Contribution from the Laboratoire de Chimie Minérale Moléculaire, Equipe de Recherche Associée au CNRS, Université de Nice, F-06034 Nice, France, and Institut für Anorganische Chemie, Universität Regensburg, D-8400 Regensburg, West Germany

Synthesis of New Chiral Bicyclic Aminophosphoranes and of Rhodium(I) Chelates Derived from Their Open-Form Tautomers. Isolation and Characterization of an Optically Pure Rhodium(I) N/P Chelate

F. Jeanneaux, la J. G. Riess, *la and J. Wachterlb

Received June 30, 1983

We have previously shown that, in the presence of rhodium(I) derivatives, bicyclic aminophosphoranes of type 2² develop into monocyclic bidentate phosphorus-nitrogen chelating ligands 3 to give adducts of type 4,3 the structures of several of which, with diverse substitutions on the cycles, have been established by X-ray crystallography.⁴

Among the original features of 4 that are propitious to catalytic activity should be mentioned the location of the rhodium atom in a cradle-shaped ligand, to which it is bound by both the π -accepting phosphorus atom and the solely σ donating nitrogen atom. The latter can contribute toward increasing the electron density at the metal, and hence its nucleophilicity, while its lack of π -accepting capability should labilize the N-Rh bond, i.e. should constitute an additional, potential vacant site on the metal. In addition, the hydrophilic character of the N-H site within the coordination sphere of the metal was expected to contribute to regioselective control in catalysis.

Preliminary tests showed complexes of type 4 to be active as hydrogenation and hydroformylation catalysts.⁵ In view of these results, and because it is easy to render the cradle asymmetric, we undertook the preparation of new chiral rhodium adducts of type 4. This paper reports the synthesis of several new bicyclic aminophosphoranes, the isolation of their chlorocarbonylrhodium derivatives, and the separation of an optically pure diastereoisomer; a preliminary evaluation of their catalytic activity and enantioselectivity in the hydrogenation of α -acetamidocinnamic acid is also given.

Results and Discussion

Bicyclic Aminophosphoranes. The new asymmetric bicyclic aminophosphoranes 2a-d, which contain the optically pure (+)-(S)-2-amino-1-propanol (L-alaninol) or (-)-(R)-2-

amino-1-butanol (D-ethylalaninol) residues in one of their cycles, were obtained in 40-85% yield by allowing the optically active amino diols 1a-d to react with bis(diethylamino)phenylphosphanes, according to the scheme established by Houalla et al.2

The elemental analysis and mass, IR, ¹H, and ³¹P NMR spectroscopic data for 2a-d (Tables I and II) are consistent with the above formulation and with those previously published for other bicyclic aminophosphoranes.²

Compounds of type 2 bear a chiral center at the P atom, which is characterized by the different natures of the equatorial ligands as well as by the differing substitution of the two cycles.⁶ The introduction of an asymmetric carbon atom into one of the cycles thus provokes the existence of two diastereoisomers, 2A and 2B, which give rise to two distinct singlets

in the ³¹P(¹H) NMR spectra. The ¹H NMR spectra also exhibit two distinct sets of signals for the methyl or ethyl groups of the alaninol fragments, as well as two doublets for the proton attached to phosphorus. The diastereoisomeric ratio, which can easily be determined by means of ³¹P NMR spectroscopy, is usually close to 50:50. No assignment of the absolute configuration at the phosphorus atom has been achieved so far.

Asymmetric Rhodium Chelates 4: Separation of an Optically Pure Diastereoisomer. When bicyclic aminophosphoranes 2 were allowed to react with 1/2 equiv of [Rh(CO)2Cl]2 in toluene at room temperature, the immediate evolution of carbon monoxide was observed and the yellow crystalline adducts 4a-d precipitated. They were isolated in 40-93% yields. Each diastereoisomeric pair of phosphoranes gives rise to a diastereoisomeric pair of rhodium adducts 4A and 4B; for the L-alaninol one has for example

The nitrogen atom, which is probably coplanar with its substituents in 2, becomes pyramidal and asymmetric in 4, but

⁽a) Université de Nice. (b) Universität Regensburg. Houalla, D.; Mouheich, T.; Sanchez, M.; Wolf, R. Phosphorus Relat. Group V Elem. 1975, 5, 229.

