures coincide.
But if the causal fermion system is not Clifford-parallel, the situation is more involved.
The spliced spin curvature and the metric curvature are compatible in the sense that,
after unitarily transforming to the Clifford subspace Kxz, the following identity holds,

Uxz R(x, y, z)U−1
xz : Kxz → Kxz : v 7→ R(x, y, z) vR(x, y, z)∗ .
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3.7. Curvature and the Splice Maps

Thus the metric curvature can be regarded as “the square of the spliced spin curvature”.
We remark that the systems considered in Chapter 4 will all be Clifford parallel. In

the examples in Chapter 5, however, the systems will not be Clifford parallel. In these
examples, we shall see that it is indeed preferable to work with the spliced spin curvature
(for a detailed explanation Section 5.4).

We conclude this section with a construction which will be useful in Chapter 5. In the
causal fermion systems considered in these sections, in every space-time point there is
a distinguished representative of the tangent space, making it possible to introduce the
following notion.

Definition 3.7.4. We denote the set of five-dimensional subspaces of Symm(H) by
S5(H); it carries the topology induced by the operator norm (2.4). A continuous map-
ping K which to very space-time point associates a representative of the corresponding
tangent space,

K : M → S5(H) with K(x) ∈ Tsx for all x ∈M ,

is referred to as a representation map of the tangent spaces. The system (H,F, ρ,K)
is referred to as a causal fermion system with distinguished representatives of the
tangent spaces.

If we have distinguished representatives of the tangent spaces, the spin connection can be
combined with synchronization and identification maps such that forming compositions
of this combination always gives rise to intermediate splice maps.

Definition 3.7.5. Suppose that our fermion system is parity preserving and has distin-
guished representatives of the tangent spaces. Introducing the splice maps U |.). and U (.|

.

by
U |y)
x = U sx

K(x),K
(y)
x

U−1
xy and U (y|

x =
(
U |y)
x

)∗
= Uxy U

sx

K
(y)
x ,K(x)

,

we define the spliced spin connection D(.|.) by

D(x,y) = U |y)
x Dx,y U

(x|
y : Sy → Sx . (3.58)

Our notation harmonizes with Definition 3.7.2 in that

U (y|
x U |z)x = U (y|z)

x . (3.59)

Comparing with Definition 3.4.1, one sees that conjugation with the spliced spin connec-
tion gives the metric connection as a mapping between the distinguished representatives
of the tangent spaces Ty and Tx,

D(x,y)vD(y,x) = U sx

K(x),K
(y)
x

∇x,y

(
U
sy

K
(x)
y ,K(y)

vU
sy

K(y),K
(x)
y

)
U sx

K
(y)
x ,K(x)

∈ K(x) (for v ∈ K(y)) .

Forming compositions of the spliced spin connection and comparing with Definition 3.7.2,
one readily finds that

D(x,y) D(y,z) = U |y)
x Dx,y U

(x|z)
y Dy,z U

(x|
z .
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3. Construction of a Lorentzian Quantum Geometry

Proceeding iteratively, one sees that the spin curvature (3.57) can be represented by

R(x, y, z) = V D(x,y) D(y,z) D(z,x) V
∗ with V = U (z|

x .

Thus up to the unitary transformation V , the spin curvature coincides with the holonomy
of the spliced spin connection.

3.8. Causal Sets and Causal Neighborhoods

The relation “lies in the future of” introduced in Definition 3.5.1 reminds of the partial
ordering on a causal set. In order to explain the connection, we first recall the definition
of a causal set (for details see for example [7]).

Definition 3.8.1. A set C with a partial order relation ≺ is a causal set if the following
conditions hold:

(i) Irreflexivity: For all x ∈ C, we have x 6≺ x.

(ii) Transitivity: For all x, y, z ∈ C, we have x≺y and y≺z implies x≺z.

(iii) Local finiteness: For all x, z ∈ C, the set {y ∈ C with x≺y≺z} is finite.

Our relation “lies in the future of” agrees with (i) because the sign operators sx and vxx
coincide, and therefore every space-time point x is not spin-connectable to itself. The
condition (iii) seems an appropriate assumption for causal fermion systems in discrete
space-time (in particular, it is trivial if M is a finite set). In the setting when space-time
is a general measure space (M,µ), it is natural to replace (iii) by the condition that the
set {y ∈ C with x≺y≺z} has finite measure. The main difference between our setting
and a causal set is that the relation “lies in the future of” is in general not transitive, so
that (ii) is violated. However, it seems reasonable to weaken (ii) by a local condition of
transitivity. We now give a possible definition.

Definition 3.8.2. A subset U ⊂M is called future-transitive if for all pairwise spin-
connectable points x, y, z ∈ U the following implication holds:

y ∈ I∨(x) and z ∈ I∨(y) =⇒ z ∈ I∨(x) .

A causal fermion system of spin dimension two is called locally future-transitive if
every point x ∈M has a neighborhood U which is future-transitive.

This definition ensures that M locally includes the structure of a causal set. As we shall
see in the examples of Chapters 4 and 5, Dirac sea configurations without regularization
in Minkowski space or on globally hyperbolic Lorentzian manifolds are indeed locally
future-transitive. However, it still needs to be investigated if Definition 3.8.2 applies to
quantum space-times of physical interest.
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4. Example: The Regularized Dirac
Sea Vacuum

As a first example, we now consider Dirac spinors in Minkowski space. Taking H as all the
space of all negative-energy solutions of the Dirac equation, we construct a corresponding
causal fermion system. We show that the notions introduced in Chapter 3 give back the
usual causal and geometric structures of Minkowski space.

We first recall the basics and fix our notation (for details see for example [6] or [12,
Chapter 1]). Let (M, 〈., .〉) be Minkowski space (with the signature convention (+ −
−−)) and dµ the standard volume measure (thus dµ = d4x in a reference frame x =
(x0, . . . , x3)). Naturally identifying the spinor spaces at different space-time points and
denoting them by V = C4, we write the free Dirac equation for particles of mass m > 0
as

(i/∂ −m)ψ := (iγk∂k −m)ψ = 0 , (4.1)

where γk are the Dirac matrices in the Dirac representation, and ψ : M → V are the
four-component complex Dirac spinors. The Dirac spinors are endowed with an inner
product of signature (2, 2), which is usually written as ψφ, where ψ = ψ†γ0 is the adjoint
spinor. For notational consistency, we denote this inner product on V by ≺.|.�. The

free Dirac equation has plane wave solutions, which we denote by ψ~ka± with ~k ∈ R3 and
a ∈ {1, 2}. They have the form

ψ~ka±(x) =
1

(2π)
3
2

e∓iωt+i
~k~x χ~ka±, (4.2)

where x = (t, ~x) and ω :=

√
|~k|2 +m2. Here the spinor χ~ka± is a solution of the algebraic

equation
(k/−m)χ~ka± = 0 , (4.3)

where k/ = kjγj and k = (±ω,~k). Using the normalization convention

≺χ~ka±|χ~ka′±� = ±δa,a′ ,

the projector onto the two-dimensional solution space of (4.3) can be written as

/k +m

2m
= ±

∑
a=1,2

|χ~ka±�≺χ~ka±| . (4.4)

The frequency ±ω of the plane wave (4.2) is the energy of the solution. More generally,
by a negative-energy solution ψ of the Dirac equation we mean a superposition of plane
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4. Example: The Regularized Dirac Sea Vacuum

wave solutions of negative energy,

ψ(x) =
∑
a=1,2

∫
d3k ga(~k) ψ~ka−(x) . (4.5)

Dirac introduced the concept that in the vacuum all negative-energy states should be
occupied forming the so-called Dirac sea. Following this concept, we want to introduce
the Hilbert space (H, 〈., .〉H) as the space of all negative-energy solutions, equipped with
the usual scalar product obtained by integrating the probability density

〈ψ|φ〉H = 2π

∫
t=const

≺ψ(t, ~x)|γ0φ(t, ~x)� d~x . (4.6)

Note that the plane-wave solutions ψ~ka− cannot be considered as vectors in H, because
the normalization integral (4.6) diverges. But for the superposition (4.5), the normaliza-

tion integral is certainly finite for test functions ga(~k) ∈ C∞0 (R3), making it possible to
define (H, 〈., .〉H) as the completion of such wave functions. Then due to current conser-
vation, the integral in (4.6) is time independent. For the plane-wave solutions, one can
still make sense of the normalization integral in the distributional sense. Namely, a short
computation gives

〈ψ~ka−|ψ~k′a′−〉H =
2πω

m
δa,a′ δ

3(~k − ~k′) . (4.7)

The completeness of the plane-wave solutions can be expressed by the Plancherel formula

ψ(x) =
m

π

∑
a=1,2

∫
d3k

2ω
ψ~ka−(x) 〈ψ~ka−|ψ〉 for all ψ ∈ H . (4.8)

4.1. Construction of the Causal Fermion System

In order to construct a causal fermion system of spin dimension two, to every x ∈ M
we want to associate a self-adjoint operator F (x) ∈ L(H), having at most two positive
and at most two negative eigenvalues. By identifying x with F (x), we then get into the
setting of Definition 2.2.1. The idea is to define F (x) as an operator which describes the
correlations of the wave functions at the point x,

〈ψ|F (x)φ〉H = −≺ψ(x)|φ(x)� . (4.9)

As the spin scalar product has signature (2, 2), this ansatz incorporates that F (x) should
be a self-adjoint operator with at most two positive and at most two negative eigenvalues.
Using the completeness relation (4.8), F (x) can be written in the explicit form

F (x)φ = −m
2

π2

∑
a,a′=1,2

∫
d3k

2ω

∫
d3k′

2ω′
ψ~ka−≺ψ~ka−(x)|ψ~k′a′−(x)� 〈ψ~k′a′−|φ〉H . (4.10)

Unfortunately, this simple method does not give rise to a well-defined operator F (x). This
is obvious in (4.9) because the wave functions ψ, φ ∈ H are in general not continuous and
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4.1. Construction of the Causal Fermion System

could even have a singularity at x. Alternatively, in (4.10) the momentum integrals will
in general diverge. This explains why we must introduce an ultraviolet regularization.
We do it in the simplest possible way by inserting convergence generating factors,

F ε(x)φ := −m
2

π2

∑
a,a′=1,2

∫
d3k

2ω
e−

εω
2

∫
d3k′

2ω′
e−

εω′
2

× ψ~ka−≺ψ~ka−(x)|ψ~k′a′−(x)� 〈ψ~k′a′−|φ〉H ,
(4.11)

where the parameter ε > 0 is the length scale of the regularization. Note that this
regularization is spherically symmetric, but the Lorentz invariance is broken. Moreover,
the operator F ε(x) is no longer a local operator, meaning that space-time is “smeared
out” on the scale ε.

In order to show that F ε defines a causal fermion system, we need to compute the
eigenvalues of F ε(x). To this end, it is helpful to write F ε similar to a Gram matrix as

F ε(x) = −ιεx (ιεx)
∗ , (4.12)

where ιx is the operator

ιεx : V → H : u 7→ −m
π

∑
a=1,2

∫
d3k

2ω
e−

εω
2 ψ~ka−≺ψ~ka−(x)|u� , (4.13)

and the star denotes the adjoint with respect to the corresponding inner products ≺.|.�
and 〈., .〉H. From this decomposition, one sees right away that F ε(x) has at most two
positive and at most two negative eigenvalues. Moreover, these eigenvalues coincide with
those of the operator −(ιεx)

∗ιεx : V → V , which can be computed as follows:

−(ιεx)
∗ιεx u = −m

2

π2

∑
a,a′=1,2

∫∫
d3k d3k′

4ωω′
e−

ε(ω+ω′)
2 ψ~ka−(x) 〈ψ~ka−|ψ~k′a′−〉H ≺ψ~k′a′−(x)|u�

(4.7)
= −m

π

∑
a=1,2

∫
d3k

2ω
e−εω ψ~ka−(x) ≺ψ~ka−(x)|u� (4.14)

(4.4)
=

m

π

∫
d3k

2ω
e−εω

k/+m

2m
u =

m

π

∫
d3k

2ω
e−εω

−ωγ0 +m

2m
u , (4.15)

where in the last step we used the spherical symmetry.

Proposition 4.1.1. For any ε > 0, the operator F ε(x) : H→ H has rank four and has
two positive and two negative eigenvalues. The mapping

F ε : M → F : x 7→ F ε(x)

is injective. Identifying x with F ε(x) and introducing the measure ρε = F ε
∗µ on F as

the push-forward (2.5), the resulting tuple (H,F, ρε) is a causal fermion system of spin
dimension two. Every space-time point is regular (see Definition 2.3.1).
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4. Example: The Regularized Dirac Sea Vacuum

More specifically, the non-trivial eigenvalues ν1, . . . , ν4 of the operator F ε(x) are

νε1 = νε2 =

∫
d3k

4πω
e−εω (−ω +m) < 0

νε3 = νε4 =

∫
d3k

4πω
e−εω (ω +m) > 0 .

The corresponding eigenvectors fε1, . . . , f
ε
4 are given by

fεα(x) =
1

νεα
ιεx(eα) , (4.16)

where (eα) denotes the canonical basis of V = C4.

Proof. It is obvious from (4.15) that eα is an eigenvector basis of the operator −(ιεx)
∗ιεx,

− (ιεx)
∗ιεx eα = νεα eα . (4.17)

Next, the calculation

F ε(x) (ιεxeα) = ιεx
(
− (ιεx)

∗ιεx
)
eα = νεα (ιεx eα)

shows that the vectors fεα are eigenvectors of F ε(x) corresponding to the same eigenvalues
(our normalization convention will be explained in (4.18) below).

To prove the injectivity of F ε, assume that F ε(x) = F ε(y). We consider the expectation
value 〈ψ|(F ε(x) − F ε(y))φ〉H. Since this expectation value vanishes for all φ and ψ, we
conclude from (4.11) that

≺ψ~ka−(x)|ψ~k′a′−(x)� = ≺ψ~ka−(y)|ψ~y′a′−(y)�

for all a, a′ ∈ {1, 2} and ~k,~k′ ∈ R3. Using (4.2), the left and right side of this equation are
plane waves of the form ei(k−k

′)x and ei(k−k
′)y, respectively. We conclude that x = y.

We now introduce for every x ∈M the spin space (Sεx,≺.|.�x) by (2.6) and (2.7). By
construction, the eigenvectors fεα(x) in (4.16) form a basis of Sεx. Moreover, this basis is
pseudo-orthonormal, as the following calculation shows:

≺fεα(x)|fεβ(x)�x = −〈fεα(x)|F ε(x) fεβ(x)〉H = −νεβ 〈fεα(x)|fεβ(x)〉H

= − 1

νεα
〈ιεxeα|ιεxeβ〉H = − 1

νεα
≺eα|(ιεx)∗ιεxeβ�

(4.17)
=

νεβ
νεα
≺eα|eβ� = sα δαβ , (4.18)

where we again used the notation of Corollary 3.1.4. It is useful to always identify the
inner product space (V,≺.|.�) (and thus also the spinor space SxM ; see before (4.1))
with the spin space (Sεx,≺.|.�x) via the isometry Jεx given by

Jεx : SxM ' V → Sεx : eα 7→ fεα(x) . (4.19)
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4.1. Construction of the Causal Fermion System

Then, as the fε(x) form an eigenvector basis of F ε(x), the Euclidean sign operator takes
the form

sx = γ0 . (4.20)

Moreover, we obtain a convenient matrix representation of the kernel of fermionic oper-
ator (2.10), which again under the identification of x with F ε(x) we now write as

P ε(x, y) = πF ε(x) F
ε(y) . (4.21)

Lemma 4.1.2. In the spinor basis (eα) given by (4.19), the kernel of the fermionic
operator takes the form

P ε(x, y) =

∫
d4k

(2π)4
e−ε|k

0| (k/+m) δ(k2 −m2) Θ(−k0) e−ik(x−y) . (4.22)

Proof. Using (2.7), we find that≺.|πxy.�x = −〈.|xy.〉H. Thus, applying Proposition 4.1.1,
we find

≺fεα(x)|P ε(x, y) fεβ(y)�x
= −〈fεα(x)|F ε(x)F ε(y) fεβ(y)〉H = −〈F ε(x) fεα(x)|F ε(y) fεβ(y)〉H
= −νεανεβ 〈fεα(x)|fεβ(y)〉H = −〈ιεxeα|ιεyeβ〉H = −≺eα|(ιεx)∗ιεyeβ� .

(4.23)

Identifying fεα(x) and fεα(y) with eα, we conclude that the kernel of the fermionic operator
has the representation

P ε(x, y) = −(ιεx)
∗ιεy = −m

π

∑
a=1,2

∫
d3k

2ω
e−εω |ψ~ka−(x)�≺ψ~ka−(y)|

(4.2)
= −2m

∑
a=1,2

∫
d3k

2ω (2π)4
e−ik(x−y)e−εω |χ~ka−(x)�≺χ~ka−(y)|

(4.4)
=

∫
d3k

2ω (2π)4
e−ik(x−y)e−εω (k/+m) ,

where again k = (−ω,~k). Carrying out the k0-integration in (4.22) gives the result.

We point out that in the limit ε ↘ 0 when the regularization is removed, P ε(x, y)
converges to the Lorentz invariant distribution

P (x, y) =

∫
d4k

(2π)4
(k/+m) δ(k2 −m2) Θ(−k0) e−ik(x−y) . (4.24)

This distribution is supported on the lower mass shell and thus describes the Dirac sea
vacuum where all negative-energy solutions are occupied. It is the starting point of the
fermionic projector approach (see [12, 18]).

With the spin space (Sεx,≺.|.�x), the Euclidean sign operator (4.20) and the kernel
of the fermionic operator (4.22), we have introduced all the objects needed for the con-
structions in Chapter 3. Before analyzing the resulting geometric structures in detail, we
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4. Example: The Regularized Dirac Sea Vacuum

conclude this subsection by computing the Fourier integral in (4.22) and discussing the
resulting formulas. Setting

ξ = y − x (4.25)

and t = ξ0, r = |~ξ|, p = |~k|, we obtain

P ε(x, y) = (i/∂x +m)

∫
d4k

(2π)4
δ(k2 −m2) Θ(−k0) eikξ e−ε|k

0|

= (i/∂x +m)

∫
d3k

(2π)4

1

2
√
~k2 +m2

e−i
√
~k2+m2 t−i~k~ξ e−ε

√
~k2+m2

= (i/∂x +m)

∫ ∞
0

dp

2(2π)3

∫ 1

−1

d cos θ
p2√

p2 +m2
e−(ε+it)

√
p2+m2

e−ipr cos θ

= (i/∂x +m)
1

r

∫ ∞
0

dp

(2π)3

p√
p2 +m2

e−(ε+it)
√
p2+m2

sin(pr)

= (i/∂x +m)
m2

(2π)3

K1

(
m
√
r2 + (ε+ it)2

)
m
√
r2 + (ε+ it)2

, (4.26)

where the last integral was calculated using [26, formula (3.961.1)]. Here the square root
and the Bessel functions K0, K1 are defined using a branch cut along the negative real
axis. Carrying out the derivatives, we obtain

P ε(x, y) = αε(ξ)(/ξ − iεγ0) + βε(ξ)11

with the smooth functions

αε(ξ) = −i m
4

(2π)3

(K0(z)

z2
+ 2

K1(z)

z3

)
and βε(ξ) =

m3

(2π)3

K1(z)

z
, (4.27)

where we set
z = m

√
r2 + (ε+ it)2 .

