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Abstract

Cellular decision making in differentiation, proliferation or apoptosis is me-

diated by molecular signaling processes, which control the regulation and

expression of genes. Vice versa, the expression of genes can trigger the

activity of signaling pathways. I summarize methodology by Markowetz

et al. known as the Nested Effects Models (NEMs) to reconstruct static

non-transcriptional networks using subset relationships from perturbation

data and bring out its limitation to model slow-going biological processes

like cell differentiation. I introduce and describe new statistical methodolo-

gies called Dynamic Nested Effects Models (DNEMs) and Cyclic Dynamic

Nested Effects Models (CDNEMs) for analyzing the temporal interplay of

cell signaling and gene expression. DNEMs and CDNEMs are Bayesian

models of signal propagation in a network. They decompose observed time

delays of multiple step signaling processes into single steps. Time delays are

assumed to be exponentially distributed. Rate constants of signal propaga-

tion are model parameters, whose joint posterior distribution is assessed via

Gibbs sampling. They hold information on the interplay of different forms

of biological signal propagation: Molecular signaling in the cytoplasm acts

at high rates, direct signal propagation via transcription and translation at

intermediate rates, while secondary effects operate at low rates. I evaluate

my methods in simulation experiments and demonstrate their practical ap-

plications to embryonic stem cell development in mice. The results from

these models explain how stem cells could succeed to carry out differentia-

tion to specialized cells of the body such as muscle cells or neurons, a process

that goes in one direction. The inferred molecular communication underly-

ing such a process proposes how organisms protect themselves against the

reversal of cell differentiation and thereby against cancer.



Zusammenfassung

Die zelluläre Entscheidungsfindung in der Differenzierung, der Zellprolifera-

tion oder der Apoptose wird durch molekulare Signalprozesse, die die Gen-

regulation und -expression steuern, vermittelt. Andersherum kann die Gen-

expression die Aktivität der Signalverläufe auslösen. Ich fasse die Methodik

von Markowetz et al., bekannt als Nested Effects Models (NEMs), zusam-

men um statische nicht-transkriptionelle Netzwerke anhand von Teilmen-

genbeziehungen aus Perturbationsdaten zu rekonstruieren. Dabei zeige

ich die Anwendungsgrenzen dieser Methodik zur Modellierung langsam-

laufender biologischer Prozesse wie z.B. Zelldifferenzierung. In dieser Ar-

beit führe ich neue statistische Methoden namens “Dynamic Nested Ef-

fects Models” (DNEMs) und “Cyclic Dynamic Nested Effects Models” (CD-

NEMs) mitsamt deren Beschreibung für die Analyse des zeitlichen Zusam-

menspiels von zellulärer Signalübertragung und Genexpression ein. DNEMs

und CDNEMs sind Bayessche Modelle der Signalweiterleitung in einem Net-

zwerk. Sie zerlegen beobachtete Zeitverzögerungen der Signalprozesse von

mehreren Schritten in einzelne Schritte. Zeitverzögerungen werden als expo-

nential verteilt angenommen. Geschwindigkeitskonstanten der Signalweit-

erleitung sind Modellparameter, deren gemeinsame posteriori-Verteilung

über Gibbs-Sampling beurteilt wird. Sie enthalten Informationen über

das Zusammenspiel der verschiedenen Arten von biologischer Signalweit-

erleitung: Molekulare Signalweiterleitung ins Zytoplasma findet mit ho-

her, direkte Signalweiterleitung über Transkription und Translation mit

mittlerer und sekundaere Effekte mit niedriger Geschwindigkeit statt. Ich

beurteile meine Methoden mit numerischen Simulationsexperimenten und

zeige ihre praktische Anwendbarkeit anhand von Daten aus murinen embry-

onischen Stammzellen. Die Ergebnisse aus diesen Modellen erläutern wie es

Stammzellen gelingt zu spezialisierten Zellen des Körpers wie Muskelzellen

oder Nervenzellen zu differenzieren. Der Prozess im wesentlichen in eine

Richtung. Die hieraus abgeleiteten molekularen Kommunikationsmechanis-

men eines solchen Prozesses stellen dar, wie sich ein Organismus vor der

Umkehrung der Zelldifferenzierung und damit vor Krebs schützen kann.
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1

Introduction

Cellular decision making in biological processes such as differentiation, proliferation or

cell death is mediated by molecular signaling processes, which control the regulation

and expression of genes. Changes in gene expression can activate further signaling pro-

cesses, leading to secondary effects, which themselves give rise to tertiary effects and so

on. The result is an intricate interplay of cell signaling and gene regulation. While pro-

tein modification in the cytoplasm can propagate signals in seconds, transcription and

translation processes last hours, and secondary effects often become visible only after

days. I develop statistical methodology that models the processes of cellular decision

making using data, which reports downstream effects of molecular perturbations. In

addition, I discuss which role such a model can play in biology and biomedicine. The

first chapter gives some background on cell decision making processes and introduces

key molecular players involved in stem cell differentiation. I focus on those properties

which make it possible to systematically analyze and model such a process using high

throughput perturbation data. I go further and discuss the methodology available for

analyzing perturbation data with particular emphasis on limitation to time series data

and provide motivation for taking the time into account.

.

1.1 Cell decision making in biological processes

Cellular decision making is involved in several biological processes such as cell division,

cell proliferation, apoptosis or cell differentiation (Figure 1.1). Each of these processes

1



1. INTRODUCTION

Figure 1.1: Cell decision making processes - Cell decision making is involved in
cell growth, cell proliferation, apoptosis, and differentiation. Mitogens and growth factors
induce the process of cell growth and cell division respectively. Both actions usually occur
simultaneously. Death receptors trigger extrinsic apoptosis. The entire programming of
a single death cell involves cell shrinkage, cell membrane blebbing, nuclear collapse, and
apoptotic body formation. Stem cell development is mediated by both self renewal and
differentiation. Nanog, Sox2, and Oct4 play a key role in driving stem cells from a self
renewal state into early differentiation. The figure is a modification from figures in (1).

2



1.1 Cell decision making in biological processes

is tightly regulated and controlled both by intracellular programs and extracellular sig-

naling molecules whose mechanisms are still not clear. For example, the process of

cell growth and cell division is stimulated by chemical substances like mitogens and

growth factors respectively (1). Mitogens interact with cell surface receptors to trig-

ger multiple intracellular signaling pathways during cell division. Although extensive

research has been carried out in this area (1), its still not clear how a proliferating cell

coordinates its growth with cell division so as to maintain its appropriate size. Alter-

natively, a process such as apoptosis which is useful for the elimination of unwanted

cells in the body is triggered by death receptors on their surface. For example, Fas

ligand, a transmembrane protein on the surface of a killer lymphocyte binds to the Fas

receptor on the cell surface to trigger the extrinsic apoptosis pathway (5). Apoptosis

can also be triggered from within the cell (6) and in some cases a combination of both

external and internal signaling are involved to amplify the process (1). The mechanism

underlying such a coordination is still not fully understood. In addition during the

process of cell differentiation, stem cells need to decide when and how to move from

the state of self renewal into differentiation. Such a complex process is governed by

transcription networks known as developmental transcription networks(7), which need

to make irreversible decisions on a slow time scale of one or more cell generations.

1.1.1 Key players in the molecular mechanism in early stem cell dif-

ferentiation in mouse

The zygote can give rise to a complex organism through cell division, growth(proliferation)

and cell specialization(differentiation). The first differentiation event, is the segrega-

tion of the trophectoderm (TE) and the inner cell mass (ICM) in the blastocyst. See

the adapted Figure 1.2 from Niwa(2007) (4). The zygote is totipotent, developing into

not only the fetus but also the placenta. The totipotency is maintained in cells known

as blastomeres of the two-cell stage embryo. After mechanical separation of the blas-

tomeres of the two-cell stage embryo, each blastomere is able to give rise to an adult

organism, for example a mouse(8). These cells which have the ability to self-renew as

well as differentiate into different cell types of the vertebrate embryo leading to the for-

mation of an entire organism are known as embryonic stem cells(ESC), and the cells of

the embryonic inner cell mass from which mouse ESC are derived are called pluripotent
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because of their ability to give rise to all of the cells of an embryo and adult(9). Pluripo-

tency is maintained during ESC self-renewal through the prevention of differentiation

and the promotion of proliferation. In fact, ESC can self-renew continuously for years if

they are cultured under conditions that prevent their differentiation; for example, in the

presence of leukemia inhibitory factor (LIF), a growth factor that is necessary for main-

taining mouse ESC in a proliferative, undifferentiated state (10). Studies over the past

few years have revealed the role that transcription factor networks play in the mainte-

nance of ESC pluripotency (11, 12, 13, 14, 15, 16, 17, 18). From these studies we have

transcription factors(TFs) that are pivotal for maintaining ESC in their self-renewal

state when overexpressed such as Nanog, a homeobox transcription factor expressed

throughout the pluripotent cells of the ICM with the particular goal to prevent en-

doderm differentiation (13, 19); Oct3/4, also called Pou5f1, an important regulator of

pluripotency that acts as a gatekeeper to prevent ESC differentiation(16); and Sox2,

a member of the Sox (SRY-related HMG box) family of proteins that bind to DNA

through the 79-amino acid HMG(high mobility group) domain. Sox2 is co-expressed

with Oct4 in the ICM (20). These TFs form a core transcriptional network associated

with pluripotency in ESC (15, 18, 21, 22). Alternatively, the differentiation of mouse

ESC can be induced by the expression of certain transcription factors. For example,

the expression of the transcription factor Gata6 in ESC results in their differentiation

into primitive endoderm(12). Likewise, the expression of the caudal-type homeobox

transcription factor 2 (Cdx2 ) induces ESC to differentiate into trophectoderm (23).

Model relative to roles played by the above transcription factors during early embry-

onic development is shown in Figure 1.2. We have two types of transcription factors

which play a role in ESC. (i) TFs with target genes that are expressed in undifferen-

tiated ESC. (ii) TFs with target genes that are not expressed in undifferentiated cells

but induced in differentiated ESC. The overexpression of type (i) TFs will maintain

ESC in their self renewal state while overexpression of type (ii) will likely trigger the

differentiation of ESC. These transcription factors function in combination with other

processes and on the accessibility of their target genes, which are made more or less

accessible by the modification of their DNA, histones, or chromatin structure. The chal-

lenge would be to understand how these TFs interact dynamically with each other to

regulate the processes between self-renewal and differentiation. More so, understanding
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the mechanisms underlying the processes of pluripotency, self-renewal and subsequent

differentiation in embryonic stem cells is central to utilizing them therapeutically.

Figure 1.2: Pluripotent lineages in the mouse embryo with key Transcription
factors - Model relative to roles played by Oct4, Nanog, Sox2, foxD3, Cdx2, Gata6 during
early mouse preimplantation development. Pluripotent stem cells (green) are imaged in
a morula as the inner cells, which then form the inner cell mass (ICM) of the blastocyst.
Oct3/4 is essential in the first embryonic lineage specification. Nanog function is to prevent
endoderm differentiation of ICM. Sox2 and FoxD3 are essential in the maintainance of a
pluripotent epiblast. The figure is adapted from Niwa(2007) (4).

1.2 Properties of cellular decision making processes

All of the processes mentioned in the last section take time to completion. In early

murine embryonic development for example, it takes about 1 week for stem cells to

move from a pluripotent state to a differentiated state. Early stage differentiation

actually starts after about 2 days (18). More so, the entire cellular decision process

proceed in multiple steps controlled by different signals. For example the different

stages on the way from a single stem cell to a specialized cell are controlled by different

signals as shown in (Figure 1.3) modified from Alberts et al.(2008)(1). Cellular decision

processes are controlled by complex signaling networks. For example the Wnt signaling

pathway which plays a key role in the development of tissues and organs in multicellular

organism involves a complex signaling mechanism taking place at the cell membrane,

cytoplasm and inside the nucleus(Figure 1.4). Once the pathway is active traces in gene

expression profiles can be observed reflecting the hierarchy of events along the pathway.

My goal is to model the temporal interplay of signaling and expression in such complex
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biological processes involving several signaling pathways and spanning multiple rounds

of cell signaling, gene regulation, and gene expression.

Figure 1.3: Properties of cell decision making - Cell decision making takes time and
operate in multiple steps. Stem cell differentiation to a specialized cell fate involves a series
of decision-making steps. Each decision making step is triggered by external or internal
signals. The figure is a modification from (1).

1.3 Cellular decision making processes can be represented

by hierarchies

Cellular decision processes can be modelled as hierarchies. A given hierarchy of signal-

ing steps can be represented by a graph or network of upstream / downstream relations

where nodes can be steps or controlling signaling genes and edges indicate upstream

/ downstream relations. Based on such a relationship we would expect a transitive

closed graph. If S1 is upstream of S2 and S2 is upstream of S3, then by definition S1 is

upstream of S3. Figure 1.5 shows a decision process comprising of 5 steps S1-S5. Steps

S2-S5 can only occur after step S1 has occurred. For example, the MAP kinase cascade

is activated by Ras which further leads to the activation of other important regulatory

proteins such as Myc. So Ras acts upstream of Myc and this property is represented

by a directed edge from Ras to Myc. The biological meaning of a network component

depends on what kind of data we analyze. We mostly speak of network components as

genes. However statistical methods available for gene regulatory networks can also be

generalized for protein data (24, 25, 26).
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Figure 1.4: Properties of cell decision making - Wnt signaling involves a very com-
plex signaling mechanism at the cell membrane, cytoplasm and nucleus. Wnt proteins bind
to receptors on the cell surface to induce several intracellular signal transduction pathways.
Through several cytoplasmic relay molecules, the signal is transduced to β-catenin, which
enters the nucleus and forms a complex with TCF protein to activate transcription of Wnt
target genes. This Figure has been taken from Wikipedia.org.

Figure 1.5: cellular decision processes can be modeled as hierarchies - The figure
shows a cellular decision process comprising of 5 steps S1-S5. Steps S2-S5 can only occur
after step S1 has occurred.
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1.4 Statistical methods for analyzing decision making pro-

cesses

With the advent of high throughput genomic technologies such as microarrays that

can capture the expression of thousands of genes and the availability of powerful com-

putational approaches, the practice of studying cellular processes at the systems level

has greatly improved in the last decades. Numerous statistical methods have been

suggested for the analysis and reconstruction of regulatory networks. Among the most

widely used are relevance networks (27), graphical Gaussian models (28, 29), meth-

ods from information theory (30), Bayesian networks (31) including dynamic Bayesian

networks (32, 33), Boolean networks (34, 35, 36) and methods based on ordinary differ-

ential equations (37, 38, 39). All these methods employ pure observational data, where

the network was not perturbed experimentally. Relevance networks, graphical Gaus-

sian models, Information theory approaches, Boolean networks, Bayesian and dynamic

Bayesian networks are probabilistic in design motivated by the fact that signal trans-

duction, gene expression and its regulation are stochastic processes (40, 41, 41). They

mainly account for transcriptional effects in the cell. Apart from dynamic Bayesian

and Boolean networks, they infer static transcriptional regulatory networks. Ordinary

differential equations(ODEs) on the other hand are deterministic making strong as-

sumptions on the network structure and interactions. The famous Michealis-Menten

equation in the context of enzyme kinetics is an example (42). Similar to dynamic

Bayesian networks ODEs allow for changes over time. A comprehensive overview of

these methods in relation to transcriptional regulatory networks can be found in (7, 43).

1.4.1 Learning from experimental interventions

Simulation (44, 45) and experimental studies (24, 44) show that perturbation experi-

ments greatly improve performance in network reconstruction. Rung et al. (46) built

a directed disruption graph by connecting two genes where perturbation of the first

gene resulted in expression changes in the other gene. However, disruption networks

do not separate direct from indirect effects. Wagner (47) uses transitive reductions

to find parsimonious subgraphs explaining a disruption network. The framework of

Bayesian networks was also extended to account for perturbation data (48, 49). Yeang

et al. search for topologies that are consistent with observed downstream effects of
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interventions (50). Although this algorithm is not confined to the transcriptional level

of regulation, it requires that most signaling genes show effects when perturbing others.

The methods described exhaustively in this thesis build on Nested Effects Models

(NEMs), which were first proposed by Markowetz et al. (49) for the analysis of non-

transcriptional signaling networks. They differ from other statistical approaches like

Bayesian networks or Boolean Networks by encoding subset relations instead of partial

correlations. NEMs infer the graph of upstream/downstream relations for a set of

signaling genes from perturbation effects. Since non-transcriptional signaling is too

fast to be analyzed by delays of downstream effects, time series are not used. This

changes when analyzing slow-going biological processes like cell differentiation.

1.5 Motivation for dynamic modeling of cell decision mak-

ing processes

Note that there is a difference between the upstream/downstream relations of a network

and the actual signal flow: If gene S1 is upstream of S2 and gene S2 is upstream of S3,

consistency requires that S1 is also upstream of S3. While the consistency argument is

valid for upstream/downstream relations, it does not hold for signal flows. Assume we

have a linear cascade of signaling genes where the signal flows from S1 via S2 to S3 (See

Figure 1.6). Whether there is an alternative signal flow from S1 directly to S3 does

not follow from upstream/downstream relations. However, evidence of the alternative

signal flow comes from time delays of downstream effects. Assume that the time spent

to propagate a downstream effect from S1 to S2 plus the time spent to propagate it

from S2 to S3 is larger than the time to propagate the effect from S1 to S3 directly,

then there must exist an alternative short cut pathway from S1 to S3. Thus, temporal

expression measurements yield additional insight into the cellular signal flow.

