Application of the Guanidine–Acylguanidine Bioisosteric Approach to NPY Y₂ Receptor Antagonists: Bivalent, Radiolabeled and Fluorescent Pharmacological Tools

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät IV – Chemie und Pharmazie – der Universität Regensburg

vorgelegt von Nikola Pluym aus Moosburg

2011

Die vorliegende Arbeit entstand in der Zeit von November 2007 bis Oktober 2011 unter der Leitung von Herrn Prof. Dr. A. Buschauer am Institut für Pharmazie der Naturwissenschaftlichen Fakultät IV - Chemie und Pharmazie - der Universität Regensburg.

Das Promotionsgesuch wurde eingereicht im September 2011.

Tag der mündlichen Prüfung: 28. Oktober 2011

Prüfungsausschuß: Prof. Dr. Brunner Prof. Dr. A. Buschauer Prof. Dr. J. Wegener Prof. Dr. Elz (Vorsitzender) (Erstgutachter) (Zweitgutachter) (Prüfer)

Danksagungen

An dieser Stelle möchte ich mich bedanken bei:

Herrn Prof. Dr. A. Buschauer für die Möglichkeit an diesem vielseitigen Projekt arbeiten zu dürfen, für seine wissenschaftlichen Anregungen, seine Förderung und seine konstruktive Kritik,

Herrn Prof. Dr. G. Bernhardt für seine wissenschaftlichen Hilfestellungen, sein stetes Interesse am Fortgang der Experimente, für sein hervorragendes Kesselgulasch und den vielleicht nicht ganz so hervorragenden Walnussschnapps,

Herrn Dr. M. Keller für die fachlichen Tipps, insbesondere zu Beginn meiner Zeit am Lehrstuhl, das Bereitstellen von Synthesevorstufen sowie für die fachlichen Diskussionen und Ratschläge,

Herrn Dr. M. Link für die Bereitstellung der Pyryliumfarbstoffe,

Frau Dr. N. Pop für die Unterstützung bei der Durchführung von Konfokalmikroskopie-Experimenten,

meiner Kollegin Melanie Kaske für die Kultivierung der CHO Zellen,

Frau Elvira Schreiber für die Durchführung der zahlreichen pharmakologischen Bestimmungen am Fluorimeter sowie am FACS, die Kultivierung der CHO Zellen und ganz besonders für die letztlich erfolgreiche Erstellung der pNPY Konzentrations-Wirkungskurven,

Frau Brigitte Wenzl für die Unterstützung bei der Durchführung der Radioligand-Bindungsexperimente,

meinen Kollegen Uwe Nordemann und Tobias Birnkammer für die helfenden, flotten Hände bei der Synthese und Aufreinigung des Radioliganden [³H]-UR-PLN196,

Frau Prof. Dr. C. Cabrele für die Bereitstellung der Peptide,

Herrn Josef Kiermaier und Herrn Wolfgang Söllner für die Anfertigung zahlreicher MSsowie LC-MS-Untersuchungen,

Herrn Dr. T. Burgemeister und Herrn F. Kastner für die Aufnahme der 2D-NMR Spektren und die Hilfe bei der Auswertung der "Härtefälle",

allen weiteren Mitarbeitern der analytischen Abteilungen der Fakultät für die Aufnahme von NMR- und Massenspektren, sowie der Durchführung der Elementaranalysen,

Herrn Prof. Dr. K. Wanner für die HRMS-Analyse des Fluoreszenzliganden 5.5

Klaus Harrar für die "Bereitstellung" des Polarimeters und des IR-Gerätes,

Tobias Birnkammer für die schöne Zeit im Büro (auch ohne Kaffee),

Frau M. Wechler, Frau S. Heinrich, Frau K. Reindl, Frau U. Hasselmann und Herrn P. Richthammer für die Unterstützung bei technischen und organisatorischen Problemen,

dem Team Arminia Buschauer für die glanzvollen Auftritte bei den Fußballturnieren der letzten Jahre und den Titelgewinn beim ChemCup 2007,

allen Mitgliedern des Lehrstuhls für ihre Kollegialität, Hilfsbereitschaft und ein gutes Arbeitsklima,

der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung im Rahmen des Graduiertenkollegs GRK 760,

und denjenigen, die das Leben erst lebenswert machen: meinen Freunden, mojoj obitelji und natürlich meiner Freundin Miriam.

Publications, Posters, Oral Presentations and Professional Training

Publications (published results prior to the submission of the thesis):

<u>Pluym N.</u>, Brennauer A., Keller M., Ziemek R., Pop N., Bernhardt G., Buschauer A., Application of the guanidine – acylguanidine bioisosteric approach to argininamidetype NPY Y2 receptor antagonists, *ChemMedChem* **2011**, 6, 1727-1738

Keller M., Erdmann D., Pop N., <u>Pluym N.</u>, Teng S., Bernhardt G., Buschauer A., Redfluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools, *Bioorg. Med. Chem.* **2011**, 19 (9), 2859–2878

Hild W., Pollinger K., Caporale A., Cabrele C., Keller M., <u>Pluym N.</u>, Buschauer A., Rachel R., Tessmar J., Breunig M., Göpferich A., G protein-coupled receptors function as logic gates for nanoparticle binding in cell uptake, *Proc. Natl. Acad. Sci. U.S.A.* **2010**, 107 (23), 10667–10672

Poster Presentations:

<u>Pluym N.</u>, Keller M., Pop N., Brennauer A., Bernhardt G., Buschauer A., *Nonpeptidic fluorescence and radioligands as pharmacological tools for the neuropeptide* $Y Y_2$ *receptor*, 5th Summer School Medicinal Chemistry, Regensburg, **September 2010**.

<u>Pluym N.</u>, Keller M., Pop N., Brennauer A., Bernhardt G., Buschauer A., *Nonpeptidic fluorescence and radioligands as pharmacological tools for the neuropeptide Y* Y_2 *receptor*, 21^{st} International Symposium on Medicinal Chemistry (ISMC), Brüssel, **September 2010**. Abstract published in: Drugs of the Future 35 (Suppl. A), 69.

<u>Pluym N.</u>, Keller M., Pop N., Brennauer A., Bernhardt G., Buschauer A., *Nonpeptidic fluorescence ligands for the neuropeptide Y* Y_2 *receptor*, Annual Meeting "Frontiers in Medicinal Chemistry", Münster, **March 2010**.

<u>Pluym N.</u>, Keller M., Pop N., Brennauer A., Bernhardt G., Wolfbeis O. S., Buschauer A., Synthesis of nonpeptidic neuropeptide Y Y_2 receptor antagonists as fluorescent probes and potential radioligands, Jahrestagung der DPhG, Jena, **October 2009**. <u>Pluym N.</u>, Keller M., Brennauer A., Pop N., Bernhardt G., Wolfbeis O. S., Buschauer A., Synthesis of highly potent, selective neuropeptide Y Y₂ receptor antagonists as fluorescent probes and potential radioligands, 4th Summer School Medicinal Chemistry, Regensburg, **September 2008**.

<u>Pluym N.</u>, Keller M., Brennauer A., Pop N., Bernhardt G., Wolfbeis O. S., Buschauer A., *Towards nonpeptidic radioligands and fluorescent probes for the neuropeptide Y* Y_2 *receptor*, 20th International Symposium on Medicinal Chemistry (ISMC), Wien, **September 2008**. Abstract published in: Drugs of the Future 33 (Suppl. A), 159.

<u>Pluym N.</u>, Keller M., Brennauer A., Schreiber E., Wolfbeis O. S., Buschauer A., *Towards* nonpeptidic radioligands and fluorescent probes for the neuropeptide $Y Y_2$ receptor, Annual Meeting "Frontiers in Medicinal Chemistry", Regensburg, **March 2008**.

Short Lectures:

Nonpeptidic fluorescence and radioligands as pharmacological tools for the neuropeptide Y Y_2 receptor, Internationale Doktorandentagung der DPhG, Heringsdorf, **March 2011**.

Professional Training:

November 2007 – October 2010: associated member of the Research Training Group (Graduiertenkolleg 760) "Medicinal Chemistry: Molecular Recognition – Ligand Receptor Interactions"

Contents

CHAPTER 1		GENERAL INTRODUCTION	1		
1.1	Neuro	peptide Y			
1.2	Mamm	nalian NPY Receptor Subtypes	3		
1	.2.1	The Y_1 , Y_4 and Y_5 Receptor	4		
1	.2.2	The NPY Y ₂ Receptor	5		
1	.2.3	The Y_2R in Health and Disease	5		
1.3	NPY Re	eceptor Ligands	6		
1	.3.1	NPY Y_1 , Y_4 and Y_5 Receptor Antagonists	6		
1.3.2		NPY Y_2R Ligands			
1.4	Bioisos	steres	10		
1.5	Pharm	acological Tools	13		
1	.5.1	Radioligands and Autoradiography	13		
1	.5.2	Positron Emission Tomography (PET)	14		
1	.5.3	Fluorescent Ligand-Based Assays and Fluorescence Imaging	15		
1.6	Refere	nces	17		
CHAPTER 2		SCOPE OF THE THESIS	31		
CHAPTER 3		STRUCTURE-ACTIVITY RELATIONSHIP STUDIES OF ARGININAMIDE-TYPE	25		
2.1	linting di	NEUROPEPTIDE Y Y2 RECEPTOR ANTAGONISTS	35		
3.1	3.1 Introduction		35		
3.2 Chemis		Stry			
3.2.1		Synthesis			
5	.2.2	Stability of the NPY Y ₂ R Antagonists	45		
3.3	Pharm	acological Results and Discussion	4/		
3.4	Summa	ary and Conclusion			
3.5	Experii	mental Section	55		
3.5.1		General Experimental Conditions	55		
3.5.2		Chemistry: Experimental Protocols and Analytical Data	57		
3.5.3		Investigation of the Chemical Stability	106		
3	.5.4	Pharmacology: Cell Culture, Fura-2 Assay and Flow Cytometry	107		
36	3.6 References				

CHAPTER 4		BIVALENT ARGININAMIDE-TYPE NPY Y2 RECEPTOR ANTAGONISTS	. 111	
4.1	L Introdu	uction	. 111	
4.2	2 Chemis	Chemistry		
4.3	B Pharm	acological Results and Discussion	. 115	
4.4	1 Summa	ary and Conclusion	. 119	
4.5	5 Experi	nental Section	. 120	
	4.5.1	General Experimental Conditions	. 120	
	4.5.2	Chemistry: Experimental Protocols and Analytical Data	. 121	
	4.5.3	Pharmacology: Cell Culture, Fura-2 Assay and Flow Cytometry	. 127	
4.6 Referenc		nces	. 128	
CHAPTER 5		RED-FLUORESCENT NPY Y ₂ RECEPTOR ANTAGONISTS	. 133	
5.1	.1 Introduction		. 133	
5.2	2 Chemis	stry	. 135	
	5.2.1	Synthesis	. 135	
	5.2.2	Fluorescence Properties of the Labeled Y ₂ R Antagonists	. 138	
	5.2.3	Stability of the Fluorescence Ligands	. 141	
5.3	8 Pharm	acological Results and Discussion	. 143	
5.3.1		Pharmacology: Y_2R Antagonism, Affinity and Selectivity	. 143	
	5.3.2	Application of Fluorescent Y_2R Antagonists to Confocal Laser Scanning Microscop	y146	
	5.3.3	Fluorescent Y ₂ R Antagonists in Flow Cytometry: Kinetics, Saturation and Competi Binding Experiments	tion . 151	
5.4	1 Summa	ary and Conclusion	. 157	
5.5	5 Experi	nental Section	. 158	
	5.5.1	General Experimental Conditions	. 158	
	5.5.2	Chemistry: Experimental Protocols and Analytical Data	. 160	
	5.5.3	Synthesis and Purification of Cy5-pNPY	. 165	
	5.5.4	Fluorescence Spectroscopy and Determination of Quantum Yields	. 165	
	5.5.5	Investigation of the Chemical Stability	. 166	
	5.5.6	Receptor Binding and Functional Assays	. 167	
	5.5.7	Confocal Microscopy	. 170	
5.6	6 Refere	nces	. 171	

CHAPTER 6		[³ H]-UR-PLN196: A HIGHLY POTENT AND SELECTIVE TRITIATED NEUROPEPTIDE Y Y ₂ RECEPTOR ANTAGONIST		
6.1	Introdu	iction	.175	
6.2	.2 Chemistry		.177	
6.3 Pharmacological Results		acological Results and Discussion	.178	
6.3.1		Saturation Binding	.178	
6.3.2		Association and Dissociation Kinetics	.179	
6.	3.3	Y_2R Antagonism of 6.1 : Ca ²⁺ Assay, Schild Analysis and Displacement with pNPY	.181	
6.	3.4	Competition Binding Experiments: Application as Standard Ligand	.183	
6.4	Summa	ary and Conclusion	.185	
6.5	Experin	nental Section	.185	
6.5.1		General Experimental Conditions	.185	
6.5.2		Synthesis, Purification and Quantification of [³ H]-UR-PLN196 (6.1)	.186	
6.	5.3	Pharmacology: Experimental Protocols	.188	
6.6	6.6 References		.189	
СНАРТ	ER 7	SUMMARY	. 193	
СНАРТ	ER 8	APPENDIX	. 195	
8.1	Abbrev	iations	.195	
8.2	3.2 Flow Cytometric Saturation and Competition Binding Experiments		.198	
8.3	3 Confocal Microscopy		.199	
8.4 HPLC St		tability Investigations	.200	

Chapter 1 General Introduction

1.1 Neuropeptide Y

Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the central and peripheral nervous system.¹ It was first isolated by Tatemoto *et al.* from porcine brain in 1982.² Together with the homologous peptides pancreatic polypeptide (PP) and peptide YY (PYY), NPY belongs to the neuropeptide Y family.³ For all these peptides, consisting of 36 amino acids, C-terminal amidation is essential for biological activity.⁴ The sequence of NPY is highly conserved in various species.⁵ The tertiary structure of turkey PP has been elucidated by crystallography.⁶⁻⁷ In this crystal structure the N-terminal residues 1-8 form a polyproline-like helix, followed by a β -turn (9-13) and an α -helical region (14-31). The C-terminal pentapeptide (32-36), bearing the most crucial residues for receptor recognition, appears rather unordered and flexible. This hairpin-like conformation, the so-called PP-fold, is stabilized by hydrophobic interactions between the polyproline-like N-terminus and the α -helix. Due to high sequence homology of NPY to PP (50 %) this tertiary structure was also proposed for NPY (cf. Figure 1.1).⁸

Figure 1.1. Tertiary structure of porcine NPY according to Allen.⁸ The residues are arranged according to the crystal structure of the homolog avian PP.

The tertiary structure of NPY in solution was intensively studied by several groups using NMR techniques and CD spectroscopy as well as FRET based approaches. These studies reported contradictory findings, as some confirmed the PP-fold structure⁹⁻¹¹, while others did not find the PP-fold as prevalent conformation of NPY in solution, e.g. due to the formation of dimeric structures through α -helical contacts and conformations with non-helical and flexible N-termini.¹²⁻¹⁶ However, conformational studies in solution do not permit any definite conclusions with regard to the receptorbound conformation due to unphysiologically high concentrations of NPY in the millimolar range. Furthermore, for instance, in NMR studies the pH was adjusted to values considerably lower than 7.4 in order to increase the solubility of NPY. Considering the results from CD spectroscopic measurements at various concentrations and pH values, different conformations of NPY were observed in a dynamic equilibrium, and the PP-fold conformation is probably favored under physiological conditions.¹⁷ Furthermore, peptide-lipid interactions at the surface of the cell membrane were discussed to support the formation of the active conformation of NPY (cf. Figure 1.2).¹⁸⁻²⁰

Figure 1.2. The structure of pNPY bound to micelles according to Bader *et al.*¹⁸ The N-terminal part is flexible, while the C-terminal α -helix interacts with the membrane surface. Structural data are obtained from the Protein Data Bank (PDB access code 1F8P, http://www.pdb.org/pdb/home/home.do).

In the peripheral nervous system NPY is expressed in sympathetic neurons, where it is stored together with noradrenaline and functions as cotransmitter.²¹ In the central nervous system (CNS) NPY was found in the basal ganglia, hippocampus, amygdala and the hypothalamus. In the CNS, NPY also acts as cotransmitter, e.g., together with noradrenaline, agouti-related peptide (AGRP)²² or GABA²³.

NPY is primarily synthesized and released by neurons. The biologically active peptide is derived from the 97-amino acid precursor pre-pro-NPY following at least four post-translational enzymatic events (Figure 1.3).²⁴⁻²⁷ The 69 residue containing pro-NPY is produced after removal of the signal-peptide (29 amino acids). Then, pro-NPY undergoes cleavage by several enzymes such as prohormone convertase 1 and 2 (PC1+2) and carboxypeptidase E (CPE), thereby generating the mature peptide.

Figure 1.3. Biosynthesis of neuropeptide Y, adapted from von Hörsten *et al.*²⁸; aa: amino acid. The arrows schematically present the cleaving sites.

NPY possesses a broad range of biological effects including stimulation of food intake,²⁹ inhibition of glutamatergic excitatory synaptic transmission,³⁰ memory processes,³¹ hypothermia,³² anxiolysis,³³ etc. Moreover, NPY is considered to be involved in various pathological processes such as dysregulation of food intake and obesity,³⁴⁻³⁷ mood disorders³⁸⁻³⁹ and alcoholism.⁴⁰

1.2 Mammalian NPY Receptor Subtypes

The diverse biological effects of NPY are mediated by the activation of different receptor subtypes which are all members of the larger superfamily of G-protein coupled receptors (GPCRs). In mammals five neuropeptide Y receptor subtypes have been described, denoted as Y_1 , Y_2 , Y_4 , Y_5 , and y_6 .⁴¹⁻⁴⁸ The y_6 receptor was found to be functional in mice, but is a non-functional pseudogene in most mammalian species. In the rat genome it is missing at all.⁴⁹ In Table 1.1 an overview of the binding profiles, the localization and the physiological role of the mammalian NPY receptor subtypes is given.

Table 1.1. Overview of binding profile, localization and physiological role of the mammalian NPY receptor subtypes.^{27, 50-53}

	Binding Profile	Localization	Physiological Role
Y ₁	NPY \approx PYY \approx [L ³¹ , P ³⁴]NPY > NPY ₂₋₃₆ > NPY ₃₋₃₆ ≥ PP > NPY ₁₃₋₃₆	smooth vascular muscles (postjunctionally), cerebral cortex, hypothalamus, co- lon, human adipocytes	Involved in regulation of blood pressure, seizures and food intake, anxiety, pain sensitivity, depres- sion, angiogenesis, alcohol consumption
Y ₂	NPY ≥ NPY ₂₋₃₆ ≈ NPY ₃₋₃₆ ≈ NPY ₁₃₋₃₆ >> [L ³¹ , P ³⁴]NPY	hippocampus, hypothal- amus, nerve ends, (pre and postjunctional), renal tubules	Involved in regulation of blood pressure, seizures and food intake, anxiety, pain sensitivity, depres- sion, angiogenesis, hypo- thalamic regulation of bone formation, regula- tion of GI motility
Y ₄	$PP > PYY \ge NPY > NPY_{2\text{-}36}$	brain, coronary arteries, ileum	food intake, regulation of GI motility
\mathbf{Y}_5	NPY \approx PYY \approx NPY ₂₋₃₆ > hPP > NPY ₁₃₋₃₆ > rPP	hypothalamus	food intake, seizures, anxiety
y 6	NPY \approx PYY \approx [L ³¹ , P ³⁴]NPY >> PP ⁵⁴ or PP > [L ³¹ , P ³⁴]NPY > NPY \approx PYY ⁴³	cardiac and skeletal muscles	no function in humans

1.2.1 The Y_1 , Y_4 and Y_5 Receptor

The 384 amino acids containing Y_1R was the first NPY receptor to be cloned in 1992. The functionality of the expressed Y_1R was demonstrated by inhibition of adenylyl cyclase (AC) and mobilization of intracellular calcium. All mammalian Y_1Rs cloned thus far display 90-95 % homology with the human Y_1R (hY_1R).⁵⁵ The Y_1R exhibits a high tendency to agonist stimulated internalization, as demonstrated by means of radioligand binding,⁵⁶ confocal microscopy⁵⁷ and GFP tagged Y_1R .⁵⁸ Interestingly, the pseudopeptide Y_1R antagonist GR231118 is able to induce long-lasting disappearance of cell surface Y_1Rs through a mechanism distinct from the classical endocytot-ic/recycling pathway.⁵⁹

Sequence homology screening using a Y₁R probe led to the isolation of a new human NPY receptor cDNA, encoding for the Y₄ receptor (Y₄R).^{47, 60-61} A unique feature of the Y₄R is a high affinity for PP, in contrast to NPY and PYY, which exhibit low affinities for this receptor. Therefore, the Y₄R is also referred to as PP receptor. Sequence homology between human and other species Y₄Rs is one of the lowest (less than 75 %) reported for orthologous GPCRs of different mammalian species.⁴⁹ Additionally, the human Y₄R (hY₄R) has higher homology with hY₁R (43 %) than human Y₂ receptor (hY₂R; 34 %).⁶² Moreover, there are contrary observations in terms of receptor internalization.^{56, 63}

NPY is one of the most potent orexigenic agents and this effect was proposed to be mediated by an atypical Y₁R or "feeding receptor".⁶⁴⁻⁶⁵ The pharmacological profile of an NPY receptor cloned from human and rat tissues was found to be similar to that of this atypical feeding receptor and classified as the Y₅ receptor subtype (Y₅R).^{41, 45} In comparison with other NPY receptor subtypes, this 446 amino acid protein has a very long third intracellular loop with more than 130 amino acids and an unusually short C-terminus. Additionally, sequence homology between the Y₅R and other NPY receptors is very low (\approx 30 %).^{49, 55} Lastly, rapid association of β-arrestin 2 with the Y₅R was observed after agonist stimulation, suggesting fast internalization similar to the Y₁R.⁶⁶

1.2.2 The NPY Y₂ Receptor

In 1986, the Y₂ subtype was pharmacologically characterized as a predominantly presynaptic NPY/PYY receptor.⁴ The cloned hY₂R consists of 381 amino acids and has only \approx 30 % identity to the Y₁R and the Y₄R, respectively.^{42, 48, 61, 68-69} However, high sequence homology (90-95 %) between species was observed for various Y₂Rs.^{49, 55} Activation of the Y₂R leads to an inhibition of AC⁷⁰ and in rat neurons to an inhibition of Ca²⁺ influx *via* N-type channels⁷¹⁻⁷². The human glioblastoma cell line LN319 proved useful in defining Y₂-mediated pathways, since these cells exclusively express this NPY

receptor subtype.⁷³ Herein, NPY inhibits forskolin-induced cAMP accumulation and stimulates an increase in intracellular Ca²⁺ via pertussis toxin-sensitive pathways.⁷⁴ Furthermore, the Y₂R mediates the activation of protein kinase C (PKC) in human ciliated cells.⁷⁵ Finally, the Y₂R was also shown to activate MAPK signal transduction through a Gi protein and via PI-3 kinase.⁷⁶ The different signaling pathways are summarized in Figure 1.4.

The Y₂R internalization process was a matter of controversy over the past years. Desensitization of the Y₂R after stimulation with NPY was observed in LN319 cells,⁷⁴ but unlike the Y₁R, the Y₂R has not been reported to internalize after prolonged agonist excitation^{56, 58} or it was reported to internalize very slowly.⁷³ However,

Figure 1.4. The neuropeptide Y Y₂ receptor and its intracellular signaling pathways, adapted from Brumovsky *et al.*⁶⁷

mutagenesis studies recently revealed that substitution of either His155 or His159 by Pro in the intracellular loop 2 (ICL2) can lead to an accelerated internalization.⁷⁷ Notably, the postulated regulation of the Y_2R internalization by its ICL2 is inconsistent with the most recent findings on Y_1/Y_2R chimeras, revealing putative inhibitory interactions within the ICL3 and the C-terminal tail of the native Y_2R that reduce internalization.⁷⁸ In the meantime, several groups confirmed rapid Y_2R internalization.⁷⁹⁻⁸²

1.2.3 The Y₂R in Health and Disease

The high sequence homology of Y₂Rs in mammals reflects the involvement of the Y₂R in critical developmental and metabolic events. Thus, the Y₂R is also involved in a variety of human diseases such as epilepsy, obesity and cancer. Especially, the role of the NPY receptor family in appetite regulation has received intense attention in recent years,⁸³ as obesity has emerged as one of the most serious major human health concerns in the present and future⁸⁴. Herein, the Y₂R appeared as interesting

target as numerous studies reported reduced hunger and food intake in humans after application of the moderately Y₂R selective agonist PYY(3-36).⁸⁵⁻⁸⁶ The potential benefits of Y₂ and Y₄R agonism for the treatment of obesity resulted in Y₂/Y₄ dual agonists developed by 7TM Pharma. The most promising peptide was tested successfully in Phase I/II trials and is currently under further investigation proving the potential of the Y₂R as anti-obesity drug target.³⁷ Furthermore, Y₂R agonism was observed to be neuroprotective, presumably, *via* the reduction of glutamate release. Thus, the Y₂R is discussed as a potential drug target in seizures and epilepsy.⁸⁷ Moreover, wound healing is reduced in Y₂ knock-out mice.⁸⁸ Further functions of the Y₂R which are related to pathological processes were recently summarized.⁶⁹

Besides its physiological implications and potential role in diverse dysregulated physiological processes, the Y₂R attracted strong attendance on its involvement in oncogenesis and has recently been predicted as tumor marker.⁸⁹ A remarkably high expression was found in various human brain tumors and mastocarcinoma.⁹⁰ Blocking the Y₂Rs led to an inhibition of neuroblastoma growth *in vivo*, emphasizing the possible application of selective and potent Y₂R antagonists in cancer therapy.⁹¹ Recently, a carbaborane modified NPY analog was prepared for potential application in cancer treatment (boron neutron capture therapy).⁹² Thus, the Y₂R is considered to be a promising target in tumor therapy and imaging, respectively.