Due to the regularization, P ε(x, y) is a smooth function. However, in the limit ε ↘ 0,
singularities appear on the light cone {ξ2 = 0} (for details see [15, §4.4]). This can be
understood from the fact that the Bessel functions K0(z) and K1(z) have poles at z = 0,
leading to singularities on the light cone if ε ↘ 0. But using that the Bessel functions
are smooth for z 6= 0, one also sees that away from the light cone, P ε converges pointwise
(even locally uniformly) to a smooth function. We conclude that

P ε(x, y)
ε↘0−→ P (x, y) if ξ2 6= 0 (4.28)

and
P (x, y) = α(ξ) /ξ + β(ξ) 11 (4.29)

where the functions α and β can be written in terms of real-valued Bessel functions as

β(ξ) = θ(ξ2)
m3

16π2

Y1(m
√
ξ2) + iε(ξ0)J1(m

√
ξ2)

m
√
ξ2

+ θ(−ξ2)
m3

8π3

K1(m
√
−ξ2)

m
√
−ξ2

α(ξ) = −2i

m

d

d(ξ2)
β(ξ)

(4.30)
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4.2. The Geometry without Regularization

(and ε denotes the step function ε(x) = 1 if x > 1 and ε(x) = −1 otherwise). These
functions have the expansion

α(ξ) = − i

4π3 ξ4
+ O

( 1

ξ2

)
and β(ξ) = − m

8π3 ξ2
+ O

(
log(ξ2)

)
. (4.31)

4.2. The Geometry without Regularization

We now enter the analysis of the geometric objects introduced in Chapter 3 for given
space-time points x, y ∈M . We restrict attention to the case ξ2 6= 0 where the space-time
points are not lightlike separated. This has the advantage that, in view of the conver-
gence (4.28), we can first consider the unregularized kernel P (x, y) in the form (4.29). In
Section 4.3 we can then use a continuity argument to extend the results to small ε > 0.

We first point out that, although we are working without regularization, the fact that
we took the limit ε↘ 0 of regularized objects is still apparent because the Euclidean sign
operator (4.20) distinguishes a specific sign operator. This fact will enter the construction,
but of course the resulting spin connection will be Lorentz invariant. Taking the adjoint
of (4.29),

P (y, x) = P (x, y)∗ = α(ξ) /ξ + β(ξ) 11,

we obtain for the closed chain

Axy = a(ξ) /ξ + b(ξ) 11 = Ayx (4.32)

with the real-valued functions a = 2 Re(αβ̄) and b = |α|2ξ2 + |β|2. Subtracting the trace
and taking the square, the eigenvalues of Axy are computed by

λ+ = b+
√
a2ξ2 and λ− = b−

√
a2ξ2 . (4.33)

It follows that the eigenvalues of Axy are real if ξ2 > 0, whereas they form a complex
conjugate pair if ξ2 < 0. This shows that the causal structure of Definition 2.2.2 agrees
with the usual causal structure in Minkowski space. We next show that in the case of
timelike separation, the space-time points are even properly timelike separated.

Lemma 4.2.1. Let x, y ∈M with ξ2 6= 0. Then x and y are properly timelike separated
(see Definition 3.3.1) if and only if ξ2 > 0. The directional sign operator of Axy is given
by

vxy = ε(ξ0)
/ξ√
ξ2
. (4.34)

Proof. In the case ξ2 < 0, the two eigenvalues λ± in (4.33) form a complex conjugate
pair. If they are distinct, the spectrum is not real. On the other hand, if they coincide,
the corresponding eigenspace is not definite. Thus x and y are not properly timelike
separated.

In the case ξ2 > 0, we obtain a simple expression for a,

a = 2 Re(αβ̄)(m
√
ξ2) = ε(ξ0)

2m7

(4π)4

(Y1J0 − Y0J1)(m
√
ξ2)

(m
√
ξ2)3

= −ε(ξ0)
m3

64π5

1

ξ4
, (4.35)
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Figure 4.1.: The Bessel functions in (4.36).

where we used [1, formula (9.1.16)] for the Wronskian of the Bessel functions J1 and Y1.
In particular, one sees that a 6= 0, so that according to (4.33), the matrix Axy has two
distinct eigenvalues.

Next, the calculation

λ+λ− = b2 − a2ξ2 = |α|4 ξ4 + |β|4 + 2|α|2 ξ2 |β|2 − 4ξ2 Re(αβ̄)2

(∗)
≥ |α4 |ξ4 + |β|4 − 2|α|2 ξ2| β|2 =

(
|α2|ξ2 − |β|2

)2 ≥ 0

shows that the spectrum of Axy is positive. In order to obtain a strict inequality, it
suffices to show that Im(αβ̄) 6= 0 (because then the inequality in (∗) becomes strict).
After the transformation

Im(αβ̄) = − m7

(4π)4

(
(Y0Y1 + J0J1)(z)

z3
− 2

(J2
1 + Y 2

1 )(z)

z4

)
= − m7

(4π)4

1

2z

d

dz

(
Y1(z)2 + J1(z)2

z2

)
, (4.36)

where we set z = m
√
ξ2 > 0, asymptotic expansions of the Bessel functions yield that

the function Im(αβ̄) is positive for z near zero and near infinity. The plot in Figure 4.1
shows that this function is also positive in the intermediate range.

We now prove that the eigenspaces of Axy are definite with respect to the inner product
≺.|.� on V . First, from (4.32) it is obvious that the eigenvectors of Axy coincide with

those of the operator /ξ. Thus let v ∈ V be an eigenvector of /ξ, i.e. /ξv = ±
√
ξ2 v.

We choose a proper orthochronous Lorentz-transformation Λ which transforms ξ to the
vector Λ(ξ) = (t,~0) with t 6= 0. In view of the Lorentz invariance of the Dirac equation
there is a unitary transformation U ∈ U(V ) with UγlU−1 = Λl

jγ
j. Then the calculation

±
√
ξ2 ≺v | v� = ≺v | /ξv� = ≺v | ηijξiγj v� = ηkl≺v | (Λk

i ξ
i)(Λl

jγ
j) v�

= ηkl≺v |Λ(ξ)kUγlU−1v� = t≺v |Uγ0U−1v�
= t≺U−1v | γ0U−1v� = t 〈U−1v |U−1v〉C4 6= 0 (4.37)
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4.2. The Geometry without Regularization

shows that ≺v | v� 6= 0, and thus v is a definite vector. We conclude that x and y are
properly timelike separated.

We next show that the directional sign operator of Axy is given by (4.34). The calcula-
tion (4.37) shows that the inner product ≺.|vxy.� with vxy according to (4.34) is positive
definite. Furthermore, the square of vxy is given by

v2
xy =

(
ε(ξ0)

/ξ√
ξ2

)2

= 11 ,

showing that vxy is indeed a sign operator. Since vxy obviously commutes with Axy, it is
the directional sign operator of Axy.

Let us go through the construction of the spin connection in Section 3.3. Computing
the commutator of the Euclidean sign operator sx (see (4.20)) and the directional sign
operator vxy (see (4.34)),

[vxy, sx] =

[
ε(ξ0)

/ξ√
ξ2
, γ0

]
= 2ε(ξ0)

~ξ · ~γγ0√
ξ2

,

one sees that these operators are generically separated (see Definition 3.2.1), provided

that we are not in the exceptional case ~ξ 6= 0 (for which the spin connection could
be defined later by continuous continuation). Since these two sign operators lie in the
Clifford subspaceK spanned by (γ0, . . . , γ3, iγ5) (again in the usual Dirac representation),
it follows that all the Clifford subspaces used in the construction of the spin connection
are equal to K, i.e.

Kxy = Kyx = K(y)
x = K(x)

y = K .

All synchronization and identification maps are trivial (see Definition 3.2.3 and (3.18)).
In particular, the system is parity preserving (see Definition 3.1.10) and Clifford-parallel
(see Definition 3.7.2). Choosing again the basis (e0 = vxy, e1, . . . , e4) of K and the spinor
basis of Corollary 3.1.4, one sees from (4.29) and (4.34) that P (x, y) is diagonal,

P (x, y) =

(β + α
√
ξ2
)

11 0

0
(
β − α

√
ξ2
)

11

 .

Thus in the polar decomposition (3.34) we get

R±xy =
∣∣∣β ± α√ξ2

∣∣∣ , ϑ±xy = arg
(
β ± α

√
ξ2
)

mod π , V ±x,y ∈ {11,−11} .

Computing ϕxy according to (3.41) and our convention (3.44), in the case ξ0 > 0 we
obtain the left plot of Figure 4.2, whereas in the case ξ0 < 0 one gets the same with
the opposite sign. We conclude that ϕxy is never a multiple of π

4
, meaning that x and y

are time-directed (see Definition 3.3.6). Moreover, the time direction of Definition 3.5.1
indeed agrees with the time orientation of Minkowski space. Having uniquely fixed ϕxy,
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Figure 4.2.: The phases in the spin connection in the case ξ0 > 0.

the spin connection is given by (3.35) or by (3.42). A short calculation yields that Dxy

is trivial up to a phase factor,

Dx,y = eiκxy 11 , (4.38)

where the phase κxy is given by

κxy = arg
(
eiϕxy

(
β + α

√
ξ2
))

= arg
(
e−iϕxy

(
β − α

√
ξ2
))

. (4.39)

The function κxy is shown in the right plot of Figure 4.2. One sees that the phase factor
in Dx,y oscillates on the length scale m−1. We postpone the discussion of this phase to
Section 4.4.

Let us consider the corresponding metric connection of Definition 3.4.1. We clearly
identify the tangent space Tx with the vector space K. As the synchronization maps are
trivial and the phases in Dx,y drop out of (3.49), it is obvious that ∇x,y reduces to the
trivial connection in Minkowski space. Finally, choosing u(x) = iγ5, the causal fermion
system is obviously chirally symmetric (see Definition 3.6.2).

Our results are summarized as follows.

Proposition 4.2.2. Let x, y ∈ M with ξ2 6= 0 and ~ξ 6= 0. Consider the spin connection
corresponding to the Euclidean signature operator (4.20) and the unregularized Dirac sea
vacuum (4.29). Then x and y are spin-connectable if and only if ξ2 > 0. The spin con-
nection Dx,y is trivial up to a phase factor (4.38). The time direction of Definition 3.5.1
agrees with the usual time orientation of Minkowksi space. The corresponding metric
connection ∇x,y is trivial.

Restricting attention to pairs (x, y) ∈ M ×M with ξ2 6= 0 and ~ξ 6= 0, the resulting
causal fermion system is parity preserving, chirally symmetric and Clifford-parallel.

4.3. The Geometry with Regularization

We now use a perturbation argument to extend some of the results of Proposition 4.2.2
to the case with regularization.
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4.3. The Geometry with Regularization

Proposition 4.3.1. Consider the causal fermion systems of Proposition 4.1.1. For any
x, y ∈ M with ξ2 > 0 and ~ξ 6= 0, there is ε0 > 0 such that for all ε ∈ (0, ε0) the
following statements hold: The points x and y are spin-connectable. The time direction
of Definition 3.5.1 agrees with the usual time orientation of Minkowksi space. In the
limit ε↘ 0, the corresponding connections Dε

x,y and ∇ε
x,y converge to the connections of

Proposition 4.2.2,
lim
ε↘0

Dε
x,y = Dx,y , lim

ε↘0
∇ε
x,y = 11 . (4.40)

Proof. Let x, y ∈ M with ξ2 > 0 and ~ξ 6= 0. Using the pointwise convergence (4.28),
a simple continuity argument shows that for sufficiently small ε, the spectrum of Aεxy
is strictly positive and the eigenspaces are definite. Thus x and y are properly timelike
separated. From (3.34) and (3.41) we conclude that in a small interval (0, ε0), the phase
ϕεxy depends continuously on ε and lies in the same subinterval (3.44) as the phase ϕxy
without regularization. We conclude that for all ε ∈ (0, ε0), the points x and y are
spin-connectable and have the same time orientation as without regularization. The
continuity of the connections is obvious from (3.42).

We point out that this proposition makes no statement on whether the causal fermion
systems are parity preserving, chirally symmetric or Clifford-parallel. The difficulty is
that these definitions are either not stable under perturbations, or else they would make
it necessary to choose ε independent of x and y. To be more specific, the closed chain
with regularization takes the form

Aεxy = aε/ξ + bε11 + cεγ
0 − idε~ξ · ~γγ0 ,

where the coefficients involve the regularized Bessel functions in (4.27),

aε = 2 Re(αεβε) , bε = |αε|2(ξ2 + ε2) + |βε|2 ,
cε = 2ε Im(αεβε) , dε = 2ε|αε|2 .

A short calculation shows that for properly timelike separated points x and y, the direc-
tional sign operator is given by

vεxy =
aε/ξ + cεγ

0 − idε~ξ · ~γγ0√
a2
εξ

2 + 2aεcεξ0 + c2
ε − d2

ε |~ξ|2
,

and the argument of the square root is positive. A direct computation shows that the
signature operators sx and vεxy span a Clifford subspace of signature (1, 1). According
to Lemma 3.1.3, this Clifford subspace has a unique extension K, implying that Kxy =

K
(y)
x = K. This shows that the synchronization maps are all trivial. However, as vεxy

involves a bilinear component which depends on ~ξ, the Clifford subspaces Kxy and Kxz

will in general be different, so that the identification maps (3.18) are in general non-
trivial. Due to this complication, the system is no longer Clifford-parallel, and it is not
obvious whether the system is parity preserving or chirally symmetric.
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4. Example: The Regularized Dirac Sea Vacuum

4.4. Parallel Transport Along Timelike Curves

The phase factor in (4.38) resembles the U(1)-phase in electrodynamics. This phase is
unphysical as no electromagnetic field is present. In order to understand this seeming
problem, one should note that in differential geometry, the parallel transport is always
performed along a continuous curve, whereas the spin connection Dx,y directly connects
distant points. The correct interpretation is that the spin connection only gives the
physically correct result if the points x and y are sufficiently close to each other. Thus in
order to connect distant points x and y, one should choose intermediate points x1, . . . xN
and compose the spin connection along neighboring points. In this way, the unphysical
phase indeed disappears, as the following construction shows.

Assume that γ(t) is a future-directed timelike curve, for simplicity parametrized by
arc length, which is defined on the interval [0, T ] with γ(0) = y and γ(T ) = x. The Levi-
Civita parallel transport of spinors along γ is trivial. In order to compare with the spin
connection Dε, we subdivide γ (for simplicity with equal spacing, although a non-uniform
spacing would work just as well). Thus for any given N , we define the points x0, . . . , xN
by

xn = γ(tn) with tn =
nT

N
. (4.41)

Definition 4.4.1. The curve γ is called admissible if for all sufficiently large N ∈ N
there is a parameter ε0 > 0 such that for all ε ∈ (0, ε0) and all n = 1, . . . , N , the points xn
and xn−1 are spin-connectable.

If γ is admissible, we define the parallel transport DN,ε
x,y by successively composing the

parallel transports between neighboring points,

DN,ε
x,y := Dε

xN ,xN−1
Dε
xN−1,xN−2

· · ·Dε
x1,x0

: V → V .

Then the following theorem holds.

Theorem 4.4.2. Considering the family of causal fermion systems of Proposition 4.1.1,
the admissible curves are generic in the sense that they are dense in the C∞-topology
(meaning that for any smooth γ and every K ∈ N, there is a series γ` of admissible curves
such that Dkγ` → Dkγ uniformly for all k = 0, . . . , K). Choosing N ∈ N and ε > 0 such
that the points xn and xn−1 are spin-connectable for all n = 1, . . . , N , every point xn lies
in the future of xn−1. Moreover,

lim
N→∞

lim
ε↘0

DN,ε
x,y = DLC

x,y ,

where we use the identification (4.19), and DLC

x,y : SyM → SxM denotes the trivial parallel
transport along γ.

Proof. For any given N , we know from Proposition 4.3.1 that by choosing ε0 small
enough, we can arrange that for all ε ∈

(
0, ε0) and all n = 1, . . . , N , the points xn and xn−1

are spin-connectable and xn lies in the future of xn−1, provided that the vectors ~xn−~xn−1
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4.4. Parallel Transport Along Timelike Curves

do not vanish (which is obviously satisfied for a generic curve). Using (4.40) and (4.38),
we obtain

lim
ε↘0

DN,ε
x,y = DxN ,xN−1

DxN−1,xN−2
· · ·Dx1,x0 = exp

(
i
N∑
n=1

κxn,xn−1

)
11 . (4.42)

Combining the two equations in (4.39), one finds

κxy =
1

2
arg
(
β2 − α2 ξ2

)
mod π .

Expanding the Bessel functions in (4.30) gives

β2 − α2 ξ2 =
1

16π6

1

ξ6
+ O

( 1

ξ4

)
,

As κxy is smooth and vanishes in the limit y → x, we conclude that

κxy = O(ξ2) .

Using this estimate in (4.42), we obtain

lim
ε↘0

DN,ε
x,y = exp

(
i N O(N−2)

)
11 .

Taking the limit N →∞ gives the result.
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5. Example: The Fermionic Operator
in a Globally Hyperbolic Space-Time

In this chapter we shall explore the connection between the notions of the quantum ge-
ometry introduced in Chapter 3 and the common objects of Lorentzian geometry. To this
end, we consider Dirac spinors on a globally hyperbolic Lorentzian manifold (M, g) (for
basic definitions see [2, 3]). For technical simplicity, we make the following assumptions:

(A) The manifold (M, g) is flat Minkowski space in the past of a Cauchy hypersurface
N .

(B) The causal fermion systems are introduced as the Cauchy development of the
fermion systems in Minkowski space as considered in Section 4.1.

These causal fermion systems are constructed in Section 5.1. We proceed by analyzing
the fermionic operator in the limit without regularization using its Hadamard expansion
(see Section 5.2 and Section 5.3). We then consider the spin connection along a timelike
curve γ (see Section 5.4). We need to assume that in a neighborhood U of the curve γ,
the Riemann curvature tensor R is bounded pointwise in the sense that

‖R(x)‖
m2

+
‖∇R(x)‖

m3
+
‖∇2R(x)‖

m4
< c for all x ∈ U , (5.1)

where ‖.‖ is a norm (for example induced by the scalar product ≺.|γ̇(t) .� on Sγ(t)M),
and c < 1 is a numerical constant (which could be computed explicitly). This conditions
means that curvature should be small on the Compton scale. It is a physically necessary
assumption because otherwise the gravitational field would be so strong that pair creation
would occur, making it impossible to speak of “classical gravity”. Our main result is that
the spliced spin connection goes over to the Levi-Civita connection on the spinor bundle,
up to errors of the order ‖∇R‖/m3 (see Theorem 5.5.1).

5.1. The Regularized Fermionic Operator

Let (M, g) be a globally hyperbolic Lorentzian manifold which coincides with Minkow-
ski space in the past of a Cauchy hypersurface N . Choosing a global time function t
(see [5]), M has a smooth splitting M ∼= R × N with N = t−1({0}). For consistency
with Chapter 4, we use the conventions that the signature of g is (+ − −−), and that
Clifford multiplication satisfies the relation X ·Y + Y ·X = 2g(X, Y ). We denote the
volume measure by dµ(x) =

√
| det g| d4x. The spinor bundle SM is endowed with a
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5. Example: The Fermionic Operator in a Globally Hyperbolic Space-Time

Hermitian inner product of signature (2, 2), which we denote by ≺.|.�. We let D be the
Dirac operator on M , acting on sections ψ ∈ Γ(M,SM) of the spinor bundle. For a given
mass m > 0, we consider the Dirac equation on M ,

(D −m)ψ = 0 . (5.2)

The simplest method for constructing causal fermion systems is to replace the plane-
wave solutions used in Minkowski space (see Section 4.1) by corresponding solutions
of (5.2) obtained by solving a Cauchy problem. More precisely, in the past of N where
our space-time is isometric to Minkowski space, we again introduce the plane-wave solu-
tion ψ~ka− (see (4.2)). Using that the Cauchy problem has a unique solution (see [2] and

the integral representation (5.13) below), we can extend them to smooth solutions ψ̃~ka−
on M by

(D −m) ψ̃~ka− = 0 , ψ̃~ka−|N = ψ~ka− . (5.3)

In obvious generalization of (4.5) and (4.6), we can form superpositions of these solutions,
on which we introduce the scalar product

〈ψ̃|φ̃〉H = 2π

∫
t=const

≺ψ̃(t, x) | ν ·φ̃(t, x)�dµN (t)(x) , (5.4)

where ν is the future-directed unit normal on N (note that this scalar product is inde-
pendent of t due to current conservation). We again denote the corresponding Hilbert
space by H.