Bondoux, D.; Tkatchenko, I.; Pradat, C.; Riess, J. G.; Houalla, D.; Wolf, R. Mentzen, B. F. J. Chem. Soc. Chem. Commun. 1978, 1022. Pradat, C.; Riess, J. G.; Bondoux, D.; Mentzen, B. F.; Tkatchenko, I.; Houalla,

D. J. Am. Chem. Soc. 1979, 101, 2234.

(4) Bondoux, D.; Mentzen, B. F.; Tkatchenko, I. Inorg. Chem. 1981, 20,

⁽⁵⁾ Bondoux, D.; Houalla, D.; Pradat, C.; Riess, J. G.; Tkatchenko, I., paper presented at the 1st International Symposium on Homogeneous Catalysis, Corpus Christi, TX, Dec 1979.

Bonningue, C.; Brazier, J. F.; Houalla, D.; Osman, F. H. Phosphorus Sulfur 1979, 5, 291

4a-de
and
2a-d
Compounds
Spectra of
NMR
1 31 P
l and
1
Table 1.

2AA 52 1.15 d (5.2) CH ₃ (R ₁) CH ₃ (Et) P-H NH C ₆ H ₅ PV 2aB 48 1.15 d (6.2) 3.14 m 3.81 7.32 d 7.38 m, 7.67 m -41.3 m (703) 2bA 53 1.17 d (6.2) 1.09 s, 1.31 s 2.99 m 3.78 m 7.32 d 7.34 m, 7.67 m -41.3 m (703) 2bB 47 1.15 d (6.5) 1.21 s, 1.31 s 2.99 m 3.71 m 7.35 d 7.34 m, 7.63 m -42.9 m (703) 2bB 44 1.15 d (6.5) 1.20 s, 1.21 s, 1.31 s 2.99 m 3.71 m 7.35 d 7.34 m, 7.63 m -42.9 m (703) 2cB 44 1.15 d (6.5) 1.15 s, 1.25 s 0.80 d (7.1), 0.75 d (7.6) 1.65 m 2.99 m 3.71 m 7.30 m, 7.64 m -47.1 m (709) 2cB 44 1.15 d (6.6) 1.15 s, 1.25 s 0.80 d (7.1), 0.75 d (7.6) 1.65 m 2.99 m 3.71 m 7.30 m, 7.64 m		K.b				ε(H)	(J _{CH-H})					$\delta(^{31}P)(J)$	(1)	
52 1.15 d (5.9) 48 1.19 d (6.2) 53 0.89 d (7.0), 0.95 d (7.4) 1.55 m 2.95 m 3.78 m 7.32 d 7.34 m, 7.60 m 53 1.17 d (6.5) 1.21 s, 1.31 s 2.99 m 3.71 m 7.35 d 7.34 m, 7.63 m 56 1.17 d (6.5) 1.21 s, 1.31 s 2.99 m 3.71 m 7.35 d 7.33 m, 7.63 m 56 1.104 s, 1.25 s 0.88 d (7.6), 0.83 d (7.1) 1.65 m 2.99 m 3.71 m 7.31 d 7.30 m, 7.64 m 39 1.32 d (6.6) 1.15 s, 1.25 s 0.80 d (7.1), 0.75 d (7.6) 1.65 m 2.97 m, 3.67 m 4.47 m 4.90 m 7.54 m 51 1.05 d (7.1) 1.05 d (7.0) 1.75 m 3.06 m, 3.46 m 4.43 m 4.85 m 7.65 m 53 1.46 d (6.6) 1.40 s, 2.22 s 0.94 d (7.0), 0.96 d (7.0) 1.91 m 2.90 m, 3.29 m 4.25 m 5.17 m 7.55 m 48 1.07 d (6.1) 1.33 d (7.0) 1.91 m 2.90 m, 3.29 m 4.29 m 5.13 m 7.55 m	compd	199		$CH_3(R_2)$	CH ₃ (Et)	CH ₂ (Et)	CH ₂ N	CH_2O	Р-Н	HN	C, H,	ρV	pIII	solvent
53	2aA 2aB	52 48	1.15 d (5.9)				3.14 m	3.81	7.32 d		7.38 m, 7.67 m		i.	CDCI ₃
