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Summary 

 

The Phosphatidyl-insitol-3-kinase (PI3K) is a central mediator in many signalling 

pathways, e.g. in insulin signalling and in proinflammatory signalling via mTOR. 

Previous studies suggested a critical role of PI3K signalling during hepatic 

fibrogenesis, however, the role of different PI3K p110 isoforms has not been 

discriminated. 

The aim of this project was to assess the expression and function of PI3K p110γ in 

chronic liver disease with a focus on hepatic fibrosis. 

We found that the expression of the PI3K class 1B unit p110γ is increased in the 

liver during chronic injury. Further, we found that p110γ expression is enhanced 

during the activation of hepatic stellate cells (HSC), a process which plays a key 

role in hepatic fibrosis. We further discovered that PI3K p110γ deficiency had 

divergent effects on the activation of HSC and hepatic fibrosis, respectively, in two 

different models for chronic liver injury.  

The bile duct ligation model (BDL) causes chronic injury by inducing hepatocyte 

apoptosis/necrosis, because of high hepatic concentrations of bile acids. Pro-

inflammatory mediators lead to the activation of resident liver macrophages (i.e. 

Kupffer cells) and infiltrating immune cells. PI3K p110γ deficient mice revealed 

significantly diminished liver fibrosis compared to wild-type (WT) mice.  

In a second model for chronic liver injury, a dietary model for non-alcoholic 

steatohepatitis (NASH), PI3K p110γ deficiency surprisingly had no protective 

effect, but even aggravated liver injury. NASH is primarily caused by a 

dysregulation of fatty acid (FFA) metabolism, which leads to hepatic lipid 

accumulation. Free fatty acids then lead to the generation of reactive oxygen 

species (ROS) and subsequently to lipid peroxidation, which causes hepatic 

inflammation and fibrosis. 

Here, we found that PI3K p110γ  deficiency significantly enhanced hepatic FFA 

accumulation and ROS formation. As potential underlying cause for the enhanced 

FFA accumulation in the PI3K p110γ deficient mice we identified impaired FFA 

transport and enhanced β-oxidation. 

In conclusion, we provide experimental evidence that the effect of PI3K p110γ 

varies significantly, depending on the cause of liver injury. Particularly, in a model 

of NAFLD PI3K p110γ seems to inhibit hepatic steatosis, inflammation and 
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fibrogenesis. Currently, PI3K p110γ inhibitors are under clinical development for 

the treatment of inflammatory disorders and cardiovascular dysfunctions. Based 

on the data of the present study one has to be very cautious regarding harmful 

effects of a PI3K p110γ inhibition in patients with the metabolic syndrome or known 

fatty liver disease, respectively.  
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I. Introduction 

 

 

I.1. Liver diseases  

 

There exist several reasons for acute liver injury like intoxication with drugs or 

alcohol or viral infections, which can lead to severe liver injury. As the liver has a 

high regenerative potential acute injury rarely leads to liver failure. The major 

problem is when liver diseases get chronic and lead to a permanent injury of the 

liver by inducing chronic hepatic inflammation and subsequently liver fibrosis. This 

permanent remodelling of the liver can lead to cirrhosis and complete liver failure. 

 

 

I.1.1. Liver fibrosis 

 

The extracellular matrix (ECM), which guarantees structural (and functional) 

integrity of the hepatic parenchyma, consists mainly of collagens, elastins and 

proteoglycans. In the healthy liver the ECM comprises less than 3% of the relative 

area on liver tissue sections (Geerts, 2001), whereas in liver fibrosis the 

percentage of ECM rises significantly. Liver fibrosis can be considered as a 

wound-healing response characterized by excessively enhanced deposition of 

ECM proteins, which eventually cause organ dysfunction (Bataller and Brenner, 

2005). Additionally, the composition of ECM changes after liver injury. In the 

fibrotic liver ECM is mainly composed of fibrillar collagens (I and III) and 

fibronectin, whereas the normal matrix is mainly composed of collagens IV and VI 

(Gressner, 1995). These changes in quantity and quality cause impaired liver 

function, because the flow of plasma between the sinusoidal lumen and the 

hepatocytes is impaired (Hernandez-Gea and Friedman, 2011). In chronic liver 

injury the intra-hepatic accumulation and alteration of ECM is mainly triggered by 

liver inflammation and can be caused either by an overproduction of ECM 

proteins, a deficiency in ECM degradation or by a combination of both.  
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I.1.2. Etiological factors for chronic liver disease 

 

I.1.2.1. Viral hepatitis 

 

Currently, five different forms of the hepatitis virus are known (Hepatitis A-E). The 

first three are the most relevant while the others have a rather low incidence. 

Hepatitis A and B have been extensively studied and there exists a vaccine 

against both. The Hepatitis A virus does not play a role regarding liver fibrosis 

because infections with this virus do not become chronic.  

Hepatitis B can take a chronic course in about 5% of cases (Elgouhari et al., 

2008), and chronic infection has an approximately 30 % probability to progress to 

liver cirrhosis. 

The worldwide seroprevalence of hepatitis C virus (HCV) antibodies is estimated 

to be 3% with marked geographic variations from 1% in North America to 10% in 

North Africa (Wasley and Alter, 2000). Consequently, this disease is one of the 

most frequent liver diseases in the world. One of the main problems is that until 

now there exists no vaccine against this virus. In a significant number of cases the 

HCV virus persists in the liver and causes chronic inflammation leading to liver 

fibrosis, cirrhosis and liver cancer.  

 

 

I.1.2.2. Alcoholic steatohepatitis (ASH) 

 

Chronic alcohol consumption is one of the main etiological factors for chronic liver 

disease worldwide (Barve et al., 2008), as the liver is the site of alcohol 

metabolism. However, only a fraction of drinkers develop significant hepatic 

inflammation and even less progress to hepatic fibrosis and cirrhosis. Still, 

alcoholic liver disease (ALD) is one of the most common reasons for liver 

transplantation in Europe and the United States (Adachi and Brenner, 

2005,Bellentani et al., 1994).  

Alcohol is predominantly metabolized in hepatocytes, which also accumulate 

dietary lipids, rendering interactions between alcohol- and lipid-metabolism very 

likely. It has been known quite a while that ethanol stimulates hepatic fatty acid 

synthesis (Lieber and Schmidt, 1961). During the oxidation of ethanol to 

acetaldehyde NAD is reduced to NADH, which promotes fatty acid synthesis while 



  I. Introduction 

 12

counteracting lipid catabolism and consequently leads to fat accumulation in 

hepatocytes (Galli et al., 1999,Lieber and Schmidt, 1961). Even moderate alcohol 

consumption can thus promote the development of hepatic steatosis, which 

predisposes to fibrosis and cirrhosis, but is reversible trough abstinence (Teli et 

al., 1995). 

 

 

I.1.3. Non-alcoholic fatty liver disease (NAFLD) 

  

I.1.3.1. Definition 

 

The term NAFLD summarizes a range of hepatic diseases from hepatic steatosis 

without inflammation to hepatic steatosis plus inflammation and fibrosis (non-

alcoholic steatohepatitis; NASH). The first clinical cases of NASH were described 

in 1980 (Ludwig et al., 1980). The phenotype of NASH includes histomorphological 

changes like macrovesicular steatosis, pericellular fibrosis, ballooning of 

hepatocytes and inflammatory cell foci (Contos and Sanyal, 2002), and in this 

steps resembles the changes seen in alcoholic liver disease (ASH). 

 

 

I.1.3.2. Prevalence  

 
Over the last 20 years it has become evident that the metabolic syndrome, which 

is characterized by hypertriglyceridemia, hypertension, obesity and insulin 

resistance (Rector et al., 2008), can lead to non-alcoholic fatty liver disease 

(NAFLD) and non-alcoholic steatohepatitis (NASH) respectively. Due to the 

increase of patients with the metabolic syndrome NAFLD has become the most 

common cause for chronic liver diseases in industrialised countries (Clark et al., 

2002). Here, the prevalence of NAFLD is estimated between 20% and 30% 

(Browning et al., 2004,Ruhl and Everhart, 2004). NASH has a worldwide 

prevalence of 5% to 10%, but there are large geographic differences concerning 

the percentage of cases (Reid, 2001,Younossi et al., 2002). In many patients also 

NASH stays asymptomatic and is only discovered during examination of an 
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unrelated medical problem (Powell et al., 1990). However, up to 80 % of NASH 

patients develop liver fibrosis and 16% develop cirrhosis (Reid, 2001). 

 

 

I.1.3.3. Pathogenesis  

 

In the late nineties Day and James presented their “two-hit” hypothesis for the 

pathogenesis of NASH (Day and James, 1998), the “first hit” being the hepatic lipid 

accumulation, which is caused by a dysregulation of fatty acid metabolism. The 

liver is then sensitized to a “second hit”, which is an additional pathogenic insult 

and causes hepatic inflammation by enhanced cytokine production and promotion 

of oxidative stress. Known factors that can contribute to the progression of liver 

steatosis to NASH are hepatic inflammation, gut derived endotoxin, nutritional 

deficiencies or drugs that contribute to oxidative stress by generation of reactive 

oxygen species (ROS) (Clouston and Powell, 2002). NASH can also be caused by 

a combination of different factors so that the development of NASH is determined 

by an interaction of environmental and genetic factors (Day, 2002). 

 

 

I.2. Hepatic stellate cells (HSC) 

 

In the progression of liver fibrosis and this way also NASH hepatic stellate cells 

(HSC) play a crucial role, because this cell population is the main manufacturer of 

ECM proteins in the liver (Reeves and Friedman, 2002). HSC were first described 

in 1876 by von Kupffer (Wake, 1971) and are today known to be the central 

mediators of hepatic fibrosis in chronic liver disease (Bataller and Brenner, 

2005,Friedman, 2008b). HSC reside in the subendothelial space (Disse) between 

the hepatocytes and the sinusoidal endothelial cells, having intimate contact to 

both cell populations to facilitate intercellular transport of cytokines and other 

soluble markers (Friedman, 2008a). 

In chronic liver injury HSC are activated by so-called pro-fibrogenic stimuli, which 

are mainly cytokines and growth factors that are secreted by neighboring cells like 

hepatocytes, thrombocytes and Kupffer cells (Maher, 2001). But also reactive 

oxygen species (ROS) and lipid peroxides stimulate HSC to become fibrogenic 
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(Galli et al., 2005), as well as Fas-mediated apoptosis of hepatocytes. This first 

step is called initiation and leads to changes in HSC phenotype as well as in gene 

expression. Upon activation HSCs transform from a quiescent cell type, which 

stores vitamin A, to an activated myofibroblast, which expresses α-smooth muscle 

actin (αsma) and starts to proliferate (Friedman, 2000,Geerts et al., 

1991,Ramadori et al., 1990). At the same time, activated HSC acquire pro-

inflammatory and fibrogenic properties (Friedman, 2008a). This is the second step, 

the perpetuation of HSC activation. In this state HSC proliferate and migrate to the 

site of tissue damage, where they accumulate and start to secrete a large variety 

of ECM proteins, leading to the build up of fibrous scar tissue (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) healthy liver with quiescent HSC (b) In chronic liver injury the activation of Kupffer 
cells and thrombocytes leads to paracrine HSC activation and subsequently to the accumulation of 
ECM as well as an alteration of ECM composition. The hepatic function deteriorates due to 
hepatocyte apoptosis, loss of sinusoidal endothelial fenestrae and distortion of hepatic veins.  

Figure by Hernandez-Gea and Friedman. (Hernandez-Gea and Friedman, 2011) 
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The predominant ECM protein in activated HSC is collagen type I. Its production is 

regulated transcriptionally by enhancing mRNA expression and 

posttranscriptionally by increasing collagen I mRNA stability (Lindquist et al., 

2004,Stefanovic et al., 1999). At the same time the expression of tissue inhibitor of 

matrix metalloproteinases 1 (TIMP-1) is upregulated in activated HSC (Benyon 

and Arthur, 2001). As TIMPs inhibit matrix metalloproteinases (MMPs), which are 

responsible for the degradation of fibrous tissue, activated HSC also contribute to 

the imbalance of fibrogenesis and fibrolysis in chronic liver injury by inhibiting ECM 

degradation. The most potent stimulus for collagen I expression in activated HSC 

is the transforming growth factor β (TGFβ) (Poli, 2000), which is produced by HSC 

(autocrine) but is also derived from paracrine sources (Kupffer cells, sinusoidal 

epithelial cells) (Ghiassi-Nejad and Friedman, 2008,Inagaki and Okazaki, 2007).  

Activated HSC are characterized by enhanced pro-inflammatory gene expression, 

including monocyte chemoattractant protein 1 (MCP-1) (Marra et al., 1993), which 

contributes to hepatic inflammation by recruiting activated lymphocytes and 

monocytes. Several cytokines, like TNF and INFγ, are known to induce the 

secretion of leukocyte chemoattractants and expression of adhesion markers in 

HSC (Maher, 2001). Additionally, activated HSC highly express TLR4 and respond 

to LPS treatment with enhanced responsiveness to TGFβ and elevated 

inflammatory response (Paik et al., 2003,Seki et al., 2007). This way activated 

HSC also contribute to hepatic inflammation. 

The next and last step is called resolution and occurs, if liver injury subsides, 

leading to HSC apoptosis or reversion to a quiescent phenotype (Ghiassi-Nejad 

and Friedman, 2008).  

 

 

I.3. Phosphatidyl-insitol-3-kinase (PI3K)  

 

Phosphatidyl-insitol-3-kinase (PI3K) is a central mediator in many signaling 

pathways, e.g. in insulin signaling (Alessi and Downes, 1998) and in 

proinflammatory signaling via mTOR (Hay and Sonenberg, 2004). PI3K is a 

heterodimeric lipid and protein-kinase, which consists of a regulatory (85kD) and a 

catalytic subunit (110kD). The PI3K family can be divided into three subclasses. 

Class I is subdivided into class IA and IB. Class IA consists of a regulatory subunit 

(p85α, p85β) and a catalytic subunit (p110α, p110β, p110δ) and is activated by 
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receptor tyrosine kinases (e.g. PDGF receptor, insulin receptor) whereas class IB 

is activated by G protein-coupled receptors (e.g. chemokine receptors) and 

consists of p101 (regulatory subunit) and p110γ (catalytic subunit) (reviewed by 

(Gunzl and Schabbauer, 2008).  

After PI3K activation several second messenger phoshoinositol lipids (PIPs) are 

generated providing a link to intracellular downstream signaling, which is important 

in cell differentiation, proliferation, immunity, apoptosis and growth (Katso et al., 

2001). IA and IB classes of PI3K can be inhibited by phosphatase and tensin 

homologue (PTEN), a lipid phosphatase, which dephosphorylates PIP3 to PIP2 

(Chalhoub and Baker, 2009). Downstream of PI3K a serin-threonine kinase 

(AKT/PKB) is activated, which in turn regulates several cellular processes by 

activation or inhibition of downstream proteins. The mammalian target of 

rapamycin (mTOR) is activated by AKT and subsequently activates the ribosomal 

p70 S6 kinase (p70S6K), which stimulates protein synthesis and cell growth (Hay 

and Sonenberg, 2004). Besides, AKT stimulates proliferation by inhibiting 

glycogen synthase kinase 3 (GSK3) and cell survival by inhibiting pro-apoptotic 

proteins (e.g. mammalian forkhead members of the class O1 (FoxO1)) (Burgering 

and Medema, 2003,Liang and Slingerland, 2003) (Figure 2). 
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Figure 2: PI3K signaling pathway: Different subclasses of PI3K each consisting of a regulatory and 
catalytic subunit are activated by a specific kind of receptor. Class IA PI3K is activated by receptor 
tyrosine kinases (RTK), class IB by G protein-coupled receptors (GPCR). Several cellular 
processes like proliferation, protein synthesis and cell survival are regulated via downstream 
activation of AKT. Based on a Figure by Shiojima and Walsh (Shiojima and Walsh, 2006). 