In order to introduce a corresponding causal fermion system, we introduce the opera-
tors ι εx and F ε(x) by adapting (4.13) and (4.12),

ι εx : SxM → H : u 7→ −m
π

∑
a=1,2

∫
d3k

2ω
e−

εω
2 ψ̃~ka−≺ψ̃~ka−(x)|u�

F ε(x) = −ι εx (ι εx)∗ : H→ H .

Let us verify that ι εx is injective: For a given non-zero spinor χ ∈ SxM , we choose a wave
function ψ ∈ H which is well-approximated by a WKB wave packet of large negative
energy (by decreasing the energy, we can make the error of the approximations arbitrarily
small). Consider the operator

L : D(L) ⊂ H→ H , (Lψ)(x) = −m
π

∑
a=1,2

∫
d3k

2ω
e−

εω
2 ψ̃~ka−(x) 〈ψ̃~ka−|ψ〉H ,

where D(L) is a suitable dense domain of definition (for example the smooth Dirac
solutions with spatially compact support). As the image of L is obviously dense in H,
there is a vector φ ∈ D such that Lφ approximates ψ (again, we can make the error of
this approximation arbitrarily small). Then 〈φ|ι εxχ〉 ≈ ≺ψ(x)|χ�x. By modifying the
polarization and direction of the wave packet ψ, we can arrange that ≺ψ(x)|χ�x 6= 0.

According to (2.6), the spin space Sεx is defined as the image of F ε
x . We now choose

a convenient basis of Sεx which will at the same time give a canonical identification
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5.1. The Regularized Fermionic Operator

of Sεx with the differential geometric spinor space SxM . We first choose an eigenvector
basis (fεα(x))α=1,...,4 of Sεx = F ε(x)(H) with corresponding eigenvalues

νε1(x), νε2(x) < 0 and νε3(x), νε4(x) > 0 . (5.5)

We normalize the eigenvectors according to

〈fεα(x) | fεβ(x)〉H =
1

|νεα(x)|
δαβ .

Then, according to (2.7), the (fεα(x)) are a pseudo-orthonormal basis of (Sεx,≺.|.�x).
Next, we introduce the vectors

eεα(x) = (ι εx)∗ fεα(x) ∈ SxM .

A short calculation shows that these vectors form a pseudo-orthonormal eigenvector basis
of the operator

(ι εx)∗ι εx : SxM → SxM ,

corresponding to the eigenvalues νεα(x). In analogy to (4.19), we always identify the
spaces SxM and Sεx via the mapping Jεx defined by

Jεx : SxM → Sεx : eεα(x) 7→ fεα(x) . (5.6)

Again identifying x with F ε(x), the kernel of the fermionic operator (2.10) takes the
form (4.21). Exactly as in the proof of Lemma 4.1.2 (cf. the calculation (4.23)), we find
that the kernel of the fermionic operator is given by

P ε(x, y) = −(ιεx)
∗ιεy = −m

π

∑
a=1,2

∫
d3k

2ω
e−εω |ψ̃~ka−(x)�≺ψ̃~ka−(y)| . (5.7)

From this formula we can read off the following characterization of P ε.

Proposition 5.1.1. The kernel of the fermionic operator P ε(x, y) is the unique smooth
bi-solution of (5.2), i.e. in a distributional formulation

P ε
(
(D −m)ψ, φ

)
= 0 = P ε

(
ψ, (D −m)φ

)
for all ψ, φ ∈ Γ0(M,SM) ,

with the following properties:

(i) P ε coincides with the regularized Dirac sea vacuum (4.22) if ψ and φ are both
supported in the past of N .

(ii) P ε is symmetric in the sense that P ε(ψ, φ) = P ε(φ, ψ).

In order to keep the analysis simple, our strategy is to take the limit ε ↘ 0 at an
early stage. In the remainder of this section, we analyze this limit for P ε and for the
Euclidean sign operator. In preparation, we recall the relation between the Dirac Green’s
functions and the solution of the Cauchy problem, adapting the methods in [2] to the first
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order Dirac system. On a globally hyperbolic Lorentzian manifold, one can introduce
the retarded Dirac Green’s function, which we denote by s∧(x, y). It is defined as a
distribution on M ×M , meaning that we can evaluate it with compactly supported test
functions φ, ψ ∈ Γ0(M,SM),

s∧(φ, ψ) =

∫∫
M×M

≺φ(x)|s∧(x, y) ψ(y)� dµ(x) dµ(y) .

We can also regard it as an operator on the test functions. Thus for ψ ∈ Γ0(M,SM), we
set

s∧(x, ψ) =

∫
M

s∧(x, y) ψ(y) dµ(y) ∈ Γ(M,SM) .

The retarded Green’s function is uniquely determined as a solution of the inhomogeneous
Dirac equation

(Dx −m) s∧(x, ψ) = ψ(x) = s∧
(
x, (D −m)ψ

)
(5.8)

subject to the support condition

supp s∧(x, .) ⊂ J∧(x) ,

where J∧(x) denotes the causal past of x. The advanced Dirac Green’s function s∨(x, y) is
defined similarly. It can be obtained from the retarded Green’s function by conjugation,

s∧(x, y)∗ = s∨(y, x) , (5.9)

where the star denotes the adjoint with respect to the Hermitian inner product on the
spinor bundle.

For the construction of the Dirac Green’s functions, it is useful to also consider the
second-order equation

(D2 −m2)ψ = 0 . (5.10)

Using the Lichnerowicz-Weitzenböck identity (see [3]), we can rewrite this equation as(
2∇ +

scal

4
−m2

)
ψ = 0 , (5.11)

where 2∇ denotes the Bochner Laplacian corresponding to the spinorial Levi-Civita
connection. This shows that the operator in (5.10) is normally hyperbolic, ensuring the
existence of the corresponding Green’s function S∧ as the unique distribution on M ×M
which satisfies the equation

(D2 −m2)S∧(x, φ) = φ(x) .

and the support condition
suppS∧(x, .) ⊂ J∧(x)

(see [2, Section 3.4]). Then the Dirac Green’s function can be obtained by the identities

s∧(ψ, φ) = S∧
(
(D +m)ψ, φ

)
= S∧

(
ψ, (D +m)φ

)
. (5.12)
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Figure 5.1.: The cutoff functions η and θε.

The existence of the retarded Green’s function implies that the Cauchy problem

(D −m) ψ̃ = 0 , ψ̃|N = ψ ∈ C∞(N )

has a unique smooth solution, as we now recall. To show uniqueness, assume that ψ̃
is a smooth solution of the Cauchy problem. For given x in the future of N , we
choose a test function η ∈ C∞0 (M) which is identically equal to one in a neighbor-
hood of the set J∧(x) ∩ J∨(N ). Moreover, for a given non-negative function θ ∈ C∞(R)
with θ|(−∞,0] ≡ 0 and θ|[1,∞) ≡ 1 and sufficiently small ε > 0, we introduce the smooth

cutoff function θε(y) = θ(t(y)/ε). Then the product φ := θε η ψ̃ has compact support
(see Figure 5.1), and by (5.8) we obtain

ψ̃(x) = φ(x) = s∧
(
x, (D −m)φ

)
= s∧

(
x, i η (dθε)·ψ̃

)
.

Taking the limit ε↘ 0, we obtain the formula

ψ̃(x) = i

∫
N
s∧(x, y) ν(y)·ψ(y) dµN (y) , (5.13)

where ν is the normal of N . This formula is an explicit integral representation of the
solution in terms of the Green’s function and the initial data, proving uniqueness. On
the other hand, this integral representation can be used to define ψ̃, proving existence.

We next express P ε(x, y) in terms of Green’s functions and the regularized fermionic
operator of Minkowski space.

Lemma 5.1.2. The regularized fermionic operator has the representation

P ε(x, y) =

∫∫
N×N

s∧(x, z1) ν(z1)·P ε(z1, z2) ν(z2)·s∨(z2, y) dµN (z1) dµN (z2) , (5.14)

with P ε(z1, z2) as given by (4.22).

Proof. We use (5.13) in (5.7) and apply (5.9).

Setting ε to zero, we can use the statement of Proposition 5.1.1 as the definition of a
distributional solution of the Dirac equation.
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Definition 5.1.3. The distribution P (x, y) is defined as the unique distributional bi-
solution of (5.2),

P
(
(D −m)ψ, φ

)
= 0 = P

(
ψ, (D −m)φ

)
for all ψ, φ ∈ Γ0(M,SM) , (5.15)

with the following properties:

(i) P coincides with the regularized Dirac sea vacuum (4.22) if ψ and φ are both sup-
ported in the past of N .

(ii) P is symmetric in the sense that P (ψ, φ) = P (φ, ψ).

If the regularization is removed, P ε goes over to P in the following sense.

Proposition 5.1.4.

(a) If ε↘ 0, P ε(x, y)→ P (x, y) as a distribution on M ×M .

(b) If x and y are timelike separated, P (x, y) is a continuous function. In the limit ε↘
0, the function P ε(x, y) converges to P (x, y) pointwise, locally uniformly in x and y.

Proof. Part (a) is a consequence of the uniqueness of the time evolution of distributions.
More specifically, suppose that ψ is a smooth solution of the Dirac equation. We choose
a smooth function η ∈ C∞(R) with η|[0,∞) ≡ 1 and η|(−∞,−1] ≡ 0. Then

(D −m)
(
η(t(x))ψ(x)

)
=
(
Dη(t(x))

)
·ψ(x) =: φ(x) ,

and the function φ is supported in the past of N . Using (5.8) we obtain for any x in the
future of N that

ψ(x) = η(t(x))ψ(x) = s∧(x, φ) = (s∧ ∗ φ)(x) . (5.16)

Regarding the star as a convolution of distributions, this relations even holds if ψ is
a distributional solution of the Dirac equation. Suppose that in the past of N , the
distribution ψ converges to zero (meaning that ψ(ϕ) → 0 for every test function ϕ
supported in the past of N ). Then, as the function φ is supported in the past of N , it
converges to zero as a distribution in the whole space-time. The relation (5.16) shows
that ψ also converges to zero in the whole space-time. In order to prove (a), we first
choose z in the past of N and apply the above argument to the distribution ψ+(x) =
(P ε − P )(x, z). Then according to the explicit formulas in Minkowski space (see (4.22)
and (4.26)), ψ+ converges to zero in the past of N , and thus in the whole space-time.
By symmetry, it follows that for any fixed x, the distribution ψ−(z) := (P ε − P )(z, x)
converges to zero in the past of N . As ψ− is again a distributional solution of the Dirac
equation, we conclude that ψ− converges to zero in the whole space-time.

In order to prove (b), we first note that the singular support of the causal Green’s
functions s∧(x, .) and s∨(., x) lies on the light cone ∂J∧(x) centered at x (see [2, Propo-
sition 2.4.6] and (5.12)). Thus if x and y are timelike separated, the singular supports
of s∧(x, .) and s∨(., y) do not intersect (see Figure 5.2). Moreover, we know from (4.28)
that P ε(z1, z2) converges as a distribution and locally uniformly away from the diago-
nal. Using these facts in (5.14), we conclude that P ε(x, y) converges locally uniformly
to P (x, y). This also implies that P (x, y) is continuous.
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J∧(x)

J∧(y)

N

x

y

t

Figure 5.2.: The singular supports of s∧(x, .) and s∨(., y)

We remark that P (x, y) is even a smooth function away from the light cone; for a proof
for general bi-solutions we refer to [32, 27]. Next, we determine the behavior of the
Euclidean sign operator in the limit ε↘ 0.

Proposition 5.1.5. There is a future-directed timelike unit vector field s such that for
every x ∈M ,

lim
ε↘0

sεx = s(x) ,

where by s(x) we mean the operator on SxM acting by Clifford multiplication.

Proof. A short calculation gives

〈fεα(x) | fεβ(x)〉H =
1

νεαν
ε
β

〈ι εxeεα|ι εxeεβ〉H =
1

νεαν
ε
β

≺eεα|(ι εx)∗ι εxe
ε
β�

= − 1

νεαν
ε
β

≺eεα|P ε(x, x) eεβ� (5.17)

F ε(x) fεα(x) =
1

νεα

(
− ι εx(ι εx)∗ ι εx(eεα)

)
=

1

νεα
ι εx P

ε(x, x) eεα

〈fεα(x) |F ε(x) fεβ(x)〉H = − 1

νεαν
ε
β

≺eεα|P ε(x, x)2 eεβ� . (5.18)

Comparing (5.17) with (5.18), one sees that in our chosen basis,

F ε(x) = P ε(x, x) .

Moreover, we know from (5.5) that F ε(x) has two positive and two negative eigenvalues.
Therefore, it remains to prove that, after a suitable rescaling, P ε(x, x) converges to the
operator of Clifford multiplication by a future-directed timelike unit vector s(x) ∈ TxM ,
i.e.

lim
ε↘0

εpP ε(x, x) = c s(x) (5.19)

for suitable constants p and c.
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In order to prove this claim, in the past of N we choose a chart where the metric is the
Minkowski metric. Moreover, we choose the standard spinor frame and use the notation
of Chapter 4. Then we can combine (5.14) with (5.12) to obtain

P ε(x, x) =

∫∫
R3×R3

s∧(x, z1) γ0 P ε(z1, z2) γ0 s∨(z2, x) d3z1 d
3z2

=

∫∫
R3×R3

S∧(x, z1) (−i
←
∂/z1 +m) γ0P ε(z1, z2)γ0 (i∂/z2 +m)S∨(z2, x) d3z1 d

3z2 ,

where z1/2 = (0, ~z1/2), and the arrow indicates that the derivatives act to the left,

S∧(x, z)
←
∂/z ≡

∂

∂zj
S∧(x, z) γj .

We now integrate by parts the spatial derivatives of z1 and z2. Using the identity

(i~γ ~∇z +m) P ε(z, y) = −iγ0 ∂

∂z0
P ε(z, y) + 2mP ε(z, y)

and its adjoint, we obtain

P ε(x, x) =

∫∫
R3×R3

S∧(x, z1)
(
− i(

←
∂ t1 + ∂t1) + 2mγ0

)
P ε(z1, z2)

×
(
i(
←
∂ t2 + ∂t2) + 2mγ0

)
S∨(z2, x) d3z1 d

3z2 ,

(5.20)

where t1/2 ≡ z0
1/2 are the time components of z1/2.

In the limit ε ↘ 0, the function P ε(z1, z2) becomes singular if z1 = z2 (see (4.26)
in the case t = r = 0). Moreover, the singular supports of the distributions S∧(x, .)
and S∨(., x) coincide (see Figure 5.2 in the case x = y). As a consequence, the integral
in (5.20) diverges as ε↘ 0, having poles in ε. The orders of these poles can be obtained
by a simple power counting. In order to analyze the structure of these poles in more
detail, one performs the Hadamard expansion of the distributions S∧ and S∨ (see [2,
Section 2] or the next section of this work for similar calculations for the fermionic
operator). Substituting the resulting formulas into (5.20), one finds that the higher
orders in the Hadamard expansion give rise to lower order poles in ε. In particular, the
most singular contribution to (5.20) is obtained simply by taking the first term of the
Hadamard expansion of the Green’s function S∧(x, z1), which is a scalar multiple of the
parallel transport with respect to the spinorial Levi-Civita connection along the unique
null geodesic joining z1 and x. Similarly, the Green’s function S∨(z2, x) may be replaced
by a multiple of the parallel transport along the null geodesic joining z2 with x. Moreover,
for the most singular contribution to (5.20) it suffices to consider the lowest order in m,
which means that we may disregard the factors 2mγ0 in (5.20). Finally, we know that in
the limit z1 → z2, the leading contribution to P ε(z1, z2) is proportional to γ0 (see (5.7)
and (4.15)). Putting these facts together, the most singular contribution to P ε(x, x) is
obtained simply by taking the operator γ0 at z1 = z2 = z and to parallel transport it
along the null geodesic joining z with x. Integrating z over the set ∂J∧(x)∩N , we obtain
the desired operator of Clifford multiplication in (5.19).
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5.2. The Hadamard Expansion of the Fermionic
Operator

In this section we shall analyze the singularity structure of the distribution P introduced
in Definition 5.1.3 by performing the so-called Hadamard expansion. In order to be able
to apply the methods worked out in [2, Section 2], it is preferable to first consider the
second-order equation (5.10). The following lemma relates P to a solution of (5.10).

Lemma 5.2.1. Let T be the unique symmetric distributional bi-solution of the Klein-
Gordon equation (5.10) which coincides with the Fourier transform of the lower mass
shell

T (x, y) =

∫
d4k

(2π)4
δ(k2 −m2) Θ(−k0) e−ik(x−y) (5.21)

for x and y in the past of N . Then

P (ψ, φ) = T
(
(D +m)ψ, φ

)
. (5.22)

Proof. We introduce the distribution Pm by

Pm(ψ, φ) =
1

2m
T
(
(D +m)ψ, (D +m)φ

)
.

Obviously, Pm is symmetric and satisfies the Dirac equation (5.15). Moreover, a short
calculation using (5.21) and (4.24) shows that Pm coincides with the regularized Dirac
sea vacuum (4.22) if ψ and φ are both supported in the past of N . We conclude that Pm
coincides with the distribution P of Definition 5.1.3. Obviously, Pm is also a bi-solution
of the Klein-Gordon equation. Flipping the sign of m, we get another bi-solution P−m
of the Klein-Gordon equation. Again using (5.21) and (4.24), we find that the following
combination of Pm and P−m coincides with T ,

T =
1

2m
(Pm − P−m) , (5.23)

The fact that the operator Pm is a bi-solution of the Dirac equation implies that it
commutes with D,

Pm(Dψ, φ) = mPm(ψ, φ) = Pm(ψ,Dφ) (5.24)

and similarly for P−m. We thus obtain

P (ψ, φ) =
1

2m
T
(
(D +m)ψ, (D +m)φ

)
(5.23)
=

1

(2m)2

(
Pm
(
(D +m)ψ, (D +m)φ

)
− P−m

(
(D +m)ψ, (D +m)φ

))
(5.24)
=

1

(2m)2

(
Pm
(
(D +m)2ψ, φ

)
− P−m

(
(D +m)2ψ, φ

))
=

1

2m
T
(
(D +m)2ψ, φ

)
= T

(
(D +m)ψ, φ

)
,

giving the result.
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We now perform the Hadamard expansion of the distribution T using the methods
of [9, 24, 32, 30, 2]. Assume that Ω ⊂ M is a geodesically convex subset (see [2, Defi-
nition 1.3.2]). Then for any x, y ∈ Ω, there is a unique geodesic c in Ω joining y and x.
We denote the squared length of this geodesic by

Γ(x, y) = g
(

exp−1
y (x), exp−1

y (x)
)

(note that Γ is positive in timelike directions and negative in spacelike directions) and
remark that the identity

g(gradx Γ, gradx Γ) = 4Γ (5.25)

holds. In order to prescribe the behavior of the singularities on the light cone, we set

Γε(x, y) = Γ + iε
(
t(x)− t(y)

)
and introduce the short notation

1

Γp
= lim

ε↘0

1

(Γε)p
and log Γ = lim

ε↘0
log Γε = log |Γ| − iπ ε

(
t(x)− t(y)

)
(5.26)

(where ε is again the step function), with convergence in the distributional sense. Here
the logarithm is cut along the positive real axis, with the convention

lim
ε↘0

log(1 + iε) = −iπ .

In the past of N , this prescription gives the correct singular behavior of the distribu-
tion (4.24) on the light cone (for details see [12, eqns (2.5.39)-(2.5.41)]). Using the
methods of [24], it follows that this prescription holds globally. We remark that the
rule (5.26) also implements the local spectral condition in [32].

In [2, Section 2], the Hadamard expansion is worked out in detail for the causal Green’s
functions of a normally hyperbolic operator. Adapting the methods and results in a
straightforward way to the distribution T , we obtain the Hadamard expansion

(−8π3)T (x, y) =
V
Γ

Πy
x +

log(Γ)

4
V y
x +

Γ log(Γ)

32
W y
x + ΓHy

x + O(Γ2 log Γ) (5.27)

(the normalization constant (−8π3) can be read off from (4.26) and (4.31), because T (x, y)
coincides with β/m if x and y are in the past of N ). Here V(x, y) is the square root of
the van Vleck-Morette determinant (see for example [30]), which in normal coordinates
around y is given by

V(x, y) = | det(g(x))|−
1
4 . (5.28)

Moreover, Πy
x : SyM → SxM denotes the spinorial Levi-Civita parallel transport along c.