56 1.17 d (6.5) 1.09 s, 1.31 s 44 1.15 d (6.5) 1.21 s, 1.31 s 56 1.17 d (6.5) 1.21 s, 1.31 s 56 1.04 s, 1.25 s 0.88 d (7.6), 0.83 d (7.1) 1.65 m 2.98 m 3.71 m 7.35 d 57.35 d 7.33 m, 7.63 m 7.35 d 7.33 m, 7.63 m 7.35 d 7.33 m, 7.63 m 7.35 d 7.30 m, 7.64 m 7.35 d 7.30 m, 7.64 m 7.30 d 7.30 d 7.30 m, 7.64 m 7.30 d 7.30 d 7.30 m, 7.64 m 7.30 m, 7.65 m 7.30 m, 7.64 m 7.30 m, 7.65 m 7.30 m, 7.64 m 7.30 m, 7.65 m 7.30 m, 7.64 m 7.30 m, 7.65 m 7.30	2bA 2bB	53			0.89 d (7.0), 0.95 d (7.4)	1.55 m	2.95 m	3.78 m	7.32 d		7.34 m, 7.60 m	-41.3 m (700)		CDC13
56 1.04 s, 1.25 s 0.88 d (7.6), 0.83 d (7.1) 1.65 m 2.98 m 3.71 m 7.31 d 7.30 m, 7.64 m 3.9 m 3.71 m 7.30 d 7.30 m, 7.64 m 4.47 m 4.47 m 4.47 m 4.48 m 7.30 d 7.30 m, 7.64 m 7.54 m 7.30 d 7.30 d 7.30 d 7.30 m, 7.64 m 7.54 m 7.55 m 7.55 m 8.09 d (7.0) 1.34 d (7.0) 1.	2cA 2cB	56 44		1.09 s, 1.31 s			2.99 m	3.71 m	7.35 d 7.42 d		7.33 m, 7.63 m	-42.9 m (703) -48.1 m (715)		CDCI,
39 1.32 d (6.6) 61 1.05 d (7.1) 53 1.37 m	2dA 2dB	56 44		1.04 s, 1.25 s	0.88 d (7.6), 0.83 d (7.1)		2.98 m	3.71 m	7.31 d		7.30 m, 7.64 m	-43.3 m (690)		CDC13
61 1.05 d (7.1) 53 1.05 d (7.1) 6.99 d (7.0) 6.93 d (7.0) 6.93 d (7.0) 6.93 d (7.0) 6.93 d (7.0) 6.93 d (7.0) 7.05 m 3.06 m, 3.46 m 4.43 m 7.05 m 4.25 m 7.05 m 7.05 m 7.00 7.05 m 7.05 m 4.29 m 7.07 d (7.0) 1.3 d (7.0) 7.09 m 7.09 m 7.29 m	4aAc	36	1.32 d (6.6)				3.05 m	4.47 m		4.90 m	7.54 m	[(CO) T	(161) d (191)	Me.SO-d. (60 °C)
53 0.99 d (7.0) 1.37 m 3.06 m, 3.46 m 4.43 m 4.75 m 5.06 d (6.6) 1.40 s, 2.22 s 3.03 d (7.0) 3.05 d (7.0) 3.03 m 4.25 m 4.29 m 4.20 m 4.20 m 4.20 m 4.20 m 4.20 m 4.20 m 4	4aB	19	1.05 d (7.1)				2.97 m, 3.67 m	4.17 m, 4.68 m					160.1 d (191)	(2 22 97
55 1.46 d (6.6) 1.40 s, 2.22 s 45 1.07 d (6.1) 1.42 s, 2.22 s 52 1.39 s, 2.21 s 0.94 d (7.0), 0.96 d (7.0) 1.91 m 2.90 m, 3.29 m 4.29 m 48 1.08 s, 2.23 s 1.02 d (7.0) 1.13 d (7.0)	46A 46B	53 47			0.99 d (7.0) 0.93 d (7.0)	1.37 m 1.75 m	3.06 m, 3.46 m	4.43 m		4.85 m	7.65 m		160.7 d (187.5) 160.0 d (190.5)	Me ₂ SO-d ₆ (60 °C)
52 1.39 s, 2.21 s 0.94 d (7.0), 0.96 d (7.0) 1.91 m 2.90 m, 3.29 m 4.29 m 4.8 1.40 s, 2.23 s 1.02 d (7.0) 1.13 d (7.0)	4cA 4cB	55	1.46 d (6.6)	1.40 s, 2.22 s			3.03 m	4.25 m		5.17 m	7.55 m		148.9 d (182)	Me ₂ SO-d ₆ (60 °C)
2	4dA 4dB	52 48		1.39 s, 2.21 s 1.40 s, 2.23 s	0.94 d (7.0), 0.96 d (7.0) 1.02 d (7.0), 1.13 d (7.0)	1.91 m	2.90 m, 3.29 m	4.29 m		5.13 m	7.55 m		154.4 d (185) 150.6 d (188)	Me ₂ SO-d ₆ (60 °C)