 

 

We are just beginning to understand the distribution and roles of different PI3K 

isoforms in the liver. PI3K isoforms p110α and p110β are expressed ubiquitously. 

PI3K p110γ has mainly been described in immune cells but has also been reported 

in hepatocytes (Hohenester et al., 2010,Misra et al., 2003). It has been reported 

that the cytoprotective effect of cAMP-GEF in hepatocytes is associated with PI3K 

p110α/p110β activation (Gates et al., 2009), and p110α is known to be necessary 

for insulin signaling in the liver (Foukas et al., 2006). Further, Hohenester and 

colleagues revealed that PI3K p110γ contributes to bile-salt induced apoptosis in 

hepatocytes (Hohenester et al., 2010). In general, PI3K signaling is known to play 

a crucial role in glucose and lipid metabolisms. Most recent studies indicate a role 

of p110α in the development of fatty liver. Hepatic TG content was significantly 

decreased in liver-specific p110α knockout mice compared to p110α +/+ mice, 
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and p110α knockout prevented high-fat diet-induced liver steatosis, whereas 

p110β knockout mice revealed neither under standard chow nor upon high fat diet 

alterations of hepatic lipid content (Chattopadhyay et al., 2011). However, liver 

glycogen content was reduced in both groups of knockout mice, and serum 

glucose and insulin were elevated in p110β knockout mice compared to controls. 

Further, PTEN deficient mice spontaneously developed significant hepatic 

steatosis at the age of 10 weeks, which further progresses with ballooning of 

hepatocytes, an inflammatory cell infiltrate and sinuosidal fibrosis with aging 

(Watanabe et al., 2005). Further, several studies have shown a role of PI3K in liver 

fibrosis. Blocking PI3K activity, using either pharmacological or genetic 

approaches, inhibits HSC proliferation and collagen expression through 

interruption of key downstream signaling pathways including Akt and p70 S6 

Kinase (p70S6K) (Gabele et al., 2005,Gentilini et al., 2000,Reif et al., 2003). 

Further, adenoviral delivery of a dominant negative mutant of p85, which contains 

a mutant regulatory subunit that lacks the binding site for the 110-kDa catalytic 

subunit of the enzyme, to HSC inhibits progression of hepatic fibrosis in mice 

following bile duct ligation (BDL) (Son et al., 2009).  

 

 

I.4. Experimental models for chronic liver disease 

 

I.4.1. The bile duct ligation model (BDL) 

 

There are several ways to induce experimental hepatic fibrosis (reviewed by 

(Hayashi and Sakai, 2011). One of the most common used is the bile duct ligation 

(BDL) model, which induces cholestatic liver injury (Bataller et al., 2005) 

(Desmouliere et al., 1997,Tuchweber et al., 1996). The bile duct ligation model has 

already widely been used to evaluate genetic factors, which are associated with 

hepatic fibrogenesis. Experimental liver fibrogenesis is for example increased in 

IL-6 knockout mice, but decreased in TNF- and CD14 knockout mice (Ezure et al., 

2000,Gabele et al., 2009,Isayama et al., 2006). 
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I.4.2. Models for non-alcoholic steatohepatitis (NASH) 

 

There exist several experimental animal models, which use genetic defects or 

targeted over-expression of specific genes to induce NASH by impairing hepatic 

lipid metabolism or inducing obesity in rodents (Anstee and Goldin, 2006).  

One widely used model for NASH is the leptin-deficient ob/ob mouse, which 

develops obesity and diabetes but no significant liver injury. This is due to leptin 

deficiency, because leptin is essential for the hepatic fibrogenic response 

(Leclercq et al., 2002). Transgenic mice over-expressing SREBP-1 develop fatty 

liver spontaneously (Shimano et al., 1996) and PPARα null mice show lipid 

accumulation in the liver after fasting or high fat diet (Kersten et al., 1999). 

These models are sufficient to evaluate the specific role of certain factors in the 

development of liver disease in vivo, but lead only rarely to the pathophysiology of 

liver injury as seen in patients and thus might not reflect the natural etiology of the 

disease. There exist, however, also experimental models, which are not 

dependant on genetic defects and should be a better way to mimic NASH.  

Another approach to induce NASH is to change nutrition to different diets like high-

fat and/or sucrose-rich diets (Surwit et al., 1995). However, in rodents these diets 

lead only to little expression of proinflammatory factors and minimal fat 

accumulation in the liver (Anstee and Goldin, 2006). The by far most often used 

nutritional model is the methionine-choline deficient diet (MCD) (Weltman et al., 

1996). Feeding this diet leads to a rapid development of hepatic steatosis, 

inflammation and subsequent fibrosis (Koppe et al., 2004), because the secretion 

of very low density particles (VLDL) is impaired. This model does, however, not 

sufficiently mimic NASH as seen in patients. This diet deprives rodents of a vital 

amino acid rather than providing over-nutrition. So, instead of becoming obese, 

these animals rapidly loose weight (Kirsch et al., 2003,Romestaing et al., 2007). 

In 2007 Matsuzawa et al. described another dietary model for NASH, which 

closely resembles human NASH (Matsuzawa et al., 2007). This model uses an 

atherogenic diet, the so-called Paigen-diet containing 15% cocoa butter, 1.25% 

cholesterol and 0.5% sodium cholate, which was originally created by Beverly 

Paigen to induce atherosclerosis in rodents (Paigen et al., 1985). This model 

appears as suitable model to study the development and progression of NASH, 

because rodents, apart from atherosclerosis, were found to develop liver steatosis 
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with subsequent hepatic inflammation and mild fibrosis (Dorn et al., 2010a,Dorn et 

al., 2010b,Jeong et al., 2005)  

 

 

I.5. Aim of the thesis  

 

The aim of this thesis was to assess the expression and function of PI3K p110γ in 

chronic liver disease, with a focus on liver fibrosis. The expression of PI3K p110γ 

was analyzed in hepatic tissue specimens obtained from different experimental 

models as well as patients with chronic liver disease. Further, the BDL and a 

NASH model were applied to PI3K p110γ knockout mice and wild-type control 

mice. Moreover, the expression and function of p110γ was assessed in HSC. 
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II. Materials and Methods  

 

 

II.1. Materials 

 

II.1.1. Cells 

 

For the in vitro experiments an immortalized activated human HSC line (HSC-
hTERT) generated by ectopic expression of hTERT (human telomerase reverse 

transcriptase) was used, which has been established and characterized by 

Schnabl et al. (Schnabl et al., 2002). 

Additionally primary human or mouse HSCs were used (see II.2.). 

 

II.1.2. Animals 

 

Control animals (female C57Bl/6) were purchased at Charles River Laboratories 

(Sulzfeld, Germany) at the age of 8 weeks. 

Female PI3Kp110γ deficient mice, on a C57Bl/6 background, backcrossed 10 

times, lacking the catalytic subunit p110γ, were obtained as a kind gift from Prof. J. 

Penninger (IMBA, Akademie der Wissenschaften, Vienna, Austria). These mice 

show a normal phenotype with slight deficiencies in T-cell development and 

activation as well as impaired thymocyte development and reduced macrophage, 

dendritic- and mast cell migration (Del Prete et al., 2004,Hirsch et al., 2000,Sasaki 

et al., 2000,Wymann et al., 2003). 

All animals received human care in compliance with institutional guidelines and 

were housed under the same standard conditions, namely at room temperature 

(22 °C) in a 12 h dark and light cycle. Food and water was accessible at all times. 

Mice were fed standard chow (Ssniff® R/M-H Cat.# V1534-0) or an NASH 

inducing diet (NASH model) which was also prepared by Ssniff (Soest, Germany) 

and contains 17% fat, supplemented with 1.25% cholesterol and 0.5% cholate, 

according to Matsuzawa et al. (Matsuzawa et al., 2007). 
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II.1.3. Primers 

 
Name 

 

forward primer reverse primer  

18s AAA CGG CTA CCA CAT CCA AG CCT CCA ATG GAT CCT 
CGT TA 

Acox-1 QIAGEN QuantiTect Primer Assay 
 

 

CD36 QIAGEN QuantiTect Primer Assay 
 

 

Collagen I CGG GCA GGA CTT GGG TA CGG AAT CTG AAT GGT 
CTG ACT 

Cyp4A10 QIAGEN QuantiTect Primer Assay  
 

 

DGAT2 QIAGEN QuantiTect Primer Assay 
  

 

FABP QIAGEN QuantiTect Primer Assay   
 

Fas QIAGEN QuantiTect Primer Assay   
 

FASN QIAGEN QuantiTect Primer Assay   
 

IL-8 (human) TCT GCA GCT CTG TGT GAA 
GGT GCA GTT 
 

AAC CCT CTG CAC CCA 
GTT TTC CT 

LPL QIAGEN QuantiTect Primer Assay   
 

MCP-1 TGG GCC TGC TGT TCA CA TCC GAT CCA GGT TTT TAA 
TGT A  

Nox2 QIAGEN QuantiTect Primer Assay   
 

p47phox QIAGEN QuantiTect Primer Assay  
 

Pai-1 QIAGEN QuantiTect Primer Assay  
 

PI3K p110 γ 
 

QIAGEN QuantiTect Primer Assay  

PI3K p110 γ 
(human) 
 

QIAGEN QuantiTect Primer Assay  

TGFβ QIAGEN QuantiTect Primer Assay  
 

TNF QIAGEN QuantiTect Primer Assay  
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Lyophilized primers were either purchased at SIGMA Genosys (Hamburg, 

Germany) or as QuantiTect Primer Assays at Qiagen (Hilden, Germany). Primers 

were solved in H2Odist. or TE buffer respectively and stored at -20 °C.  
 

 

II.1.4. Buffers and Solutions 

 

 

Sirius Red/ Fast Green solution (0.1%) 

(Collagen stain) 

 

100 mg Direct Red 80 (Sirius Red) 

100 mg Fast Green FCF 

 in 100 ml Picric acid 

 

Sudan III solution 

(Lipid stain) 

0,6 g Sudan III in 

200 ml Ethanol 70 %  

boil up to clear the solution and filtrate 

through folded filter 

 

TBS(T) 20mM Tris pH 7.5 

150mM NaCl 

(0,1% Tween 20) 

 

TE-buffer 10 mM Tris/HCl 

1 mM EDTA      pH 8.0 

 

Cell Culture Medium 

DMEM (high glucose/10%FCS) 
 

4.5 g/l Glucose 

300 µg/ml L-Glutamine 

Supplemented with: 

10% (v/v) FCS 

400 U/ml Penicillin 

50 µg/ml Streptomycin 
 
 
 
 
 
 



  II. Materials and Methods 
 

 24

II.1.5. Chemicals and Reagents 

 

 
Agarose SeaKem® LE  
 

Biozym, Hess/Oldendorf, Germany 

Bovine serum albumin (BSA) 
 

PAA Laboratories, Pasching, Austria 

Chloroform  
 

Merck, Darmstadt, Germany 

DEPC Carl Roth GmbH, Karlsruhe, Germany 
 

Direct Red 80 (Sirius Red) 
 
 

SIGMA, Deisenhofen, Germany  

DMEM medium 
 

PAA Laboratories, Cölbe, Germany 
 

DMSO 
 

SIGMA, Deisenhofen, Germany 

Eosin SIGMA, Deisenhofen, Germany 
 

Ethanol J.T. Baker, Deventer, The Netherlands 
 

Fast Green FCF 
 

SIGMA, Deisenhofen, Germany 

Fatty acid free BSA  
 

SIGMA, Hamburg, Germany 
 

FCS (fetal calf serum) PAN-Biotech, Aidenbach, Germany 
 

Haematoxylin 
 

SIGMA, Deisenhofen, Germany 

Methanol Merck, Darmstadt, Germany 
 

Milk powder  
 

Carl Roth, Karlsruhe, Germany 

Oleic acid  
 

SIGMA, Deisenhofen, Germany 

PBS PAA Laboratories, Pasching, Austria 
 

Penicillin Invitrogen, Karlsruhe, Germany 
 

Picric acid 
 

SIGMA, Deisenhofen, Germany 

Ponceau S  SIGMA, Deisenhofen, Germany 
 

Roti®-Histol Carl Roth GmbH, Karlsruhe, Germany 
 

Streptomycin Invitrogen, Karlsruhe, Germany 
 

Sudan III SIGMA, Deisenhofen, Germany 
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TissueTek®  SAKURA, Finetek, Zoeterwoude, 

Netherlands 
 

Triton X-114 SIGMA, Deisenhofen, Germany 
 

Trypsin/EDTA PAA Laboratories, Cölbe, Germany 
 

Tween 20® SIGMA, Deisenhofen, Germany 
 

β-Mercaptoethanol 
 

SIGMA, Deisenhofen, Germany 
 

 

 

II.1.6. Laboratory expendables 

 

 
ABgene® PCR Plates (Thermo-Fast® 
384) 

Thermo Fisher Scientific, Karlsruhe, 
Germany 
 

Cell culture flasks T25, T75, T125 Corning, New York, USA 
 

CryoTube vials  
 

Nunc, Roskilde, Denmark 

ENDOSAFE tubes (borosilicate) 
 

Charles River, Margate, Great-Britain 

Falcon tubes (15 ml and 50 ml) Corning, New York, USA 
 

Glassware (various) Schott, Mainz, Germany 
 

Impact 384 Tips (Pipette tips 30µl for 
Matrix Pipette) 
 

Thermo Fisher Scientific, Karlsruhe, 
Germany 
 

Multi-well plates Corning, New York, USA 
 

Needles MicrolanceTM 3 (22G and 27G) 
 

Becton Dickinson, Madrid, Spain 

Pipette Tips 
(10, 20, 100 und 1000 µl) 
 

Eppendorf, Hamburg, Germany 
 

Pipettes (stripettes®) 
(5, 10, 25, 50 ml) 
 

Corning, New York, USA 
 

Reaction vessels (1.5 and 2 ml) Eppendorf, Hamburg, Germany 
 

Safe-Lock tubes Biopur® Eppendorf, Hamburg, Germany 
 

Scalpels (No. 11) Pfm, Köln, Germany 
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Strip tubes (0.2 ml)  Peqlab, Erlangen , Germany 

 
Syringes PlastipakTM Luer 1ml 
 

Becton Dickinson, Madrid, Spain 

 

 

II.1.7. Laboratory instruments 

 