1.5.1 The Feed-Forward Loop Network motif

Signaling networks that regulate the responses of living cells were recently found to

obey recurring circuit modules that carry out key functions (3, 7, 51). They contain

several biochemical wiring patterns, termed network motifs, which recur throughout

the network (52). One of these motifs is the Feed-Forward Loop (FFL) (7). The FFL,

a three-gene pattern, is composed of two input transcription factors(regulators), one
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Figure 1.6: Transitive edge and Feed-Forward Loop - Transitive edges represent
feed forward loops. The mode of interaction in the FFL can be activation or repression
with an AND or OR input function at S3. S1 is activated by input signal(s).

of which regulates the other, both jointly regulating a target gene. The FFL has eight

possible structural types (Figure 1.7) , because each of the three interactions in the

FFL can be activating or repressing. Uri Alon and colleagues (3) found out that four of

the FFL types, termed incoherent FFLs(Figure 1.7) act as sign-sensitive accelerators:

they speed up the response time of the target gene expression following stimulus steps

in one direction (e.g., off to on) but not in the other direction (on to off). The other

four types, coherent FFLs, act as sign-sensitive delays. Thus they carry out specific

dynamical functions. In addition each of the coherent and incoherent types of FFLs can

have an AND or OR input function at the promoter of the target gene depending upon

whether both or only one of the two regulators are needed to regulate the target gene

(Figure 1.6). The transitive triple representation in Figure 1.6 shows that the transitive

edge(S1S3) combine with the indirect edges(S1S2 and S2S3) to form a coherent feed

forward loop(FFL). Nature uses these FFLs in several organisms to cause time delays

so that the cell can function properly by filtering out random fluctuations. We may be

able to reconstruct FFLs in a network if we can measure or estimate time delays in the

signaling network.

1.5.2 Feed-Back Loop Network motif

Biological networks are all known to contain Feed-Back Loops(FBLs) and cycles (1,

7). For example in regulatory networks, TFs are known to be both negatively and

positively auto-regulated. Negative auto-regulation occurs when a TF represses its own

transcription. Such a simple circuit has been used to show the speed of response time
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Figure 1.7: Feed-Forward Loops(FFLs) - The eight types of feedforward loops (FFLs)
are shown. Arrows denote activation and a symbols denote repression. In coherent FFLs,
the sign of the direct path from input factor X to output Z is the same as the overall sign
of the indirect path through factor Y. Incoherent FFLs have opposite signs for the two
paths. This figure is reproduced from (3).
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and reduction of the cell-cell variation in protein levels (53, 54, 55). Similarly, positive

auto-regulation occurs when a TF activates its own transcription by up-regulating itself.

Positive auto-regulatory circuits have been shown to have opposite effects as to those of

negative auto-regulatory feedback loops.(56). Modeling the cell cycle or autoregulation

with an acyclic model (31) may not be the best idea due to loss of useful information.

Fortunately, the cycle problem can be solved by assuming that the system evolves over

time.

1.6 Thesis Organization

There are two main goals involve in analyzing time series RNA interference (RNAi)

data for reverse engineering purposes. First, how to infer signaling pathways if direct

observations of gene silencing effects on other network components may not be visible

in the data. Second, to infer the signaling dynamics between pathway components

from the data. This thesis summarizes methodology to address the first question and

proposes a novel methodology to answer the second question. It is organized mainly as

follows.

1.6.1 Nested Effects Models

Chapter 2 gives an overview of Nested effects models and their implementations. The

theory of NEMs has been applied and extended in several studies. I give an in depth

overview of all NEMs from literature in this chapter. Chapter 2 also works out the

similarities, differences and limitations of all the methods.

1.6.2 Gibbs sampling and Nested Effects Models

In chapter 3, the concept of Gibbs sampling is reviewed. I discuss how such an estima-

tion algorithm is used in several bioinformatics applications with particular enfancy on

how it fits in within the context of Nested Effects Models.

1.6.3 Dynamic Nested Effects Models

In chapter 4, I develop a novel theory of learning from time series gene perturbations

in the framework of Nested Effects Models (NEMs), called Dynamic Nested Effects

Models(DNEMs). Chapter 4 goes further to demonstrate how DNEMs can be used
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to estimate time delays in a given network as well as make inferences on signal flow

in a given network. The practical use is exemplified in an application to molecular

mechanism in early stem cell differentiation. Finally a section on the speed up by

stochasticity effects in dynamic networks is introduced as a by product of DNEMs.

1.6.4 Cyclic Dynamic Nested Effects Models

An extension of DNEM to handle cycles is discussed in chapter 5 with the help of

simulations and an application to stem cell differentiation. In chapter 6 I discuss

the impact of DNEMs by making a comparison to another complementary and faster

modeling approach which also has the ability to unravel the regulatory networks across

time.
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Nested Effects Models

In modern biology, the key to inferring gene function and regulatory pathways are ex-

periments with interventions into the normal functioning in a cell. A common technique

is to perturb a gene of interest experimentally and to study which other genes activi-

ties are affected using gene expression monitoring. However, one of the key problems

of analyzing perturbation screens is that the observed phenotypes occur downstream

of the perturbed pathway and may not be able to show the direct influence of one par-

ticular pathway component on another. This is illustrated here by the cartoon path-

way adapted from Wagner 2001(Figure 2.1) showing a cascade of five genes/proteins

(S1-S5). Proteins S1-S3 form a kinase cascade, S4 is a transcription factor acting on

S5. Up-regulation of S1 starts information flow in the cascade and results in S5 be-

ing turned on. In gene expression data this is visible as a correlation between S1 and

S5(represented as an undirected edge in the model). Experimentally perturbing a gene,

say S3, removes the corresponding protein from the cascade, breaks the information

flow, and results in an expression change at S5 (represented as an arrow in the model).

However, the different phosphorylation and activation states of proteins S2-S4 are not

visible as changes in gene expression. Thus, because of the pathway mostly acting on

the protein level most parts of the cascade (dashed arrows in the model) can not be

inferred from gene expression data directly. One class of models that was developed

to handle indirect information and high-dimensional phenotypes are Nested Effects

Models (49).
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Figure 2.1: Cellular networks underlying observable phenotypes - Global molec-
ular phenotypes like gene expression allow a view inside the cell but also have limitations.
In gene expression data a correlation between proteins S1 and S5(represented as an undi-
rected edge in the model) is visible. In addition, experimentally perturbing a gene, say
S3, breaks the information flow, and results in an expression change at S5 (represented
as an arrow in the model). However, the different phosphorylation and activation states
of proteins S2-S4 are not visible as changes in gene expression. If the pathway is mostly
acting on the protein level most parts of the cascade (dashed arrows in the model) can not
be inferred from gene expression data directly. The figure is adapted from Wagner 2001.

2.1 Nested Effects Models(NEMs)

Following Markowetz et al. (49), we call the perturbed genes S-genes for signaling

genes and denote them by S = S1, . . . , Sn. The genes that change expression after

perturbation are called E-genes and we denote them by E = E1, . . . , EN . We further

denote the set of E-genes displaying expression changes in response to the perturbation

of Si by Di. In a nutshell: NEMs infer that S1 acts upstream of S2:

S1 −→ S2 if D2 ⊂ D1

All downstream effects of a perturbation in S2 can also be triggered by perturbing S1

(Figure 2.2). This suggests that the perturbation of S1 causes a perturbation of S2 and

acts upstream of S2. In a general setting with more than two S-genes, we call the subset

of S-genes, which are in an active state when S-gene Sj is silenced, the influence region

of Sj . The set of all influence regions is called a silencing scheme Φ. It summarizes

the effects of interventions predicted from the pathway hypothesis. This is mathemat-

ically represented as a transitively closed graph. The graph of upstream/downstream

relations is estimated from the nested structure of downstream effects. Due to noise in

16



2.1 Nested Effects Models(NEMs)

the data, we do not expect strict super-/subset relations. Instead, NEMs recover rough

nesting. Following Markowetz et al. (49) we assume only directed acyclic graphs. In

Figure 2.2: Cellular pathways can be reconstructed from the nested structure
of downstream effects - If the target genes of S2 are a subset of the target genes of S1
then S1 acts upstream of S2. So in this sense all the target genes of S2 can be triggered by
perturbing S1. Information on the target gene expressions can be obtained on a microarray.

the context of NEMs the most often used scoring metric is the posterior probability of

a network Φ given data D, P (Φ|D). According to Bayes rule, the posterior probability

can be written as

P (Φ|D) =
P (D|Φ)P (Φ)

P (D)
, (2.1)

where P (D) is a constant that does not depend on Φ. Consequently, the (marginal)

likelihood P (D|Φ) together with the network prior P (Φ) play the central role in the

inference.

In practice, we do not know which target genes or E-genes are being controlled

by which S-genes. We first need to estimate the E-gene positions before scoring the

graph. Closely following the presentation of Markowetz et al.(2005) (49) we denote the
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parameter for the E-gene positions as Θ. If we let Θ = {θi}mi=1 with θi ∈ {1, ..., n}and

θi = j if Ei is attached to Sj . In a perturbation experiment we predict effects at all E-

genes, which are attached to an S-gene in the influence region. Expected effects can be

compared with observed effects in the data to choose the topology, which fits the data

best. Owing to measurement noise we cannot expect to find an expected topology to be

in complete agreement with all observations. We allow deviation from predicted effects

by introducing error probabilities α and β for false positive and negative situations,

respectively. We model the expression levels of E-genes on the various perturbation

experiments k as binary random variables Eik . The distribution of Eik is determined

by the silencing scheme Φ and the error probabilities α and β. For all E-genes and

targets of intervention, the conditional probability of E-gene state eik given silencing

scheme Φ can then be written in tabular form as:

Table 2.1: The distribution of binary effect data - The distribution of Eik is deter-
mined by the silencing scheme Φ and the error probabilities α and β.

eik = 1 ei = 0

P (eik|Φ, θi = j) =
{ α 1− α if Φ predicts no effect

1− β β if Φ predicts effect

This means that if Ei is not in the influence region of the S-gene silenced in ex-

periment k, the probability of observing Eik=1 is α(probability of false alarm); the

probability to miss an effect and observe Eik = 0 even though Ei lies in the influence

region is β (probability of missed signal). In the following, we summarize NEMs based

on their statistical approach for dealing with Θ in scoring a given network.

2.1.1 Marginal likelihood scoring

In the Bayesian framework of Markowetz et al.(2005) (49), networks are scored by

marginal posterior probabilities which depend on the marginal likelihood of the param-

eter space. The marginal likelihood involves marginalization over the whole parameter

space Θ .

P (D|Φ) =
∫

Θ
P (D|Φ,Θ)P (Θ|Φ)dΘ. (2.2)

The marginal likelihood P (D|Φ,Θ) is based on the following assumptions given in (49):
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1. Given silencing scheme Φ, and fixed positions of E-genes Θ, the observations in

D are sampled independently and distributed identically:

P (D|Φ,Θ) =
m∏
i=1

P (Di|Φ, θi) =
m∏
i=1

l∏
k=1

p(eik|Φ, θi), (2.3)

where Di is the ith row in data matrix D.

2. Parameter independence. The position of one E-gene is independent of the posi-

tions of all the other E-genes at any given time:

P (Θ|Φ) =
m∏
i=1

P (θi|Φ) (2.4)

3. Uniform prior. The prior probability to attach an E-gene is uniform over all

S-genes:

P (θi = j|Φ) =
1
n

for all i and j (2.5)

However prior existing biological knowledge about regulatory modules can be

incorporated (57, 58).

With the above assumptions the marginal likelihood can be calculated thus. The num-

bers above the equality sign indicate which assumption was used in each step.

P (D|Φ) =
∫

Θ
P (D|Φ,Θ)P (Θ|Φ)dΘ

[1,2]
=

m∏
i=1

∫
θi

P (Di|Φ, θi)P (θi|Φ)dθi

[3]
=

1
nm

m∏
i=1

n∑
j=1

P (Di|Φ, θi = j)

[1]
=

1
nm

m∏
i=1

n∑
j=1

l∏
k=1

pα,β(eik|Φ, θi = j) (2.6)

Note here that we can sum over all E-gene positions since we have a finite number of

S-genes.
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2.1.2 Maximum likelihood scoring

It is also possible to maximize the joint posterior distribution of Φ and Θ. We can

represent both the silencing scheme and the E-gene positions as adjacency matrices

whose entries represent edges between S-S-genes and S-E-genes respectively. For the

purpose of consistency we denote both matrices as Φ and Θ. Tresch (59) defined a

Nested Effects Model (NEM) F as a product of Φ and Θ:

F = ΦΘ (2.7)

Using the same formulation as in the previous section and assuming data independence,

the likelihood of the model F is represented as P (D|F ) and factors out as follows:

P (D|F ) = P (D|ΦΘ)

=
∏

(j,i)∈Φ×Θ

P (Dj,i|j = Fji)

or log(P (D|F )) =
∑

(j,i)∈Φ×Θ

logP (Dj,i|j = Fji) + const, (2.8)

if we assume equal probability for observing a 1 or 0 and (j, i) ∈ Φ×Θ with j = Fji

interpreted as S-gene j is linked to E-gene i . The quantity log(P (D|F )) can also be

expressed as a likelihood ratio for convenience using matrix algebra as follows:

log(P (D|F ))− log(P (D|N)) = tr(FR), (2.9)

where R = log P (Dji|eij=1)
P (Dji|eij=0) , “tr” denoting the trace function of a quadratic matrix and

N the NULL matrix corresponding to the model predicting no effects at all. Hence the

marginal likelihood of the data becomes

log(P (D|Φ,Θ)) = tr(ΦΘR) + const (2.10)

This form provides a flexible way of handling input data binary values, p-values, or any

other arbitrary statistic as long as it can be converted to a likelihood ratio. The aim

of the NEMs is to find the optimal silencing scheme Φ̂. The posterior model (Φ,Θ)

written in log form is

log(P (Φ,Θ|D)) = log(P (D|Φ,Θ)) + log(P (Φ)) + log(P (Θ)) + const, (2.11)
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and the task is to find the maximum aposteriori(MAP) estimate for log(P (Φ,Θ|D)),

(Φ̂, Θ̂) = argmaxφ,Θ(log(P (D|Φ,Θ)) + log(P (Φ)) + log(P (Θ))), (2.12)

So in order to maximize the graph we need to maximize the E-gene positions and vice

versa.

2.1.3 NEMs as a Bayesian network

Zeller et al. (60) introduced a Bayesian network view on NEMs. A Bayesian network is

defined by a graphical model structure Φ and a family of conditional distributions F
′

and their parameters Θ (61, 62). The model structure Φ consists of a set of nodes V and

a set of directed edges E connecting the nodes such that the resulting directed graph

is acyclic (DAG). The nodes represent random variables in the network whereas the

edges encode a set of conditional dependencies. In the parametric setting, the family of

conditional distributions F
′

is assumed to be known and hence is fully described by its

parameters. Let X = X1, X2, ..., Xn denote a set of random variables that correspond

to the nodes V in the network. Lower-case letters x1, x2, ..., xn are used to denote

the value of the corresponding variables. Let Pa(Xi) denote the random variables

corresponding to the parents of node i in the DAG. Then, the network structure Φ and

the parameters Θ of the conditional distributions together define a joint distribution

over the random variables X as

P (xi, x2, ..., xn) =
n∏
i=1

P (xi|pa(Xi)) (2.13)

In the context of NEMs following the presentation in (59), we have to model a deter-

ministic signaling hierarchy, in which some components (E) can be probed by measure-

ments, and some components (S) are perturbed in order to measure the reaction of the

system as a whole. Let H
′

be the nodes of an acyclic graph representing a combination

of the S-S-genes and S-E-genes connection Figure 2.3. A,B,C represent the S-genes

and X1, X2, Y1, Y2, Z1, Z2 represent the effect nodes. We assume H
′

as hidden in the

sense that no observation will be available for H
′
. In order to account for the data, we

introduce an additional layer of observable variables (observables,O) in the following

way: each effect node e ∈ E has an edge pointing to a unique observable node e
′ ∈ O

(Figure 2.3). Hence, O = {e′ |e ∈ E}, and we call e
′

the observation of e. Similar like
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2. NESTED EFFECTS MODELS

Figure 2.3: Bayesian Nested effects models - Example of a Nested effects model
in its Bayesian network formulation. The bold arrows determine the graph Φ, the solid
thin arrows encode Θ. Dashed arrows connect the effects to their reporters. This figure is
reproduced from (59).

before we let pa(x) be the set of parents of a node x and for notational convenience

add a zero node z, p(z = 0) = 1, which has no parents, and which is a parent of all

hidden nodes (but not of the observable measurements). For the hidden nodes, define

local probabilities corresponding to deterministic relationships as follows :

p(x = 1|pa(x)) = { 1 if any parent is active
0 otherwise,

= max(pa(x)) for x ∈ H ′ , (2.14)

All hidden nodes are set to 0 or 1 deterministically, given their parents. The local

probabilities p(e
′ |e ∈ E), e ∈ E can come from both discrete or continuous distributions

(59). From Equation 2.13 the Bayesian network NEM is parameterized by its topology

Φ and its local probability distributions, which we assume to be given by a set of

local parameters Θ. The ultimate goal is to maximize P (Φ|D). In the presence of

prior knowledge and if we assume independent priors for the topology and the local
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2.1 Nested Effects Models(NEMs)

parameters, we can write

P (Φ,Θ|D) =
P (D|Φ,Θ)P (Φ)P (Θ)

P (D)
∝ P (D|Φ,Θ)P (Φ)P (Θ) (2.15)

from which it follows that

P (Φ|D) =
∫
P (Φ,Θ|D)dΦ

∝ P (Φ)
∫
P (D|Φ,Θ)P (Θ)dΘ (2.16)

Its difficult to solve the integral analytically. We resort to a simultaneous maximum a

posteriori estimation of Φ and Θ (59). Thus

(Φ̂, Θ̂) = argmaxΦ,ΘP (Φ,Θ|D)

= argmaxΦ(argmaxΘP (D|Φ, θ)P (Θ))P (Φ). (2.17)

2.1.4 Factor graph NEMs

Finally, a signed version of the Nested Effects Model and an associated efficient struc-

ture inference method, named Factor Graph-Nested Effects Model(FG-NEM) (2) was

developed to distinguish between activating and inhibiting regulation in a pathway.

Recall that the original NEM by Markowetz et al. (49) include two sets of parameters.