c Data Chemical shifts are given in "The spectra were recorded at 90 and 35.45 MHz for ¹H and ³¹P, respectively, on a Bruker WH-90 DS spectrometer; the Rh complexes are broad-band decoupled for ³¹P. Chemical shifts are giv ppm downfield from Me₄Si (internal) and 85% H₃PO₄ (external); coupling constants are in Hz; s = singlet, d = doublet, m = multiplet. ^b Ratio of diastereoisomers after formation of the product. taken from a mixture enriched with 64% of A.

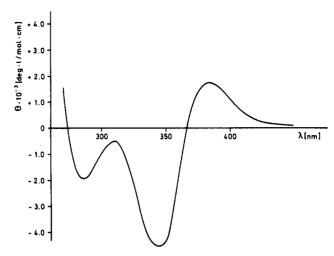


Figure 1. Molecular ellipticity of $(-)_{365}$ -4aB $(10^{-3} m \text{ in CH}_3\text{CN solution})$ as measured on a Jasco J-40A instrument.

since its configuration is not independent of that of the phosphorus atom, it does not give rise to additional stereo-isomers.

The coordination of phosphorus to the metal in 4 is evidenced in the ^{31}P NMR spectra by the presence of signals in the range 148-161 ppm, the disappearance of the J_{P-H} coupling, and the appearance of a J_{P-Rh} coupling constant of 180-190 Hz (Table I). The coordination of nitrogen to the metal is established by the disappearance of the $\nu(P-H)$ vibration in the infrared spectra (Table II), to the profit of a low $\nu(N-H)$ vibration around 3200 cm⁻¹. A trans location of the phosphorus and chlorine ligands on the metal, consistent with the antisymbiotic rule, is proposed by analogy with related structures that have been established by X-ray diffraction studies. The substitution of the remaining carbon monoxide and chloride ligands by a second phosphorane molecule was not observed even in the presence of an excess of the latter.