1.3 NPY Receptor Ligands

1.3.1 NPY Y₁, Y₄ and Y₅ Receptor Antagonists

In the last two decades, a multitude of highly potent and selective non-peptidic Y_1R antagonists with affinities in the nanomolar and subnanomolar range have been developed, including BIBP 3226, which is potent and selective except for a moderate affinity for the Neuropeptide FF receptor.⁹³ A selection of Y_1R antagonists is shown in Figure 1.5.

Recently, an analog of the C-terminus of NPY, the peptide VD-11, was reported to act as a competitive antagonist at the Y_4R .⁹⁴ However, high-affinity non-peptide Y_4R ligands are not known so far. The acylguanidines UR-AK49 and UR-PI284 (Figure 1.6) which were designed as histamine H₂ and H₄ receptor ligands, respectively, proved to be weak Y_4R antagonists.⁹⁵⁻⁹⁶ These compounds may serve as lead structures towards potent small molecule antagonists for the Y_4R .⁵³

Figure 1.5. Examples of non-peptidic selective Y₁R antagonists. ^{*a*} Rudolf *et al.*⁹⁷, ^{*b*} Wieland *et al.*⁹⁸, ^{*c*} Kanatani *et al.*⁹⁹, ^{*d*} Kanatani *et al.*¹⁰⁰, ^{*e*} Antal-Zimanyi *et al.*¹⁰¹, ^{*f*} Kameda *et al.*¹⁰²

Figure 1.6. Structures of UR-AK49 and UR-PI284, weak Y₄R antagonists; ^a Binding affinity determined in a flow cytometric competition binding assay at CHO-hY₄R-G α_{qi5} -mtAEQ cells.¹⁰³ ^b Antagonistic activity determined in a steady-state GTPase assay at hY₄R containing membranes (hY₄R + G α_{i2} + G $\beta_1\gamma_2$ + RGS4).⁹⁶

In case of the Y_5R , the situation is similar as for the Y_1R . The search for new antiobesity drugs led to numerous highly potent and selective non-peptidic antagonists with broad structural diversity. Some of these compounds have entered into clinical trials for the treatment of obesity. MK-0557 (Merck & Co., Inc.) was tested in phase II trials for obesity, but it was withdrawn due to lacking clinically meaningful effects despite its effects on weight loss.³⁷ A selection of Y₅R antagonists with affinities in the low nanomolar range is given in Figure 1.7.

Figure 1.7. Exemplary structures of selective non-peptidic Y₅R antagonists. ^{*a*} Criscione *et al.*¹⁰⁴, ^{*b*} Kanatani *et al.*¹⁰⁵, ^{*c*} Erondu *et al.*¹⁰⁶, ^{*d*} Sato *et al.*¹⁰⁷, ^{*e*} Walker *et al.*¹⁰⁸.

1.3.2 NPY Y₂R Ligands

Non-peptide small molecule NPY receptor agonists are severely lacking as pharmacological tools and potential drugs. Despite many efforts none have been reported to date. However, several Y_2R selective peptide agonists have been identified in the past. Especially, truncated analogues of NPY and PYY, such as NPY(13-36), PYY(3-36), PYY(22-36) and AcPYY(22-36) exhibited high potency and moderate to high selectivity for the Y_2R .¹⁰⁹⁻¹¹² Currently, the development of novel truncated PYY analogs, such as modified PYY(22-36) in case of BT-48¹¹³, branched PYY(3-36) derived ligands¹¹⁴ and substitution of the OH-group of the C-terminal tyrosinamide in PYY(3-36) with a halogen or an amine¹¹⁵ seems to be the most promising approach for further improvement of the selectivity profile of Y_2R agonists.

First approaches to the design of Y_2R antagonists were also based on truncated NPY analogs.¹¹⁶ In 1999, the *L*-arginine derivative BIIE 0246 was reported as the first highly selective non-peptide Y_2R antagonist with a one-digit nanomolar affinity.¹¹⁷ The application of BIIE 0246 for the characterization of the Y_2R revealed a more detailed picture of the receptor's role in pathological processes. Hence, the disclosed potential of the Y_2R as drug target for several major diseases led to an intensified search for small molecules as Y_2R antagonists in pharmaceutical companies, especially with the help of high throughput screening (HTS). The structures of the

"pioneer" BIIE 0246 and more recent examples for the successful development of small Y_2R antagonists are summarized in Figure 1.8.

Figure 1.8. Structures of the most potent non-peptide Y₂R antagonists described in literature to date. ^a Doods *et al.*¹¹⁷, ^b Bonaventure *et al.*¹¹⁸, ^c Andres *et al.*¹¹⁹, ^d Shoblock *et al.*¹²⁰, ^e Lunniss *et al.*¹²¹, ^f Lunniss *et al.*¹²², ^g Brothers *et al.*¹²³.

The first screening hits with moderate antagonism at the Y_2R were published by Andres *et al.* (Bristol-Myers Squibb; BMS)¹¹⁹ and Bonaventure *et al.* (Johnson & Johnson; JNJ)¹¹⁸, respectively. However, it was not before 2009 that small molecules with Y_2R binding affinities in the low nanomolar range were identified. JNJ-31020028, a selective brain penetrant antagonist showed an increased noradrenaline release in the hypothalamus in rats. Yet, the compound was found to be ineffective in a variety of anxiety models although it normalized food intake in stressed animals.¹²⁰ An HTS campaign by GlaxoSmithKline (GSK) revealed spiropiperidines **1.3** and **1.4** with improved physicochemical profiles. Compound **1.4** was proposed to be the most promising candidate for further *in vivo* target validation studies despite its lower affinity due to excellent solubility and brain tissue binding.¹²² Lastly, Brothers *et al.* described four structurally diverse compounds with nanomolar binding affinities at the Y_2R (SF-11, SF-21, SF-31 and SF-41). All of them are able to cross the blood-brainbarrier and furthermore, selectivity versus 35 GPCRs, two ion channels and three transporters was reported.¹²³

1.4 Bioisosteres

The design of bioisosteres introduces certain structural changes that should be beneficial regarding various properties such as size, electronic distribution, polarity, lipophilicity, pK_a , etc. The concept of bioisosterism is versatile in use improving potency, enhancing selectivity, altering physicochemical properties, or altering metabolization and reducing potential toxicity, respectively. The term bioisosterism is subdivided into two broad categories: classical and non-classical. Classical bioisosteres are atoms or functional groups of the same valence (e.g. -F, -OH, -NH₂, -CH₃) and ring equivalents.¹²⁴ Non-classical bioisosteres extend the concept to structural elements that exhibit a more sophisticated form of biochemical mimicry, relying upon functionality. Such modifications can differ quite substantially in electronic, physicochemical and/or steric properties from the functionality being emulated. Hence, a replacement that successfully occurs in a series of compounds addressing a certain target will not necessarily be successful in another class of compounds acting through another receptor.¹²⁵⁻¹²⁶

Recent applications of bioisosteres in drug design focus on the newer non-classical approach. For instance, hydroxamic acids are often exchanged in biologically active compounds in order to reduce the toxic potential. The CHF₂ moiety proved to be well suited as a replacement of the hydroxy group in cyclic hydroxamic acids evaluated in a series of dual inhibitors of cycloxygenase-2 and 5-lipoxygenase.¹²⁷

Furthermore, isosteres of carboxylic acid have been studied extensively with the aim to improve membrane permeability and enhance pharmacokinetic properties (for a synopsis see Figure 1.9).¹²⁸⁻¹³¹

Figure 1.9. Examples of carboxylic acid bioisosteres.

Interest in identifying isosteres of the guanidine and amidine functionality has largely been driven by the disadvantageous physicochemical properties of these moieties, representing highly basic entities. Guanidines ($pK_a \approx 13-14$) and amidines are protonated at physiological pH resulting in poor membrane permeability and low oral bioavailability. Basicity can be reduced by 4-5 orders of magnitude ($pK_a \approx 8$), affording with improved pharmacokinetic properties. acylguanidines The guanidineacylguanidine bioisosteric approach was successfully established in our group for different GPCR ligands. Firstly, N^G-acylated imidazolylpropylguanidines were reported to be highly potent histamine H_2 receptor (H_2R) agonists (Figure 1.10).¹³²⁻¹³³ The exchange of the imidazole by an aminothiazole ring led to an increased selectivity for the H₂R versus the other histamine receptor subtypes (H₁R, H₃R, H₄R). Thus, two bioisosteric approaches led to improved selectivity profiles and more drug-like properties.¹³⁴ Further variations of the N^{G} -substituent revealed compounds with H₄R selectivity.¹³⁵

Figure 1.10. Guanidine-type H_2R agonists impromidine and arpromidine and general structures of bioisosteric analogues.

Secondly, acylation of the guanidine moiety of BIBP 3226 using various acyl- or carbamoyl linkers resulted in highly potent and selective Y_1R antagonists with reduced basicity (Figure 1.11). Furthermore, this bioisosteric replacement paved the way for the development of radio- and fluorescence-labeled derivatives.¹³⁶⁻¹³⁷

Figure 1.11. General structure of Y₁R antagonists derived from BIBP 3226.

As an alternative to acylation, the basicity of the guanidine moiety can be reduced by the replacement of an adjacent CH₂ with an oxygen atom to yield oxyguanidines ($pK_a \approx 7-7.5$), as demonstrated by RWJ-671818, a thrombin inhibitor in phase I clinical studies (Figure 1.12).¹³⁸

Figure 1.12. Structure of the oxyguanidine RWJ-671818, a thrombin inhibitor.

Lastly, the squaric acid diamide moiety has been successfully explored as a guanidine mimetic of **1.5** in the context of the arginine-derived peptidomimetic **1.6** (Figure 1.13), which inhibits the HIV transcription.¹³⁹

Figure 1.13. Structures of the guanidine **1.5**, an inhibitor of the interaction between the HIV-1 transcription regulator Tat and the Tat-responsive RNA element TAR, and the squaric acid diamide **1.6**, representing a guanidine bioisostere. K_D (**1.5**) = 1.8 μ M, K_D (**1.6**) = 7.7 μ M.

1.5 Pharmacological Tools

In general, the term "pharmacological tool" defines all types of compounds, which are useful for a detailed pharmacological exploration of a certain target. In case of GPCRs, pharmacological tools are compounds, preferentially antagonists, which bind to a monomeric or oligomeric receptor subtype selectively and with high affinity and provide information about the receptor, for instance, expression, localization, distribution, function, as well as ligand-receptor interactions including binding mode, binding kinetics, etc.

Hence, bivalent antagonists, fluorescence- and radioligands are attractive tools for the characterization of GPCRs and for the investigation of GPCR ligands. In the following, radio- and fluorescence-based techniques commonly applied for the investigation of ligand-receptor interactions with focus on labeled pharmacological tools for NPY receptors will be presented.

1.5.1 Radioligands and Autoradiography

 $[{}^{3}\text{H}]$ - and $[{}^{125}\text{I}]$ -labeled ligands are often utilized as standard radioligands in binding experiments and autoradiography, respectively. Tritium is a low energy β^{-} emitter (max. β energy 18.7 keV). Hence, this radionuclide is often applied in bioassays due to low risk of radiation exposure and simple safety precautions. Radioligand binding experiments are usually performed in order to characterize the binding affinities of novel compounds, as well as for the evaluation of binding properties of the receptor. Binding studies of NPY receptors were performed with variously radiolabeled peptides like $[{}^{3}\text{H}]$ -propionyl-NPY. $^{140-141}$ However, selective ligands were needed for the discrimination of receptor subtypes. $[{}^{3}\text{H}]$ BIBP 3226 was reported as a highly potent, reversibly binding Y₁R selective antagonist, useful, for instance, for competition binding assays or the determination of the number of binding sites (B_{max}).¹⁴² Recently, two acylguanidine bioisosteric analogues of BIBP 3226 were reported as tritiated radioligands with decreased basicity and retained Y₁R affinity and selectivity. Besides saturation experiments and kinetics, these ligands were successfully applied to autoradiography.^{137, 143}

Receptor autoradiography represents a classical technique for the *in vitro/ex vivo* detection of receptor expression and distribution. ¹²⁵I (γ -emitter, 186 keV) has been applied especially as peptide-label in autoradiographic investigations, for instance, [¹²⁵I]-NPY and [¹²⁵I]-PYY as tools for all NPY receptor subtypes except for the Y₄R,^{111, 144-147} or [¹²⁵I]-PYY (3-36) for the detection of the Y₂R^{111, 145}. However, there are limitations in the use of ¹²⁵I, for instance, due to the release of ¹²⁵I and metabolization/distribution of free iodine in certain tissues (e.g. thyroid gland, stomach, kidneys).¹⁴⁸

1.5.2 Positron Emission Tomography (PET)

Positron emission tomography (PET) is a powerful molecular imaging technique in medical diagnostics. PET is based on the use of short-lived positron emitting isotopes such as ¹⁸F ($t_{1/2} = 109.7$ min), ¹¹C ($t_{1/2} = 20.4$ min) or ⁶⁴Cu ($t_{1/2} = 12.7$ h). Most commonly ¹⁸F is employed as a substitute of a hydrogen atom. The van-der-Waals radii of fluorine and hydrogen are almost the same (1.35 Å vs. 1.20 Å), whereas the differences in electronic properties are very pronounced.

More than 20 nuclear reactions are known for ¹⁸F production. Proton bombardment of ¹⁸O enriched water resulting in the ¹⁸O(p,n)¹⁸F nuclear reaction is the most effective method and delivers the desired radionuclide with high molar radioactivity.¹⁴⁹ Nowadays, ¹⁸F-PET is routinely applied as a diagnostic imaging method in the field of oncology, neurology and cardiology. Most efforts were spent in the development of PET tracers for tumor imaging. For instance, 2-[¹⁸F]fluoro-2deoxy-*D*-glucose ([¹⁸F]FDG) is extensively used in diagnosis and therapy control. [¹⁸F]FDG, a substrate of glucose transporters, is accumulated in tumor tissues due to metabolic trapping in cancer cells.¹⁵⁰

As already discussed, NPY receptors are overexpressed in various tumors and therefore, selective PET-ligands are promising pharmacological tools for cancer diagnosis and receptor imaging, respectively. A synopsis of described PET-ligands for the Y_1R and the Y_5R , respectively, is presented in Figure 1.14. For instance, the $[^{11}C]$ -PET ligand **1.7** was prepared as a Y_5R antagonist with high affinity (IC₅₀ = 1.5 nM), appropriate lipophilicity (log $D_{7.4} = 2.79$) and moderate brain penetration (brain/plasma ratio = 0.50). Furthermore, the cold analog proved Y_5R selectivity over the other NPY receptors.¹⁵¹ The compounds **1.8** and **1.9** were synthesized in our group as prototypical [¹⁸F]-PET ligands for the Y₁R, derived from BIBP 3226.¹⁵² 2,4-Diaminopyridine derivatives were identified as promising PET tracer candidates for the Y₁R in terms of binding affinity and lipophilicity by Kameda *et al.*¹⁵³ and, recently, one of these compounds was selected for ¹⁸F-labeling. The resulting antagonist $[^{18}F]Y1-973$ does not bind to the Y₂, Y₄ or Y₅ receptor but exhibits Y₁R binding in the subnanomolar range.¹⁵⁴ In vitro autoradiography together with in vivo PET imaging in rhesus monkey proved the applicability of the novel [¹⁸F]-ligand in animal models with potential translation to human PET studies. However, no promising candidates for PET imaging of the Y₂R have been identified yet. Thus, there is urgent need for such compounds to explore the suitability of Y₂R imaging.

Figure 1.14. PET-ligands for the Y_1R and Y_5R .

1.5.3 Fluorescent Ligand-Based Assays and Fluorescence Imaging

Fluorescence-based binding assays are preferred over radioactive assays in terms of safety precautions and waste disposal. Moreover, numerous fluorescent probes have been developed over the past two decades resulting in the design of potent fluorescence ligands for different GPCRs.¹⁵⁵⁻¹⁶² Thus, there is a wide range of tools, which broaden the scope of application of fluorescence based assays and molecular imaging in GPCR research.

Fluorescence polarization assays are based on the excitation of the sample with polarized light. Free fluorescent ligands emit non-polarized fluorescence after excitation, whereas the emission of receptor bound fluorescent ligands is polarized due to rigidization of the fluorophore in the receptor-ligand-complex. The resulting fluorescence anisotropy allows determination of ligand binding under equilibrium conditions and study of binding kinetics, respectively. As there are no washing steps required in contrast to radioligand binding assays this technique is simply adaptable to HTS.¹⁶³

Various binding assays based on fluorescence resonance energy transfer (FRET) have been developed. Briefly, FRET occurs between a "donor" fluorophore and an "acceptor" fluorophore. As prerequisite for FRET the emission spectrum of the donor must overlap with the excitation spectrum of the acceptor and secondly, the two fluorophores have to be in close proximity to each other (usually < 10 nm). Consequently, this phenomenon was exploited for the detection of GPCR oligomers, e.g., in case of oxytocine receptors¹⁶⁴ and dopamine D₂/somatostatin sst5 receptor heterooligomers.¹⁶⁵

1.5.3.1 Flow Cytometry

Flow cytometry provides a sensitive and quantitative method for the measurement of cellular fluorescence. The optical setup of the FACSCaliburTM flow cytometer used in this work is presented in Figure 1.15.

The cytometer is equipped with two lasers, namely an argon laser (488 nm) and a red diode laser (635 nm). Fluorescence resulting from excitation at 488 nm is detected by the photomultipliers Fl-1, Fl-2 and Fl-3, whereas the photomultiplier Fl-4 only detects the red fluorescence emitted after excitation with the red diode laser.

Flow cytometry is widely used for the investigation of numerous cellular and cellassociated parameters, e.g. cell cycle¹⁶⁶, apoptosis¹⁶⁷, oxidant production¹⁶⁸, membrane potential¹⁶⁹, calcium elevation¹⁷⁰ and pH changes¹⁷¹. Binding assays for flow cytometric devices have been described e.g. for the chemokine receptor CXCR4¹⁷², the EGF receptor¹⁷³ or the α -factor receptor¹⁷⁴. Recently, flow cytometric equilibrium binding assays for the NPY receptors were established in our group.^{95, 175-}

 177 Herein, flow cytometry was successfully applied for the simultaneous determination of binding affinities at the Y₁R, Y₂R and Y₅R, emphasizing the applicability of this technique for HTS. 176

Figure 1.15. Optical setup of the FACSCalibur[™] flow cytometer. The fluorescence emission is separated from the SSC light by filters and dichroic mirrors and detected by different photomultiplier tubes (adapted from Mayer¹⁷⁸).

The main advantage of a flow cytometric binding assay compared to a classic radioligand binding assay is the fact that, similar to fluorescence polarization techniques, the separation of bound and free ligand is not required. Moreover, the sample volume of only several picoliters defined by the intersection of the laser beam

with the sample stream is very small.¹⁷⁹ Therefore, the background signal caused by free fluorophores is very low compared to the signal from the cell. Thus, binding of fluorescent ligands to GPCRs can be determined at equilibrium.

1.5.3.2 Confocal Laser Scanning Microscopy (CLSM)

The number of binding assays using CLSM is rising. For instance, fluorescent adenosine A₁ receptor ligands were characterized by confocal microscopy binding studies at the single cell level.¹⁸⁰ Moreover, quantitative imaging of the native α_1 -adrenoceptor with Bodipy-labeled prazosin revealed intracellular high affinity binding sites.¹⁸¹ Recently, the fluorescence intensity distribution analysis (FIDA) was reported for GPCR-focussed high throughput screening.¹⁸² This technique is applicable to membranes of low GPCR expression levels due to a low detection limit.

Furthermore, confocal microscopy is regarded as an indispensable tool for GPCR imaging. The application of confocal microscopy for the visualization of specifically bound fluorescent peptides, e.g. Bodipy-conjugated NPY ligands or carboxy-fluorescein-NPY for the investigation of NPY receptors, has proven most powerful in studying receptor internalization and trafficking of receptor-ligand complexes into the cells.^{57, 183} Lastly, the implication of the Y₁R in the regulation of intracellular Ca²⁺ within the cardiovascular system was also identified by means of confocal microscopy.¹⁸⁴

1.6 References

- 1. Gray, T. S.; Morley, J. E. Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. *Life Sci.* **1986**, 38, 389-401.
- 2. Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y--a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. *Nature* **1982**, 296, 659-60.
- 3. Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods, H. N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. *Pharmacol. Rev.* **1998**, 50, 143-50.
- 4. Wahlestedt, C.; Yanaihara, N.; Hakanson, R. Evidence for different pre-and postjunctional receptors for neuropeptide Y and related peptides. *Regul. Pept.* **1986**, 13, 307-18.
- 5. Larhammar, D.; Blomqvist, A. G.; Soderberg, C. Evolution of neuropeptide Y and its related peptides. *Comp. Biochem. Physiol. C.* **1993,** 106, 743-52.
- 6. Blundell, T. L.; Pitts, J. E.; Tickle, I. J.; Wood, S. P.; Wu, C. W. X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. *Proc. Natl. Acad. Sci. U. S. A.* **1981**, 78, 4175-9.
- 7. Glover, I.; Haneef, I.; Pitts, J.; Wood, S.; Moss, D.; Tickle, I.; Blundell, T. Conformational flexibility in a small globular hormone: x-ray analysis of avian pancreatic polypeptide at 0.98-A resolution. *Biopolymers* **1983**, 22, 293-304.

- 8. Allen, J.; Novotny, J.; Martin, J.; Heinrich, G. Molecular structure of mammalian neuropeptide Y: analysis by molecular cloning and computer-aided comparison with crystal structure of avian homologue. *Proc. Natl. Acad. Sci. U. S. A.* **1987**, 84, 2532-6.
- Boulanger, Y.; Chen, Y.; Commodari, F.; Senecal, L.; Laberge, A. M.; Fournier, A.; St-Pierre, S. Structural characterizations of neuropeptide tyrosine (NPY) and its agonist analog [Ahx5-17]NPY by NMR and molecular modeling. *Int. J. Pept. Protein Res.* 1995, 45, 86-95.
- Darbon, H.; Bernassau, J. M.; Deleuze, C.; Chenu, J.; Roussel, A.; Cambillau, C. Solution conformation of human neuropeptide Y by 1H nuclear magnetic resonance and restrained molecular dynamics. *Eur. J. Biochem.* **1992**, 209, 765-71.
- 11. Haack, M.; Enck, S.; Seger, H.; Geyer, A.; Beck-Sickinger, A. G. Pyridone dipeptide backbone scan to elucidate structural properties of a flexible peptide segment. *J. Am. Chem. Soc.* **2008**, 130, 8326-36.
- 12. Bettio, A.; Dinger, M. C.; Beck-Sickinger, A. G. The neuropeptide Y monomer in solution is not folded in the pancreatic-polypeptide fold. *Protein Sci.* **2002**, 11, 1834-44.
- 13. Cowley, D. J.; Hoflack, J. M.; Pelton, J. T.; Saudek, V. Structure of neuropeptide Y dimer in solution. *Eur. J. Biochem.* **1992**, 205, 1099-106.
- 14. Monks, S. A.; Karagianis, G.; Howlett, G. J.; Norton, R. S. Solution structure of human neuropeptide Y. *J. Biomol. NMR* **1996**, 8, 379-90.
- 15. Saudek, V.; Pelton, J. T. Sequence-specific 1H NMR assignment and secondary structure of neuropeptide Y in aqueous solution. *Biochemistry* **1990**, 29, 4509-15.
- 16. Haack, M.; Beck-Sickinger, A. G. Towards understanding the free and receptor bound conformation of neuropeptide Y by fluorescence resonance energy transfer studies. *Chem. Biol. Drug Des.* **2009**, 73, 573-83.
- 17. Nordmann, A.; Blommers, M. J.; Fretz, H.; Arvinte, T.; Drake, A. F. Aspects of the molecular structure and dynamics of neuropeptide Y. *Eur. J. Biochem.* **1999**, 261, 216-26.
- Bader, R.; Bettio, A.; Beck-Sickinger, A. G.; Zerbe, O. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. *J. Mol. Biol.* 2001, 305, 307-29.
- 19. Lerch, M.; Mayrhofer, M.; Zerbe, O. Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. *J. Mol. Biol.* **2004**, 339, 1153-68.
- Thomas, L.; Scheidt, H. A.; Bettio, A.; Huster, D.; Beck-Sickinger, A. G.; Arnold, K.; Zschornig, O. Membrane interaction of neuropeptide Y detected by EPR and NMR spectroscopy. *Biochim. Biophys. Acta* 2005, 1714, 103-13.
- 21. Ekblad, E.; Edvinsson, L.; Wahlestedt, C.; Uddman, R.; Hakanson, R.; Sundler, F. Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. *Regul. Pept.* **1984**, 8, 225-35.
- 22. Hahn, T. M.; Breininger, J. F.; Baskin, D. G.; Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. *Nat. Neurosci.* **1998**, 1, 271-2.