The parameter set Φ records all pair-wise interactions among the S-genes and the pa-

rameter set Θ describes how each E-gene is attached to the network of S-genes. Φ is

a binary matrix with entry φAB set to one if S-gene A acts above S-gene B and zero

otherwise. Φ must also be transitively closed. The model by Markowetz et al. (49)

does not distinguish between stimulatory and inhibitory interactions. To tackle this

drawback, Vaske et al. (2) suggest a model, in which φAB takes six possible values for

each unique unordered S-gene pair A,B also known as interaction modes. The possible

values are: 1) A activates B, A → B; 2) A inhibits B,A a B; 3) A is equivalent to B,

A=B; 4) A does not interact with B, A 6= B; 5) B activates A,B → A; and 6) B inhibits

A, B a A. The Factor graph NEMs allow for the reconstruction of a broader set of

S-gene interactions from the secondary effects of E-gene expression corresponding to

the observed data denoted as D. Similarly like the other NEM approaches discussed

so far, a maximum aposteriori is used to identify the Φ that maximizes the posterior
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2. NESTED EFFECTS MODELS

P (Φ|D) represented as :

Φ̂ = argmaxΦP (Φ|D)

= argmaxΦ

∑
Θ

∑
H

P (Φ,Θ, H|D). (2.18)

where Θ refers to the attachment point of each E-gene into the network and H refers to

the hidden E-gene states corresponding to up, down regulations or no change. Applying

the same assumptions as in Markowetz et al. (49) we have:

Φ̂ = argmaxΦP (Φ)
∑
Θ

P (Θ|Φ)
∑
H

P (H|Φ,Θ)P (D|H)

= argmaxΦP (Φ)
∑
Θ

∑
H

P (H|Φ,Θ)P (D|H)

= argmaxΦP (Φ)
∏
e∈E

∑
Θ

∑
H

P (He|Φ, θe)P (De|He)

given independence of E-genes, E.

= argmaxΦP (Φ)
∏
e∈E

Le(Φ) (2.19)

where De and He are the row vectors of data matrix and hidden states for E-genes

respectively and θe records the attachment of an E-gene to an S-gene and Le summarizes

the marginal likelihood of the data restricted only to E-gene e under a given model Φ

and θe. Note that Le can be reformulated as a product of pair-wise S-gene terms(2).

2.1.4.1 Structure of factor graph NEMs and Network inference

Scoring a given S-gene graph can be achieved based on max-sum message passing in

a factor graph (63) which provides an efficient means for estimating highly probable

S-gene configurations. The parameters that determine the S-gene interactions, Φ, are

explicitly represented as variables in the factor graph. Identifying a high-scoring S-

gene network is therefore converted to the task of identifying likely assignments of

the Φ variables in the factor graph. A factor graph is a probabilistic graphical model

whose likelihood function can be factorized into smaller terms (factors) representing

local constraints on a set of random variables. A factor graph can be represented as an

undirected, bi-partite graph with two types of nodes: variables and factors. A variable

is adjacent to a factor if the variable appears as an argument of the factor. Figure 2.4

shows the factor graph representation of a Bayesian network. Factor graphs represent
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2.1 Nested Effects Models(NEMs)

both the variables as nodes and the factors as nodes, with edges from each factor to the

variables in that factor’s domain, resulting in a bipartite graph. Factor graphs general-

ize probability mass functions as the joint likelihood function requires no normalization

and the factors need not be conditional probabilities. Each factor encodes a local con-

straint pertaining to a few variables. In the factor graph NEM a Φ that maximizes

A

B C

D

A

B

C

D

P (A)

P (B|A)

P (C|A)

P (D|B,C)

Figure 2.4: Bayesian network next to corresponding factor graph- A Bayesian
network (left) and the corresponding factor graph (right). The decomposition of the joint
probability, P(A,B,C,D) = P(D|B,C) P(B|A) P(C|A) P(A) is made explicit in the bi-
partite factor graph.

the posterior is found using max-sum message passing using all terms from Equation

2.19 in log space. The complete model of a factor graph NEM by Vaske et al.(2009)

contains three types of variables and three classes of factors. The variables include:

the continuous random observation of E-gene expression under a given intervention

and replicate experiment, the unknown hidden state of E-gene under a particular inter-

vention which is a discrete variable with domain {1, 0,−1} and the interaction modes

between two S-genes. The factors consists of: the Expression factors which model ex-

pression as a mixture of Gaussian distributions, the Interaction Factors which constrain

E-gene states to five possible types of interaction modes between two S-genes and the

Transitivity factors which constrain pair-wise interactions to form consistent triplets

of S-genes. During message passing, messages which are simply local belief potentials

associated with variable interactions are passed between all nodes(variables) in the
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2. NESTED EFFECTS MODELS

Figure 2.5: Structure of factor graph for network inference in Factor graph
NEMs - The factor graph consists of three classes of variables (circles) and three classes
of factors (squares). XeAr is a continuous observation of E-gene e’s expression under
intervention A and replicate r. YeA is the hidden state of E-gene e under intervention A,
and is a discrete variable with domain {1, 0,−1}. φAB is the interaction between two S-
genes A and B. In this figure red, green and white shading denotes activation, inhibition and
no interaction respectively. Expression Factors model expression as a mixture of Gaussian
distributions. Interaction Factors constrain E-gene states to interaction modes between two
S-genes. Transitivity Factors constrain pair-wise interactions to form consistent triangles.
The arrows labeled µ and µ

′
are messages encoding local belief potentials on φAB and are

propagated during factor graph inference. This figure is reproduced from (2).
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2.2 Network learning algorithms in NEMs

graph using two inference steps. In the first step, messages from observation nodes are

passed through the expression factors and hidden E-gene state variables, to calculate

all messages in a single upward pass . In the second step, messages are passed between

only the interaction variables and transitivity factors until convergence using Equation

2.19. The final S-gene network is derived by transitive reduction of all redundant edges

from Φ. Figure 2.5 reproduced from (2) gives an overview of the structure of factor

graph NEM with expression factors, interaction factors, and transitivity factors. For

acyclic factor graphs, the marginal, max-marginal and conditional probabilities of sin-

gle or multiple variables can be calculated exactly with the max-sum algorithms (63).

Message-passing algorithms have been shown to demonstrate excellent empirical results

in various practical problems even on graphs containing cycles such as feed-forward and

feed-back loops(64, 65, 66).

2.2 Network learning algorithms in NEMs

Recall in the Bayesian framework of Markowetz et al.(2005) (49), networks are scored by

posterior probabilities. By enumerating all network topologies, the maximum posterior

network is selected. The exhaustive search limits the method to small networks of up to

6 S-genes. Thus, exhaustive enumeration is infeasible even for medium-sized studies.

For large-scale screens, search heuristics are used to explore model space. Several

approaches to this problem have been proposed by Frölich et al. (2, 57, 58, 59), all of

which concentrate on small sub-models involving only pairs, triples, or quadruples of

nodes. The final S-gene graph is scored by combining the scores from these sub models.

2.2.1 Pairwise and triple search

The division into subgraphs can either be into all pairs or triples of nodes (57). In

the pairwise approach, for every pair of S-genes (A,B), we compute the Bayesian score

detailed in section 2.1 and select the maximum aposteriori (MAP) model MA,B ∈ {A→
B,B → A,A = B,A 6= B}. The advantage of this approach is the increase in speed

and the possibility to infer networks involving a very large number of nodes. However,

the reconstruction accuracy of networks based on the pairwise method is rather low

due to the pairwise independence assumption used in scoring the network which is

not true in real biological networks. To improve on this limitation the triple search
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2. NESTED EFFECTS MODELS

approach was introduced (57). This algorithm scores all 29 possible transitive edge

interactions between 3 S-genes, selects the MAP model and combines these models into

one final graph with the help of model averaging and thresholding. Even though all

triplet models are transitively closed, edgewise model averaging and thresholding are

not guaranteed to yield a transitively closed graph. An approximate transitive network

among the S-genes can be computed by using the approach of Jacob et al.(2008) (67).

2.2.2 Module networks

Another divide-and-conquer approach by Frölich et al.(2007) (58) enable the analysis

of larger networks with hundreds of S-genes. They divide the graph into smaller units

called modules, use exhaustive enumeration for each subgraph, and then re-assemble the

complete network. The division into subgraphs can either be into all pairs or triples of

nodes (57) or a data-dependent approach into coherent modules (58) using alternative

suitable clustering algorithms. The idea behind the latter is that S-genes with a similar

E-gene response profile should be close in the signaling pathway. These modules are

eventually further subdivided into smaller submodules until each submodule contains

only 4 S-genes at most. The exhaustive search approach is then applied independently

on these submodules and the optimal subnetworks are reconnected using pairwise node

testing as well as transitive closure until the topology for the total network is completed.

2.2.3 Greedy hill search

Greedy search heuristics (58, 59) starts from an initial graph usually with no edges

and then successively adds those edges, which increase the likelihood of the data most.

Alternatively, starting with an initial estimate of the linking of E-genes to S-genes from

the data, one can also perform an alternating MAP optimization of the S-genes graph

and the linking graph until convergence. As a final step a transitively closed graph

most similar to the original one can be estimated using transitive approximations(67).

2.3 Overview and differences on Nested effects models

Figure 2.6 organizes all the NEMs methods into a decision tree with respect to the fol-

lowing basic questions: Does the data include gene knockin or knockdown experiments
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or both? Does each experiment type involve single or multiple knockdown observa-

tions? If the former is true, does the model allow for changes over time? If yes, we call

it dynamic, else static. Does the dynamic model include cycles? If yes we call dynamic

cyclic NEMs, else dynamic non cyclic NEMs. Furthermore, does the dynamic cyclic

and non-cyclic NEMs include a discrete or continuous model and finally are the scoring

of these models based on a Marginal likelihood approach, Maximum likelihood method

or full Bayesian methodology? In the leaf nodes of the decision tree methods that in-

volve static models have been grouped together. Some branches in the tree are missing

corresponding to areas where methodology has not yet been established so far although

similar decisions can also be made. The three most left leaf nodes of Figure 2.6 high-

lights the main contribution of this dissertation. The dynamic NEMs extend NEMs to

infer both the network structure as well as the dynamics of the network. It goes further

to make inferences on feed back loops if they exist.
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Figure 2.6: A guide to the literature on NEMs - The methods discussed in this chap-
ter all fall into the right branch of node denoted as “single” corresponding to methodology
for single knockdown data. The next two chapters will deal with learning the dynamics
of a network, improve on accuracy of network reconstruction and making inferences on
cyclic networks. The main contribution of this dissertation is modeling the temporal inter-
play of molecular signaling and gene expression using dynamic nested effects models from
perturbation experiments.
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3

Gibbs sampling

In this chapter I review the concept involved in Gibbs sampling and its use in bioin-

formatics. I go further to motivate its use for parameter estimation in learning the

dynamics of a network.

3.1 Background on Gibbs sampling

Gibbs sampling also called alternating conditional sampling (68) is an algorithm to draw

samples from a joint distribution based on the full conditional distributions of all the

associated random variables. Though the idea originated from Hastings work in 1970

(69), it was first named Gibbs sampling by Geman and Geman (1984)(70) in a discussion

of applications to image processing. Later on several statisticians became interested

following the works of Tanner and Wong in 1987 (71) on use of iterative simulation

in data augmentation and Gelfand and Smith in 1990 (72) on the uses of the Gibbs

sampler in various Bayesian inference applications. Since then this algorithm has been

used to estimate both posterior distributions as well as likelihood estimation in several

domains. In particular it has been a popular alternative to Expectation-Maximization

(EM) (73) for finding maximum likelihood or maximum a posteriori (MAP) estimates

of parameters in statistical models, where the models depend on unobserved hidden

variables. EM is a numerical maximization procedure that climbs in the likelihood

space aiming to find the model parameters and the hidden variables that maximize

the likelihood function. In contrast Gibbs sampling provides the means to estimate

the target joint distribution of the hidden and known parameter space as a whole.
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Maximum aposterior(MAP) estimates are often used. Gibbs sampling suffers less from

the global and local maxima problems than the EM (74). This property makes it a

suitable algorithm for solving model based problems that occur in bioinformatics, where

the objective likelihood function is usually multimodal due to the high complexity of

the data. Gibbs sampling is well established for the motif finding problem in DNA

sequence analysis (75, 76, 77, 78). In this thesis we focus on its application to NEMs,

more specifically its use in the estimation of parameters in the dynamic model of NEMs.

In the following, we will first review the working mechanism of Gibbs sampling and then

focus on its role in dynamic NEMs.

3.2 Gibbs sampling

Gibbs sampling avoids the cumbersome and sometimes non-trivial mathematical cal-

culations of integrals in obtaining the joint distribution of a set of random variables, by

sampling directly from their full conditional distributions. Since the same mechanism

applies to both models for discrete data and models for continuous data, I use the terms

“distribution” and “density” interchangeably. Suppose that we want to draw samples

for the set of random variables y1, y2, ..., yK , but that the marginal distributions and

thus the joint distribution are too complex to directly sample from. Furthermore, as-

sume that the full conditional distributions p(yi|yj ; j 6= i) (for i = 1, ...,K) are available.

Starting from initial values y(0)
1 , y

(0)
2 , ..., y

(0)
K , the Gibbs sampler draws samples of the

random variables in the following order:

y
(t+1)
1 ∼ p(y1|y2 = y

(t)
2 , ..., yK = y

(t)
K )

y
(t+1)
2 ∼ p(y2|y1 = y

(t+1)
1 , y3 = y

(t)
3 , ..., yK = y

(t)
K )

...
...

y
(t+1)
i ∼ p(yi|y1 = y

(t+1)
1 , ..., yi−1 = y

(t+1)
i−1 , yi+1 = y

(t)
i+1, ..., yK = y

(t)
K )

...
...

y
(t+1)
K ∼ p(yK |y1 = y

(t+1)
1 , ..., yK−1 = y

(t+1)
K−1 ),

(3.1)

where t denotes the iterations. Geman and Geman (1984)(70) shows that as t→∞, the

distribution of (y(t)
1 , ..., y

(t)
K ) converges to that of (y1, ..., yK). Equivalently, as t → ∞,
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3.2 Gibbs sampling

the distribution of y(t)
i converges to p(yi) (for i = 1, ...,K).

3.2.1 The Markov chain property

The convergence of samples drawn by the Gibbs sampler relies on the fact that these

samples form Markov chains. i.e. ((y(1)
1 , ..., y

(1)
K ), .., (y(t)

1 , ..., y
(t)
K )) as well as (y(1)

i , ..., y
(t)
i )

are Markov chains, where (y(t)
1 , ..., y

(t)
K ) and y(t)

i are called the states of y1, y2, ..., yK and

yi respectively. The basic Markov chain property for a particular variable yi for example

is given as

P (y(t+1)
i |y(t)

i , ..., y
(0)
i ) = P (y(t+1)

i |y(t)
i ), (3.2)

which means that the future state of a random variable depends only on its current

state but not on on its past states. If

πb(t+ 1) = p(y(t+1)
i = b)

πa(t) = p(y(t)
i = a)

and p(a→ b) = p(y(t+1)
i = b|y(t)

i = a),

then

πb(t+ 1) = p(a→ b)πa(t). (3.3)

p(a → b) is known as the transition probability of going from state a to b for random

variables yi. The probability transition matrix P is obtained by enumerating all the

possible states for yi along the rows and the columns, and then filling up the entire

matrix with all the transition probabilities. Therefore, each row of P must sum to 1.

Hence Equation 3.3 generalizes to

π(t+ 1) = P(a→ b)π(t). (3.4)

It has been shown that if all the entries of P are greater than 0, an evolving Markov

chain will reach a stationary distribution π∗ after a sufficient amount of time (79), i.e.,

π∗ = Pπ∗. (3.5)

Casella and George(1992)(79) gives an intuitive proof that the stationary distribu-

tions of the Markov chains generated by Gibbs sampling are the joint distribution

p(y1, y2, ..., yK) and the marginal distributions p(yi), and that the probability transition

matrices of these Markov chains can be derived from the full conditional distributions.
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3.2.2 The Monte Carlo property

To estimate the joint(or marginal) distribution only those samples collected after con-

vergence can be used. The period which the samples are collected before convergence

is reached is known as the “burn-in period ” and the period after convergence during

which samples are collected is known as “sampling period ”. The samples collected in

the sampling period enable us to calculate the expectation of a function f(yi) over the

distribution p(yi). This is done by the Monte Carlo integration (80) given as :

Ep(yi)[f(yi)] =
∫
f(yi) · p(yi)dy ≈

1
T

T∑
t=1

f(y(t)
i ), (3.6)

where t indexes the iterations in the sampling period, and T is the total number of

samples collected. Thus, the expected value of yi is calculated as

Ep(yi)[yi] =
∫
yi · p(yi)dx ≈

1
T

T∑
t=1

y
(t)
i . (3.7)

Alternatively, a more accurate estimate of the expected value of yi provided by

Gelfand and Smith (1990) (72) using the Rao-Blackwell theorem (81)is given as:

Ep(yi)[yi] =
1
T

T∑
t=1

E
p(yi|y

(t)
1 ,...,y

(t)
i−1,y

(t)
i+1,...,y

(t)
K )

[yi]. (3.8)

Similarly, the posterior distribution itself can be approximated by

E[p(yi)] =
1
T

T∑
t=1

p(yi|y(t)
1 , ..., y

(t)
i−1, y

(t)
i+1, ..., y

(t)
K ). (3.9)

Hence, equation 3.6 can be generalized as:

Ep(yi)[f(yi)] =
1
T

T∑
t=1

E
p(yi|y

(t)
1 ,...,y

(t)
i−1,y

(t)
i+1,...,y

(t)
K )

[f(y(t)
i ]. (3.10)

The estimators obtained by Monte Carlo integration are unbiased estimators.

3.2.3 Variations of Gibbs sampling

Several different adaptations of Gibbs sampling exist. The primary purpose of these

variations is to reduce autocorrelation (see subsection 3.2.6) between samples.
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3.2.3.1 Blocked Gibbs sampler

This approach groups two or more variables together and samples from their joint

distribution conditioned on all other variables, rather than sampling from each one

individually. For example, in a hidden Markov model(82), a blocked Gibbs sampler

might sample from all the hidden variables making up the Markov chain in one go,

using the forward-backward algorithm (82), an inference algorithm which computes

the posterior marginals of all hidden state variables given a sequence of observations.

