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Abstract

We prove existence of weak solutions for a diffuse interface model for the flow of two
viscous incompressible Newtonian fluids in a bounded domain in two and three space dimen-
sions. In contrast to previous works, we study a new model recently developed by Abels,
Garcke, and Grün for fluids with different densities, which leads to a solenoidal velocity field.
The model is given by a non-homogeneous Navier-Stokes system with a modified convective
term coupled to a Cahn-Hilliard system. The density of the mixture depends on an order
parameter.
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1 Introduction

A fundamental problem in fluid dynamics involves changes in topology of interfaces between
immiscible or partially miscible fluids. Topological transitions such as pinch off and reconnection
of fluid interfaces are important features of many systems and strongly affect the flow. Classical
models based on sharp interface approaches typically fail to describe these phenomena. In
recent years, diffuse interface models turned out to be a promising approach to describe such
phenomena. In this approach, an order parameter is introduced which allows for a mixing in an
interfacial zone. Therefore the sharp interface is replaced by a thin interfacial layer in which the
order parameter, which can be a concentration, rapidly changes its value. Often these diffuse
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interface models (also called phase field models) allow for local entropy or free energy inequalities
and in such situations they can be called thermodynamically consistent. It can be justified in
some cases that sharp interface models are recovered in the limit when the interfacial thickness
goes to zero. We refer to Lowengrub and Truskinovsky [LT98], Abels, Garcke and Grün [AGG11]
for a result using formally matched asymptotic expansions and Abels and Röger [AR09] for a
first analytic result. The diffuse interface approach is hence an attractive approach to model
and to numerically simulate fluid interfaces.

In the literature, diffuse interface models are well established for two-phase flows of liq-
uids with identical (“matched”) densities, see Hohenberg and Halperin or Gurtin et al. [HH77,
GPV96]. In contrast, when the densities are different, several approaches have been discussed in
the literature. Lowengrub and Truskinovsky [LT98] derived quasi-incompressible models, where
the corresponding velocity field is not divergence free. On the other hand, Ding et al. [DSS07]
proposed a model with solenoidal fluid velocities which is not known to be thermodynamically
consistent. Only recently Abels, Garcke and Grün, see [AGG11] derived a thermodynamically
consistent diffuse interface model for two phase flow with different densities. It is the goal of
this paper to show existence of weak solutions for this new model.

More precisely, we consider the following system of Navier-Stokes/Cahn-Hilliard type:

∂t(ρv) + div(v ⊗ (ρv + J̃))− div(2η(ϕ)Dv) +∇p = −div(a(ϕ)∇ϕ⊗∇ϕ) in Q,

div v = 0 in Q,

∂tϕ+ v · ∇ϕ = div (m(ϕ)∇µ) in Q,

µ = Ψ′(ϕ) + a′(ϕ)
|∇ϕ|2

2
− div (a(ϕ)∇ϕ) in Q,

where J̃ = − ρ̃2−ρ̃1
2 m(ϕ)∇µ, Q = Ω × (0,∞), and Ω ⊂ Rd, d = 2, 3, is a sufficiently smooth

bounded domain. We close the system with the boundary and initial conditions

v|∂Ω = 0 on ∂Ω× (0,∞),

∂nϕ|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω× (0,∞),

(v, ϕ) |t=0 = (v0, ϕ0) in Ω,

where ∂n = n · ∇ and n denotes the exterior norm at ∂Ω. Here v and ρ = ρ(ϕ) are the (mean)
velocity and the density of the mixture of the two fluids, p is the pressure, ϕ is an order parameter
related to the concentrations of the two fluids, and µ is the chemical potential associated to ϕ.
Moreover, Dv = 1

2(∇v + ∇vT ), η(ϕ) > 0 is a viscosity coefficient, and m(ϕ) > 0 is a (non-
degenerate) mobility coefficient. Furthermore, Ψ(ϕ) is the homogeneous free energy density for
the mixture and the (total) free energy of the system is given by∫

Ω

(
a(ϕ)

|∇ϕ|2

2
+ Ψ(ϕ)

)
dx,

for some positive coefficient a(ϕ).
An important aspect of our contribution is that we consider a class of singular free energies,

which includes the homogeneous free energy of the so-called regular solution models used by
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Cahn and Hilliard [CH58]:

Ψ(ϕ) =
θ

2
((1 + ϕ) ln(1 + ϕ) + (1− ϕ) ln(1− ϕ))− θc

2
ϕ2, ϕ ∈ [−1, 1] (1.1)

where 0 < θ < θc. Mathematically, these singular free energies ensure that the order parameter
stays in the physically reasonable interval, which is [−1, 1] if ϕ is the difference of volume
fractions of both fluids. But this leads to singular terms in the equation for the chemical
potential. In order to deal with these terms we apply techniques, which were developed in Abels
and Wilke [AW07] and applied in Abels [Abe09b] to the model for matched densities.

In the case of matched densities, i. e., ρ̃1 = ρ̃2, J̃ ≡ 0, the model reduces to the well-known
model of matched densities discussed in Hohenberg and Halperin [HH77]. In this case existence of
weak solutions and well-posedness were obtained by Starovoitov [Sta97], Boyer [Boy99], Liu and
Shen [LS03], and Abels [Abe09b]. Moreover, Boyer [Boy01] considered a diffuse interface model
for fluids with non-matched densities, which is different from our model. He proved existence
of strong solutions, locally in time, and existence of global weak solutions if the densities of the
fluids are sufficiently close. First analytic results for the model by Lowengrub and Truskinovsky
were obtained in [Abe09a, Abe11]. For more information on diffuse interface models for two
phase flows of incompressible fluids we refer to Abels, Garcke and Grün [AGG11].

The structure of the article is as follows: In Section 2 we summarize some notation and
preliminary results. Then, in Section 3, we reformulate our system suitably, define weak solutions
and state our main result on existence of weak solutions. In Section 4 we approximate our
system with the aid of an implicit time discretization and prove existence of solutions for the
latter system with the help of the Leray-Schauder principle. Afterwards we pass to the limit in
Section 5 and prove our main result on existence for the Cahn-Hilliard/Navier-Stokes system.
Here in particular the compactness of the velocity and the attainment of the initial data for
the velocity are non-standard. Finally, in the appendix we discuss the corresponding results on
existence of weak solutions for a similar model, which was derived in Abels, Garcke and Grün
[AGG10] before.

2 Preliminaries

We denote a⊗ b = (aibj)
d
i,j=1 for a, b ∈ Rd and Asym = 1

2(A+AT ) for a matrix A ∈ Rd×d. If X
is a Banach space and X ′ is its dual, then

〈f, g〉 ≡ 〈f, g〉X′,X = f(g), f ∈ X ′, g ∈ X,

denotes the duality product. We write X ↪→↪→ Y if X is compactly embedded into Y . Moreover,
if H is a Hilbert space, (· , ·)H denotes its inner product. Moreover, we use the abbreviation
(. , .)M = (. , .)L2(M).

Function spaces: If M ⊆ Rd is measurable, Lq(M), 1 ≤ q ≤ ∞ denotes the usual Lebesgue-
space and ‖.‖q its norm. Moreover, Lq(M ;X) denotes the set of all strongly measurable q-
integrable functions/essentially bounded functions, where X is a Banach space. If M = (a, b),
we write for simplicity Lq(a, b;X) and Lq(a, b). Furthermore, f ∈ Lqloc([0,∞);X) if and only if
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f ∈ Lq(0, T ;X) for every T > 0. Moreover, Lquloc([0,∞);X) denotes the uniformly local variant
of Lq(0,∞;X) consisting of all strongly measurable f : [0,∞)→ X such that

‖f‖Lq
uloc([0,∞);X) = sup

t≥0
‖f‖Lq(t,t+1;X) <∞.

If T <∞, we set Lquloc([0, T );X) := Lq(0, T ;X).
Recall that, if X is a Banach space with the Radon-Nikodym property, then

Lq(M ;X)′ = Lq
′
(M ;X ′) for every 1 ≤ q <∞

by means of the duality product 〈f, g〉 =
∫
M 〈f(x), g(x)〉X′,Xdx for f ∈ Lq

′
(M ;X ′), g ∈

Lq(M ;X). If X is reflexive or X ′ is separable, then X has the Radon-Nikodym property,
cf. Diestel and Uhl [DU77].

Moreover, we recall the Lemma of Aubin-Lions: If X0 ↪→↪→ X1 ↪→ X2 are Banach spaces,
1 < p <∞, 1 ≤ q <∞, and I ⊂ R is a bounded interval, then{

v ∈ Lp(I;X0) :
dv

dt
∈ Lq(I;X2)

}
↪→↪→ Lp(I;X1). (2.1)

See J.-L. Lions [Lio69] for the case q > 1 and Simon [Sim87] or Roub́ıček [Rou90] for q = 1.
Let Ω ⊂ Rd be a domain. Then Wm

q (Ω), m ∈ N0, 1 ≤ q ≤ ∞, denotes the usual Lq-Sobolev

space, Wm
q,0(Ω) the closure of C∞0 (Ω) in Wm

q (Ω), W−mq (Ω) = (Wm
q′,0(Ω))′, and W−mq,0 (Ω) =

(Wm
q′ (Ω))′. The L2-Bessel potential spaces are denoted by Hs(Ω), s ∈ R, which are defined by

restriction of distributions in Hs(Rd) to Ω, cf. Triebel [Tri78, Section 4.2.1]. We note that, if
Ω ⊂ Rd is a bounded domain with C0,1-boundary, then there is an extension operator EΩ which
is a bounded linear operator EΩ : Wm

p (Ω)→Wm
p (Rd), 1 ≤ p ≤ ∞ for all m ∈ N and EΩf |Ω = f

for all f ∈ Wm
p (Ω), cf. Stein [St70, Chapter VI, Section 3.2]. This extension operator extends

to EΩ : Hs(Ω)→ Hs(Rd), which shows that Hs(Ω) is a retract of Hs(Rd). Therefore all results
on interpolation spaces of Hs(Rd) carry over to Hs(Ω).

Given f ∈ L1(Ω), we denote by fΩ = 1
|Ω|
∫

Ω f(x) dx its mean value. Moreover, for m ∈ R we
set

Lq(m)(Ω) := {f ∈ Lq(Ω) : fΩ = m}, 1 ≤ q ≤ ∞.

Then for f ∈ L2(Ω) we observe that

P0f := f − fΩ = f − 1

|Ω|

∫
Ω
f(x) dx

is the orthogonal projection onto L2
(0)(Ω). Furthermore, we define

H1
(0) ≡ H

1
(0)(Ω) = H1(Ω) ∩ L2

(0)(Ω), (c, d)H1
(0)

(Ω) := (∇c,∇d)L2(Ω).

Then H1
(0)(Ω) is a Hilbert space due to Poincaré’s inequality.

Spaces of solenoidal vector-fields: For a bounded domain Ω ⊂ Rd we denote by C∞0,σ(Ω) in

the following the space of all divergence free vector fields in C∞0 (Ω)d and L2
σ(Ω) is its closure in
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the L2-norm. The corresponding Helmholtz projection is denoted by Pσ, cf. e.g. Sohr [Soh01].
We note that Pσf = f −∇p, where p ∈ W 1

2 (Ω) ∩ L2
(0)(Ω) is the solution of the weak Neumann

problem
(∇p,∇ϕ)Ω = (f,∇ϕ) for all ϕ ∈ C∞(Ω). (2.2)

Spaces of continuous vector-fields: In the following let I = [0, T ] with 0 < T < ∞
or let I = [0,∞) if T = ∞ and let X be a Banach space. Then BC(I;X) is the Ba-
nach space of all bounded and continuous f : I → X equipped with the supremum norm and
BUC(I;X) is the subspace of all bounded and uniformly continuous functions. Moreover,
we define BCw(I;X) as the topological vector space of all bounded and weakly continuous
functions f : I → X. By C∞0 (0, T ;X) we denote the vector space of all smooth functions
f : (0, T ) → X with supp f ⊂⊂ (0, T ). Finally, f ∈ W 1

p (0, T ;X), 1 ≤ p < ∞, if and only

if f, dfdt ∈ Lp(0, T ;X), where df
dt denotes the vector-valued distributional derivative of f . Fur-

thermore, W 1
p,uloc([0,∞);X) is defined by replacing Lp(0, T ;X) by Lpuloc([0,∞);X) and we set

H1(0, T ;X) = W 1
2 (0, T ;X) and H1

uloc([0,∞);X) := W 1
2,uloc([0,∞);X). Finally, we note:

Lemma 2.1. Let X,Y be two Banach spaces such that Y ↪→ X and X ′ ↪→ Y ′ densely. Then
L∞(I;Y ) ∩BUC(I;X) ↪→ BCw(I;Y ).