- 23. Stanic, D.; Mulder, J.; Watanabe, M.; Hokfelt, T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. *J. Comp. Neurol.* **2011**, 519, 1219-57.
- 24. Higuchi, H.; Yang, H. Y.; Sabol, S. L. Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester. *J. Biol. Chem.* **1988**, 263, 6288-95.
- 25. Minth, C. D.; Andrews, P. C.; Dixon, J. E. Characterization, sequence, and expression of the cloned human neuropeptide Y gene. *J. Biol. Chem.* **1986**, 261, 11974-9.
- 26. Minth, C. D.; Bloom, S. R.; Polak, J. M.; Dixon, J. E. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine. *Proc. Natl. Acad. Sci. U. S. A.* **1984**, 81, 4577-81.
- Gehlert, D. R. Neuropeptide Y (NPY) and its Receptors. In *Encyclopedia of Neuroscience*, Squire, L. R., Ed. Academic Press: La Jolla, CA, USA, 2009; pp 837-842.
- von Hörsten, S.; Hoffmann, T.; Alfalah, M.; Wrann, C. D.; Karl, T.; Pabst, R.; Bedoui, S. PP, PYY and NPY: synthesis, storage, release and degradation. *Handbook of Experimental Pharmacology* **2004**, 162, 23-44.
- 29. Clark, J. T.; Kalra, P. S.; Kalra, S. P. Neuropeptide Y stimulates feeding but inhibits sexual behavior in rats. *Endocrinology* **1985**, 117, 2435-42.
- 30. Colmers, W. F.; Bleakman, D. Effects of neuropeptide Y on the electrical properties of neurons. *Trends Neurosci.* **1994**, 17, 373-9.
- 31. Flood, J. F.; Hernandez, E. N.; Morley, J. E. Modulation of memory processing by neuropeptide Y. *Brain Res.* **1987**, 421, 280-90.
- Jolicoeur, F. B.; Bouali, S. M.; Fournier, A.; St-Pierre, S. Mapping of hypothalamic sites involved in the effects of NPY on body temperature and food intake. *Brain Res. Bull.* **1995**, 36, 125-9.
- Bacchi, F.; Mathe, A. A.; Jimenez, P.; Stasi, L.; Arban, R.; Gerrard, P.; Caberlotto, L. Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze. *Peptides* 2006, 27, 3202-7.
- 34. Kamiji, M. M.; Inui, A. NPY Y2 and Y4 receptors selective ligands: promising antiobesity drugs? *Curr. Top. Med. Chem.* **2007**, 7, 1734-42.
- 35. Kamiji, M. M.; Inui, A. Neuropeptide y receptor selective ligands in the treatment of obesity. *Endocr. Rev.* **2007**, 28, 664-84.
- Kuo, L. E.; Kitlinska, J. B.; Tilan, J. U.; Li, L.; Baker, S. B.; Johnson, M. D.; Lee, E. W.; Burnett, M. S.; Fricke, S. T.; Kvetnansky, R.; Herzog, H.; Zukowska, Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. *Nat. Med.* 2007, 13, 803-11.
- 37. Sato, N.; Ogino, Y.; Mashiko, S.; Ando, M. Modulation of neuropeptide Y receptors for the treatment of obesity. *Expert Opin. Ther. Pat.* **2009**, 19, 1401-15.
- 38. Morales-Medina, J. C.; Dumont, Y.; Quirion, R. A possible role of neuropeptide Y in depression and stress. *Brain Res.* **2010**, 1314, 194-205.

- 39. Wahlestedt, C.; Ekman, R.; Widerlov, E. Neuropeptide Y (NPY) and the central nervous system: distribution effects and possible relationship to neurological and psychiatric disorders. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **1989**, 13, 31-54.
- 40. Thiele, T. E.; Sparta, D. R.; Hayes, D. M.; Fee, J. R. A role for neuropeptide Y in neurobiological responses to ethanol and drugs of abuse. *Neuropeptides* **2004**, 38, 235-43.
- Gerald, C.; Walker, M. W.; Criscione, L.; Gustafson, E. L.; Batzl-Hartmann, C.; Smith, K. E.; Vaysse, P.; Durkin, M. M.; Laz, T. M.; Linemeyer, D. L.; Schaffhauser, A. O.; Whitebread, S.; Hofbauer, K. G.; Taber, R. I.; Branchek, T. A.; Weinshank, R. L. A receptor subtype involved in neuropeptide-Y-induced food intake. *Nature* **1996**, 382, 168-71.
- 42. Gerald, C.; Walker, M. W.; Vaysse, P. J.; He, C.; Branchek, T. A.; Weinshank, R. L. Expression cloning and pharmacological characterization of a human hippocampal neuropeptide Y/peptide YY Y2 receptor subtype. *J. Biol. Chem.* **1995**, 270, 26758-61.
- 43. Gregor, P.; Millham, M. L.; Feng, Y.; DeCarr, L. B.; McCaleb, M. L.; Cornfield, L. J. Cloning and characterization of a novel receptor to pancreatic polypeptide, a member of the neuropeptide Y receptor family. *FEBS Lett.* **1996**, 381, 58-62.
- 44. Herzog, H.; Hort, Y. J.; Ball, H. J.; Hayes, G.; Shine, J.; Selbie, L. A. Cloned human neuropeptide Y receptor couples to two different second messenger systems. *Proc. Natl. Acad. Sci. U. S. A.* **1992**, 89, 5794-8.
- Hu, Y.; Bloomquist, B. T.; Cornfield, L. J.; DeCarr, L. B.; Flores-Riveros, J. R.; Friedman, L.; Jiang, P.; Lewis-Higgins, L.; Sadlowski, Y.; Schaefer, J.; Velazquez, N.; McCaleb, M. L. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. *J. Biol. Chem.* **1996**, 271, 26315-9.
- 46. Larhammar, D.; Blomqvist, A. G.; Yee, F.; Jazin, E.; Yoo, H.; Wahlested, C. Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. *J. Biol. Chem.* **1992**, 267, 10935-8.
- Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.; Statnick, M. A.; Gadski, R. A.; Gehlert, D. R.; Larhammar, D. Cloning of a human receptor of the NPY receptor family with high affinity for pancreatic polypeptide and peptide YY. *J. Biol. Chem.* **1995**, 270, 29123-8.
- 48. Rose, P. M.; Fernandes, P.; Lynch, J. S.; Frazier, S. T.; Fisher, S. M.; Kodukula, K.; Kienzle, B.; Seethala, R. Cloning and functional expression of a cDNA encoding a human type 2 neuropeptide Y receptor. *J. Biol. Chem.* **1995**, 270, 29038.
- 49. Larhammar, D.; Wraith, A.; Berglund, M. M.; Holmberg, S. K.; Lundell, I. Origins of the many NPY-family receptors in mammals. *Peptides* **2001**, 22, 295-307.
- 50. Berglund, M. M.; Hipskind, P. A.; Gehlert, D. R. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. *Exp. Biol. Med.* **2003**, 228, 217-44.
- 51. Gehlert, D. R. Introduction to the reviews on neuropeptide Y. *Neuropeptides* **2004**, 38, 135-40.
- 52. Schneider, E. Development of Fluorescence-Based Methods for the Determination of Ligand Affinity, Selectivity and Activity at G-Protein Coupled Receptors. Doctoral thesis, University of Regensburg, Regensburg, Germany, **2005**.

- 53. Brothers, S. P.; Wahlestedt, C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. *EMBO Mol. Med.* **2010**, 2, 429-39.
- Weinberg, D. H.; Sirinathsinghji, D. J.; Tan, C. P.; Shiao, L. L.; Morin, N.; Rigby, M. R.; Heavens, R. H.; Rapoport, D. R.; Bayne, M. L.; Cascieri, M. A.; Strader, C. D.; Linemeyer, D. L.; MacNeil, D. J. Cloning and expression of a novel neuropeptide Y receptor. *J. Biol. Chem.* **1996**, 271, 16435-8.
- 55. Larhammer, D.; Salaneck, E. Molecular evolution of NPY receptor subtypes. *Neuropeptides* **2004**, 38, 141-151.
- 56. Parker, S. L.; Kane, J. K.; Parker, M. S.; Berglund, M. M.; Lundell, I. A.; Li, M. D. Cloned neuropeptide Y (NPY) Y1 and pancreatic polypeptide Y4 receptors expressed in Chinese hamster ovary cells show considerable agonist-driven internalization, in contrast to the NPY Y2 receptor. *Eur. J. Biochem.* **2001**, 268, 877-86.
- 57. Fabry, M.; Langer, M.; Rothen-Rutishauser, B.; Wunderli-Allenspach, H.; Hocker, H.; Beck-Sickinger, A. G. Monitoring of the internalization of neuropeptide Y on neuroblastoma cell line SK-N-MC. *Eur. J. Biochem.* **2000**, 267, 5631-7.
- 58. Gicquiaux, H.; Lecat, S.; Gaire, M.; Dieterlen, A.; Mely, Y.; Takeda, K.; Bucher, B.; Galzi, J. L. Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor. *J. Biol. Chem.* **2002**, 277, 6645-55.
- 59. Pheng, L. H.; Dumont, Y.; Fournier, A.; Chabot, J. G.; Beaudet, A.; Quirion, R. Agonistand antagonist-induced sequestration/internalization of neuropeptide Y Y1 receptors in HEK293 cells. *Br. J. Pharmacol.* **2003**, 139, 695-704.
- 60. Bard, J. A.; Walker, M. W.; Branchek, T. A.; Weinshank, R. L. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. *J. Biol. Chem.* **1995**, 270, 26762-5.
- 61. Gehlert, D. R.; Beavers, L. S.; Johnson, D.; Gackenheimer, S. L.; Schober, D. A.; Gadski, R. A. Expression cloning of a human brain neuropeptide Y Y2 receptor. *Mol. Pharmacol.* **1996**, 49, 224-8.
- 62. Larhammar, D. Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide. *Regul. Pept.* **1996**, 65, 165-74.
- 63. Voisin, T.; Goumain, M.; Lorinet, A. M.; Maoret, J. J.; Laburthe, M. Functional and molecular properties of the human recombinant Y4 receptor: resistance to agonist-promoted desensitization. *J. Pharmacol. Exp. Ther.* **2000**, 292, 638-46.
- 64. Quirion, R.; Martel, J. C.; Dumont, Y.; Cadieux, A.; Jolicoeur, F.; St-Pierre, S.; Fournier, A. Neuropeptide Y receptors: autoradiographic distribution in the brain and structureactivity relationships. *Ann. N. Y. Acad. Sci.* **1990**, 611, 58-72.
- 65. Stanley, B. G.; Magdalin, W.; Seirafi, A.; Nguyen, M. M.; Leibowitz, S. F. Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y1 receptor mediating this peptide's effect. *Peptides* **1992**, 13, 581-7.
- 66. Berglund, M. M.; Schober, D. A.; Statnick, M. A.; McDonald, P. H.; Gehlert, D. R. The use of bioluminescence resonance energy transfer 2 to study neuropeptide Y receptor agonist-induced beta-arrestin 2 interaction. *J. Pharmacol. Exp. Ther.* **2003**, 306, 147-56.
- 67. Brumovsky, P.; Shi, T. S.; Landry, M.; Villar, M. J.; Hokfelt, T. Neuropeptide tyrosine and pain. *Trends Pharmacol. Sci.* **2007**, 28, 93-102.

- Ammar, D. A.; Eadie, D. M.; Wong, D. J.; Ma, Y. Y.; Kolakowski, L. F., Jr.; Yang-Feng, T. L.; Thompson, D. A. Characterization of the human type 2 neuropeptide Y receptor gene (NPY2R) and localization to the chromosome 4q region containing the type 1 neuropeptide Y receptor gene. *Genomics* **1996**, 38, 392-8.
- 69. Parker, S. L.; Balasubramaniam, A. Neuropeptide Y Y2 receptor in health and disease. *Br. J. Pharmacol.* **2008**, 153, 420-31.
- 70. Westlind-Danielsson, A.; Unden, A.; Abens, J.; Andell, S.; Bartfai, T. Neuropeptide Y receptors and the inhibition of adenylate cyclase in the human frontal and temporal cortex. *Neurosci. Lett.* **1987**, 74, 237-42.
- 71. Bleakman, D.; Colmers, W. F.; Fournier, A.; Miller, R. J. Neuropeptide Y inhibits Ca2+ influx into cultured dorsal root ganglion neurones of the rat via a Y2 receptor. *Br. J. Pharmacol.* **1991**, 103, 1781-9.
- 72. Wiley, J. W.; Gross, R. A.; MacDonald, R. L. Agonists for neuropeptide Y receptor subtypes NPY-1 and NPY-2 have opposite actions on rat nodose neuron calcium currents. *J. Neurophysiol.* **1993**, 70, 324-30.
- 73. Pedrazzini, T.; Pralong, F.; Grouzmann, E. Neuropeptide Y: the universal soldier. *Cell. Mol. Life Sci.* **2003**, 60, 350-77.
- 74. Grouzmann, E.; Meyer, C.; Burki, E.; Brunner, H. Neuropeptide Y Y2 receptor signalling mechanisms in the human glioblastoma cell line LN319. *Peptides* **2001**, 22, 379-86.
- Wong, L. B.; Park, C. L.; Yeates, D. B. Neuropeptide Y inhibits ciliary beat frequency in human ciliated cells via nPKC, independently of PKA. *Am. J. Physiol.* **1998**, 275, C440-8.
- 76. Nie, M.; Selbie, L. A. Neuropeptide Y Y1 and Y2 receptor-mediated stimulation of mitogen-activated protein kinase activity. *Regul. Pept.* **1998**, 75-76, 207-13.
- 77. Marion, S.; Oakley, R. H.; Kim, K. M.; Caron, M. G.; Barak, L. S. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. *J. Biol. Chem.* **2006**, 281, 2932-8.
- 78. Lundell, I.; Rabe Bernhardt, N.; Johnsson, A. K.; Larhammar, D. Internalization studies of chimeric neuropeptide Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. *Regul. Pept.* **2011**, 168, 50-8.
- 79. Böhme, I.; Stichel, J.; Walther, C.; Morl, K.; Beck-Sickinger, A. G. Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus. *Cell. Signal.* **2008**, 20, 1740-9.
- Kilpatrick, L. E.; Briddon, S. J.; Hill, S. J.; Holliday, N. D. Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation. *Br. J. Pharmacol.* **2010**, 160, 892-906.
- 81. Lindner, D.; Walther, C.; Tennemann, A.; Beck-Sickinger, A. G. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization. *Cell. Signal.* **2009**, 21, 61-8.
- Walther, C.; Nagel, S.; Gimenez, L. E.; Morl, K.; Gurevich, V. V.; Beck-Sickinger, A. G. Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail. *J. Biol. Chem.* **2010**, 285, 41578-90.

- 83. Chee, M. J.; Colmers, W. F. Y eat? *Nutrition* **2008**, 24, 869-77.
- Finucane, M. M.; Stevens, G. A.; Cowan, M. J.; Danaei, G.; Lin, J. K.; Paciorek, C. J.; Singh, G. M.; Gutierrez, H. R.; Lu, Y.; Bahalim, A. N.; Farzadfar, F.; Riley, L. M.; Ezzati, M. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 countryyears and 9.1 million participants. *Lancet* 2011, 377, 557-67.
- Batterham, R. L.; Cowley, M. A.; Small, C. J.; Herzog, H.; Cohen, M. A.; Dakin, C. L.; Wren, A. M.; Brynes, A. E.; Low, M. J.; Ghatei, M. A.; Cone, R. D.; Bloom, S. R. Gut hormone PYY(3-36) physiologically inhibits food intake. *Nature* 2002, 418, 650-4.
- Degen, L.; Oesch, S.; Casanova, M.; Graf, S.; Ketterer, S.; Drewe, J.; Beglinger, C. Effect of peptide YY3-36 on food intake in humans. *Gastroenterology* 2005, 129, 1430-6.
- Silva, A. P.; Pinheiro, P. S.; Carvalho, A. P.; Carvalho, C. M.; Jakobsen, B.; Zimmer, J.; Malva, J. O. Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. *FASEB J.* 2003, 17, 1118-1120, 10.1096/fj.02-0885fje.
- Ekstrand, A. J.; Cao, R.; Bjorndahl, M.; Nystrom, S.; Jonsson-Rylander, A. C.; Hassani, H.; Hallberg, B.; Nordlander, M.; Cao, Y. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. *Proc. Natl. Acad. Sci. U. S. A.* 2003, 100, 6033-8.
- 89. Körner, M.; Reubi, J. C. Neuropeptide Y receptors in primary human brain tumors: overexpression in high-grade tumors. *J. Neuropathol. Exp. Neurol.* **2008**, 67, 741-9.
- 90. Körner, M.; Reubi, J. C. NPY receptors in human cancer: A review of current knowledge. *Peptides* **2007**, 28, 418-425.
- Lu, C.; Everhart, L.; Tilan, J.; Kuo, L.; Sun, C. C.; Munivenkatappa, R. B.; Jonsson-Rylander, A. C.; Sun, J.; Kuan-Celarier, A.; Li, L.; Abe, K.; Zukowska, Z.; Toretsky, J. A.; Kitlinska, J. Neuropeptide Y and its Y2 receptor: potential targets in neuroblastoma therapy. *Oncogene* **2010**, 29, 5630-42.
- 92. Ahrens, V. M.; Frank, R.; Stadlbauer, S.; Beck-Sickinger, A. G.; Hey-Hawkins, E. Incorporation of ortho-carbaboranyl-Nepsilon-modified L-lysine into neuropeptide Y receptor Y1- and Y2-selective analogues. *J. Med. Chem.* **2011**, 54, 2368-77.
- Mollereau, C.; Gouarderes, C.; Dumont, Y.; Kotani, M.; Detheux, M.; Doods, H.; Parmentier, M.; Quirion, R.; Zajac, J. M. Agonist and antagonist activities on human NPFF(2) receptors of the NPY ligands GR231118 and BIBP3226. *Br. J. Pharmacol.* 2001, 133, 1-4.
- Parker, M. S.; Sah, R.; Sheriff, S.; Balasubramaniam, A.; Parker, S. L. Internalization of cloned pancreatic polypeptide receptors is accelerated by all types of Y4 agonists. *Regul. Pept.* 2005, 132, 91-101.
- 95. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of affinity and activity of ligands at the human neuropeptide Y Y4 receptor by flow cytometry and aequorin luminescence. *J. Recept. Signal Transduct. Res.* **2007**, 27, 217-33.
- Pop, N.; Igel, P.; Brennauer, A.; Cabrele, C.; Bernhardt, G. N.; Seifert, R.; Buschauer, A. Functional reconstitution of human neuropeptide Y (NPY) Y(2) and Y(4) receptors in Sf9 insect cells. *J. Recept. Signal Transduct. Res.* 2011, 31, 271-85.

- 97. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Beck-Sickinger, A. G.; Doods, H. N. The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. *Eur. J. Pharmacol.* **1994,** 271, R11-3.
- 98. Wieland, H. A.; Engel, W.; Eberlein, W.; Rudolf, K.; Doods, H. N. Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. *Br. J. Pharmacol.* **1998**, 125, 549-55.
- Kanatani, A.; Kanno, T.; Ishihara, A.; Hata, M.; Sakuraba, A.; Tanaka, T.; Tsuchiya, Y.; Mase, T.; Fukuroda, T.; Fukami, T.; Ihara, M. The novel neuropeptide Y Y(1) receptor antagonist J-104870: a potent feeding suppressant with oral bioavailability. *Biochem. Biophys. Res. Commun.* **1999**, 266, 88-91.
- Kanatani, A.; Hata, M.; Mashiko, S.; Ishihara, A.; Okamoto, O.; Haga, Y.; Ohe, T.; Kanno, T.; Murai, N.; Ishii, Y.; Fukuroda, T.; Fukami, T.; Ihara, M. A typical Y1 receptor regulates feeding behaviors: effects of a potent and selective Y1 antagonist, J-115814. *Mol. Pharmacol.* 2001, 59, 501-5.
- 101. Antal-Zimanyi, I.; Bruce, M. A.; Leboulluec, K. L.; Iben, L. G.; Mattson, G. K.; McGovern, R. T.; Hogan, J. B.; Leahy, C. L.; Flowers, S. C.; Stanley, J. A.; Ortiz, A. A.; Poindexter, G. S. Pharmacological characterization and appetite suppressive properties of BMS-193885, a novel and selective neuropeptide Y(1) receptor antagonist. *Eur. J. Pharmacol.* **2008**, 590, 224-32.
- 102. Kameda, M.; Kobayashi, K.; Ito, H.; Miyazoe, H.; Tsujino, T.; Nakama, C.; Kawamoto, H.; Ando, M.; Ito, S.; Suzuki, T.; Kanno, T.; Tanaka, T.; Tahara, Y.; Tani, T.; Tanaka, S.; Tokita, S.; Sato, N. Optimization of a series of 2,4-diaminopyridines as neuropeptide Y Y1 receptor antagonists with reduced hERG activity. *Bioorg. Med. Chem. Lett.* **2009**, 19, 4325-9.
- Pop, N. Development of functional assays for human neuropeptide Y (Y_{1,2,4,5}) receptors exploiting GTPase activity and (bio)luminescence readout. Doctoral Thesis, University of Regensburg, Regensburg, 2010.
- 104. Criscione, L.; Rigollier, P.; Batzl-Hartmann, C.; Rueger, H.; Stricker-Krongrad, A.; Wyss, P.; Brunner, L.; Whitebread, S.; Yamaguchi, Y.; Gerald, C.; Heurich, R. O.; Walker, M. W.; Chiesi, M.; Schilling, W.; Hofbauer, K. G.; Levens, N. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. *J. Clin. Invest.* **1998**, 102, 2136-45.
- 105. Kanatani, A.; Ishihara, A.; Iwaasa, H.; Nakamura, K.; Okamoto, O.; Hidaka, M.; Ito, J.; Fukuroda, T.; MacNeil, D. J.; Van der Ploeg, L. H.; Ishii, Y.; Okabe, T.; Fukami, T.; Ihara, M. L-152,804: orally active and selective neuropeptide Y Y5 receptor antagonist. *Biochem. Biophys. Res. Commun.* **2000**, 272, 169-73.
- 106. Erondu, N.; Gantz, I.; Musser, B.; Suryawanshi, S.; Mallick, M.; Addy, C.; Cote, J.; Bray, G.; Fujioka, K.; Bays, H.; Hollander, P.; Sanabria-Bohorquez, S. M.; Eng, W.; Langstrom, B.; Hargreaves, R. J.; Burns, H. D.; Kanatani, A.; Fukami, T.; MacNeil, D. J.; Gottesdiener, K. M.; Amatruda, J. M.; Kaufman, K. D.; Heymsfield, S. B. Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. *Cell Metab.* **2006**, 4, 275-82.
- 107. Sato, N.; Ando, M.; Ishikawa, S.; Jitsuoka, M.; Nagai, K.; Takahashi, H.; Sakuraba, A.; Tsuge, H.; Kitazawa, H.; Iwaasa, H.; Mashiko, S.; Gomori, A.; Moriya, R.; Fujino, N.; Ohe, T.; Ishihara, A.; Kanatani, A.; Fukami, T. Discovery of tetrasubstituted imidazolines as potent and selective neuropeptide Y Y5 receptor antagonists: reduced human ether-a-go-go related gene potassium channel binding affinity and potent antiobesity effect. *J. Med. Chem.* **2009**, 52, 3385-96.
- Walker, M. W.; Wolinsky, T. D.; Jubian, V.; Chandrasena, G.; Zhong, H.; Huang, X.; Miller, S.; Hegde, L. G.; Marsteller, D. A.; Marzabadi, M. R.; Papp, M.; Overstreet, D. H.; Gerald, C. P.; Craig, D. A. The novel neuropeptide Y Y5 receptor antagonist Lu AA33810 [N-[[trans-4-[(4,5-dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cycloh exyl]methyl]-methanesulfonamide] exerts anxiolytic- and antidepressant-like effects in rat models of stress sensitivity. *J. Pharmacol. Exp. Ther.* **2009**, 328, 900-11.
- 109. Cabrele, C.; Beck-Sickinger, A. G. Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. *J. Pept. Sci.* **2000**, 6, 97-122.
- Dumont, Y.; Fournier, A.; St-Pierre, S.; Quirion, R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [1251][Leu31, Pro34] peptide YY and [1251]Peptide YY3-36 as selective Y1 and Y2 radioligands. *J. Pharmacol. Exp. Ther.* **1995**, 272, 673-80.
- 111. Dumont, Y.; Fournier, A.; St-Pierre, S.; Quiron, R. Autoradiographic distribution of [1251][Leu31,Pro34]PYY and [1251]PYY3-36 binding sites in the rat brain evaluated with two newly developed Y1 and Y2 receptor radioligands. *Synapse (N. Y.)* **1996**, 22, 139-58.
- 112. DeCarr, L. B.; Buckholz, T. M.; Milardo, L. F.; Mays, M. R.; Ortiz, A.; Lumb, K. J. A long-acting selective neuropeptide Y2 receptor PEGylated peptide agonist reduces food intake in mice. *Bioorg. Med. Chem. Lett.* **2007**, 17, 1916-9.
- 113. Balasubramaniam, A.; Joshi, R.; Su, C.; Friend, L. A.; James, J. H. Neuropeptide Y (NPY) Y2 receptor-selective agonist inhibits food intake and promotes fat metabolism in mice: combined anorectic effects of Y2 and Y4 receptor-selective agonists. *Peptides* 2007, 28, 235-40.
- 114. Vrang, N.; Jensen, K. J.; Pedersen, S. L.; Chelur, S. S.; Sasikumar, P. G.; Dhakshinamoorthy, S.; Ramachandra, M. Y2 receptor agonists. WO 2009080608 A1, **2011**.
- 115. Jensen, K. J.; Pedersen, S. L.; Holst, B.; Vrang, N. Modifying the conserved C-terminal tyrosine of the peptide hormone PYY3-36 to improve Y2 receptor selectivity. *J. Pept. Sci.* **2009**, 15, 753-759.
- 116. Grouzmann, E.; Buclin, T.; Martire, M.; Cannizzaro, C.; Dorner, B.; Razaname, A.; Mutter, M. Characterization of a selective antagonist of neuropeptide Y at the Y2 receptor. Synthesis and pharmacological evaluation of a Y2 antagonist. *J. Biol. Chem.* **1997**, 272, 7699-706.
- 117. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y(2) receptor antagonist. *Eur. J. Pharmacol.* **1999**, 384, R3-5.
- Bonaventure, P.; Nepomuceno, D.; Mazur, C.; Lord, B.; Rudolph, D. A.; Jablonowski, J. A.; Carruthers, N. I.; Lovenberg, T. W. Characterization of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopen tyl-ethyl)-piperidin-4yl]acrylamide (JNJ-5207787), a small molecule antagonist of the neuropeptide Y Y2 receptor. *J. Pharmacol. Exp. Ther.* 2004, 308, 1130-7.