3.2.3.2 Collapsed Gibbs sampler

This second alternative, integrates out (marginalizes over) one or more variables when

sampling for some other variable. For example, imagine that a model consists of three

variables X, Y , and Z. A full Gibbs sampler would sample from p(X|Y,Z), then

p(Y |X,Z), then p(Z|X,Y ). A collapsed Gibbs sampler might replace the sampling

step for X with a sample taken from the marginal distribution p(X|Z), with variable

Y integrated out in this case. Alternatively, variable Y could be collapsed out entirely,

alternately sampling from p(X|Z) and p(Z|X) and not sampling over Y at all. The

distribution over a variable X that arises when collapsing a parent variable Y is called a

compound distribution; sampling from this distribution is generally tractable when Y is

the conjugate prior for X, particularly when X and Y are members of the exponential

family. For more information, see the article on compound distributions by Liu (83).

3.2.3.3 Gibbs sampler with ordered overrelaxation

In this variation, the Gibbs sampler samples a given odd number of candidate values

for y(t)
i at any given step and sorts them, along with the single value for y(t−1)

i . If y(t−1)
i

is the sth smallest in the sorted list then the y(t)
i is selected as the sth largest in the

sorted list. For more information, see Neal(1995)(84).

3.2.4 Extensions of Gibbs sampling

It is also possible to extend Gibbs sampling in various ways. For example, in the case

of variables whose conditional distribution is not easy to sample from, a single iteration

of slice sampling (85) or the Metropolis-Hastings algorithm (69, 86) can be used to

sample from the variables in question. It is also possible to incorporate variables that
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are not random variables, but whose value is deterministically computed from other

variables. Generalized linear models(87), e.g. logistic regression, can be incorporated

in this fashion.

3.2.5 Assessing convergence

A very pertinent issue in using Gibbs sampling is to determine when the procedure has

reached convergence. The number of iterations needed for the burn-in period varies

from case to case. Depending on how dependent the early samples are and how strong

the between and within sequence correlation is, the burn-in period might be long since

simulation inference is generally less precise from correlated draws than from the same

number of independent draws. Any serial correlation after the burn-in period is not

necessarily a problem since at convergence, the sample draws are identically distributed

and thus for simulation inference we usually neglect the order of simulation draws.

Other issues that affect convergence are bad starting parameter values and a multi-

modal target distribution with some of its probabilities close to zero leading to poor

mixing and local maxima problem. In general, using an optimal starting point close

to the center of the chain is expected to speed up convergence. Moreover there exist

formal approximations of calculating the effective number of independent draws needed

from a particular simulation sequence (68). This approach is possible only in Gibbs

samplers with multiple chains (68). Multiple chains starting at independent positions

of the random variable space could help improve on coverage of parameter space and

thus alleviate the problem of poorly mixed chains. In problems involving large number

of parameters where computer storage is a problem, thinning the sequences by keeping

every kth simulation draw from each sequence and discarding the rest is an option. If

the sequences have reached approximate convergence the thinned values can directly

be used for parameter inference. Thinning also reduces the autocorrelation (see next

subsection) within sequence samples.

3.2.6 Monitoring the convergence of each parameter of interest

We can never be sure if a chain in the Gibbs sampler has converged, but there are several

tests we can do, both visual and statistical, to see if the chain of each parameter of

interest(estimand) converged.
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3.2.6.1 Trace plots

One way to see if our chain has converged is to see how well our chain is mixing, or

moving around the parameter space. If our chain is taking a long time to move around

the parameter space, then it will take longer to converge. A traceplot is a plot of the

iteration number against the value of the draw of the estimand at each iteration. We

can see whether our chain gets stuck in certain areas of the parameter space, which

indicates bad mixing.

3.2.6.2 Autocorrelation

Another way to assess convergence is to assess the autocorrelations between the draws

of our Markov chain for each estimand. The lag k autocorrelation ρk is the correlation

between every draw and its kth lag

ρk =
∑n−k

i=1 (yi − ȳ)(yi+k − ȳ)∑n
i=1(yi − ȳ)2

(3.11)

We would expect the kth lag autocorrelation to be smaller as k increases (our 2nd and

50th draws should be less correlated than our 2nd and 4th draws). If autocorrelation

is still relatively high for higher values of k, this indicates high degree of correlation

between our draws and slow mixing.

3.2.6.3 Gelman and Rubin diagnostic

Gelman and Rubin diagnostics (88, 89) are based on analyzing multiple simulated

chains by comparing the variances within each chain and the variance between chains.

Large deviation between these two variances indicates nonconvergence. Suppose we

have simulated m parallel sequences, each of length n after discarding the first half of

the simulations. For each scalar estimand ω if we label the draws as ωij (i = 1, ..., n; j =

1, ...,m), then the between- and within-sequence variances B and W can be calculated

as:

B =
n

m− 1

m∑
j=1

(ω̄.j − ω̄..)2, where ω̄.j =
1
n

n∑
i=1

ωij , ω̄.. =
1
m

m∑
j=1

ω.j

W =
1
m

m∑
j=1

s2
j , where s2

j =
1

n− 1

n∑
i=1

(ωij − ω̄.j)2. (3.12)
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Note thatB cannot be calculated for only one sequence. We can estimate the var(ω|Data),

the marginal posterior variance of the estimand, by a weighted average of W and B ,

given as:

ˆvar+(ω|Data) =
n− 1
n

W +
1
n
B. (3.13)

The convergence of the Gibbs sampling is monitored by estimating the factor by which

the scale of current distribution for ω might be reduced if the simulations were continued

in the limit as n → ∞. This important scale reduction measure also known as the

Gelman and Rubin statistic is estimated as :

R̂ =

√
ˆvar+(ω|Data)

W
(3.14)

which reduces to 1 as n→∞. A high R̂ recommends that further simulations be made

to improve on the target distribution for the estimand. To investigate convergence

for the entire posterior distribution, the potential scale reduction factor is calculated

for all scalar estimands. Upper and lower confidence limits can also be estimated to

account for variability between chains. Approximate convergence is diagnosed when

the upper limit is close to 1. The confidence limits are based on the assumption

that the stationary distribution of the estimand under examination is normal. Hence

transforming the scalar estimands to approximately normal may be useful.

3.2.6.4 Geweke diagnostic

The Geweke diagnostic(90) takes two nonoverlapping parts (usually the first 0.1 and

last 0.5 proportions) of the Markov chain in the sampling period and compares the

means of both parts, using a difference of means test to see if the two parts of the

chain are from the same distribution (null hypothesis). The test statistic is a standard

Z-score with the standard errors adjusted for autocorrelation. A large Z-score suggests

possible convergence failure.

3.2.6.5 Raftery and Lewis diagnostic

Suppose we want to measure some posterior quantile of interest q and we want a

diagnostic test that evaluates the accuracy of the estimated percentiles. The Raftery-

Lewis test (91, 92) is designed for this purpose. If we define some acceptable tolerance
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r for q and a probability p of being within that tolerance, the Raftery and Lewis

diagnostic will calculate the number of iterations N and the number of burn-ins M

necessary to satisfy the specified conditions. This diagnostic was designed to test the

number of iterations and burn-in needed by first running and testing shorter pilot chain.

In practice, we can also just test our normal chain to see if it satisfies the results that

the diagnostic suggests. However this diagnostic measure will differ depending on which

quantile q you choose and estimates tend to be conservative in the sense that it will

suggest more iterations than necessary. Furthermore, it only tests marginal convergence

on each parameter but nevertheless, it often works well with simple models.

3.2.6.6 Heidelberg and Welch diagnostic

The Heidelberg and Welch diagnostic (93, 94) calculates a test statistic (based on the

Cramer-von Mises test statistic used for comparing two empirical distributions (95)

to accept or reject the null hypothesis that the Markov chain is from a stationary

distribution. The test is successively applied, firstly to the whole chain, then after

discarding the first 10%, 20%, ... of the chain until either the null hypothesis is accepted,

or 50% of the chain has been discarded. The latter outcome constitutes “failure” of the

stationarity test and indicates that a longer Gibbs run is needed. If the stationarity test

is passed, the number of iterations to keep and the number to discard are reported. More

on this diagnostic can be read from the work of Heidelberger and Welch (1983)(94).

3.3 Motivation of Gibbs sampling in modeling the dy-

namics of a cell decision process

So far we have summarized all the procedures and building blocks involved in gener-

ating a Gibbs sampler. However, an efficient Gibbs sampler requires the appropriate

specifications of the conditional distributions needed to generate the simulation sam-

ples. Of course this depends on the particular application and since this thesis is mainly

about network reconstruction and parameter estimation in networks using Nested Ef-

fect Models(NEMs), the last section of this chapter motivates the use of Gibbs sampling

in modeling the dynamics of a network or cell decision making within the framework

of Nested Effects Models. Recall that in NEMs we have the silencing genes or knocked

down genes called S-genes which form the core model and the effect genes, E-genes
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which correspond to the extended model. A complete model will be a network with

edges linking E-genes to S-genes as well as edges between S-genes. A priori we don’t

know the E gene positions or which E-genes are regulated by which S-genes. These

E-S-gene positions form unknown parameters in the model. In addition signaling net-

works are made up by collections of interacting signaling pathways which can activate

or inhibit gene expression in the cell. These can be represented as unknown discrete

edge weight parameters between the S-genes. Also the regulatory network of a bio-

logical process of an organism is highly dynamic with different sections of the network

actively used under different conditions or over a period of time(96). To understand the

network dynamics, a third set of parameters corresponding to unknown signal propa-

gation rates or time delays between the S-genes could be added to the model. Learning

both the network topology and the network dynamics involves estimating the joint

distribution of a given network model and its associated parameters. With so many

parameters involved especially if the network is large, the joint distribution would be

difficult to compute analytically. Gibbs sampling would be a useful alternative to esti-

mate the marginal distributions of all model parameters without necessarily estimating

the joint distribution. The next chapter shows the implementation of Gibbs sampling

for parameter estimation within the framework of Nested Effects Models.
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Dynamic Nested Effects Models

In the introduction, I motivated the need for inferring the dynamics of regulatory net-

works in a slow going process such as cell differentiation. In the next sections, I develop

a new Bayesian method known as the Dynamic Nested Effects models (DNEMs). This

approach is an extension to NEMs introduced in chapter 2 to infer the dynamics of a

given network which is an important limitation in NEMs. I first introduce a method

for estimating parameters in a given network based on perturbation time series data

using Gibbs sampling. I present an algorithm to infer signal propagation rates in a

given network with particular application to transcriptional signaling in stem cell dif-

ferentiation.

4.1 Dynamic Nested Effects Models(DNEMs)

Time delays between signaling events cannot be observed directly. They need to be

estimated. In practice we observe signal propagation times from some intervention

say S1 to some target genes read outs(Figure 4.1). We don’t observe the time delays

between S1 and S2. We would like to estimate the rate of signal propagation from

S1 and S2. In general, the challenge is that given the hierarchy of signaling steps we

want to estimate the signal propagation rates for all edges given interventional data.

Of course in order to do so we first need to estimate the hierarchy of signaling genes,

identify which gene expression profiles are connected to which steps in the hierarchy

and finally estimate all the signal propagation rates. DNEMs address these problems.
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4. DYNAMIC NESTED EFFECTS MODELS

Figure 4.1: Time delays in a given network - Time delays between signaling events
e.g. delay from S1 to S2 cannot be observed directly. They need to be estimated. We only
observe the time after intervention at say S2 to some readout gene expression.

Figure 4.2 illustrates a simplified and easy to understand solution to the problem

which is basically the idea of DNEMs. The graph on the left of the tables is a transitively

closed graph on 3 Signaling genes(S1, S2, S3). The tables give the time series binary

data of effects for all target genes (E1, E2, E3) after intervention on all signaling genes.

A one indicates the signal has already reached the target gene by time tj , while zero

indicates that the expression of this gene has not yet changed or no interventional effect

has occurred. Looking at the last time point t5 one sees the accumulation of effects for

all target genes forming a nested structure of effects which is in conformity with the

hierarchy of the graph topology. Signals starting in S1 reach E2 one time unit after

they have arrived at E1 suggesting that signal propagation from S1 to S2 takes one unit

of time. The same argument using the data from perturbation of S2 suggests that it

takes two time units to propagate from S2 to S3. Consequently, going from S1 to S3 via

S2 takes 3 time units. However, the time delay from perturbation of S1 to observing

effects in E3 is only 1 time unit (marked in blue). This suggests the existence of a direct

signal flow from S1 to S3. Evidence comes from the two blue ones. In case they were

zeros, the time delay between S1 and S3 would have been the sum of times spent when

going via S2. In this case, there would be no evidence for a shortcut pathway and we

would decide on the more parsimonious graph. Furthermore, the existence of a direct

path combining with that of the indirect path gives evidence of the presence a Feed-

Forward Loop. Thus we can use estimated time delays to demonstrate the existence of

FFLs. A real world analysis is more difficult than the toy example. Signal propagation
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4.1 Dynamic Nested Effects Models(DNEMs)

is a stochastic process, measurements are prone to noise, and we do not know which

E-genes are controlled by which S-genes. These sources of uncertainty are addressed

by DNEMs.

Figure 4.2: Idea of DNEMs in an elementary example - Shown is the hierarchical
structure of a network and discrete time series data for three E-genes. A one indicates that
a signal has reached the E-gene, while a zero indicates that the expression of this gene has
not yet changed. Note, that the graph topology is consistent with the nested structure of
ones in the final time point t5, shown in red.

We model signaling as a stochastic process with exponentially distributed time de-

lays. Given a hierarchy of signaling steps, DNEM assumes exponential time delays

between signaling steps. The rate constants of the exponential distributions differ from

case to case and are the main parameters of the model. All edges of a transitively closed

network are associated with an individual rate constant, whose posterior distribution is

inferred using Gibbs sampling. Since there are possibly several decision making steps

between and input signaling gene and an output signal we deal with convolutions of

exponentials. Furthermore, we assume that if a S-gene has multiple incoming edges, the

first blocked signal blocks activation. In other words we assume underlying AND gates

for the S-gene interactions. As explained in the introduction of this thesis, molecular

signaling in the cytoplasm occurs at high rates, direct signal propagation via transcrip-

tion and translation at intermediate rates, and secondary effects at low rates. The

joint posterior of the rate constants will be used to analyze the interplay of signaling

networks and gene expression. It is also used to unravel molecular signal flow in cells.
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4.1.1 DNEM algorithm

The input of a DNEM consists of (a) a set of microarray time series that measure

the response of cells to molecular perturbations, and (b) a transitively closed directed

acyclic graph on vertex set S representing a hypothetical hierarchical structure of up-

stream/downstream relations. This graph can be derived from any of the methods

outlined in chapter 2 or from literature. The output consists of (a) the joint posterior

distribution of rate constants describing the dynamics of signal propagation, and (b) a

not necessarily transitive subgraph of the input graph that describes signal flow rather

than upstream/downstream relation.

4.1.1.1 Model parameters

Let D(i, k, l, s) denote the expression measurement of Ek in time point ts of the l’th

replication of a time series recorded after perturbation of Si. Following Markowetz

et al.(2007) (57), we assume that the data is binary, indicating whether interruption

of signal flow was observed at a particular E-gene at a particular time point. A zero

encodes the wild type expression level of a gene, while one encodes that the expression

of this E-gene changed due to perturbation induced signal propagation. Later on we

consider the case of continuous read outs. We assume that the time spent for propagat-

ing a signal from node Si to node Sj is exponentially distributed with a rate constant

kij . Note that the expected time spent in this step of signal transduction is 1/kij . Fast

processes are associated with high rate constants, while slow processes are associated

with small rate constants. Exponential distributions are widely used to model tem-

poral processes in complex systems (97, 98). Recall that we do not observe the time

spent for signal propagation between S-genes directly. Instead, we observe the time

delay between a perturbation of an S-gene and the occurrence of downstream effects in

E-genes. Following Markowetz et al. (57) we introduce parameters Θ = (θ1, . . . , θN ) to

link E- to S-genes. If θk = i, then Ek is linked to Si. Moreover, we assume that every

E-gene is linked to a single S-gene. The set of E-genes attached to the same S-gene is a

regulatory module under the common regulatory control of the S-gene. The module of

E-genes attached to Si is denoted by Ei. Finally, we introduce additional rate constants

kiE that represent the time delay between activation of Si and regulation of its target

module Ei Figure 4.2. A single common rate is used for all E-genes in the module.
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4.1 Dynamic Nested Effects Models(DNEMs)

Similar to ideas from Tresch and Markowetz (59), we add an additional node denoted

by
⊕

, which is not connected to any of the S-genes. However, E-genes can be linked

to this node, if they do not fit in any of the Ei. The
⊕

-node implicitly selects E-genes.

Genes linked to
⊕

are excluded from the model. Figure 4.3 gives a complete model

parameterization for 3 S-genes with all E-gene position and rate parameters.

θ4

⊕
oo S1

k13
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k12

  @
@@

@@
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k1ε // θ1

S2

k23~~}}
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}

k2ε // θ2

S3 k3ε

// θ3

Figure 4.3: Parameterization of DNEM- There are two sets of parameters involved
in the DNEM. The E-gene positions(θ) and the rate parameters (k) for signal propagations

We denote the complete set of rate constants including rates between S-genes and

rates between S- and E-genes by K. A priori, we do not know which E-genes fall

into which modules. The joint posterior distribution of Θ and K will be inferred

from the data. While the θk are discrete parameters by nature, rate constants are

usually modelled as continuous parameters. However, for the sake of computational

efficiency, we confine the rates to a discrete set of values denoted by (κ0, . . . κT ). If the

data includes time points (t1, . . . , tT ), we choose (κ0, 1/t1, . . . , 1/tT ), where κ0 is set

to a high value (i.e. 1,000) that represents the very fast signal transduction through

post translational protein modification like phosphorylation. Overall, we have a set of

discrete parameters only (K,Θ).

4.1.1.2 Prior distributions for model parameters

Assuming independent prior distributions for K and Θ, Bayes’s theorem yields

P (Θ,K|D) =
P (D|K,Θ)P (K)P (Θ)

P (D).

The prior distribution P (Θ) can be chosen to incorporate prior knowledge on the

interactions of S- with E-genes. Such information might be derived from ChIP data or

regulatory motif analysis. The prior provides an interface, through which the model
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can be linked to different biological data types in integrative modeling approaches.