The linear mappings V y
x ,W

y
x , H

y
x : SyM → SxM are called Hadamard coefficients. They

depend smoothly on x and y, and can be determined via the Hadamard recurrence
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relations [9]. Namely, inserting the expansion (5.27) into the Klein-Gordon equation
(5.11), we obtain the relations

2g
(

gradx Γ, gradx V
)
Πy
x = (2Γ + 8)V Πy

x (5.29)

∇gradx ΓV
y
x −

(1

2
2Γ + 2

)
V y
x = 2

(
2∇ +

scal

4
−m2

)
(V Πy

x) (5.30)

∇gradx ΓW
y
x −

1

2
2ΓW y

x = 4
(
2∇ +

scal

4
−m2

)
V y
x , (5.31)

where 2 = − div grad is the Laplace-Beltrami operator on M . The relation (5.29) is true
(as it is the defining property of the van Vleck-Morette determinant), and the ordinary
differential equations (5.30) and (5.31) can be solved by integration along the geodesic c
(see [2, Section 2] for a proof of these statements). We remark that one could also give an
explicit formula for Hy

x . However, as this contribution has no influence on the subsequent
results, we omitted the corresponding recurrence relation in the above formulas.

Writing the result of Lemma 5.2.1 with distributional derivatives as P (x, y) = (Dx +
m)T (x, y), we obtain the Hadamard expansion of P by differentiation.

Corollary 5.2.2. The distribution P (x, y) has the Hadamard expansion

(−8π3)P (x, y) = −iV
Γ2

gradx Γ·Πy
x +

i

Γ
gradx V·Πy

x +
V
Γ

(Dx +m)Πy
x

+
i

4Γ
gradx Γ·V y

x +
log(Γ)

4
(Dx +m)V y

x + i
(1 + log(Γ))

32
gradx Γ·W y

x

+ i gradx Γ·Hy
x + O(Γ log Γ) . (5.32)

The Hadamard coefficients appearing in formula (5.32) are calculated explicitly in Ap-
pendix A in terms of curvature expressions.

5.3. The Fermionic Operator Along Timelike Curves

Assume that γ(t) is a future-directed, timelike curve which joins two space-time points
p, q ∈M . For simplicity, we parametrize the curve by arc length on the interval [0, tmax]
such that γ(0) = q and γ(tmax) = p. For any given N , we define the points x0, . . . , xN by

xn = γ(tn) with tn =
n

N
tmax . (5.33)

Note that these points are all timelike separated, and that the geodesic distance of
neighboring points is of the order 1/N . In this section we want to compute P (xn+1, xn)
in powers of 1/N . To this end, we consider the Hadamard expansion of Corollary 5.2.2
and use that 0 < Γ(xn+1, xn) ∈ O(1/N). Thus our main task is to expand the Hadamard
coefficients in (5.32) in powers of 1/N . For ease in notation, we set

x = xn+1 and y = xn .
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Possibly by increasing N , we can arrange that x and y lie in a geodesically convex
subset Ω ⊂M . We let c be the unique geodesic in Ω joining y and x,

c : [0, 1]→M , c(τ) := expy(τT ) with T := exp−1
y (x) . (5.34)

We also introduce the expansion parameter

δ :=
√

Γ(x, y) =
√
g(T, T ) ∈ O

( 1

N

)
.

Next, we let {e0 = δ−1T, e1, e2, e3} be a pseudo-orthonormal basis of TyM , i.e.

g(ej, ek) = εj δjk ,

where the signs εj are given by

εj :=

{
+1 if j = 0

−1 if j = 1, 2, 3 .
(5.35)

We extend this basis to a local pseudo-orthonormal frame of TΩ by

ej(z) = Λy
z ej , (5.36)

where Λy
z denotes the Levi-Civita parallel transport in TM along the unique geodesic

in Ω joining y and z. Then the following propositions hold.

Proposition 5.3.1. The kernel of the fermionic operator has the expansion

(−8π3) P (x, y) = − i

Γ2
gradx Γ·Πy

x +
m

Γ
Πy
x + O(δ−1) . (5.37)

Proposition 5.3.2. The closed chain has the expansion

(−8π3)2 Axy = c(x, y) 11SxM (5.38)

+m
(
m2 − scal

12

) Im(log Γ)

2Γ2
gradx Γ (5.39)

+ i
[

gradx Γ, Xxy

]
+
{

gradx Γ, Yxy
}

(5.40)

+ O(δ−1 log δ) ,

where all operators act on SxM . Here Xxy and Yxy are symmetric linear operators and

Xxy = O(δ−3) , Yxy = O(δ−3 log δ) .

The proof of Propositions 5.3.1 and 5.3.2 is given in Appendix B.
Note that the contribution (5.39) is of the order δ−3, whereas (5.40) is of the or-

der O(δ−2 log δ). The term (5.39) amounts to Clifford multiplication with gradx Γ and
is thus analogous to the term a(ξ) ξ/ in the closed chain (4.32) of Minkowski space. The
contributions (5.40) will be discussed in detail in the next section.
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5.4. The Unspliced versus the Spliced Spin Connection

In this section, we compute the unspliced and spliced spin connections and compare
them. We write the results of Corollary 5.2.2 and Proposition 5.3.2 as

(−8π3) P (x, y) = − i

Γ2
gradx Γ·Πy

x +
m

Γ
Πy
x + O(δ−1) (5.41)

(−8π3)2 Axy = cxy + axy gradx Γ

+ i
[

gradx Γ, Xxy

]
+
{

gradx Γ, Yxy
}

+ O
(
δ−1 log δ

)
, (5.42)

where
axy ∼ δ−4 and Xxy ∼ δ−3 .

We want to compute the directional sign operator vxy (see Definition 3.3.2) in an expan-
sion in powers of δ. To this end, we first remove the commutator term in (5.42) by a
unitary transformation,

(−8π3)2 e−iZxy Axy e
iZxy = cxy + axy gradx Γ +

{
gradx Γ, Yxy

}
+ O

(
δ−1 log δ

)
, (5.43)

where we set

Zxy = −Xxy

axy
∼ δ . (5.44)

We let u ∈ TxM be a future-directed timelike unit vector pointing in the direction
of gradx Γ. Then the operator u (acting by Clifford multiplication) is a sign operator (see
Definition 3.1.5), which obviously commutes with the right side of (5.43). Hence the di-
rectional sign operator (see Definition 3.3.2) is obtained from u by unitarily transforming
backwards,

vxy = eiZxy u e−iZxy = u+ i
[
Zxy, u

]
+ O

(
δ2 log2 δ

)
. (5.45)

In order to construct the synchronization map at x, it is convenient to work with
the distinguished subspace K(x) of Symm(SxM) spanned by the operators of Clifford
multiplication with the vectors e0, . . . , e3 ∈ TxM and the pseudoscalar operator e4 =
−e0 · · · e3 (thus in the usual Dirac representation, K = 〈γ0, . . . , γ3, iγ5〉). The subspace K
is a distinguished Clifford subspace (see Definition 3.1.1 and Definition 3.7.4). The inner
product (3.1) extends the Lorentzian metric on TxM to K(x). The space Symm(SxM)
is spanned by the 16 operators 11, ej and σjk = i

2
[ej, ek] (where j, k ∈ {0, . . . , 4}), giving

the basis representation

Zxy = c+
4∑

j,k=0

Bjkσjk +
4∑
j=0

wjej .

The first summand is irrelevant as it drops out of the commutator in (5.45). The second
summand gives a contribution to vxy which lies in the distinguished Clifford subspace,

∆u := i

4∑
j,k=0

[
Bjkσjk, u

]
= 4

4∑
j,k=0

Bjkuj ek ∈ K , (5.46)
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whereas the last summand gives a bilinear contribution

i
[
w, u

]
with w :=

4∑
j=0

wjej .

We thus obtain the representation

vxy = u+ ∆u+ i
[
w, u

]
+ O

(
δ2 log2 δ

)
. (5.47)

We next decompose w ∈ K as the linear combination

w = αu+ β s(x) + ρ with ρ ⊥ u and ρ ⊥ s(x) . (5.48)

If u and s(x) are linearly dependent, we choose β = 0. Otherwise, the coefficients α and β
are uniquely determined by the orthogonality conditions. Substituting this decomposition
into (5.47), we obtain

vxy = eiρ eiβs(x)
(
u+ ∆u

)
e−iβs(x) e−iρ + O

(
δ2 log2 δ

)
. (5.49)

Comparing with Lemma 3.2.2 and Definition 3.2.3, one finds that eiρ is the synchroniza-
tion map Uu,s(x) at x. The mapping eiβs(x), on the other hand, identifies the represen-
tatives K, K

(y)
x ∈ Tsx of the tangent space Tx (see Definition 3.1.9). Using the notation

introduced after Definition 3.3.2 and at the beginning of Section 3.4, we have Uxy = eiρ

and
Kxy = eiρK(y)

x e−iρ and K(y)
x = eiβs(x) K(x) e−iβs(x) . (5.50)

We next compute the synchronization map at the point y. Since the matrices Axy
and Ayx have the same characteristic polynomial, we know that

vxy P (x, y) = P (x, y) vyx .

Multiplying by

(−8π3)−1 P (x, y)−1 =
i

4
Γ Πx

y gradx Γ− m

4
Γ2 Πx

y + O(δ5)

(where we used (5.41) and (5.25)), a direct calculation using (5.47) gives

vyx = Πx
y

(
u−∆u− i

[
w, u

] )
Πy
x + O

(
δ2 log2 δ

)
.

Using that s(y) = Πx
y s(x) Πy

x + O(δ), we obtain similar to (5.50)

Kyx = Πx
ye
−iρΠy

xK
(x)
y Πx

ye
iρΠy

x and K(x)
y = Πx

ye
−iβs(x)Πy

x K(y) Πx
ye
iβs(x)Πy

x . (5.51)

We are now ready to compute the spin connections introduced in Definitions 3.3.4
and 3.7.5.
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Proposition 5.4.1. The unspliced and spliced spin connections are given by

Dx,y =
(

11 + (∆u)·u+ 2i (β s(x) + ρ)
)

Πy
x + O(δ2 log2 δ) (5.52)

D(x,y) =
(

11 + (∆u)·u
)

Πy
x + O(δ2 log2 δ) . (5.53)

Proof. We first compute the unspliced spin connection using the characterization of The-
orem 3.3.7. A short calculation using (5.41) and (5.47) gives

(−8π3)2Axy =
4

Γ3
+ O(δ−4)

A
− 1

2
xy P (x, y) = −

(∣∣− 8π3
∣∣−1

A
− 1

2
xy

) (
(−8π3)P (x, y)

)
=
i

2
Γ−

1
2 gradx Γ·Πy

x −
m

2
Γ

1
2 Πy

x + O(δ2)

= iu·Πy
x −

m

2
Γ

1
2 Πy

x + O(δ2) .

In order to evaluate the condition (ii) of Theorem 3.3.7, it is easiest to transform the
Clifford subspaces Kxy and Kyx to the distinguished Clifford subspace K(x) and K(y),
respectively. In view of (5.50) and (5.51), we can thus rewrite the condition (ii) of
Theorem 3.3.7 by demanding that the unitary transformation

V := e−iβs(x) e−iρ
(
eiϕ vxy A

− 1
2

xy P (x, y)
)

Πx
y e
−iρe−iβs(x) Πy

x

transforms the distinguished Clifford subspaces to each other,

V K(y)V −1 = K(x) . (5.54)

The operator V is computed by

V = e−iβs(x) e−iρ eiϕ vxy
(
iu− m

2
Γ

1
2

)
e−iρe−iβs(x) Πy

x + O(δ2)

(5.49)
= eiϕ (u+∆u) e−iβs(x) e−iρ

(
iu− m

2
Γ

1
2

)
e−iρe−iβs(x) Πy

x + O(δ2)

=
{
eiϕ (u+∆u)

(
iu− m

2
Γ

1
2 + 2β 〈u, s(x)〉

)}
Πy
x + O(δ2 log2 δ). (5.55)

Now the condition (5.54) means that the curly brackets in (5.55) describe an infinitesimal
Lorentz transformation on K(x). Thus the brackets must only have a scalar and a bilinear
contribution, but no vector contribution. This leads us to choose ϕ such that

sinϕ = −1 + O(δ2 log2 δ) , cosϕ = −m
2

Γ
1
2 + 2β 〈u, s(x)〉+ O(δ2 log2 δ) < 0 (5.56)

(note that this choice of ϕ is compatible with our convention (3.44)). It follows that

V =
(

11 + (∆u)·u
)

Πy
x + O(δ2 log2 δ)

Dx,y Πx
y = eiϕ vxy A

− 1
2

xy P (x, y) Πx
y

= 11 + (∆u)·u+ i[w, u]u+ 2iβ 〈u, s(x)〉u+ O(δ2 log2 δ)

(5.48)
= 11 + (∆u)·u+ 2i (β s(x) + ρ) + O(δ2 log2 δ) .
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Finally, using the notions of Definition 3.7.5, we obtain

U |y)
x = e−iβs(x) e−iρ , U (x|

y = e−iρ e−iβs(x) (5.57)

D(x,y) = U |y)
x Dx,y U

(x|
y = 11 + (∆u)·u+ O(δ2 log2 δ) , (5.58)

completing the proof.

The terms in the statement of the above proposition are quantified in the next lemma,
which is again proven in Appendix B.

Lemma 5.4.2. The linear operators ∆u and βs + ρ in (5.53) and (5.52) have the ex-
pansions

∆u =
1

6 δ

(
m2 − scal

12

)−1

εj (∇ejR)(T, ej)T + O(δ2 log2 δ) (5.59)

βs+ ρ =

[
O
( 1

m
‖εj Ric(T, ej) ej‖

)
+ O

(
δ

m3

(
‖R‖2 + ‖∇2R‖

))](
1 + O

(scal

m2

))
+ O(δ2 log2 δ) . (5.60)

Let us discuss these formulas. We first point out that all the terms in (5.59) and (5.60)
are of the order O(δ). Thus the corresponding correction terms in (5.52) and (5.53)
are also of the order O(δ). In the next section, we shall see that adding up all these
correction terms along a timelike curve will give a finite deviation from the spinorial
parallel transport. If we assume furthermore that the Compton scale is much smaller
than the length scale where curvature effects are relevant,

‖∇2R‖
m4

� ‖∇R‖
m3

� ‖R‖
m2
� 1 , (5.61)

then this deviation will even be small. More specifically, the term involving the Ricci
tensor in (5.60) is the leading correction term. As shown in Proposition 5.4.1, this
leading correction enters the unspliced spin connection, but drops out of the spliced spin
connection. This explains why it is preferable to work with the spliced spin connection.

The above calculations also reveal another advantage of splicing: The corrections in
the spliced spin connection are bilinear contributions (see (5.53) and (5.59)) and can
thus be interpreted as describing an infinitesimal Lorentz transformation. However, the
corrections in the unspliced spin connection (see (5.52) and (B.16)) involve vector con-
tributions, which have the unpleasant feature that they do not leave the distinguished
Clifford subspaces K(x) invariant.

5.5. Parallel Transport Along Timelike Curves

We are now in the position to prove the main theorem of this section. We return to the
setting of the beginning of Section 5.3 and consider a future-directed, timelike curve γ
which joins two space-time points p, q ∈ M . For any given N , we again define the
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intermediate points x0, . . . , xN by (5.33). We then define the parallel transport DN,ε
xy by

successively composing the spliced spin connection between neighboring points,

DN,ε
(p,q) := Dε

(xN ,xN−1) D
ε
(xN−1,xN−2) · · · Dε

(x1,x0) : Sq → Sp , (5.62)

where Dε is the spliced spin connection induced from the regularized fermionic opera-
tor P ε. Substituting the formulas (5.53) and (5.59), one gets N correction terms (∆u)·u,
each of which is of the order δ ∼ N−1. Thus in the limit N → ∞, we get a finite
correction, which we now compute.

Theorem 5.5.1. Let (M, g) be a globally hyperbolic manifold which is isometric to
Minkowski space in the past of a Cauchy-hypersurface N . Then the admissible curves
(see Definition 4.4.1) are dense in the C∞-topology. Choosing N ∈ N and ε > 0 such
that the points xn and xn−1 are spin-connectable for all n = 1, . . . , N , every point xn lies
in the future of xn−1. Moreover,

lim
N→∞

lim
ε↘0

DN,ε
(p,q) = DLC

p,q Texp

(
1

6

∫
γ

(
m2 − scal

12

)−1

×DLC

q,γ(t)

[
εj (∇ejR)

(
γ̇(t), ej

)
γ̇(t)

]
· γ̇(t)·DLC

γ(t),q dt

)
,

where γ(t) is a parametrization by arc length, and DLC

p,q denotes the parallel transport
along γ with respect to the spinorial Levi-Civita connection, and Texp is the time-ordered
exponential (we here again identify Sεx and SxM via (5.6)).

Proof. Substituting the formula (5.53) into (5.62), one gets a product of N linear opera-
tors. Taking the limitN →∞ and using that differential quotients go over to differentials,
one obtains a solution of the linear ordinary differential equation

d

dt
D(γ(t),q) =

(
lim
δ↘0

1

δ
(∆u)·u

)
· D(γ(t),q) .

Here the limit δ ↘ 0 can be computed explicitly using (5.59). Then the differential
equation can be solved in terms of the time-ordered exponential (also called Dyson series;
see [35, Section 1.2.1 and 7.17.4]). This gives the result.

This theorem shows that in the limit ε ↘ 0 and locally in the neighborhood of a given
space-time point, the spliced spin connection reduces to the spinorial Levi-Civita connec-
tion, up to a correction term which involves line integrals of derivatives of the Riemann
tensor along γ. Computing the holonomy of a closed curve, one sees that the correspond-
ing spliced spin curvature equals the Riemann curvature, up to higher order curvature
corrections.

For clarity, we point out that the above theorem does not rely on the fact that we
are working with distinguished representatives of the tangent spaces. Namely, replac-
ing (5.62) by the products of the unspliced spin connection with intermediate splice
maps,

DN,ε
p,q := Dε

xN ,xN−1
U (xN |xN−2)
xN−1

Dε
xN−1,xN−2

U (xN−1|xN−3)
xN−2

· · · U (x2|x0)
xN−1

Dε
x1,x0

,
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the above theorem remains true (to see this, we note that in view of (3.58) and (3.59),

the parallel transpors DN,ε
p,q and DN,ε

(p,q) differ only by the two factors U
|xN−1)
xN and U

(x1|
x0 ,

which according to (5.57) and Lemma 5.4.2 converge to the identity matrix).

Corollary 5.5.2. Under the assumptions of Theorem 5.5.1, the the metric connection
and the Levi-civita connection are related by

lim
N→∞

lim
ε↘0
∇N
x,y −∇LC

x,y = O

(
L(γ)

‖∇R‖
m2

)(
1 + O

(scal

m2

))
, (5.63)

where L(γ) is the length of the curve γ, and

∇N,ε
p,q := ∇xN ,xN−1

∇xN−1,xN−2
· · · ∇x1,x0 : Tq → Tp .

Proof. This follows immediately from Theorem 5.5.1 and the identity

∇N,ε
p,q uq = DN,ε

(p,q)uq ·D
N,ε
(q,p) ,

where we again identify the tangent space TxM with the distinguished Clifford sub-
space K(x) of Symm(SxM) (see after (5.45)).