- Andres, C. J.; Antal Zimanyi, I.; Deshpande, M. S.; Iben, L. G.; Grant-Young, K.; Mattson, G. K.; Zhai, W. Differentially functionalized diamines as novel ligands for the NPY2 receptor. *Bioorg. Med. Chem. Lett.* **2003**, 13, 2883-5.
- 120. Shoblock, J. R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S. T.; Sutton, S. W.; Morton, K.; Galici, R.; Atack, J. R.; Dvorak, L.; Swanson, D. M.; Carruthers, N. I.; Dvorak, C.; Lovenberg, T. W.; Bonaventure, P. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophe nyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor. *Psychopharmacology (Berl).* 2010, 208, 265-77.
- 121. Lunniss, G. E.; Barnes, A. A.; Barton, N.; Biagetti, M.; Bianchi, F.; Blowers, S. M.; Caberlotto, L.; Emmons, A.; Holmes, I. P.; Montanari, D.; Norris, R.; Walters, D. J.; Watson, S. P. The identification and optimisation of novel and selective diamide neuropeptide Y Y2 receptor antagonists. *Bioorg. Med. Chem. Lett.* **2009**, 19, 4022-5.
- 122. Lunniss, G. E.; Barnes, A. A.; Barton, N.; Biagetti, M.; Bianchi, F.; Blowers, S. M.; Caberlotto, L. L.; Emmons, A.; Holmes, I. P.; Montanari, D.; Norris, R.; Puckey, G. V.; Walters, D. J.; Watson, S. P.; Willis, J. The identification of a series of novel, soluble non-peptidic neuropeptide Y Y2 receptor antagonists. *Bioorg. Med. Chem. Lett.* **2010**, 20, 7341-4.
- 123. Brothers, S. P.; Saldanha, S. A.; Spicer, T. P.; Cameron, M.; Mercer, B. A.; Chase, P.; McDonald, P.; Wahlestedt, C.; Hodder, P. S. Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole-cell high-throughput screening. *Mol. Pharmacol.* **2010**, 77, 46-57.
- 124. Burger, A. Isosterism and bioisosterism in drug design. *Prog. Drug Res.* **1991**, 37, 287-371.
- 125. Lima, L. M.; Barreiro, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. *Curr. Med. Chem.* **2005**, 12, 23-49.
- 126. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. *J. Med. Chem.* **2011**, 54, 2529-91.
- 127. Chowdhury, M. A.; Abdellatif, K. R.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. *J. Med. Chem.* **2009**, 52, 1525-9.
- 128. Jimonet, P.; Bohme, G. A.; Bouquerel, J.; Boireau, A.; Damour, D.; Debono, M. W.; Genevois-Borella, A.; Hardy, J. C.; Hubert, P.; Manfre, F.; Nemecek, P.; Pratt, J.; Randle, J. C.; Ribeill, Y.; Stutzmann, J. M.; Vuilhorgne, M.; Mignani, S. Bioisosteres of 9-carboxymethyl-4-oxo-imidazo[1,2-a]indeno-[1,2-e]pyrazin-2-carboxylic acid derivatives. Progress towards selective, potent in vivo AMPA antagonists with longer durations of action. *Bioorg. Med. Chem. Lett.* **2001**, 11, 127-32.
- 129. Kinney, W. A.; Lee, N. E.; Garrison, D. T.; Podlesny, E. J., Jr.; Simmonds, J. T.; Bramlett, D.; Notvest, R. R.; Kowal, D. M.; Tasse, R. P. Bioisosteric replacement of the alpha-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists. *J. Med. Chem.* **1992**, 35, 4720-6.

- Qiu, J.; Stevenson, S. H.; O'Beirne, M. J.; Silverman, R. B. 2,6-Difluorophenol as a bioisostere of a carboxylic acid: bioisosteric analogues of gamma-aminobutyric acid. *J. Med. Chem.* **1999**, 42, 329-32.
- 131. Stensbol, T. B.; Uhlmann, P.; Morel, S.; Eriksen, B. L.; Felding, J.; Kromann, H.; Hermit, M. B.; Greenwood, J. R.; Brauner-Osborne, H.; Madsen, U.; Junager, F.; Krogsgaard-Larsen, P.; Begtrup, M.; Vedso, P. Novel 1-hydroxyazole bioisosteres of glutamic acid. Synthesis, protolytic properties, and pharmacology. *J. Med. Chem.* 2002, 45, 19-31.
- 132. Ghorai, P.; Kraus, A.; Keller, M.; Gotte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A. Acylguanidines as bioisosteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists. *J. Med. Chem.* **2008**, 51, 7193-204.
- 133. Xie, S. X.; Ghorai, P.; Ye, Q. Z.; Buschauer, A.; Seifert, R. Probing ligand-specific histamine H1- and H2-receptor conformations with NG-acylated Imidazolylpropylguanidines. *J. Pharmacol. Exp. Ther.* **2006**, 317, 139-46.
- 134. Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A. N(G)-acylated aminothiazolylpropylguanidines as potent and selective histamine H(2) receptor agonists. *ChemMedChem* **2009**, 4, 232-40.
- 135. Igel, P.; Schneider, E.; Schnell, D.; Elz, S.; Seifert, R.; Buschauer, A. N(G)-acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the N(G)-substituent. *J. Med. Chem.* **2009**, 52, 2623-7.
- Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Red-fluorescent argininamide-type NPY Y(1) receptor antagonists as pharmacological tools. *Bioorg. Med. Chem.* **2011**, 19, 2859-78.
- 137. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist. *J. Med. Chem.* 2008, 51, 8168-72.
- 138. Lu, T.; Markotan, T.; Ballentine, S. K.; Giardino, E. C.; Spurlino, J.; Crysler, C. S.; Brown, K.; Maryanoff, B. E.; Tomczuk, B. E.; Damiano, B. P.; Shukla, U.; End, D.; Andrade-Gordon, P.; Bone, R. F.; Player, M. R. Discovery and clinical evaluation of 1-{N-[2-(amidinoaminooxy)ethyl]amino}carbonylmethyl-6-methyl-3-[2,2-difluo ro-2phenylethylamino]pyrazinone (RWJ-671818), a thrombin inhibitor with an oxyguanidine P1 motif. *J. Med. Chem.* **2010**, 53, 1843-56.
- 139. Lee, C. W.; Cao, H.; Ichiyama, K.; Rana, T. M. Design and synthesis of a novel peptidomimetic inhibitor of HIV-1 Tat-TAR interactions: squaryldiamide as a new potential bioisostere of unsubstituted guanidine. *Bioorg. Med. Chem. Lett.* **2005**, 15, 4243-6.
- 140. Chang, R. S.; Lotti, V. J.; Chen, T. B. Specific [3H]propionyl-neuropeptide Y (NPY) binding in rabbit aortic membranes: comparisons with binding in rat brain and biological responses in rat vas deferens. *Biochem. Biophys. Res. Commun.* **1988**, 151, 1213-9.
- 141. Widdowson, P. S.; Halaris, A. E. A comparison of the binding of [3H]proprionylneuropeptide Y to rat and human frontal cortical membranes. *J. Neurochem.* **1990**, 55, 956-62.

- 142. Entzeroth, M.; Braunger, H.; Eberlein, W.; Engel, W.; Rudolf, K.; Wienen, W.; Wieland, H. A.; Willim, K. D.; Doods, H. N. Labeling of neuropeptide Y receptors in SK-N-MC cells using the novel, nonpeptide Y1 receptor-selective antagonist [3H]BIBP3226. *Eur. J. Pharmacol.* **1995**, 278, 239-42.
- 143. Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-MK136: a highly potent and selective radioligand for neuropeptide Y Y1 receptors. *ChemMedChem* **2011**, 6, 1566-71.
- Dumont, Y.; Fournier, A.; St-Pierre, S.; Schwartz, T. W.; Quirion, R. Differential distribution of neuropeptide Y1 and Y2 receptors in the rat brain. *Eur. J. Pharmacol.* 1990, 191, 501-3.
- 145. Gehlert, D. R.; Gackenheimer, S. L. Differential distribution of neuropeptide Y Y1 and Y2 receptors in rat and guinea-pig brains. *Neuroscience* **1997**, 76, 215-24.
- 146. Martel, J. C.; Fournier, A.; St Pierre, S.; Quirion, R. Quantitative autoradiographic distribution of [1251]Bolton-Hunter neuropeptide Y receptor binding sites in rat brain. Comparison with [1251]peptide YY receptor sites. *Neuroscience* **1990**, 36, 255-83.
- 147. Körner, M.; Waser, B.; Reubi, J. C. Neuropeptide Y receptors in renal cell carcinomas and nephroblastomas. *Int. J. Cancer* **2005**, 115, 734-41.
- 148. Solon, E. G.; Schweitzer, A.; Stoeckli, M.; Prideaux, B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. *AAPS J.* **2010**, 12, 11-26.
- Coenen, H. H. Fluorine-18 labeling methods: Features and possibilities of basic reactions. In *PET chemistry. The driving force in molecular imaging.*, Heilmann, U., Ed. Springer-Verlag Berlin Heidelberg: 2007; pp 329-339.
- 150. Yu, S. Review of F-FDG Synthesis and Quality Control. *Biomed. Imaging Interv. J.* **2006**, 2, e57.
- 151. Takahashi, H.; Haga, Y.; Shibata, T.; Nonoshita, K.; Sakamoto, T.; Moriya, M.; Ohe, T.; Chiba, M.; Mitobe, Y.; Kitazawa, H.; Iwaasa, H.; Ishihara, A.; Ishii, Y.; Kanatani, A.; Fukami, T. Identification of positron emission tomography ligands for NPY Y5 receptors in the brain. *Bioorg. Med. Chem. Lett.* **2009**, 19, 5436-9.
- 152. Keller, M. Guanidine-acylguanidine bioisosteric approach to adress peptidergic receptors: pharmacological and diagnostic tools for the NPY Y1 receptor and versatile building blocks based on arginine substitutes. Doctoral thesis, University of Regensurg, Regensburg, 2008.
- 153. Kameda, M.; Ando, M.; Nakama, C.; Kobayashi, K.; Kawamoto, H.; Ito, S.; Suzuki, T.; Tani, T.; Ozaki, S.; Tokita, S.; Sato, N. Synthesis and evaluation of a series of 2,4diaminopyridine derivatives as potential positron emission tomography tracers for neuropeptide Y Y1 receptors. *Bioorg. Med. Chem. Lett.* **2009**, 19, 5124-7.
- 154. Hostetler, E. D.; Sanabria-Bohorquez, S.; Fan, H.; Zeng, Z.; Gantert, L.; Williams, M.; Miller, P.; O'Malley, S.; Kameda, M.; Ando, M.; Sato, N.; Ozaki, S.; Tokita, S.; Ohta, H.; Williams, D.; Sur, C.; Cook, J. J.; Burns, H. D.; Hargreaves, R. Synthesis, characterization, and monkey positron emission tomography (PET) studies of [18F]Y1-973, a PET tracer for the neuropeptide Y Y1 receptor. *Neuroimage* **2011**, 54, 2635-42.

- 155. Berlier, J. E.; Rothe, A.; Buller, G.; Bradford, J.; Gray, D. R.; Filanoski, B. J.; Telford, W. G.; Yue, S.; Liu, J.; Cheung, C. Y.; Chang, W.; Hirsch, J. D.; Beechem, J. M.; Haugland, R. P. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. *J. Histochem. Cytochem.* 2003, 51, 1699-712.
- Czerney, P.; Lehmann, F.; Wenzel, M.; Buschmann, V.; Dietrich, A.; Mohr, G. J. Tailormade dyes for fluorescence correlation spectroscopy (FCS). *Biol. Chem.* 2001, 382, 495-8.
- 157. Luschtinetz, F.; Dosche, C.; Kumke, M. U. Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes. *Bioconjug. Chem.* **2009**, 20, 576-82.
- Pauli, J.; Vag, T.; Haag, R.; Spieles, M.; Wenzel, M.; Kaiser, W. A.; Resch-Genger, U.; Hilger, I. An in vitro characterization study of new near infrared dyes for molecular imaging. *Eur. J. Med. Chem.* **2009**, 44, 3496-503.
- 159. Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent bodipy dyes: versatility unsurpassed. *Angew. Chem. Int. Ed. Engl.* **2008**, 47, 1184-201.
- Waggoner, A. Fluorescent labels for proteomics and genomics. *Curr. Opin. Chem. Biol.* 2006, 10, 62-6.
- 161. Wetzl, B. K.; Yarmoluk, S. M.; Craig, D. B.; Wolfbeis, O. S. Chameleon labels for staining and quantifying proteins. *Angew. Chem. Int. Ed. Engl.* **2004,** 43, 5400-2.
- 162. Kuder, K.; Kiec-Kononowicz, K. Fluorescent GPCR ligands as new tools in pharmacology. *Curr. Med. Chem.* **2008**, 15, 2132-43.
- Cottet, M.; Faklaris, O.; Zwier, J. M.; Trinquet, E.; Pin, J. P.; Durroux, T. Original fluorescent ligand-based assays open new perspectives in G-protein coupled receptor drug screening. *Pharmaceuticals* **2011**, 4, 202-214.
- 164. Albizu, L.; Cottet, M.; Kralikova, M.; Stoev, S.; Seyer, R.; Brabet, I.; Roux, T.; Bazin, H.; Bourrier, E.; Lamarque, L.; Breton, C.; Rives, M. L.; Newman, A.; Javitch, J.; Trinquet, E.; Manning, M.; Pin, J. P.; Mouillac, B.; Durroux, T. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. *Nat. Chem. Biol.* **2010**, 6, 587-94.
- Rocheville, M.; Lange, D. C.; Kumar, U.; Patel, S. C.; Patel, R. C.; Patel, Y. C. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. *Science* 2000, 288, 154-7.
- Dressler, L. G.; Seamer, L. C. Controls, standards, and histogram interpretation in DNA flow cytometry. *Methods Cell Biol.* **1994**, 41, 241-62.
- Darzynkiewicz, Z.; Juan, G.; Li, X.; Gorczyca, W.; Murakami, T.; Traganos, F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). *Cytometry* **1997**, 27, 1-20.
- 168. Robinson, J. P.; Carter, W. O.; Narayanan, P. K. Oxidative product formation analysis by flow cytometry. *Methods Cell Biol.* **1994**, 41, 437-47.
- 169. Shapiro, H. M. Cell membrane potential analysis. *Methods Cell Biol.* 1994, 41, 121-33.
- 170. June, C. H.; Rabinovitch, P. S. Intracellular ionized calcium. *Methods Cell Biol.* **1994**, 41, 149-74.

- 171. Boyer, M. J.; Hedley, D. W. Measurement of intracellular pH. *Methods Cell Biol.* **1994**, 41, 135-48.
- 172. Hatse, S.; Princen, K.; Liekens, S.; Vermeire, K.; De Clercq, E.; Schols, D. Fluorescent CXCL12AF647 as a novel probe for nonradioactive CXCL12/CXCR4 cellular interaction studies. *Cytometry A* **2004**, 61, 178-88.
- 173. Stein, R. A.; Wilkinson, J. C.; Guyer, C. A.; Staros, J. V. An analytical approach to the measurement of equilibrium binding constants: application to EGF binding to EGF receptors in intact cells measured by flow cytometry. *Biochemistry* **2001**, 40, 6142-54.
- 174. Bajaj, A.; Celic, A.; Ding, F. X.; Naider, F.; Becker, J. M.; Dumont, M. E. A fluorescent alpha-factor analogue exhibits multiple steps on binding to its G protein coupled receptor in yeast. *Biochemistry* **2004**, 43, 13564-78.
- 175. Schneider, E.; Keller, M.; Brennauer, A.; Höfelschweiger, B.; Gross, D.; Wolfbeis, O. S.; Bernhardt, G.; Buschauer, A. Synthesis and characterization of the first fluorescent nonpeptide NPY Y₁ receptor antagonist. *Chembiochem* **2007**, 8, 1981-1988.
- 176. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A. A simple and powerful flow cytometric method for the simultaneous determination of multiple parameters at G protein-coupled receptor subtypes. *Chembiochem* **2006**, 7, 1400-9.
- 177. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. *Eur. J. Pharmacol.* **2006**, 551, 10-8.
- 178. Mayer, M. Entwicklung fluorimetrischer Methoden zur Bestimmung der Affinität und Aktivität von Liganden G-Protein-gekoppelter Rezeptoren an intakten Zellen. Doctoral thesis, University of Regensburg, Regensburg, **2002**.
- 179. Nolan, J. P.; Sklar, L. A. The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions. *Nat. Biotechnol.* **1998**, 16, 633-8.
- 180. Baker, J. G.; Middleton, R.; Adams, L.; May, L. T.; Briddon, S. J.; Kellam, B.; Hill, S. J. Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. *Br. J. Pharmacol.* **2010**, 159, 772-86.
- 181. Mackenzie, J. F.; Daly, C. J.; Pediani, J. D.; McGrath, J. C. Quantitative imaging in live human cells reveals intracellular alpha(1)-adrenoceptor ligand-binding sites. *J. Pharmacol. Exp. Ther.* **2000**, 294, 434-43.
- 182. Heilker, R.; Zemanova, L.; Valler, M. J.; Nienhaus, G. U. Confocal fluorescence microscopy for high-throughput screening of G-protein coupled receptors. *Curr. Med. Chem.* **2005**, 12, 2551-9.
- 183. Dumont, Y.; Gaudreau, P.; Mazzuferi, M.; Langlois, D.; Chabot, J. G.; Fournier, A.; Simonato, M.; Quirion, R. BODIPY-conjugated neuropeptide Y ligands: new fluorescent tools to tag Y1, Y2, Y4 and Y5 receptor subtypes. *Br. J. Pharmacol.* 2005, 146, 1069-81.
- 184. Jacques, D.; Abdel-Samad, D. Neuropeptide Y (NPY) and NPY receptors in the cardiovascular system: implication in the regulation of intracellular calcium. *Can. J. Physiol. Pharmacol.* **2007**, 85, 43-53.

Chapter 2 Scope of the Thesis

Several fluorescent or radiolabeled peptides have been used extensively as pharmacological tools for the investigation of NPY receptor subtypes, since labeled small molecules were not available for routine use in the past. However, such nonpeptidic tracers are superior to peptides in terms of their physicochemical properties. Labeled derivatives of the endogenous ligand NPY exhibit limited selectivity and stability. In addition, their applicability as pharmacological tools may be hampered by long incubation periods accompanied with receptor internalization and desensitization due to the slow binding kinetics of peptides. Hence, there is an urgent need for fluorescence and radiolabeled NPY receptor subtype selective low molecular weight antagonists.

The guanidine-acylguanidine bioisosteric approach was extensively studied in our group for the development of pharmacological tools addressing the NPY Y_1 receptor as well as histamine receptor subtypes.¹⁻⁴ Inspired by the results from the N^G -acylated Y_1R selective ligands, A. Brennauer prepared the first analogs of the argininamide-type Y_2R selective antagonist BIIE 0246 applying this bioisosterism concept.⁵

The aim of this thesis was the design, synthesis and characterization of non-peptidic tools for the Y_2R . The synthetic strategy is based on the hypothesis that a fluorescent or radioactive label can be attached to the guanidino moiety of BIIE 0246 by an acyl or carbamoyl linker. ω -Aminoacyl linkers were considered most promising, since the fluorophores and radionuclide containing building blocks are commercially available as aminoreactive electrophiles (activated carboxylic acids, pyrylium dyes). Therefore, the present work was focused on the identification and optimization of stable aminofunctionalized acyl- and carbamoylguanidines. The fluorescence or radiolabel should be introduced in the final reaction step to yield Y_2R selective tracers. Moreover, the lipophilic pharmacophore of BIIE 0246 should be modified in order to analyze the structure-activity relationships of argininamide-type Y_2R antagonists and additionally to improve the physicochemical properties.

With respect to the synthesis of radioligands for routine use in radioligand binding experiments, tritiated antagonists are preferred in our laboratory, synthesized by acylation with the commonly used tritiated reagent [³H]-propionic acid succinimidyl ester. Such a Y_2R selective radioligand is anticipated to serve as a standard ligand for the determination of binding constants at Y_2R expressing cells and for the detailed investigation of the binding mode of Y_2R selective antagonists.

Beside tritiated compounds, the preparation of potential PET ligands was planned as model compounds towards Y₂R selective [¹⁸F]-PET tracers. These ligands are of poten-

tial value as medical diagnostics, since the Y_2R was reported to be expressed in several tumors.⁶

By analogy with this approach, fluorescent Y₂R antagonists differing in the spacer and the fluorophore, respectively, had to be designed, prepared and pharmacologically characterized, since fluorescence labeled compounds offer several advantages compared to radioligands; for instance, in terms of safety precautions, waste disposal or versatile applicability in various fluorescence-based techniques. Thereafter, selected candidates should be investigated in more detail by means of confocal microscopy and flow cytometry. Especially, red-fluorescent Y₂R selective antagonists are regarded promising pharmacological tools for the detection of Y₂ receptors on cells and for the application in equilibrium binding studies. Nevertheless, a major challenge in this field is the preservation of receptor affinity which is usually considerably affected by the introduction of bulky fluorophores into small receptor ligands.