For a proof, see e.g. Abels [Abe09a].

Embedding results for interpolation couples: Let (X0, X1) be a compatible couple of
Banach spaces, i.e., there is a Hausdorff topological vector space Z such that X0, X1 ↪→ Z,
cf. Bergh and Löfström [BL76], and let (. , .)[θ] and (. , .)θ,r, θ ∈ [0, 1], 1 ≤ r ≤ ∞, denote the
complex and real interpolation functor, respectively. If in addition X1 ↪→ X0 densely, then for
all 1 ≤ p <∞

W 1
p (0, T ;X0) ∩ Lp(0, T ;X1) ↪→ BUC(I; (X0, X1)1− 1

p
,p) (2.3)

continuously, cf. Amann [Ama95, Chapter III, Theorem 4.10.2]. From this one immediately
gets

W 1
p,uloc([0, T );X0) ∩ Lpuloc([0, T );X1) ↪→ BUC(I; (X0, X1)1− 1

p
,p) . (2.4)

A result related to energy inequalities: The following lemma will be useful for passing to
the limit in energy inequalities.

Lemma 2.2. Let E : [0, T )→ [0,∞), 0 < T ≤ ∞, be a lower semi-continuous function and let
D : (0, T )→ [0,∞) be an integrable function. Then

E(0)ϕ(0) +

∫ T

0
E(t)ϕ′(t) dt ≥

∫ T

0
D(t)ϕ(t) dt (2.5)

holds for all ϕ ∈W 1
1 (0, T ) with ϕ(T ) = 0 and ϕ ≥ 0 if and only if

E(t) +

∫ t

s
D(τ) dτ ≤ E(s) (2.6)

holds for all s ≤ t < T and almost all 0 ≤ s < T including s = 0.

For a proof, we refer to Abels [Abe09a].
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3 Existence of weak solutions

In this section we prove an existence result for weak solutions of the following Navier-Stokes/
Cahn-Hilliard system for a situation with different densities. The complete system is given by

∂t(ρv) + div(ρv ⊗ v)− div(2η(ϕ)Dv) +∇p+ div(v ⊗ J̃)

= −div(a(ϕ)∇ϕ⊗∇ϕ) in Q, (3.1)

div v = 0 in Q, (3.2)

∂tϕ+ v · ∇ϕ = div (m(ϕ)∇µ) in Q, (3.3)

µ = Ψ′(ϕ) + a′(ϕ)
|∇ϕ|2

2
− div (a(ϕ)∇ϕ) in Q, (3.4)

v|∂Ω = 0 on S, (3.5)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0 on S, (3.6)

(v, ϕ) |t=0 = (v0, ϕ0) in Ω, (3.7)

where J̃ = − ρ̃2−ρ̃1
2 m(ϕ)∇µ. To simplify the presentation we set σ̂ = ε = 1, but the result

will also be true for general σ̂, ε > 0. In the above formulation and in the following, we use
the abbreviations for space-time cylinders Q(s,t) = Ω × (s, t), Qt = Q(0,t) and Q = Q(0,∞)

and analogously for the boundary S(s,t) = ∂Ω × (s, t), St = S(0,t) and S = S(0,∞). Equation
(3.5) is the no-slip boundary condition for viscous fluids, n is the exterior unit normal on ∂Ω,
∂nµ|∂Ω = 0 means that there is no mass flux of the components through the boundary, and
∂nϕ|∂Ω = 0 describes a contact angle of π/2 of the diffused interface and the boundary of the
domain.

We reformulate the first line suitably. To this end, we first calculate

−div(a(ϕ)∇ϕ⊗∇ϕ) = −div(a(ϕ)∇ϕ)∇ϕ− a(ϕ)∇
(
|∇ϕ|2

2

)
.

Multiplying (3.4) with ∇ϕ using Ψ′(ϕ)∇ϕ = ∇ (Ψ(ϕ)) and a′(ϕ)∇ϕ = ∇ (a(ϕ)) then leads to
the following identity

−div(a(ϕ)∇ϕ)∇ϕ = µ∇ϕ−∇(Ψ(ϕ))−∇ (a(ϕ))
|∇ϕ|2

2
,

which gives

−div(a(ϕ)∇ϕ⊗∇ϕ) = µ∇ϕ−∇(Ψ(ϕ))−∇
(
a(ϕ)

|∇ϕ|2

2

)
.

With a new pressure g = p+ Ψ(ϕ) + a(ϕ) |∇ϕ|
2

2 we replace (3.1) by

∂t(ρv) + div(ρv ⊗ v)− div(2η(ϕ)Dv) +∇g + div(v ⊗ J̃) = µ∇ϕ . (3.1’)
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3.1 Assumptions and definition of weak solutions

In the following we summarize the assumptions needed to formulate the notion of a weak solution
of (3.1)-(3.7) and an existence result.

Assumption 3.1. We assume that Ω ⊂ Rd, d = 2, 3, is a bounded domain with smooth boundary
and additionally we impose the following conditions.

(i) The constitutive relation between density and phase field is given by ρ(ϕ) = 1
2(ρ̃1 + ρ̃2) +

1
2(ρ̃2 − ρ̃1)ϕ as derived in Abels, Garcke and Grün [AGG11], where ρ̃i > 0 are the specific
constant mass densities of the unmixed fluids and ϕ is the difference of the volume fractions
of the fluids.

(ii) We assume a,m ∈ C1(R), η ∈ C0(R) and 0 < m0 ≤ a(s),m(s), η(s) ≤ K for given
constants m0,K > 0.

(iii) For the homogeneous free energy density Ψ we assume that Ψ ∈ C([−1, 1]) ∩ C2((−1, 1))
such that

lim
s→−1

Ψ′(s) = −∞ , lim
s→1

Ψ′(s) =∞ , Ψ′′(s) ≥ −κ for some κ ∈ R . (3.8)

(iv) Additionally we impose the condition that lims→±1
Ψ′′(s)
|Ψ′(s)| = +∞.

Remark 3.2. (i) An example for Ψ is given by

Ψ(s) :=
a

2
((1 + s) ln(1 + s) + (1− s) ln(1− s))− b

2
s2 , s ∈ [−1, 1], (3.9)

where a, b > 0. We note that Ψ is convex if and only if a ≥ b.

(ii) The Assumption 3.1 (iv) is needed to reformulate the model to apply results from the theory
of subdifferentials.

(iii) As the solution ϕ will lie in the interval [−1, 1], we only need the functions a,m, η on
this interval. We then extend the functions a,m, η to the whole of R such that (ii) in
Assumption 3.1 is fulfilled.

Now we can define a weak solution of problem (3.1)-(3.7).

Definition 3.3. Let T ∈ (0,∞] and set either I = [0,∞) if T = ∞ or I = [0, T ] if T < ∞,
v0 ∈ L2

σ(Ω) and ϕ0 ∈ H1(Ω) with |ϕ0| ≤ 1 almost everywhere in Ω. If in addition Assumption
3.1 holds we call the triple (v, ϕ, µ) with the properties

v ∈ BCw(I;L2
σ(Ω)) ∩ L2(0, T ;H1

0 (Ω)d) ,

ϕ ∈ BCw(I;H1(Ω)) ∩ L2
uloc(I;H2(Ω)) , Ψ′(ϕ) ∈ L2

uloc(I;L1(Ω)) ,

µ ∈ L2
uloc(I;H1(Ω)) with ∇µ ∈ L2(0, T ;L2(Ω))
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a weak solution of (3.1)-(3.7), if the following conditions are satisfied.

− (ρv, ∂tψ)QT
+ (div(ρv ⊗ v),ψ)QT

+ (2η(ϕ)Dv, Dψ)QT
−
(

(v ⊗ J̃),∇ψ
)
QT

= (µ∇ϕ,ψ)QT
(3.10)

for all ψ ∈ [C∞0 (Ω× (0, T ))]d with divψ = 0,

− (ϕ, ∂tζ)QT
+ (v · ∇ϕ, ζ)QT

= − (m(ϕ)∇µ,∇ζ)QT
(3.11)

for all ζ ∈ C∞0 ((0, T );C1(Ω)),

µ = Ψ′(ϕ) + a′(ϕ)
|∇ϕ|2

2
− div (a(ϕ)∇ϕ) almost everywhere in QT and (3.12)

(v, ϕ)|t=0 = (v0, ϕ0) . (3.13)

Moreover,

Etot(ϕ(t),v(t)) +

∫
Q(s,t)

2η(ϕ) |Dv|2 d(x, τ) +

∫
Q(s,t)

m(ϕ)|∇µ|2 d(x, τ)

≤ Etot(ϕ(s),v(s)) (3.14)

for all t ∈ [s,∞) and almost all s ∈ [0,∞) has to hold (including s = 0). The total energy Etot

is the sum of the kinetic and the free energy, see (3.16).

3.2 Existence theorem

Our main result of this work is the following existence theorem for weak solutions.

Theorem 3.4. Let Assumption 3.1 hold, v0 ∈ L2
σ(Ω), ϕ0 ∈ H1(Ω) with |ϕ0| ≤ 1 almost

everywhere and
∫

Ω− ϕ0 dx ∈ (−1, 1). Then there exists a weak solution (v, ϕ, µ) of (3.1)-(3.7) in
the sense of Definition 3.3.

In order to prove the theorem, we reformulate line (3.12) to an equivalent equation. Therefore
we introduce the function A(s) :=

∫ s
0

√
a(τ) dτ for s ≥ 0. Then A′(s) =

√
a(s) and

−
√
a(ϕ) ∆A(ϕ) = a′(ϕ)

|∇ϕ|2

2
− div (a(ϕ)∇ϕ)

resulting from a straightforward calculation.
With this notation (3.12) reduces to

µ = Ψ′(ϕ)−
√
a(ϕ) ∆A(ϕ) . (3.15)

We also rewrite the free energy with the help of A to

Efree(ϕ) =

∫
Ω

(
Ψ(ϕ) +

|∇A(ϕ)|2

2

)
dx .
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The kinetic energy is given by Ekin(ϕ, v) =
∫

Ω ρ
|v|2
2 dx and the total energy as the sum of the

kinetic and free energy

Etot(ϕ, v) = Ekin(ϕ, v) + Efree(ϕ) =

∫
Ω
ρ
|v|2

2
dx+

∫
Ω

(
Ψ(ϕ) +

|∇A(ϕ)|2

2

)
dx. (3.16)

The next step is to rewrite (3.15) with the help of a subdifferential. To this end, we set [a, b] :=
A([−1, 1]) and define a reparametrized potential Ψ̃ through

Ψ̃ : R→ R , Ψ̃(r) :=

{
Ψ(A−1(r)) if r ∈ [a, b],

+∞ else .
(3.17)

This Ψ̃ fulfills analogous assumptions as Ψ, that is Ψ̃ ∈ C0([a, b]) ∩ C2((a, b)) and

lim
r→a

Ψ̃(r) = −∞ , lim
r→b

Ψ̃(r) = +∞ , Ψ̃′′(r) ≥ −κ̃ for all r ∈ (a, b) (3.18)

for some κ̃ ∈ R. Here Assumption 3.1 (iv) is needed. We define Ψ̃0(r) := Ψ̃(r) + κ̃
2 r

2 to get a

convex function Ψ̃0. In particular it holds Ψ̃′(r) = Ψ̃′0(r)− κ̃r and Ψ̃′(A(s)) = Ψ̃′0(A(s))− κ̃A(s)

for s ∈ [−1, 1]. Furthermore we observe Ψ̃(A(s)) = Ψ(s) for s ∈ [−1, 1] and therefore Ψ′(s) =

Ψ̃′(A(s)) ·
√
a(s), in particular (a(s))−

1
2 ·Ψ′(s) = Ψ̃′(A(s)).