Here we use the prior for calibrating E-gene selection. We set p(θk =
⊕

) to ∆, while

distributing the remaining weight of 1−∆ uniformly on the values 1, . . . , n.

Similarly, the prior distribution P (K) yields an interface for incorporating biological

knowledge. If one knows that S1 and S2 fall into the same molecular signaling pathway,

one can set P (k12 = κ0) to one, because signaling will operate on a high rate. In this

thesis we exploit the fact that transcription takes hours and set P (kiE = κ0) to zero,

while assuming a uniform prior for the remaining values. It is also possible to model

the rate parameter as a continuous variable. In this setting, the unknown time delays

are assumed to follow an exponential distribution

Tu ∼ ku exp(−kuτ)

and we assume that the rate constants follow a conjugate gamma prior distribution

ku ∼ Gamma(ku, α
′
u, β

′
u) =

β
′
u
α
′
u

Γ(α′u)
kα
′
u−1

u exp(−kuβ
′
u)

with α
′
u > 0 shape and β

′
u > 0 scale parameters respectively. Assuming independent

priors for the time delays, the posterior will again be gamma distributed and the density

of signal propagation between and input and output signal will be some form of convo-

lution of gamma distributions. Closed form expressions for convolution of independent

gamma random variables have already been established (99).

4.1.1.3 Probability density of signal propagation between input and output
signal

Let us first consider a fixed linear path g in Φ, which connects the S-gene Si with the

E-gene Ek:

Si
k1−→ Sj1 · · ·

kq−1−−−→ Sjq−1

kq−→ Ek,

where for simplicity of notation we reduce the double indices of rate constants to single

indices and write k1, k2, . . . , kq to denote the rate constants. We are interested in the

time needed for propagating a signal from Si down the path to Ek. More precisely,

we want to calculate the probability, that the signal has reached Ek before some fixed

time point t∗. If Zg is the sum of q independent, and exponentially distributed random

variables with rate constants k1, . . . , kq, then this probability equals P (Zg < t∗). The
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density function of Zg is given by the convolution of independent exponential distribu-

tions

Ψ(t)g =
∫ ∞

0
· · ·
∫ ∞

0
δ

(
t−

q∑
u=1

τu

)
q∏

u=1

ψu(τu) dτ1 . . . dτq,

where ψu(τ) = ku exp(−kuτ) is the density of an exponential with rate ku. Laplace-

transformation yields a closed form for the cumulative distribution function of Zg

Fg(t) =
q∑
b=1

∏
a6=b

{
ka

ka − kb

}
[1− exp(−tkb)] . (4.1)

See Appendix for a complete proof. Note that the right hand side is not defined if

two or more of the ku are identical. However, as right and left limits exist and are

identical, we can evaluate the probability by adding tiny distinct jitter values to the

ku. However an exact function for the convolution of exponentials for a general Ku has

been established by Jasiulewicz and Kordecki (2003)(100).

4.1.1.4 Probability density of signal times generalized to phase-type dis-
tributions

It is also possible to consider Equation 4.1 as a special case of the phase-type distri-

bution. The phase-type distribution is the time to absorption of a finite state Markov

process. If we have a u+ 1 state process, where the first u states are transient and the

state u + 1 is an absorbing state, then the distribution of time from the start of the

process until the absorbing state is reached is phase-type distributed. In the context of

DNEM, we could consider signal flow between S-genes in a particular path as transient

states and the signal flow from the last but one S-gene to the target E-gene as the

absorption state. If we assume exponential time delays between edges, this becomes

the hypoexponential(Hypo) (101) if we start signal propagation from an input S-gene

and move skip-free from S-genei to S-genei+1 with rate ki until S-geneu transitions with

rate ku to the target E-geneu+1. This can be written in the form of a subgenerator

matrix,

K =



−k1 k1 0 · · · 0 0

0 −k2 k2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0
. . . −ku−2 ku−2 0

0 0 · · · 0 −ku−1 ku−1

0 0 · · · 0 0 ku


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Keeping our notation consistent we denote the above matrix K≡ K(k1, . . . , ku). If the

probability of starting in each of the u states is α = (1, 0, . . . , 0) thenHypo(k1, . . . , ku) =

PH(α,K). This distribution can be characterized as follows:

A random variable X ∼ Hypo(k1, . . . , ku) has cumulative density function (cdf)

F (x) = 1−α expxK 1

where 1 is a column vector of ones of size u and expA is the matrix exponential of A.

When ki 6= kj for all i 6= j, the cdf becomes Equation 4.1 with moment generating

function given as:

E(Xn) = (−1)nn!αK−n1

The characterization of phase-type distributions in this form makes it easier to estimate

the distributions of certain features of stochastic networks such as the distribution of

length of shortest paths between nodes (102).

4.1.1.5 Probability density function when alternative paths do not share
edges

In the general case a signal can be propagated from Si to Ek via multiple alternative

paths. In this case we assume that the fastest path determines the time delay for

downstream effects to be seen. We enumerate all linear paths connecting Si to Ek. We

introduce an algorithm on how we enumerate all paths in a directed graph between

two nodes in the next chapter. For each path we construct a random variable Zu as

described above. If the alternative paths do not share edges(independent signals), the

probability that the signal has arrived at Ek before time t∗ via at least one of the paths

is given by

PSi→Ek
(t∗) = P (W = min(Z1, ..., Zn) ≤ z)

= 1− P (
n⋂
u=1

(Zu > z)), since all Zu have the same distribution.

= 1− P (Z1 > z) · · ·P (Zn > z)

= 1− [(1− P (Z1 ≤ z)) · · · (1− P (Zn ≤ z))]

= 1−
∏
u

(1− Fu(t∗)) (4.2)
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4.1.1.6 Probability density function when alternative paths share edges

Equation (4.1) gives a closed formula for the delay distribution for the signaling along a

linear path. However there is no closed expression describing the delay distribution for

the signaling from an S-gene to an E-gene in a directed acyclic graph. Therefore we need

to resort to sampling techniques. We illustrate this with a simple example. The figure

below correspond to a signaling graph with 5 S-genes ( S1, ..., S5) with exponentially

distributed time delays with rate constants (k1, ..., k5) on the edges. Notice the edge

between S4 and S5 occur in the two alternating paths between S1 and S5. We want to

estimate the signal propagation density from say S1 to S5 which is a minimum of two

dependent random variables.

S1

k2

  A
AA

AA
AA

k1

~~}}
}}

}}
}}

S2

k3   A
AA

AA
AA

A S3

k4~~}}
}}

}}
}

S4

k5
��
S5

Figure 4.4: Graph of 5 S-genes with alternative paths sharing an edge- The
signal propagation rates from exponential time delays are represented on the edges.

The procedure is as follows: For a fixed time lag, τ , we draw independent identically

distributed exponentials with rate parameters (k1, ..., k5). Usually about 10000 samples.

If we define the random variables, V1 = Sum of exponentials corresponding to edges

with rates constants (k1, k3, k5) and V2 = Sum of exponentials corresponding to edges

with rates constants (k2, k4, k5). Then the minimum of (V1, V2) is calculated for the

10000 independent draws. The cumulative density function for the distribution for

Tmin(V1,V2) can be estimated using the updated simulated draws. This algorithm can

be generalized for any given network with signaling rate constants on the edges. In

practice this approach will make our algorithm very time consuming and unrealistic

due to the long running times of the Gibbs sampler. However we will show from

both simulated and real studies that we can generally approximate the distribution for
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dependent signals with that of independent signals without much loss of information.

This approximation is based on the assumption that the interactions among merging

pathways can be neglected similar to the mean-field approximation from many body

theories in statistical physics. Equation 4.2 becomes

PSi→Ek
(t∗) ≈ 1−

∏
u

(1− Fu(t∗)) (4.3)

4.1.1.7 Sensitivity analysis between independent and dependent signals

Let us consider the graph in Figure 4.4 as our signaling network with rate constants

(k1 = 1, k2 = 1/2, k3 = 1/3, k4 = 1/4, k5 = κ), κ ∈ {5, 1, 0.8, 0.7, 0.6, 0.5, 0.3, 0.2, 0.1}.
Simulated distributions for signaling between nodes S1 and S5 in the graph under inde-

pendent and dependent alternating paths are compared by the QQ-plots in Figure 4.5.

We observe most of the points lie on the line through the origin for larger rate constants

indicating that the underlying distributions are similar. The offset between the line and

the points is negligible for smaller data points and gradually increases towards the tail

with the largest offset between the distributions for the paths between S1 and S5 for

rate k5 = 0.1. The plots demonstrate that using Equation 4.3 for the cdf for signaling

between dependent paths underestimates the time delays in general.

4.1.1.8 Marginal likelihood for discrete models

Equations (4.1) and (4.2) describe the stochastic nature of signal propagation in the

cell. Before calculating the likelihood, we need to consider a second source of stochas-

ticity, namely measurement error. Following Markowetz et al.(2007) (57), we denote

the probabilities for false positive and false negative signals by α and β respectively

(Table 2.1). Assuming conditional independence, the likelihood factorizes into

P (D|K,Θ) =
∏
D=1

PSi→Ek
(ts)(1− β) + (1− PSi→Ek

(ts))α

×
∏
D=0

PSi→Ek
(ts)β + (1− PSi→Ek

(ts))(1− α), (4.4)

where the first product is over all data points, for which we observe a downstream effect,

and the second product over those for which we do not. Observations from E-genes

linked to the
⊕

-node generate neutral likelihood values of 0.5 independent of all other

parameters.
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Figure 4.5: QQ-plots comparing distributions of signal times between two nodes
S1 and S5 in the graph in Figure 4.4 under dependent and independent assump-
tions. - The offset between the line and the points is negligible for smaller data points and
gradually increases towards the tail. The QQ-plot for the distributions between S1 and S5

show an underestimation of time delays.
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4.1.1.9 Marginal likelihood for continuous models

NEMs in (59, 103) circumvent the use of α and β in the likelihood by using the in-

formation on the probability of a gene being differentially expressed. With respect to

microarray data with replicates at time points these probabilities can be easily esti-

mated using linear models(104). Assuming we have these probabilities Equation 4.4

becomes

P (D|K,Θ) =
∏
D

PSi→Ek
(ts)pikls + (1− PSi→Ek

(ts))(1− pikls), (4.5)

where pikls is the probability of gene Ek being differentially expressed in time point

ts for experiment replication l after perturbation Si. Equation 4.5 is just the product

over all data points.

4.1.1.10 Discrete Gibbs sampling

With N E-genes, n S-genes and L edges in the input graph, the model comprises

N +n+L discrete parameters. For simplicity of notation, we reduce the double indices

of rate constants to single indices such that the joint posterior is written

P (k1, . . . , kL+n, θ1, . . . θN |D).

We initialize the parameters with random values from their domains. Then we itera-

tively cycle through all rate constants updating them by sampling from the conditional

posterior distributions

p(ki|K− {ki},Θ, D).

With only discrete parameters, updating is straight forward: We calculate all values

p(ki = κj) p(D|K− ki,Θ, ki = κj),

normalize them to sum up to one, and draw a new value for ki from this distribution.

The iteration is completed by similarly updating all θk. We sample 10,000 times from

the joint posterior distribution of parameters, discard the first 1,000 draws as burn in

time, and summarize the remaining ones for inference of signal propagation. Choosing

suitable values for the tuning parameters α and β protects the conditional posterior

distributions from singularity, and ensures good mixing properties of the Gibbs sampler.
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4.1.1.11 Inference of E-gene positions

Recall that we do not know which E-genes are controlled by which S-genes. In order to

update the rate parameters in the Gibbs sampler, we first need to attach the E-genes

to their rightful positions. One way is to estimate these positions from the last time

point corresponding to the accumulation of effects representing the nested structure in

the data and then use this as fix parameters in the Gibbs. In this situation we only

update the rate parameters making our algorithm faster. Given a silencing scheme Φ,

the posterior probability for an edge between and S-gene Sj and an E-gene Ei is given

by

Pα,β(θi = j|Φ, DT ) =
Pα,β(θi = j)
P (DT )

l∏
k=1

pα,β(eik|Φ, θi = j) (4.6)

where DT is the data matrix at the last time point T . The prior Pα,β(θi = j) can be

non-informative such as a uniform distribution although in general, the prior could take

any other form as long as it is the same form as in the computation of the marginal

likelihood in Equation 2.6. The E-genes attached with high probability to an S-gene

are interpreted as a regulatory module, which is under the common control of the S-

gene. Alternatively, we can sample the E-gene positions directly from their conditional

posterior distributions inside the Gibbs Sampler and use this sample to update the rate

parameters. For the purpose of illustration we focus only on a cascade with two rate

parameters k1, k2 and 1 E-gene (Figure 4.6).

We initialize all parameters randomly, and at each iteration say t′, we update all the

E-gene positions as follows. For a given E-gene say Ek we attach to S1 and calculate

the posterior probability for attaching the E-gene to S1 given the model. Similarly we

attach it to S2, S3 and
⊕

respectively to get the complete distribution for attaching Ek

to an S-gene or not. We normalize the distribution to sum to one and draw a E-gene

position. Once we have a new set of E-gene positions we then update all Ks in a similar

manner by sampling from their conditional posterior distributions. This completes one

iteration step. After several iterations, inference on E-gene positions can be derived

from their posterior samples using MAP.
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Figure 4.6: Updating E-gene positions inside Gibbs sampling- For a given E-gene
say Ek we attach to S1 and calculate the posterior probability for attaching the E-gene
to S1 given the model. Similarly we attach it to S2, S3 and

⊕
respectively to get the

complete distribution for attaching Ek to an S-gene. We normalize the distribution to sum
to one and sample a new E-gene position.

4.1.1.12 Inference of signal flow

Under the natural assumption that perturbation effects propagate down the signaling

network to all descendants of a perturbed gene, the nested structure of downstream

effects resolves the network only up to its transitivity class. Network topologies with

identical transitive closures produce the same nesting of downstream effects and, hence,

can not be distinguished. Temporal data hold the potential of further resolving these

transitivity classes. DNEM starts from a transitively closed network. Posterior distri-

butions are calculated across a discrete set of rate constants including a very small rate

constant κT+1. As explained above, kij=κT+1 reflects network constellation, in which

no signal is flowing through the edge from Si to Sj . Note that if a rate constant is

set to κT+1, the corresponding edge is not contributing to the likelihood according to

Equation 4.2. The edge is effectively excluded from the model. Hence, in addition to

estimating average time delays the Gibbs sampling procedure facilitates network re-

finement. If the posterior probability of the edge from Si to Sj is P [kij=κT+1|D] > p∗,

p∗ > 0.5, we exclude the edge from the network. Of course the choice of p∗ is subjective.
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4.1.1.13 Model comparisons using DNEMs

Due to the long running times of the Gibbs sampler it is not possible to reconstruct the

network topology from scratch as was done for standard NEMs in (57, 59, 103) through

exhaustive search or greedy hill climbing. Nevertheless, we can discriminate between

small numbers of candidate topologies using posterior odds for model comparison. Let

us assume we have two hypothetical network topologies Φ1 and Φ2. The ratio of their

posterior probabilities equals

P (Φ1|D)
P (Φ2|D)

=
P (Φ1)
P (Φ2)

× Bayes factor(Φ1; Φ2) (4.7)

where Bayes factor(Φ1; Φ2) =
P (D|Φ1)
P (D|Φ2)

(4.8)

=
∫ ∫

P (Θ1,K1|Φ1)P (D|Θ1,K1,Φ1)dΘ1 dK1∫ ∫
P (Θ2,K2|Φ2)P (D|Θ2,K2Φ2)dΘ2 dK2

(4.9)

with Θi and Ki representing the parameters in model Φi. The Bayesian model compar-

ison does not depend on specific parameter settings. Instead, it considers the probabil-

ity of the model considering all possible parameter values. An advantage of using the

Bayes factor is that it guards against overfitting by automatically, and quite naturally,

including a penalty for including too many degrees of freedom. The integrals in the

Bayes factor can be approximated by averages along the Gibbs sampling trajectories.

In practice, this is not feasible due to the numerical representation of the tiny likeli-

hood values. We therefore look at another approximate approach which measures the

distance of data to each of the models. In this situation, even if none (or all) of the

models fit the data, it can be informative to compare their relative fit. Here, we use

the deviance information criterion (DIC) of Spiegelhalter et al.(2002) (105) given as:

DIC = V̂ pred
avg (D) = 2V̂avg(D)− V(Θ̂,K̂)(D)

with V(Θ̂,K̂)(D) defined as −2logp(D|Θ̂, K̂) corresponding to the deviance which gives

a summary of the discrepancy between the data and model and depends only on D.

One can use MAP estimates for (Θ̂, K̂).

V̂avg(D) =
1
L

L∑
l=1

V (D, (Θl,K l))

averages the discrepancy V (D, (Θ,K)) over the posterior distribution. The estimated

average discrepancy is a better summary for model error than the deviance V(Θ̂,K̂)(D).
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In practice, the model Φi with the lowest DIC has the lowest estimated expected pre-

dictive error.