Finally, ligands comprising two pharmacophoric entities are discussed to be of potential value as tools for the investigation of GPCR homodimerization⁷⁻⁹. Thus, the feasibility of the bivalent ligand approach was intended to be evaluated by the linkage of two ω -aminoacyl precursors derived from BIIE 0246 with various dicarboxylic acids resulting in bivalent ligands with different chemical nature and length of the spacer.

References

- Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A. Tritium-labeled N(1)-[3-(1H-imidazol-4-yl)propyl]-N(2)-propionylguanidine ([(3)H]UR-PI294), a high-affinity histamine H(3) and H(4) receptor radioligand. *ChemMedChem* 2009, 4, 225-31.
- 2. Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Red-fluorescent argininamide-type NPY Y(1) receptor antagonists as pharmacological tools. *Bioorg. Med. Chem.* **2011**, 19, 2859-78.
- 3. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist. *J. Med. Chem.* **2008**, 51, 8168-72.
- 4. Xie, S. X.; Petrache, G.; Schneider, E.; Ye, Q. Z.; Bernhardt, G.; Seifert, R.; Buschauer, A. Synthesis and pharmacological characterization of novel fluorescent histamine H2-receptor ligands derived from aminopotentidine. *Bioorg. Med. Chem. Lett.* **2006**, 16, 3886-90.
- 5. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide Y Y1 and Y2 receptor antagonists: synthesis, stability and pharmacological activity. Doctoral thesis, Universität Regensburg, Regensburg, 2006.
- 6. Körner, M.; Reubi, J. C. NPY receptors in human cancer: A review of current knowledge. *Peptides* **2007**, 28, 418-425.

- 7. Dinger, M. C.; Bader, J. E.; Kobor, A. D.; Kretzschmar, A. K.; Beck-Sickinger, A. G. Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells. *J. Biol. Chem.* **2003**, 278, 10562-71.
- 8. Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. *Mol. Pharmacol.* **2004**, 66, 1-7.
- 9. Terrillon, S.; Bouvier, M. Roles of G-protein-coupled receptor dimerization. *EMBO Rep.* **2004**, 5, 30-4.

Chapter 3 Structure-Activity Relationship Studies of Argininamide-Type Neuropeptide Y Y₂ Receptor Antagonists

3.1 Introduction

In 1999, the non-peptidic (*L*)-arginine derivative BIIE 0246 was disclosed by Boehringer Ingelheim Pharma. This compound proved to be a highly potent and selective neuropeptide Y (NPY) Y₂ receptor (Y₂R) antagonist in binding experiments and functional assays, respectively. Radioligand binding studies on Y₂R expressing SMS-KAN cells revealed an IC₅₀ value of 3.3 nM, whereas no displacement of radiolabeled NPY was observed in Y₁, Y₄ and Y₅ receptor assays (Y₁R, Y₄R, Y₅R).¹ Y₂R antagonism was demonstrated, for instance, in pharmacological investigations on the isolated electrically stimulated rat and guinea-pig *vas deferens*.¹⁻³ More detailed studies on the antagonistic behavior of BIIE 0246 revealed an insurmountable binding mode after pre-incubation of BIIE 0246 with Y₂R expressing cells, whereas competitive antagonism was observed upon simultaneous application of a peptide agonist (e.g. PYY) and BIIE 0246.⁴

BIIE 0246 was among a series of peptidomimetics synthesized as putative mimics of the C-terminus of NPY. For some of these BIIE 0246 analogs Y₂R binding data are given in the patent literature,⁵⁻⁷ stimulating the discussion of structure-activity relationships of argininamide-type Y_2R antagonists. The 5,11-dihydrodibenzo[b,e]azepin-6-one group, though representing the best suited substructure, can be replaced by an α -diphenylmethyl residue resulting in a relatively small decrease in affinity by a factor of 4-5. Apparently, the "western part" of BIIE 0246 undergoes hydrophobic interactions with the receptor. Substitution of the piperazine by a piperidine led to a six times lower affinity.⁸ The *L*-arginine side-chain is supposed to form a crucial electrostatic interaction with an acidic residue in the receptor (presumably Asp294^{6.59});⁹ exchange by non-basic groups is not tolerated. Interestingly, the replacement of the 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5-dione moiety by an (S)-tyrosinamide was accepted, whereas the corresponding (S)-phenylalaninamide analog showed low affinity. This is in agreement with the assumption that the hydroxyl group is important for receptor binding of BIIE 0246 due to mimicking the C-terminus of NPY.

Mutagenesis studies of the human Y₂R revealed novel insights into the ligandreceptor interactions. Interestingly, BIIE 0246 does not bind to avian Y₂Rs.¹⁰ Based on reciprocal mutations of the human (h) and chicken (ch) Y₂Rs, three amino acids in the hY₂R were identified to be crucial for BIIE 0246 binding: Gln135^{3.37} in transmembrane domain 3 (TM 3), Leu227^{5.46} in TM 5, and Leu284^{6.49} in TM 6.¹¹ Point mutagenesis of hY₂R to the corresponding amino acids in chY₂ (Q135H, L227Q, L284F) resulted in low affinity of BIIE 0246. Inversely, the introduction of the three human residues into the chY₂R reproduced the high affinity to hY₂R.¹¹ A site-directed mutagenesis study revealed the importance of Tyr110^{2.64} in TM 2 of the hY₂R for both, peptide ligands and BIIE 0246 binding.¹² Replacement of this residue by Ala resulted in a 5-9 fold reduction in the affinity of the tested peptide agonists [¹²⁵I]pPYY, pNPY, hPYY (3-36) and pNPY (13-36). BIIE 0246 displayed a 4-fold reduced affinity for this mutant.¹² The latest site-directed mutagenesis study revealed further amino acids with direct or indirect effects on the interaction of BIIE 0246 with the Y₂R.¹³ Therein, L183A exchange resulted in a 46-fold decrease in binding affinity suggesting a direct hydrophobic interaction. Further mutations (T138I, Q287A) implemented a 2.3 and 2.9-fold decrease in affinity, respectively. Interestingly, according to the suggested receptor model, Thr138^{3.40}, Leu183^{4.60} and Gln287^{6.55} are oriented towards the cavity defined between TM 3, 4, 5 and 6, which has been previously proposed to accommodate antagonist ligands in the Y₁ receptor.¹⁴⁻¹⁵ These results are first clues towards models of the Y₂R binding site of BIIE 0246.

We are aiming at pharmacological tools for further investigations on the binding mode of BIIE 0246 and related argininamides and for further characterization of the Y₂R, respectively. Several substitutions in the building block of BIIE 0246 were performed in order to improve the physicochemical properties (cf. Figure 3.1). Therefore, the lipophilicity of the building block as well as the basicity of the guanidine should be reduced. Compared to the guanidino group the basicity of acylguanidines is decreased by 4-5 orders of magnitude (pK_a ≈ 8) but still sufficient to allow for key interactions with acidic residues of the biological target, as demonstrated recently for histamine H_2^{16-17} and H_4^{18} receptor agonists, Y₁R antagonists¹⁹⁻²¹ and a few prototypical Y₂R antagonists⁸ from our laboratory. In this work, special attention was paid to further exploring the applicability of the guanidine-acylguanidine bioisosteric approach to Y₂R ligands. Additionally, the synthesis of aminofunctionalized building blocks was taken into consideration with respect to the preparation of fluorescent ligands and radiotracers.

The structural features of the synthesized argininamides presented in this chapter are summarized in Figure 3.1. These compounds were investigated at recombinant hY_2Rs for affinity and antagonism, for Y_2R selectivity compared to Y_1R , Y_4R and Y_5R , and for chemical stability. The structure-activity relationships will be discussed.

Figure 3.1. Overview about the structural modifications of argininamides described in this chapter.

3.2 Chemistry

3.2.1 Synthesis

The argininamide-type NPY Y₂R antagonists were synthesized from (*S*)- and (*R*)configured ornithine (commonly named *L*-Orn and *D*-Orn), respectively. The *tert*butoxycarbonyl and the phthaloyl group were used as orthogonal protective groups of N^{α} and N^{δ} (Scheme 3.1).

Scheme 3.1. Preparation of orthogonally protected ornithine **3.2**. Reagents and conditions: a) 1. NaOH (2 eq), CuSO₄ × 5 H₂O (0.5 eq), NaHCO₃ (1.23 eq), H₂O, 30 min, rt, 2. *N*-Carbethoxyphthalimide (1.23 eq), 90 min, rt, 3. 6 \bowtie HCl, 90 min, rt; b) Di-*tert*-butyl dicarbonate (1.05 eq), NaHCO₃ (2.2 eq), 1,4-dioxane, H₂O, 3 h, rt.

Most of the argininamide-type Y_2R antagonists comprise a 2-(3,5-dioxo-1,2-diphenyl-1,2-triazolidin-4-yl)ethyl group⁷ at the C-terminal amide nitrogen. The corresponding amino compound **3.4** was prepared by *N*-alkylation of deprotonated 1,2-diphenylurazol with *N*-(2-bromoethyl)phthalimide, and subsequent hydrazinolysis of the phthaloyl protective group. 1,2-Diphenylurazol was obtained by condensation of 1,2diphenylhydrazine and ethyl allophanate (cf. Scheme 3.2).²²

Scheme 3.2. Synthesis of amine component **3.4**. Reagents and conditions: a) xylene, 24 h, reflux; b) KO^tBu (1.10 eq), DMF, 5 h, reflux; c) 1. N₂H₅OH (2.75 eq), THF/MeOH, 16 h, rt, 2. 2 μ HCl, 2 h, rt.

The N^{α} position of the ornithinamide was acylated with either the carboxylic acid **3.9**⁷ or **3.10**. For the synthesis of these compounds, anthraquinone was converted into 5H-dibenzo[*b*,*e*]azepin-6,11-dione (**3.5**) by Schmidt reaction. The resulting ketone was reduced to alcohol **3.6** by NaBH₄ and afterwards converted to the 11-chloro compound (**3.7**) using thionyl chloride. Subsequently, the alkyl chloride was allowed to react with an excess of piperazine yielding 11-piperazin-1-yl-5,11-dihydrodibenzo-[*b*,*e*]azepin-6-one (**3.8**). Finally, acylation of the piperazine with 3,3-tetramethylene glutaric anhydride afforded **3.9**. Carboxylic acid **3.10**, lacking the cycloaliphatic moiety, was prepared by analogy from **3.8** and glutaric anhydride (Scheme 3.3). The synthesis of the ornithinamide building blocks which were subjected to guanidinylation is outlined in Scheme 3.4 and Scheme 3.5.

Scheme 3.3. Preparation of the carboxylic acids **3.9**, **3.10**. Reagents and conditions: a) NaN₃ (1.2 eq), H₂SO₄, CHCl₃, 10 h, reflux; b) NaBH₄ (2 eq), EtOH, 1 h, reflux; c) SOCl₂, CHCl₃, 30 min, reflux; d) piperazine (5 eq), 1,4-dioxane, 30 min, reflux; e) anhydride (1 eq), CH₂Cl₂, 18 h, rt.

For the preparation of the phthaloyl-protected ornithine amide building blocks **3.13** and **3.14**, the N^{α} , N^{δ} -diprotected ornithine **3.2** reacted with the amine **3.4** after *in situ* activation with DCC, followed by Boc-deprotection and a second EDC/HOBt promoted coupling step with the carboxylic acids **3.9** or **3.10** (Scheme 3.4) yielding **3.13** and **3.14**, respectively.⁸ The phthaloyl group was cleaved off by hydrazinolysis, giving the primary amines **3.15** and **3.16**.

The BIIE 0246 analogs comprising a phenylalanine amide or a tyrosine amide in the "eastern part" instead of the 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5dione moiety were prepared starting from the (*S*)-configured *tert*-butoxycarbonyl protected phenylalanine, and the *N*-Boc,*O*-Bn protected (*S*)-tyrosine, respectively (Scheme 3.5). The amino acids were converted into the respective amides (**3.17**, **3.18**) by ammonolysis. Therefore, the carboxylic acids were activated with isobutyl chloroformate (IBCF) followed by amidation with 7 M NH₃ in methanol.²³⁻²⁴ Deprotection, acylation with the orthogonally protected ornithine, and a second acidic Boc-group elimination resulted in the dipeptides **3.23** and **3.24**. Subsequent acylation with **3.9** gave the Pht-protected building blocks **3.25** and **3.26**. The free amines **3.27** and **3.28** were obtained after hydrazinolysis of the N^{δ} -Pht protected compounds (Scheme 3.5).

Scheme 3.4. Preparation of the ornithinamide building blocks 3.15, (S)-3.16. Reagents and conditions: a) 3.4 (1.15 eq), HOBt × H₂O (1 eq), DCC (1 eq), THF, 18 h, 0 °C \rightarrow rt; b) HCl in ethyl acetate, 2 h, rt; c) 3.9 or 3.10 (1 eq), HOBt × H₂O (1 eq), EDC × HCl (1 eq), DIPEA (2 eq), CH₃CN, 16 h, 0 °C \rightarrow rt; d) 1. N₂H₅OH (2.5 eq), MeOH, 16 h, rt, 2. 1 M KHSO₄ (5 eq), 3 h, rt.

Scheme 3.5. Preparation of building blocks 3.27, 3.28. Reagents and conditions: a) 1. IBCF (0.7 eq), NEt₃ (0.7 eq), THF, 30 min, 0 $^{\circ}$ C \rightarrow -78 $^{\circ}$ C, 2. 7 M NH₃ in MeOH, 2 h, -78 $^{\circ}$ C \rightarrow rt; b) TFA/CH₂Cl₂ 1:1 (v/v), 2 h, rt; c) (S)-3.2 (1 eq), TBTU (1 eq), DIPEA (2 eq), DMF, 16 h, rt; d) HCl in ethylacetate, 2 h, rt; e) 3.9 (1 eq), TBTU (1 eq), DIPEA (2 eq), DMF, 16 h, rt; d) HCl in thylacetate, 2 h, rt; e) 3.9 (1 eq), TBTU (1 eq), DIPEA (2 eq), DMF, 16 h, rt; d) HCl in thylacetate, 2 h, rt; e) 3.9 (1 eq), TBTU (1 eq), DIPEA (2 eq), DMF, 16 h, rt; f) 1. N₂H₅OH (2.5 eq), MeOH, 16 h, rt, 2. 1 M KHSO₄ (5 eq), 3 h, rt.

For the preparation of the acylguanidines by guanidinylation of ornithine derivatives, variously substituted *S*-methylisothioureas were synthesized as building blocks (**3.35-3.45**; Scheme 3.7). Therefore, mono Boc-protected *S*-methylisothiourea was acylated with the corresponding carboxylic acid either by *in situ* activation with TBTU or by coupling with the pertinent succinimidyl ester. The carboxylic acids **3.30-3.33** which were not commercially available were prepared as outlined in Scheme 3.6. In case of the N^{G} -unsubstituted parent compounds BIIE 0246 ((*S*)-**3.47**), (*R*)-**3.47**, **3.46**, (*S*)-**3.59**, and **3.61**, the guanidine moiety was introduced by treating the primary amine with *N*,*N*'-bis(*tert*-butoxycarbonyl)-*S*-methylisothiourea **3.34**.

Finally, the N^{G} -unsubstituted argininamides, as well as the acylguanidine analogs (**3.47-3.62**) were prepared by guanidinylation of the corresponding building block with the appropriate *S*-methylisothiourea and subsequent Boc-deprotection with 50 % TFA in dichloromethane (Scheme 3.9).^{16, 20, 25}

For compound **3.46a**, comprising an *O*-benzyl protected tyrosine, a different cleavage strategy had to be elaborated (Scheme 3.8). A two step reaction starting with hydrogenolysis of the benzyl ether followed by acidic Boc deprotection failed due to insufficient stability of the compound under reductive conditions. Therefore, different non-reductive procedures were tested. Lastly, a one step cleavage of both protective groups was achieved by the treatment with a 1 M solution of trimethylsilyl triflate and thioanisole 1:1 (n/n) in TFA and m-cresole, whereby thioanisole and m-cresole act as cation scavengers, to yield the tyrosinamide analog **3.46**.²⁶

Scheme 3.6. Synthesis of the carboxylic acids **3.30-3.33**. Reagents and conditions: a) Ethyl trifluoroacetate (1 eq), CH_2CI_2 , 4 h, 0 °C \rightarrow rt; b) 1. Di-*tert*-butyl dicarbonate (2 eq), CH_2CI_2 , 24 h, -10 °C \rightarrow rt, 2. K_2CO_3 (10 eq), CH_3OH , H_2O , 2 h, reflux; c) for **3.30**: NEt₃ (1.5 eq), THF, overnight, rt; for **3.31** and **3.32**: CH_2CI_2 , 2 h, rt; d) Di-*tert*-butyl dicarbonate (1.2 eq), NaHCO₃ (1.5 eq), 1,4-dioxane, H₂O, 16 h, rt.

Scheme 3.7. Synthesis of the guanidinylating reagents **3.34-3.45**. Reagents and conditions: a) Di-*tert*-butyl dicarbonate (5 eq), 1 \bowtie NaOH, H₂O/1,4-dioxane 1:1 (v/v), overnight, rt; b) for R = H (**3.33**): TBTU (1 eq), DIPEA (2 eq), DMF, 16 h, rt; for R = NHS: DIPEA (2 eq), DMF, 16 h, rt.

Scheme 3.8. Different deprotection strategies for the synthesis of compound **3.46**. Reagents and conditions: a) **3.34** (1 eq), NEt₃ (2 eq), HgCl₂ (1 eq), DMF, 16 h, rt; b) TMSOTf (90 eq), PhSCH₃ (90 eq), m-cresole (10 eq), TFA, 90 min, 0 °C; c) H₂, 10 % Pd/C, MeOH, 3 h-overnight, rt; d) TFA/CH₂Cl₂ 1:1 (v/v); 2 h, rt; e) TMSI (5 eq), CH₂Cl₂, 4 h, reflux.

Scheme 3.9. Preparation of N^{G} -unsubstituted Y₂R antagonists **3.47**, (*S*)-**3.59**, **3.61** and N^{G} -(ω -aminoacylated) argininamides **3.48-3.58**, (*S*)-**3.60**, **3.62**. Reagents and conditions: a) NEt₃ (2 eq), HgCl₂ (1 eq), DMF, 16 h, rt; b) TFA/CH₂Cl₂ 1:1 (v/v), 2 h, rt.

Scheme 3.10. Preparation of the potential radio- and PET-ligands (S)-3.63-(S)-3.84. Reagents and conditions: a) NEt₃ (2.5 eq), CH₃CN, 4-16 h, rt.

Finally, N^{G} -acylated or carbamoylated guanidines containing a terminal amino group were acylated using the corresponding active esters of propionic acid, 2-fluoro propionic acid, or 4-fluoro benzoic acid in order to obtain a small library of the "cold form" of potential [³H]-radio- and [¹⁸F]-PET-ligands for the Y₂R (Scheme 3.10).²¹ In addition, compounds **3.86** and **3.87** which are bearing the potential radiolabeling group at the guanidine moiety were prepared (Scheme 3.11). Due to the high basicity of the guanidine moiety a direct acylation of the N^{G} -unsubstituted Y₂R antagonist 3.47 was hardly possible. Hence, an alternative synthetic route was developed. Commonly, in our lab the guanidinylating reagent is introduced as a Cbz/Boc protected building block followed by reductive cleavage of the Cbz group, acylation and final Boc cleavage.^{21, 27} However, the ornithinamide core structure of all Y₂R antagonists turned out to be unstable under reductive hydrogenolysis conditions. Thus, the commonly used orthogonal protective group strategy could not be applied. In principle, the guanidinylation of primary amino groups using the pertinent Smethylisothioureas containing propionyl, 2-fluoropropionyl or 4-fluorobenzoyl residues is synthetically feasible. However, the application of this approach is restricted to non-radioactive compounds. The introduction of the radiolabel into the guanidinylating agent would require additional reaction steps with radioactive material and therefore complicate the synthesis in terms of waste disposal, safety precautions and reaction time. Such a synthetic strategy is especially disadvantageous in case of [¹⁸F]-labeled ligands due to the very short half-life of the radioisotope ¹⁸F ($t_{1/2}$ = 109.7 min). Therefore, introduction of the radiolabel in the final reaction step is preferred.

The mono-Boc protected argininamide **3.85** was synthesized by guanidinylation with the bis-Boc protected *S*-methylisothiourea **3.34** followed by acidic cleavage of only one *tert*-butoxycarbonyl substituent. The deprotection under acidic conditions using mixtures of CH_3CN and water containing 0.1 % TFA was monitored by HPLC and was found to be quantitative after 3 h (Figure 3.2). The N^G -propionylated, and 4-fluorobenzoylated analogs (**3.86**, **3.87**) were obtained after acylation with the corresponding NHS-ester and a second Boc-deprotection in one pot (Scheme 3.11).

Scheme 3.11. Preparation of N^G-acylated analogs **3.86**, **3.87**. Reagents and conditions: a) CH₃CN/0.1 % aq. TFA 1:1 (v/v), 5 h, rt; b) 1. NHS-ester (1.2 eq), NEt₃ (1 eq), CH₃CN, 21 h, rt, 2. TFA, 2 h, rt.

Figure 3.2. HPLC reaction monitoring of the selective cleavage of one *tert*-butoxycarbonyl protective group in **3.47a** resulting in compound **3.85**. Conditions: eluent: mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5, 30 to 40 min: 95/5, t_R (**3.85**) = 24.7 min.

3.2.2 Stability of the NPY Y₂R Antagonists

As recently reported, N^{ω} -acylated argininamides have to be considered critical with respect to the stability, depending on the structure of the acyl substituent.^{25, 28} Therefore, a selection of compounds, which were considered promising candidates for fluorescence-labeling and the synthesis of radioligands, respectively, were investigated with respect to decomposition giving BIIE 0246 ((S)-3.47) under assaylike conditions (aqueous buffer, pH 7.4, 20 °C, time scale 90 min, cf. Table 3.1). A release of (S)-3.47 under the conditions of the pharmacological assays has to be taken into account, as the high potency of *in situ* generated (S)-**3.47** ($K_i = 10.2 \text{ nM}$) might mask low activity of the (decomposing) Y₂R antagonist. In case of the propionylated potential radioligands and most of the amine precursors only traces of the parent compound BIIE 0246 were detected after 90 min, whereas the decomposition of the amine (S)-3.48 and the fluorobenzoyl derivative (S)-3.74 was much more pronounced. Interestingly, propionylation of the amine group in the linker of (S)-3.48 yielding (S)-3.63 stabilized the compound to a high degree (Figure 3.3a, b). Cleavage of aminoalkanoylguanidines was already observed for N^G-acylated argininamide-type Y₁R antagonists and was proven to be extremely rapid in case of structures favoring an intramolecular nucleophilic attack at the carbonyl group, for instance, (5-aminopentanovl)guanidines.^{25, 28} Nevertheless, the affinity of the majority of compounds examined in this study was not affected by the formation of BIIE 0246, as the extent of decomposition was very low. Especially noteworthy is the

high stability of the carbamoylated analogs (Figure 3.3c, d), which was also demonstrated in recent studies on fluorescent Y_1R antagonists.²⁰

Table 3.1. Decomposition of selected Y_2R antagonists in buffer (pH 7.4) at 20 °C during incubation for a period of 90 min.

No	% Decomposition	No	% Decomposition	No	% Decomposition
(S)- 3.48	11.6	(S)- 3.49	<0.5	(S)- 3.50	2.9
(S)- 3.53	<0.5	(S)- 3.54	<0.5	(S)- 3.55	<0.5
(S)- 3.57	2.4	(S)- 3.58	<0.5	(S)- 3.63	2.7
(S)- 3.69	<0.5	(S)- 3.72	2.4	(S)- 3.74	5.9

Cleavage of the acyl or carbamoyl substituent from the guanidine group resulting in BIIE 0246 ((S)-**3.47**) was analyzed by HPLC.

Figure 3.3. HPLC analysis of the chemical stability of N^{G} -substituted Y₂R antagonists. (S)-**3.47** is formed by decomposition of the ligands. Incubation: 15-180 min in buffer, pH 7.4, 20 °C. a) and b) illustrate the chemical stability of the N^{ω} -aminoacylguanidine (S)-**3.48** and the corresponding propionylated analog (S)-**3.63**. c) and d) show the HPLC analysis of the N^{ω} -aminocarbamoylguanidine (S)-**3.54** and the corresponding "cold" radioligand (S)-**3.69**.