We finally discuss the notions of parity preserving, chirally symmetric and future-transi-
tive fermion systems (see Definitions 3.4.2, 3.6.1 and 3.8.2). Since our expansion in powers
of δ only gives us information on P (x, y) for nearby points x and y, we can only analyze
local versions of these definitions. Then the expansion (5.56) shows that the fermion
system without regularization is locally future-transitive and locally parity-preserving.
Moreover, as the formula (5.53) only involves an even number of Clifford multiplications,
the fermion system is locally chirally symmetric (with the vector field u(x) in Defini-
tion 3.6.1 chosen as i times the pseudoscalar matrix), up to the error term specified
in (5.53).
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We have shown in this thesis how geometric structures can arise in the fermionic projector
approach. Working in the formalism of causal fermion systems, we deduced space-time
as a topological space and introduced the geometric notions of spin space, tangent space,
connection and curvature. We have then considered natural examples of causal fermion
systems arising from regularizations of Dirac sea configurations. We have seen that in
a suitable limit, the induced geometric objects reduce to the corresponding objects of
differential geometry on a globally hyperbolic Lorentzian manifold. But our framework is
more general, as it allows to also describe space-times with a non-trivial microstructure
(like discrete space-times, space-time lattices or regularized space-times). In this way, the
notions of Lorentzian geometry can be extended to a much broader context, potentially
including an appropriate model of the physical quantum space-time.

Concerning the technical assumptions made in this work, we first point out that the
assumptions (A) and (B) at the beginning of Chapter 5 should be considered only as a
technical simplification. More generally, the fermionic operator can be introduced using
a causality argument which gives a canonical splitting of the solution space of the Dirac
equation into two subspaces. One of these subspaces extends the notion of the Dirac sea
to interacting systems (see [12, Section 2.4]). So far, this method has been worked out
only perturbatively in terms of the so-called causal perturbation expansion (see [19] and
for linearized gravity [11, Appendix B]). This shortcoming was our motivation for the
above assumptions (A) and (B), which made it possible to carry out all constructions
non-perturbatively. To avoid confusion, we note that the fermionic operator constructed
by solving the Cauchy problem (see Proposition 5.7) does in general not coincide with
the physical fermionic operator obtained by the causal perturbation expansion in the
same space-time (because solving the Cauchy problem for vacuum initial data is usu-
ally not compatible with the global construction in [12, eqns (2.2.16) and (2.2.17)]).
However, these two fermionic operators have the same singularity structure on the light
cone, meaning that after removing the regularization, both fermionic operators have the
same Hadamard expansion. Since in the constructions of Sections 5.2-5.5, we worked
exclusively with the formulas of the Hadamard expansion, all the results in these sec-
tions immediately carry over to the physical fermionic operator. We also point out that
throughout this thesis, we worked with the simplest possible regularization by a conver-
gence generating factor e−ε|k

0| (see Lemma 4.1.2). More generally, one could consider a
broader class of regularizations as introduced in [12, §4.1]. All our results will carry over,
provided that the Euclidean sign operator has a suitable limit as ε↘ 0 (similar to (4.20)
and Lemma 5.1.5).

A possible direction of future research would be to generalize our constructions to
systems with several families of elementary particles (see [12, §2.3]). In this setting, only
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the largest mass will enter the conditions (5.1) and (5.61), so that it is indeed possible
to describe physical systems involving fermions with an arbitrarily small or vanishing
rest mass. Working with several generations also gives the freedom to perform local
transformations before taking the partial trace (as is worked out in [15, Section 7.6]
for axial potentials). This freedom can be used to modify the logarithmic poles of the
fermionic operator on the light cone. In this context, an interesting future project is to
study causal fermion systems in the presence of an electromagnetic field. We expect that
the spin connection will then also include the U(1)-gauge connection of electrodynamics.
Another direction of future research would be to study the geometry of causal fermion
systems with regularization (i.e. without taking the limit ε↘ 0). It seems an interesting
program to study the “quantum structure” of the resulting space-times.

From the mathematical point of view, the constructions in this thesis extend the basic
notions of Lorentzian spin geometry to causal fermion systems. However, most of the
classical problems in geometric analysis and differential geometry have not yet been
analyzed in our setting. For example, it has not yet been studied how “geodesics” are
introduced in causal fermion systems, and whether such geodesics can be obtained by
minimizing the “length of curves” (similar as in (5.62), such a “curve” could be a finite
sequence of space-time points). Maybe the most important analytic problem is to get
a connection between the geometric objects defined here and the causal action principle
(see [12, §3.5] and [17]). From the geometric point of view, our notions of connection and
curvature describe the local geometry of space-time. It is a challenging open problem
to explore how these local notions are related to the global geometry and topology of
space-time.
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A. The Expansion of the Hadamard
Coefficients

In this appendix we will derive expansions of the Hadamard coefficients in (5.32) in
powers of δ. We will need these expansions for the proofs in Appendix B. In terms of the
pseudo-orthonormal frame ej (see (5.36)), the Dirac operator on SM is given by

Dψ = i εj ej ·∇ejψ , with ψ ∈ Γ(M,SM) . (A.1)

Here ∇ denotes the spinorial Levi-Civita connection, the dot denotes Clifford multipli-
cation, and the signs εj are defined in (5.35). We denote space-time indices by Latin
letters j, k, . . . ∈ {0, 1, 2, 3}, and spatial indices by Greek letters α, β, . . . ∈ {1, 2, 3}.
Furthermore, we use Einstein’s summation convention.

A.1. The Coefficient DxΠy
x

In order to calculate the derivatives of the spinorial parallel transport Πy
x with respect

to the vectors ej, we introduce suitable local coordinates. To this end, we consider the
family of geodesics

cs(t) := c(t, s1, s2, s3) := expy
(
tu+ tsαeα

)
, (A.2)

where u = exp−1
y (x) = δ e0. The curve c0 obviously coincides with the curve c defined in

(5.34). The exponential map (A.2) also gives rise to local coordinates (t, sα) around y,
with corresponding local coordinate vector fields

T :=
∂cs
∂t

and Yα :=
∂cs
∂sα

. (A.3)

The vector field T is the tangent field of the curves cs, and in terms of ej it is given by

T = δ e0 + sα eα . (A.4)

Since in this appendix we always consider variations of the curve c0, we can assume that
sα = O(δ), and thus

T = O(δ) .
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Moreover, the vector field T is timelike and the fields Yα are spacelike. By definition of
the vector fields ej and of the spinorial parallel transport Πy

cs(t)
, it also follows that

∇T Πy
cs(t)

= 0 (A.5)

∇T ej|cs(t) = 0 (A.6)

∇ejΠ
y
cs(t)

= O(δ) (A.7)

∇ejek|cs(t) = O(δ) . (A.8)

The vector fields Yα are Jacobi fields, i.e. they are solutions of the Jacobi equation

∇T∇TYα = R(T, Yα)T (A.9)

with initial conditions

Yα|t=0 = 0 and ∇TYα|t=0 = eα , (A.10)

where R denotes the Riemann tensor on TM . This initial value problem can be solved
perturbatively along each curve cs:

Lemma A.1.1. The following expansions in powers of δ hold:

Yα|cs(t) = teα + Λy
cs(t)

∫ t

0

dτ Λcs(τ)
y

∫ τ

0

dσ σΛ
cs(σ)
cs(τ)R(T, eα)T |cs(σ) + O(δ4) (A.11)

∇YβYα|cs(t) =
t3

3
R(T, eβ)eα +

t3

3
R(T, eα)eβ + O(δ2) (A.12)

∇Yγ∇YβYα|cs(t) =
t3

3
R(eγ, eβ)eα +

t3

3
R(eγ, eα)eβ + O(δ) . (A.13)

Proof. To prove (A.11), one simply differentiates with respect to T and verifies that the
Jacobi equation is fulfilled. Next, using (A.11), one finds

∇T∇YβYα|cs(t) =R(T, Yβ)Yα +∇Yβ∇TYα

=R(T, Yβ)Yα +∇Yβeα

+ Λy
cs(t)

∫ t

0

dτ τ
(
R(eβ, eα)T +R(T, eα)eβ

)
+ O(δ)2 . (A.14)

Since eα is parallel along cs, we have

∇T∇Yβeα = R(T, Yβ) eα (A.15)

and thus by integrating (A.14) and (A.15) along c, we obtain

∇YβYα|cs(t) = Λy
cs(t)

∫ t

0

dτ τ 2R(T, eβ)eα + O(δ2)

+ Λy
cs(t)

∫ t

0

dτ

∫ τ

0

dσ σΛcs(σ)
y

(
R(T, eβ)eα +R(eβ, eα)T +R(T, eα)eβ

)
=
t3

3
R(T, eβ)eα +

t3

6

(
R(T, eβ)eα +R(eβ, eα)T +R(T, eα)eβ

)
+ O(δ2)

=
t3

3
R(T, eβ)eα +

t3

3
R(T, eα)eβ + O(δ2) ,
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x

where we performed a Taylor expansion of the integrand around cs(t) and applied the
first Bianchi identities. Using (A.12) and (A.8), we obtain (A.13).

The spinorial curvature tensor R on SM is defined by the relation

R(X, Y )ψ := ∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ ,

valid for any X, Y ∈ TpM and ψ ∈ Γ(M,SM). In the local pseudo-orthonormal
frame (ej), it takes the form

R(X, Y )ψ =
1

4
εjεk g

(
R(X, Y )ej, ek

)
ej ·ek ·ψ . (A.16)

Using (A.5) and the fact that the local coordinate vector fields T and Yα commute, we
conclude that

∇T∇Yα Πy
c(t) = R(T, Yα) Πy

c(t). (A.17)

Integrating this equation gives

∇YαΠy
c(t) = Πy

c(t)

∫ t

0

Πc(τ)
y R(T, Yα)|c(τ)Π

y
c(τ)dτ . (A.18)

Using this formula, we can now derive the expansion of the Hadamard coefficient DxΠy
x.

Proposition A.1.2. The Hadamard coefficient DxΠy
x has the expansion

DxΠy
x =− i

2
εj

(∫ 1

0

tRic(T, ej)|c(t) dt
)
ej ·Πy

x

+
i

24
εjεpεq

(
εk g
(
R(ej, T )T, ek

)∣∣
x

∫ 1

0

t g
(
R(T, ek)ep, eq

)
|c(t) dt

)
ej ·ep ·eq ·Πy

x

+ O(δ4) .

Proof. From (A.11) we conclude that

Yα|c(t) = teα|c(t) +
t3

6
R(T, eα)T |c(t) + O(δ3)

= teα|c(t) +
t3

6
εkg
(
R(T, eα)T, ek

)
ek|c(t) + O(δ3) ,

where we performed a Taylor expansion of the integrand in (A.11) around c(t). Thus

eα|x = Yα −
1

6
g
(
R(eα, T )T, eβ)

)
Yβ + O(δ3) .

Then, from (A.18) we conclude that

∇eαΠy
x = Πy

x

∫ 1

0

dτ τΠc(τ)
y R(T, eα)|c(τ)Π

y
c(τ)

+
1

6
εk g
(
R(eα, T )T, ek)

)∣∣
x
Πy
x

∫ 1

0

dτ τΠc(τ)
y R(T, ek)|c(τ) Πy

c(τ)

+ O(δ4) . (A.19)

69



A. The Expansion of the Hadamard Coefficients

Representing the Dirac operator as in (A.1), we find

DxΠy
x = iΠy

x

∫ 1

0

dτ τΠc(τ)
y εjej ·R(T, ej)|c(τ)Π

y
c(τ)

+
i

24
εjεpεq

(
εk g
(
R(ej, T )T, ek

)∣∣
x

∫ 1

0

t g
(
R(T, ek)ep, eq

)
|c(t) dt

)
ej ·ep ·eq ·Πy

x

+ O(δ4) ,

where we used (A.16) and the fact that the vector fields ej are parallel along c. The
result now follows from the identity

εjej ·R(ej, X)ψ =
1

2
εj Ric(ej, X)ej ·ψ for X ∈ TpM and ψ ∈ Γ(M,SM) , (A.20)

which is easily verified by applying (A.16) as well as the first Bianchi identities.

A.2. The Coefficient V y
x

We now compute the expansion of the coefficient V y
x . The Hadamard recurrence relations

(5.30) can be integrated along c, giving the explicit formula

V y
c(t) = −1

t
V(c(t), y) Πy

c(t)

∫ t

0

dτ V−1(c(τ), y)

× Πc(τ)
y

(
2∇z +

scal(z)

4
−m2

)(
V(z, y) Πy

z

)∣∣∣
z=c(τ)

.

(A.21)

(see [2, Section 2] for a proof). Note that this formula remains true if we replace the
curve c by the curve cs as defined in (A.2). For the computation of the term in (A.21)
which contains the Bochner Laplacian, it is most convenient to work in local normal
coordinates around y,

Ω 3 p = expy(xjej) . (A.22)

The corresponding coordinate vector fields are given by

Xj :=
∂

∂xj
. (A.23)

In these coordinates, the Bochner Laplacian is given by

2∇Πy
cs(t)

= −gjk∇Xj∇XkΠ
y
cs(t)

+ gjk∇∇XjXkΠ
y
cs(t)

, (A.24)

where gjk is the inverse matrix of gjk = g(Xj, Xk). Moreover, the vector fields Xj

transform according to

X0 =
1

δ
T − sα

tδ
Yα and Xα =

1

t
Yα , (A.25)
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where T and Yα are the coordinate vector fields in (A.3). Also, from (A.4), (A.11) and
(A.25), it follows that

Xj = ej + O(δ2) . (A.26)

More precisely, we have the following lemma for the expansion of the metric.

Lemma A.2.1. In the local normal coordinates (A.22), the metric g has the expansion

g(Xj, Xk)|cs(t) = εjδjk −
t2

3
g
(
R(ej, T )T, ek

)
|cs(t)

+
t3

6
g
(
(∇TR)(ej, T )T, ek

)
|cs(t) + O(δ4) .

(A.27)

Proof. Inserting (A.11) into (A.25), we find

Xα|cs(t) = eα|cs(t) +
1

t
Λy
cs(t)

∫ t

0

dτ Λcs(τ)
y

∫ τ

0

dσ σΛ
cs(σ)
cs(τ)R(T, eα)T |cs(σ) + O(δ4)

= eα|cs(t) +
1

t
Λy
cs(t)

∫ t

0

dτ Λcs(τ)
y

∫ τ

0

dσ σ
(
R(T, eα)T |cs(τ)

+ (σ − τ)∇TR(T, eα)T |cs(τ) + O(T 4)
)

+ O(δ4)

= eα|cs(t) +
1

t

∫ t

0

dτ
(τ 2

2
R(T, eα)T |cs(τ) −

τ 3

6
∇TR(T, eα)T |cs(τ)

)
+ O(δ4)

= eα|cs(t) +
1

t

∫ t

0

dτ
(τ 2

2
R(T, eα)T |cs(t)

+
τ 2

2
(τ − t)∇TR(T, eα)T |cs(t) −

τ 3

6
∇TR(T, eα)T |cs(τ)

)
+ O(δ4)

= eα|cs(t) +
t2

6
R(T, eα)T |cs(t) −

t3

12
(∇TR)(T, eα)T |cs(t) + O(δ4) , (A.28)

where we expanded the integrands in a Taylor series around cs(t). Moreover, we used
that T = O(δ) and that T and ej are parallel along the curve cs. Substituting (A.4)
and (A.28) into (A.25), we then find

X0|cs(t) =
1

δ
T − sα

tδ
Yα = e0 +

sα
δ
eα|cs(t) −

sα
δ
Xα|cs(t)

= e0|cs(t) −
t2

6δ
R(T, sαeα)T |cs(t) +

t3

12δ
(∇TR)(T, sαeα)T |cs(t) + O(δ4)

= e0 −
t2

6δ
R(T, T − δe0)T |cs(t) +

t3

12δ
(∇TR)(T, T − δe0)|cs(t) + O(δ4)

= e0|cs(t) +
t2

6
R(T, e0)T |cs(t) −

t3

12
(∇TR)(T, e0)T |cs(t) + O(δ4) . (A.29)
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Thus, inserting (A.28) and (A.29) into the metric, we obtain

g(Xj, Xk) = g(ej, ek) +
t2

6
g
(
ej, R(T, ek)T

)
+

1

6
g
(
R(T, ej)T, ek

)
− t3

12
g
(
ej, (∇TR)(T, ek)T

)
− t3

12
g
(
(∇TR)(T, ej)T, ek

)
+ O(δ4)

= εjδjk −
t2

3
g
(
R(ej, T )T, ek

)
+
t3

6
g
(
(∇TR)(ej, T )T, ek

)
+ O(δ4) ,

where the first Bianchi identities were used in the last step.

In the subsequent calculations we will frequently expand the integrands in a Taylor
expansion. For brevity, we shall not always give the corresponding computations in
detail. Instead, we refer the reader to (A.28) as a model calculation.

We now expand the function V and related terms in powers of δ.

Lemma A.2.2. For the square root of the van Vleck-Morette determinant V, the follow-
ing expansions hold:

V(cs(t), y) = 1 +
t2

12
Ric(T, T )− t3

24
(∇T Ric)(T, T ) + O(δ4) (A.30)

∂Yα V |cs(t) =
t2

6
Ric(T, eα) + O(δ2) (A.31)

gradV |cs(t) =
t

6
εj Ric(T, ej)Xj + O(δ2) (A.32)

2V |cs(t) = −scal

6
+ O(δ2) (A.33)

∂Yα2V |cs(t) = − t
6
∂eα scal +t∂eαr + O(δ2) , (A.34)

where r is a smooth real-valued function of the order O(δ2).

Proof. We first recall the expansion for the matrix determinant

det(11 + A) = 1 + tr(A) + O(A2) .

From this identity and (A.27), we obtain

| det(g)| = − det(g)

= det
[
11− t2

3
εj g
(
R(ej, T )T, ek

)
|cs(t)

+
t3

6
εj g
(
(∇TR)(ej, T )T, ek

)
|cs(t) + O(δ4)

]
= 1 + tr

[
− t2

3
εj g
(
R(ej, T )T, ek

)
+
t3

6
εj g
(
(∇TR)(ej, T )T, ek

)]
+ O(δ4)

= 1− t2

3
Ric(T, T ) +

t3

6
(∇T Ric)(T, T ) + O(δ4) .
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Hence

V = | det(g)|−
1
4 = 1 +

t2

12
Ric(T, T )− t3

24
(∇T Ric)(T, T ) + O(δ4) ,

giving (A.30). Next, we calculate

∂Yα V =
t2

6
Ric(T,∇YαT ) + O(δ2) =

t2

6
Ric(T,∇TYα) + O(δ2) =

t2

6
Ric(T, eα) + O(δ2) ,

proving (A.31). Using (A.27) and (A.26), the gradient of V is given by

gradV = gjk(∂Xj V)Xk = εj(∂Xj V)Xj + O(δ2) = εj

(
∂Xj

t2

12
Ric(T, T )

)
ej + O(δ2) .

The derivatives with respect to Xj are computed to be

∂Xα
t2

12
Ric(T, T ) =

1

t
∂Yα

t2

12
Ric(T, T ) =

t

6
Ric(T, eα) + O(δ2) ,

and

∂X0

t2

12
Ric(T, T ) =

(1

δ
∇T −

sα
tδ
∇Yα

) t2
12

Ric(T, T )

=
1

δ

2t

12
Ric(T, T )− sα

tδ

t2

6
Ric(T,∇YαT ) + O(δ2)

=
t

6
Ric

(
T, e0 +

sα
δ
eα

)
− t

6
Ric

(
T,
sα
δ
eα

)
+ O(δ2)

=
t

6
Ric(T, e0) + O(δ2) , (A.35)

where we used (A.4), (A.25) and (A.31). Thus

gradV =
t

6
εj Ric(T, ej)Xj + O(δ2) ,

which shows (A.32). Using that gjk = εjδjk + O(δ2), we find

2V =− 1√
| det(g)|

∂Xj

(√
| det(g)| gjk∂Xk V

)
=− εj∂Xj∂Xj

(
1 +

t2

12
Ric(T, T )− t3

24
(∇T Ric)(T, T )

)
+ O(δ2) .
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The spatial derivatives in this formula are calculated by

∂Xα∂Xα V =
1

t2
∂Yα∂Yα

(
1 +

t2

12
Ric(T, T )− t3

24
(∇T Ric)(T, T )

)
+ O(δ2)

= ∂Yα

(1

6
Ric(T, eα) +

t

12
(∇eα Ric)(T, T )− t

24
∇Yα∇T Ric(T, T )

)
+ O(δ2)

= ∂Yα

(1

6
Ric(T, eα) +

t

12
(∇eα Ric)(T, T )− t

24
∇T∇Yα Ric(T, T )

)
+ O(δ2)

= ∂Yα

(1

6
Ric(T, eα) +

t

24
(∇eα Ric)(T, T )− t

12
(∇T Ric)(T, eα)

)
+ O(δ2)

=
1

6
Ric(eα, eα) +

t

4
(∇eα Ric)(T, eα)− t

12
∇Yα∇T Ric(T, eα) + O(δ2)

=
1

6
Ric(eα, eα) +

t

6
(∇eα Ric)(T, eα)− t

12
(∇T Ric)(eα, eα) + O(δ2) .