4.1.2 Speed up by stochasticity effects in signaling networks

Equation 4.2 is about calculating the distribution of a minimum of independent random

variables Y = min(X1, ..., Xn), n finite. In general the expectation of this minimum is

smaller than the minimum of expectations of the Xis since

E(Y ) = E(min(X1, ..., Xn)) ≤ E(Xi), for all i

≤ min(E(X1), ..., E(Xn)). (4.10)

Equation 4.2 describes the stochastic nature of signal propagation in the cell. From

Figure 4.5 and based on Equation 4.2 the average overall time delay between Si and

Ek is smaller than the average time delay associated with the fastest path connecting

them because, with some positive probability, the in average slower process will be the

actually faster one. We call this effect “speed up by stochasticity”. This speed

up by stochasticity effect is a consequence of the stochastic nature of time delays. We

demonstrate this on the same example in Figure 4.4. We assume distinct signaling

rates in this case between the edges as before but a fixed rate for k5 = 1/5. The box

plots in Figure 4.7 show that the expected minimum time delay between S1 and S5

(E(Y )) under both independent and dependent signaling is smaller than the minimum

of the expected time delays E(S1S2S4S5) and E(S1S3S4S5) as expected. The difference

between E(Y ) and min(E(Xi)) is biggest for independent Xi. It becomes somewhat

less pronounced for dependent Xi. Hence the approximation in Equation 4.3 leads to an

underestimation of time delays. Thats a systematic bias. If we use a model in which we

estimate time delays instead of rate constants we do not have this problem. Then we can

just use the minimum of estimated time delays. There is no speed up by stochasticity in

this case. This will most likely lead to an overestimation of time delays, if the processes

in reality have a stochastic nature. We investigate both scenarios using real application

in the next section. We carryout a first test of our algorithm in simulation scenarios

where data is artificially generated according to the model assumption. Finally we

apply the DNEM algorithm to a data set on molecular mechanisms of self-renewal in

murine embryonic stem cells to investigate the dynamics between 6 ESC transcription

factors during early stage differentiation.
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Figure 4.7: Speed up by stochasticity effect of DNEMs - Speed up by stochas-
ticity effect is a consequence of the stochastic nature of time delays. Box plots show the
distributions of time under independent and dependent signaling between paths S1S2S4S5

and S1S3S4S5 and the distribution of minimum time between S1 and S5 denoted as Yind

and Ydep for the independent and dependent conditions. The average overall time delay
between S1 and S5 is smaller than the average time delay associated with the faster path
connecting these nodes under both dependent(red) and independent(yellow) signaling.
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4.2 Simulation results

A first test of validity of a complex data model is to test its performance in simula-

tion scenarios where data is artificially generated according to the model assumption.

Here, we show that our model recovers time delays in noisy data and detects transitive

shortcut edges even in situations where time delay differences are subtle.

4.2.1 Data generation

We evaluate our method in the context of simulated data from the network shown in

Figure 4.8. The topology of this network is identical to the one we derived from our

analysis of early stem cell differentiation using static NEM. Note that the network is

transitively closed. Time delays for signal propagation between S- and E-genes are

set to 1. For signal propagation between S-genes we distinguish between transitive

and non-transitive edges. While time delays along non-transitive edges are set to 3

in all simulation experiments, the time delays used for transitive edges varies across

experiments, including the use of very high time delays (100) to simulate a network

with virtually no signal flow through transitive edges. For all E-gene positions the

expected data pattern across time points and perturbation experiments is calculated

and artificial E-gene data is simulated by adding independent binary noise to these

patterns using a range of different noise levels: α = 0.0, 0.1, 0.2, 0.3 and β = 1/2α. We

simulate data for 20 E-genes per S-gene and one measurement per time point, resulting

in a data array of 840 binary values. DNEM is run on this data using two independent

runs of 5,000 iterations, from which the first 500 are discarded as burn in time, leaving

9,000 posterior samples per simulation. For calculating the likelihood, we set the tuning

parameters α and β at 0.2 and 0.1, respectively. Note that with one exception, these

values are different from those used in data generation.

4.2.2 A sparse network

In a first simulation we examine a sparse network without shortcut pathways. We gen-

erated data from the reference network in the absence of any transitive edge. However,

when running DNEM on this data we included the transitive edges in order to validate

that DNEM can accurately detect that the edges did not exist.
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Figure 4.8: The transitive network used for simulation - The topology of this
network is identical to the one we derived from our analysis of early stem cell differentiation
using static NEM.

Figure 4.9(A-D) shows estimated average time delays (reciprocal rate constants)

along the Gibbs sampling trajectories in the form of gray-scale intensity profiles. Light

gray indicates high marginal posterior probability, while dark gray stands for low

marginal posterior probabilities. The original time delays used in data generation are

shown to the left of the heatmap, where an “x” indicates that the edge was excluded

during data generation. We observe that posterior modes are generally close to true

values. For high noise levels, the marginal posterior distribution are more disperse,

nevertheless posterior modes are still close to their target values. More importantly,

for the transitive edges that did not exist in data generation, we observe posterior dis-

tributions that concentrate weight on the “x” state. In this way, they hardly contribute

to the likelihood, which is driven by shortest paths from S- to E-genes. Non-existing

transitive edges (marked in red) automatically exit the model and do not interfere

with the estimation of average time delays for the remaining edges. Using the cutoff

P (ki = κT+1) > 0.6 for the exclusion of an edge, we correctly exclude all non-existing

edges for all noise levels.

59



4. DYNAMIC NESTED EFFECTS MODELS

Figure 4.9: Heat map of the posterior distribution of average time delays - Rows
correspond to edges of the network including those between S- and E -genes, while columns
refer to average time delays. Marginal posterior probabilities are gray-scale colored with
light gray indicating high and dark gray indicating low probability. Edges marked in red
correspond to the ones that are excluded by our method and those in green correspond
to transitive edges that were not excluded. The simulated time delays are shown on the
y-axis to the left of the heat map. z represents differences in time delays between inner
paths and shortcut edges, with z = 1 corresponding to the most subtle difference possible
for discrete data.
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4.2.3 Dense networks and detection of shortcut pathways

In order to evaluate the ability of our model to detect transitive edges, we run a series

of simulation experiments in which we include all transitive edges of the reference

network. We set the time delays for the transitive edges to the expected time delay of

corresponding inner pathways and subtracted the value z, where z is varying between

3 and 1. This yields a series of simulations with increasingly subtle differences in

time delays between inner paths and shortcut edges, with z = 1 representing the most

subtle differences possible for discrete data. Figure 4.9(A-D) shows the heatmaps of

marginal posterior probabilities for average time delays. Again, most estimated average

time delays are close to their target values, with a tendency to underestimate non-

transitive edges and overestimate transitive edges. Moreover, the posterior distributions

for transitive edges are more disperse. For low noise simulations (α = 0.0, 0.1) and clear

shortcuts (z= 2,3), the posterior distribution places hardly any weight on “x”. Hence

all shortcut edges are clearly and correctly identified by our model. In high noise

scenarios and for z = 1 posterior weight can accumulate in the edge exclusion state

“x”. However, using a cutoff of 0.6 leads to only four missed shortcut edges in the

whole set of simulation experiments. In the next section, we further investigate the

stochasticity effect in a real application.

4.3 Application to cell differentiation in embryonic stem

cells

We apply the DNEM approach to a data set on molecular mechanisms of self-renewal

in murine embryonic stem cells. Ivanova et al.(2006) (17) used RNA interference tech-

niques to downregulate six gene products associated with self-renewal regulatory func-

tion, namely Nanog, Oct4, Sox2, Esrrb, Tbx3 and Tcl1. They combined perturbation

of these gene products with time series of microarray gene expression measurements.

Mouse embryonic stem cells (ESC) were grown in the presence of the leukemia in-

hibitory factor LIF thus retaining their undifferentiated self-renewing state (positive

controls). Cell differentiation associated changes in gene expression were detected by

inducing differentiation of stem cells through removing LIF and adding retinoic acid

(RA) (negative controls). Finally, RNAi based silencing of the six regulatory genes

was used in (LIF+, RA-) cell cultures to investigate, whether silencing of these genes
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partially activates cell differentiation mechanisms. Time series at 6-7 time points in

one-day intervals were taken for the positive control culture (LIF+, RA-), the negative

control culture (LIF-, RA+), and the six RNAi assays. In the DNEM framework the

six regulatory gene products Nanog, Oct4, Sox2, Esrrb, Tbx3 and Tcl1 are S-genes,

while all genes showing significant expression changes in response to LIF depletion are

used as E-genes. Downstream effects of interest are those, where the expression of an

E-gene is pushed from its level in self-renewing cells to its level in differentiated cells.

Our goal is to model the temporal occurrence of these effects across all time series

simultaneously.

4.3.1 Data preprocessing

We use log2 transformed values of MAS5.0 normalized data obtained from www.nature.

com/nature/journal/v442/n7102/suppinfo/nature04915.html. In a comparison of

the (LIF+, RA-) to the (LIF-, RA+) cell cultures 137 genes showed a greater than

twofold up or down regulation across all time points. These were used as E-genes

in our analysis. The two time series without RNAi were used to discretize the time

series of perturbation experiments following a simple discretization method detailed

in the next section, thereby setting an E-gene state to 1 in an RNAi experiment, if

its expression value is far from the positive controls, and 0 otherwise. Genes that did

not show any 1 after discretization across all experiments were removed, leaving 122

E-genes for further analysis.

4.3.2 Binary data

We transform the continuous expression data to binary values. We set an E-gene in a

certain silencing experiment and time point to 1, if its expression value is sufficiently

close to the negative controls, i.e. the intervention interrupted the information flow,

otherwise we set it to 0. Let C(i, k, s) denote the continuous expression measurement

of Ek at time point ts of a time series recorded after perturbation of Si. Moreover, let

C+(k, s) and C−(k, s) denote the corresponding measurements in positive and negative

controls respectively. We set

D(i, k, s) =

{
1 if C(i, k, s) < κ · C+(k, s) + (1− κ) · C−(k, s)
0 otherwise

(4.11)
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4.3 Application to cell differentiation in embryonic stem cells

κ can be optimized by varying its value from 0 to 1 and choosing the value where all

negative controls are correctly recognized.

4.3.3 Time series analysis

We need binary data for each gene at each time point for each condition. Note that we

have only three measurements per constellation: 1 negative control, 1 positive control

and the measurement from the RNAi assay. In order to obtain robust estimates, data

needs to be aggregated across time points. DNEMs assume that once a perturbation

effect has reached an E-gene, it persists until the end of the time series. In other words,

a one at time point t indicates that a downstream effect has reached the E-gene prior

to t and not that it is still observable at this time. Hence, a typical discretized time

series starts with zeros, eventually switches to ones and then stays one until the end of

the series. We refer to these patterns as admissible patterns. For the vast majority of

E-genes, the discretized data roughly follows admissible patterns. Nevertheless, excep-

tions are observed. We replace the time series for each gene by the closest admissible

pattern, based on edit distances. In the case where several admissible patterns had the

same edit distance to the time series, we chose the pattern holding the most ones. This

curated data is used in further analysis.

4.3.4 Stability analysis

Since long computation times for Gibbs sampling prohibit the reconstruction of the

network’s topology from scratch using DNEMs, we used the triplet search approach for

the standard nested effect approach (57) applied to the final time point to determine

a topology for the network. Note, that the final time point of an admissible pattern

accumulates information along the time series, because it reports a one whenever a

downstream signal has reached the E-gene at any time. The binary data of the last

time point across all S-gene perturbations is shown in Figure 4.10A, while Figure 4.10B

shows the reconstructed network. A nested structure is visible. Our model is based on

binary data, which requires gene expression profiles to be discretized. Discretization

incurs a potential information loss. The inferred network structures can vary depending

on the discretization threshold κ in equation (4.11) and so do the estimated average

time delays. Nevertheless, in the application to the stem cell data described above,
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important network properties are stable: Most importantly, this applies to the central

axis of the network

Nanog → Sox2 → Oct4 → Tcl1 ,

and the domination of the network topology by feed-forward loops (transitive edges).

In order to verify the robustness of these network features we run both the topology

search using NEM and the time delay analysis using D-NEM on binary data produced

with different settings of κ.

Figure 4.10: Stem cell data analysis - A Discretized data of the last time point across
E-genes (rows) and S-gene perturbations (columns), with black representing downstream
effects and white no effects. B The transitively closed nested effects model estimated from
the data shown in A using static NEM.

4.3.5 Stability of network topologies in the static NEM analysis

For the topology search we vary κ from 0.4 to 0.9 in steps of 0.02 and count how often

a certain edge was included into the estimated network. Figure 4.11(A) displays the

relative frequencies of edges in a color coded adjacency matrix. White indicates 100%

inclusion of the edge, black 0% inclusion, and gray indicate intermediate percentages.

The areas framed in red highlight the stable structures of the network including the

central axis from Nanog down to Tcl1 and the hypothesis that both Tbx3 and Esrrb

act upstream of Tcl1. Network topologies further agree in that Tbx3 and Esrrb are
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connected to the central axis. However, there is uncertainty with respect to the precise

location of this cross talk edge as indicated by the gray tones in the Tbx3 and Esrrb

columns.

4.3.6 Stability of feed-forward loop detection in the DNEM analysis

We analyzed the effect of the discretization threshold κ on the DNEM analysis. Lower

values of κ lead to more “1s” in the binary data and, hence, to smaller estimates of

average time delays. The high number of feed-forward loops is a stable network feature

across a wide range of thresholds. To demonstrate this, we run the DNEM algorithm

on binary data with varying thresholds. Figure 4.11(B-E) shows the resulting posterior

heatmaps for κ set to 0.6, 0.7, 0.8, and 0.9. Note that with the exception of the first

simulation the analysis always excludes the same three edges from the network. It

always yields a dense feed-forward loop dominated network. For thresholds of 0.6 and

below (data not shown) the model becomes unstable.

The choice of κ is critical for the network analysis. Nevertheless, we observe network

features that are remarkably robust with respect to the choice of κ. Notable are the

central axis of the network from Nanog via Sox2 and Oct4 to Tcl1, and the domination

of the network topology by feed-forward loops.

4.3.7 Decision between Oct4 and Tcl1 direction in network

The stable topology is based exclusively on the nesting of downstream effects. Time

delays of signal propagation can now be used for fine tuning the topology: Originally,

the NEM analysis suggested a bidirectional arrow between Oct4 and Tcl1 suggesting

that the nesting of downstream effects in the final time point can not resolve the

direction of interaction between these TFs. We fitted independent DNEM models

for the two networks, which place Oct4 up- or downstream of Tcl1. We used the

deviance information criterion DIC (section 4.1.1.13) to decide which hypothesis is

better supported by the observed time delays. The DIC strongly favors the model,

which places Oct4 upstream of Tcl1 (DIC of 5491.1 compared to 5581.7).
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Figure 4.11: Stability Analysis - (A) Topology: Heat map of relative frequencies of
edges when varying κ between 0.4 and 0.9 in steps of 0.02. White indicates 100% inclusion
of the edge, black 0% inclusion, and gray indicates intermediate percentages. The areas
framed in red highlight the stable structures of the network including the central axis from
Nanog down to Tcl1 and the hypothesis that both Tbx3 and Esrrb act upstream of Tcl1.
(B-E) DNEM Analysis: Heat map of the posterior distribution of average time delays for
various cut-off discretized data (0.6-0.9). Rows correspond to edges of the network including
those between S - and E -genes, while columns refer to average time delays. Edges in red
represent excluded edges. Marginal posterior probabilities are gray-scale coded.
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4.3.8 Convergence and Mixing analysis of the Gibbs sampler

Our analysis is based on a summary of the joint posterior distribution of all parameters

as obtained from the Gibbs sampling trajectories. They are only valid if these samples

represent the true posterior distributions. This is the case when the Gibbs sampler

has converged to a stationary distribution and covers the whole posterior domain.

In order to validate this, we test the convergence of the Gibbs sampler using three

independent trajectories each starting from a random starting configuration. Median

as well as 97.5% quantile Gelman and Rubin scale reduction factors are calculated for

the first 1,000 iterations in windows of size 50. Figure 4.12 shows trace plots next to

the corresponding convergence plots for 12 of the 20 rate constants. These are the

12 parameters for which we see non-deterministic posterior distributions. The trace

plots show that the trajectories are swiftly moving through the full posterior domains.

Moreover, in all 12 cases we observe fast convergence of the Gibbs sampler. After a

burn in of at most 500 iterations the scale reduction factors stay within the interval

[1, 1.1]. It is in the nature of models with discrete parameters that some parameters

do not vary at all along the trajectories. This is the case for the 8 remaining rate

constants not shown in Figure 4.12. In order to validate that this behavior of the

Gibbs sampler is data driven and does not reflect trapping of the Gibbs sampler in a

local configuration, we start 20 short Gibbs sampling trajectories of length 100 all with

different random starting configurations. In all 20 trajectories we find the parameters

converge to their stationary value after only 50 iterations. Moreover, they remain at

this value for the rest of the trajectories. We notice, that the model parameters α and

β might influence the observed convergence behavior. Setting one of them to a value

below 0.01 compromises convergence. For higher values convergence is similar to that

shown in the figure.

4.3.9 Inference of signaling in Network

Next, we exploit the DNEM Gibbs sampler trajectories associated with the network

topology from Figure 4.10B to infer average time delays and regulatory control of

E-genes. Figure 4.13A shows the histogram of average time delays (reciprocal rate

constants) along the Gibbs sampling trajectory for the transitive edge between Oct4

and its target E-genes. It is equivalent to the top most gray-scale intensity profile of the
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Figure 4.12: Diagnostic Plots for the Gibbs sampler - Shown are trace plots next to
convergence plots for 12 of the 20 estimated average time delays (reciprocal rate constants).
The trace plots hold 3 independent trajectories shown in different colors. The trajectories
are swiftly moving through the full posterior domains. The convergence plots show median
as well as 97.5% quantile Gelman-Rubin scale reduction factors calculated for the first
1,000 iterations in windows of size 50. After a burn in time of at most 500 iterations the
scale reduction factors stay in the interval [1,1.1] marked by the blue horizontal line.
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heat map in Figure 4.13B. The histogram reflects the marginal posterior probability

of this parameter. The posterior heat map for all edges is shown in Figure 4.13B.

Light gray indicates high marginal posterior probability while dark gray tones stand

for low marginal posterior probabilities. The posterior mass either concentrates around

zero indicating no time delay for this step of signal propagation, or intermediate values

explaining secondary and tertiary effects, or high values with most of the posterior

mass on κT+1 (shown as x) suggesting that no signal is flowing through this edge. We

exclude an edge if the posterior mass on κT+1 is above 0.6. The resulting network is

shown in Figure 4.13C. Strikingly, the time delay data provides evidence that all but

three of the edges from Figure 4.10B actually transport signal. Note that the time

delay data has also overruled the static NEM in one instance, in that it has removed

the non-transitive edge between Nanog and Tbx3.