3.3 Pharmacological Results and Discussion

The Y₂R antagonists were investigated for Y₂R binding and antagonism as well as for Y₂R selectivity over Y₁, Y₄ and Y₅ receptor (Y₁R, Y₄R, Y₅R). The Y₂R binding affinities were determined in a flow cytometric binding assay using CHO cells, stably expressing the human Y₂ receptor (hY₂R),²⁹ and fluorescence-labeled pNPY (Cy5-pNPY or Dy-635-pNPY). NPY Y₂R antagonistic activities were determined in a spectrofluorimetric Ca²⁺ assay (fura-2 assay) on CHO cells, stably expressing the hY₂R.³⁰ Cell clones giving a robust intracellular Ca²⁺ response upon agonistic activation were obtained by co-transfection of the CHO-hY₂ cells with the gene encoding the chimeric G-protein Gq_{i5}. Recently, an aequorin-based bioluminescence assay for the Y₂R was developed in our laboratory.²⁹ Thus, the CHO-hY₂ cells were additionally transfected with the mtAEQ construct, which did not affect the functional properties of the hY₂R (CHO-hY₂-K9-qi5-K9-mtAEQ-A7).

SAR Studies of Argininamide-Type NPY Y₂ Receptor Antagonists: Y₂R Antagonism, Binding Affinity and Physicochemical Properties

The structures and pharmacological data of the investigated argininamide-type Y_2R antagonists are summarized in Table 3.2. To get insights into the SAR, several modifications of the BIIE 0246 core structure were performed, both in the N-terminal part of the argininamide ("western part") and at the C-terminus ("eastern part"). Furthermore, an inversion of the (*S*)-arginine into the (*R*)-configuration was explored. Surprisingly, the (*R*)-argininamide ((*R*)-**3.47**) only shows a 5-fold lower affinity compared to the parent compound BIIE 0246 ((*S*)-**3.47**). This indicates a weak preference of the Y₂R for the (*S*)-configured arginine moiety, in contrast to the Y₁R, which clearly favors the (*R*)-enantiomers of antagonists derived from BIBP 3226.³¹

The replacement of the cyclopentan-1,1-diyl moiety by a methylene group in the "western part" of (*S*)-**3.59** resulted in a moderate decrease in affinity ($K_i = 96$ nM), verifying that this hydrophobic space-filling substructure confers to some extent to receptor binding. The relation between binding affinity K_i and the Gibbs free energy ($\Delta G = RT \ln K_i$) may serve as explanation. The released Gibbs free energy upon ligand binding results from enthalpic and entropic contributions ($\Delta G = \Delta H - T\Delta S$). The cycloaliphatic moiety in BIIE 0246 results in a rigidization of the molecule and therefore, in a lower decrease in conformational entropy upon binding to the Y₂R. Furthermore, the desolvation entropy is increased due to an additional hydrophobic effect of the cyclopentyl moiety.³²

In compounds **3.46** and **3.61** the 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5dione moiety was replaced by less lipophilic tyrosinamide and phenylalaninamide residues, respectively, strongly reminiscent of the C-terminus of the endogenous ligand NPY. As claimed in the patent literature, this exchange does not strongly alter the antagonistic activity (factor of 4-5).⁵⁻⁷ Surprisingly, the data obtained from the flow cytometric binding assay and the fura-2 Ca^{2+} assay revealed a different picture. The amides exhibited significantly lower Y₂R antagonistic activities and binding affinities than the reference compound BIIE 0246. Hence, it remains doubtful, whether BIIE 0246 and analogs are mimicking the C-terminus in NPY, in particular, because the peptide mainly interacts with extracellular parts of the Y₂R, whereas the smaller non-peptidic antagonists – according to mutagenesis studies – get access to the transmembrane domains of the receptor.^{9, 11-13}

In previous studies, the exchange of the 5,11-dihydrodibenzo[*b*,*e*]azepin-6-one group by an α -diphenylmethyl residue led to a moderately decreased activity.⁸ Nevertheless, such compounds were not further examined in the present work due to similar physicochemical properties and lack of obvious advantages compared to BIIE 0246.

In our laboratory the bioisosteric replacement of guanidine groups with acyl- or carbamoylguanidine moieties was developed and successfully applied to different classes of GPCR ligands.^{16, 18, 20-21, 27, 33} Aiming at new pharmacological tools for the Y₂R, a small library of N^{G} -substituted amine precursors, varying in length and chemical nature of the spacer, were prepared to study the impact of the linker on affinity and selectivity. All derivatives with unmodified argininamide core structure ((*S*)-**3.48**-(*S*)-**3.58**) turned out to be highly potent Y₂R antagonists with retained, or even increased antagonistic activities and binding affinities regarding the unsubstituted BIIE 0246. Furthermore, the acylguanidine analogs exhibited lower retention times (t_R) compared to BIIE 0246, despite their reduced basicity in the N^{G} -position, due to an additional positive charge in the linker (representative results displayed in Table 3.3). Hence, these bioisosteres are considered as promising amine precursors for the synthesis of Y₂R tracers with improved physicochemical properties.

A correlation between linker length and affinity was obvious for the series of carbamoylated amine precursors (*S*)-**3.52**-(*S*)-**3.55** with linker lengths of 4-8 atoms. The N^{G} -carbamoylated analog (*S*)-**3.53** (n=5) revealed the highest binding affinity of all synthesized compounds ($K_{i} = 2.1$ nM). Nevertheless, length and chemical nature of the linker had only minor effects on Y₂R binding.

Table 3.2. Structures, Y_2R antagonistic activities (K_B) and affinities (K_i) of the guanidine-type Y_2R antagonists.

No	Y	Z	$K_{\rm B}$ / nM ^a	$K_{\rm i}$ / nM ^b
(S)- 3.47 ^c	н		5.6 ± 0.4	10.2 ± 1.1
(R)- 3.47	н		56 ± 5	55 ± 3
(S)- 3.48	$CO(CH_2)_3CONH(CH_2)_2NH_2$		3.7 ± 0.1	3.4 ± 0.1^{d}
(R)- 3.48	$CO(CH_2)_3CONH(CH_2)_2NH_2$		17 ± 6	36 ± 7
(S)- 3.49	$CO(CH_2)_3CONH(CH_2)_3NH_2$		4.4 ± 0.5	2.3 ± 1.4
(S)- 3.50	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH_2$		16 ± 2	16 ± 3
(R)- 3.50	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH_2$		10 ± 2	42 ± 7
(S)- 3.51	$CO(CH_2)_2CONHCH_2(CH_2CH_2O)_3(CH_2)_3NH_2$		11 ± 3	16 ± 3^{d}
(S)- 3.52	CONH(CH ₂) ₂ NH ₂		7.0 ± 5.1	7.6 ± 4.2
(S)- 3.53	CONH(CH ₂) ₃ NH ₂		2.5 ± 0.2	2.1 ± 0.3
(S)- 3.54	CONH(CH ₂) ₄ NH ₂		1.8 ± 0.2	3.2 ± 0.3
(S)- 3.55	CONH(CH ₂) ₆ NH ₂		2.1 ± 0.4	7.0 ± 1.2
(S)- 3.56	CO(CH ₂) ₅ NH ₂		1.0 ± 0.2	7.8 ± 1.0^{d}
(S)- 3.57	$COCH_2(OCH_2CH_2)_2NH_2$		6.5 ± 0.02	18 ± 1
(S)- 3.58	$CO(CH_2CH_2O)_4(CH_2)_2NH_2$		6.0 ± 0.5	8.1 ± 3.2
(S)- 3.59	н		28 ± 3	96 ± 13
(S)- 3.60	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH_2$		173 ± 27	141 ± 12
3.61	н		833 ± 275	496 ± 46
3.62	CONH(CH ₂) ₃ NH ₂		334 ± 124	191 ± 97

Table 5.2. (continucu)			
3.46	н		2200 ± 774	466 ± 3
(S)- 3.63	$CO(CH_2)_3CONH(CH_2)_2NH$	А	16 ± 8	9.9 ± 1.0^{d}
(S)- 3.64	CO(CH ₂) ₃ CONH(CH ₂) ₃ NH	А	8.5 ± 0.1	22 ± 6
(S)- 3.65	CO(CH ₂) ₃ CONH(CH ₂) ₂ NH(CH ₂) ₂ NH	А	16 ± 8	9.9 ± 1.1
(S)- 3.66	$CO(CH_2)_2CONHCH_2(CH_2CH_2O)_3(CH_2)_3NH$	А	35 ± 15	37 ± 7 ^d
(S)- 3.67	CONH(CH ₂) ₂ NH	А	30 ± 11	64 ± 4
(S)- 3.68	CONH(CH ₂) ₃ NH	А	22 ± 2	32 ± 0.1
(S)- 3.69	CONH(CH ₂) ₄ NH	А	9.4 ± 0.1	55 ± 15
(S)- 3.70	CONH(CH ₂) ₆ NH	А	12 ± 5	84 ± 64
(S)- 3.71	CO(CH₂)₅NH	А	11 ± 4	9.0 ± 0.2^{d}
(S)- 3.72	COCH ₂ (OCH ₂ CH ₂) ₂ NH	А	16 ± 2	15 ± 0.2
(S)- 3.73	$CO(CH_2CH_2O)_4(CH_2)_2NH$	А	50 ± 3	48 ± 14
(S)- 3.74	CO(CH ₂) ₃ CONH(CH ₂) ₂ NH	В	9.1 ± 1.8	8.3 ± 6.4^{d}
(S)- 3.75	CO(CH ₂) ₃ CONH(CH ₂) ₃ NH	В	11 ± 4	37 ± 7
(S)- 3.76	$CO(CH_2)_2CONHCH_2(CH_2CH_2O)_3(CH_2)_3NH$	В	15 ± 4	21 ± 9^{d}
(S)- 3.77	CONH(CH ₂) ₃ NH	В	2.0 ± 2.0	24 ± 0.3
(S)- 3.78	CONH(CH ₂) ₄ NH	В	4.7 ± 0.8	68 ± 8
(S)- 3.79	CONH(CH ₂) ₆ NH	В	3.7 ± 0.1	82 ± 7
(S)- 3.80	CO(CH₂)₅NH	В	8.4 ± 1.4	34 ± 6^{d}
(S)- 3.81	COCH ₂ (OCH ₂ CH ₂) ₂ NH	В	13 ± 2	22 ± 9
(S)- 3.82	$CO(CH_2CH_2O)_4(CH_2)_2NH$	В	26 ± 6	45 ± 3
(S)- 3.83	CO(CH ₂) ₃ CONH(CH ₂) ₃ NH	С	12 ± 2	27 ± 4
(S)- 3.84	$CO(CH_2)_2CONHCH_2(CH_2CH_2O)_3(CH_2)_3NH$	С	27 ± 1	21 ± 1
3.86		А	8.2 ± 0.4	5.2 ± 1.8
3.87		В	14 ± 3	166 ± 65^{d}

Table 3.2.	(continued)
------------	-------------

^{*a*} Inhibition of 70 nM pNPY-induced $[Ca^{2+}]_i$ mobilization in CHO cells; mean values ± SEM (n = 2-5). ^{*b*} Flow cytometric binding assay using 5 nM Cy5-pNPY (K_D = 5.2 nM) in CHO cells, unless otherwise indicated; mean values ± SEM (n = 2-4). ^{*c*} BIIE 0246. ^{*d*} Dy-635-pNPY used as fluorescent ligand (10 nM) for competition binding.

Figure 3.4. Flow cytometric competition binding assay using Cy5-pNPY as fluorescent ligand in the presence of N^{G} -unsubstituted Y₂R antagonists at various concentrations (mean values ± SEM, n = 2-3).

Table 3.3. Retention times (t_R) of the guanidine-type Y₂R antagonists (first row) and representative N^{G} -substituted acylguanidines (second and third row). Conditions: eluent: mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

No	t _R / min						
(S)- 3.47	18.25	(S)- 3.59	14.27	3.61	14.91	3.46	11.94
(S)- 3.48	14.69	(S)- 3.50	12.99	(S)- 3.53	14.97	(S)- 3.58	15.39
(S)- 3.60	11.80	3.62	13.06	(S)- 3.63	17.04	(S)- 3.65	14.55

All potential radioligands exhibited a decreased affinity compared to the corresponding amine precursors, except for compound (S)-**3.65**, which contains an additional, at physiological pH positively charged amine function in the linker (Figure 3.5a; highlighted in red). Acylguanidines derived from argininamides with lower affinity, comprising an ω -aminoacyllinker are superior in terms of binding and antagonism referred to their N^{G} -unsubstituted analogs ((R)-**3.48** and (R)-**3.50** vs. (R)-**3.47**; **3.62** vs. **3.61**). One exception within this series is antagonist (S)-**3.60**, comprising a second positive charge in the linker, with a two times lower affinity compared to (S)-**3.59**. Apparently, one additional polar group in the acyl linker of the antagonists is preferred by the Y₂R. Thus, "masking" the positive charge by acylation with propionic acid, 2-fluoropropionic acid, or 4-fluorobenzoic acid results in a decrease in affinity, especially in case of N^{G} -carbamoylated analogs ((S)-**3.67**-(S)-**3.70**, (S)-**3.77**-(S)-**3.79**). Maybe, the presence of the carbamoyl NH-group implicates a different orientation of the N^{G} -substituent which is less compatible with the acylation of the ω -amino residue. Nevertheless, most of the synthesized potential radioligands possess high affinities in the low nanomolar range, especially (S)-**3.63**, (S)-**3.65** and (S)-**3.71** with K_i values around 10 nM (Table 3.2). Direct propionylation in N^G-position yielded antagonist 3.86 with an increased binding affinity compared to BIIE 0246, whereas acylation with the 4-fluorobenzoyl substituent (3.87) resulted in a drastic decrease in binding, suggesting that a bulky substituent in proximity to the guanidine is less tolerated by the receptor. However, for a few compounds this affinity-lowering effect was not reflected to the same extent by data from the fura-2 assay ((*S*)-**3.69**, (*S*)-**3.70**, (*S*)-**3.77**-(*S*)-**3.80**, **3.87**).

For most of the investigated compounds the binding data are in good agreement with the results from the functional assay. Discrepancies became obvious, in particular, regarding data for the ω -aminoacylated Y₂R antagonists consisting of a carbamoyl linker (cf. (*S*)-**3.67**-(*S*)-**3.70**, (*S*)-**3.77**-(*S*)-**3.79**). Depending on the structures and the binding kinetics of the investigated compounds, these discrepancies between K_i and K_B values presumably result from the different periods of incubation in the used assay types. The functional assays were performed in a time window of a few minutes, sufficient to reach equilibrium of the antagonists rather than the agonist pNPY, which is characterized by slow binding kinetics. By contrast, the flow cytometric binding assay was performed after incubation for 90 minutes.

Figure 3.5. a) Comparison of binding data (pK_i) of the amine precursors (*S*)-**3.48**-(*S*)-**3.58** and the corresponding propionylated analogs (*S*)-**3.63**-(*S*)-**3.73** (highlighted in red: increased affinity of (*S*)-**3.65** vs. (*S*)-**3.50**). b) Comparison of binding data (pK_i) of the amine precursors (*S*)-**3.48**, (*S*)-**3.49**, (*S*)-**3.51**, (*S*)-**3.53**-(*S*)-**3.58** and the corresponding 4-fluorobenzoylated analogs (*S*)-**3.74**-(*S*)-**3.82**. pK_i values calculated from K_i values listed in Table 3.2. The straight dotted lines represent the theoretical correlations that would have been obtained if pK_i values had been identical for the compared analogs.

Figure 3.6. Displacement of Cy5-pNPY by N^{S} -substituted amine precursor (S)-**3.49** and the acylated analogs (S)-**3.64**, (S)-**3.75**, and (S)-**3.83** (mean values ± SEM; n = 2-3).

The Y₂R selectivity of representative examples of the argininamide-type Y₂R antagonists was confirmed by flow cytometric binding studies using Cy5-pNPY or Cy5- $[K^4]hPP$, respectively, and cells expressing human Y₁, Y₄ and Y₅ receptors (hY₁R, hY₄R, hY₅R) (Table 3.4). Hence, the structural changes in the pharmacophoric core structure and the bioisosteric replacement of the guanidine moiety, respectively, did not affect Y₂R selectivity.

No	K_i / nM^a			K_i / nM^a			
	hY ₁ R	hY ₄ R	hY₅R	No	hY ₁ R	hY₄R	hY₅R
(S)- 3.47	> 5000	> 7500	> 5000	(S)- 3.57	> 3500	> 6500	> 5000
(R)- 3.47	> 3500	> 7500	> 5000	(S)- 3.58	> 3000	> 6500	> 5000
(R)- 3.48	> 3500	> 6500	> 5000	3.61	> 3500	> 6500	> 500
(S)- 3.49	> 5000	> 6500	> 5000	3.46	> 3500	> 6500	> 500
(S)- 3.50	> 5000	> 6500	> 5000	(S)- 3.63	> 5000	> 6500	> 5000
(R)- 3.50	> 3500	> 6500	> 5000	(S)- 3.69	> 3500	> 6500	> 5000
(S)- 3.53	> 3000	> 6500	> 5000	(S)- 3.72	> 3500	> 6500	> 5000
(S)- 3.54	> 3000	> 6500	> 5000	(S)- 3.79	> 3500	> 6500	> 2500
(S)- 3.55	> 3500	> 6500	> 5000	(S)- 3.80	> 3500	> 6500	> 5000
(S)- 3.56	> 5000	> 6500	> 5000	3.86	> 3500	> 6500	> 5000

Table 3.4. Binding data of selected Y_2R antagonists at hY_1R , hY_4R and hY_5R .

^{*a*} Flow cytometric binding assays using 10 nM Cy5-pNPY (Y_1R), 5 nM Cy5-pNPY (Y_5R) or 3 nM Cy5-[K^4]-hPP (Y_4R) in HEL-Y₁ cells, CHO-Y₄ cells, and HEC-1B-Y₅ cells, respectively.

3.4 Summary and Conclusion

A variety of acylguanidine and guanidine-type analogs of the highly potent Y_2R antagonist BIIE 0246 was synthesized in order to elaborate the structure-activity relationships. Most compounds proved to be highly potent antagonists in the low nanomolar range. Modifications of the core structure of BIIE 0246 were performed in order to distinguish important structural motives for receptor binding. Surprisingly, the stereochemical switch from (*S*)- to (*R*)-configuration in the arginine moiety resulted in diastereomeres with hardly decreased antagonistic activity and binding affinity (factor 3-10). However, the affinity towards the Y_2R was considerably reduced (\approx 10-fold) when the cyclopentane-1,1-diyl substructure was replaced with a methylene group, proving that – to some extent – the more rigid and bulky moiety in the "western part" of BIIE 0246 confers to Y_2R binding. Since BIIE 0246 was developed as a putative minic of the C-terminal part of NPY, the 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5-dione moiety was replaced by more hydrophilic groups, namely a

phenylalaninamide and a tyrosinamide moiety, respectively. These analogs showed drastically decreased affinities, in contrast to reported data from patent literature. Most likely these compounds do not mimic the endogenous peptide in terms of binding.

Additionally, N^{G} -substituted Y₂R antagonists bearing a free amine group were designed as precursors towards radio- and fluorescence labeled pharmacological tools following the guanidine-acylguanidine bioisosteric approach: the guanidine group was substituted with different ω -aminoacyl-, or ω -aminoalkylcarbamoyllinkers. Such derivatives – at physiological pH positively charged – proved to be highly potent Y₂R antagonists with retained or even increased affinity compared to the parent compound BIIE 0246. The N^{G} -carbamoylated ligand (*S*)-**3.53** is especially noteworthy as it represents the most potent, selective Y₂R antagonist known so far. Masking the positive charge in the linker, e.g., by acylation, has an affinity-lowering effect. Presumably, an additional positive charge in the linker contributes to Y₂R binding by electrostatic interactions.

Sufficient stability of the acylated and carbamoylated analogs in aqueous solution was proven for a selection of compounds. Acylguanidines containing a free amino group were less stable than the corresponding acylamino analogs. Y₂R antagonists containing a carbamoylguanidine moiety showed a very low degree of decomposition, demonstrating the superiority of carbamoylated compounds compared to acylated guanidines in terms of stability under assay conditions.

In conclusion, the acylguanidine substructure is useful for the synthesis of argininederived non-peptidic NPY Y_2R antagonists with reduced basicity. In view of recent results on Y_1R and histamine receptor ligands, our study corroborates the hypothesis that the guanidine-acylguanidine exchange is a promising and broadly applicable bioisosteric approach. As functionalization of the amine precursors is compatible with high Y_2R affinity and selectivity, these compounds are promising building blocks for the preparation of versatile pharmacological tools such as fluorescent and radiolabeled ligands.

3.5 Experimental Section

3.5.1 General Experimental Conditions

Unless otherwise stated, chemicals and solvents were purchased from commercial suppliers and used without further purification. L/D-Ornithine, N-tertbutoxycarbonyl-L-phenylalanine, and N-tert-butoxycarbonyl-O-benzyl-L-tyrosine were obtained from Iris Biotech (Marktredwitz, Germany). If not otherwise indicated, tertbutoxycarbonyl protected ω-amino carboxylic acids were obtained from Sigma-Aldrich Chemie GmbH (Munich, Germany). Deuterated solvents for NMR spectroscopy were from Deutero GmbH (Kastellaun, Germany). All solvents were of analytical grade or distilled prior to use. If moisture-free conditions were required, reactions were performed in dried glassware under argon atmosphere; DMF ($H_2O <$ 0.01 %) was purchased from Sigma-Aldrich Chemie GmbH. Thin layer chromatography was performed on Merck silica gel 60 F₂₅₄ TLC aluminum plates. Spots were visualized with UV light at 254 nm, and/or ninhydrin or ammonium molybdate/cerium (IV) sulfate solution. Geduran 60 (Merck, particle size 0.040-0.063 mm) was used for flash column chromatography. Flash chromatography was performed on an Intelli Flash 310 Flash Chromatography Workstation from Varian Deutschland GmbH (Darmstadt, Germany).

Optical rotations at 589 nm (Na_D line) were determined on an Optronic P8000T Polarimeter from A. Krüss (Hamburg, Germany) using a quartz micro-cuvette (layer thickness: 100 mm, volume: 1 mL, thermostated at 20 °C) and acetonitrile/H₂O 9:1 (v/v) as solvent. IR spectra were measured on a FTS 3000MX spectrometer (Excalibur Series) from Bio-Rad (Hercules, CA, USA) equipped with an attenuated total reflectance (ATR) unit (Specac Golden Gate Diamond Single Reflection ATR System).

NMR spectra were recorded on an Avance 300, an Avance 400 and an Avance III 600 spectrometer from Bruker BioSpin GmbH (Rheinstetten, Germany) with TMS as external standard. Multiplicities are specified with the following abbreviations: s (singlet), d (doublet), t (triplet), quat (quartet), p (quintet), m (multiplet), br (for broad singulet), as well as combinations thereof. Low resolution mass spectrometry analysis (MS) was performed in-house on a Finnigan ThermoQuest TSQ 7000 (ES-MS) and a Finnigan SSQ 710A (EI-MS 70 eV, CI-MS). High resolution mass spectrometry was performed on a Finnigan MAT 95 (LSI-MS).

Melting points were determined with a Büchi 510 melting point apparatus and are uncorrected. The melting points are defined as the transition of the solid state into an amorphous state. Lyophilization was done with a Christ alpha 2-4 LD equipped with a vacuubrand RZ 6 rotary vane vacuum pump.

Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and a RP-column (Nucleodur 100-5 C18ec, 250 × 21 mm, 5 μ m) at a flow rate of 22 mL/min. Mixtures of acetonitrile and 0.1 % aq. TFA were used as mobile phase. Acetonitrile was removed from the

eluates under reduced pressure (final pressure: 90 mbar) at 45 °C prior to lyophilization. Analytical HPLC analysis was performed on two different systems (Thermo Separation Products, Merck) which are listed in detail below. Mixtures of acetonitrile (A) and 0.05 % aq. TFA (B) (Thermo Separation Products), and mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B) (Merck), respectively, were used as mobile phase. Helium degassing was used throughout.

The buffer for the Y₂R binding studies on CHO cells was prepared by the addition of BSA (1 %) and bacitracin (100 μ g/mL) to a buffer (pH 7.4) consisting of HEPES (25 mM), CaCl₂ × 2 H₂O (2.5 mM), MgCl₂ × 6 H₂O (1 mM). The loading buffer (pH 7.4) for the determination of the mobilization of intracellular Ca²⁺ in CHO cells was prepared by dissolving NaCl (120 mM), KCl (5 mM), MgCl₂ × 6 H₂O (2 mM), CaCl₂ × 2 H₂O (1.5 mM), HEPES (25 mM), and glucose (10 mM). Stock solutions of all compounds were prepared in DMSO at concentrations of 2 or 10 mM and stored at –20 °C.