The derivatives with respect to X0 are calculated similar to (A.35) and give

∂X0∂X0 V =
1

6
Ric(e0, e0) +

t

6
(∇e0 Ric)(T, e0)− t

12
(∇T Ric)(e0, e0) + O(δ2) .

We thus obtain

2V = − εj
(1

6
Ric(ej, ej) +

t

6
(∇ej Ric)(T, ej)−

t

12
(∇T Ric)(ej, ej)

)
+ O(δ2)

= − scal

6
− t

6
div(Ric)(T ) +

t

12
∂T scal +O(δ2) = −scal

6
+ O(δ2) ,

where in the last step we used the second Bianchi identities. We rewrite the remainder
in this formula as O(δ2) = r+O(δ3), where r is smooth and of the order O(δ2). Then by
differentiation, we obtain

∂Yα2V = − t
6
∂eα scal +t∂eαr + O(δ2) ,

concluding the proof.

We remark that the function r could be computed explicitly using the fourth order
expansion of the metric in local normal coordinates (see [31]). Since the computation
would be rather long and since we will not need the explicit formula, but only the
asymptotic behavior of r, we here only remark that

r = O
(
δ2
(
‖R‖2 + ‖∇2R‖

))
. (A.36)

We next derive the expansion of the Hadamard coefficient V y
x .

Proposition A.2.3. The Hadamard coefficient V y
x has the expansion

V y
x =m2 Πy

x −
scal

12
Πy
x +

∂T scal

24
Πy
x (A.37)

+
εjεkεl

24
g
(
(∇ejR)(T, ej)ek, el

)
ek ·el ·Πy

x (A.38)

+ δ2 vs Πy
x + δ2 vbjk ej ·ek ·Πy

x + δ2 vp e0 ·e1 ·e2 ·e3 ·Πy
x + O(δ3) , (A.39)

where the coefficients vs, vbjk and vp are real-valued functions.
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Proof. As V y
x is a Hadamard coefficient of the second-order equation (5.10), all contri-

butions to V y
x involve an even number of Clifford multiplications and only real-valued

functions. As a consequence, the higher order terms can be written in the general form
(A.39). In order to calculate the leading terms, we note that inserting the expansion
gjk = εjδjk + O(δ2) into the definition of the Bochner Laplacian (A.24) yields

2∇Πy
c(t) = −∇X0∇X0Π

y
x +∇Xα∇XαΠy

x + O(δ2) =
1

t2
∇Yα∇YαΠy

c(t) + O(δ2)

= −1

4
Πy
c(t)

∫ t

0

dτ
τ 2

t2
Πc(τ)
y εjεkεl g

(
(∇ejR)(T, ej) ek, el

)
ek ·el ·Πy

c(τ) + O(δ2)

= − t

12
εjεkεl g

(
(∇ejR)(T, ej)ek, el

)
ek ·el ·Πy

c(t) + O(δ2) , (A.40)

where we used formulas (A.7), (A.8), (A.16), (A.18) and a Taylor expansion of the
integrand around c(t). Inserting into the definition of V y

x (see formula (A.21)), we obtain

V y
x = − V(x, y) Πy

x

∫ 1

0

dτ V−1(c(τ), y) Πc(τ)
y

(
2∇ +

scal

4
−m2

)(
V Πy

c(τ)

)
= − Πy

x

∫ 1

0

dτ Πc(τ)
y

(
2V +

scal

4
−m2

)
Πy
c(τ)

+ Πy
x

∫ 1

0

dτ Πc(τ)
y

(
2∇gradV −2∇

)
Πy
c(τ)

= − Πy
x

∫ 1

0

dτ Πc(τ)
y

(scal

12
−m2

)
Πy
c(τ)

+ Πy
x

∫ 1

0

dτ Πc(τ)
y

τ

12
εjεkεl g

(
(∇ejR)(T, ej)ek, el

)
ek ·el ·Πy

c(τ) + O(δ2)

=
(
m2 − scal

12
+
∂T scal

24

)
Πy
x

+
εjεkεl

24
g
(
(∇ejR)(T, ej)ek, el

)
ek ·el ·Πy

x + O(δ2) ,

where we used (A.30), (A.33), (A.7), (A.32), (A.40) and again performed a Taylor ex-
pansion of the integrands around x.

A.3. The Coefficient DxV y
x

In order to calculate the Hadamard coefficient DxV y
x , we need to calculate the covariant

derivatives of V y
x with respect to the vectors ej. We will perform the calculations for the

spacelike vectors eα in this appendix. The calculation for the timelike vector e0 can be
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done similarly. Thus, starting from formula (A.21), we compute

∇eαV
y
x = ∇YαV

y
x + O(δ2)

= (−∂Yα V)Πy
x

∫ 1

0

dtΠcs(t)
y V−1

(
2∇ +

scal

4
−m2

)(
V Πy

cs(t)

)∣∣∣
s=0

− V Πy
x

∫ 1

0

dtΠcs(t)
y R(T, Yα)

∫ t

0

dτ Π
cs(τ)
cs(t)
V−1

(
2∇ +

scal

4
−m2

)(
V Πy

cs(τ)

)∣∣∣
s=0

− V Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα

[
V−1

(
2∇ +

scal

4
−m2

)(
V Πy

cs(t)

)]∣∣∣
s=0

+ O(δ2)

=
1

6
Ric(eα, T )

(
m2 − 1

12

∫ 1

0

scal dt
)

Πy
x

+ Πy
x

∫ 1

0

dt
(
tm2 − 1

12

∫ t

0

scal dτ
)

Πc(t)
y R(T, Yα)Πy

c(t)

− 1

6

∫ 1

0

t2 Ric(eα, T )
(
m2 − 1

12
scal

)
dtΠy

x

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα

(
2∇ +

scal

4
−m2

)(
V Πy

cs(t)

)∣∣∣
s=0

+ O(δ2) . (A.41)

Here we used the formulas of Lemma A.2.2 as well as formulas (A.40) and (A.7). A
Taylor expansion of the integrands in (A.41) around x yields

∇eαV
y
x =

1

9

(
m2 − scal

12

)
Ric(eα, T )Πy

x −
1

3

(
m2 − scal

12

)
R(eα, T )Πy

x

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα

(
(2V)Πy

cs(t)
− 2∇gradVΠy

cs(t)
+ V 2∇Πy

cs(t)

)∣∣∣
s=0

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα

(scal

4
−m2

)(
V Πy

cs(t)

)∣∣∣
s=0

+ O(δ2) . (A.42)

Applying the product rule for the Yα-derivatives, we can again use the formulas of
Lemma A.2.2. Taylor expanding the resulting integrands around x, we obtain

∇eαV
y
x =

1

9

(
m2 − scal

12

)
Ric(eα, T )Πy

x −
1

3

(
m2 − scal

12

)
R(eα, T )Πy

x

−
(∫ 1

0

∂Yα2V dt
)

Πy
x − Πy

x

∫ 1

0

dtΠc(t)
y (2V)∇YαΠy

c(t)

+ 2Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα∇gradVΠy

cs(t)

∣∣∣
s=0

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

−
(∫ 1

0

∂Yα
scal

4
dt
)

Πy
x − Πy

x

∫ 1

0

dtΠc(t)
y

(scal

4
−m2

)
(∂Yα V)Πy

c(t)

− Πy
x

∫ 1

0

dtΠc(t)
y

(scal

4
−m2

)
∇YαΠy

c(t) + O(δ2)
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x

=
1

9

(
m2 − scal

12

)
Ric(eα, T )Πy

x −
1

3

(
m2 − scal

12

)
R(eα, T )Πy

x

+

∫ 1

0

( t
6
∂eα scal−t∂eαr

)
dt+ Πy

x

∫ 1

0

dt
(scal

6

)∫ t

0

Πc(τ)
y R(T, Yα)Πy

c(τ)

+ 2Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα∇gradVΠy

cs(t)

∣∣∣
s=0

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

−
(∫ 1

0

t

4
∂eα scal dt

)
Πy
x − Πy

x

∫ 1

0

dtΠc(t)
y

(scal

4
−m2

)(t2
6

Ric(T, eα)
)

Πy
c(t)

− Πy
x

∫ 1

0

dt
(scal

4
−m2

)∫ t

0

Πc(τ)
y R(T, Yα)Πy

c(τ) + O(δ2)

=
(m2

6
− 5

216
scal

)
Ric(eα, T )Πy

x −
1

2

(
m2 − scal

12

)
R(eα, T )Πy

x

− 1

24
(∂eα scal)Πy

x +
1

72
(∂T∂eα scal)Πy

x − C(∂eαr)Π
y
x

+ 2Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα∇gradVΠy

cs(t)

∣∣∣
s=0

− Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

+ O(δ2) , (A.43)

where C is a positive number coming from the Taylor expansion of
∫ 1

0
t∂eαr dt around x.

Thus the remaining task is to calculate the expressions ∇Yα∇gradVΠy
cs(t)

and ∇Yα2
∇Πy

cs(t)

up to the order O(δ2). The first expression is given as follows.

Lemma A.3.1. The following expansion in powers of δ holds:

2Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα∇gradVΠy

cs(t)

∣∣∣
s=0

=
1

18
εk Ric(eα, ek)R(T, ek)Π

y
x

+
1

18
εk Ric(T, ek)R(eα, ek)Π

y
x + O(δ2) . (A.44)

Proof. Using the expansion of gradV in (A.32) and the transformation law (A.25), we
find

∇Yα∇gradVΠy
cs(t)

= ∇Yα

( t
6
εk Ric(ek, T )∇XkΠ

y
cs(t)

)∣∣∣
s=0

+ O(δ2)

= − 1

6
Ric(eβ, eα)∇YβΠy

c(t) +
t

6
εk Ric(ek, T )∇Yα∇XkΠ

y
cs(t)

∣∣∣
s=0

+ O(δ2)

=
1

6
εk Ric(ek, eα)Πy

c(t)

∫ t

0

dτ Πc(τ)
y τR(T, ek)Π

y
c(τ)

+
t

6
Ric(e0, T )∇Yα

(
− sβ
tδ

Πy
cs(t)

∫ t

0

dτ Πcs(τ)
y τR(T, eβ)Πy

cs(τ)

)∣∣∣
s=0

77



A. The Expansion of the Hadamard Coefficients

− t

6
Ric(eβ, T )∇YαΠy

c(t)

∫ t

0

dτ Πc(τ)
y

τ

t
R(T, eβ)Πy

c(t) + O(δ2)

=
1

6
εk Ric(eα, ek)Π

y
c(t)

∫ t

0

dτ Πc(τ)
y τR(T, ek)Π

y
c(τ)

+
1

6
εk Ric(T, ek)Π

y
c(t)

∫ t

0

dτ Πc(τ)
y τR(eα, ek)Π

y
c(τ) + O(δ2) . (A.45)

Thus,

2Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα∇gradVΠy

cs(t)

∣∣∣
s=0

=
1

18
εk Ric(eα, ek)R(T, ek)Π

y
x

+
1

18
εk Ric(T, ek)R(eα, ek)Π

y
x + O(δ2) ,

where we used a Taylor expansion of the integrand around x.

Let us now consider the expression ∇Yα2
∇Πy

cs(t)
in (A.43), with the Bochner Laplacian

given by (A.24). We first remark that from the expansion of the metric gkl in (A.27), it
follows that in the first summand of (A.24), we have the expansion

gkl|cs(t) = εkδkl +
t2

3
εkεl g

(
R(ek, T )T, el

)∣∣
cs(t)

+ O(δ3) . (A.46)

Moreover, using (A.25) and (A.12), a short calculation similar to the proof of Lemma
A.1.1 shows that in the second summand of (A.24), we have the expansion

gkl∇XkXl|cs(t) = εk∇XkXk|cs(t) + O(δ2) =
2t

3
εk Ric(T, ek)Xk|cs(t) + O(δ2) . (A.47)

The expansion of the last term in (A.43) is then given as follows:

Lemma A.3.2. The following expansion in powers of δ holds:

−Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

=
1

6
εk∇ek

(
R(eα, ek)Π

y
x

)
− 1

12
εk∇T∇ek

(
R(eα, ek)Π

y
x

)
− 1

9
εk Ric(eα, ek)R(T, ek)Π

y
x −

1

9
εk Ric(T, ek)R(eα, ek)Π

y
x

+
1

8
εkR(eα, ek)R(T, ek)Π

y
x +

1

72
εkR

(
eα, R(T, ek)ek

)
Πy
x

+
1

18
εkR

(
R(T, eα)ek, ek

)
Πy
x −

1

36
εkR

(
R(ek, eα)ek, T

)
Πy
x

− 5

72
εkR

(
R(T, ek)eα, ek

)
Πy
x +

1

12
εk(∇ek∇eαR)(T, ek)Π

y
x + O(δ2) . (A.48)
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Proof. Inserting (A.46) and (A.47) into (A.24), we find

∇Yα2
∇Πy

cs(t)
=∇Yα

(
− εk∇Xk∇Xk −

t2

3
εkεlg

(
R(ek, T )T, el

)
∇Xk∇Xl

+
2t

3
εk Ric(ek, T )∇Xk

)
Πy
cs(t)

∣∣∣
s=0

+ O(δ2)

= − εk∇Yα∇Xk∇XkΠ
y
cs(t)

∣∣∣
s=0

+ O(δ2) (A.49)

− t2

3
εkεl

(
∂Yαg

(
R(ek, T )T, el

))
∇Xk∇XlΠ

y
cs(t)

∣∣∣
s=0

(A.50)

+
(2t

3
εk Ric(ek, eα)∇Xk +

2t

3
εk Ric(ek, T )∇Yα∇Xk

)
Πy
cs(t)

∣∣∣
s=0

. (A.51)

The coefficient ∂Yαg
(
R(ek, T )T, el

)
in (A.50) is symmetric in k and l, and of the or-

der O(δ). On the other hand, the symmetrized expression(
∇Xk∇Xl +∇Xl∇Xk

)
Πy
cs(t)

∣∣
s=0

is also of the order O(δ), as the following considerations show: Since X0 = 1
δ
T along c,

the expression ∇X0∇X0Π
y
c(t) vanishes. Next, using (A.25), we find(

∇X0∇Xβ +∇Xβ∇X0

)
Πy
cs(t)

∣∣
s=0

=
(
R(X0, Xβ) + 2∇Xβ∇X0

)
Πy
cs(t)

∣∣
s=0

=
(
R(e0, eβ) +

2

t
∇Yβ

(
− sγ
tδ
∇Yγ

))
Πy
cs(t)

∣∣∣
s=0

+ O(δ)

=
(
R(e0, eβ)−R(e0, eβ)

)
Πy
c(t) + O(δ) = O(δ) .

Moreover, using (A.18), we have(
∇Xβ∇Xγ +∇Xγ∇Xβ

)
Πy
cs(t)

∣∣
s=0

=
1

t2
(
∇Yβ∇Yγ +∇Yγ∇Yβ

)
Πy
cs(t)

∣∣
s=0

=
1

2

(
R(eβ, eγ) +R(eγ, eβ)

)
Πy
c(t) + O(δ) = O(δ) .

Thus, the term (A.50) is in fact of the order O(δ2). The term (A.51) can be calculated
using the transformation law (A.25),(2t

3
εk Ric(ek, eα)∇Xk +

2t

3
εk Ric(ek, T )∇Yα∇Xk

)
Πy
cs(t)

∣∣∣
s=0

=
(
− 2

3
Ric(eβ, eα)∇Yβ −

2

3
Ric(eβ, T )∇Yα∇Yβ

)
Πy
c(t)

+
2t

3
Ric(e0, T )∇Yα

(
− sβ
tδ
∇YβΠy

cs(t)

)∣∣∣
s=0

=
2

3
εk Ric(eα, ek)Π

y
c(t)

∫ t

0

dτ τΠc(τ)
y R(T, ek)Π

y
c(τ)

+
2

3
εk Ric(T, ek)Π

y
c(t)

∫ t

0

dτ τΠc(τ)
y R(eα, ek)Π

y
c(τ) .
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We conclude that

−Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

= Πy
x

∫ 1

0

dtΠcs(t)
y εk∇Yα∇Xk∇XkΠ

y
cs(t)

∣∣∣
s=0

(A.52)

− 1

9
εk

(
Ric(eα, ek)R(T, ek) + Ric(T, ek)R(eα, ek)

)
Πy
x + O(δ2) , (A.53)

where we used a Taylor expansion around x to calculate the term (A.53). In order to
calculate the term (A.52), we use the transformation law (A.25) to obtain

εk∇Yα∇Xk∇XkΠ
y
cs(t)

∣∣∣
s=0

=∇Yα

(
− sβ
tδ2
R(T, Yβ) +

2sβ
t2δ2
∇Yβ +

sβsγ
t2δ2
∇Yβ∇Yγ −

1

t2
∇Yβ∇Yβ

)
Πy
cs(t)

∣∣∣
s=0

=
( 2

t2δ2
∇Yα −

1

tδ2
R(T, Yα)

)
Πy
c(t) −

1

t2
∇Yα∇Yβ∇YβΠy

c(t)

=
2

t2δ2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yα)Πy

c(τ) −
1

tδ2
R(T, Yα)Πy

c(t)

− 1

t2
∇Yα∇YβΠy

c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yβ)Πy

c(τ)

=
2

t2δ2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yα)Πy

c(τ) −
1

tδ2
R(T, Yα)Πy

c(t)

− 1

t2
∇YαΠy

c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yβ)

∫ τ

0

dσΠ
c(σ)
c(τ)R(T, Yβ)Πy

c(σ)

− 1

t2
∇YαΠy

c(t)

∫ t

0

dτ Πc(τ)
y ∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
=

2

t2δ2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yα)Πy

c(τ) −
1

tδ2
R(T, Yα)Πy

c(t) (A.54)

− 1

t2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(eα, Yβ)

∫ τ

0

dσΠ
c(σ)
c(τ)R(T, Yβ)Πy

c(σ) (A.55)

− 1

t2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yβ)

∫ τ

0

dσΠ
c(σ)
c(τ)R(eα, Yβ)Πy

c(σ) (A.56)

− 1

t2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y ∇Yα∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
+ O(δ2) . (A.57)

The contribution of the term (A.54) to the expression (A.52) can be calculated by sub-
stituting Yα|c(τ) = τXα|c(τ) and Taylor expanding the integrand,

Πy
x

∫ 1

0

dtΠc(t)
y

(
2

t2δ2
Πy
c(t)

∫ t

0

dτ Πc(τ)
y R(T, Yα) Πy

c(τ) −
1

tδ2
R(T, Yα) Πy

c(t)

)
= − 1

6
∇e0

(
R(e0, Xα) Πy

x

)
+

δ

12
∇e0∇e0

(
R(e0, Xα)Πy

x

)
+ O(δ2)
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x

=
1

6
∇e0

(
R(eα, e0) Πy

x

)
− δ

12
∇e0∇e0

(
R(eα, e0)Πy

x

)
+

δ

36
R(R(e0, eα)e0, e0) Πy

x + O(δ2) (A.58)

In the last step of (A.58), we used that

Xα|c(t) =
1

t
Yα(c(t)) = eα +

1

t
Λy
c(t)

∫ t

0

dτ

∫ τ

0

dσ σΛc(σ)
y R(T, eα)T (c(σ)) + O(δ4)