This notation leads to a reformulation of (3.15) to

(a(ϕ))−
1
2 µ+ κ̃A(ϕ) = Ψ̃′0(A(ϕ))−∆A(ϕ) . (3.19)

Now we use a result from Abels and Wilke [AW07] for the energy Ẽ : L2(Ω)→ R with domain
dom Ẽ = {u ∈ H1(Ω) | a ≤ u ≤ b a.e.} given by

Ẽ(u) =

{
1
2

∫
Ω |∇u|

2 dx+
∫

Ω Ψ̃0(u) dx for u ∈ dom Ẽ ,
+∞ else .

(3.20)

From Theorem 3.12.8 in [Abe07], which is a variant of Theorem 4.3 in [AW07], the domain of
definition of the subgradient ∂Ẽ is given by

D(∂Ẽ) = {u ∈ H2(Ω) | Ψ̃′0(u) ∈ L2(Ω) , Ψ̃′′0(u)|∇u|2 ∈ L1(Ω) , ∂nu|∂Ω = 0}

and for u ∈ D(∂Ẽ) it holds that ∂Ẽ(u) = −∆u+ Ψ̃′0(u). Furthermore there holds the estimate

‖u‖2H2 + ‖Ψ̃′0(u)‖2L2 +

∫
Ω

Ψ̃′′0(u(x))|∇u(x)|2 dx ≤ C
(
‖∂Ẽ(u)‖2L2 + ‖u‖2L2 + 1

)
. (3.21)

Analogously we define the energy E : L2(Ω) → R with domain domE = {ϕ ∈ H1(Ω) | − 1 ≤
ϕ ≤ 1 a.e.} given by

E(ϕ) =

{
1
2

∫
Ω |∇ϕ|

2 dx+
∫

Ω Ψ0(ϕ) dx for u ∈ domE ,
+∞ else .

(3.22)
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Here it holds that D(∂E) = {ϕ ∈ H2(Ω) | Ψ′0(ϕ) ∈ L2(Ω) , Ψ′′0(ϕ)|∇ϕ|2 ∈ L1(Ω) , ∂nϕ|∂Ω = 0}.
One can show that that A(ϕ) ∈ D(∂Ẽ) if and only if ϕ ∈ D(∂E) and therefore we get for
u = A(ϕ) with ϕ ∈ D(∂E) the identity

∂Ẽ(A(ϕ)) = −∆A(ϕ) + Ψ̃′0(A(ϕ)) . (3.23)

This leads finally to the reformulation of (3.12) as

(a(ϕ))−
1
2 µ+ κ̃A(ϕ) = ∂Ẽ(A(ϕ)) . (3.24)

The fact that the right hand side equals the subgradient of Ẽ at the point A(ϕ) will be of
importance in the following analysis.

With the above notation we can rewrite the free energy as

Efree(ϕ) =

∫
Ω

Ψ(ϕ) dx+

∫
Ω

|∇A(ϕ)|2

2
dx =

∫
Ω

Ψ̃(A(ϕ)) dx+

∫
Ω

|∇A(ϕ)|2

2
dx

=

∫
Ω

Ψ̃0(A(ϕ)) dx+

∫
Ω

|∇A(ϕ)|2

2
dx−

∫
Ω

κ̃

2
(A(ϕ))2 dx

= Ẽ(A(ϕ))− κ̃

2
‖A(ϕ)‖2L2 .

We summarize the reformulation of problem (3.1)-(3.7):

∂t(ρv) + div(ρv ⊗ v)− div(2η(ϕ)Dv) +∇g + div(v ⊗ J̃) = µ∇ϕ in Q, (3.25)

div v = 0 in Q, (3.26)

∂tϕ+ v · ∇ϕ = div (m(ϕ)∇µ) in Q, (3.27)

(a(ϕ))−
1
2 µ+ κ̃A(ϕ) = Ψ̃′0(A(ϕ))−∆A(ϕ) in Q, (3.28)

v|∂Ω = 0 on S, (3.29)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0 on S, (3.30)

(v, ϕ) |t=0 = (v0, ϕ0) in Ω, (3.31)

where J̃ = − ρ̃2−ρ̃1
2 m(ϕ)∇µ.

4 Implicit time discretization

4.1 Definition of the time-discrete problem

In order to prove Theorem 3.4, we use an implicit time discretization. To this end, let h = 1
N for

N ∈ N and vk ∈ L2
σ(Ω), ϕk ∈ H1(Ω) with Ψ′(ϕk) ∈ L2(Ω) and ρk = 1

2(ρ̃1 + ρ̃2) + 1
2(ρ̃2 − ρ̃1)ϕk

be given. We construct (v, ϕ, µ) = (vk+1, ϕk+1, µk+1) as solution of the following non-linear
system, where

J̃ = J̃k+1 = − ρ̃2−ρ̃1
2 m(ϕk)∇µk+1 = − ρ̃2−ρ̃1

2 m(ϕk)∇µ .
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Find (v, ϕ, µ) with v ∈ H1
0 (Ω)d ∩ L2

σ(Ω), ϕ ∈ D(∂E) and µ ∈ H2
n(Ω) = {u ∈ H2(Ω) | ∂nu|∂Ω =

0 on ∂Ω}, such that(
ρv − ρkvk

h
,ψ

)
Ω

+ (div(ρkv ⊗ v),ψ)Ω + (2η(ϕk)Dv, Dψ)Ω +
(

div(v ⊗ J̃),ψ
)

Ω

= (µ∇ϕk,ψ)Ω (4.1)

for all ψ ∈ C∞0,σ(Ω),

ϕ− ϕk
h

+ v · ∇ϕk = div (m(ϕk)∇µ) almost everywhere in Ω and (4.2)

ϕ− ϕk
A(ϕ)−A(ϕk)

µ+ κ̃
A(ϕ) +A(ϕk)

2
= −∆A(ϕ) + Ψ̃′0(A(ϕ)) almost everywhere in Ω. (4.3)

Remark 4.1. (i) Multiplying identity (4.2) with − ρ̃2−ρ̃1
2 leads to

−ρ− ρk
h
− v · ∇ρk = div J̃ ,

where we used the definition of J̃ = J̃k+1 and the linear dependence ρ(ϕ) = 1
2(ρ̃1 + ρ̃2) +

1
2(ρ̃2 − ρ̃1)ϕ. Using div(v ⊗ J̃) = (div J̃)v +

(
J̃ · ∇

)
v leads to an equivalent version of

(4.1) given by(
ρv − ρkvk

h
,ψ

)
Ω

+ (div(ρkv ⊗ v),ψ)Ω + (2η(ϕk)Dv, Dψ)Ω

+

((
div J̃− ρ− ρk

h
− v · ∇ρk

)
v

2
,ψ

)
Ω

+
((

J̃ · ∇
)

v,ψ
)

Ω
= (µ∇ϕk,ψ)Ω (4.4)

for all ψ ∈ C∞0,σ(Ω). We will use this equivalent version in the following especially in the
a-priori estimate for solutions of the time-discrete problem.

(ii) Integrating equation (4.2) with respect to the spatial variable, using div v = 0 and the
boundary conditions, we obtain

∫
Ω ϕdx =

∫
Ω ϕk dx, which means that

∫
Ω ϕk dx =

∫
Ω ϕ0 dx

is constant.

Lemma 4.2. Assume that ϕ ∈ D(∂E) and µ ∈ H1(Ω) solve (4.3) with given ϕk ∈ H2(Ω) with
|ϕk| ≤ 1 in Ω such that

1
|Ω|

∫
Ω
ϕdx = 1

|Ω|

∫
Ω
ϕk dx ∈ (−1, 1) .

Then there is a constant C = C(
∫

Ω ϕk) > 0, such that

‖Ψ̃′0(A(ϕ))‖L1(Ω) +

∣∣∣∣∫
Ω
µdx

∣∣∣∣ ≤ C(‖∇µ‖L2 + ‖∇ϕ‖2L2 + ‖∇ϕk‖2L2 + 1) and

‖∂Ẽ(A(ϕ))‖L2(Ω) ≤ C
(
‖µ‖L2(Ω) + 1

)
.
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Proof. First we note that F (ϕ,ϕk) := A(ϕ)−A(ϕk)
ϕ−ϕk

fulfills 0 < c ≤ F (ϕ,ϕk) ≤ C for some c, C
independent of k due to

A(ϕ)−A(ϕk)

ϕ− ϕk
=

∫ 1

0
A′(τϕ+ (1− τ)ϕk) dτ =

∫ 1

0

√
a(τϕ+ (1− τ)ϕk) dτ

and 0 < m0 ≤ a, a ∈ C1(R) and ϕ(x) ∈ [−1, 1] almost everywhere. Testing (4.3) with ζ =
F (ϕ,ϕk)(ϕ− ϕ), where ϕ = 1

|Ω|
∫

Ω ϕdx is the mean value of ϕ we get∫
Ω
µ(ϕ− ϕ) dx+

∫
Ω
κ̃
A(ϕ) +A(ϕk)

2
F (ϕ,ϕk)(ϕ− ϕ) dx

=

∫
Ω
−∆A(ϕ)F (ϕ,ϕk)(ϕ− ϕ) dx+

∫
Ω

Ψ̃′0(A(ϕ))F (ϕ,ϕk)(ϕ− ϕ) dx . (4.5)

With µ0 = µ− µ we observe that
∫

Ω µ(ϕ− ϕ) dx =
∫

Ω µ0ϕdx. Furthermore, due to

∇
(
A(ϕ)−A(ϕk)

ϕ− ϕk

)
=

∫ 1

0

(
a−

1
2 (τϕ+ (1− τ)ϕk) a

′(τϕ+ (1− τ)ϕk) (τ∇ϕ+ (1− τ)∇ϕk)
)
dτ , (4.6)

the boundedness of a ≥ m0 > 0 and a′ on [−1, 1] and (τϕ+ (1− τ)ϕk) ∈ [−1, 1], we get∣∣∣∣∇(A(ϕ)−A(ϕk)

ϕ− ϕk

)∣∣∣∣ ≤ C (|∇ϕ|+ |∇ϕk|) ,

which leads to

∣∣∣∣∫
Ω
−∆A(ϕ) · F (ϕ,ϕk)(ϕ− ϕ) dx

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫

Ω
∇A(ϕ)︸ ︷︷ ︸

=
√
a(ϕ)∇ϕ

·∇
((

A(ϕ)−A(ϕk)

ϕ− ϕk

)
(ϕ− ϕ)

)
dx

∣∣∣∣∣∣∣∣
≤ C

∫
Ω
|∇ϕ|2 dx+ C

∫
Ω
|∇ϕ| (|∇ϕ|+ |∇ϕk|) dx

≤ C
(
‖∇ϕ‖2L2 + ‖∇ϕk‖2L2

)
.