Analytical HPLC systems:

System 1: Thermo Separation Products; composed of a SN400 controller, a P4000 pump, a degasser (Degassex DG-4400, phenomenex), an AS3000 autosampler and a Spectra Focus UV-VIS detector; flow rate: 0.8 mL/min; UV detection: 220 nm.

System 2: Merck; composed of a L-5000 controller, a 655A-12 pump, a 655A-40 autosampler and a L-4250 UV-VIS detector; flow rate: 0.7 mL/min; UV detection: 220 nm.

Applied gradients:

Gradient 1 (Thermo Separation Products): 0 to 30 min: A/B 20/80 to 95/5, 30 to 37 min: 95/5.

Gradient 2 (Merck): 0 to 30 min: A/B 20/80 to 95/5, 30 to 40 min: 95/5.

The purity of all compounds was determined with HPLC system 1 (gradient 1) on a Eurospher-100 C18 column (250 × 4 mm, 5 μ m, Knauer, Berlin, Germany), except for compounds (*R*)-**3.47**, (*R*)-**3.48**, (*R*)-**3.50**, **3.85**, which were analyzed with a Nucleodur H-Tec 100-5 C18 column (250 × 4 mm, 5 μ m, Macherey-Nagel, Düren, Germany). The HPLC system 2 (gradient 2) was used for reaction monitoring with a Eurospher-100 C18 column (250 × 4 mm, 5 μ m, Knauer, Berlin, Germany).

(*R*)- and (*S*)- N^{δ} -Phthaloylornithine hydrochloride ((*R*)-3.1, (*S*)-3.1).³⁴ To a clear solution of (D)- or (L)-ornithine hydrochloride (21.91 g, 0.13 mol) and NaOH (10.4 g, 0.26 mol) in 200 mL water was added $CuSO_4 \times 5 H_2O$ (16.25 g, 0.065 mol) in 200 mL water. After stirring for 15 min, NaHCO₃ (13.4 g, 0.16 mol) and N-ethoxycarbonyl phthalimide were added and the mixture was intensely stirred for an additional hour. The resulting blue copper complex of **3.1** was collected on a suction filter, washed with water, EtOH, CHCl₃ and diethyl ether, and dried in vacuum. To the finely grounded blue powder was added 6 M HCl (200 mL) and the green suspension was stirred for 1 h. The yellowish solid was separated by a suction filter, washed with 6 M HCl and air-dried. The crude product was dissolved in warm MeOH (450 mL) and filtered. The filtrate was diluted with ethyl acetate (900 mL) to obtain the product as a colorless crystalline precipitate. The product was collected on a filter, washed with ethyl acetate, and dried. A second crop of crystals was attained on concentration of the mother liquor (23.06 g; 60 %). Mp 223-224 °C (decomp.)³⁴; ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.79$ (m, 4H, $C^{\beta}H_{2}C^{\gamma}H_{2}$), 3.59 (m, 2H, $C^{\delta}H_{2}$), 3.87 (s, 1H, $C^{\alpha}H$), 7.85 (m, 4H, Pht), 8.46 (br, 2H, NH₂) ppm; MS (ES, +p) m/z (%): 263 (100) $[M+H]^+$, 217 (45) $[M+H-CH_2O_2]^+$; $C_{13}H_{14}N_2O_4 \times HCI$ (298.08).

(*R*)- and (*S*)-*N*^{α}-*tert*-Butoxycarbonyl-*N*^{δ}-phthaloylornithine ((*R*)-3.2, (*S*)-3.2).³⁵ (*R*)- or (*S*)-3.1 (20.3 g, 68.0 mmol) was dissolved in 250 mL water and NaHCO₃ (12.60 g, 0.15 mol) was added in small portions. Subsequently, a solution of Boc₂O (15.27 g, 70.0 mmol) in 1,4-dioxane (700 mL) was introduced and the reaction mixture was stirred for 3 h. The solution was washed with diethyl ether (500 mL, discarded) and carefully adjusted to pH 2 with 2 M HCl. The product was extracted with ethyl acetate (3 × 250 mL); the combined extracts were dried over anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. Recrystallization from toluene/petroleum ether gave the title compound as a white solid (14.62 g, 49 %). Mp. 126-127 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 1.35 (m, 9H, Boc), 1.47-1.78 (m, 4H, C^{β}H₂C^{γ}H₂), 3.57 (m, 2H, C^{δ}H₂), 3.85 (s, 1H, C^{α}H), 7.05 (m, 1H, NH), 7.84 (m, 4H, Pht), 12.40 (br, 1H, COOH) ppm; MS (ES, +p) *m/z* (%): 380 (100) [*M*+NH₄]⁺, 363 (35) [*M*+H]⁺; C₁₈H₂₂N₂O₆ (362.15).

1,2-Diphenyl-1,2,4-triazolidin-3,5-dione (3.3).⁷ 1,2-Diphenylhydrazine (18.4 g, 0.1 mol) and ethyl allophanate (13.2 g, 0.1 mol) were heated in xylene (300mL) under reflux for 24 h. The mixture was allowed to cool to ambient temperature and then poured into 300 mL petroleum ether. The product was collected on a filter and redissolved in acetone (400 mL). Insoluble by-products were filtered off and the filtrate concentrated to about 200 mL. After addition of water (200 mL) crystals began to form. After complete crystallization the product was separated by filtration, washed with water, and dried in vacuum affording pale yellow crystals (14.0 g, 55 %). Mp 216-

217 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 7.22 (m, 2H, Ph), 7.37 (m, 8H, Ph), 12.05 (br, 1H, CON*H*CO) ppm; MS (CI, NH₃) *m/z* (%): 271 (100) [*M*+NH₄]⁺, 254 (24) [*M*+H]⁺; C₁₄H₁₁N₃O₂ (253.09).

4-(2-Phthalimidoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5-dione.⁷ **3.3** (10.12 g, 40 mmol) were dissolved in 120 mL DMF and the solution was cooled in an ice-water bath. KO^tBu (4.94 g, 44 mmol) was added under stirring. After the KO^tBu was completely dissolved, 2-bromoethylphthalimide (11.18 g, 44 mmol) was introduced and the mixture heated under reflux for 5 h. The resulting mixture was concentrated under reduced pressure and the residue was suspended in an aq. solution of K₂CO₃. The product was collected on a sintered filter, washed with water, and dried in vacuum at 50 °C. Recrystallization from 2-propanol afforded the title compound as a colorless, crystalline solid (10.31 g, 60 %). Mp 169-170 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 3.83 and 3.90 (m, 4H, CH₂CH₂), 7.23 (m, 2H, Ph), 7.32 (m, 8H, Ph), 7.80 (m, 4H, Pht) ppm; MS (CI, NH₃) *m/z* (%): 426 (100) [M]; C₂₄H₁₈N₄O₄ (426.13).

(3.4).⁷ 4-(2-Aminoethyl)-1,2-diphenyl-1,2,4-triazolidin-3,5-dione Phthalimideprotected precursor (10.28 g, 24.1 mmol) was dissolved in 200 mL THF/methanol 2:1 (v/v) and treated with hydrazine hydrate (3.31 g, 66.2 mmol). The mixture was stirred at ambient temperature for 16 h. 2 M HCl (45 mL) was added and stirring was continued for 2 h. The organic solvents were removed under reduced pressure and the residual suspension was diluted with water (120 mL) and alkalified with 2 M aq. NaOH (pH 10). The aqueous phase was extracted with CH_2Cl_2 (3 × 100 mL); the extracts were pooled, dried over K₂CO₃ and evaporated to dryness. The crude product was suspended in ethanol and treated with 1 M HCl in diethyl ether. The precipitate was collected on a filter, washed with petroleum ether, and dried. In order to obtain the free amine base, the hydrochloride was partitioned between 2 M aq. NaOH and CH₂Cl₂. The CH₂Cl₂ extracts were dried over anhydrous K₂CO₃ and concentrated. The residue was dried in vacuum and recrystallized from hot cyclohexane to obtain the title compound as a white solid (5.28 g, 74 %). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.68 (br, 2H, N H_2), 2.79 (t, ${}^{3}J$ = 6.5 Hz, 2H, CH₂C H_2 NH₂), 3.54 (t, ${}^{3}J$ = 6.5 Hz, 2H, C H_2 CH₂NH₂), 7.23 (m, 2H, Ph), 7.38 (m, 8H, Ph) ppm; MS (Cl, NH₃) m/z (%): 297 (100) $[M+H]^+$; C₁₆H₁₆N₄O₂ (296.13).

5H-Dibenzo[*b*,*e*]**azepin-6,11-dione (3.5).** A mechanically stirred mixture of 9,10anthraquinone (20.8 g, 0.1 mol), sodium azide (7.8 g, 0.12 mol) and CHCl₃ (200 mL) was cooled in an ice-bath, while concentrated sulfuric acid (60 mL) was added dropwise. After completion of the addition the mixture was heated under reflux for 10 h. The cold mixture was poured into a chilled sodium carbonate solution (10 % w/w, 750 mL) in small portions. The mixture was alkalized with concentrated ammonia solution and allowed to stand until the precipitate had settled. The supernatant clear solution was decanted and replaced by methanol (300 mL). The raw product was collected on a suction filter, washed with methanol and ether and dissolved in boiling acetic acid. Insoluble by-products were removed by filtering the hot suspension. After cooling, the product was separated by filtration and dried in vacuum at 60 °C affording fine, pale yellow crystals (13.2 g, 59 %). Mp 244-245 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 7.23 (m, 1H, H_{ar}), 7.33 (m, 1H, H_{ar}), 7.60 (m, 1H, H_{ar}), 7.71 (m, 1H, H_{ar}), 7.81 (m, 3H, H_{ar}), 8.17 (m, 1H, H_{ar}), 11.09 (br, 1H, NH) ppm; C₁₄H₉NO₂ (223.23).

11-Hydroxy-5,11-dihydrodibenzo[*b,e*]**azepin-6-one (3.6).** NaBH₄ (3.0 g, 80 mmol) was slowly added to a suspension of **3.5** (9.0 g, 40 mmol) in ethanol (500 mL). After complete addition, the mixture was heated under reflux for 1 h. The mixture was concentrated in vacuum to about 100 mL, treated with ammonium chloride solution and neutralized with hydrochloric acid. The colorless precipitate was filtered, washed with water, methanol, and petroleum ether, and dried in vacuum (8.5 g, 94 %) yielding a white powder. Mp 247-248 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 5.65 (s, 1H, 11-H), 6.40 (s, 1H, OH), 7.0-8.0 (m, 8H, H_{ar}), 10.5 (s, 1H, NH) ppm; C₁₄H₁₁NO₂ (225.24).

11-Chloro-5,11-dihydrodibenzo[*b,e*]**azepin-6-one (3.7).** To a suspension of **3.6** (8.5 g, 37.5 mmol) in CHCl₃ (200 mL) was added SOCl₂ (10 mL) and the reaction mixture was heated under reflux for 30 min. The mixture was concentrated under reduced pressure and treated with n-hexane (100 mL). The product was collected on a filter, washed with n-pentane and dried in vacuum to afford a white powder (8.8 g, 96 %). Mp 218-220 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 5.68 (s, 1H, 11-H), 7.0-8.0 (m, 8H, H_{ar}), 10.84 (s, 1H, NH) ppm; C₁₄H₁₀CINO (243.69).

11-Piperazin-1-yl-5,11-dihydrodibenzo[*b,e*]**azepin-6-one (3.8).**³⁶ A solution of **3.7** (7.47 g, 30.7 mmol) in 150 mL 1,4-dioxane was added slowly to a stirred solution of piperazine (13.22 g, 153.5) in 250 mL 1,4-dioxane. To complete the reaction, the mixture was heated under reflux for 30 min. After cooling, the solvent was removed under reduced pressure and the residue partitioned between water (150 mL) and CHCl₃ (100 mL). The aqueous phase was extracted with two additional portions of CHCl₃ (2 × 100 mL) and the combined extracts were washed with 5 % aq. K₂CO₃ solution and dried over anhydrous Na₂SO₄. After evaporation of the volatiles the raw product was purified by flash chromatography (eluent: CH₂Cl₂/MeOH 3:1 + 1 Vol% NEt₃). The purified product was collected as a white powder (8.32 g, 92 %). Mp > 260 °C (decomp.); ¹H NMR (300 MHz, DMSO-d₆): δ = 1.98 (m, 4H, 2 × CH₂CH₂NH), 3.17 and 3.32 (m, 4H, 2 × CH₂CH₂NH), 4.15 (s, 1H, ArCHAr), 7.03 (m, 2H, H_{ar}), 7.21 (m, 1H, H_{ar}), 7.37 (m, 3H, H_{ar}), 7.46 (m, 1H, H_{ar}), 7.67 (m, 1H, H_{ar}), 10.30 (s, 1H, NH) ppm; MS (CI, NH₃) *m/z* (%): 294 (100) [*M*+H]⁺; C₁₈H₁₉N₃O (293.15).

2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-

yl]ethyl}cyclopentyl)acetic acid (3.9).⁷ **3.8** (6.4 g, 21.8 mmol) in 80 mL anhydrous CH₂Cl₂ was slowly added to a stirred and chilled (0 °C) solution of 3,3-tetramethyleneglutaric anhydride (4.1 g, 24.0 mmol) in 35 mL anhydrous CH₂Cl₂. After stirring overnight at ambient temperature the reaction mixture was filtered and the filtrates were concentrated to dryness. Purification by flash chromatography (eluent: CH₂Cl₂ (A), MeOH (B); gradient: 0 to 4 min: A/B 100/0 to 96/4, 4 to 20 min: 96/4 to 90/10) yielded the product as a white powder (7.55 g, 75 %). Mp 153-157 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 1.53 (m, 8H, cyclopentyl), 2.04 (m, 4H, 3/5-H piperazine), 2.41 (s, 2H, >NC(0)CH₂), 2.45 (s, 2H, CH₂CO₂H), 3.18 (m, 4H, 2/6-H piperazine), 4.24 (s, 1H, dibenzazepine-11-yl), 7.06 (m, 2H, H_{ar}), 7.24 (m, 1H, H_{ar}), 7.32 (m, 1H, H_{ar}), 7.40 (m, 2H, H_{ar}), 7.49 (m, 1H, H_{ar}), 7.72 (m, 1H, H_{ar}), 10.35 (s, 1H, NH), 11.97 (s, 1H, CO₂H) ppm; MS (ES, +p) *m/z* (%): 462 (100) [*M*+H]⁺; C₂₇H₃₁N₃O₄ (461.23).

5-Oxo-5-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-

yl]pentanoic acid (3.10).⁵ Preparation by analogy with the synthesis of **3.9** from **3.8** (1.92 g, 6.54 mmol) and glutaric anhydride (0.75 g, 6.54 mmol) in appropriate amounts of solvent. Purification by flash chromatography (eluent: $CH_2Cl_2/MeOH 40/1$ to 10/1) gave the title compound as a white powder (1.35 g, 51 %). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.65 (m, 2H, CH₂CH₂COOH), 2.04 (m, 4H, 3/5-H piperazine), 2.22 (m, 4H, CH₂CH₂CH₂COOH), 3.26 (m, 4H, 2/6-H piperazine), 4.25 (s, 1H, 11-H dibenzazepine-11-yl), 7.06 (m, 2H, *H*_{ar}), 7.24 (m, 1H, *H*_{ar}), 7.41 (m, 3H, *H*_{ar}), 7.48 (m, 1H, *H*_{ar}), 7.70 (m, 1H, *H*_{ar}), 10.36 (s, 1H, NH lactam), 12.04 (br, 1H, COOH) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 20.1 (CH₂CH₂CH₂COOH), 31.2 ((CH₂)₂CH₂COOH), 32.8 (CH₂(CH₂)₂COOH), 40.8 (C-2/6 piperazine), 50.7 and 51.2 (C-3/5 piperazine), 73.7 (C-11 dibenzazepine-11-yl), 121.3 (*C*_{ar}H), 123.6 (*C*_{ar}H), 127.6 (*C*_{ar}H), 127.9 (*C*_{ar}H), 128.3 (*C*_{ar}H), 129.8 (*C*_{ar}H), 130.3 (*C*_{ar}H), 131.1 (*C*_{ar}H), 131.2 (*C*_{ar}), 131.6 (*C*_{ar}), 136.0 (*C*_{ar}), 142.0 (*C*_{ar}), 168.0 (>NCO), 169.9 (*C*=O lactam), 174.1 (COOH) ppm; MS (ES, +p) *m/z* (%): 815 (34) [2*M*+H]⁺, 408 (100) [*M*+H]⁺; C₂₃H₂₅N₃O₄ (407.18).

(*R*)- and (*S*)- N^{α} -tert-Butoxycarbonyl-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4yl)ethyl]- N^{δ} -phthaloylornithinamide ((*R*)-3.11, (*S*)-3.11).⁸ (*R*)- or (*S*)-3.2 (5.07 g, 14.0 mmol) and HOBt × H₂O (2.22 g, 14.5 mmol) were dissolved in 50 mL THF and cooled to 0 °C. DCC (2.89 g, 14.0 mmol) was added in one batch, followed by **3.4** (4.80 g, 16.2 mmol). The reaction mixture was stirred and kept at 0 °C for 2 h; the cooling bath was removed and stirring was continued for 20 h. Dicyclohexylurea (DCU) was removed by filtration and the filtrate concentrated in vacuum. The residue was redissolved in ethyl acetate and washed with water, 5 % aq. KHCO₃, 5 % aq. KHSO₄, and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. Purification by flash chromatography (eluent: CH₂Cl₂/MeOH 80/1 to 40/1) gave the product as a white powder (8.13 g, 91 %). Mp 130 °C (decomp., sintering > 90 °C);
¹H NMR (300 MHz, DMSO-d₆): δ = 1.35 (m, 9H, Boc), 1.39-1.66 (m, 4H, C^βH₂C^γH₂), 3.23-3.34 (m, 2H, C^δH₂), 3.47 (m, 2H, NHCH₂CH₂N<), 3.59 (m, 2H, NHCH₂CH₂N<), 3.82 (m, 1H, C^αH), 6.78 (d, ³J = 8.0 Hz, 1H, NH), 7.22 (m, 2H, Ph), 7.38 (m, 8H, Ph), 7.85 (m, 4H, Pht), 8.11 (t, ³J = 5.9 Hz, 1H, NH) ppm; MS (ES, +p) *m/z* (%): 641 (100) [*M*+H]⁺, 541 (45) [*M*+H–Boc]⁺; C₃₄H₃₆N₆O₇ (640.69).

(*R*)- and (*S*)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^{δ}-phthaloylornithinamide-hydrochloride ((*R*)-3.12, (*S*)-3.12).⁸ (*R*)- or (*S*)-3.11 (7.00 g, 10.9 mmol) was dissolved in a saturated solution of HCl in ethyl acetate (25 mL). After stirring for 2 h the reaction mixture was poured into 300 mL of petroleum ether. The solid product was separated by filtration, washed with diethyl ether and n-pentane, and dried in vacuum to afford the title compound as a white solid (6.18 g, 98%). ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.54$ -1.77 (m, 4H, C^{β}H₂C^{γ}H₂), 3.25-3.68 (m, 7H, C^{δ}H₂, NHCH₂CH₂N, C^{α}H), 7.23 (m, 2H, Ph), 7.39 (m, 8H, Ph), 7.87 (m, 4H, Pht), 8.21 (br, 3H, NH₃⁺), 8.83 (m, 1H, NH) ppm; MS (ES, +p) *m/z* (%): 541 (100) [*M*+H]⁺; C₂₉H₂₈N₆O₅ (540.21).

Preparation of N^{δ} -Pht protected ornithinamides (*R*)- and (*S*)-3.13 and (*S*)-3.14⁸

HOBt × H₂O (1 eq), the pertinent carboxylic acid (1 eq) and DIPEA (1 eq) were dissolved in acetonitrile and cooled to 0°C. EDC × HCl (1 eq) and subsequently a solution of the appropriate amine (1.15 eq) and DIPEA (1 eq) in acetonitrile were added. The reaction mixture was stirred for 16 h, during which time the cooling bath was allowed to come up to room temperature. The solvent was rotary evaporated and the residue was redissolved in CH₂Cl₂. The solution was washed with water, 5 % aq. KHSO₄, and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude products were purified by flash chromatography.

(2*R*)- and (2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-

yl]ethyl}cyclopentyl)acetyl]-*N*^δ-phthaloylornithinamide ((*R*)-3.13, (*S*)-3.13). From 3.9 and amine (*R*)- or (*S*)-3.12. Purification by flash chromatography (eluent: CH₂Cl₂ (A), MeOH (B); gradient: 0 to 2 min: A/B 100/0 to 98/2, 2 to 15 min: 98/2 to 95/5, 15 to 25 min: 95/5) to yield a white solid (62-71 %). ¹H NMR (600 MHz, DMSO-d₆, COSY, HSQC): δ = 1.38 and 1.48 (m, 4H, 2/5-H cyclopentyl), 1.39 and 1.58 (m, 2H, C^β*H*₂), 1.51 (m, 4H, 3/4-H cyclopentyl), 1.53 (m, 2H, C^γ*H*₂), 2.01 (m, 4H, 3/5-H piperazine), 2.20 (m, 2H, C*H*₂CON^αH), 2.44 (m, 2H, >NCOC*H*₂), 3.24 and 3.26 (m, 4H, 2/6-H piperazine), 3.26 and 3.38 (m, 2H, NHC*H*₂CH₂N<), 3.45 (m, 2H, C^δ*H*₂), 3.58 (m, 2H, NHCH₂C*H*₂N<), 4.12 (m, 1H, C^α*H*), 4.23 (m, 1H, 11-H dibenzazepin-11-yl), 7.03 (m, 1H, *H*_{ar}), 7.06 (m, 1H, *H*_{ar}), 7.39 (m, 1H, *H*_{ar}), 7.46 (m, 1H, *H*_{ar}), 7.70 (d, ³*J* = 7.9 Hz, 1H, *H*_{ar}), 7.82 (m, 2H, Pht), 7.84 (m, 2H, Pht), 7.92 (d, ${}^{3}J = 9.2$ Hz, 1H, N^{α}H), 8.16 (t, ${}^{3}J = 6.0$ Hz, 1H, CON*H*(CH₂)₂), 10.32 (m, 1H, CON*H* lactam) ppm; 13 C NMR (150 MHz, DMSO-d₆, HSQC): $\delta = 23.2$ and 23.3 (C-3/4 cyclopentyl), 24.8 (C^{γ}), 29.1 (C^{β}), 36.1 (NHCH₂CH₂N<), 37.1 (C^{δ}), 37.2 (C-2/5 cyclopentyl), 38.6 (>NCOCH₂-cyclopentyl), 39.6 (NHCH₂CH₂N<), 43.0 (CH₂CON^{α}H), 44.0 (C-1 cyclopentyl), 45.3 and 45.5 (C-2/6 piperazine), 50.7 and 51.2 (C-3/5 piperazine), 51.9 (C^{α}), 73.7 (C-11 dibenzazepine-11-yl), 121.3 (C_{ar} H), 122.6 (Ph), 123.0 (Pht), 123.7 (C_{ar} H), 126.6 (Ph), 127.7 (C_{ar} H), 127.9 (C_{ar} H), 128.4 (C_{ar} H), 129.0 (Ph), 129.8 (C_{ar} H), 130.4 (C_{ar} H), 131.3 (C_{ar} H), 131.7 (C_{ar}), 134.3 (Pht), 136.1 (C_{ar}), 136.6 (C_{ar}), 142.1 (C_{ar}), 152.6 (N(CONPh)₂), 167.8 (C=O Pht), 168.1 (C=O lactam), 169.9 (CON<), 171.1 (CON^{α}H), 171.9 (CONH(CH₂)₂N<) ppm; MS (ES, +p) m/z (%): 985 (100) [M+H]⁺; C₅₆H₅₇N₉O₈ (983.43).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -{5-oxo-5-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]pentanoyl}- N^{δ} -phthaloyl-ornithinamide ((*S*)-3.14). From 3.10 and (*S*)-3.12. Purification by flash chromatography (eluent: CH₂Cl₂/MeOH 40/1 to 20/1) to yield a white solid (50 %). MS (ES, +p) *m*/*z* (%): 930 (100) [*M*+H]⁺; C₅₂H₅₁N₉O₈ (929.39).