∇e0Xα|c(t) =
1

δ
∇TXα =

tδ

3
R(e0, eα) e0 + O(δ2)

∇e0∇e0Xα|c(t) =
1

δ
∇T (∇e0Xα) =

1

3
R(e0, eα) e0 + O(δ) .

Substituting (A.54)-(A.58) into (A.52) and Taylor expanding the integrands, we find

−Πy
x

∫ 1

0

dtΠcs(t)
y ∇Yα2

∇Πy
cs(t)

∣∣∣
s=0

=
1

6
∇e0

(
R(eα, e0)Πy

x

)
− δ

12
∇e0∇e0

(
R(eα, e0)Πy

x

)
+

δ

36
R(R(e0, eα)e0, e0)Πy

x

+
1

24
εkR(eα, ek)R(T, ek)Π

y
x +

1

24
εkR(T, ek)R(eα, ek)Π

y
x

− 1

9
εk

(
Ric(eα, ek)R(T, ek) + Ric(T, ek)R(eα, ek)

)
Πy
x

− Πy
x

∫ 1

0

dt
1

t2

∫ t

0

dτ Πc(τ)
y ∇Yα∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
+ O(δ2) . (A.59)

It remains to calculate the last term in (A.59). We define the covariant derivative of the
spinorial curvature tensor by

(∇XR)(Y, Z)ψ :=∇X

(
R(Y, Z)ψ

)
−R(∇XY, Z)ψ

−R(Y,∇XZ)ψ −R(Y, Z)∇Xψ , (A.60)

where X ∈ TpM , Y, Z ∈ Γ(TM) and ψ ∈ Γ(SM). Then we can compute

∇Yα∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
=R(Yα, Yβ)R(T, Yβ)Πy

c(τ) +∇Yβ∇Yα

(
R(T, Yβ)Πy

c(τ)

)
=R(Yα, Yβ)R(T, Yβ)Πy

c(τ) + (∇Yβ∇YαR)(T, Yβ)Πy
c(τ)

+∇Yβ

(
R(∇TYα, Yβ)Πy

c(τ)

)
+R(eβ,∇YαYβ)Πy

c(τ) +R(T,∇Yβ∇YαYβ)Πy
c(τ)

+R(T, Yβ)∇Yβ∇YαΠy
c(τ) + O(δ2)

=R(Yα, Yβ)R(T, Yβ)Πy
c(τ) + (∇Yβ∇YαR)(T, Yβ)Πy

c(τ)

+∇Yβ

[
R
(
eα + Λy

c(τ)

∫ τ

0

dσ σΛc(σ)
y R(T, eα)T |c(σ), τeβ
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+ Λy
c(τ)

∫ τ

0

dσ Λc(σ)
y

∫ σ

0

dρ ρΛ
c(ρ)
c(σ)R(T, eβ)T |c(ρ)

)
Πy
c(τ)

]
+R

(
eβ,

τ 3

3
R(T, eα)eβ +

τ 3

3
R(T, eβ)eα

)
Πy
c(τ) +R

(
T,
τ 3

3
R(eβ, eα)eβ

)
Πy
c(τ)

+R(T, Yβ)Πy
c(τ)

∫ τ

0

dσΠc(σ)
y R(eβ, Yα)Πy

c(σ) + O(δ2) , (A.61)

where we used the formulas of Lemma A.1.1. A Taylor expansion of the remaining
integrands and the first Bianchi identities then yield

∇Yα∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
= τ 3R(eα, eβ)R(T, eβ)Πy

c(τ) + τ 2∇eβ

(
R(eα, eβ)Πy

c(τ)

)
+
τ 3

2
R
(
R(T, eα)eβ +R(eβ, eα)T, eβ

)
Πy
c(τ) +

τ 3

6
R
(
eα, R(T, eβ)eβ

)
Πy
c(τ)

− τ 3

3
R
(
R(T, eα)eβ +R(T, eβ)eα, eβ

)
Πy
c(τ) +

τ 3

3
R
(
T,R(eβ, eα)eβ

)
Πy
c(τ)

+
τ 3

2
R(T, eβ)Πy

c(τ)R(eβ, eα)Πy
c(τ) + τ 3(∇eβ∇eαR)(T, eβ)Πy

c(τ) + O(δ2)

= τ 2∇eβ

(
R(eα, eβ)Πy

c(τ)

)
+

2τ 3

3
R
(
R(T, eα)eβ, eβ

)
Πy
c(τ) −

τ 3

3
R
(
R(eβ, eα)eβ, T

)
Πy
c(τ)

+
5τ 3

6
εkR

(
R(T, ek)eα, ek

)
Πy
c(τ) −

τ 3

6
εkR

(
eα, R(T, ek)ek

)
Πy
c(τ)

+
τ 3

2
εkR(T, ek)R(eα, ek)Π

y
c(τ) − τ

3εkR(eα, ek)R(T, ek)Π
y
c(τ)

− τ 3εk(∇ek∇eαR)(T, ek)Π
y
c(τ) + O(δ2) .

Therefore, the last term in (A.59) is given by

−Πy
x

∫ 1

0

dt
1

t2

∫ t

0

dτ Πc(τ)
y ∇Yα∇Yβ

(
R(T, Yβ)Πy

c(τ)

)
= − 1

6
∇eβ

(
R(eα, eβ)Πy

x

)
+

1

12
∇T∇eβ

(
R(eα, eβ)Πy

x

)
− 1

18
R
(
R(T, eα)eβ, eβ

)
Πy
x +

1

36
R
(
R(eβ, eα)eβ, T

)
Πy
x

− 5

72
εkR

(
R(T, ek)eα, ek

)
Πy
x +

1

72
εkR

(
eα, R(T, ek)ek

)
Πy
x

− 1

24
εkR(T, ek)R(eα, ek)Π

y
x +

1

12
εkR(eα, ek)R(T, ek)Π

y
x

+
1

12
εk(∇ek∇eαR)(T, ek)Π

y
x + O(δ2)

= − 1

6
∇eβ

(
R(eα, eβ)Πy

x

)
+

1

12
∇T∇eβ

(
R(eα, eβ)Πy

x

)
+

1

18
εkR

(
R(T, eα)ek, ek

)
Πy
x −

1

36
εkR

(
R(ek, eα)ek, T

)
Πy
x
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x

− δ

36
R
(
R(e0, eα)e0), e0

)
− 5

72
εkR

(
R(T, ek)eα, ek

)
Πy
x +

1

72
εkR

(
eα, R(T, ek)ek

)
Πy
x

− 1

24
εkR(T, ek)R(eα, ek)Π

y
x +

1

12
εkR(eα, ek)R(T, ek)Π

y
x

+
1

12
εk(∇ek∇eαR)(T, ek)Π

y
x + O(δ2) , (A.62)

where we used a Taylor expansion of the integrand around x. Inserting (A.62) into (A.59)
concludes the proof.

We now insert the results of Lemma A.3.1 and A.3.2 into formula (A.43) and obtain

∇eαV
y
x =

(m2

6
− 5

216
scal

)
Ric(eα, T )Πy

x −
1

2

(
m2 − scal

12

)
R(eα, T )Πy

x

− 1

24
(∂eα scal)Πy

x +
1

72
(∂T∂eα scal)Πy

x − C(∂eαr)Π
y
x

+
1

6
εk∇ek

(
R(eα, ek)Π

y
x

)
− 1

12
εk∇T∇ek

(
R(eα, ek)Π

y
x

)
− 1

18
εk Ric(eα, ek)R(T, ek)Π

y
x −

1

18
εk Ric(T, ek)R(eα, ek)Π

y
x

+
1

8
εkR(eα, ek)R(T, ek)Π

y
x +

1

72
εkR

(
eα, R(T, ek)ek

)
Πy
x

+
1

18
εkR

(
R(T, eα)ek, ek

)
Πy
x −

1

36
εkR

(
R(ek, eα)ek, T

)
Πy
x

− 5

72
εkR

(
R(T, ek)eα, ek

)
Πy
x +

1

12
εk(∇ek∇eαR)(T, ek)Π

y
x + O(δ2) . (A.63)

We remark that formula (A.63) is also valid if one sets α = 0 (with a slight abuse of
notation), which can be shown by similar calculations. We are now in the position to
compute the expansion of the Hadamard coefficient DxV y

x .

Proposition A.3.3. The expansion of the Hadamard coefficient DxV y
x in powers of δ is

given by

DxV y
x = − i

72
εj(∇T div(Ric))(ej)ej ·Πy

x

− iεj
(m2

12
− scal

432

)
Ric(T, ej)ej ·Πy

x − iεjC(∂ejr)ej ·Πy
x

+
i

24
εkεjεlg

(
(∇ek∇ejR)(T, ek)ej, el

)
el ·Πy

x

− i

12
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek)Π

y
x + O(δ2) (A.64)

Proof. Using the representation (A.1) of the Dirac operator, we obtain from (A.63) and
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the remark below (A.63) the formula

DxV y
x = iεjej ·∇ejV

y
x

=− iεj
(m2

12
− scal

432

)
Ric(T, ej)ej ·Πy

x −
i

24
εj div(scal g)(ej)ej ·Πy

x

+
i

72
(∇T div(scal g))(ej)ej ·Πy

x − iεjC(∂ejr)ej ·Πy
x

+
i

144
εkεj Ric

(
ej, R(T, ek)ek

)
ej ·Πy

x −
i

36
εkεj Ric(T, ek) Ric(ej, ek)ej ·Πy

x

+
i

144
εkεj Ric(ek, ej)ej ·R(T, ek)Π

y
x −

i

36
εkεjej ·R

(
R(ek, ej)ek, T

)
Πy
x

+
i

18
εkεjej ·R

(
R(T, ej)ek, ek

)
Πy
x −

5i

72
εkεjej ·R

(
R(T, ek)ej, ek

)
Πy
x

+
i

6
εkεjej ·∇ek

(
R(ej, ek)Π

y
x

)
− i

12
εkεjej ·∇T∇ek

(
R(ej, ek)Π

y
x

)
+

i

12
εkεjej ·(∇ek∇ejR)(T, ek)Π

y
x + O(δ2) , (A.65)

where we applied (A.20). We now calculate the remaining derivatives in (A.65). First,

i

6
εjεkej ·∇ek

(
R(ej, ek)Π

y
x

)
=
i

6
εk∇ek

(
εjej ·R(ej, ek)Π

y
x

)
− i

6
εjεk(∇ekej)·R(ej, ek)Π

y
x

=
i

12
εkεj∇ek(Ric(ek, ej)ej ·Πy

x)−
i

6
εkεj(∇ekej)·R(ej, ek)Π

y
x

=
i

12
εj div(Ric)(ej)ej ·Πy

x +
i

24
εkεj Ric

(
R(T, ek)ek, ej

)
ej ·Πy

x

+
i

24
εkεj Ric

(
ek, R(T, ek)ej

)
ej ·Πy

x +
i

24
εkεj Ric(ek, ej)

(
R(T, ek)ej

)
·Πy

x

+
i

24
εkεj Ric(ek, ej)ej ·R(T, ek)Π

y
x −

i

12
εkεjR(T, ek)ej ·R(ej, ek)Π

y
x

+ O(δ2) , (A.66)

where we used (A.20) and the fact that

∇ekej|x =
t

2
R(T, ek)ej

∣∣∣
t=1

+ O(δ2) , (A.67)

following from (A.15) by integration and Taylor expansion. Again using formulas (A.20)
and (A.67), we find

− i

12
εjεkej ·∇T∇ek

(
R(ej, ek)Π

y
x

)
= − i

12
εjεk∇T

(
ej ·∇ekR(ej, ek)Π

y
x

)
= − i

12
εjεk∇T∇ek

(
ej ·R(ej, ek)Π

y
x

)
+

i

12
εjεk∇T (∇ekej)·R(ej, ek)Π

y
x + O(δ2)
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x

= − i

24
εjεk∇T∇ek

(
Ric(ej, ek)ej ·Πy

x

)
+

i

24
εjεkR(T, ek)ej ·R(ej, ek)Π

y
x + O(δ2)

= − i

24
εj(∇T div(Ric))(ej)ej ·Πy

x −
i

48
εkεj Ric

(
R(T, ek)ek, ej

)
ej ·Πy

x

− i

48
εkεj Ric

(
ek, R(T, ek)ej

)
ej ·Πy

x −
i

48
εkεj Ric(ek, ej)

(
R(T, ek)ej

)
·Πy

x

− i

48
εkεj Ric(ek, ej)ej ·R(T, ek)Π

y
x +

i

24
εkεjR(T, ek)ej ·R(ej, ek)Π

y
x

+ O(δ2) , (A.68)

Second, using the representation (A.16) of R and the definition (A.60) of its covariant
derivative, we have

(∇ejR)(T, ek)Π
y
x

=
1

4
εpεq

(
g
(
(∇ejR)(T, ek)ep, eq

)
ep ·eq + g

(
R(T, ek)∇ejep, eq

)
ep ·eq

+ g
(
R(T, ek)ep,∇ejeq

)
ep ·eq + g

(
R(T, ek)ep, eq

)
(∇ejep)·eq

+ g
(
R(T, ek)ep, eq

)
ep ·(∇ejeq)

)
·Πy

x .

Thus, using (A.67) and the formula

R(X, Y )Z = εlg
(
R(X, Y )Z, el

)
el , (A.69)

we find

1

12
εk(∇ek∇ejR)(T, ek)Π

y
x

=
1

96
εkεpεq

(
2g
(
(∇ek∇ejR)(T, ek)ep, eq

)
ep ·eq

+ g
(
R(T, ek)∇ek∇ejep, eq

)
ep ·eq + g

(
R(T, ek)ep,∇ek∇ejeq

)
ep ·eq

+ g
(
R(T, ek)ep, eq

)(
∇ek∇ejep

)
·eq + g

(
R(T, ek)ep, eq

)
ep ·
(
∇ek∇ejeq

))
·Πy

x

+ O(δ2)

=
1

96
εkεpεq

(
2g
(
(∇ek∇ejR)(T, ek)ep, eq

)
ep ·eq

+ g
(
R(T, ek)R(ek, ej)ep, eq

)
ep ·eq + g

(
R(T, ek)ep, R(ek, ej)eq

)
ep ·eq

+ g
(
R(T, ek)ep, eq

)(
R(ek, ej)ep

)
·eq + g

(
R(T, ek)ep, eq

)
ep ·
(
R(ek, ej)eq

))
·Πy

x

+ O(δ2)

=
1

48
εkεpεqg

(
(∇ek∇ejR)(T, ek)ep, eq

)
ep ·eq ·Πy

x

+
1

96
εkεpεqελ

(
g
(
R(ek, ej)ep, eλ

)
g
(
R(T, ek)eλ, eq

)
+ g
(
R(ek, ej)eq, eλ

)
g
(
R(T, ek)ep, eλ

)
+ g
(
R(ek, ej)eλ, ep

)
g
(
R(T, ek)eλ, eq

)
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+ g
(
R(ek, ej)eλ, eq

)
g
(
R(T, ek)ep, eλ

))
ep ·eq ·Πy

x + O(δ2)

=
1

48
εkεpεqg

(
(∇ek∇ejR)(T, ek)ep, eq

)
ep ·eq ·Πy

x + O(δ2) . (A.70)

Substituting (A.66), (A.68) and (A.70) into (A.65), and using the well-known formula

div
(scal

2
g
)

(ej) = div(Ric)(ej) ,

we obtain

DxV y
x = − i

72
εj
(
∇T div Ric(ej)

)
ej ·Πy

x

− iεj
(m2

12
− scal

432

)
Ric(T, ej)ej ·Πy

x − iεjC(∂ejr)ej ·Πy
x

+
i

48
εkεj Ric

(
ek, R(T, ek)ej

)
ej ·Πy

x +
i

48
εkεj Ric(ek, ej)

(
R(T, ek)ej

)
·Πy

x

+
i

36
εkεj Ric

(
ej, R(T, ek)ek

)
ej ·Πy

x −
i

36
εkεj Ric(T, ek) Ric(ej, ek)ej ·Πy

x

+
i

36
εkεj Ric(ek, ej)ej ·R(T, ek)Π

y
x −

i

36
εkεjej ·R

(
R(ek, ej)ek, T

)
Πy
x

+
i

18
εkεjej ·R

(
R(T, ej)ek, ek

)
Πy
x −

5i

72
εkεjej ·R

(
R(T, ek)ej, ek

)
Πy
x

− i

24
εkεj

(
R(T, ek)ej

)
·R(ej, ek)Π

y
x

+
i

48
εkεjεpεqg

(
(∇ek∇ejR)(T, ek)ep, eq

)
ej ·ep ·eq ·Πy

x + O(δ2) . (A.71)

Again using formula (A.69) and the symmetry properties of the Riemann tensor, we find
that the two terms in the third line of (A.71) drop out,

i

48
εkεj Ric

(
ek,R(T, ek)ej

)
ej ·Πy

x +
i

48
εkεj Ric(ek, ej)

(
R(T, ek)ej

)
·Πy

x

=
i

48
εkεjεl Ric(ek, el)g

(
R(T, ek)ej, el

)
ej ·Πy

x

+
i

48
εkεjεl Ric(ek, ej)g

(
R(T, ek)ej, el

)
el ·Πy

x = 0 .

Likewise, the two terms in line four drop out, as well as the two terms in line five.
Moreover, using formula (A.69) together with the first Bianchi identities, we can combine
the terms in lines six and seven,

i

18
εkεjej ·R

(
R(T, ej)ek, ek

)
Πy
x −

5i

72
εkεjej ·R

(
R(T, ek)ej, ek

)
Πy
x

− i

24
εkεj

(
R(T, ek)ej

)
·R(ej, ek)Π

y
x

=
i

18
εkεjεlg

(
R(T, ej)ek, el

)
ej ·R(el, ek

)
Πy
x +

5i

72
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek

)
Πy
x
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x

− i

24
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek

)
Πy
x

=− i

18
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek

)
Πy
x

− i

18
εkεjεlg

(
R(T, el)ej, ek

)
ej ·R(el, ek

)
Πy
x

+
i

36
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek

)
Πy
x

=− i

12
εkεjεlg

(
R(T, ek)el, ej

)
ej ·R(el, ek)Π

y
x .

In order to simplify the last term in (A.71), we note that the composition of three Clifford
multiplications can be rewritten as vector and axial components,

ej ·ep ·eq =
(
gjpeq + gpqej − gjqep

)
+ iεk εjpqk e5 ·ek

(where εjpqk is the totally anti-symmetric tensor, and e5 = ie0e1e2e3 denotes the pseu-
doscalar matrix; see [6, Appendix A]). Thus, we find

i

48
εkεjεpεqg

(
(∇ek∇ejR)(T, ek)ep, eq

)
ej ·ep ·eq ·Πy

x

=
i

24
εkεjεlg

(
(∇ek∇ejR)(T, ek)ej, el

)
el ·Πy

x + O(δ2) ,

where we used the second Bianchi identities and the symmetries of the curvature tensor.

A.4. The Coefficients W y
x and Hy

x

We next investigate the Hadamard coefficient W y
x . Similar to (A.21), the Hadamard

recurrence relation (5.31) can be integrated along c, giving the explicit formula

W y
x = −2V(x, y) Πy

x

∫ 1

0

dτ τ V−1(c(τ), y)

× Πc(τ)
y

(
2∇z +

scal(z)

4
−m2

)
V y
z

∣∣
z=c(τ)

.

(A.72)

Thus, W y
x can be expanded as follows.