 
ABI PRISM® 7900 HT  
Sequence detection system 
 

Applied Biosystems, Carlsbad, USA 

Accu-jet® Pipette controller  Brand, Wertheim, Germany 
 

ADVIA 1800 analyzer  
 

Siemens Healthcare Diagnostics Inc., 
Eschborn, Germany  
 

Curix 60 automatic film developer 
 

Agfa, Köln, Germany 

EMax® Microplate Reader 
 

MWG Biotech, Ebersberg, Germany 

Eppendorf Centrifuge 5424 
 

Eppendorf, Hamburg, Germany 

Eppendorf Pipettes (10-1000) 
 

Eppendorf, Hamburg, Germany 

GeneAmp® PCR System 9700 Applied Biosystems, Foster City, USA 
 

Homogenisator MICCRA D-1  ART Prozess- & Labortechnik, 
Mühlheim, Germany 
 

HS 250 Basic Orbital Shaker 
 

IKA® Werke, Staufen, Germany 

Kern 440-47 N (scale) Kern & Sohn GmbH, Balingen-
Frommern, Germany  

 
Kryostat CM 3050 S  
 

Leica, Wetzlar, Germany 
 

Megafuge 1.0 R 
 

Heraeus, Hanau, Germany 

Microm HM 400 Microtome Thermo Fisher Scientific, Karlsruhe, 
Germany 
 

Multichannel Equalizer Matrix Pipette 
 

Thermo Fisher Scientific, Karlsruhe, 
Germany 
 

Mupid®-exU Submarine  
Electrophoresis System  

Gel Company GmbH Tübingen 
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 Germany 

 
NanoDrop® ND-1000 UV/VIS 
spectrophotometer  
 

Peqlab, Erlangen, Germany 

Olympus CKX41 with ALTRA20 soft 
imaging system 
 

Olympus Hamburg, Germany 

PowerEase® 500 Power supply  
 

Invitrogen, Darmstadt, Germany 

RTcolor spot camera with MetaVue 
6.3r3 software  

Visitron Systems Inc., Puchheim, 
Germany and 
Molecular Devices, Sunnyvale, CA, USA 
 

Sartorius Handy H51-D (scale) 
 

Sartorius AG, Göttingen, Germany 

Thermomixer comfort  
 

Eppendorf, Hamburg, Germany 

Ultrasonoscope Sonoplus hp 70  

 

Bandelin Electronics, Berlin, Germany 

XCell IITMBlot Module 
 

Invitrogen, Darmstadt, Germany 

XCell SureLock® Mini-Cell 
  

Invitrogen, Darmstadt, Germany 
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II.2. Methods 

 

 

II.2.1. Cell culture (in vitro experiments) 

 

II.2.1.1. Isolation of primary hepatic stellate cells 

 

Primary human hepatic stellate cells (HSC) were isolated in co-operation between 

the our working group and the Center for Liver Cell Research (Department of 

Surgery, University of Regensburg, Germany) using a modified two-step EGTA/ 

collagenase perfusion procedure (Hellerbrand et al., 2008,Ryan et al., 1993,Weiss 

et al., 2002). 

Human liver tissues used for cell isolation were obtained from liver resections of 

patients undergoing partial hepatectomy for metastatic liver tumors of colorectal 

cancers. Experimental procedures were performed according to the guidelines of 

the charitable state controlled foundation HTCR (Human Tissue and Cell 

Research), with the informed patient's consent approved by the local ethical 

committee of the University of Regensburg (Thasler et al., 2003). 

Further, HSC were isolated on a regular basis within our working group from 8-12 

week old female BALB/c mice (Charles River Laboratories, Sulzfeld, Germany) 

according to procedures described previously (Hellerbrand et al., 1996). 

Human and murine HSC provided for this project, were activated by cell culture on 

uncoated tissue culture dishes as described (Hellerbrand et al., 1996).  
 

 

II.2.1.2. Cultivation of cell lines 

 

All cell culture work was done in a laminar flow bio-safety cabinet (Hera Safe, 

Heraeus, Osterode, Germany). The cells were cultivated under a 10% CO2 

atmosphere at 37 °C in a cell incubator (Hera Cell). 

As a culture medium DMEM containing 4.5 g/l glucose and 300 µg/ml L-glutamine 

supplemented with 10% (v/v) FCS, 400 U/l penicillin and 50 µg/ml streptomycin 

was used. For cell splitting cells were washed with PBS and detached with trypsin 

(0.05%)/EDTA (0.02%) (PAA Laboratories, Cölbe, Germany). The reaction was 

stopped by addition of fresh culture medium. Subsequently, cells were 
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resuspended and distributed to new cell culture flasks. Cell growth and 

morphology were controlled using microscopy (Olympus CKX41 with ALTRA20 

Soft Imaging System, Olympus, Hamburg, Germany). Cell culture waste was 

autoclaved before disposal (Sanoclav; Wolf, Geislingen, Germany). 

 

 

II.2.1.3. Determination of cell number and viability  

 

Cell number and viability were determined by trypan blue exclusion test. The cell 

suspension was diluted 1:2 with trypan blue solution (Sigma, Deisenhofen, 

Germany) and applied on a Neubauer haemocytometer (Marienfeld GmbH, 

Lauda- Königshofen, Germany). Cells with impaired cell membrane integrity were 

stained blue, and could be clearly distinguished from intact cells under microscopic 

inspection. After counting the cells in all four quadrants of the haemocytometer the 

cell number could be calculated with the following equation: 

 

Cell number/ml = C x df x 104 / 4 

 

C = counted cell number in all four quadrants 

df = dilution factor  

 

The ratio of viable cells could be determined by setting the number of unstained 

cells in relation to the total cell number. 

 

 

II.2.1.4. Oleic acid preparation 

 

Oleic acid (C18:1 cis- 9) is a mono-unsaturated omega-9 fatty acid and is the most 

abundant fatty acid in human adipose tissue (Kokatnur et al., 1979).  

Preparation of the oleic acid stock solution was carried out as described by Cousin 

et al. (Cousin et al., 2001).  

First 0.1 N NaOH was prepared, sterile-filtered and then heated to 70 °C. Oleic 

acid was then added in the right amount and solved to get a 100 mM oleic acid 

stock solution. Additionally a 10% (w/v) aqueous free fatty acid free BSA solution 

was prepared, sterile-filtered and then heated to 55 °C in a water bath. 10 mM 
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oleic acid/ BSA solution was obtained by complexation of the appropriate amount 

of oleic acid stock solution with 10% BSA at 55 °C for 30 min. The obtained 

solution was then cooled to 25 °C and stored at −20 °C until use. For in vitro 

experiments the 10 mM oleic acid/ BSA stock solution was heated for 15 min at 55 

°C and subsequently cooled down to working temperature (37 °C) before use. 

Samples indicated as controls received an appropriate amount of vehicle stock 

solution, which was prepared analogous to the oleic acid/ BSA stock solution, only 

without adding the fatty acid. 

 

 

II.2.1.5. Tests with cells and cell supernatant  

 

Cell supernatant was tested using ELISA. The concentration of IL-8 was assessed 

using the human CXCL8/IL-8 DuoSet® ELISA kit (R&D systems Wiesbaden, 

Germany) according to the manufacturer’s instructions. A 96-well plate was coated 

with the capture antibody (mouse anti-human IL-8). Then unspecific binding sites 

were blocked with a blocking buffer (1% BSA and 0.05 Na3N in PBS). After 

washing with TBST supernatants and standard were applied to the wells. IL-8 was 

detected using a biotinylated detection antibody (goat anti-human Il-8). After 

incubation with streptavidin-HRP application of a substrate solution 

(Tetramethylbenzidine + H2O2) produced a color reaction. The reaction was 

stopped with 2N H2SO4 and measured as the optical density at 450 nm.  

 

Effects on cell viability were assessed by lactate dehydrogenase (LDH) leakage 

into the culture medium. Supernatant was centrifuged at 20,000 g for 5 min to 

pellet detached cells and cell debris. The clear supernatant was then used for 

analysis of LDH content. LDH can be quantified indirectly by reduction of 

nicotinamide adenine dinucleotide (NAD+) to NADH by a lactate dehydrogenase 

catalyzed oxidation of L-lactate to pyruvate. The measurements were performed at 

the Department of Clinical Chemistry and Laboratory Medicine (University of 

Regensburg, Germany), using the Lactate dehydrogenase L-P (LDLP) kit (Bayer 

HealthCare, Leverkusen, Germany) according to the manufacturer’s instructions 

and adapted to the Advia 1800 analyzer (Siemens Healthcare Diagnostics, 

Eschborn, Germany). 
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Cells were examined using PCR and Western blotting. These methods are 

described in detail later (in vivo experiments).  

 

II.2.2. Genotyping 

 

The genotype of the PI3K p110γ knockout mice was tested by isolation of DNA 

from the tip of the tail and subsequent PCR with specific primers, which were 

synthesised by SIGMA Genosys (Hamburg, Germany).  

DNA isolation was done using the QIAamp® DNA Mini Kit (Qiagen, Hilden) 

according to the manufacturer’s instructions. First the tissue was lysed in a 

Proteinase K solution at 56 °C, while shaking (Thermomixer, Eppendorf, Hamburg, 

Germany). After ca. 3 hours a specific buffer was added to the homogenate and 

Proteinase K was inactivated at 70°C for 10 min. An ethanol containing binding 

buffer was then added to the sample to provide the right conditions for the binding 

of the DNA to the membrane of a spin column. The homogenate was then added 

to the column and several washing steps were performed, until DNA could be 

eluted with an eluting buffer (Buffer AE) and stored at -20°C.  

 

 

For the PCR, the following primers were used: 

 

Primer Sequence 

- PI3K WT forward 5’ -TCAGGCTCGGATATTAGGTA- 3’  

- PI3K WT reverse 5’ -GCCCAATCGGTGGTAGAACT - 3’ 

- PI3K Mut forward 5’ -TACTGCAGAGGACAGAGGAGA - 3’ 

- PI3K Mut reverse 5’ -GGGGTGGGATTAGATAAATG - 3’ 

 

Isolated DNA and primers were mixed with a prefabricated Master-mix: 

 

25 µl Pre-Aliquoted Reddy MixTM PCR Master Mix (ABgene, Surrey, UK) 

1.5 µl primer forward 

1.5 µl primer reverse 

2 µl DNA 
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Mut          WT         Mut          WT           Mut         WT           Mut         WT 

WT (500bp) 

PI3K  -/-   (600bp) 

Wild-type                               PI3K p110γ -/-                      

The following program was used for the PCR reaction: 

 

94°C 2 min 

 

 

94°C 30 s 

56°C 30 s 

72°C 45s 

 

x 30 cycles 

 

4°C ∞ 

 

 

The PCR product was then analyzed by loading on a 1.5 % agarose gel with 

SYBR® Safe DNA gel stain (1:10,000) (Invitrogen, Darmstadt, Germany). For the 

electrophoresis the Mupid®-exU Submarine Electrophoresis System (Gel 

Company GmbH Tübingen Germany) was used. Mutant primers (Mut) lead only to 

PCR product in samples from knockout mice, whereas wild-type primers (WT) only 

in samples from wild-type-mice. The PCR product length also differed slightly (see 

Figure II.1.) 

 

 

 

 

 

 

 

 

Figure 3: Exemplary agarose gel with PCR products from wild-type and PI3K p110γ -/- mice with 
specific primers  

 

 

II.2.3. Animal models 

 

At the end of all experiments, mice were sacrificed by CO2 asphyxiation according 

to the guidelines of the Central Animal Facility (ZTL) of the University of 

Regensburg (Regensburg) (Central Animal Facility (ZTL) of the University of 

Regensburg 2009).  
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Liver Tissue was snap frozen in liquid nitrogen immediately after organ 

explantation and stored at -80 °C, whereas tissue for histological analysis was 

either fixed for 24 hours in buffered formaldehyde solution (3.7% in PBS) at room 

temperature, dehydrated by graded ethanol and embedded in paraffin or 

embedded in Tissue Tek® (Sakura, Finetek, Zoeterwoude, Netherlands) and 

stored at -80 °C. For serum analysis blood was collected by heart puncture. After 

clotting (30 min on ice) blood was centrifuged (10,000 g, 5 min) to remove cellular 

components. Serum (supernatant) was used for further analysis or stored at -20 

°C. 
 
 

II.2.3.1. Bile duct ligation 

 

Female PI3K p110γ knockout mice and C57Bl/6 wild-type mice (WT) were 

randomly allocated to 4 experimental groups (n=6). Bile duct ligation (BDL) or 

sham operation was performed as described previously (Uchinami et al., 2006). 

After midline laparotomy (1 cm) the common bile duct was exposed and ligated 

three times. Two ligatures were placed in the proximal portion of the bile duct and 

one ligature was located in the distal portion of the bile duct. The bile duct was 

then cut between the ligatures. Then the abdomen was closed again in layers. In 

sham operations the bile duct was touched three times with a forceps. After an 

experimental period of 3 weeks, blood and livers of the operated mice were 

harvested for further analysis.  

 

 

II.2.3.2. NASH model 

 

Female PI3K p110γ deficient mice and C57Bl/6 wild-type mice (WT) were 

randomly allocated to 4 experimental groups (n=6) receiving either standard chow 

(SC) or a high fat (HFD) diet consisting of 17% fat (lard and cocoa butter) 

supplemented with 1.25% cholesterol and 0.5% cholate, according to Matsuzawa 

et al. which has been shown to closely resemble pathophysiological changes 

observed in human NASH (Matsuzawa et al., 2007). After 12 weeks mice were 

sacrificed and blood and tissue was harvested.  
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II.2.4. Serum analysis 

 

Analysis of serological parameters was performed at the Department of Clinical 

Chemistry and Laboratory Medicine (University of Regensburg, Germany) using 

standard enzymatic assay kits according to the manufacturer’s instructions (Bayer 

HealthCare, Leverkusen, Germany) and adapted to the ADVIA 1800 analyzer 

(Siemens Healthcare Diagnostics Inc., Eschborn, Germany).  

The serum concentration of insulin and adiponectin was assessed using ELISA 

kits (DRG Instruments, Marburg, Germany and R&D systems, Wiesbaden, 

Germany, respectively) according to the manufacturer’s instructions.  

 

 

II.2.5. Histology and Immunohistochemistry 

 

Liver sections were processed as described in II.2.3. Slices (5µm) were made 

using the Microm HM 400 Microtome (Thermo Fisher Scientific, Karlsruhe, 

Germany) and mounted on glass slides (Menzel-Gläser, Braunschweig, Germany) 

to use for different staining procedures. Digital images were captured with an 

Olympus CKX41 microscope equipped with the ALTRA20 Soft Imaging System 

(Olympus, Hamburg, Germany). 

 

 

II.2.5.1. Haematoxylin/ Eosin staining 

 

The tissue mounted on glass slides was deparaffinised with Roti®-Histol (Carl 

Roth GmbH, Karlsruhe, Germany) a non harmful substitute to xylene. Then, the 

tissue was rehydrated and basophilic structures (cell nuclei) were stained with an 

aqueous solution of haematoxylin, followed by staining of acidophilic components 

(amino acids) with eosin. Following dehydration in an ethanol gradient the tissue 

was covered with Roti®-Histo Kit (Carl Roth GmbH, Karlsruhe, Germany) and a 

thin glass cover slip (Carl Roth GmbH).  
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II.2.5.2. Sirius red staining (Collagen stain) 

 

Slides were processed like described for the haematoxylin/ Eosin staining. After 

rehydration slides were washes in PBST and then incubated for 30 minutes in a 

solution of saturated picric acid containing 0.1% sirius red and 0.1% fast green. 