The presence of two diastereoisomers is evidenced by two signals in the ³¹P{¹H} and by distinct sets of ¹H signals for the alkyl groups of the alaninol residues. All the complexes ⁴ with ³¹P resonances at lower fields should belong to the same type of stereoisomer, called A, whereas the high-field resonances should belong to the opposing diastereoisomers, B. The absolute configuration at the P atom can however not be determined. In complexes 4b-d no significant change in the diastereomic ratio was found upon coordination, whereas some optical induction leading to an A:B ratio of 39:61 was observed in the case of 4a, even when starting with an approximately 50:50 mixture of the two diastereoisomers of 2a.

In the case of 4a, separation of one diastereoisomer was successfully and reproducibly achieved by two fractional crystallization steps in CH₃CN. No noticeable changes in the diastereomeric ratio were observed in the other cases, even upon repeated and very slow recrystallization. The originally predominant diastereoisomer B formed in 4a could thus very easily be separated as the sparingly soluble isomer, in optically pure quality ($[\alpha]^{20}_{365} = -435^{\circ}$, 0.9 mg/3 mL of CH₃CN). The molecular ellipticity of 4aB is shown in Figure 1. The mixture could be enriched in the case of the more readily soluble isomer 4aA only to an optical purity of 64%, as shown by 1H NMR.

The significant difference between the two diastereoisomers of 4a and 4c, found in their 1H NMR spectra for the CH_3 group R_1 (0.27 and 0.29 ppm, respectively), may be due either to distinct orientation of the methyl groups with respect to the phosphonite cycle (exo/endo) or to an interaction with the metal.

The catalytic hydrogenation of several unsaturated substrates with phosphorane-based rhodium(I) catalysts of type