To estimate the last integral in (4.5) we calculate at first Ψ̃′0(A(ϕ)) = Ψ′0(ϕ) + κ̃A(ϕ) − κϕ
and use the fact that ϕ ∈ (−1 + ε, 1 − ε) for some ε > 0. In addition with the assumption
limϕ→±1 Ψ′0(ϕ) = ±∞ one can then show the inequality Ψ′0(ϕ)(ϕ−ϕ) ≥ Cε|Ψ′0(ϕ)|− C̃ε in three
steps in the intervals [−1,−1 + ε

2 ], [−1 + ε
2 , 1 −

ε
2 ] and [1 − ε

2 , 1] successively. Altogether this
leads to an estimate of the following form:∫

Ω
Ψ̃′0(A(ϕ))F (ϕ,ϕk)(ϕ− ϕ) dx ≥ C

∫
Ω
|Ψ′0(ϕ)| dx− C1 .
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Using the last inequalities and (4.5) we get∫
Ω
|Ψ′0(ϕ)| dx ≤ C‖µ0‖L2‖ϕ‖L2 + C

∫
Ω

κ̃

2
|A(ϕ) +A(ϕk)|︸ ︷︷ ︸
≤C(|ϕ|+|ϕk|)

∣∣∣∣A(ϕ)−A(ϕk)

ϕ− ϕk

∣∣∣∣ |ϕ− ϕ| dx
+ C(‖∇ϕ‖2L2 + ‖∇ϕk‖2L2) + C1

≤ C(‖µ0‖L2 + ‖∇ϕ‖2L2 + ‖∇ϕk‖2L2 + 1)

≤ C(‖∇µ‖L2 + ‖∇ϕ‖2L2 + ‖∇ϕk‖2L2 + 1) .

where we have use |A(ϕ)| ≤ C|ϕ| and the boundeds |ϕ|, |ϕk| ≤ 1. Now we test (4.3) with
A(ϕ)−A(ϕk)

ϕ−ϕk
to get∫

Ω
µdx =

∫
Ω
∇A(ϕ) · ∇

(
A(ϕ)−A(ϕk)

ϕ− ϕk

)
dx−

∫
Ω

Ψ̃′0(A(ϕ)) · A(ϕ)−A(ϕk)

ϕ− ϕk
dx

−
∫

Ω

κ̃

2
(A(ϕ) +A(ϕk)) ·

A(ϕ)−A(ϕk)

ϕ− ϕk
dx ,

which together with the previous estimates leads to∣∣∣∣∫
Ω
µdx

∣∣∣∣ ≤C(‖∇µ‖L2 + ‖∇ϕ‖2L2 + ‖∇ϕk‖2L2 + 1) .

Finally, the estimate of the subdifferential ∂Ẽ(A(ϕ)) = −∆A(ϕ) + Ψ̃′0(A(ϕ)) follows directly
from (4.3).

4.2 Existence of a solution of the time-discrete problem

Lemma 4.3. Let vk ∈ L2
σ(Ω), ϕk ∈ H2(Ω) and ρk = 1

2(ρ̃1 + ρ̃2) + 1
2(ρ̃2 − ρ̃1)ϕk be given. Then

there are some (v, ϕ, µ) ∈
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)
×D(∂E)×H2

n(Ω) solving (4.1)-(4.3), which satisfy
in addition the discrete energy estimate

Etot(ϕ,v) +

∫
Ω
ρk
|v − vk|2

2
dx+

∫
Ω

|∇A(ϕ)−∇A(ϕk)|2

2
dx

+ h

∫
Ω

2η(ϕk)|Dv|2 dx+ h

∫
Ω
m(ϕk)|∇µ|2 dx ≤ Etot(ϕk,vk) . (4.7)

Proof. First we show the a-priori estimate (4.7) for any (v, ϕ, µ) ∈
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)
×D(∂E)×

H2
n(Ω) solving (4.1)-(4.3).

In order to test (4.1) with ψ = v we need some preparations. First we observe∫
Ω

(
(div J̃)

v

2
+
(
J̃ · ∇

)
v
)
· v dx =

∫
Ω

div

(
J̃
|v|2

2

)
dx = 0
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and then we calculate∫
Ω

(
div(ρkv ⊗ v)− (∇ρk · v)

v

2

)
· v dx

=

∫
Ω

(
div(ρkv ⊗ v)− div(ρkv)

v

2

)
· v dx

=

∫
Ω

(
div(ρkv)|v|2 + ρkv · ∇

(
|v|2

2

)
− div(ρkv)

|v|2

2

)
dx

=

∫
Ω

div

(
ρkv
|v|2

2

)
dx = 0 ,

where we used integration by parts and div v = 0. Furthermore from the simple algebraic
equation

a · (a− b) =
|a|2

2
− |b|

2

2
+
|a− b|2

2
for a,b ∈ Rd

we get

1

h
(ρv − ρkvk) · v =

1

h
(ρ− ρk) |v|2 +

1

h
ρk (v − vk) · v

=
1

h
(ρ− ρk) |v|2 +

1

h
ρk

(
|v|2

2
− |vk|

2

2

)
+

1

h
ρk
|v − vk|2

2

=
1

h

(
ρ
|v|2

2
− ρk

|vk|2

2

)
+

1

h
(ρ− ρk)

|v|2

2
+

1

h
ρk
|v − vk|2

2
.

Testing (4.1) or equivalently (4.4) with ψ = v and using the above identities we obtain

0 =

∫
Ω

ρ|v|2 − ρk|vk|2

2h
dx+

∫
Ω
ρk
|v − vk|2

2h
dx+

∫
Ω

2η(ϕk)|Dv|2 dx−
∫

Ω
µ (∇ϕk · v) dx . (4.8)

Moreover, choosing µ in (4.2) as a test function, we get

0 =

∫
Ω

ϕ− ϕk
h

µ dx+

∫
Ω

(v · ∇ϕk)µdx+

∫
Ω
m(ϕk)|∇µ|2 dx . (4.9)

Finally we test (4.3) with 1
h(A(ϕ)−A(ϕk)) to get

0 =
1

h

∫
Ω
∇A(ϕ) · ∇(A(ϕ)−A(ϕk)) dx+

∫
Ω

Ψ̃′0(A(ϕ))
A(ϕ)−A(ϕk)

h
dx

−
∫

Ω
µ
ϕ− ϕk
h

dx−
∫

Ω
κ̃
A(ϕ)2 −A(ϕk)

2

2h
dx . (4.10)
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Summing the identities (4.8)-(4.10) leads to

0 =

∫
Ω

ρ|v|2 − ρk|vk|2

2h
dx+

∫
Ω
ρk
|v − vk|2

2h
dx+

∫
Ω

2η(ϕk)|Dv|2 dx+

∫
Ω
m(ϕk)|∇µ|2 dx

+

∫
Ω

Ψ̃′0(A(ϕ))
A(ϕ)−A(ϕk)

h
dx−

∫
Ω
κ̃
A(ϕ)2 −A(ϕk)

2

2h
dx

+
1

h

∫
Ω
∇A(ϕ) · ∇(A(ϕ)−A(ϕk)) dx

≥
∫

Ω

ρ|v|2 − ρk|vk|2

2h
dx+

∫
Ω
ρk
|v − vk|2

2h
dx+

∫
Ω

2η(ϕk)|Dv|2 dx+

∫
Ω
m(ϕk)|∇µ|2 dx

+
1

h

∫
Ω

(
Ψ̃0(A(ϕ))− Ψ̃0(A(ϕk))

)
dx−

∫
Ω

κ̃

2

A(ϕ)2 −A(ϕk)
2

h
dx

+
1

h

∫
Ω

|∇A(ϕ)−∇A(ϕk)|2

2
dx+

1

h

∫
Ω

(
|∇A(ϕ)|2

2
− |∇A(ϕk)|2

2

)
dx ,

where we have used

Ψ̃′0(A(ϕ)) (A(ϕ)−A(ϕk)) ≥ Ψ̃0(A(ϕ))− Ψ̃0(A(ϕk)) and

∇A(ϕ) · ∇(A(ϕ)−A(ϕk)) =
|∇A(ϕ)|2

2
− |∇A(ϕk)|2

2
+
|∇A(ϕ)−∇A(ϕk)|2

2
.

This leads to the claimed discrete energy estimate given by

Etot(ϕ,v) +

∫
Ω
ρk
|v − vk|2

2
dx+

∫
Ω

|∇A(ϕ)−∇A(ϕk)|2

2
dx

+ h

∫
Ω

2η(ϕk)|Dv|2 dx+ h

∫
Ω
m(ϕk)|∇µ|2 dx ≤ Etot(ϕk,vk) .

In order to show existence of weak solutions we want to use the Leray-Schauder principle. With
the abbreviation H2

n(Ω) = {u ∈ H2(Ω) | ∂nu|∂Ω = 0 on ∂Ω} we define operators Lk,Fk : X →
Y , where

X =
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)
×D(∂E)×H2

n(Ω) ,

Y =
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)′
× L2(Ω)× L2(Ω) .

For w = (v, ϕ, µ) ∈ X we set

Lk(w) =

 Lk(v)
−div(m(ϕk)∇µ) +

∫
Ω µdx

A(ϕ) + ∂Ẽ(A(ϕ))

 ,

where

〈Lk(v),ψ〉 =

∫
Ω

2η(ϕk)Dv : Dψ dx for ψ ∈ H1
0 (Ω)d ∩ L2

σ(Ω)
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and the second and third line are regarded pointwise. Note that due to ϕ ∈ D(∂E) it holds
A(ϕ) ∈ D(∂Ẽ) and therefore the last line in Lk(w) lies in L2(Ω). Furthermore for w = (v, ϕ, µ) ∈
X we define

Fk(w) =


−ρv−ρkvk

h − div(ρkv ⊗ v) + µ∇ϕk −
(

div J̃− ρ−ρk
h − v · ∇ρk

)
v
2 −

(
J̃ · ∇

)
v

−ϕ−ϕk
h − v · ∇ϕk +

∫
Ω µdx

A(ϕ) + ϕ−ϕk
A(ϕ)−A(ϕk) µ+ κ̃A(ϕ)+A(ϕk)

2

 .

Then w = (v, ϕ, µ) ∈ X is a weak solution of the time discrete problem (4.1)-(4.3) if and only if

Lk(w)−Fk(w) = 0 .

Note that we used the equivalent version (4.4) instead of (4.1), that is we substituted div(v⊗ J̃)
accordingly.

From standard theory of partial differential equations we get the invertibility of

Lk : H1
0 (Ω)d ∩ L2

σ(Ω)→
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)′
.

Now we consider for given f ∈ L2(Ω) the elliptic boundary value problem

−div(m(ϕk)∇µ) +

∫
Ω
µdx = f in Ω , ∂nµ|∂Ω = 0 . (4.11)

With the Lemma of Lax-Milgram we get the unique existence of a weak solution µ ∈ H1(Ω) and
we want to show with a bootstrapping argument that this solution fulfills µ ∈ H2

n(Ω). At first,
we observe that µ is also a weak solution to the following problem:

∆µ = − (m(ϕk))
−1

(
∇(m(ϕk)) · ∇µ+

∫
Ω
µdx− f

)
in Ω , ∂nµ|∂Ω = 0 . (4.12)

Since ϕk ∈ H2(Ω) with |ϕk| ≤ 1 almost everywhere in Ω, we conclude ∇ (m(ϕk)) ∈ L6(Ω) and

for the product of an L6- with an L2-function we get ∇ (m(ϕk)) ·∇µ ∈ L
3
2 (Ω). Using the bound

of m(ϕk) from below by a positive constant, we get for some f̃ ∈ L
3
2 (Ω) that

∆µ = f̃ ∈ L
3
2 (Ω) .

Elliptic regularity theory now gives µ ∈ W 2
3
2

(Ω). In particular this means ∇µ ∈ W 1
3
2

(Ω), which

embeds into L3(Ω), so that we conclude for the product of an L6- with an L3-function∇ (m(ϕk))·
∇µ ∈ L2(Ω). This shows

∆µ = f̃ ∈ L2(Ω) ,

and therefore finally µ ∈ H2(Ω) together with an estimate

‖µ‖H2 ≤ C (‖µ‖H1 + ‖f‖L2) . (4.13)
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Since an H2-solution of (4.12) also solves (4.11), we obtain that the solution of (4.11) lies in
H2
n(Ω).