Sirius red is an acidophilic dye which in combination with picric acid specifically 

binds to collagen. Fast green was used as a counter-stain.  

 

 

II.2.5.3. Immunohistochemistry for αSMA, HNE and caspase 3 

 

The tissue mounted on slides was deparaffinated and rehydrated as described 

before. The slides were then incubated in TBST for 16 hours at 4°C. For the 

staining procedure the LSAB+ System HRP- Kit (Dako, Hamburg, Germany) was 

used according to the manufacturer’s instructions (labelled streptavidin biotin 

technique).  

After washing in TBST, the tissue was incubated for 10 min with a peroxidase 

block (3% H2O2) to quench endogenous peroxidase activity. Subsequently, the 

tissue was incubated for 30 minutes with a primary antibody: 

 

Antibody Dilution (in TBS/BSA 1%) 

- mouse α-alpha smooth muscle actin (Abcam, 

Cambridge, UK)  

 

1:200 

- rabbit anti-HNE antiserum (Alpha Diagnostic 

international, San Antonio, USA) 

 

1:5,000 

- rabbit active Caspase-3 (Epitomics, Burlingame, 

USA) 

 

1:100 

 

 

After washing in TBST the specimen were covered with a biotinylated link for 15 

min, followed by incubation with peroxidase-labelled streptavidin (15 min). Staining 

was made visible with a substrate-chromogen (3,3’-diaminobenzidine) solution 



  II. Materials and Methods 
 

 36

(incubation time: 1-5min). After rinsing with H2Odist. the tissue was dipped into an 

aqueous solution of haematoxylin for 15 seconds for counterstaining.  

 

 

II.2.5.4. Sudan III staining (Lipid stain) 

 

For the lipid stain it was necessary to use cryo-sections. For this, sections of the 

liver were embedded in TissueTek® (SAKURA, Finetek, Zoeterwoude, 

Netherlands) and frozen in liquid nitrogen. Sections were then stored at -80°C. 

Slices of 8 µm were made using the Kryostat CM 3050 S (Leica, Wetzlar, 

Germany) and mounted on pre-cooled SuperFrost® Plus glass slides (Menzel-

Gläser, Braunschweig, Germany). The tissue was dried at room temperature for 

approx. 1hour, rehydrated in TBS and then incubated in Sudan III solution (Carl 

Roth GmbH, Karlsruhe, Germany) for 20 min. As a counter-stain slides were 

shortly incubated in haematoxylin. Slides were then covered with aqueous 

mounting medium (Dako, Hamburg, Germany). 

 

 

II.2.5.5. TUNEL assay (TdT-mediated dUTP-biotin nick end labelling) 

 

The tissue mounted on slides was deparaffinised and rehydrated as described 

before. The slides were then incubated in paraformaldehyde for 15 min. After 

washing in PBS slides were incubated with Proteinase K for 10 min. For the 

staining procedure the Dead End Fluorimetric TUNEL system (Promega, 

Mannheim, Germany) was used according to the manufacturer’s instructions. 

Slides were incubated for 60 min with the NucMix in the dark at 37 °C. After 

washing slides were then covered with Vectashield-Dapi-H-100 (Vecta 

Laboratories, Burlingame, USA) and stored overnight at 4°C. 

 

 

II.2.5.6. Quantification of positive labeled areas 

 

The specific staining of specimen was quantified by image analysis. 10 fields per 

section were captured at 100x magnification and analyzed using an RTcolor spot 

camera (Visitron Systems Inc., Puchheim, Germany). Image analysis was 
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performed using MetaVue 6.3r3 software (Molecular Devices, Sunnyvale, CA, 

USA). Detection levels were set for the color of staining based on an intensely 

labelled point and a default color threshold. The degree of labeling (%) in each 

section was determined from the area within the color range divided by the total 

area.  

 

 

II.2.6. Quantification of hepatic Free fatty acids (FFA) and 

Triglyceride (TG) content  

 

To quantify hepatic total free fatty acids or triglyceride content total lipid was 

extracted from liver tissue sections using the method of Bligh and Dyer with slight 

modifications (BLIGH and Dyer W.J., 1959). To extract the lipids, liver sections 

(approx. 50 mg) were weighed into 1 ml of a chloroform/methanol mix (2:1 v/v) and 

incubated for 1 h at room temperature on an orbital shaker. After addition of 200 µl 

H2Odist., vortexing and centrifugation for 5 min at 3000 g, the lower lipid phase was 

collected and dried at room temperature. The lipid pellet was then re-dissolved in 

60 µl tert-butanol and 40 µl of a Triton X-114/methanol mix (2:1 v/v).  

Total FFA content was quantified using the Free Fatty Acids, Half Micro Test by 

Roche Applied Science and triglyceride content using the Roche Diagnostics 

Triglyceride assay (Roche Diagnostics, Mannheim, Germany) according to the 

manufacturer’s instructions. Both assays use an enzymatic colorimetric reaction 

for detection. Samples were measured at 540 nm with a spectrophotometer 

(EMax® Microplate Reader, MWG Biotech, Ebersberg, Germany). 

 

 

II.2.7. Quantification of mRNA expression 

 

II.2.7.1. Isolation of RNA  

 

For the isolation of total RNA the RNeasy® mini kit (Qiagen, Hilden, Germany) 

was used, according to the manufacturer’s instructions. 

First the liver samples were homogenized with the MICCRA D-1 Homogenisator 

(ART Prozess- & Labortechnik, Mühlheim, Germany) in the presence of a lysis 

buffer (RLT-buffer) which contains guanidine isothiocyanate and was 
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supplemented with β-Mercaptoethanol, so that RNases were immediately 

inactivated. Then the homogenate was applied to shredder-columns to get rid of 

debris. The flow through was then applied to columns which contain hydrophilic 

silicon-gel membranes, were RNA can bind in the presence of suitable buffer 

systems. Ethanol containing buffer was then added to the column to provide the 

right conditions for the binding of the RNA to the membrane. After several washing 

steps DNA was removed by incubation of the samples with DNase (Qiagen, 

Hilden, Germany). After further washing steps RNA was eluted from the column 

with RNAse free water (DEPC-water). The concentration of RNA was measured 

using the NanoDrop® ND-1000 UV/VIS spectrophotometer (Peqlab, Erlangen, 

Germany).  

 

 

II.2.7.2. Reverse Transcription (RT-PCR) 

 

The transcription of RNA to complementary DNA (cDNA) was performed using the  

Reverse Transcription System Kit (Promega, Mannheim, Germany) which contains 

a reverse transcriptase from the avian myeloblastosis virus (AMV). The following 

components were pipetted together to a master mix: 

 

4 µl MgCl2 (25 mM) 

2 µl 10x reverse transcription buffer 

2 µl dNTP mix (10 mM) 

1 µl random primer 

0.5 µl RNasin (ribonuclease inhibitor) 

0.6 µl AMV reverse transcriptase 

 

1 µg of RNA was then taken to a volume of 12 µl with RNAse free water and 

mixed with 10.1 µl of the master mix. For reverse transcription the samples were 

incubated for 30 min at 42 °C using the GeneAmp® PCRcycler (Applied 

Biosystems, Foster City, USA). In order to denature the AMV RT the temperature 

was then raised to 99 °C for 5 min. After cooling to 4 °C the obtained cDNA was 

diluted with 75 µl H2Odist. and stored at -20 °C. 
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II.2.7.3.  Quantitative real time polymerase chain reaction (PCR) 
 
Quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify 

the expression of specific mRNA. Quantification was done using the LightCycler II 

system (Roche Diagnostics, Mannheim, Germany) with SYBR® Green 

(QuantiTect SYBR® Green PCR Kit, Qiagen, Hilden, Germany) as the fluorescent 

reagent. Additionally to a conventional polymerase chain reaction (PCR) this 

system offers the possibility of quantification, which is accomplished by 

fluorescence measurements at the end and/or during a PCR cycle. SYBR® Green 

intercalates with double-strand DNA, so that the fluorescence signal increases 

proportionally to the amount of PCR products. To quantify the expression of a 

specific gene of interest the ∆CT method was used. The CT (cycle threshold) 

value marks the beginning of the exponential phase of the reaction, when the 

fluorescence of the sample rises above the threshold level. With this method the x-

fold expression of the gene of interest in a sample was calculated referring to a 

control, which was set 1 (Calibrator). As housekeeper a gene was used which is 

expressed constantly (18s).  

 

Calculation: 

 

Step1:  Normalising to the housekeeper (18s RNA) 

 
CT gene of interest - CT housekeeper = ∆∆∆∆CT sample 

 

Step 2:  Normalising to the Calibrator (control set 1) 

 
∆∆∆∆CT sample - ∆∆∆∆CT Calibrator = ∆∆∆∆∆∆∆∆CT 

Step 3:  Calculation of the x-fold expression  

 

x- fold expression = 2
(-∆∆∆∆∆∆∆∆CT) 
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The PCR reaction was mixed as follows: 

 

2.5 µl DEPC-H2O 

0.25 µl primer forward (20µM) 

0.25 µl primer reverse (20µM)  

5µl SYBR® Green PCR Master Mix 

2µl cDNA 

 

or  

 

2 µl DEPC-H2O 

1 µl QIAGEN QuantiTect Primer Assay 

5µl SYBR® Green PCR Master Mix 

2µl cDNA 

 

Measurements were performed using the ABI PRISM® 7900 HT Sequence 

detection system (Taqman) and the corresponding SDS 2.3 software (Applied 

Biosystems, Carlsbad, USA), which was also used for the analysis of the results.  

 

The following program was used for the PCR reaction: 

 

50°C 2min  

95°C 15 min 

 

 

95°C 15s 

55°-60° 20 s 

72°C 25s 

 

x 45 cycles 

 

Melting curve: 

 

60°C to 94°C 0.1 °C/s  

  

Fluorescence was measured at the end of each elongation step (72°C), and 

continually during the measurement of the melting curve to analyze the amplified 

DNA. Additionally 5-10µl of the PCR product were then mixed with loading buffer 

(Peqlab, Erlangen, Germany) and loaded on a 1-2% agarose gel with SYBR® 
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Safe DNA gel stain (1:10,000) (Invitrogen, Darmstadt, Germany) to determine 

PCR product length.  

 

 

II.2.8. Western blotting  

 

II.2.8.1. Isolation of proteins  

 

Proteins were extracted from liver samples using Pierce T-PER Tissue Protein 

Extraction Reagent (Thermo Fisher Scientific Inc, Rockford, USA) as lysis buffer. 

The buffer was supplemented with protease inhibitors prior to use: 

 

10ml Pierce T-PER Tissue Protein Extraction Reagent 

100 µl PMSF 100mM 

100µl Na3VO4 (Vanadate) 100mM 

1x Complete, Mini; Protease Inhibitor Cocktail Tablets (Roche Applied Science, 

Mannheim, Germany) 

 

Liver samples were homogenized with the MICCRA D-1 Homogenisator (ART 

Prozess- & Labortechnik, Mühlheim, Germany) in 300 µl lysis buffer. Then the 

homogenate was sonicated with an ultrasonoscope (Sonoplus hp 70, Bandelin 

Electronics, Berlin, Germany) 10 x 3 s at an intensity of 40%. Subsequently, the 

proteins were separated from the non soluble cell components by centrifugation at 

10,000 g (5 min, 4°C). The protein solution was transferred into new reaction tubes 

and stored at -20 °C. 

 

 

II.2.8.2. Analysis of Protein concentration (BCA assay) 

 

To determine the concentration of protein samples the BCA Protein Assay Kit 

(Pierce, Rockford, USA) was used according to the manufacturer’s instructions. 

With this assay protein concentration can be detected via a highly sensitive 

colorimetric reaction of copper with bicinchoninic acid (BCA). The first step is the 

chelation of copper with protein in an alkaline environment to form a blue-colored 

complex. In the second step BCA reacts with the cuprous cation Cu1+. The purple-
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coloured reaction product is formed by the chelation of two molecules of BCA with 

one cuprous ion. The BCA/copper complex is water-soluble and exhibits a strong 

linear absorbance at 562 nm with increasing protein concentrations.  

200µl of alkaline BCA/copper (II) solution (50 parts of solution A mixed with 1 part 

of solution B) was added to 5µl of protein solution in a 96-well plate incubated for 

5-15 min at 37°C. Thereafter samples were measured at 562 nm with a 

spectrophotometer (EMax® Microplate Reader, MWG Biotech, Ebersberg, 

Germany). Protein concentration could then be determined using a Standard curve 

made with BSA.  

 

 

II.2.8.3. SDS polyacrylamid gel electrophoresis (SDS-PAGE) 

 

For the SDS-PAGE the NuPAGE® -System of Invitrogen (Darmstadt, Germany) 

was used. 

 

 

Gels:    NuPAGE® Novex 4-12% Bis-Tris gel 1.0mm, 10well  

   NuPAGE® Novex 12% Bis-Tris gel 1.0mm, 10well  

 

 

Running buffer:  25 ml NuPAGE® MOPS SDS Running Buffer (20 x) 

   475 ml H2Omillipore 

   500 µl NuPAGE® Antioxidant  

 

First, protein solutions were prepared with XT Sample buffer (4x) (Biorad, 

München, Germany) and NuPAGE® Sample Reducing agent (10x) and diluted to 

a protein concentration of 1-4 µg/µl with PBS. These mixes were heated at 95°C 

for 5 minutes for denaturation.  

25µl (25-100µg) of the protein samples were then applied to the slots of a 

prefabricated gel. As the size marker the Full Range Rainbow Molecular Weight 

Marker (GE Healthcare, Freiburg, Germany) was used. 1 hour of electrophoresis 

was done using the PowerEase® 500 Power supply calibrated to 90mA/160V and 

the XCell SureLock® Mini-Cell (Invitrogen, Darmstadt, Germany). 
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II.2.8.4. Protein transfer  

 

After electrophoretic separation proteins were transferred onto a nitrocellulose 

membrane (Invitrogen, Darmstadt, Germany).  

 

Transfer buffer:  25 ml NuPAGE® Transfer Buffer (20x) 

   50ml Methanol  

   425 ml H2Omillipore 

   500 µl NuPAGE® Antioxidant 

 

For the protein transfer the XCell IITMBlot Module (Invitrogen, Darmstadt, 

Germany) was used. The blotting was done at 220mA/20V for 1.5 hours.  

 

 

II.2.8.5. Protein detection 

 

After transfer the nitrocellulose membrane with the blotted proteins was washed in 

blocking buffer (TBST/5% milk) to block unspecific binding sites.  

Proteins were then detected with specific primary antibodies (see following table). 