Table II. Selected Properties of Compounds 2a-d and 4a-d

yield,		anal. ^c							infrared peaks, a cm-1			
% %	mp, °C	mol wtb	% C	% H	% N	% P	% Cl	% Rh	νNH	νPΗ	νco	ν _{RhCl}
60		225.2	58.72	7.17	6.22	13.76				2295		
90		225 239.2	58.20 60.24	7.19	5.82 5.86	13.67				2310		
68		239 253.3	60.21 61.65	7.47 7.96	5.80 5.53	12.17 12.23				2320		
		253	61.64	8.22	5.34	12.34				2220		
85		267.3 267	62.90 61.56	8. <i>3</i> 0 8.43	5.24	11.59				2320		
58	225 dec	391.5	36.81	4.12	3.58	7.92	9.05	26.28	3201 m		2001 vs	295 w
42	215 dec	405.6	38.52	4.44	3.46	7.65	8.64	25.37	3190 m		1996 vs	285 w
93	228 dec	419.6	40.12	4.81	3.34	7.40	8.47	24.55	3203 m		1998 vs	295 w
83	225 dec	419 433.7	41.54	4.90 5.11	3.23	7.14	8.17	23.37	3190 m		1998 vs	280 w
-	% 60 90 68 85 58 42 93	% mp, °C 60 90 68 85 58 225 dec 42 215 dec 93 228 dec	% mp, °C mol wtb 60 225.2 29 225 90 239.2 239 253.3 253 267.3 267 391.5 391 391 42 215 dec 405.6 405 405 93 228 dec 419.6 419 419	% mp, °C mol wtb % C 60 225.2 58.72 225 58.20 90 239.2 60.24 239 60.21 68 253.3 61.65 253 61.64 85 267.3 62.90 267 61.56 58 225 dec 391.5 36.81 391 36.91 42 215 dec 405.6 38.52 405 38.79 93 228 dec 419.6 40.12 419 40.19 83 225 dec 433.7 41.54	% mp, °C mol wtb % C % H 60 225.2 58.72 7.17 225 58.20 7.19 90 239.2 60.24 7.58 239 60.21 7.47 68 253.3 61.65 7.96 253 61.64 8.22 85 267.3 62.90 8.30 267 61.56 8.43 58 225 dec 391.5 36.81 4.12 391 36.91 4.21 42 215 dec 405.6 38.52 4.44 405 38.79 4.46 93 228 dec 419.6 40.12 4.81 419 40.19 4.90 83 225 dec 433.7 41.54 5.11	% mp, °C mol wtb % C % H % N 60 225.2 58.72 7.17 6.22 90 239.2 60.24 7.58 5.86 239 60.21 7.47 5.80 68 253.3 61.65 7.96 5.53 253 61.64 8.22 5.34 85 267.3 62.90 8.30 5.24 267 61.56 8.43 5.05 58 225 dec 391.5 36.81 4.12 3.58 42 215 dec 405.6 38.52 4.44 3.46 405 38.79 4.46 3.50 93 228 dec 419.6 40.12 4.81 3.34 419 40.19 4.90 3.58 83 225 dec 433.7 41.54 5.11 3.23	% mp, °C mol wtb % C % H % N % P 60 225.2 58.72 7.17 6.22 13.76 90 239.2 60.24 7.58 5.86 12.94 239 60.21 7.47 5.80 12.17 68 253.3 61.65 7.96 5.53 12.23 253 61.64 8.22 5.34 12.34 85 267.3 62.90 8.30 5.24 11.59 267 61.56 8.43 5.05 11.12 58 225 dec 391.5 36.81 4.12 3.58 7.92 42 215 dec 405.6 38.52 4.44 3.46 7.65 405 38.79 4.46 3.50 7.70 93 228 dec 419.6 40.12 4.81 3.34 7.40 419 40.19 4.90 3.58 7.50 83 225 dec 433.7	% mp, °C mol wtb % C % H % N % P % Cl 60 225.2 58.72 7.17 6.22 13.76 90 239.2 60.24 7.58 5.86 12.94 239 60.21 7.47 5.80 12.17 68 253.3 61.65 7.96 5.53 12.23 253 61.64 8.22 5.34 12.34 85 267.3 62.90 8.30 5.24 11.59 267 61.56 8.43 5.05 11.12 58 225 dec 391.5 36.81 4.12 3.58 7.92 9.05 42 215 dec 405.6 38.52 4.44 3.46 7.65 8.64 93 228 dec 419.6 40.12 4.81 3.34 7.40 8.47 419 40.19 4.90 3.58 7.50 8.54 83 225 dec 433.7 41.54	% mp, °C mol wtb % C % H % N % P % CI % Rh 60 225.2 58.72 7.17 6.22 13.76 90 239.2 60.24 7.58 5.86 12.94 239 60.21 7.47 5.80 12.17 68 253.3 61.65 7.96 5.53 12.23 253 61.64 8.22 5.34 12.34 85 267.3 62.90 8.30 5.24 11.59 267 61.56 8.43 5.05 11.12 58 225 dec 391.5 36.81 4.12 3.58 7.92 9.05 26.28 391 36.91 4.21 3.57 8.11 9.59 26.10 42 215 dec 405.6 38.52 4.44 3.46 7.65 8.64 25.37 405 38.79 4.46 3.50 7.70 8.68 25.43 93	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Films (2a-d) or KBr disks (4a-d) measured on a Beckman 4240 or a Perkin-Elmer 577 instrument. ^b Mass spectroscopy. ^c Top row of data for each compound gives calculated values; bottom row, found values.

4 has previously been reported.⁵ In contrast to these reactions, which took place at an initial pressure of 1 bar when cyclohexene was the substrate, a drastic increase in H pressure was required for the hydrogenation of (Z)- α -acetamidocinnamic acid; this pressure is moreover dependent on the solvent. In a typical run, the acid could be hydrogenated in the presence of (-)-4aB under 100 bar of H_2 in 92% yield but with only an 18% enantiomeric excess.

Experimental Section

Elemental analyses (Service Central d'Analyses du CNRS) are shown, together with melting points, yields, and infrared data, in Table II. All procedures were carried out under nitrogen with dry, N₂-saturated solvents. The optically active amino diols HOCH₂-CH(R₁)NHCH₂C(R₂)₂OH were prepared according to pathished methods.⁷ The preparation of the phosphoranes 2a-d in general follows the procedure given by Houalla et al.² with some modifications.