The operator ∂Ẽ is maximal monotone and hence

I + ∂Ẽ : D(∂Ẽ)→ L2(Ω)

is invertible. In addition we have continuity of the inverse considered as a mapping L2(Ω) →
H2−s(Ω) for arbitrary 0 < s < 1

4 . This is shown in the proof of Proposition 7.5.5 of Abels [Abe07]
for a similar operator. For the convenience of the reader we give the details. Let fl → f in
L2(Ω) for l → ∞ with fl = ul + ∂Ẽ(ul) and f = u+ ∂Ẽ(u) be given. Then we have ul → u in
H1(Ω) since

‖ul − u‖2L2 + ‖∇ul −∇u‖2L2 ≤ ‖ul − u‖2L2 +
(
∂Ẽ(ul)− ∂Ẽ(u), ul − u

)
L2

≤ ‖ul + ∂Ẽ(ul)− (u+ ∂Ẽ(u))‖L2 ‖ul − u‖L2

≤ 1

2
‖fl − f‖2L2 +

1

2
‖ul − u‖2L2 .

Moreover, because of the estimate (3.21), ‖ul‖H2 is bounded and together with compactness we
get the convergence ul → u in H2−s(Ω) for arbitrary 0 < s < 1

4 .

Since A is invertible and we have the equivalence A(ϕ) ∈ D(∂Ẽ) if and only if ϕ ∈ D(∂E),
we also see that

A(.) + ∂Ẽ(A(.)) : D(∂E)→ L2(Ω)

is invertible with continuous inverse considered from L2(Ω)→ H2−s(Ω) as above. Altogether we
obtain that Lk : X → Y is invertible with inverse L−1

k : Y → X. Note that X is not a Banach
space since D(∂E) includes inequality constraints.

To get a continuous and even compact operator, we introduce for 0 < s < 1
4 the following

Banach spaces

X̃ :=
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)
×H2−s(Ω)×H2

n(Ω) ,

Ỹ := L
3
2 (Ω)d ×W 1

3
2

(Ω)×H1(Ω) .

Then we obtain continuity of L−1
k : Y → X̃ from standard theory and with the above note

concerning the continuity of the third line in L−1
k .

Finally due to Ỹ ↪→↪→ Y the restriction L−1
k : Ỹ → X̃ is a compact operator.

The next step is to observe that Fk : X̃ → Ỹ is continuous and maps bounded sets into
bounded sets. More precisely we obtain the following estimates (note that ϕk and therefore ρk
lie in H2(Ω)):

‖ρv‖
L

3
2
≤ C‖v‖H1(‖ϕ‖L2 + 1) , ‖div(ρkv ⊗ v)‖

L
3
2
≤ Ck‖v‖2H1 ,

‖µ∇ϕk‖
L

3
2
≤ Ck‖µ‖L2 , ‖(div J̃)v‖

L
3
2
≤ Ck‖v‖H1‖µ‖H2 ,

‖(J̃ · ∇)v‖
L

3
2
≤ C‖v‖H1‖µ‖H2 , ‖v · ∇ϕk‖W 1

3
2

≤ Ck‖v‖H1 ,

‖A(ϕ)‖H1 ≤ C‖ϕ‖H1 ,
∥∥∥ ϕ−ϕk
A(ϕ)−A(ϕk)µ

∥∥∥
H1
≤ Ck‖µ‖H2(‖ϕ‖H1 + 1) .
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In detail, these eight bounds are derived as follows:

(i) For ρv, the estimate is clear due to v ∈ H1 ↪→ L6. The “+1” appears, since ρ depends
affine linear on ϕ.

(ii) For the estimate of div(ρkv⊗ v) in L
3
2 , we have to estimate on the one hand terms of the

form ρk∂lvivj in L
3
2 , which are a product of functions in L∞, L2 and L6 and therefore are

bounded in L
3
2 . On the other hand we need terms of the form ∂lρkvivj in L

3
2 , which are

a product of three functions in L6 and therefore are bounded in particular also in L
3
2 .

(iii) The estimate for µ∇ϕk in L
3
2 follows immediately from µ ∈ L6 and ∂lϕk ∈ L2.

(iv) For the estimate of (div J̃)v in L
3
2 , where J̃ = −ρ2−ρ1

2 m(ϕk)∇µ, we have to estimate on
the one hand terms of the form m′(ϕk)∂iϕk∂jµvl, which are a product of functions in L∞,

L6, L6 and L6 and therefore are bounded in particular in L
3
2 . On the other hand we have

to estimate terms of the form m(ϕk)∂i∂jµvl, which are a product of functions in L∞, L2

and L6 and therefore are bounded in L
3
2 .

(v) The estimate of (J̃ · ∇)v in L
3
2 follows since the terms m(ϕk)∂iµ∂jvl are a product of

functions in L∞, L6 and L2 and are therefore bounded in L
3
2 .

(vi) For the derivatives of v · ∇ϕk, we observe on the one hand that ∂ivl is bounded in L2 and
∂jϕk is bounded in L6. On the other hand vi is bounded in L6 and ∂i∂jϕk is bounded in

L2, so that in both cases the product is bounded in L
3
2 .

(vii) The estimate of A(ϕ) follows from |A(ϕ)| ≤ K|ϕ| and ∂i(A(ϕ)) = A′(ϕ)∂iϕ almost every-
where, where A′(ϕ) =

√
a(ϕ) ≤ K.

(viii) To estimate ϕ−ϕk
A(ϕ)−A(ϕk)µ, we use first

ϕ− ϕk
A(ϕ)−A(ϕk)

=

∫ 1

0

√
a(τϕ+ (1− τ)ϕk)︸ ︷︷ ︸

≥c>0

dτ


−1

≤ 1

c

and then from (4.6) in the proof of Lemma 4.2 the result∣∣∣∣∇(A(ϕ)−A(ϕk)

ϕ− ϕk

)∣∣∣∣ ≤ C(|∇ϕ|+ 1) .

In particular this gives a bound on

∇
(

ϕ− ϕk
A(ϕ)−A(ϕk)

)
= −

(
ϕ− ϕk

A(ϕ)−A(ϕk)

)2

∇
(
A(ϕ)−A(ϕk)

ϕ− ϕk

)
.

Together with µ ∈ H2(Ω) ↪→ C0(Ω) we can bound ∇
(

ϕ−ϕk
A(ϕ)−A(ϕk)

)
µ in L2 and of course

also ϕ−ϕk
A(ϕ)−A(ϕk)∇µ and ϕ−ϕk

A(ϕ)−A(ϕk)µ each in L2.
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We want to use the Leray-Schauder principle on Ỹ and rewrite therefore the identity Lk(w) −
Fk(w) = 0 for a solution w ∈ X of (4.1)-(4.3) into

f −Fk ◦ L−1
k (f) = 0 for f = Lk(w) . (4.14)

We set Kk := Fk ◦L−1
k : Ỹ → Ỹ and note that Kk is a compact operator because L−1

k is compact
and Fk is continuous. Equation (4.14) is then equivalent to finding a fixed point of Kk, that is

f −Kk(f) = 0 ⇐⇒ f = Kk(f) .

To deduce the existence of such a fix point with the help of the Leray-Schauder principle (see
for example Zeidler [Zei92]), we have to show that

∃R > 0 such that, if f ∈ Ỹ and 0 ≤ λ ≤ 1 fulfills f = λKkf , then ‖f‖
Ỹ
≤ R . (4.15)

So let f ∈ Ỹ and 0 ≤ λ ≤ 1 with f = λKkf . With w = L−1
k (f) we have

f = λKk(f) ⇐⇒ Lk(w)− λFk(w) = 0 ,

which is equivalent to the following weak formulation∫
Ω

2η(ϕk)Dv : Dψ dx+ λ

∫
Ω

ρv − ρkvk
h

·ψ dx+ λ

∫
Ω

div(ρkv ⊗ v) ·ψ dx

+ λ

∫
Ω

(
divJ̃− ρ− ρk

h
− v · ∇ρk

)
v

2
·ψ dx+ λ

∫
Ω

(
J̃ · ∇

)
v ·ψ dx = λ

∫
Ω
µ∇ϕk ·ψ dx

(4.16)

for all ψ ∈ H1
0 (Ω)d ∩ L2

σ(Ω) and

λ
ϕ− ϕk
h

+ λv · ∇ϕk − λ
∫

Ω
µdx = div(m(ϕk)∇µ)−

∫
Ω
µdx , (4.17)

A(ϕ) + ∂Ẽ(A(ϕ)) = λA(ϕ) + λ
ϕ− ϕk

A(ϕ)−A(ϕk)
µ+ λκ̃

A(ϕ) +A(ϕk)

2
. (4.18)

First we derive an estimate for w = (v, ϕ, µ) in the norm of X̃ and additionally an L2-estimate
of ∂Ẽ(A(ϕ)), then we conclude the desired estimate for f due to the boundedness of Fk.

Analogously as in the derivation of the energy estimate (4.7) we set ψ = v in (4.16), test
(4.17) with µ and (4.18) with 1

h(A(ϕ) − A(ϕk)) to get with similar calculations (we omit the
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integration element dx for reasons of shortness):

0 = λ
1

h

∫
Ω

(
ρ|v|2

2
− ρk|vk|2

2

)
+ λ

1

h

∫
Ω
ρk
|v − vk|2

2
+

∫
Ω

2η(ϕk)|Dv|2 + (1− λ)

(∫
Ω
µdx

)2

+

∫
Ω
m(ϕk)|∇µ|2 + (1− λ)

1

h

∫
Ω
A(ϕ)(A(ϕ)−A(ϕk)) +

1

h

∫
Ω
∇A(ϕ) · (∇A(ϕ)−∇A(ϕk))

+
1

h

∫
Ω

Ψ̃′0(A(ϕ))(A(ϕ)−A(ϕk))− λ
1

h

∫
Ω
κ̃
A(ϕ)2 −A(ϕk)

2

2

≥ λ1

h

∫
Ω

(
ρ|v|2

2
− ρk|vk|2

2

)
+ λ

1

h

∫
Ω
ρk
|v − vk|2

2
+

∫
Ω

2η(ϕk)|Dv|2 + (1− λ)

(∫
Ω
µdx

)2

+

∫
Ω
m(ϕk)|∇µ|2 + (1− λ)

1

h

∫
Ω

(
A(ϕ)2

2
− A(ϕk)

2

2

)
+

1

h

∫
Ω

(
|∇A(ϕ)|2

2
− |∇A(ϕk)|2

2

)
+

1

h

∫
Ω

(
Ψ̃0(A(ϕ))− Ψ̃0(A(ϕk))

)
− λ1

h

∫
Ω
κ̃
A(ϕ)2 −A(ϕk)

2

2
.

This leads to the following estimate

h

∫
Ω

2η(ϕk)|Dv|2 + h

∫
Ω
m(ϕk)|∇µ|2 +

1

2

∫
Ω
|∇A(ϕ)|2 +

∫
Ω

Ψ̃(A(ϕ)) + (1− λ)

(∫
Ω
µdx

)2

≤
∫

Ω

ρk|vk|2

2
+

1

2

∫
Ω
A(ϕk)

2 +
1

2

∫
Ω
|∇A(ϕk)|2 +

∫
Ω

Ψ̃0(A(ϕk)) +

∫
Ω
|κ̃|A(ϕk)

2

2
,

where we omitted the (nonnegative) terms λ
∫

Ω
ρ|v|2

2 dx, λ
∫

Ω ρk
|v−vk|2

2 dx and (1−λ)
∫

Ω
A(ϕ)2

2 dx
on the left side, since due to the factor λ resp. (1− λ) they will not give a contribution to some
estimate of ‖w‖

X̃
independent of λ. Note that due to w = (v, ϕ, µ) = L−1

k (f) ∈ X, it holds that
ϕ ∈ D(∂E) and therefore ϕ ∈ [−1, 1] almost everywhere, which implies in particular ρ ≥ 0. From
this fact we also get boundedness of the term

∫
Ω Ψ̃(A(ϕ)) dx, which can be estimated therefore

on the right side. We also used the simple estimate −λ
∫

Ω κ̃
A(ϕk)2

2 dx ≤ λ
∫

Ω |κ̃|
A(ϕk)2

2 dx and in
addition we estimated every λ resp. (1− λ) on the right side against 1.