 

 

Antibody Dilution (in TBST/BSA 5%) 

- anti-AMPK (New England Biolabs, Frankfurt, 

Germany) 

 

1:1000 

- anti-phospho -AMPKα (New England Biolabs, 

Frankfurt, Germany) 

 

1:2000 

- rabbit anti-AKT (New England Biolabs, Frankfurt, 

Germany) 

 

1:1000 

- rabbit anti-phospho -AKT (New England Biolabs, 

Frankfurt, Germany) 

 

1:1000 
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- rabbit anti-p70 S6 K (New England Biolabs, Frankfurt, 

Germany) 

 

1:1000 

- rabbit anti-phospho – p70 S6 K (New England 

Biolabs, Frankfurt, Germany) 

 

1:1000 

- mouse anti-AdipoR1 (AG Buechler, Department of 

Internal medicine I, University of Regensburg) 

 

1:1000 

 Dilution (in TBST/milk 5%) 

-  rabbit anti-Collagen type I antibody (Rockland, PA, 

USA) 

 

1:5000 

-  mouse anti-α-tubulin (Santa Cruz, Heidelberg, 

Germany)  

 

1:1000 

 

 

Membranes were incubated with the primary antibody over night at 4°C.  

After washing in TBST membranes were incubated with specific secondary 

antibodies, which were conjugated with horseradish peroxidise (HRP). 

 

 

Antibody Dilution (in TBST/milk 5%) 

-  goat anti rabbit IgG-HRP (Santa Cruz, Heidelberg, 

Germany)  

 

1:3000 

-  goat anti mouse IgG-HRP (Santa Cruz, Heidelberg, 

Germany)  

 

1:3000 

 

 

For the detection of now HRP-labeled proteins the ECL Plus Western Blotting 

Detection System (GE Healthcare, Freiburg, Germany) was used. This system 

utilizes chemiluminescence technology for the detection of proteins. It consists of 
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the acridan substrate Lumigen PS-3, which is converted to an acridinium ester 

intermediate when catalyzed by HRP. The ester intermediate reacts with peroxide 

in alkaline conditions and emits light, which can be detected by autoradiography. 

After incubation in ECL solution for 1min proteins were detected using Amersham 

HyperfilmTM ECL films (GE Healthcare, Freiburg, Germany) and the Curix 60 

automatic film developer (Agfa, Köln, Germany). 

 

 

II.2.9. Statistics 

 

Statistical analysis was done using bi-factorial analysis of variance (two-way 

ANOVA) and Tukey post-hoc test or Student's unpaired t-test. Values were 

presented as mean ± SEM. p< 0.05 was defined to be the level of significance. 

SigmaPlot Software 11.0. (Systat Software, Erkrath, Germany) was used for all 

calculations.  
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III. Results 

 

 

III.1. Analysis of PI3K p110γγγγ expression in diseased 

murine and human liver tissue 

 
 

So far, no information has been available regarding the expression of PI3K p110γ 

in chronic liver disease. Thus, we first assessed PI3K p110γ mRNA expression in 

different murine models of chronic liver injury by quantitative PCR. We observed a 

significantly increased expression in the BDL model, which is a well established 

liver fibrosis model (Ezure et al., 2000,Gabele et al., 2009,Isayama et al., 2006) 

(Fig. 4a), as well as in two dietary NASH models, namely the MCD model 

(Weltman et al., 1996) (Fig 4b) and a high fat diet (HFD) model (Fig 4c), which are 

also well established (Gabele et al., 2011b,Gabele et al., 2011a,Matsuzawa et al., 

2007,Paigen et al., 1985).  

 

      (a)                  (b) 

 

 

 

 

 

 

 

 

 

 
 

Figure 4a,b: Hepatic mRNA expression of PI3K p110γ in murine liver samples; (*p<0.05); BDL= 
Bile duct ligation, SC= standard chow, MCD= Methionine-choline deficient diet 
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         (c)                   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4c: Hepatic mRNA expression of PI3K p110γ in murine liver samples; (*p<0.05); SC= 
standard chow, HFD= High fat diet 

 

 
Furthermore, we assessed PI3K p110γ mRNA expression in hepatic specimens of 

patients with hepatic steatosis and NASH (Fig 5a) as well as liver cirrhosis of 

different origin (Fig 5b), and detected a marked increase of PI3K p110γ mRNA 

expression accordingly. 

 

    (a)                  (b) 

 

Figure 5: Hepatic mRNA expression of PI3K p110γ in human liver samples; (*p<0.05); Ctrl.= 
Control 
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III.2. Assessment of PI3K p110γ γ γ γ deficient mice vs. wild-

type in the bile duct ligation model 

 

To get an insight into the role of PI3K p110γ in chronic liver disease, we applied 

the BDL model to PI3K p110γ deficient mice. While a complete knockout of PI3K 

leads to a lethal phenotype in mice, as does a complete disruption of p110α or 

p110β (Gunzl and Schabbauer, 2008), mice lacking the catalytic subunit p110γ 

show a normal phenotype with slight deficiencies in T-cell development and 

activation as well as impaired thymocyte development and reduced macrophage, 

dendritic- and mast cell migration (Del Prete et al., 2004,Hirsch et al., 2000,Sasaki 

et al., 2000,Wymann et al., 2003). 

 

 

III.2.1. Body weight and liver/ body weight ratio  

 

Throughout the experiment the body weight was regularly measured to assess the 

general condition of the mice and to get a first impression of differences between 

the experimental groups. The first step of the assessment of liver injury was the 

determination of the liver/ body weight ratio, as hepatomegaly is a sign of liver 

disease.  

(a) (b) 

 

Figure 6: (a) Body weight and (b) liver to body ratio of the sham operated and BDL-mice (*p< 

0.05); BDL= Bile duct ligation, WT= wild-type, PI3K -/- = PI3K p110γ deficient 
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As expected, mice lost weight after surgery, but there was no difference between 

the wild-type and knockout mice (Fig 6a). The liver/ body weight ratio was 

significantly higher in the BDL mice, but there was also no difference regarding the 

genotype of the mice (Fig 6b). 

 

 

III.2.2. General liver histology (Haematoxylin/Eosin staining) 

 

BDL ligation induced necrosis and inflammation starting from the bile ducts, 

whereas sham operated mice showed normal liver histology (Fig 7). There were, 

however, no remarkable visible differences in the general liver histology of the 

PI3K p110γ deficient mice with BDL compared to the WT mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7: Liver histology; haematoxylin/ eosin stained slides; magnification 40x; BDL= Bile duct 

ligation, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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III.2.3.  Serum transaminases and levels of bilirubin and alkaline 

phosphatase  

 

Serum analysis then revealed significant differences between wild-type and PI3K 

p110γ deficient mice with BDL. The bile duct ligation led to significant upregulation 

of transaminases (ALT, AST) in both groups, but the PI3K p110γ deficient mice 

showed significantly lower transaminase levels (Fig 8a-b). This was the first sign 

that the genotype was affecting the degree of liver injury in this model. PI3K p110γ 

deficient mice seemed to be protected against enhanced liver injury compared to 

control mice. 

   (a)          (b) 

   (c)          (d) 

 

Figure 8: (a-b)Concentration of serum transaminases,levels of (c) bilirubin and (d) AP; (*p<0.05); 

BDL= Bile duct ligation, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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Bilirubin (total) an levels of alkaline phosphatase (AP) were also markedly 

increased in BDL mice compared to controls, but no differences between WT and 

PI3K p110γ deficient mice could be observed (Fig 8c-d), indicating that the 

underlying liver damaging insult, i.e. cholestasis, was equally effective in both 

groups. 

 

 

 

III.2.4. mRNA expression of markers of hepatic inflammation  

 
Next, hepatic inflammation was assessed by quantitative PCR. As described 

(Ramm et al., 2009) BDL lead to significant induction of the expression of the 

chemokine MCP-1 but there was no significant difference between WT and PI3K 

p110γ deficient mice (Fig 9a). Furthermore, expression of TNF, a cytokine known 

to play a crucial role in hepatic inflammation in response to chronic injury, was 

significantly increased in mice with BDL. Interestingly, mRNA levels of TNF were 

significantly higher in PI3K p110γ deficient mice with BDL compared to controls 

(Fig 9b). 

 

      (a)              (b) 

 

Figure 9: Hepatic mRNA expression of (a) MCP-1 and (b) TNF; (*p<0.05); BDL= Bile duct ligation, 

WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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III.2.5. Expression of markers of HSC activation and hepatic 

fibrosis 

 

 

III.2.5.1. mRNA expression of markers of HSC activation and 

hepatic fibrosis 

 

Expression of profibrogenic markers was then assessed by quantitative PCR. The 

amount of RNA was normalized to the control group (WT/sham) presented as x-

fold expression of the control (set 1). Collagen mRNA levels were lower in PI3K 

p110γ knockout mice compared to WT controls (Fig 10a). Transforming growth 

factor beta (TGFβ) is known to be one of the most potent profibrogenic cytokines 

(Poli, 2000). Plasminogen activator inhibitor -1 (Pai-1) mainly regulates fibrinolysis 

by inhibiting plasminogen activator, but it was shown in several animal models that 

Pai-1 also contributes to hepatic fibrosis while Pai-1 deficiency protects against 

ECM accumulation (Bergheim et al., 2006,Wang et al., 2007,Zhang et al., 1999). 

Both Pai1 mRNA and TGF beta mRNA levels were significantly increased in BDL 

mice compared to WT mice, but notably significantly lower in PI3K p110γ deficient 

mice (Fig 10b-c). 

 

        (a)                  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10a-b: Hepatic mRNA expression of (a) Collagen and (b) TGFβ; (*p<0.05); BDL= Bile duct 

ligation, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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        (c) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10c: hepatic mRNA expression of (c) Pai-1; (*p<0.05); BDL= Bile duct ligation, WT= wild-

type, PI3K -/- = PI3K p110γ deficient  

 

 

 

III.2.5.2. Protein expression of Collagen I 

 

The level of protein expression of collagen could be demonstrated by Western blot 

analysis (Fig 11). Only for the WT/BDL group a band for collagen could be made 

visible by staining with a specific antibody. 

 

 

 

 

 

 

 

 

 

Figure 11: Western blot; upper lane Collagen I, lower lane α Tubulin (housekeeper); BDL= Bile 

duct ligation, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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III.2.5.3. Histological evaluation of fibrosis and HSC activation 

 

ECM-staining (Sirius red) confirmed marked hepatic fibrosis in the WT mice while 

only minimal ECM deposition was visible in PI3K p110γ deficient mice with BDL 

(Fig 12). Quantification of the Sirius red staining confirmed statistically significant 

differences. 

 

 

 

Figure 12: Liver histology; Sirius red/ Fast Green stained slides; magnification 100x; Quantification 
of Sirius red- positive area [%]; (*p<0.05); BDL= Bile duct ligation, WT= wild-type, PI3K -/- = PI3K 

p110γ deficient  

 

 

In line with these findings, immunohistochemistry revealed that the PI3K p110γ 

deficient mice expressed virtually no hepatic alpha smooth muscle actin (αSMA) 

(Fig 13), while WT mice exhibited a significant hepatic αSMA immunosignal. This 

demonstrated that hepatic stellate cells were significantly less activated by the bile 

duct ligation when PI3K p110γ was missing.  
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Figure 13: Liver histology; alpha smooth muscle actin stained slides; magnification 100x; 

Quantification of αSMA- positive area [%]; (*p<0.05); BDL= Bile duct ligation, WT= wild-type, PI3K -

/- = PI3K p110γ deficient  

 

 

In summary, liver injury assessed by serum transaminases was clearly diminished 

in PI3K p110γ deficient mice after BDL as was hepatic fibrosis shown by histology, 

quantitative PCR and collagen western blot. Immunohistochemistry for αSMA 

showed that the activation of hepatic stellate cells was virtually blocked by PI3K 

p110γ deficiency. Taken together, we demonstrated that PI3K p110γ deficiency 

strikingly protects against hepatic fibrosis in the BDL model despite minimal or 

even contrary effects on hepatic inflammation. 
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III.3. Assessment of PI3K p110γ γ γ γ deficient mice vs. wild-

type in a dietary NASH model 

 

 

We sought to confirm the results from the BDL model in a second model of hepatic 

injury, a dietary NASH-model, which had recently been shown to induce the 

pathology of NASH with HSC activation as seen in patients with NASH 

(Matsuzawa et al., 2007) and had already been used by our group (Dorn et al., 

2010a,Kirovski et al., 2010). 

Therefore, we fed either a NASH-inducing high fat diet (HFD) or standard chow 

(SC) to PI3K p110γ deficient- and control-mice for 12 weeks.  

 

 

III.3.1. Body weight and liver/ body weight ratio 

 

As expected mice fed with the HFD gained slightly more weight than mice on 

standard chow, but after 12 weeks feeding neither in the control group (WT=21.3 g 

+/- 0.7g vs. PI3K p110γ deficient = 21.4g +/- 0.3g ) nor in the HFD group (WT=22.8 

g +/- 0.4g vs. PI3K p110γ deficient = 22.5g +/- 0.7g) differences could observed 

between WT and PI3K p110γ deficient mice. Liver to body weight ratio was 

significantly increased in both HFD groups, with PI3K p110γ deficient mice 

exhibiting an even higher relative liver weight although this difference did not reach 

statistical significance (Fig 14). 

 

 

 

 

 

 

           

 

 

 

 

Figure 14: Liver to body ratio; (*p< 0.05); SC=standard chow, HFD= high fat diet, WT= wild-type, 

PI3K -/- = PI3K p110γ deficient  
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III.3.2. Serum Transaminases and LDH 

 

Next, serum parameters were examined to evaluate the degree of liver injury. Like 

in the BDL model, the genotype was affecting the severity of liver injury, but in 

contrast to the BDL the high fat diet lead to higher levels of transaminases (ALT, 

AST) in PI3K p110γ deficient mice (Fig 15a-b). Thus, lack of PI3K p110γ did not 

protect against liver injury in the NASH model.  

         (a)      (b) 

           

Figure 15: (a-b) Concentration of serum transaminases; (*p<0.05); SC=standard chow, HFD= high 

fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

III.3.3.  mRNA expression of markers of hepatic inflammation 

 

Next, hepatic inflammation was assessed by quantitative PCR. Expression of 

MCP-1 and TNF, which also play a crucial role in the progression of 

NAFLD/NASH, was significantly elevated in HFD-fed mice and levels were 

significantly higher in PI3K p110γ mice compared to WT mice (Fig 16a-b), 

confirming the fact, that liver injury was enhanced in these mice. 
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       (a)                (b) 

    

Figure 16: Hepatic mRNA expression of (a) MCP-1 and (b) TNF; (*p<0.05); SC=standard chow, 

HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

 

III.3.4. Expression of markers for HSC activation and fibrosis 

 

III.3.4.1. mRNA expression of profibrogenic markers 

 

Expression of profibrogenic markers was assessed by quantitative PCR. The 

amount of RNA was normalized to the control group (WT/SC) presented as x-fold 

expression of the control (set 1). The results on mRNA level overall supported the 

observation that PI3K p110γ deficient mice were not protected from liver fibrosis in 

the NASH model. Collagen mRNA expression was significantly elevated in PI3K 

p110γ deficient mice compared to wild-type mice, so was the expression of TGFβ 

and Pai-1 (Fig 17a-c). 
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Figure 17: Hepatic mRNA expression of (a) Collagen, (b) TGFβ  and (c) Pai-1; (*p<0.05); 

SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

III.3.4.2. Protein expression of collagen 

 

A Western blot for collagen confirmed the previous observations. Matching the 

histology a band for collagen was only visible in the PI3K p110γ deficient mice on 

the HFD (Fig 18). 
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Figure 18: Western blot; upper lane Collagen 1, lower lane α Tubulin (housekeeper); SC=standard 

chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

III.3.4.3. Histological evaluation of fibrosis and HSC activation 

 

A collagen stain (Sirius red) revealed very clear and highly significant differences 

between the experimental groups. PI3K p110γ deficient mice with NASH showed 

visibly higher hepatic ECM deposition compared to the WT mice (Fig 19). The 

staining was quantified and differences were statistically significant. 