General Operation Mode for Bicyclic Aminophosphoranes 2a-d. A mixture of carefully distilled bis(diethylamino)phenylphosphane (5.04 g, 20 mmol) was heated with an equivalent amount of the amino diol in 100 mL of toluene at 140 °C for 24 h. The diethylamine was distilled as it formed. The solution was concentrated to 20 mL and filtered through SiO_2 (5 × 2 cm). After evaporation of the solvent, the phosphoranes were isolated as colorless, viscous oils. 2a was obtained as white crystals on cooling a saturated pentane solution to -35 °C.

Preparation of the Rh Complexes 4a-d. A solution of 1 mmol of phosphorane 2 in 10 mL of benzene was added at room temperature to a solution of [Rh(CO)₂Cl]₂ (194 mg, 0.5 mmol) in 10 mL of benzene. The mixture immediately darkened, and a bright yellow solid precipitated with evolution of CO. The solid was filtered and washed twice with small portions of benzene to give the crude product in 60-90% yield, from which the optical inductions were examined

by means of ³¹P and ¹H NMR spectroscopy.

Isolation of (-)₃₆₅-4aB. A 572-mg sample of complex 4a was dissolved in 15 mL of CH₃CN at 60 °C. The solution was filtered and then slowly cooled to 0 °C over 2 days. The resulting yellow crystals were again recrystallized, to give 57 mg (8% yield) of the optically pure compound (-)₃₆₅-4aB.

Catalytic Hydrogenation of (Z)- α -Acetamidocinnamic Acid. A solution of $(-)_{365}$ -4aB (35 mg, 0.09 mmol) in 10 mL of CH₃CN was added to a solution of (Z)- α -acetamidocinnamic acid (506 mg, 2.4 mmol) in 10 mL of CH₃OH. The mixture was transferred into a 100-mL autoclave. After being purged three times with 50 bar of H₂, the solution was stirred under 100 bar of H₂ for 24 h at 35 °C. Workup of the dark solution and determination of the enantiomeric excess were accomplished as described in the literature.⁸

Acknowledgment. We are grateful to E. Fischer and Dr. K. K. Mayer for measurement of the mass spectra. J.W. is indebted to Prof. H. Brunner for generous support of part of this work.

Registry No. 1a, 91239-52-0; 1b, 74572-06-8; 1c, 91239-53-1; 1d, 91239-54-2; 2aA, 91239-48-4; 2aB, 91280-11-4; 2bA, 91239-49-5; 2bB, 91280-12-5; 2cA, 91239-50-8; 2cB, 91280-13-6; 2dA, 91239-51-9; 2dB, 91280-14-7; 4aA, 91239-55-3; 4aB, 91280-15-8; 4bA, 91239-56-4; 4bB, 91280-16-9; 4cA, 91239-57-5; 4cB, 91280-17-0; 4dA, 91239-58-6; 4dB, 91280-18-1; $[Rh(CO)_2Cl]_2$, 14523-22-9; $PhP(NEt_2)_2$, 1636-14-2; (Z)- α -acetamidocinnamic acid, 55065-02-6.

Supplementary Material Available: Tables of selected ions from mass spectra of phosphoranes $2\mathbf{a}-\mathbf{d}$ and rhodium adducts $4\mathbf{a}-\mathbf{d}$. Preliminary data on hydrogenation of $(Z)-\alpha$ -acetamidocinnamic acid with $(-)_{365}$ -4aB (2 pages). Ordering information is given on any current masthead page.

⁽⁷⁾ Jones, G. D. J. Org. Chem. 1944, 9, 484.

⁽⁸⁾ Brunner, H.; Pieronczyk, W. J. Chem. Res., Synop. 1980, 76; J. Chem. Res., Miniprint 1980, 1275.