Using |∇A(ϕ)|2 = a(ϕ)|∇ϕ|2, we summarize the previous estimate to

(1− λ)

(∫
Ω
µdx

)2

+ h

∫
Ω

2η(ϕk)|Dv|2 dx+ h

∫
Ω
m(ϕk)|∇µ|2 dx+

1

2

∫
Ω
a(ϕ)|∇ϕ|2 dx ≤ Ck .

(4.19)

With the help of ‖ϕ‖L∞ ≤ C due to ϕ ∈ D(∂E), Korn’s inequality for v ∈ H1
0 (Ω)d ∩L2

σ(Ω) and
the fact that η, m and a are bounded from below by a positive constant, we get the estimate

√
1− λ

∣∣∣∣∫
Ω
µdx

∣∣∣∣+ ‖v‖H1(Ω) + ‖∇µ‖L2(Ω) + ‖ϕ‖H1(Ω) ≤ Ck . (4.20)

To get an estimate of the L2-norm of the chemical potential µ, we differ two cases. If λ ∈ [1
2 , 1],

then we proceed with the simple estimate 1
2 |
∫

Ω µdx| ≤ λ|
∫

Ω µdx| and get as in the proof of
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Lemma 4.2 together with (4.20) from equation (4.18) the inequality∣∣∣∣∫
Ω
µdx

∣∣∣∣ ≤ Ck .
For λ ∈ [0, 1

2) we use (4.20) directly to get also here
∣∣∫

Ω µdx
∣∣ ≤ Ck. With this inequality for the

mean value of the chemical potential µ, we can improve estimate (4.20) to

‖v‖H1(Ω) + ‖µ‖H1(Ω) + ‖ϕ‖H1(Ω) ≤ Ck . (4.21)

Together with (4.13) we also get an estimate of the H2-norm of the chemical potential µ given
by

‖v‖H1(Ω) + ‖µ‖H2(Ω) + ‖ϕ‖H1(Ω) ≤ Ck . (4.22)

Using identity (4.18) pointwise we also get ‖∂Ẽ(A(ϕ))‖L2(Ω) ≤ Ck. In summary this leads to

‖w‖
X̃

+ ‖∂Ẽ(A(ϕ))‖L2(Ω) = ‖(v, ϕ, µ)‖
X̃

+ ‖∂Ẽ(A(ϕ))‖L2(Ω) ≤ Ck .

To get finally an estimate of f = Lk(w) in Ỹ we use that f −λFkL−1
k (f) = 0 implies f = λFk(w)

and the fact that Fk : X̃ → Ỹ maps bounded sets into bounded sets, which holds due to the
above estimates for Fk. This gives

‖f‖
Ỹ

= ‖λFk(w)‖
Ỹ
≤ Ck(‖w‖X̃ + 1) ≤ Ck ,

which was the remaining part to apply the Leray-Schauder principle as described above. There-
fore we proved the existence of a weak solution of the time discrete problem (4.1)-(4.3), which
additionally fulfills the discrete energy estimate (4.7).

5 Proof of the Main Result

5.1 Compactness in time

To complete the proof of Theorem 3.4 we have to pass to the limit h → 0 resp. N → ∞ in
our approximate solution. Therefore let N ∈ N be given and let (vk+1, ϕk+1, µk+1) be chosen
successively as a solution of (4.1)-(4.3) with h = 1

N and (v0, ϕ
N
0 ) as initial value. Here we have

to approximate the initial value ϕ0 ∈ H1(Ω) by H2-functions ϕN0 in order to apply Lemma 4.3
to the first step. This is done with standard partial differential equation theory. For example
one could choose u as the solution of the following heat equation

∂tu−∆u = 0 in Ω× (0, T ) ,
u = ϕ0 on Ω× {t = 0} ,

∂νu|∂Ω = 0 on ∂Ω× (0, T )

and set ϕN0 := u|t= 1
N

to get ϕN0 ∈ H2(Ω), |ϕN0 | ≤ 1 in Ω and ϕN0 → ϕ0 in H1(Ω).
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Then we define fN (t) on [−h,∞) through fN (t) = fk for t ∈ [(k−1)h, kh), where k ∈ N0 and
f ∈ {v, ϕ, µ}. Also set ρN = 1

2(ρ̃1 + ρ̃2)+ 1
2(ρ̃2− ρ̃1)ϕN . In particular it holds fN ((k−1)h) = fk,

fN (kh) = fk+1 and fN (t) = fk+1 for t ∈ [kh, (k + 1)h). Additionally we define(
∆+
h f
)

(t) := f(t+ h)− f(t) ,
(
∆−h f

)
(t) := f(t)− f(t− h) ,

∂+
t,hf(t) :=

1

h

(
∆+
h f
)

(t) , ∂−t,hf(t) :=
1

h

(
∆−h f

)
(t) ,

fh := (τ∗hf) (t) = f(t− h) .

Then for arbitrary ψ ∈ (C∞0 (Ω× (0,∞)))d with divψ = 0 we choose ψ̃ :=
∫ (k+1)h
kh ψ dt as test

function in (4.1) and sum over k ∈ N0 to get∫ ∞
0

∫
Ω
∂−t,h(ρNvN ) ·ψ dx dt+

∫ ∞
0

∫
Ω

div
(
ρNh vN ⊗ vN

)
·ψ dx dt+

∫ ∞
0

∫
Ω

2η(ϕNh )DvN : Dψ dx dt

−
∫ ∞

0

∫
Ω

(
vN ⊗ J̃N

)
: Dψ dx dt =

∫ ∞
0

∫
Ω
µN∇ϕNh ·ψ dx dt (5.1)

for all ψ ∈ (C∞0 (Ω× (0,∞)))d with divψ = 0. The first term can be rewritten due to∫ ∞
0

∫
Ω
∂−t,h(ρNvN ) ·ψ dx dt = −

∫ ∞
0

∫
Ω

(ρNvN ) · ∂+
t,hψ dx dt .

Analogously we get∫ ∞
0

∫
Ω
∂−t,hϕ

N ζ dx dt+

∫ ∞
0

∫
Ω

vNϕNh · ∇ζ dx dt =

∫ ∞
0

∫
Ω
m(ϕNh )∇µN · ∇ζ dx dt (5.2)

for all ζ ∈ C∞0 ((0,∞);C1(Ω)) and

∆−h ϕ
N

∆−hA(ϕN )
µN +

κ̃

2

(
A(ϕN ) +A(ϕNh )

)
= −∆A(ϕN ) + Ψ̃′0(A(ϕN )) (5.3)

holds pointwise in Ω× (0,∞) almost everywhere.
Let EN (t) be the piecewise linear interpolant of Etot(ϕk,vk) at tk = kh given by

EN (t) =
(k + 1)h− t

h
Etot(ϕk,vk) +

t− kh
h

Etot(ϕk+1,vk+1) for t ∈ [kh, (k + 1)h) .

Also define for all t ∈ (tk, tk+1), k ∈ N0

DN (t) :=

∫
Ω

2η(ϕk)|Dvk+1|2 dx+

∫
Ω
m(ϕk)|∇µk+1|2 dx .

Then the discrete energy estimate (4.7) implies

− d

dt
EN (t) =

Etot(ϕk,vk)− Etot(ϕk+1,vk+1)

h
≥ DN (t) (5.4)
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for all t ∈ (tk, tk+1), k ∈ N0. Multiplying this inequality by τ ∈ W 1,1(0,∞) with τ ≥ 0,
integrating and using integration by parts gives

Etot(ϕ
N
0 ,v0)τ(0) +

∫ ∞
0

EN (t) τ ′(t) dt ≥
∫ ∞

0
DN (t) τ(t) dt . (5.5)

Integrating (5.4) gives

Etot(ϕ
N (t),vN (t)) +

∫ t

s

∫
Ω

(
2η(ϕNh )|DvN |2 +m(ϕNh )|∇µN |2

)
dx dτ

≤ Etot(ϕ
N (s),vN (s)) (5.6)

for all 0 ≤ s ≤ t <∞ with s, t ∈ hN0.
Together with Lemma 4.2 and the fact that Etot(ϕ

N
0 ,v0) is bounded this leads to the fol-

lowing bounds:

vN is bounded in L2(0,∞;H1(Ω)d) and in L∞(0,∞;L2(Ω)d) ,

∇µN is bounded in L2(0,∞;L2(Ω)d) ,

ϕN is bounded in L∞(0,∞;H1(Ω)) and∫ T
0

∣∣∫
Ω µ

N dx
∣∣ dt ≤ C(T ) for all 0 < T <∞

(5.7)

for a monotone function C : R+ → R+. Using these bounds, we can pass to a subsequence to
get

vN ⇀ v in L2(0,∞;H1(Ω)d) ,

vN ⇀∗ v in L∞(0,∞;L2(Ω)d) =
(
L1(0,∞;L2(Ω)d)

)′
,

ϕN ⇀∗ ϕ in L∞(0,∞;H1(Ω)) =
(
L1(0,∞;H−1(Ω))

)′
,

µN ⇀ µ in L2(0, T ;H1(Ω)) for all 0 < T <∞ ,

∇µN ⇀ ∇µ in L2(0,∞;L2(Ω)d) .

Here and in the following all limits are meant to be for suitable subsequences Nk → ∞ (resp.
hk → 0) for k →∞, unless otherwise stated.

Now let ϕ̃N be the piecewise linear interpolant of ϕN (tk), where tk = kh, h ∈ N0, i.e.
ϕ̃N = 1

hχ[0,h] ∗t ϕN , where the convolution is only taken with respect to the time variable t.

Then it holds that ∂tϕ̃
N = ∂−t,hϕ

N and

‖ϕ̃N − ϕN‖H−1(Ω) ≤ h‖∂tϕ̃N‖H−1(Ω) . (5.8)

From line (5.2) we get that ∂tϕ̃
N ∈ L2(0,∞;H−1(Ω)) is bounded, since vNϕN and ∇µN are

both bounded in L2(0,∞;L2(Ω)d). Together with boundedness of ϕ̃N in L∞(0,∞;H1(Ω)),
which follows from the boundedness of ϕN in L∞(0,∞;H1(Ω)), we get with the help of the
lemma of Aubin-Lions (2.1) the strong convergence

ϕ̃N → ϕ̃ in L2(0, T ;L2(Ω))
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for all 0 < T <∞ for some ϕ̃ ∈ L∞(0,∞;L2(Ω)). In particular it holds for a subsequence that
ϕ̃N → ϕ̃ pointwise almost everywhere in (0,∞) × Ω. Additionally by the above estimate (5.8)
we have

ϕ̃N − ϕN → 0 in L2(0,∞;H−1(Ω)) ,

which gives ϕ̃ = ϕ. Furthermore, since ϕ̃N ∈ H1
uloc([0,∞);H−1(Ω)) ∩ L2

uloc([0,∞);H1(Ω)) ↪→
BUC([0,∞);L2(Ω)) and ϕ̃N ∈ L∞(0,∞;H1(Ω)) are bounded, it follows from Lemma 2.1 that
ϕ ∈ BCw([0,∞);H1(Ω)).

Finally it follows from the bound of ϕ̃N in H1(0, T ;H−1(Ω)) and in L∞(0, T ;H1(Ω)) for
0 < T < ∞ together with the fact that ϕ̃N → ϕ in L2(0, T ;L2(Ω)) that ϕ̃N (0) → ϕ(0) in
L2(Ω). But the left side equals ϕN0 , which converges to ϕ0 in L2(Ω) so that we finally conclude
ϕ(0) = ϕ0.