Figure 4.13: DNEM inference on signal propagation - A A histogram of the pos-
terior probabilities for the average time delay associated with the edge from Oct4 to its
target E-genes. B Heat map of the posterior distribution of average time delays. Rows
correspond to edges of the network including those between S- and E-genes, while columns
refer to average time delays. Marginal posterior probabilities are gray-scale coded. The
top row corresponds to the histogram described above. C The final network structure es-
timated by time delay analysis using DNEM. Edge colors correspond to estimated average
time delays: fast signal propagation (green), intermediate signal propagation (blue) and
slow signal propagation (red).
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5

Cyclic Dynamic Nested Effects

Models(CDNEMs)

Feedback circuits are important motifs in biological networks and part of virtually

all regulation processes that are needed for a reliable functioning of the cell. This

chapter extends DNEMs by allowing for the resolution of feedback loops in the signaling

cascade. I demonstrate that cyclic DNEMs help reconstruct the unknown underlying

network given time series data as well as infer the dynamics of the network. I first

motivate the problem involved in the modeling of directed cyclic graphs in the context

of DNEM and then use simulation studies to show the practical implementation of

Cyclic DNEMs(CDNEMs). I further apply CDNEMs to data on molecular mechanism

in early murine ESC development from Ivanova et al.(2006).

5.1 Model parameterization of CDNEMs

A cycle is a path with at least three edges, in which the first and last nodes are the

same. Figure 5.1 gives an example of a directed cyclic graph with three nodes. In a

directed cyclic graph, a set of edges which contains at least one edge (or arc) from

each directed cycle is called a feedback arc set. Similarly, a set of vertices containing

at least one vertex from each directed cycle is called a feedback vertex set. Edges

{S1S2,S2S3,S3S1} form a feedback arc set while {S1,S2,S3} is an example of a feedback

vertex set. The cyclic DNEM problem can be formulated as shown in Figure 5.1 where

we assume the S-genes to form feedback vertex sets with directed outdegrees of length
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1 linking the E-genes. Assuming the same model parameterization as in DNEMs using

(Θ,K), the goal is to generate the joint distribution of Θ and K using Gibbs sampling

and then infer both the rates of signal propagation as well discriminate between direct

and indirect signaling using the posterior samples.
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Figure 5.1: Cyclic DNEM model with 3 nodes - The cyclic DNEM model consists of
a directed cyclic graph involving three S-gene nodes with feedback loops and three E-genes.

5.2 Probability density of signal propagation in a directed

cyclic graph

Recall in DNEMs we are interested in the probability density function(pdf) of signaling

times between two S-genes as well as between S-genes and E-genes. More precisely the

pdf of signaling times between two nodes in a given directed acyclic graph (DAG).

Extending DNEMs to handle cycles implies we need to enumerate all paths between

an input node and an exit node in the cyclic graph to be able to estimate the pdf for

signal propagation. Enumerating all paths between nodes in a cycle is not well defined

without certain assumptions due to infinite looping. We establish boundary conditions

such as, you can only visit each node once, or you cannot take the same path twice as in

the “Travelling Salesman Problem” (106). The computational problem of enumerating

paths in cycles have not been tackled in the framework of DNEMs.

5.2.1 Algorithm to enumerate all paths in a directed cyclic graph

between two nodes

Assuming Figure 5.1 as the cyclic graph of interest we are interested to enumerate all

paths from some S-gene Si to some E-gene Ej . Note once the signal leaves an input

S-gene Si it can either activate its target E-gene Ei, or goes through other graph paths

to other target E-genes linked to their S-genes respectively. Since there are cycles

involved, and in general its impossible to enumerate all of them, we make use of atomic
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5.2 Probability density of signal propagation in a directed cyclic graph

paths that don’t loop and involve at most one cycle. I define an atomic path as a path

that does not go through the same edge twice. Therefore an atomic cycle of node

Si is an atomic path that goes from node Si and ends in node Si. Atomic cycles only

occur when enumerating paths from a certain S-gene Si to its own E-gene Ei . In order

to get all the atomic paths starting from node Si to node Ej , we traverse the graph

recursively from node Si. While going through a child, we make a link child → parent

in order to know all the edges we have already crossed. Before we go to that child, we

traverse that linked list and make sure the specified edge has not been already walked

through. When we arrive to the destination point, we store the paths we found. The

following table gives a pseudocode algorithm for enumerating all atomic paths between

two nodes in a directed cyclic graph. Note that looking for the atomic cycle of node Si
is the same as looking for the atomic path from Si to Si.

Table 5.1: Algorithm to enumerate all paths between two nodes in a graph - In
order to get all the atomic paths starting from node A to node B, we traverse the graph
recursively from node A.

Algorithm for enumerating all atomic paths between two nodes in a graph

1: procedure findallpaths(graph, start, end, path=()):
2: path = path + start
3: if start == end:
4: return (path)
5: if not graph.has.key(start):
6: return ()
7: paths = ()
8: for node in graph(start):
9: if node not in path:
10: newpaths = findallpaths(graph, node, end, path)
11: for newpath in newpaths:
12: paths.append(newpath)
13: return paths

5.2.2 Probability density of signal propagation in CDNEMs

In the last chapter, we estimated the joint posterior of rate constants in a directed

acyclic graph Φ assuming independent exponential time delays with varying signal
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propagation rates on the edges. The distribution for a fixed linear path in a given

network is given by Equation 4.1. In the case of directed acyclic graphs with several

alternating paths between nodes the cdf can be approximated by Equation 4.2. We now

consider the case of directed cyclic graphs. Given a directed cyclic graph like the one

shown in Figure 5.1, we would like to estimate the cdf from a certain input node say Si

to some output node ESj . Signal propagation can be from Si to its target E-gene ESi

or to another E-gene ESj . The paths between these two nodes consist of atomic paths

and cycles. I illustrate with example that Equation 4.1 can still be used to estimate the

cdf of signaling times between nodes Si and ESj even when atomic cycles are involved.

Lets consider the nodes S1 and ES1 from Figure 5.1. The atomic paths between S1 and

ES1 are {(S1 − S2 − S3 − S1 −ES1), (S1 − S3 − S2 − S1 −ES1), (S1 −ES1)}. Note that

edge (S1 − ES1) occurs in all three paths and is associated with a certain time delay.

If we assume exponential time delays for all edges in the graph, the expectation of the

distribution for signal propagation between S1 and ES1 will be equal to the expectation

of signaling time corresponding to the edge (S1 − ES1) only. This is because we add

something positive to all the time delays associated with the two alternating atomic

cycles {(S1− S2− S3− S1), (S1− S3− S2− S1)}. In general, if we have n independent

positive random variables {Xi, i = 1, ..., n}, and Xj also a positive random variable

with i 6= j then,

E(min(Xj , X1 +Xj , ..., Xn +Xj)) = E(Xj).

E(Xj) provides an expected value for the random variable which corresponds to the

minimum of two or more random variables. In practice, this implies we do not need

to enumerate all the paths from S1 to ES1 to calculate the cdf of signaling time in this

path. We only approximate the distribution for signal propagation between S1 and ES1

to be exponential with a certain rate constant. This makes sense since we expect the

first blocked signal from S1 to activate ES1 fastest compared to signals from alternating

paths. This approach to estimate the cdf for signal propagation time between S1 and

ES1 can be generalized to the cdf of signaling times corresponding to paths between Si

and ESj , i 6= j consisting of atomic cycles. From Figure 5.1 notice that the shortest path

between Si and ESj is still linear with corresponding cdf of signaling time estimated

by Equation 4.1. Hence, we expect the time delays for the atomic paths between Si

and ESj to be faster than any alternating path with cycles.
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5.3 Simulation results

We demonstrate the performance of cyclic DNEM in various simulation scenarios with

artificially generated data based on different model assumptions. We show that the

cyclic DNEM can be used to make inferences on both the underlying biological network

as well the dynamics of signal flow in the unknown network.

5.3.1 Data generation

We evaluate our method in the context of simulated data from the cyclic network shown

in Figure 5.1. We parameterize the graph as shown in Figure 5.2. Note that the net-

work is transitively closed. Time delays for signal propagation between S- and E-genes

are set to 1. For signal propagation between S−genes we simulate 4 different scenarios

summarized in Table 5.2 corresponding to Figures 5.3(A-D). The rows represent the

simulated time delays corresponding to the edges. Column 2 represents the situation

with all time lags set to 1 unit time. Here we have subtle differences in time delay be-

tween transitive edges and non-transitive edges. Column 3 corresponds to the situation

with much smaller time delays for the transitive edges compare to their non-transitive

counter parts. Column 4 represents the situation when the underlying network is di-

rected acyclic and column 5 corresponds to the situation when the pathway is a single

cycle in one direction. For all E-gene positions the expected data pattern across time

points and perturbation experiments is calculated and artificial E-gene data is simu-

lated by adding independent binary noise to these patterns using a range of different

noise levels: α = 0.0, 0.1, 0.2, 0.3 and β = 1/2α. We simulate data for 20 E-genes per

S-gene and one measurement per time point, resulting in a data array of 960 binary

values. CDNEM is run on this data using two independent runs of 5,000 iterations,

from which the first 2500 are discarded as burn in time, leaving 5,000 posterior samples

per simulation. For calculating the likelihood, we set the tuning parameters as in the

DNEM scenario with α and β set to 0.2 and 0.1 respectively.

5.3.2 Results

Figure 5.4 shows the heatmaps of marginal posterior probabilities for average time

delays for various network scenarios with α = 0.0, 0.1, 0.2, 0.3. Light gray indicates high

marginal posterior probability while dark gray tones stand for low marginal posterior
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Figure 5.2: Parameterization of the Cyclic DNEM model with 3 nodes - The
cyclic DNEM model consists of a directed cyclic graph involving three S-gene nodes with
feedback loops and three E-genes. The 9 rates on the edges form the model parameters.

Table 5.2: Simulated time delays for edges in cyclic graph - The rows represent
the simulated time delays. Column 2 represents the situation with 1 unit time lag for all
edges. Here we have subtle differences in time delay between transitive edges and non-
transitive edges. Column 3 corresponds to the situation with larger time delay differences
between existing transitive edges compared to their non-transitive counter parts. Column
4 represents the situation when the underlying graph is DAG and column 5 represents the
situation when the simulated pathway is directed and forms a cycle.

Rates Equal delays Dense network Directed acyclic Cycle

k1 1 1 1 1
k2 1 1 1 1
k3 1 1 1 1
k4 1 2 100 1
k5 1 3 100 100
k6 1 3 1 100
k7 1 3 1 1
k8 1 2 1 1
k9 1 1 100 100
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Figure 5.3: Directed cyclic graphs with simulated time delays - Simulated time
delays for edges in the cyclic graph Figure 5.2 under various scenarios. A represents the
situation with all time lags set to 1 unit time. B corresponds to the situation with much
smaller time delays for the transitive edges compare to their non-transitive counter parts.
C represents the situation when the underlying graph is DAG. We set the time delay for
non-existent edges to 100. D corresponds to the situation when the simulated pathway is
a single cycle in the direction of S1S3S2S1.

probabilities. Most estimated average time delays are close to their target values with

more variability occurring in the scenarios involving longer simulated time delays on

the edges. In general most edges are clearly and correctly identified by our model. We

go through the specific properties of each simulation study.

5.3.2.1 Fully connected network with equal time delays

In order to evaluate the ability of our model to detect distinct edges even when signal

flow is bi-directional and the time delays between signaling nodes are equal, we run a

simulation with all rate constants set to 1. This represent subtle differences in time

delays between direct and indirect signals. Figure 5.4A summarizes the posterior dis-

tribution for all rate parameters. All edges are clearly and correctly identified by our

model.

5.3.2.2 Cyclic dense network with varying time delays

We next vary the expected time delays between transitive and non-transitive edges

using values corresponding to column 3 from Table 5.2. In other words we simulate

data from a dense cyclic network with several FFLs and feedback graphs(FBLs). For
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Figure 5.4: Heat map of the posterior distribution of CDNEM model - (A-D)
The heatmap correspond to simulated scenarios corresponding to a network with equal time
delays, a dense network, directed acyclic network, and a cyclic network. Rows correspond
to edges of the network including those between S- and E -genes, while columns refer to
average time delays. Marginal posterior probabilities are gray-scale colored with light gray
indicating high and dark gray indicating low probability. Edges marked in red correspond
to the ones that are excluded by our method. The simulated time delays are shown on the
y-axis to the left of the heat map.
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low noise simulations (α = 0.0, 0.1), the posterior distribution places hardly any weight

on “x” keeping all edges in the model Figure 5.4B. In a nutshell the model was able to

retain all edges even in the presence of high noise.

5.3.2.3 Directed acyclic networks

The next scenario was to investigate the ability of our model to detect the presence of a

directed acyclic pathway even when the input graph is cyclic. We set the expected time

delays for k4, k5, and k9 to 100 making the corresponding edges practically nonexistent.

To investigate this scenario using a cutoff of 0.6 for the “x” state leads to the three

excluded edges as desired even for high noise levels Figure 5.4C. There is a tendency to

underestimate rate parameters for perfect data. In general, we are able to detect the

underlying direct acyclic graph in the presence of noisy data.

5.3.2.4 Network with only one cycle

Finally we examine the situation where the underlying graph is directed and has one

cycle S1 − S3 − S2 − S1. We set k5, k6, and k9 to 100 in this case making the reverse

cycle S1−S2−S3−S1 practically non-existent. At low noise levels, Figure 5.4D shows

that our model puts a high weight on the “x” state for these edges thereby kicking

them out of the model. The remaining edges form a directed cycle as desired.

5.4 Application of CDNEMs to cell differentiation in em-

bryonic stem cells

We apply the cyclic DNEM approach to the same preprocessed binary data set on

molecular mechanisms of self-renewal in murine embryonic stem cells from Ivanova et

al.(2006) (17) used in the last chapter. We demonstrated using Figure 4.11 a nested

structure of effects at the last time point between Nanog, Oct4 ,Sox2, and Tcl1 which

form a linear cascade which puts Nanog on top forming a cascade from Nanog to Sox2

to Oct4 and finally to Tcl1. We also showed that both Tbx3 and Esrrb act upstream of

Tcl1. However its not clear how Tbx3 and Esrrb fit in the cascade and whether there

exist FFls or Feedback loops as well. Instead of using only a directed acyclic graph

we used a cyclic network with bidirectional edges between all nodes as input graph

Figure 5.5. In other words we used a closed network assuming all edges present. In
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all we have 36 rate parameters to update. All other model parameter settings for the

Gibbs sampler are kept the same as in the DNEM scenario. To speed up convergence

we used initial parameter values from the CDNEM with the non-stochastic constant

time delays approach. Figures 5.6 and 5.7 show the posterior heat map for all 36 edges

under nonstochastic and stochastic signaling assumptions respectively.

Figure 5.5: Fully connected directed input graph with 6 key TFs - A fully
connected cyclic network with bidirectional edges between all regulatory proteins as input
graph for CDNEM. There are 36 rate parameters to update corresponding to the number
of edges.

5.4.1 Inference of signaling in Network during early ESC differentia-

tion

We exploit the CDNEM Gibbs sampler trajectories associated with the fully connected

network topology for all possible edges to infer average time delays and regulatory con-

trol of E-genes. The heatmap in Figure 5.6 summarizes the posterior distribution for all

parameters for the non-stochastic scenario while Figure 5.7 gives the complete picture

under stochastic modeling of time delays. Recall light gray indicates high marginal

posterior probability while dark gray tones stand for low marginal posterior probabil-

ities. There is an apparent higher evidence for mixing and dispersion of the posterior

distribution under the model with stochastic assumptions. On the contrary expected

posterior modes are more conspicuous in the non-stochastic case as expected. Similar
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5.4 Application of CDNEMs to cell differentiation in embryonic stem cells

Figure 5.6: Heatmap of posterior distribution and output graph of signal flow
under non-stochastic assumptions - Heat map of the posterior distribution of average
time delays under non-stochastic signaling. Rows correspond to edges of the network in-
cluding those between S- and E-genes, while columns refer to average time delays. Marginal
posterior probabilities are gray-scale coded. The graph on the top right corresponds to the
predicted graph that supports the data best. A transitively reduced version of the graph
can be seen at the bottom right
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Figure 5.7: Heatmap of posterior distribution with output graph of signal flow
under stochastic signaling - Heat map of the posterior distribution of average time
delays under stochastic modeling. Rows correspond to edges of the network including those
between S- and E-genes, while columns refer to average time delays. Marginal posterior
probabilities are gray-scale coded. The edges in red are non-existent. The graph on the
right corresponds to the predicted graph that supports the data best. Transitively closing
this graph gives the topology at the bottom right.
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to the results from the DNEM model, the posterior mass either concentrates around

zero indicating no time delay for this step of signal propagation, or intermediate values

explaining secondary and tertiary effects, or high values with most of the posterior mass

on κT+1 (shown as x) suggesting that no signal is flowing through this edge. Using a

cut-off of 0.6 for x, there are a few interesting observations from the joint posterior

distribution from both scenarios. Firstly, only a few number of edges have been kicked

out of the model especially in the stochastic situation thereby confirming a very dense

network with both FFLs and FBLs involved in early ESC development. In addition

the edge Nanog → Tbx3 has been kicked out of the model like in the DNEM situa-

tion. Also there is a high evidence of signal communication about expected time delay

of 2 days. This goes to support the fact that early stage differentiation occurs after

about 2 days (18). Furthermore, we see that most of the edges that are kicked out

correspond to those edges associated with Tbx3 and only one of the kicked out edges

involves Nanog. Thus Nanog is acting as a key sensitizer for stem cell differentiation.

The resulting network under stochastic signal transduction is the graph on the top right

in Figure 5.7. A transitively reduced network at the bottom right of Figure 5.7 shows

that Nanog is highly connected to all the other regulators. In a nutshell, the time delay

data provides evidence that all but a few number of the edges from the input network

actually transport signal. Note that the time delay data has also overruled the static

NEM and DNEM models in several instances especially the signal flow between Nanog,

Sox2 and Oct4 in one direction. It seems signal flow between these core TFs involves

both FFLs and FBLs.
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6

Impact of Dynamic Nested

Effects Models

My work has already been taken up and extended by others especially in the direction

of improving the running time of DNEMs. In the following, I summarize the paper of

Frölich et al.(2010) (107) pointing out the cross links and conceptual differences to my

own work.