 

 

Figure 19: Sirius red/ Fast Green staining; magnification 100x; Quantification of Sirius red- positive 
area [%]; (*p<0.05); SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K 

p110γ deficient  
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Immunohistochemistry for αSMA confirmed the previous results. Significantly more 

αSMA positive cells could be detected by immunohistochemistry in the livers of 

PI3K p110γ deficient mice fed the HFD compared to WT mice (Fig 20). Virtually no 

immunosignal could be detected in both WT and PI3K p110γ deficient mice fed the 

standard chow. The staining was again quantified.  

 

 

Figure 20: Immunohistochemistry for alpha smooth muscle actin; magnification 100x; 

Quantification of αSMA- positive area [%]; (*p<0.05); SC=standard chow, HFD= high fat diet, WT= 

wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

 

Taken together, histological analysis revealed beginning fibrosis in WT mice 

receiving the HFD diet. However, these histological features of NASH were 

significantly more pronounced in the PI3K p110γ deficient mice. Serum analysis 

showed significantly higher serum transaminases in PI3K p110γ deficient mice 

with NASH compared to WT. Accordingly, hepatic mRNA expression of pro-

inflammatory and pro-fibrogenic genes was significantly induced in PI3K p110γ 

compared to WT mice with NASH in line with elevated collagen I protein and α-

smooth muscle actin expression. 

In summary and in contrast to the BDL model, in the dietary NASH model hepatic 

inflammation and fibrosis were markedly enhanced in PI3K p110γ deficient mice 

compared to WT control animals. 
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III.4. Search for mechanisms causing the opposing 

effects of PI3K p110γγγγ deficiency on hepatic fibrosis 

in the BDL and NASH model 

 

 

III.4.1. Hepatocyte apoptosis 

 

In search for mechanisms causing the opposing effects of PI3K p110γ deficiency 

on hepatic fibrosis in the BDL and NASH model, we first evaluated hepatic 

apoptosis. 

Hepatocyte apoptosis is mainly triggered by the two death receptor ligands TNF 

and CD95/Fas ligand (FasL). In NASH activation of the death receptor Fas 

promotes mitochondrial dysfunction generating reactive oxidative species and 

apoptosis (Feldstein et al., 2003). Although little is known about the function of 

individual PI3K subunits regarding their role in hepatocellular apoptosis, it has 

been shown that the PI3K/Akt pathway has a protective role in Fas-mediated 

apoptosis via NFκB (Hatano and Brenner, 2001). To examine apoptosis, mRNA 

expression of CD95 and protein expression (immunohistochemistry) of active 

caspase 3, which is activated downstream of Fas, were evaluated and a TUNEL 

staining was performed. It has been described that lipid accumulation leads to an 

enhanced expression of CD95 on hepatocytes (Wedemeyer et al., 2009). 

Consistent with this result we observed an upregulation of hepatic CD95 mRNA 

expression in WT mice fed the HFD (Fig 21a). Both TUNEL and caspase 3 

staining revealed significant apoptosis in HFD-fed WT-mice compared to SC-fed 

controls accordingly (Fig 21b-c). Contrary to what could have been expected there 

existed virtually no apoptosis in the hepatic tissue of HFD-fed PI3K p110γ deficient 

mice, and the HFD-induced CD95 mRNA was completely ameliorated in PI3K 

p110γ deficient mice (Fig 21a-c). 

Taken together the differences regarding apoptosis do not seem to be responsible 

for the differences observed in the BDL and NASH-model regarding the effect of 

PI3K p110γ deficiency on hepatic fibrosis. 
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        (a)           (b)         

   

 

 

 

       (c)        

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: mRNA expression of CD95, immunohistochemistry for active caspase-3 and TUNEL 
staining; magnification 40x, (*p<0.05); SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K 

-/- = PI3K p110γ deficient  
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III.4.2. Hepatic Steatosis and oxidative stress 

 

III.4.2.1. Histological evaluation of fatty degeneration 

 

NASH is characterized by macrovesicular steatosis and ballooning of hepatocytes 

(Contos and Sanyal, 2002). Thus, we next analyzed whether this initiating 

pathophysiological mechanism of NAFLD, i.e. hepatic lipid accumulation, was 

differently affected by PI3K p110γ deficiency. Already common H/E staining 

revealed significantly enhanced steatosis, i.e. more lipid loaded hepatocytes, in 

PI3K p110γ deficient mice compared to WT-mice on the HFD (Fig 22). 

Furthermore, histology of HFD-fed PI3K p110γ deficient livers revealed significant 

ballooning of hepatocytes, whereas WT mice showed less ballooning. Because 

lipids, i.e. hepatocellular lipid droplets, are washed out during the fixation 

procedure of paraffin embedded tissue, they appear as white area in histology. 

Accordingly, image analysis was performed to quantify H/E negative areas and 

confirm the observation that hepatic steatosis was significantly enhanced in PI3K 

p110γ deficient livers in response to HFD-feeding compared to WT-animals.  

 

 

 

Figure 22: Haematoxylin/eosin stained staining; magnification 40x and 100x respectively (detail); 

SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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To further substantiate this result a specific fat staining (Sudan III) was done on 

cryo-sections (Fig 23). This stain confirmed the previous observations, as there 

were clearly more Sudan III positive cells visible in the PI3K p110γ deficient mice. 

Furthermore, there appeared bigger lipid droplets in the PI3K p110γ deficient mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Cryo-sections with staining of lipids (Sudan III), Magnification 100x; SC=standard chow, 

HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

III.4.2.2. Intra-hepatic lipid content 

 

 
Next, we analyzed hepatic content of free fatty acids (FFA) and triglycerides (TG) 

in the 4 experimental groups. After 12 weeks HFD-feeding, FFA were only slightly 

elevated in WT-mice but significantly in PI3K p110γ deficient mice (Fig 24a). 

Hepatic TG levels were significantly enhanced in both WT and PI3K p110γ 

deficient mice, whereas TG levels were even higher in PI3K p110γ deficient mice 

on HFD although these differences did not reach statistical significance (Fig 24b). 

In addition, it has to be noted that PI3K p110γ deficient mice had also slightly 

enhanced hepatic TG levels when fed SC. 
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          (a)                    (b)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Intra-hepatic free fatty acid and triglyceride levels; (*p<0.05); SC=standard chow, HFD= 

high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

 

III.4.2.3. Oxidative stress  

 

FFA are known to activate plasma membrane NADPH oxidases (reviewed by 

(Schonfeld and Wojtczak, 2008), and this enzyme complex has been implicated in 

the progression of chronic liver diseases (De Minicis and Brenner, 2007). Actually, 

the activation of the NADPH-oxidase complex provides a cellular defense 

mechanism against fungi and bacteria by generation of hydrogen peroxide (H2O2) 

(Babior, 1999). However, increased levels of oxidative stress are also evident in a 

variety of experimental diet induced metabolic dysfunctions (Diniz et al., 

2006,Matsuzawa-Nagata et al., 2008) as well as in samples of humans with diet-

induced metabolic syndrome (MS) (Furukawa et al., 2004,Urakawa et al., 2003) 

and are known to promote the progression of liver disease (De Minicis et al., 

2006). 

Two subunits of the NADPH-oxidase complex (Nox2 and p47phox) were 

enhanced in mice fed with the HFD, however, the induction was significantly 

higher in PI3K p110γ deficient than in WT controls (Fig 25).  
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     (a)               (b) 

 

Figure 25: mRNA expression of subunits of NADPH-oxidase complex: (a) Nox2 and (b) p47phox; 

(*p<0.05); SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

Reactive oxidative species (ROS) are a major feature in the progression of liver 

disease by exerting oxidative stress on hepatocytes (De Minicis et al., 2006). 

Several oxidative metabolic procedures like electron transport in mitochondria, 

activation of the NADPH - oxidase complex or 5-lipooxygenase and activation of 

members of the Cytochrome P450 superfamily lead to the development of ROS 

(Novo and Parola, 2008). ROS initiate the generation of lipid peroxides by 

interacting with polysaturated fatty acids of membrane phospholipids (Esterbauer 

et al., 1991). These lipid peroxides contribute to the generation of more ROS 

(vicious circle) and are directly fibrogenic (Galli et al., 2005,Novo and Parola, 

2008). Additionally, ROS react with DNA and proteins and consequently cause 

liver injury by oxidative damage. 

4-hydroxy-2-nonenal (HNE) is a major product of endogenous lipid per-oxidation 

and reacts with several functional groups in the cytoplasm of hepatocytes to form 

thioester adducts. The presence of these relatively stable adducts is a sign of 

oxidative stress and is thus considered a good way to evaluate oxidative stress in 

vivo (Esterbauer et al., 1991,Poli and Parola, 1997). The formed adducts can be 

visualised by an anti-HNE antiserum. HNE staining was enhanced in the hepatic 

tissue of mice fed with HFD, however, in PI3K p110γ deficient livers more cells 

appeared HNE positive and immunosignal was stronger, respectively (Fig 26).  
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Figure 26: 4-hydroxy-2-nonenal (4-HNE) stain on liver sections; magnification 100x; SC=standard 

chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

In summary, significantly enhanced hepatic lipid accumulation in PI3K p110γ  

deficient mice appeared a likely cause for the strong fibrogenic response observed 

in these mice in the NASH model, as it is known that lipid peroxides, which are 

secreted by hepatocytes under oxidative stress, are strongly fibrogenic by 

activating HSC in a dose dependant manner (Novo et al., 2006). 
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III.5.  Analysis of the mechanisms causing the enhanced 

hepatic lipid accumulation in PI3K p110γγγγ  deficient 

mice in the dietary NASH model 

 

 
The concentration of FFA in the liver depends on several factors, which interact in 

a complex way. Hepatic uptake of FFA depends on the delivery of FFA to the liver 

as well as the liver’s capacity for FFA transport. Further, FFA are generated in the 

liver by de novo lipogenesis, and FFA are either combusted by oxidation or stored 

in form of TG or exported via VLDL secretion, respectively (Fabbrini et al., 2010). 

Assessment of hepatic inflammation and fibrosis described above has been 

performed in hepatic tissue obtained from mice after 16h fasting. However, it has 

been shown that fasting of mice may ameliorate or even converse the enhanced 

expression of key enzymes of hepatic metabolism in dietary NASH models 

(Morgan et al., 2008). Therefore, we fed a second series of mice with the HFD for 

12 weeks but this time harvested the hepatic tissue from mice which had 

unrestricted access to food until sacrifice. Analysis of hepatic inflammation and 

fibrosis confirmed the data obtained in the first experimental series (data not 

shown). Analysis described in the following paragraph has been performed with 

the mice from series 2 which had not been fasted. 

 

 

III.5.1.  De novo lipogenesis 

 

NAFLD is initiated by an altered lipid homeostasis (Musso et al., 2009), and one 

factor that contributes to lipid homeostasis is de novo lipogenesis (Chakravarthy et 

al., 2005).  

Fatty acid synthase (FASN) is believed to determine the maximal capacity of the 

liver to produce FFA by de novo lipogenesis as it catalyses the last step of this 

pathway (Menendez et al., 2009). Interestingly, a liver-specific knockout of FASN 

lead to enhanced steatosis in a nutritional model (Chakravarthy et al., 2005), and 

our group has shown that FASN levels decreased with the progression of NAFLD 

in murine models as well as in patients with NAFLD (Dorn et al., 2010b). 

Accordingly, we observed a downregulation of FASN in mice fed with the NASH 
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inducing HFD, but expression levels did not differ between PI3K p110γ deficient 

and WT mice (Fig 27), making it unlikely that de novo lipogenesis accounts for the 

differences observed. 

 

 

 

 

 

 

 

 

 

     

 

Figure 27: mRNA expression of fatty acid synthase (FASN); SC=standard chow, HFD= high fat 

diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

III.5.2. Fatty acid (FA) import and transport 

 

Another source of hepatic lipid accumulation is uptake of FA from the blood. It was 

estimated that approximately 75% of the hepatic triglyceride FA of patients with 

NAFLD derived from serum nonesterified FA plus dietary FA (Donnelly et al., 

2005). Several proteins have been identified that mediate the uptake of FA into the 

liver including CD36 and FABP. In addition to regulating the transfer of FFA 

through the cell membrane both proteins are important in the intracellular transport 

of FFA and esterification into TG (Bonen et al., 2004,Bonen et al., 2007). 

 

The fatty acid translocase (Cluster of Differentiation 36; CD36) is an integral 

membrane protein that binds fatty acids and channels them through the 

membrane. It is a key protein in regulating the transfer of free fatty acids (Bonen et 

al., 2004). CD36 expression is enhanced in rodents with fatty liver and rises 

relatively to the hepatic TG concentration (Buque et al., 2010,Inoue et al., 2005), 

whereas reducing steatosis is followed by reduced CD36 expression (Liu et al., 

2007). A very recent study showed that CD36 upregulation is also associated with 
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increased steatosis in patients with NASH (Miquilena-Colina et al., 2011). qPCR 

analysis revealed enhanced expression of CD36 in mice fed with HFD, but the 

increase was significantly higher in PI3K p110γ deficient compared to WT mice 

(Fig 28). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: mRNA expression of fatty acid translocase (CD36), (*p<0.05); SC=standard chow, 

HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

The fatty acid binding protein (FABP) is a carrier protein that facilitates intracellular 

transports of fatty acids (Chmurzynska, 2006,Weisiger, 2002). FABP binds long-

chain fatty acids as well as FFA, so that they can be transported to intracellular 

compartments or the nucleus, where they are either metabolized or activate 

transcription factors. Normally, liver cells challenged with exogenous fatty acids 

activate these metabolic pathways to keep FFA and fatty acyl-CoA low (Nguyen et 

al., 2008). The rate of cytoplasmatic transport of FFA is proportional to the 

concentration of FABP in the liver (Weisiger, 2002), and inhibition of FABP 

reduces intracellular FFA transport (Luxon, 1996). Studies with FABP -/- mice 

showed that these mice exhibited diminished hepatic β-oxidation that was not 

caused by an impaired oxidative capacity (Atshaves et al., 2010,Newberry et al., 

2003). This result lead to the hypothesis, that hepatic FABP acts as a transporter 

of FFA to the site of β-oxidation (Storch and Thumser, 2010). Additionally, FABP 

deficient mice show reduced FA uptake and decreased hepatic TG levels when 

fed a HFD (Newberry et al., 2003,Newberry et al., 2006). 
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The hepatic isoform is FABP1, and qPCR revealed that the expression of this 

carrier protein was significantly elevated in PI3K p110γ deficient mice fed HFD but 

not in WT mice on the same diet (Fig 29). 