Analogue observations can be done for ρN since it depends affine linear on ϕN .
To show the convergence of (5.3), we observe that the right side is given by ∂Ẽ(A(ϕN )) and

this is bounded due to Lemma 4.2 in L2(0, T ;L2(Ω)) for 0 < T < ∞. Moreover, the left side
converges weakly in L2(0, T ;L2(Ω)) to

f := a(ϕ)−
1
2 µ+ κ̃A(ϕ) ,

which means that ∂Ẽ(A(ϕN )) ⇀ f weakly in L2(0, T ;L2(Ω)). If we now show that

lim sup
N→∞

〈
∂Ẽ(A(ϕN )), A(ϕN )

〉
≤ 〈f,A(ϕ)〉 , (5.9)

we can use the fact that ∂Ẽ is a maximal monotone operator and apply Prop. IV.1.6 in Showalter
[Sho97] to conclude that ∂Ẽ(A(ϕ)) = f , which would finally lead to (3.12).

But the result (5.9) does hold even with equality, since with the natural definition of fN as
the left side of (5.3), we have〈

∂Ẽ(A(ϕN )), A(ϕN )
〉

=
〈
fN , A(ϕN )

〉
−→ 〈f,A(ϕ)〉

due to the strong convergence of ϕN in L2(0, T ;L2(Ω)) and therefore also of A(ϕN ).
Now we use the estimate (3.21) for A(ϕN ), which together with Lemma 4.2 gives bound-

edness of A(ϕN ) in L2(0, T ;H2(Ω)). Then the same holds true for ϕN and due to the strong
convergence of ϕN in L2(0, T ;H−1(Ω)) we conclude with an interpolation argument even the
strong convergence

ϕN → ϕ in L2(0, T ;H1(Ω)) . (5.10)

The next step is to show strong convergence vN → v in L2(0, T ;L2(Ω)d) for all 0 < T < ∞ to
conclude a convergence pointwise almost everywhere. As above let ρ̃vN be the piecewise linear

interpolant of
(
ρNvN

)
(tk), where tk = kh, h ∈ N0. Then it holds that ∂t

(
ρ̃vN

)
= ∂−t,h

(
ρNvN

)
.
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With the help of the projection Pσ onto L2
σ(Ω) we get from line (5.1) that ∂t

(
Pσ(ρ̃vN )

)
is

bounded in L
8
7 (0, T ;W−1

4 (Ω)) for 0 < T <∞, since due to some known interpolation inequalities
we have the following bounds

ρNh vN ⊗ vN is bounded in L2(0, T ;L
3
2 (Ω)) ,

DvN is bounded in L2(0, T ;L2(Ω)) ,

vN ⊗∇µN is bounded in L
8
7 (0, T ;L

4
3 (Ω)) ,

µN∇ϕNh is bounded in L2(0, T ;L
3
2 (Ω)) .

In detail, these bounds are derived as follows, where for abbreviation “∈” always means bounded
independent of N in the corresponding space and we omit the time and space variables.

(i) Due to vN ∈ L∞(L2) ∩ L2(L6), we get for products vNi vNj ∈ L2(L
3
2 ) and from ρNh ∈

L∞(ΩT ) this also holds for ρNh vN ⊗ vN .

(ii) From v ∈ L2(H1) we immediately get DvN ∈ L2(L2).

(iii) Due to vN ∈ L∞(L2) ∩ L2(L6) and ∇µN ∈ L2(L2) we get vNi ∂jµ
N ∈ L2(L1) ∩ L1(L

3
2 ).

Now, if I ⊂ R is an interval, (X0, X1) is an interpolation couple of Banach spaces, and
X = (X0, X1)θ,q is the real interpolation space of type θ ∈ (0, 1) with 1 ≤ q ≤ ∞, we have
the embedding

Lp0(I;X0) ∩ Lp1(I;X1) ↪→ Lp(I;X) , where
1

p
=

1− θ
p0

+
θ

p1
, (5.11)

where 1 ≤ p0, p1 ≤ ∞. In addition, we use the description of real interpolation spaces with
0 < θ < 1 for Lebesgue-spaces with 1 ≤ q0, q1 ≤ ∞ given trough

(Lq0(Ω), Lq1(Ω))θ,q = Lq(Ω) , where
1

q
=

1− θ
q0

+
θ

q1
. (5.12)

For X0 = L1(Ω) and X1 = L
3
2 (Ω) we get with θ = 3

4 that q = 4
3 and therefore X =

(X0, X1)θ,q = L
4
3 (Ω). Furthermore with p0 = 2 and p1 = 1 we get p = 8

7 , which leads to

the bound vNi ∂jµ
N ∈ L

8
7 (L

4
3 ).

(iv) From µN ∈ L2(L6) and ∇ϕNh ∈ L∞(L2) we get finally µN∇ϕNh ∈ L2(L
3
2 ).

This means in particular that all four terms are bounded in L
8
7 (0, T ;L

4
3 (Ω)). Therefore we can

allow in (5.1) for test functions with ψ, ∇ψ ∈
(
L

8
7 (L

4
3 )
)′

= L8(L4), i.e. ψ ∈ L8(W 1
4 ). This

implies the bound for ∂t

(
Pσ(ρ̃vN )

)
in
(
L8(W 1

4 )
)′

= L
8
7 (W−1

4 ).

Additionally Pσ(ρ̃vN ) ∈ L2(0, T ;H1(Ω)d) is bounded and we can therefore conclude with
the help of the Lemma of Aubin-Lions 2.1 the strong convergence

Pσ(ρ̃vN )→ w in L2(0, T ;L2(Ω)d)
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for all 0 < T <∞ for some w ∈ L∞(0,∞;L2(Ω)d).
Since the projection Pσ : L2(0, T ;L2(Ω)d) → L2(0, T ;L2

σ(Ω)) is weakly continuous, we con-
clude from the weak convergence ρ̃vN ⇀ ρv in L2(0, T ;L2(Ω)) that w = Pσ(ρv).

Now we derive the strong convergence vN → v in L2(0, T ;L2(Ω)d) with the help of the
following observations:∫ T

0

∫
Ω
ρN |vN |2 =

∫ T

0

∫
Ω
Pσ(ρNvN ) · vN −→

∫ T

0

∫
Ω
Pσ(ρv) · v =

∫ T

0

∫
Ω
ρ |v|2 ,

where we used the strong convergence of Pσ(ρNvN ) in L2(0, T ;L2(Ω)d) and the weak convergence

of vN in L2(0, T ;L2(Ω)d). This gives (ρN )
1
2 vN → (ρ)

1
2 v in L2(0, T ;L2(Ω)d) and from above we

know that

ρN → ρ almost everywhere in (0,∞)× Ω and |ρN | ≥ c > 0 ,

so that we can conclude

vN = (ρN )−
1
2

(
(ρN )

1
2 vN

)
→ v in L2(0, T ;L2(Ω)d) .

This means in particular that vN → v pointwise almost everywhere in (0,∞)× Ω (for a subse-
quence).

Using these convergence results together with the fact that for all divergence free ψ the
following convergence holds∫ T

0

∫
Ω
µN∇ϕNh ·ψ = −

∫ T

0

∫
Ω
∇µNϕNh ·ψ −→ −

∫ T

0

∫
Ω
∇µϕ ·ψ =

∫ T

0

∫
Ω
µ∇ϕ ·ψ ,

we can pass to the limit in the equations (5.1), (5.2) to get (3.10), (3.11).

5.2 Initial data for the velocity v

Lemma 5.1. Let v, ṽ ∈ L2
σ(Ω) ∩H1

0 (Ω)d and ρ ∈ L∞(Ω) with ρ ≥ c > 0 such that∫
Ω
ρv ·ψ dx =

∫
Ω
ρṽ ·ψ dx for all ψ ∈ C∞0,σ(Ω) .

Then it holds that v = ṽ almost everywhere in Ω.

Proof. By approximation the identity also holds for ψ := v − ṽ ∈ L2
σ(Ω) ∩ H1

0 (Ω) and we get∫
Ω ρ0|v − ṽ|2 dx = 0, which due to the boundedness of ρ0 from below by a positive constant

gives finally v = ṽ in L2(Ω)d.

With the following arguments we show that the velocity v fulfills the initial condition (3.13).
At first we derive weak continuity in time for the projection of ρv onto the divergence-free vector
fields. Therefore let wN := Pσ(ρ̃vN ) and from the arguments above we deduce the boundedness
of

wN in W 1
8
7
,uloc

([0,∞);W−1
4 (Ω)) ↪→ BUC([0,∞);W−1

4 (Ω)) and

wN in L∞(0,∞;L2(Ω)d) .
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Due to these bounds, we concluded above that wN → w in L2(0, T ;L2(Ω)d) and with the help
of Lemma 2.1 we deduce for the limit that w ∈ BCw([0,∞);L2(Ω)d). Now let 0 < T <∞ and
consider the auxiliary problem for a function p ∈ L2(0, T ;H1

(0)(Ω)) given by{
−div( 1

ρ(t)∇p(t)) = div( 1
ρ(t)w(t)) in Ω ,

∇p(t) · n = 0 on ∂Ω .
(Aux)

The corresponding weak version reads as

−
∫

Ω

1

ρ(t)
∇p(t) · ∇τ dx =

∫
Ω

1

ρ(t)
w(t) · ∇τ dx for all τ ∈ H1(Ω) (5.13)

for almost all t in (0, T ). By the Lemma of Lax-Milgram there exists a unique solution and it
fulfills the estimate

‖∇p(t)‖L2(Ω) ≤ C‖w(t)‖L2(Ω) , (5.14)

where C is independent of t. Here we used the fact that ρ ∈ L∞(ΩT ) is bounded from below by
a positive constant.
Claim: ∇p ∈ BCw([0, T ];L2(Ω)d).
To see this claim, let tn, t ∈ [0, T ] for n ∈ N with tn → t be given. From w ∈ BCw([0,∞);L2(Ω)d)
we conclude that in particular w(tn) is bounded in L2 and from the last estimate (5.14) also
∇p(tn) is bounded in L2. Therefore we get the weak convergence ∇p(tnk

) ⇀ ∇q ∈ L2(Ω)d for
k →∞ at least for a subsequence, since {∇q | q ∈ H1

(0)(Ω)} is a closed subspace in L2(Ω)d. But

due to the unique solvability of (5.14) we arrive at ∇q = ∇p(t). Since this argumentation holds
for any weakly convergent subsequence, we even have ∇p(tn) ⇀ ∇p(t).

In addition we already know due to the weak continuity of Pσ and due to the weak conver-
gence ρ̃vN → ρv in L2(0, T ;L2(Ω)d) for every 0 < T <∞, that w = Pσ(ρv). In particular this
gives

w(t) = Pσ (ρ(t)v(t)) almost everywhere in (0,∞) .

By characterization (2.2) of the projection Pσ onto L2
σ(Ω), the last identity means

w(t) = ρ(t)v(t)−∇p̃(t) almost everywhere in (0,∞) , (5.15)

where p̃(t) is a weak solution of{
div(∇p̃(t)) = div(ρ(t)w(t)) in Ω ,
∇p̃(t) · n = 0 on ∂Ω .

Dividing (5.15) by ρ(t), we get

v(t) =
1

ρ(t)
w(t) +

1

ρ(t)
∇p̃(t) almost everywhere in (0,∞) , (5.16)

which after multiplication with ∇τ for τ ∈ H1(Ω) and integration gives∫
Ω

1

ρ(t)
w(t) · ∇τ dx = −

∫
Ω

1

ρ(t)
∇p̃(t) · ∇τ dx for all τ ∈ H1(Ω)
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for almost all t ∈ (0,∞). But this is exactly the weak version (5.13) of the above auxiliary
problem (Aux) and we get ∇p̃(t) = ∇p(t) for almost every t due to the unique solvability. By a
redefinition of ∇p̃ on a set of measure zero we get the continuity ∇p̃ ∈ BCw([0, T ];L2(Ω)d), since
∇p has this property. Again with a redefinition of v through equation (5.16) on a set of measure
zero, we get finally v ∈ BCw([0, T ];L2(Ω)d), where we used the fact ρ ∈ BUC([0, T ];L2(Ω))
with ρ ≥ c > 0 is already known from above.