Proposition A.4.1. The expansion of the Hadamard coefficient W y
x in powers of δ is
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given by

W y
x =

2

3
m2
(
m2 − scal

12

)
Πy
x −

scal

5

(m2

6
− scal

216

)
Πy
x

− 1

180
εj(∇ej div(Ric))(ej)Π

y
x −

2

5
εjC(∂2

ej
r)Πy

x

+
1

60
εjεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ej

)
Πy
x

+
1

60
εjεkεpεqg

(
R(ep, eq)ej, ek

)
g
(
R(ep, eq)ej, ek

)
Πy
x

− 1

120
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
εjkrse0 ·e1 ·e2 ·e3 ·Πy

x

+ O(δ) . (A.73)

Proof. Using (A.72), the expansion of V in Lemma A.2.2 and the Lichnerowicz-Weitzen-
böck identity, we find

W y
x = 2 Πy

x

∫ 1

0

dτ τ Πc(τ)
y

(
m2 −D2

c(τ)

)
V y
c(τ) + O(δ2) . (A.74)

The terms m2V y
c(τ) and D2

c(τ)V
y
c(τ) in the integrand of (A.74) can be expanded using the

results of Propositions A.2.3 and A.3.3 and a Taylor expansion of the integrand. Note
however, that the corresponding formulas (A.37) and (A.64) are evaluated at τ = 1,
meaning that we have to insert the appropriate powers of τ , before we Taylor expand
(A.74). More precisely, the leading term in (A.37) contains a factor τ , and the terms in
(A.64) contain a factor τ 3. Thus,

W y
x =

2

3
m2
(
m2 − scal

12

)
Πy
x −

2

5
Dx(DxV y

x ) + O(δ) . (A.75)

It remains to compute the second term in formula (A.75),

Dx(DxV y
x ) = iεjej ·∇ej(DxV y

x )

=
1

72
εjεk(∇ej div(Ric))(ek)ej ·ek ·Πy

x

+ εjεk

(m2

12
− scal

432

)
Ric(ej, ek)ej ·ek ·Πy

x + εjεkC(∂ej∂ekr)ej ·ek ·Πy
x

+
1

12
εjεkεpεqg

(
R(ej, ep)eq, ek

)
ej ·ek ·R(eq, ep)Π

y
x

− 1

24
εjεkεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ek

)
ej ·ek ·Πy

x + O(δ)

=
1

72
εj(∇ej div(Ric))(ej)Π

y
x + scal

(m2

12
− scal

432

)
Πy
x + εjC(∂2

ej
r)Πy

x

+
1

48
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
ej ·ek ·er ·es ·Πy

x

− 1

24
εjεkεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ek

)
ej ·ek ·Πy

x + O(δ) , (A.76)
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x

where we used the representation (A.1) of the Dirac operator, the expansion (A.64) of
the term DxV y

x and the symmetry properties of the Riemann tensor. Using the formula

ej ·ek ·er ·es = εjkrse0 ·e1 ·e2 ·e3 + εjδjker ·es − εjδjrek ·es
+ εjδjsek ·er + εkδkrej ·es − εkδksej ·er + εrδrsej ·ek

and the symmetry properties of the Riemann tensor, the fourth term in (A.76) can be
written as

1

48
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
ej ·ek ·er ·es ·Πy

x

=
1

48
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
εjkrse0 ·e1 ·e2 ·e3 ·Πy

x

+
1

12
εjεkεpεqεrg

(
R(ej, ep)eq, ek

)
g
(
R(ep, eq)ej, er

)
ek ·er ·Πy

x . (A.77)

Using the first Bianchi identity, the coefficient of the last term in (A.77) can be rewritten
as

1

12
εjεkεpεqεrg

(
R(ej, ep)eq, ek

)
g
(
R(ep, eq)ej, er

)
= − 1

12
εjεkεpεqεrg

(
R(ep, eq)ej, ek

)
g
(
R(ep, eq)ej, er

)
− 1

12
εjεkεpεqεrg

(
R(eq, ej)ep, ek

)
g
(
R(ep, eq)ej, er

)
= − 1

12
εjεkεpεqεrg

(
R(ep, eq)ej, ek

)
g
(
R(ep, eq)ej, er

)
− 1

12
εjεkεpεqεrg

(
R(ej, ep)eq, ek

)
g
(
R(ep, eq)ej, er

)
and thus,

1

12
εjεkεpεqεrg

(
R(ej, ep)eq, ek

)
g
(
R(ep, eq)ej, er

)
= − 1

24
εjεkεpεqεrg

(
R(ep, eq)ej, ek

)
g
(
R(ep, eq)ej, er

)
. (A.78)

Inserting into (A.77), we obtain

1

48
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
ej ·ek ·er ·es ·Πy

x

=
1

48
εjεkεpεqεrεsg

(
R(ej, ep)eq, ek

)
g
(
R(eq, ep)er, es

)
εjkrse0 ·e1 ·e2 ·e3 ·Πy

x

− 1

24
εjεkεpεqg

(
R(ep, eq)ej, ek

)
g
(
R(ep, eq)ej, ek

)
Πy
x . (A.79)

In order to compute the last term in (A.76), we first rewrite it as the sum of its symmetric
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and antisymmetric part,

1

24
εjεkεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ek

)
ej ·ek ·Πy

x

=
1

24
εjεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ej

)
Πy
x

+
1

48
εjεkεpεq

(
g
(
(∇ep∇eqR)(ej, ep)eq, ek

)
− g
(
(∇ep∇eqR)(ek, ep)eq, ej

))
ej ·ek ·Πy

x . (A.80)

Using the first Bianchi identities, the coefficient in this identity can be written as

g
(
(∇ep∇eqR)(ej, ep)eq, ek

)
= ∂ep∂eqg

(
R(ej, ep)eq, ek

)
− g
(
R(∇ep∇eqej, ep)eq, ek

)
− . . .− g

(
R(ej, ep)eq,∇ep∇eqek

)
+ O(δ)

= ∂ep∂eqg
(
R(ep, ek)ej, eq

)
+ ∂ep∂eqg

(
R(ek, ej)ep, eq

)
− g
(
R(∇ep∇eqej, ep)eq, ek

)
− . . .− g

(
R(ej, ep)eq,∇ep∇eqek

)
+ O(δ)

= g
(
(∇ep∇eqR)(ep, ek)ej, eq

)
+ g
(
(∇ep∇eqR)(ek, ej)ep, eq

)
+ g
(
R(∇ep∇eqep, ek)ej, eq

)
+ . . .+ g

(
R(ep, ek)ej,∇ep∇eqeq

)
+ g
(
R(∇ep∇eqek, ej)ep, eq

)
+ . . .+ g

(
R(ek, ej)ep,∇ep∇eqeq

)
− g
(
R(∇ep∇eqej, ep)eq, ek

)
− . . .− g

(
R(ej, ep)eq,∇ep∇eqek

)
+ O(δ)

= g
(
(∇ep∇eqR)(ek, ep)eq, ej

)
+ g
(
(∇ep∇eqR)(ep, eq)ek, ej

)
+ O(δ) .

Inserting this identity into (A.80), we find

1

24
εjεkεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ek

)
ej ·ek ·Πy

x

=
1

24
εjεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ej

)
Πy
x

+
1

48
εjεkεpεqg

(
(∇ep∇eqR)(ep, eq)ek, ej

)
ej ·ek ·Πy

x + O(δ) . (A.81)

The coefficient in the last term of (A.81) can be simplified using the identity (A.67),

εjεkεpεqg
(
(∇ep∇eqR)(ep, eq)ek, ej

)
= εjεkεpεq

(
g
(
∇ep∇eqR(ep, eq)ek, ej

)
− g
(
R(∇ep∇eqep, eq)ek, ej

)
− g
(
R(ep,∇ep∇eqeq)ek, ej

)
− g
(
R(ep, eq)∇ep∇eqek, ej

))
+ O(δ)

=
1

2
εjεkεpεq

(
g
(
R(epeq)R(ep, eq)ek, ej

)
− g
(
R(R(ep, eq)ep, eq)ek, ej

)
− g
(
R(ep, R(ep, eq)eq)ek, ej

)
− g
(
R(ep, eq)R(ep, eq)ek, ej

))
+ O(δ)

=
1

2
εjεkεpεqεr

(
g
(
R(ep, eq)er, ep

)
g
(
R(er, eq)ek, ej

)
+ g
(
R(ep, eq)er, eq

)
g
(
R(ep, er)ek, ej

))
+ O(δ)

= O(δ) . (A.82)
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Inserting (A.82) into (A.81), we obtain

1

24
εjεkεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ek

)
ej ·ek ·Πy

x

=
1

24
εjεpεqg

(
(∇ep∇eqR)(ej, ep)eq, ej

)
Πy
x + O(δ) . (A.83)

The assertion now follows from (A.75) and from inserting (A.79) and (A.83) into (A.76).

Finally, we turn attention to the Hadamard coefficient Hy
x . Since this coefficient will

not enter the error terms in Section 5.3, we will only give the general structure of the
expansion.

Lemma A.4.2. The Hadamard coefficient Hy
x has the expansion

Hy
x = hs Πy

x + hbjk ej ·ek ·Πy
x + hp e0 ·e1 ·e2 ·e3 ·Πy

x + O(δ) , (A.84)

where all coefficients are real-valued functions.

Proof. As Hy
x is a Hadamard coefficient of the second-order equation (5.10), all contri-

butions to Hy
x involve an even number of Clifford multiplications and only real-valued

functions. Thus, Hy
x can be written in the general form (A.84).
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B. Proof of some results in Sections
5.3 and 5.4

In this appendix we give the proofs of Propositions 5.3.1 and 5.3.2 as well as Lemma 5.4.2.

Proof of Proposition 5.3.1. We rewrite the results of Propositions A.1.2, A.2.3, A.3.3,
A.4.1 and Lemma A.4.2 in the form

DxΠy
x = i δ csj ej ·Πy

x + i δ3 cajkl ej ·ek ·el ·Πy
x + O(δ4)

V y
x = vs Πy

x + δ ṽkl ek ·el ·Πy
x + δ2 vbjk ej ·ek ·Πy

x + δ2 vp e0 ·e1 ·e2 ·e3 ·Πy
x + O(δ3)

DxV y
x = i δ dvj ej ·Πy

x + i δ dajkl ej ·ek ·el ·Πy
x + O(δ2)

W y
x = ws Πy

x + wp e0 ·e1 ·e2 ·e3 ·Πy
x + O(δ)

Hy
x = hs Πy

x + hbjk ej ·ek ·Πy
x + hp e0 ·e1 ·e2 ·e3 ·Πy

x + O(δ) , (B.1)

where all coefficients are real-valued functions. Here each factor δ corresponds to a
factor T in the explicit formulas. The coefficients vs and ṽjk are given by

vs = m2 − scal

12
+ δ ṽs and ṽkl =

1

δ

εjεkεl
24

g
(
(∇ejR)(T, ej)ek, el

)
, (B.2)

where ṽs is a real-valued function. Inserting this formulas into the Hadamard expansion
(5.32), we find

(−8π3)P (x, y) = −iV
Γ2

gradx Γ·Πy
x +

i

Γ
gradx V·Πy

x

+
V
Γ

(
m+ i δ csj ej + i δ3 cajkl ej ·ek ·el

)
·Πy

x

+
i

4Γ
gradx Γ·

(
vs + δ ṽkl ek ·el + δ2 vbjk ej ·ek + δ2 vp e0 ·e1 ·e2 ·e3

)
·Πy

x

+
m

4

[
log |Γ| − iπ ε

(
t(x)− t(y)

)](
vs + δ ṽkl ek ·el

)
·Πy

x

+
1

4

[
log |Γ| − iπ ε

(
t(x)− t(y)

)](
i δ dvj ej + i δ dajkl ej ·ek ·el

)
·Πy

x

+
i

32

[
1 + log |Γ| − iπ ε

(
t(x)− t(y)

)]
gradx Γ·

(
ws + wp e0 ·e1 ·e2 ·e3

)
·Πy

x

+ i gradx Γ·
(
hs + hbjk ej ·ek + hp e0 ·e1 ·e2 ·e3

)
·Πy

x + O(δ2 log δ) . (B.3)

The Clifford relations immediately yield the identities

gradx Γ·
(
fjk ej ·ek

)
= δ fj ej + δ fjkl ej ·ek ·el

gradx Γ·
(
f e0 ·e1 ·e2 ·e3

)
= δ fjkl ej ·ek ·el ,
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where all coefficients are real-valued functions. Using these identities in (B.3) and com-
bining terms which are of the same order in δ and contain the same number of Clifford
multiplications, we obtain

(−8π3)P (x, y) = − i

Γ2
gradx Γ·Πy

x +
m

Γ
Πy
x +

i

Γ
δ p

(1)
j ej ·Πy

x +m log |Γ| vs Πy
x (B.4)

+
i

4Γ
δ ṽkl gradx Γ·ek ·el ·Πy

x −
iπ

4
ε
(
t(x)− t(y)

)
mvs Πy

x (B.5)

+ log |Γ| δ
(
i p

(2)
j ej +

m

4
ṽkl ek ·el + i p

(3)
jkl ej ·ek ·el

)
·Πy

x (B.6)

+ δ π ε
(
t(x)− t(y)

)(
p

(4)
j ej −

im

4
ṽkl ek ·el + p

(5)
jkl ej ·ek ·el

)
·Πy

x (B.7)

+ δ
(
i p

(6)
j ej + i p

(7)
jkl ej ·ek ·el

)
·Πy

x + O(δ2 log δ) . (B.8)

Here all coefficients p
(1)
j , . . . , p

(7)
jkl are real-valued functions of the order O(δ0). Using the

Clifford relations, the composition of three Clifford multiplications can be rewritten as
as vector and axial components,

ej ·ek ·el =
(
gjkel + gklej − gjlek

)
+ iεn εjkln e5 ·en (B.9)

(where εjkln is the totally anti-symmetric tensor, and e5 = ie0e1e2e3 denotes the pseu-
doscalar matrix; see [6, Appendix A]). Thus, in (B.6), (B.7) and (B.8) the resulting vector
components can be combined with the corresponding vector components in these lines.
The resulting axial component in (B.6) can be written as

(−8π3) P (x, y) � log |Γ| δ aj e5 ·ej ·Πy
x (B.10)

with real coefficients aj. Moreover, from (5.32) and the previous calculations one sees
that there is no other contribution to P (x, y) of this form. As the expression δ aj e5 · ej
is linear in δ and smooth in x and y, it is odd under permutations of x and y (this can
also be understood from the fact that the linear factor δ corresponds to a factor T in the
resulting explicit formulas). Also using the identity (e5 ·ej)∗ = e5 ·ej, we obtain

(−8π3) P (x, y) = (−8π3) P (y, x)∗ = − log(Γ) δ aj e5 ·ej ·Πy
x .

Comparing with (B.10), we conclude that the coefficients aj vanish. For the same reason,
the term in (B.8) containing three Clifford multiplications reduces to a vectorial contri-
bution. Finally, the axial contribution in (B.7) resulting from the decomposition (B.9)
can be written in the form

(−8π3) P (x, y) � i δ ε
(
t(x)− t(y)

)
aj e5 ·ej ·Πy

x (B.11)

with real coefficients aj, and from (5.32) and the previous calculations one sees that
there is no other contribution to P (x, y) of this form. However, the term (B.11) is odd
under conjugation but even when interchanging x and y. Therefore, we conclude that
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the coefficients aj vanish. We thus obtain the following expansion of the kernel of the
fermionic operator,

(−8π3)P (x, y) = − i

Γ2
gradx Γ·Πy

x +
m

Γ
Πy
x +

i

Γ
δ p

(1)
j ej ·Πy

x +
m

4
log |Γ| vs Πy

x

+
i

4Γ
δ ṽkl gradx Γ·ek ·el ·Πy

x −
iπ

4
ε
(
t(x)− t(y)

)
mvs Πy

x

+ log |Γ| δ
(
i p̃

(2)
j ej +

m

4
ṽkl ek ·el

)
·Πy

x

+ δ π ε
(
t(x)− t(y)

)(
p̃

(4)
j ej −

im

4
ṽkl ek ·el

)
·Πy

x + i δ p̃
(6)
j ej ·Πy

x

+ O(δ2 log δ) , (B.12)

where p̃
(2)
j , p̃

(4)
j and p̃

(6)
j are real-valued functions. The first two terms in this expansion

show that Proposition 5.3.1 holds. The other terms will be needed to calculate the
expansion of the closed chain.

Proof of Proposition 5.3.2. Using the expansion (B.12), we compute

(−8π3)2Ayx = (−8π3)2P (x, y)∗ P (x, y)

= c(x, y) 11SyM +
πm

2Γ2
vs ε
(
t(x)− t(y)

)
Πy
x gradx Γ·Πy

x

+
im

4Γ2
(δ + δ log |Γ|) Πy

x

{
gradx Γ, ṽkl ek ·el

}
·Πy

x

+
iπ

Γ2
δ ε
(
t(x)− t(y)

)
Πy
x

[
gradx Γ, p̃

(4)
j ej

]
·Πy

x

+
mπ

4Γ2
δ ε
(
t(x)− t(y)

)
Πy
x

[
gradx Γ, ṽkl ek ·el

]
·Πy

x + O(δ−1 log δ)

= c(x, y) 11SyM

−m
(
m2 − scal

12
+ δ ṽs

) π ε(t(x)− t(y)
)

2Γ2
grady Γ·11SyM

− m

4Γ2
(δ + δ log |Γ|)

{
gradx Γ, iṽkl ek ·el

}
·11SyM

− iπ

Γ2
δ ε
(
t(x)− t(y)

) [
gradx Γ, p̃

(4)
j ej

]
·11SyM

+ i
mπ

4Γ2
δ ε
(
t(x)− t(y)

) [
gradx Γ, iṽkl ek ·el

]
·11SyM + O(δ−1 log δ) ,

where we used that ṽkl = −ṽlk according to (B.2). Moreover, we used the formula for vs

in (B.2) as well as the identities

Πx
y ej ·Πy

x = ej ·11SyM and Πx
y gradx Γ·Πy

x = − grady Γ·11SyM .

Now the operators Xyx and Yyx defined by

Xyx :=
π

Γ2
δ ε
(
t(x)− t(y)

) (im
4
ṽkl ek ·el − p̃(4)

j ej

)
(B.13)

Yyx := − m

4Γ2

(
(δ + δ log |Γ|) iṽkl ek ·el − δ π ṽs ε

(
t(x)− t(y)

))
(B.14)
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B. Proof of some results in Sections 5.3 and 5.4

are obviously symmetric, linear operators on SyM . Moreover, Xyx is of the order
O(δ−3 log δ), whereas Yyx is of the order O(δ−3). Interchanging x and y completes the
proof.

We finally prove the expansions (5.59) and (5.60) in Lemma 5.4.2.

Proof of Lemma 5.4.2. From (5.39), we conclude that the coefficient axy in (5.42) is given
by

axy = m
(
m2 − scal

12

) Im(log Γ)

2Γ2
.

Thus we obtain from (B.13) and (B.2) that the operator Zxy in (5.44) is given by

Zxy =
1

2

(
m2 − scal

12

)−1[εjεkεl
12

g
(
(∇ejR)(T, ej)ek, el

) i
2

[ek, el]−
4δ

m
p̃

(4)
j ej

]
. (B.15)

Moreover, since x lies in the future of y and gradx Γ is normalized according to (5.25),
the future-directed timelike unit vector u introduced after (5.44) is given by

u =
1

2δ
gradx Γ =

1

δ
T .

Therefore, the vector ∆u introduced in (5.46) is given by

∆u =
1

6 δ

(
m2 − scal

12

)−1

εj(∇ejR)(T, ej)T ,

proving (5.59).
The operator w in (5.47) is given by the vectorial part of (B.15), i.e.

w = − 2

m

(
m2 − scal

12

)−1

δ p̃
(4)
j ej . (B.16)

A short review of the proofs of Propositions 5.3.1 and 5.3.2 yields that the functions p̃
(4)
j

are combinations of the real-valued functions appearing in the expansion of the Hadamard
coefficients DxV y

x and W y
x . The formulas in Propositions A.3.3 and A.4.1 and the remark

(A.36) show that these functions are of the order

O
(m2

δ
‖εj Ric(T, ej) ej‖

)
+ O

(
‖R‖2 + ‖∇2R‖

)
.

Inserting into formula (B.16), we conclude that w is of the order[
O
( 1

m
‖εj Ric(T, ej) ej‖

)
+ O

(
δ

m3

(
‖R‖2 + ‖∇2R‖

))](
1 + O

(scal

m2

))
.

Now (5.60) follows immediately from the representation (5.48).
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