6.1 Fast Cyclic Dynamic Nested Effects Models(FCDNEMs)

Due to the long running times needed in Gibbs sampling for DNEMs it will not be

feasible in practice to infer dynamics of very large networks. Frölich et al.(2010) in-

troduce a parallel approach of CDNEMs which circumvents the time consuming Gibbs

sampling step for inference of signal propagation rates on the edges of a network(107).

This approach does not aim to infer the rates of signaling. It only estimates the time

lag between a perturbation and an observed downstream effect, there by providing

the possibility to unroll the signal flow in the upstream signaling cascade over time.

It uses a simple greedy hill climbing strategy (section 2.3.3) in combination with a

non-parametric bootstrap to assess confidences of inferred edges. The formulation of

this dynamic model is just an extension of NEMs to handle cycles. Cycles in Φ imply

that perturbation effects are indistinguishable within this model. However, we already

showed that time series measurements of perturbation effects help resolve biological

feedback loops and distinguish between direct and indirect effects.
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6.1.1 Model parameters for FCDNEMs

Similar to the original DNEMs in chapter 4, let D(i, k, l, s) denote the expression mea-

surement of Ek in time point ts of the l’th replication of a time series recorded after

perturbation of Si. ts is replaced with t corresponding to the index of time point in a

discrete time series, not the time point itself. These measurements could be p-values,

counts or any other kind of statistics quantifying the effect of a knock-down for E-gene

Ek under perturbation of S-gene Si at time t. Suppose the true underlying pathway is

given by Figure 6.1A. The signal flow is unrolled in this network over time (Figure 6.1B)

in the following way: The node set E(t) = { E(t), E ∈ E}, S(t) = { S(t), S ∈ S} of the

dynamic network consists of a copy of the static network nodes, one for each time point

t = 1, ..., T . An E-gene E(t) is linked to S(t) whenever E is linked to S in the static

situation, i.e, it is determined by the same matrix Θ = |S| × |E| as in the static case

following (59). The actual unrolling takes place in the wiring of the S-genes. Informally,

the static adjacency matrix Φ is converted to a |S| × |S| weighted adjacency matrix Ψ

= (ψij), where 0 means no edge and a value ψij > 0 implies an influence of node i on

E-genes downstream of node j delayed by ψij time steps. Specifically, T ≥ ψij ≥ Φij

for i, j ∈ S . A non-zero entry ψij implies that there are edges Si(t) → Sj(t + ψij), t

= 1, ..., T − ψij . Furthermore, the convention ψii = 1 is made. A positive time lag

between nodes i and j in the model describes the number of time steps, after which a

knock-down of node i results in an observed effect downstream of node j. This implies

there are no assumptions made about the physical time it takes a signal at node j to

produce a downstream effect at an E-gene. In contrast to classical Dynamic Bayesian

Networks (108), an edge in the model may not connect consecutive time layers, but it

may skip a certain amount of time steps (as it is the case for the entry ψS2S3 = 2 in

Figure 6.1B, which implies the edge S2(1) → S3(3). In other words, the model does

not rely on a first order Markov assumption. In this way the unknown and variable

time delays in perturbation responses are modelled due to the upstream signaling. In

the following I refer to the model as FCDNEM.

6.1.2 Marginal likelihood for discrete model

Considering the same parameterization like in static NEMs given in chapter 2, and as-

suming independence of time point measurements, the marginal likelihood Equation 2.6
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Figure 6.1: Standard NEM with 3 nodes - A static NEM is parameterized by a
directed graph between S-genes encoded by Φ, together with a directed graph attaching
each E-gene to an S-gene given by Θ. B Unrolling of the signal flow in the network from A
along time. This corresponds to the network topology and parameterization of FCDNEM.
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is extended to include time as :

p(D|Ψ,Θ) =
∏
i∈E

∑
s∈S

∏
l∈L

T∏
t=1

p(Dil(t)|Ψ,Θis = 1)P (Θis = 1) (6.1)

To compute p(Dil(t)|Ψ,Θis = 1) according to the proposed unrolling of the signal flow,

a time dependent Boolean perturbation state for each S-gene s is introduced, which

encodes an active state when perturbed as 0 and 1 when unperturbed. A knock-down of

s corresponds to a switch 1→ 0. Since the perturbation state of s at a particular time

step t is not observable, we identify it with the value [s(t)] of a random variable s(t).

Let pa(s)(t) denote the set of parents nodes of s at time t (i.e. the set {p|0 < ψps < t};
which can be empty, if appropriate). Then, according to the unrolling of the signal flow

over time, we write:

p(Dil(t)|Ψ,Θis = 1) =
∑

[s(t)]∈0,1

p(Dikl(t)|s(t) = [s(t)],Θis = 1)

× P (s(t) = [s(t)]|pa(s)(t)) (6.2)

In the absence of more precise information we define:

P (s(t) = 0|pa(s)(t) = [r]) =
{

1 ∃p ∈ pa(s)(t) : [p] = 1
0 otherwise

P (s(t) = 1|pa(s)(t) = [r]) = 1− P (s(t) = 0|pa(s)(t) = [r]) (6.3)

The above definition can be interpreted as s is perturbed at time t, if any of its parents

(including s itself) are perturbed. Assuming independence of observations the marginal

likelihood p(Dikl(t)|s(t) = [s(t)],Θis = 1) can be calculated using the methods of static

NEMs discussed in chapter 2.

6.1.3 Using Priors for network structures and time delays

In the last chapter a weighted adjacency matrix Ψ is introduced as a summary repre-

sentation of a given network structure and time delays between S-genes and E-genes.

Learning the structure of Φ is equivalent to learning the matrix Ψ based on the like-

lihood given in Equation 6.2. While scoring a given network, we assume observing an

effect after longer time delays is less likely smaller time delays. Moreover redundant

edges are left out of the model since they do not change the likelihood of the model.

88



6.1 Fast Cyclic Dynamic Nested Effects Models(FCDNEMs)

These considerations are taken into account during the specification of P (Ψ). Following

Floerich et al.(2007) (58), prior probabilities for each edge are specified as follows :

p(Ψ|ν) =
∏
i,j

1
2ν

exp
−|ψij − ψ̂ij |

ν

where ν > 0 is an adjustable scaling parameter. The parameter ν can be chosen

according to the BIC criterion(109):

BIC = −2 log p(D|Φ) + log(|E|)
∑
i,j

1|ψij − ψ̂ij | > 0

where
∑

i,j 1|ψij − ψ̂ij | > 0 is an estimate of the number of parameters in the model.

Usually we favor sparse network structures.

6.1.4 Network Learning for FCDNEMs

Learning the network structure Φ that fits the data best is equivalent to finding an

optimal weighted adjacency matrix Ψ where the entries of Ψij can take discrete values

0, ..., T . The greedy hill climbing strategy(section 2.3.3) is used . By this approach

three search operators are used: edge weight increase (Ψij 7→ Ψij + 1, if Ψij < T ), edge

weight decrease (Ψij 7→ Ψij − 1, if Ψij > 0), edge reversal (exchange of Ψij and Ψji).

At each step we apply all possible operators and accept the solution that increases the

posterior likelihood most. This requires O(|S|2) likelihood evaluations per search step,

where each likelihood computation according to Equation 6.2 has a time complexity

of O(T |E||S|2) on its own. Hence each search step requires O(T |E||S|4) time. This is

much faster than using the Gibbs sampling approach.

To further assess the confidence of the inferred network hypothesis on real experi-

mental data, non-parametric bootstrapping (1000 times) is used. Thus, from the whole

set E of available downstream effects bootstrap samples E
′ ⊂ E of size |E| are randomly

drawn with replacement. On each bootstrap sample a network hypothesis using greedy

hill climbing is estimated. This allows the estimation of confidence intervals for each

Ψij .
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6.2 Application of FCDNEMs to cell differentiation in

embryonic stem cells

FCDNEMs is applied to our famous preprocessed dataset by Ivanova et al.(2006)(17)

within a non-parametric bootstrap procedure and how often each edge appears in 1000

inferred networks (one network per bootstrap sample) is recorded. The exact binomial

distribution 95% confidence intervals is computed for the appearance probability of

each edge via R-package binom (110). Only edges with lower confidence bound > 50%

are regarded as reliable and shown in Figure 6.2. The median time lags for all edges is 1.

There are several similarities to the inferred network shown in Figure 4.13, which was

obtained via the DNEM method, namely the cascades Tbx3→ Esrrb→ Oct4→ Tcl1,

Nanog → Oct4 → Tcl1 and Sox2 → Oct4 → Tcl1. A further striking similarity is

that the transcription factor Oct4 regulating Tcl1 is itself jointly regulated by the three

transcription factors Nanong, Sox24 and Esrrb. In contrast to model from DNEM,

Nanog is not placed upstream of Sox2 and does not have any indirect outgoing edges.

Indeed, the only shortcut in this network is Sox2 → Tcl1. This network is thus very

much sparse than the ones from Figure 4.13 and Figure 5.7. This is probably due to

the strong influence of the network prior. However all the predicted edges occur in

the CDNEM predicted network (Figure 5.7) as well and there are no feedback loops.

Comparing results from Figures 4.13, 5.7 and 6.2 we see that Figure 5.7 gives a complete

picture of molecular signaling in early ESC development involving both FFLs and FBLs.
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6.2 Application of FCDNEMs to cell differentiation in embryonic stem cells

Figure 6.2: Inferred network for murine stem cell development - Inferred network
for murine stem cell development with 95% confidence intervals for the presence of the
edges.
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7

Summary and Outlook

Time series RNA interference (RNAi) is an effective tool for genome-scale, high through-

put analysis of genes, that are important for specific phenotypic traits of interest. The

temporal and spatial placement of these genes in signal transduction pathways or de-

velopmental transcriptional networks remain a challenge as well as understanding the

dynamics of signal flow in the given network. Since direct observations of intervention

effects on other pathway components are often not available, large-scale datasets such

as RNAi screens may only contain information of secondary or tertiary downstream

effects. This dissertation develops methodology to show that by observing the nested

structure of significant up or down regulations of affected genes over time, we may

reverse engineer features of the upstream signaling pathway. It tackles two important

problems involved in time series perturbation data.

1. Given a biological pathway topology and time series silencing data, how do we

infer the signaling dynamics between pathway components from the data

2. Given only the time series perturbation data how can we make inferences on

both the underlying biological network as well the dynamics of signal flow in the

unknown network.

7.1 Conclusions

I introduced a new methodology called Dynamic Nested Effects models(DNEMs) which

is an extension of NEMs to handle time series perturbation data. DNEMs allow the

dissection of biological processes into signaling and expression events, and the analysis
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of cellular signal flow. In an application to decision making in mural embryonic stem cell

development, I could show that a feedforward loop dominated gene regulation network

ensures that cell differentiation is a quasi unidirectional process in vivo. However this

model assumes that the underlying network is directed acyclic which is a limitation since

feedback loops are essential motifs in developmental regulatory networks. I extended

the methodology of DNEMs to cyclic DNEMs(CDNEMs) showing that even when the

underlying network is unknown, CDNEMs can both reconstruct the unknown network

as well as decode the dynamics involved in the network. I was able to unravel such a

molecular communication in embryonic stem cells of the mouse.

The results from this thesis contribute to our understanding how stem cells succeed

to carry out differentiation to specialized cells of the body such as muscle cells or neurons

of the brain, a process that goes more or less only in one direction. The signaling

processes are connected together such that a negligible reduction of the concentration

of a key molecule named NANOG releases a signal, that is reinforced in the network,

thereby initiating the differentiation of cells. Simultaneously the organization of other

key players in the entire differentiation process makes the reverse process no longer

possible even with slight increase in NANOG concentration by chance. The FFLs in

the network stabilize the differentiated state of cells relative to self renewal by filtering

out random fluctuations. The feedback loops implement memory of an input signal,

even after the input signal is gone. A reversal of the differentiation process would

cause a latent cancer risk. This reconstructed network of molecular communication

proposes how organisms protect themselves against the reversal of cell differentiation

and thereby against cancer.

In general, DNEMs can be used to model the dynamics of a network from RNAi

microarray time series data. They infer both feedforward and feedback loops from

estimated time delays and also capture the stochastic nature of signaling processes.

7.2 Future directions

This thesis has discussed the potential usefulness of DNEMs to analyze genomic pertur-

bation data. However there are limitations of the current representation and learning

approaches that need further investigation. The work in this dissertation can be ex-

tended in many directions.

94



7.2 Future directions

7.2.1 Combinatorial perturbations

NEMs handle data from single knock down experiments. Recall that the early ESC

development involves key TFs like Cdx2 whose induction can trigger stem cell differen-

tiation as well as the knock-down of other important TFs like Nanog, Sox2, and Oct4

(18). Thus it is possible to have both knock down and knock in experimental data

generated from the same biological model. Furthermore, recall that in the context of

NEMs the first blocked signal wins in an AND gate interaction between S-genes. The

AND becomes an OR since only one of the incoming signals is needed to break signal

flow. This scenario changes when dealing with knock-in data. A downstream S-gene

gets activated only when all its parents are activated in an AND situation. Hence an

OR-NEM is equivalent to an AND-knock-in NEM. In general, based on the type of

perturbed data, the topology Φ together with the set of boolean functions F defines a

deterministic Boolean network on the set of S-genes S . This corresponds generally to

fewer perturbation schemes on S. Of course we would have to deal with the situation

where several hypotheses with different perturbation schemes produce identical data.

The challenge would be to find all equivalence classes under different experimental con-

ditions such as single knock-downs, single knock-ins, or even a combination of both

knock-in and knock-down experiments involving different boolean functions. Further-

more, more sophisticated perturbation schemes have to be developed, which encode

predictions both from single-gene and multi-gene knock-outs and knock-ins. Since the

number of possible multiple knock-outs and knock-ins increases exponentially, we need

tools to choose the most informative experiments. Ultimately, reconstructing very large

informative networks from perturbation data still remain an open area for interesting

research.

7.2.2 NEMs and drug interventions

RNAi has become a method of choice for key steps in the development of therapeutic

agents, from target discovery and validation to the analysis of the mechanisms of action

of small molecules. In the framework of NEMs or DNEMs if we replace the S-genes with

drug intervention schemes, we may be able to identify suitable drug targets and their

genetic models in cancer therapy by inferring which genes when stimulated with a drug,

promote cell suicide in tumor cells, but not in normal body tissue. Furthermore, with
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the availability of large drug interventional databases showing changes in gene expres-

sion profiles across the entire human genome as well as information on gene ontology

we could use NEMs to identify cluster of drugs with underlying similar molecular and

phenotypic properties. Work in this direction still needs to be done.

7.3 Food for thought

A very optimistic Uri Alon (7) wrote that “ There is no a priori reason that immensely

complex biological systems would be understandable. But despite the fact that biolog-

ical networks evolved to function and not to be comprehensible, simplifying principles

can be found that make biological design understandable to us”. I believe that, a first

step to understand the complex inner working of a cell is by breaking it into simpler

comprehensive circuits. This thesis explored one of the possible ways of inferring the

dynamics of complex biological systems from gene expression data. The most striking

feature of the early stem cell differentiation model is the high frequency of both FFLs

and FBLs. This opens up a wide spectrum of pathway hypotheses, raising the ques-

tion of why evolution has conserved these simple modules in such a complex network

topology.
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Appendix

8.1 Derivation of the Probability density of signal propa-

gation along a linear path

Let us first consider a fixed linear path g in Φ, which connects the S-gene Si with the

E-gene Ek:

Si
k1−→ Sj1 · · ·

kq−1−−−→ Sjq−1

kq−→ Ek,

We want to calculate the probability that the signal has reached Ek at time point t.

In general Let X0
T1−→ X1

T2−→ · · · Tn−→ Xn be a linear path with edge weights Tj . We

denote 1 as active state and 0 otherwise. If X0 = 1 at timepoint 0, then the probability

that the signal has reached Xn at timepoint t is

f(t) = P (Xn = 1|t) = P (
n∑
j=1

Tj < t)

=
∫ t

s=0
p(

n∑
j=1

Tj = u)ds

=
∫ t

s=0

(∫
Pn

j=1 tj=u
p(Tj = tj)dt1dt2...dtn

)
du

=
∫ t

s=0
(ψ1 ∗ ψ2... ∗ ψn)(u)du (8.1)

with the density functions ψt = kje
(−kjt)δt>0. The integration in Equation 8.1 can be

solved using the Laplace transform f → f̂ : (s 7→
∫∞
−∞ e

−stf(t)dt). Using well known
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rules for the Laplace transform, we obtain

f̂ =
1
s

n∏
j=1

ψ̂j(s) =
1
s

n∏
j=1

kj
s+ kj

(8.2)

We use partial fractions expansion to resolve the last term in Equation 8.2. Define P (s)

=
∏n
j=1(s + kj) and let the Lagrange polynomials Pj(s) = s+kj

kj−ki
. Note that Pj(−kr)

= δr=i. Hence Pj(s)|j = 1, ..., n form the basis of the vector space of polynomials of

degree at most n− 1, and the constant polynomial 1 has the representation

1 =
n∑
j=1

Pj(s)

Dividing by P (s) we obtain

n∏
j=1

1
s+ kj

=
1

P (s)
=

n∑
j=1

Pj(s)
P (s)

=
n∑
j=1

∏
i 6=j

1
kj − ki

 1
s+ kj

(8.3)

from which we deduce:

f̂ =
1
s

n∏
j=1

kj
s+ kj

7.3=
n∑
j=1

∏
i 6=j

1
kj − ki

 1
s+ kj

=
1
s

n∑
j=1

∏
i 6=j

kj
kj − ki

 kj
s+ kj

=
n∑
j=1

Qj
kj

s(s+ kj)
(8.4)

with Qj =
∏
i 6=j

kj

kj−ki
. Using the inverse Laplace transform f̂−1, we finally obtain

f(t) = f̂−1 =
n∑
j=1

Qj

[
kj

s(s+ kj)

]−1

(t) =
n∑
j=1

Qj(1− e−kjt) (8.5)

Equation 8.5 provides a closed form expression for the signal probability density of time

along a linear path with exponentially distributed delay times on the edges.
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