It remains to show that v attains the initial value v0. Due to the above bound of Pσ(ρ̃vN ) in
W 1

8
7

(0, T ;W−1
4 (Ω)) ↪→ BUC([0, T ];W−1

4 (Ω)) we get for arbitrary ψ ∈ C∞0,σ(Ω) the convergence∫
Ω
Pσ(ρ̃vN )(0) ·ψ dx −→

∫
Ω
Pσ(ρ0v(0)) ·ψ =

∫
Ω
ρ0v(0) ·ψ dx .

By definition of the time-discrete functions we also have Pσ(ρ̃vN )|t=0 = Pσ(ρ0v0), which together
with the last convergence yields∫

Ω
ρ0v0 ·ψ dx =

∫
Ω
ρ0v(0) ·ψ dx for all ψ ∈ C∞0,σ(Ω) .

From Lemma 5.1 we get finally v(0) = v0 in L2(Ω)d.

5.3 Energy inequality

Finally we can finish the proof by showing the energy inequality (3.14). Since vN (t) → v(t)
in L2(Ω)d and ϕN (t) → ϕ(t) in H1(Ω) for almost every t ∈ (0,∞) (for a subsequence), which
follows from the strong convergences of vN and ϕN , it holds that

EN (t)→ Etot(ϕ(t),v(t)) for almost all t ∈ (0,∞) .

Moreover, by lower semicontinuity of norms and almost everywhere convergence of ϕN to ϕ, the
inequality

lim inf
N→∞

∫ ∞
0

DN (t)τ(t) dt ≥
∫ ∞

0
D(t)τ(t) dt

for all τ ∈W 1,1(0,∞) with τ ≥ 0 holds, where

D(t) :=

∫
Ω

2η(ϕ)|Dv|2 dx+

∫
Ω
m(ϕ)|∇µ|2 dx .

Hence, passing to the limit in (5.5), we obtain

Etot(ϕ0,v0)τ(0) +

∫ ∞
0

Etot(ϕ(t),v(t)) τ(t) dt ≥
∫ ∞

0
D(t)τ(t) dt (5.17)

for all τ ∈ W 1,1(0,∞) with τ ≥ 0. With the help of Lemma 2.2 we obtain the energy esti-
mate (3.14). �
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A Appendix

In this last section, we want to discuss existence of weak solutions for a related model discussed
in Remark 2.2 of Abels, Garcke, Grün [AGG11], which is derived in detail in [AGG10]. Although
this model is not frame indifferent in the standard manner, it can be used to approximate the
sharp interface model, see [AGG10]. In addition it has the mathematical interesting term |v|2
in the equation for the chemical potential and we want to give a short description how the
methods from this work can be adapted to derive an existence result also in that case. After
reformulation of the pressure term with the previous notation, this problem is given as

∂t(ρv) + div (ρv ⊗ v)− div (2η(ϕ)Dv) +∇g = µ∇ϕ+
|v|2

2
∇ρ in Q, (A.1)

div v = 0 in Q, (A.2)

∂tϕ+ v · ∇ϕ = div (m(ϕ)∇µ) in Q, (A.3)

a−
1
2 (ϕ)

(
µ+

∂ρ

∂ϕ

|v|2

2

)
+ κ̃A(ϕ) = Ψ̃′0(A(ϕ))−∆A(ϕ) in Q, (A.4)

v|∂Ω = 0 on S, (A.5)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0 on S, (A.6)

(v, ϕ)|t=0 = (v0, ϕ0) in Ω. (A.7)

In this case we can show the following existence result.

Theorem A.1. Let T ∈ (0,∞] and set either I = [0,∞), if T = ∞ or I = [0, T ], if T < ∞.
Let Assumption 3.1 hold, v0 ∈ L2

σ(Ω) and ϕ0 ∈ H1(Ω) with |ϕ0| ≤ 1 almost everywhere and∫
Ω− ϕ0 dx ∈ (−1, 1). Then there exists a weak solution (v, ϕ, µ) of (A.1)-(A.7) in the following

sense:

v ∈ BCw(I;L2
σ(Ω)) ∩ L2(0, T ;H1

0 (Ω)d) ,

ϕ ∈ BCw(I;H1(Ω)) ∩ L
4
3

uloc(I;H2(Ω)) , Ψ′(ϕ) ∈ L
4
3

uloc(I;L2(Ω)) ∩ L2
uloc(I;L1(Ω)) ,

µ ∈ L2
uloc(I;H1(Ω)) with ∇µ ∈ L2(0, T ;L2(Ω))

and the following equations are satisfied:

− (ρv, ∂tψ)QT
+ (div(ρv ⊗ v),ψ)QT

+ (2η(ϕ)Dv, Dψ)QT

= (µ∇ϕ,ψ)QT
+

(
|v|2

2
∇ρ,ψ

)
QT

(A.8)

for all ψ ∈ [C∞0 (Ω× (0, T ))]d with divψ = 0,

− (ϕ, ∂tζ)QT
+ (v · ∇ϕ, ζ)QT

= − (m(ϕ)∇µ,∇ζ)QT
, (A.9)

for all ζ ∈ C∞0 ((0, T );C1(Ω)),

a(ϕ)−
1
2

(
µ+

∂ρ

∂ϕ

|v|2

2

)
+ κ̃A(ϕ) = Ψ̃′0(ϕ)−∆A(ϕ) almost everywhere in QT and (A.10)

(v, ϕ)|t=0 = (v0, ϕ0) . (A.11)
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Moreover,

Etot(ϕ(t),v(t)) +

∫
Q(s,t)

2η(ϕ) |Dv|2 d(x, τ) +

∫
Q(s,t)

m(ϕ)|∇µ|2 d(x, τ)

≤ Etot(ϕ(s),v(s)) (A.12)

for all t ∈ [s,∞) and almost all s ∈ [0,∞) holds (including s = 0).

The main ideas of the proof of Theorem A.1 are the same as for the previous existence result
and we will just sketch the necessary adaptations. Again we use an implicit time discretization.
Let h = 1

N for N ∈ N, vk ∈ L2
σ(Ω), ϕk ∈ H1(Ω) with Ψ′(ϕk) ∈ L2(Ω) and ρk = 1

2(ρ̃1+ρ̃2)+ 1
2(ρ̃2−

ρ̃1)ϕk be given. We also set β = ∂ρ
∂ϕ = 1

2(ρ̃2 − ρ̃1). We construct (v, ϕ, µ) = (vk+1, ϕk+1, µk+1)
as solution of the following non-linear system.

Find (v, ϕ, µ) with v ∈ H1
0 (Ω)d ∩ L2

σ(Ω), ϕ ∈ D(∂E) and µ ∈ H1(Ω), such that(
ρv − ρkvk

h
,ψ

)
Ω

+ (div(ρkv ⊗ v),ψ)Ω + (2η(ϕk)Dv, Dψ)Ω

= (µ∇ϕk,ψ)Ω +

(
|v|2

2
∇ρk,ψ

)
Ω

, (A.13)

for all ψ ∈ C∞0,σ(Ω), (
ϕ− ϕk
h

, ζ

)
Ω

+ (v · ∇ϕk, ζ)Ω = − (m(ϕk)∇µ,∇ζ)Ω (A.14)

for all ζ ∈ H1(Ω) and

ϕ− ϕk
A(ϕ)−A(ϕk)

(
µ+ β

|v|2

2

)
+ κ̃

A(ϕ) +A(ϕk)

2
= Ψ̃′0(A(ϕ))−∆A(ϕ) a.e. in Ω. (A.15)

To show existence of solutions of the time-discrete problem we use again the Leray-Schauder
principle and define operators Lk,Fk : X → Y , where

X =
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)
×D(∂E)×H1(Ω) ,

Y =
(
H1

0 (Ω)d ∩ L2
σ(Ω)

)′
×
(
H1(Ω)

)′ × L2(Ω) .

For w = (v, ϕ, µ) ∈ X we set

Lk(w) =

 Lk(v)
−div(m(ϕk)∇µ) +

∫
Ω µdx

A(ϕ) + ∂Ẽ(A(ϕ))

 ,

where

〈Lk(v),ψ〉 =

∫
Ω

2η(ϕk)Dv : Dψ dx for ψ ∈ H1
0 (Ω)d ∩ L2

σ(Ω) and〈
−div(m(ϕk)∇µ) +

∫
Ω
µdx, η

〉
=

∫
Ω
m(ϕk)∇µ · ∇η dx+

∫
Ω
µdx ·

∫
Ω
η dx for η ∈ H1(Ω) .
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Note that due to ϕ ∈ D(∂E) it holds A(ϕ) ∈ D(∂Ẽ) and therefore the last line in Lk(w) lies in
L2(Ω). Furthermore for w = (v, ϕ, µ) ∈ X we define

Fk(w) =

−
ρv−ρkvk

h − div(ρkv ⊗ v) + µ∇ϕk + |v|2
2 ∇ρk

−ϕ−ϕk
h − v · ∇ϕk +

∫
Ω µdx

A(ϕ) + ϕ−ϕk
A(ϕ)−A(ϕk)

(
µ+ β |v|

2

2

)
+ κ̃A(ϕ)+A(ϕk)

2

 .

Then w = (v, ϕ, µ) ∈ X is a weak solution of the time discrete problem (A.13)-(A.15) if and
only if Lk(w) − Fk(w) = 0. To get a continuous and even compact operator, we introduce for
0 < s < 1

4 the following Banach spaces

X̃ :=
(
H1

0 (Ω)d × L2
σ(Ω)

)
×H2−s(Ω)×H1(Ω) ,

Ỹ := L
3
2 (Ω)d × L2(Ω)×W 1

3
2

(Ω) .

With analogue arguments as above we can show that the inverse L−1
k : Ỹ → X̃ is a compact

operator and that Fk : X̃ → Ỹ is continuous and maps bounded sets into bounded sets.
For these operators it is possible to verify the assumptions of the Leray-Schauder principle

and therefore get a weak solution to the time-discrete problem, which additionally fulfills the
energy estimate (4.7).

For the remaining part about compactness in time we can show the same statements as

in Lemma 4.2 and derive then together with the fact
∫

Ω β
|v|2

2 dx ∈ L∞(0,∞) from the energy
estimate the same bounds as in (5.7). But in this case the additional term |v|2 in the line

(5.3) for the chemical potential is just bounded in the space L
4
3 (J ;L2(Ω)). By applying results

of Abels and Wilke [AW07] we get here ϕ ∈ L
4
3

uloc(J ;H2(Ω)) and Ψ′(ϕ) ∈ L
4
3

uloc(J ;L2(Ω)).

The strong convergence (5.10) can then be derived by using the embedding L
4
3 (0, T ;H2(Ω)) ↪→

L1(0, T ;H2(Ω)) and the result from interpolation theory L1(0, T ;H2(Ω)) ∩L∞(0, T ;H1(Ω)) ↪→
L2(0, T ;H

3
2 (Ω)), which shows that ϕN is bounded in the latter space and is enough to conclude

(5.10) with the help of the Lemma of Aubins-Lions.
To show strong convergence of vN to v in L2(ΩT ) in this case, we have to bound in-

stead of the term vN ⊗ ∇µN in the first model now the term |vN |2∇ϕNh . From the bound
of vN in L2(0, T ;L6(Ω)) and L∞(0, T ;L2(Ω)) we get that |vN |2 is bounded in L1(0, T ;L3(Ω))∩
L∞(0, T ;L1(Ω)). With the help of the interpolation results (5.11) and (5.12) this leads to a

bound of |vN |2 in L
4
3 (0, T ;L2(Ω)) and together with the bound of ∇ϕNh ∈ L∞(0, T ;L2(Ω)) we

get in this case the boundedness of |vN |2∇ϕNh in L
4
3 (0, T ;L1(Ω)). Anyhow, we have a time

integrability greater than 1, which is enough to finish the proof.
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