Taken together these findings indicate that enhanced CD36 and FABP expression 

may cause an enhanced cellular uptake of FFA as well as an facilitated 

cytoplasmatic transport of FFA within the cell. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: mRNA expression of fatty acid binding protein (FABP), (*p<0.05); SC=standard chow, 

HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

III.5.3. FFA combustion 

 

Intra-hepatic FFA are mainly oxidized in mitochondria (β-oxidation), but (very) long 

chain fatty acids are first shortened in peroxisomes (β-oxidation) or metabolized by 

microsomes in the ER (ω-oxidation) .  

The mitochondrial oxidation of FFA is regulated via transport of FFA into the 

mitochondrial matrix by the carnitine acyltransferase system. As a part of this 

complex carnitine palmitoyltransferase 1 (CPT-1) is expressed in a liver specific 

isoform (Kerner and Hoppel, 2000) and can be used as a marker of beta-oxidation. 

While CPT1 expression did not differ between SC fed and HFD-fed WT mice, 

expression was slightly enhanced in PI3K p110γ deficient mice fed the HFD (Fig 

30). 
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Figure 30: mRNA expression of carnitine palmitoyltransferase 1 (CPT-1), (*p<0.05) SC=standard 

chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

Acyl-CoA oxidase 1 (Acox-1) is the first enzyme of the peroxisomal fatty acid 

oxidation system and cytochrome 4A10 catalyses microsomal fatty acid oxidation. 

The disruption of Acox-1 leads to the accumulation of long-chain fatty acids and 

subsequently to an induction of CYP4A10 (Rao and Reddy, 2001), so that these 

fatty acids can be oxidised in microsomes. Expression of Acox-1 was reduced in 

mice fed HFD, but expression levels did not differ between WT and PI3K 

p110γ deficient mice (Fig 31a). CYP4A10 expression levels did not differ between 

the 4 experimental groups (Fig 31b).  
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Figure 31: mRNA expression of (a) acyl-coenzyme A oxidase 1 (Acox-1) and (b) cytochrome P450 
4A10 (CYP4A10); SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K 

p110γ deficient  
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These data indicate that the peroxisomal oxidation was probably impaired in HFD 

fed mice, which may contribute to the accumulation of long-chain fatty acids in the 

liver. However, equal hepatic expression levels of Acox-1 and CYP4A10 make it 

unlikely that this mechanism contributes to the differences observed between PI3K 

p110γ deficient and WT mice regarding FFA accumulation and hepatocellular 

injury. 

 

 

III.5.4. Triglyceride (TG) synthesis 
 

For the synthesis of triglycerides the acyl-CoA-diglyceride acyltransferase (DGAT) 

is the crucial enzyme as it catalyzes the formation of triglycerides from 

diacylglycerol and Acyl-CoA (Cases et al., 1998). There exist two isoforms of 

DGAT which catalyze similar reactions.  

DGAT1 expression was slightly reduced in both chow fed and HFD fed PI3K 

p110γ deficient mice compared to WT controls (Fig 32a). Within the genotypes 

DGAT1 expression levels did not differ between SC fed and HFD fed groups. 

DGAT2 was significantly reduced after 12 weeks HFD feeding, but expression 

levels did not differ significantly between PI3K p110γ deficient mice and WT mice 

(Fig 32b).  

 

    (a)                              (b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: mRNA expression of diglyceride acyltransferase 1+2 (DGAT) (*p<0.05) SC=standard 

chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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DGAT expression suggested that despite high FFA levels hepatic synthesis of 

triglycerides was impaired in mice fed the NASH-inducing HFD. At the same time 

expression of hepatic lipoprotein lipase (LPL) was found to be significantly 

enhanced in both PI3K p110γ deficient and WT mice fed the HFD (Fig 33).  

 

 

 

 

 

 

 

 

 

 

 

Figure 33: mRNA expression lipoprotein lipase (LPL); (*p<0.05); SC=standard chow, HFD= high 

fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

LPL is an enzyme which mainly catalyzes the hydrolysis of lipids into free fatty 

acids (lipolysis) and is regulated by insulin (Wang and Eckel, 2009). Pardina et al. 

examined hepatic LPL-expression in obese patients with NAFLD and suggested 

that enhanced LPL expression could lead to enhanced hepatocellular FFA 

accumulation by lipolysis of circulating TG (Pardina et al., 2009).  

Together, these data suggest that reduced hepatic synthesis of triglycerides and 

enhanced hydrolysis of intra-hepatic and circulating triglycerides collectively 

promote FFA accumulation in the HFD-model. Equal hepatic expression levels of 

DGAT2 and LPL make it unlikely that this mechanism contributes to the 

differences observed between genotypes, because only inhibition of DGAT2 but 

not DGAT1 has been shown to affect hepatocyte TG synthesis and hepatic 

steatosis (Yamaguchi et al., 2007). 
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III.6.  Analysis of mechanisms causing the increased 

hepatic import and combustion of FFA PI3K p110γγγγ 

deficient mice 

 

 

To further assess the mechanisms responsible for enhanced FFA uptake and 

oxidation in PI3K p110γ deficient mice fed the NASH-inducing HFD, we analyzed 

different factors known to influence hepatic lipid metabolism.  

 

 

III.6.1. Insulin level and signaling 

 

Insulin levels were increased in the serum of mice fed HFD, but insulin levels did 

not differ between PI3K p110γ deficient mice and WT mice (Fig 34). 

 

 

 

 

 

 

 

 

 

 

Figure 34: Concentration of insulin in murine serum samples (ELISA); (*p<0.05); SC=standard 

chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

Although PI3K p110γ is not directly involved in the insulin signaling pathway, we 

next wanted to address whether insulin signaling may be indirectly impaired in 

PI3K p110γ  deficient animals. Firstly, insulin leads to enhanced glycogenesis, and 

therefore, diminished glucose output from the liver. This effect is mediated via 

protein kinase B (PKB/AKT) signaling. Secondly, insulin signaling leads to the up-

regulation of lipid synthesis via protein kinase C (PKC) and increased output of 

triglycerides (TG) (see Fig 35). However, hepatic insulin resistance usually entails 
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only impairment of PKB activation, while signaling via PKC stays intact, so that 

hepatic insulin resistance is characterized by increased glucose output and TG 

accumulation (Farese et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Insulin signaling in the liver: Insulin resistance leads to TG accumulation and enhanced 
glucose output; based upon a figure by Farese et al. (Farese et al., 2005) 

 

 

Western blot analysis revealed enhanced PKB-phosphorylation in mice fed the 

HFD, but no differences between PI3K p110γ deficient and WT mice (Fig 36).  

 

 

 

 

 

 

 

 

 

Figure 36: Western blot; upper lane: phospho--protein kinase B (p-PKB), lower lane: protein kinase 

B (PKB); SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  
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Fasting serum glucose levels did also not differ between the experimental groups 

(Fig 37a). To confirm that PI3K p110γ deficient had a normal capacity to 

metabolize glucose (no insulin resistance) a glucose tolerance test had 

additionally been performed during the experiment. Mice (all groups) were fasted 

for 6 hours and then injected i.p. with 3g/kg glucose. At time points 0 min, 15 min, 

30 min and 90 min blood glucose was measured (tail vein). None of the mice 

showed an impaired glucose tolerance as levels never significantly differed 

between the groups throughout the experiment, and after 90 min the serum 

glucose level was almost back to normal levels in all groups (Fig 37b).  

 

 

Figure 37: Fasting serum glucose level (a) and glucose tolerance test (b) in mice with NASH vs. 

control, SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

 

III.6.2. Adiponectin level and signaling 

 

In addition to insulin, hepatic lipid metabolism is affected by adipocytokines. These 

molecules that are especially expressed in the visceral fat tissue are known to play 

a role in obesity-related diseases such as the metabolic syndrome and 

cardiovascular diseases (Okamoto et al., 2006).  

The adipokine adiponectin displays significant metabolic as well as anti-

inflammatory effects. In hepatocytes adiponectin decreases de novo lipogenesis 

and increases β-oxidation so that these cells are protected against triglyceride 
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accumulation. There are many studies, which support the fact that adiponectin 

displays protective properties regarding the development of NASH. Adiponectin 

improves insulin sensitivity and decreases serum fatty acid levels (Berg et al., 

2001,Fruebis et al., 2001,Shklyaev et al., 2003), and patients with NASH display 

low levels of adiponectin (Hui et al., 2004). It has been shown that adiponectin can 

alleviate NASH in genetic murine models, i.e. ob/ob mice (Xu et al., 2003). The 

beneficial effects of adiponectin on the lipid metabolisms are mediated by AMP-

activated protein kinase (AMPK) signaling via adiponectin receptor 1 (AdipoR1) 

(Yamauchi et al., 2007).  

Serum adiponectin concentrations were significantly higher in PI3K p110γ deficient 

mice than in WT control mice in both dietary groups (Fig 38). This seemed to be a 

discrepancy to the effects of the HFD seen in these mice.  

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Concentration of Adiponectin in murine serum samples (ELISA), (*p<0.05); 

SC=standard chow, HFD= high fat diet, WT= wild-type, PI3K -/- = PI3K p110γ deficient  

 

To get an explanation for this discrepancy the signaling via AdipoR1 and AMPK 

was examined. 

The (AMPK) is a heterotrimer consisting of one catalytic (α) and two regulatory 

subunits (β,γ) (Carling, 2004). By being a key enzyme in lipid metabolism AMPK 

acts as a sensor for the cellular energy status and helps keeping the energy 

balance by influencing energy production and expenditure (Long and Zierath, 

2006). It promotes fatty acid oxidation by blocking ACC (Acetyl-CoA carboxylase) 

(Winder and Hardie, 1999) and reduces activation of transcription factor sterol 

regulatory element-binding protein (SREBP) (Purohit et al., 2009).  
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As shown by western blot analysis hepatic protein expression of AdipoR1 was 

reduced in mice with NASH, and consequently, also AMPK was not activated in 

HFD-fed mice (Fig 39).  

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Western blot; upper two lanes: adiponectin receptor 1 & α-tubulin, lower lanes: 
(phospho-) AMP-activated protein kinase ((p)-AMPK; SC=standard chow, HFD= high fat diet, WT= 

wild-type, PI3K -/- = PI3K p110γ deficient  

 

 

These data indicate that despite elevated serum levels of adiponectin PI3K 

p110γ deficient mice cannot profit from the beneficial effects of adiponectin of 

hepatic lipid metabolism in fatty liver disease. However, adiponectin is known to 

additionally exhibit direct antifibrotic effects independently of its effects on hepatic 

lipid metabolism (Matsunami et al., 2010,Shafiei et al., 2011,Wanninger et al., 

2011). Therefore, one may hypothesize that in the BDL model, where AdipoR1 

expression is not affected by hepatic steatosis, PI3K p110γ deficient mice profit 

from elevated adiponectin levels, which may in part explain the differences 

observed between the two models. 
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III.7. PI3K p110γ γ γ γ  in hepatic stellate cells (HSC) 

 

In addition to potential adiponectin effects it was noteworthy that the inhibitory 

effect of PI3K p110γ deficiency on hepatic fibrosis in the BDL model occurred 

despite slightly elevated expression of proinflammatory genes (see Fig 9). This 

prompted us to evaluate the expression of PI3K p110γ in HSC, and whether the 

loss of this PI3K subunit may directly affect HSC, respectively.  

 

 

III.7.1. PI3K p110γγγγ expression during activation of HSC 

 

We found that PI3K p110γ was upregulated in an in vitro model of HSC activation 

(Fig 40a). Primary quiescent HSC were seeded on uncoated cell culture dishes 

and activated within a few days. The state of activation of HSC was shown by 

expression of collagen I (Fig 40b).  

 

Figure 40: mRNA expression of (a) PI3K p110γ and (b) collagen-1 in activated HSC; day 3-10 of 

activation (d3-d10); (*p<0.05) 

 

 

III.7.2. PI3K p110γγγγ expression in FFA stimulated HSC 

 

Furthermore, we assessed whether incubation with the unsaturated free fatty acid 

oleic acid affected PI3K p110γ expression in HSC.  
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III.7.2.1. Dose-response of HSC-B to Oleic acid 

 

To get an impression how PI3K in general might be involved in the development of 

NASH in vitro experiments were done, where HSC were stimulated with an 

unsaturated free fatty acid (oleic acid). Oleic acid (C18:1 cis- 9) is a mono-

unsaturated omega-9 fatty acid and is the most abundant fatty acid in human 

adipose tissue (Kokatnur et al., 1979). As NASH is characterized also by more 

FFA distribution from the adipose tissue to the liver (Donnelly et al., 2005) 

stimulation with oleic acid was thought to be an adequate way to simulate NASH in 

vitro. 

The following experiments were done with an immortalized activated HSC cell line 

(HSChTert).  

To determine the adequate concentration of oleic acid a dose-response 

experiment was done. Stimulation with a gradient of oleic acid for 48 hours 

showed that a concentration of 50µM and higher lead to an up-regulation of Il-8 in 

the supernatant of stimulated cells (Fig 41a). Measurement of LDH showed that 

400 µM oleic acid or higher was toxic for the cells (Fig 41b). 

 

       (a)                (b) 

Figure 41: (a) IL-8 ELISA and (b) LDH measurement of supernatant of stimulated HSC
hTert 

after 
48hours incubation with oleic acid in rising concentrations 
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III.7.2.2. Time course of IL-8 mRNA expression in response to Oleic 

acid 

 

A time course revealed that stimulation with 100µM of oleic acid enhanced mRNA 

expression of Il-8 in a time dependent manner in HSChTert, (Fig 42). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: mRNA expression of IL-8 in HSC
hTert

 after stimulation with 100 µM oleic acid at different 
time points 

 

 

III.7.2.3. Signaling via p70 S6K after oleic acid stimulation 

 

Western blot analysis demonstrated that 60-120 min after stimulation with 200µM 

of oleic acid signaling via 70 kDa ribosomal protein S6 kinase I (p70 S6K) was 

activated (Fig 43). P70S6K is a serine/ threonine kinase that acts downstream of 

PIP3 and PDK-1 in the PI3K pathway (Chung et al., 1994). 

 

 

 

 

 

 

 

 

Figure 43: Western blot of cell lysate from stimulated HSC
hTert

; upper lane: phospho-p70 S6K, 
lower lane: p70 S6K 
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III.7.2.4. Il-8 secretion from HSC after blocking of complete PI3K 

 

Next, signaling via PI3K was blocked using the specific inhibitor LY-294,002 

(SIGMA, Deisenhofen, Germany). An ELISA showed that after 24h oleic acid 

caused a significant up-regulation of IL-8 secretion from HSC (Fig 44). This up-

regulation could partly be blocked by pre-treatment of the cells with LY-294002 

(LY), supporting the theory that PI3K is involved in the proinflammatory signaling 

process of free fatty acids (FFA) in HSC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: IL-8 ELISA of supernatant of HSC
hTert

 after stimulation with Oleic acid +/- LY-294,002 
(*p<0.05); LY-294,002= specific inhibitor of complete PI3K 

 

 

Importantly, HSChTert did not express p110γ in contrast to murine and human 

activated HSC (data not shown). Treatment with the unselective PI3K inhibitor LY-

294002 significantly inhibited the oleic acid induced IL-8 mRNA induction in 

HSChTert cells indicating that the oleic mediated effect on IL-8 expression is not 

mediated via γ but via the α or β subunit. 
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IV. Discussion 

 

 

The aim of this project was to assess the expression and function of PI3Kp110γ in 

chronic liver disease with a focus on hepatic fibrosis. 

 

Until today, PI3Kp110γ has primarily been studied in relation to immune cells. It 

has been shown that macrophages lacking PI3K p110γ exhibit reduced migration 

and defective accumulation in vivo (Hirsch et al., 2000). The same study showed 

that signaling via tyrosine kinases to class 1A PI3K was intact in PI3K 

p110γ deficient cells. Another study demonstrated defective migration of PI3K 

p110γ deficient dendritic cells in vitro and ex vivo (Del Prete et al., 2004). As also 

the migration of mast cells is inhibited, PI3K p110γ knockout mice are protected 

against systemic anaphylaxis (Wymann et al., 2003). Furthermore, PI3K p110γ 

knockout mice are protected from the progression of rheumatoid arthritis (Camps 

et al., 2005). 

With regards to the liver only very few studies assessing the expression and 

function of PI3K distinguished the effects of individual PI3K subunits. Hohenester 

et al. have shown that PI3K p110γ contributes to bile acid induced apoptosis of 

hepatocytes (Hohenester et al., 2010), and a most recent study links the α- and β 

subunit to hepatic lipid and glucose metabolism, respectively (Chattopadhyay et 

al., 2011). In contrast to these findings until now, the p110γ unit had not been 

related to metabolic processes in the liver. Based on its central role in G-coupled 

receptor signal transduction, one could have expected that PI3K p110γ deficiency 

would exhibit anti-inflammatory and anti-fibrogenic effect in models of chronic liver 

injury, as numerous studies have shown the pathological effects of chemokines. In 

cholestatic liver injury MCP-1 expression is induced in hepatocytes by bile acids 

and leads to a recruitment of HSCs (Ramm et al., 2009). Several studies 

connected elevated expression of MCP-1 with hepatic fibrogenesis and HSC 

proliferation (Czaja et al., 1994,Marra et al., 1998,Muhlbauer et al., 2003). Also 

MCP-1 receptor deficient mice display reduced liver fibrosis in the BDL model and 

blocking signaling via the chemokine receptors CCR1 and CCR5 also reduced 

hepatic fibrosis (Seki et al., 2009b,Seki et al., 2009a). Also Zamara et al. 
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demonstrated that MCP-1 deficient mice are protected against the generation of 

ROS and inflammation in a model for acute toxic liver injury (CCl4) (Zamara et al., 

2007). 

 

In line with this, PI3K p110γ  mice reveal a normal phenotype under standard 

chow. Further, and in line with the known profibrogenic effect of chemokines PI3K 

p110γ  mice exhibited less fibrosis in the BDL model. Surprisingly, and in contrast 

to the diminished fibrosis, expression of pro-inflammatory genes TNF and MCP-1 

was slightly higher in PI3K p110γ mice. One potential explanation may be a recent 

study that showed that PI3K p110γ is negatively regulated by gradually 

accumulating ROS in apoptotic neutrophils (Xu et al., 2010). Spontaneous 

apoptosis of neutrophils plays a crucial role in the resolution of inflammation, so 

disruption of this feedback loop in PI3K p110γ mice may enhance hepatic 

inflammation in the BDL model. Additionally, a recent study assessing PI3K 

p110γ  deficient mice in a model of chronic colitis suggests that p110γ also plays a 

crucial role in the negative regulation of proinflammatory cytokines (van Dop et al., 

2010). 

As PI3K p110γ deficiency interrupts G-receptor coupled signaling of chemokines, 

even in the presence of high levels of MCP-1 or other chemokines recruitment of 

proinflammatory cells and inflammation is likely diminished in PI3K 

p110γ deficient mice. Moreover, it is of importance that immune cell function is 

known to be impaired in PI3K p110γ deficient mice (Del Prete et al., 2004,Hirsch et 

al., 2000,Sasaki et al., 2000,Wymann et al., 2003). Consequently, even if 

inflammatory cells are present their effect on hepatic inflammation is impaired in 

PI3K p110γ deficient mice. Thus, even if inflammatory cells are present their effect 

on hepatic inflammation is impaired in PI3K p110γ  deficient  mice. Taken together, 

these findings explain why, although inflammatory gene expression is higher in 

bile-duct ligated PI3K p110γ mice, this does not translate in enhanced but rather 

significantly reduced fibrosis compared to WT mice. 

 

In contrast to the BDL model, PI3K p110γ  deficient mice revealed significantly 

more fibrosis in a dietary NASH model. Remarkably, this occurs despite the fact 

that also in the NASH model PI3K p110γ  deficient mice revealed significantly less 

apoptosis in the liver than WT controls. It has been described that activation of the 

death receptor Fas promotes hepatocyte apoptosis during the progression of 
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NASH (Feldstein et al., 2003) and that the PI3K/Akt pathway has a protective role 

in Fas-mediated apoptosis (Hatano and Brenner, 2001). Notably, HFD induced 

FAS upregulation was blunted in PI3K p110γ  deficient mice suggesting that this 

mechanism is at least in part responsible for the reduced apoptosis in PI3K 

p110γ  deficient mice fed HFD compared to wt controls. Still, serum transaminase 

levels were significantly higher in PI3K p110γ  deficient mice than wt mice in the 

NASH model indicative of overall more cellular death and necrosis in PI3K 

p110γ  deficient deficient animals. As most likely reason for this phenomenon we 

found that PI3K p110γ  mice revealed significantly higher hepatic lipid 

accumulation than WT controls in the NASH model.  

Our findings suggest that increased hepatocellular FFA uptake and transport lead 

to enhanced accumulation of FFA in PI3K p110γ deficient livers compared to WT 

livers. In both PI3K p110γ deficient and WT mice FFA are in part esterified to TGs. 

Of note, PI3K p110γ deficient mice exhibited enhanced TG levels also on standard 

chow, suggesting that FFA did not already accumulate under basal conditions 

because TG synthesis was sufficient to prevent FFA accumulation. Upon HFD 

feeding TG synthesis was impaired by downregulation of DGAT2, which together 

with enhanced expression of LPL forced hepatocellular FFA accumulation. Even 

under HFD FFA accumulation in WT mice was only marginal, but significant in 

PI3K p110γ livers, and thus, FFA combustion, i.e. β-oxidation was the only way to 

get rid of the accumulating FFA. In accordance, CPT-1 expression was enhanced 

in PI3K p110γ deficient mice and lead to the formation of ROS and lipid peroxides, 

which are strongly fibrogenic by activating HSC in a dose dependant manner 

(Novo et al., 2006). Additionally, FFAs promote the process of liver fibrogenesis by 

inducing hepatocyte apoptosis (Malhi et al., 2007) and act directly profibrogenic on 

HSC (Canbay et al., 2005,Lu et al., 1998). Also here, we could show in vitro that 

FFA directly affect IL-8 expression in HSC and IL-8 plays an important 

pathophysiological role in the progression of liver inflammation and fibrosis 

(Maher, 2001). Of note, this effect appears to be mediated via the α or β unit and 

not via the PI3K p110γ. Thus, one may hypothesise that in the dietary NASH 

model a direct FFA induced profibrogenic effect took places, which is independent 

of PI3K p110γ signaling and not present in the BDL model or other models not 

related to NAFLD. These mechanisms may further contribute to the differences 

observed between PI3K p110γ deficient mice in the NASH and BDL model. 
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Furthermore and surspringly, we found that adiponectin serum levels were 

approximately 25% higher in the PI3K p110γ deficient mice, which is an increase 

that is biologically relevant. It has been shown that adiponectin concentrations 

increase by about 36% in type 2 diabetic patients by 13% weight loss, and that this 

may contribute to the metabolic improvements observed in these patients 

(Pasarica et al., 2009). However, in the PI3K p110γ deficient mice with NASH the 

protective effect of adiponectin seemed to be partly impaired. The main reason for 

this impairment probably was the diminished AdipoR1 expression in NASH mice. 

Impressively, in an experimental NASH model adiponectin receptor 1/2 double 

knockout mice reveal increased hepatic fat accumulation and inflammation 

together with elevated oxidative stress (Yamauchi et al., 2007), i.e. similar 

symptoms as observed in PI3K p110γ deficient mice. In contrast, one may 

hypothesize that in the BDL model, where AdipoR1 expression is not affected by 

hepatic steatosis PI3K p110γ deficient mice profit from elevated adiponectin levels, 

which are known to act anti-fibrogenic. Thus, it has been shown that adiponectin 

inhibits the activation of hepatic stellate cells (Czaja, 2004) while mice lacking 

adiponectin (APN -/-) show enhanced carbon tetrachloride-induced liver fibrosis 

(Kamada et al., 2003). Taken together, elevated adiponectin levels may be one 

further mechanism explaining the differences observed in PI3K p110γ deficient 

mice in the two models. 

 

In summary, we found that the PI3K class IB isoform p110γ is increased in 

different murine models of liver fibrosis as well as in the liver of patients with 

chronic liver disease. However and interestingly, we provide experimental 

evidence that the effect of PI3K p110γ varies significantly depending on the cause 

of liver injury. Particularly, in a model of NAFLD PI3K p110γ seems to inhibit 

hepatic steatosis, inflammation and fibrogenesis. These findings have important 

clinical implications, because PI3K inhibitors are under clinical development for the 

treatment of inflammatory disorders and cardiovascular dysfunctions (Ghigo et al., 

2010). Particularly the latter and NAFLD share the metabolic syndrome as most 

common risk factor and frequently coincide. Based on the data of the present 

study one has to be very cautious regarding harmful effects of a PI3K p110γ 

inhibition in patients with the metabolic syndrome or known NAFLD, respectively.  
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VI. Appendix 

 

 

VI.1. Abbreviations 

 

αSMA alpha smooth muscle actin 

°C degree Celsius 

(c)DNA (complementary) deoxyribonucleic acid 

µg microgram 

µl  microliter 

µM micromolar 

Acox-1 acyl-coenzyme A oxidase 1 

AD atherogenic diet (Paigen) 

AdipoR1 adiponectin receptor 1 

ALD alcoholic liver disease 

ALT alanine aminotransferase 

AMPK AMP-activated protein kinase 

ASH alcoholic steatohepatitis 

AST aspartate aminotransferase 

BCA  bicinchonic acid 

BDL bile duct ligation 

bp  base pairs 

BSA  bovine serum albumin 

Ca  Calcium 

CCl4 carbon tetrachloride 

CD36 fatty acid translocase (Cluster of 

Differentiation 36) 

cDNA  complementary DNA 

Cl chloride 

Coll-I  collagen type I 

CYP cytochrome P450 

CYP7A1 cholesterol-7α-hydroxylase  

d day 
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DEPC Diethylpyrocarbonate 

DGAT diglyceride acyltransferase  

dl decilitre 

DMEM Dulbecco’s modified eagle medium 

DMSO dimethyl sulfoxide 

dNTP deoxyribonucleosidtriphophate  

e.g. exempli gratia 

ECL enhanced chemiluminescence 

ECM extracellular matrix 

EDTA ethylene diamine tetra acetate  

ELISA enzyme linked immunosorbent assay 

et al. et alii 

EtOH ethanol 

EU ELISA unit 

FABP fatty acid binding protein 

Fas TNF receptor superfamily, member 6 

FasL Fas ligand 

FASN fatty acid synthase 

FCS fetal calf serum 

(F)FA (free) fatty acid(s) 

Fig figure 

FoxO1 mammalian forkhead members of the 

class O1 

g gram 

GPCR G protein-coupled receptor 

GSK3 glycogen synthase kinase 3 

h hour 

H/E haematoxylin/eosin 

H2 SO4 sulphuric acid 

H2O2 hydrogen peroxide 

H2Odist.  distilled water 

HCl  hydrochloric acid 

HCV hepatitis C virus 

HNE hydroxynonenal 

HRP horseradish peroxidase 
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HSC hepatic stellate cell 

i.p. intraperitoneal 

IL-8 interleukin 8 

INFγ interferon γ 

IU insulin unit 

kg kilogram 

LAL limulus amebocyte lysate assay 

LDH lactate dehydrogenase 

LPL lipoprotein lipase 

LPS lipopolysaccharide 

M molar, mol/l 

mA milliampere 

MCD diet methionine-choline deficient diet 

MCP-1 monocyte chemoattractant protein 1 

mg milligram 

MgCl2 magnesium chloride 

min minute(s) 

ml  millilitre 

mM millimolar 

mRNA messenger ribonucleic acid 

mTOR mammalian target of rapamycin 

MTTP microsomal triglyceride transfer protein 

Na3N Sodium nitride 

NADH nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide 

phosphate (reduced) 

NAFLD non-alcoholic fatty liver disease 

NaOH sodium hydroxide 

NASH non-alcoholic steatohepatitis 

NFκB nuclear factor κB 

nm nanometre 

Nox2 subunit NADPH oxidase complex 

p47phox subunit NADPH oxidase complex 

p70S6K ribosomal p70 S6 kinase 

Pai-1 plasminogen activator inhibitor 
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PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDGF platelet derived growth factor 

PDK-1 Pyruvate dehydrogenase kinase isozyme 

1 

pg pictogram 

pH  potentia hydrogenii 

PI3K phosphatidyl-inositol-3-kinase  

PIP phosphoinositol lipid(s) 

PKB  protein kinase B (AKT) 

PKC protein kinase C 

PMSF phenylmethylsulfonyl fluoride 

PPAR peroxisome proliferator-activated 

receptor 

PTEN phosphatase and tensin homologue 

p-value  probability value (statistics) 

ROS  reactive oxygen species 

rpm  rounds per minute 

RT reverse transcriptase 

RTK receptor tyrosine kinase 

s second 

SC standard chow (control diet) 

SDS sodium-dodecyl-sulfate 

SREBP-1 sterol regulatory element-binding protein-

1 

TBE tris-borate-EDTA 

TBS tris-buffered saline 

TE  tris EDTA 

TG triglyceride(s) 

TGFβ transforming growth factor β 

TIMP-1 tissue inhibitor of matrix 

metalloproteinases 1 

TLR toll-like receptor 

TNF tumor necrosis factor  

TWEEN  Polyoxyethylene sorbitan monolaurate 
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U unit 

UV ultraviolet 

V Volt 

VLDL very low density lipoprotein 

vs. versus 

w week 

WT wild-type 
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VI.2. Bisherige Präsentation der Daten dieser Arbeit 

 

Vortrag: 

 

Forschungswochenende der Klinik und Poliklinik der Inneren Medizin I, 
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� Dostert K, Wiest R, Schölmerich J, Hellerbrand C, Gäbele E: Unterschiedliche 
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Posterpräsentation: 

 

45th Annual meeting of the European Association for the study of the Liver 

(EASL), Wien, 15.-18.04.2010 

 

� Dostert K, Wiest R, Schölmerich J, Hellerbrand C, Gäbele E: Deficiency of 

phosphatidylinositol 3-kinase (PI3K) aggravates inflammation and fibrosis in 

experimental NASH but protects against bile duct ligation induced fibrosis in 

vivo  

 

27. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der 
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