Synthesis of N^{δ} deprotected ornithinamides (*R*)- and (S)-3.15 and (S)-3.16⁸

1 eq of the corresponding phthalimide ((*R*)-**3.13**, (*S*)-**3.13**, **3.14**) was dissolved in methanol and treated with hydrazine hydrate (2.5 eq). After stirring for 16 h a 1 M aq. solution of KHSO₄ (5 eq) was added and stirring was continued for additional 3 h. The precipitated solid was filtered off and washed with methanol. The filtrates were pooled, and the solvent was removed under reduced pressure. The residue was made alkaline with 5 % aq. K₂CO₃ and extracted with CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄ and evaporated to dryness. The crude products were purified by flash chromatography (eluent: CH₂Cl₂ + 2 Vol% NEt₃ (A), MeOH (B); gradient: 0 to 5 min: A/B 98/2 to 95/5, 5 to 15 min: 95/5 to 90/10, 15 to 30 min: 90/10) yielding slightly yellowish crystalline solids.

(2*R*)- and (2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]ornithinamide ((*R*)-3.15, (*S*)-3.15). Yield: 71 %. ¹H NMR (600 MHz, DMSO-d₆, COSY, HSQC): δ = 1.20-1.31 (m, 2H, C^YH₂), 1.35 and 1.58 (m, 2H, C^βH₂), 1.38 and 1.52 (m, 4H, 2/5-H cyclopentyl), 1.52 (m, 4H, 3/4-H cyclopentyl), 2.03 (m, 4H, 3/5-H piperazine), 2.20 and 2.24 (m, 2H, CH₂CON^{α}H), 2.40 (m, 2H, C^{δ}H₂), 2.44 and

2.47 (m, 2H, >NCOC H_2 -cyclopentyl), 3.23 and 3.42 (m, 2H, NHC H_2 CH₂N<), 3.26 and 3.29 (m, 4H, 2/6-H piperazine), 3.58 (m, 2H, NHCH₂C H_2 N<), 4.08 (m, 1H, C^{α}H), 4.22 (s, 1H, 11-H dibenzazepin-11-yl), 7.04 (m, 1H, H_{ar}), 7.06 (m, 1H, H_{ar}), 7.21 (m, 2H, Ph), 7.22 (m, 1H, H_{ar}), 7.31 (m, 1H, H_{ar}), 7.37 (m, 8H, Ph), 7.38 (m, 2H, H_{ar}), 7.46 (m, 1H,

*H*_{ar}), 7.70 (d, ³*J* = 7.6 Hz, 1H, *H*_{ar}), 7.93 (d, ³*J* = 8.1 Hz, 1H, N^α*H*), 8.18 (t, ³*J* = 6.0 Hz, 1H, CON*H*(CH₂)₂) ppm; ¹³C NMR (150 MHz, DMSO-d₆, HSQC): δ = 23.2 and 23.3 (C-3/4 cyclopentyl), 29.2 (*C*^β), 29.3 (*C*^γ), 36.0 (NH*C*H₂CH₂N<), 37.1 and 37.3 (C-2/5 cyclopentyl), 38.5 (>NCO*C*H₂-cyclopentyl), 39.8 (NHCH₂*C*H₂N<), 41.0 (*C*^δ), 42.8 (*C*H₂CON^αH), 44.1 (C-1 cyclopentyl), 45.5 (C-2/6 piperazine), 50.8 and 51.2 (C-3/5 piperazine), 52.1 (*C*^α), 73.7 (C-11 dibenzazepine-11-γl), 121.3 (*C*_{ar}H), 122.6 (Ph), 123.7 (*C*_{ar}H), 126.6 (Ph), 127.6 (*C*_{ar}H), 127.9 (*C*_{ar}H), 128.3 (*C*_{ar}H), 129.0 (Ph), 129.9 (*C*_{ar}H), 130.4 (*C*_{ar}H), 131.3 (*C*_{ar}H), 131.7 (*C*_{ar}), 136.1 (*C*_{ar}), 136.6 (*C*_{ar}), 142.1 (*C*_{ar}), 152.6 (N(*C*ONPh)₂), 168.1 (*C*=O lactam), 169.9 (*C*ON<), 171.1 (*C*ON^αH), 172.4 (*C*ONH(CH₂)₂N<) ppm; MS (ES, +p) *m/z* (%): 854 (100) [*M*+H]⁺; C₄₈H₅₅N₉O₆ (853.43).

$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-{5-oxo-5-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]piperazin-1-yl]pentanoyl}ornithinamide$

((*S*)-**3.16**). Yield: 60 %. ¹H NMR (400 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.41 (m, 2H, C^V*H*₂), 1.41 and 1.66 (m, 2H, C^β*H*₂), 1.81 (m, 2H, >NCOCH₂C*H*₂CH₂CO), 2.09 and 2.13 (m, 4H, 3/5-H piperazine), 2.22 (t, ³*J* = 7.1 Hz, 2H, >NCO(CH₂)₂C*H*₂CO), 2.31 (m, 2H, >NCOC*H*₂(CH₂)₂CO), 2.49 (t, ³*J* = 6.5 Hz, 2H, C⁶*H*₂), 3.29 and 3.37 (m, 4H, 2/6-H piperazine), 3.46 and 3.57 (m, 2H, NHC*H*₂C*H*₂N<), 3.75 (m, 2H, NHC*H*₂C*H*₂N<), 4.19 (m, 2H, C^α*H*, 11-H dibenzazepin-11-yl), 7.11 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.26 (m, 1H, *H*_{ar}), 7.31-7.41 (m, 11H), 7.48 (m, 1H, *H*_{ar}), 7.78 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (100 MHz, CD₃OD, HSQC, HMBC): δ = 22.4 and 22.5 (>NCOCH₂C*H*₂CO), 29.5 (*C*^V), 30.2 (*C*^β), 33.3 (>NCO*C*H₂(CH₂)₂CO), 35.8 (>NCO(CH₂)₂*C*H₂CO), 38.4 (NH*C*H₂CH₂N<), 41.4 (NHCH₂*C*H₂N<), 41.8 (*C*^δ), 42.8 and 46.9 (C-2/6 piperazine), 52.1 and 52.7 (C-3/5 piperazine), 54.5 (*C*^α), 75.9 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.2 (Ph), 126.0 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.3 (*C*_{ar}H), 137.9 (*C*_{ar}), 144.3 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 172.2 (*C*=O lactam), 173.2 (*C*ON<), 175.0 (*C*ONH(CH₂)₂N<), 175.5 (*C*ON^αH) ppm; MS (ES, +p) *m/z* (%): 800 (50) [*M*+H]⁺, 401 (100) [*M*+2H]²⁺; C₄₄H₄₉N₉O₆ (799.38).

Synthesis of the amidated N^{α} -Boc protected amino acids 3.17 and 3.18²³⁻²⁴

1 eq of the appropriate N^{α} -Boc protected amino acid and NEt₃ (0.7 eq) were dissolved in anhydrous THF under argon atmosphere and cooled to 0 °C in an ice-water bath. IBCF was introduced dropwise and stirring at 0 °C was continued for 30 min before cooling to -78 °C. Then a 7 M solution of ammonia in MeOH was added and stirring was continued at -78 °C for 1 h and then at ambient temperature for an additional 16 h. After evaporation of the solvents, the residue was redissolved in ethyl acetate and washed with water. Subsequently, the aq. phase was extracted with ethyl acetate; the organic fractions were pooled, washed with 5 % aq. KHCO₃ and brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude products were subjected to flash chromatography (eluent: ethyl acetate) yielding the corresponding products as a white solid.

(*S*)-*N*^α-*tert*-Butoxycarbonylphenylalaninamide (3.17). Yield: 100 %. ¹H NMR (300 MHz, CD₃OD): δ = 1.35 (s, 9H, Boc), 2.80 and 3.08 (m, 2H, C^β*H*₂), 4.29 (m, 1H, C^α*H*), 7.17-7.30 (m, 5H, Ph) ppm; ¹³C NMR (75 MHz, CD₃OD): δ = 28.7 (C(*C*H₃)₃), 39.4 (*C*^β), 57.2 (*C*^α), 80.6 (*C*(CH₃)₃), 127.7 (C-4 aryl), 129.4 and 130.4 (C-2/3/5/6 aryl), 138.8 (C-1 aryl), 157.6 (*C*OOC(CH₃)₃), 177.2 (*C*OOH) ppm; MS (ES, +p) *m/z* (%): 265 (100) [*M*+H]⁺; C₁₄H₂₀N₂O₃ (264.15).

(*S*)-*N*^α-*tert*-Butoxycarbonyl-*O*-benzyl-tyrosinamide (3.18). Yield: 97 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.30 (s, 9H, Boc), 2.65 and 2.86 (m, 2H, C^β*H*₂), 4.02 (m, 1H, C^α*H*), 5.05 (s, 2H, OC*H*₂), 6.92 (d, ³*J* = 8.5 Hz, 2H, Ph), 7.15 (d, ³*J* = 8.5 Hz, 2H, Ph), 7.38 (m, 5H, Ph) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 28.1 (C(*C*H₃)₃), 36.6 (*C*^β), 55.7 (*C*^α), 69.0 (O*C*H₂), 77.8 (*C*(CH₃)₃), 114.2 (C-1 phenyl), 127.5 (Ph), 128.3 (Ph), 130.1 (Ph), 130.3 (Ph), 137.1 (C-1 benzyl), 155.1 (*C*OOC(CH₃)₃), 156.7 (C-4 phenyl), 173.6 (*C*ONH₂) ppm; MS (ES, +p) *m/z* (%): 741 (100) [2*M*+H]⁺, 371 (60) [*M*+H]⁺; C₂₁H₂₆N₂O₄ (370.19).

Preparation of the N^{α} -Boc deprotected amidated amino acids 3.19 and 3.20

Deprotection was carried out in TFA/CH_2Cl_2 1:1 (v/v) (approx. 5 mL/0.2 mmol substrate). After stirring for 2 h toluene was added and the volatiles were removed under reduced pressure. The products were used without further purification.

(*S*)-Phenylalaninamide (3.19).³⁷ Yield: 100 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 3.02 (m, 2H, C^β*H*₂), 3.60 (br, 2H, N*H*₂), 3.96 (t, ³*J* = 6.5 Hz, 1H, C^α*H*), 7.21-7.38 (m, 5H, Ph), 8.18 (br, 2H, CON*H*₂) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 36.7 ($C^{β}$), 53.3 ($C^{α}$), 127.0 (C-4 aryl), 128.4 and 129.4 (C-2/3/5/6 aryl), 134.5 (C-1 aryl), 169.6 (CONH₂) ppm; MS (ES, +p) *m/z* (%): 206 (100) [*M*+H+CH₃CN]⁺, 165 (50) [*M*+H]⁺; C₉H₁₂N₂O (164.09).

(*S*)-*O*-Benzyl-tyrosinamide (3.20).³⁸ Yield: 100 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.95 (m, 2H, C^β*H*₂), 3.90 (m, 1H, C^α*H*), 5.08 (s, 2H, OC*H*₂), 6.99 (d, ³*J* = 8.6 Hz, 2H, Ph), 7.16 (d, ³*J* = 8.6 Hz, 2H, Ph), 7.30-7.47 (m, 5H, Ph), 8.11 (br, 2H, CON*H*₂) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 35.9 (C^{β}), 53.4 (C^{α}), 69.0 (O*C*H₂), 114.7 (C-1 phenyl), 127.0 (Ph), 127.6 (Ph), 127.7 (Ph), 128.3 (Ph), 130.5 (Ph), 137.0 (C-1 benzyl), 157.4 (C-4 phenyl), 169.7 (*C*ONH₂) ppm; MS (ES, +p) *m/z* (%): 541 (45) [2*M*+H]⁺, 271 (100) [*M*+H]⁺; C₁₆H₁₈N₂O₂ (270.14).

Preparation of N^{α} -Boc protected dipeptides 3.21 and 3.22

To a stirred solution of (*S*)-**3.2** (1 eq) and DIPEA (1 eq) in DMF was added TBTU (1 eq). The pertinent C-terminally amidated amino acid (1 eq) and DIPEA (1 eq) were introduced and stirring was continued for 16 h. The solution was diluted with ethyl acetate and washed with 5 % aq. KHSO₄, 5 % aq. KHCO₃ and brine, dried over Na₂SO₄ and evaporated. Flash chromatography (eluent: CH₂Cl₂/MeOH 40/1 to 20/1) afforded the products as white to yellow solids.

(*S*)-*N*^α-((*S*)-*N*^α-tert-Butoxycarbonyl-*N*^δ-phthaloylornithyl)phenylalaninamide (3.21). Yield: 77 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.34 (s, 9H, Boc), 1.48 (m, 4H, C^βH₂C^VH₂), 2.82 and 2.96 (m, 2H, C^βH₂ Phe-amide), 3.51 (m, 2H, C^δH₂), 3.79 (m, 1H, C^αH Orn), 4.40 (m, 1H, C^αH Phe-amide), 7.00 (m, 1H, NH), 7.11 and 7.39 (m, 2H, CONH₂), 7.18 (m, 5H, Ph), 7.67 (m, 1H, NH), 7.87 (m, 4H, Pht) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 24.8 (*C*^V), 28.0 (C(*C*H₃)₃), 37.0 (*C*^β Phe-amide), 37.4 (*C*^δ), 53.1 (*C*^α Phe-amide), 78.1 (*C*(CH₃)₃), 122.9 (Pht), 126.0 (C-4 aryl), 127.8 (Ph), 129.1 (Ph), 131.6 (Pht), 134.2 (C-1 aryl), 137.5 (Pht), 155.3 (*C*OOC(CH₃)₃), 167.8 (*C*=O Pht), 171.4 (*C*ONH₂), 172.5 (*C*ON^αH Phe-amide) ppm; a peak for C^α and C^β Orn could not be detected; MS (ES, +p) *m/z* (%): 509 (100) [*M*+H]⁺; C₂₇H₃₂N₄O₆ (508.23).

$(S)-N^{\alpha}-((S)-N^{\alpha}-tert$ -Butoxycarbonyl- N^{δ} -phthaloylornithyl)-O-benzyl-tyrosinamide

(3.22). Yield: 53 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.34 (s, 9H, Boc), 1.53 (m, 4H, $C^{\beta}H_2C^{\gamma}H_2$), 2.76 and 2.93 (m, 2H, $C^{\beta}H_2$ Tyr(OBn)-amide), 3.52 (m, 2H, $C^{\delta}H_2$), 3.79 (m, 1H, $C^{\alpha}H$ Orn), 4.35 (m, 1H, $C^{\alpha}H$ Tyr(OBn)-amide), 5.03 (s, 2H, OCH₂), 6.88 (m, 2H, CONH₂), 7.06 (m, 4H, Ph), 7.38 (m, 5H, Ph), 7.38 (m, 1H, NH), 7.62 (m, 1H, NH), 7.85 (m, 4H, Pht) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 24.9 (C^{γ}), 28.0 (C(CH_3)₃), 36.0 (C^{β} Tyr(OBn)-amide), 37.0 (C^{δ}), 53.3 (C^{α} Orn), 54.4 (C^{α} Tyr(OBn)-amide), 69.0 (O CH_2), 78.1 ($C(CH_3)_3$), 114.1 (C-3/5 phenyl), 122.8 (Pht), 127.7 (C-3/5 benzyl), 128.3 (C-2/6 benzyl), 129.6 (C-2/6 phenyl), 130.2 (Pht), 131.6 (C-1 phenyl), 134.2 (Pht), 156.8 (C-4 phenyl), 167.9 (C=O Pht), 171.4 (CONH₂), 172.5 (CON^αH Tyr(OBn)-amide) ppm; a peak for C^β could not be detected; MS (ES, +p) m/z (%): 615 (100) [M+H]⁺; C₃₄H₃₈N₄O₇ (614.27).

Preparation of the Boc-deprotected C-terminally amidated dipeptides 3.23 and 3.24

The pertinent dipeptide was dissolved in a saturated solution of HCl in ethyl acetate (25 mL). After stirring for 2 h the precipitate was filtered off; the mother liquor was poured into 300 mL of petroleum ether to give additional precipitated product. The solids were combined, washed with diethyl ether and n-pentane, and dried in vacuum to afford the title compounds as white solids.

(*S*)-*N*^α-((*S*)-*N*^δ-Phthaloylornithyl)phenylalaninamide (3.23). Yield: 82 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.69 (m, 4H, C^β*H*₂C^γ*H*₂), 2.85 and 2.96 (m, 2H, C^β*H*₂ Phe-amide), 3.56 (m, 2H, C^δ*H*₂), 3.78 (m, 1H, C^α*H* Orn), 4.44 (m, 1H, C^α*H* Phe-amide), 7.10 and 7.60 (m, 2H, CON*H*₂), 7.19 (m, 1H, Ph), 7.26 (m, 4H, Ph), 7.86 (m, 4H, Pht), 8.18 (br, 2H, N*H*₂), 8.67 (m, 1H, N*H*) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 23.6 (*C*^γ), 29.0 (*C*^β Orn), 37.4 (*C*^β Phe-amide), 52.4 (*C*^α Orn), 54.2 (*C*^α Phe-amide), 123.0 (Pht), 126.3 (C-4 aryl), 128.0 and 129.1 (C-2/3/5/6 aryl), 131.5 (Pht), 134.4 (C-1 aryl), 137.6 (Pht), 167.8 (*C*=O Pht), 172.1 (*C*ON^αH Phe-amide) ppm; a peak for C^δ and CONH₂ could not be detected; MS (ES, +p) *m/z* (%): 409 (100) [*M*+H]⁺; C₂₂H₂₄N₄O₄ (408.18).

(*S*)-*N*^α-((*S*)-*N*^δ-Phthaloylornithyl)-*O*-benzyl-tyrosinamide (3.24). Yield: 83 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.69 (m, 4H, C^βH₂C^γH₂), 2.76 and 2.89 (m, 2H, C^βH₂ Tyr(OBn)-amide), 3.57 (m, 2H, C^δH₂), 3.75 (m, 1H, C^αH Orn), 4.41 (m, 1H, C^αH Tyr(OBn)-amide), 5.05 (s, 2H, OCH₂), 6.90 (m, 2H, Ph), 7.00-7.45 (m, 7H, Ph), 7.56 (m, 1H, NH), 7.88 (m, 4H, Pht), 8.05 (br, 3H, NH₃⁺), 8.55 (m, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 23.6 (*C*^γ), 36.8 (*C*^β Tyr(OBn)-amide), 37.4 (*C*^δ), 51.7 (*C*^α Orn), 54.3 (*C*^α Tyr(OBn)-amide), 69.0 (O*C*H₂), 114.3 (C-3/5 phenyl), 123.0 (Pht), 127.5 (C-2/6 benzyl), 127.7 (C-4 benzyl), 128.3 (C-3/5 benzyl), 129.6 (C-2/6 phenyl), 130.1 (Pht), 131.5 (C-1 phenyl), 134.4 (Pht), 137.1 (C-1 benzyl), 156.9 (C-4 phenyl), 167.8 (*C*=O Pht), 172.2 (*C*ON^αH Tyr(OBn)-amide) ppm; a peak for C^β could not be detected; MS (ES, +p) *m/z* (%): 515 (100) [*M*+H]⁺; C₂₉H₃₀N₄O₅ (514.22).

General procedure for the preparation of N^{δ} -Pht protected ornithinamides 3.25 and 3.26

3.9 (1 eq) and DIPEA (1 eq) were dissolved in DMF. TBTU (1 eq) and subsequently the appropriate amine (1 eq) and DIPEA (1 eq) were added. After stirring for 16 h the reaction mixture was diluted with ethyl acetate and washed with 5 % aq. KHSO₄, 5 % aq. KHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude products were purified by flash chromatography (eluent: $CH_2CI_2/MeOH$, 40/1 to 20/1) yielding white solids.

(2*S*)- N^{α} -[2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{δ} -phthaloylornithylphenylalaninamide

(3.25). Yield: 81 %. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.40$ -1.60 (m, 12H, 2/5-H cyclopentyl, 3/4-H cyclopentyl, $C^{\beta}H_2C^{\gamma}H_2$), 2.03 (m, 4H, 3/5-H piperazine), 2.19 (m, 2H, $CH_2CON^{\alpha}H$), 2.41 (m, 2H, >NCOC H_2 -cyclopentyl), 2.74 and 2.98 (m, 2H, $C^{\beta}H_2$ Pheamide), 3.28 (m, 4H, 2/6-H piperazine), 3.49 (m, 2H, $C^{\delta}H_2$), 4.07 (m, 1H, $C^{\alpha}H$ Orn), 4.23 (br, 1H, 11-H dibenzazepine-11-yl), 4.34 (m, 1H, $C^{\alpha}H$ Phe-amide), 7.06 (m, 4H, Ph), 7.15 (m, 4H, Ph), 7.24 (m, 1H, H_{ar}), 7.31 (m, 1H, H_{ar}), 7.39 (m, 2H, Ph), 7.46 (m, 1H, H_{ar}), 7.46 and 7.70 (m, 2H, CON H_2), 7.85 (m, 4H, Pht), 7.92 (d, ³J = 8.2 Hz, 1H, NH),

8.08 (m, 1H, N*H*), 10.36 (m, 1H, CON*H* lactam) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 23.1 (C-3/4 cyclopentyl), 24.6 (C^{γ}), 28.9 (C^{β} Orn), 37.0 (C^{δ}), 37.0 (C-2/5 cyclopentyl), 37.3 (C^{β} Phe-amide), 38.0 (>NCO*C*H₂-cyclopentyl), 42.6 (*C*H₂CON^αH), 43.9 (C-1 cyclopentyl), 52.5 (C^{α} Orn), 53.6 (C^{α} Phe-amide), 73.6 (C-11 dibenzazepine-11-yl), 121.2 (C_{ar} H), 122.9 (Pht), 123.6 (C_{ar} H), 126.0 (Ph), 126.5 (Ph), 127.6 (C_{ar} H), 127.8 (C_{ar} H), 128.3 (C_{ar} H), 128.9 (Ph), 129.8 (C_{ar} H), 130.3 (C_{ar} H), 131.1 (Ph), 131.2 (C_{ar} H), 131.5 (C_{ar}), 134.3 (Pht), 136.0 (C_{ar}), 137.9 (Pht), 142.0 (C_{ar}), 167.7 (C=O Pht), 168.0 (C=O lactam), 169.9 (CON<), 171.7 (CON^αH Orn), 172.7 (CON^αH Phe-amide) ppm; MS (ES, +p) m/z (%): 852 (100) [M+H]⁺; C₄₉H₅₃N₇O₇ (851.40).

$(2S)-N^{\alpha}-[2-(1-\{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl]-piperazin-1-yl]ethyl\}cyclopentyl)acetyl]-N^{\delta}-phthaloylornithyl-O-benzyl-tyrosin-$

amide (3.26). Yield: 59 %. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.35-1.65 (m, 12H, 2/5-H cyclopentyl, 3/4-H cyclopentyl, $C^{\beta}H_2C^{\gamma}H_2$), 2.02 (m, 4H, 3/5-H piperazine), 2.20 (m, 2H, $CH_2CON^{\alpha}H$), 2.40 (m, 2H, >NCOC H_2 -cyclopentyl), 2.70 and 2.92 (m, 2H, $C^{\beta}H_2$ Tyr(OBn)amide), 3.26 (m, 4H, 2/6-H piperazine), 3.51 (m, 2H, $C^{\delta}H_{2}$), 4.11 (m, 1H, $C^{\alpha}H$ Orn), 4.21 (br, 1H, 11-H dibenzazepine-11-yl), 4.29 (m, 1H, C^α**H** Tyr(OBn)-amide), 5.02 (s, 2H, OCH₂), 6.85 (m, 2H, Ph), 7.07 (m, 5H, Ph), 7.21-7.43 (m, 10H), 7.48 and 7.71 (m, 2H, CONH₂), 7.83 (m, 4H, Pht), 7.83 (m, 1H, NH), 8.05 (m, 1H, NH), 10.37 (m, 1H, CON*H* lactam) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 23.1 (C-3/4 cyclopentyl), 24.7 (\mathbf{C}^{γ}) , 29.0 $(\mathbf{C}^{\beta}$ Orn), 37.0 (\mathbf{C}^{δ}) , 37.0 (C-2/5 cyclopentyl), 37.3 $(\mathbf{C}^{\beta} \text{ Tyr}(\text{OBn})\text{-amide})$, 38.1 $(>NCOCH_2-cyclopentyl)$, 42.6 $(CH_2CON^{\alpha}H)$, 43.9 (C-1 cyclopentyl), 45.4 (C-2/6 piperazine), 50.7 (C-3/5 piperazine), 52.4 (C^{α} Orn), 53.8 (C^{α} Tyr(OBn)-amide), 69.0 (OCH₂), 73.6 (C-11 dibenzazepine-11-yl), 114.2 (C-3/5 phenyl), 121.2 (CarH), 122.9 (Pht), 123.6 (*C*_{ar}H), 127.5 (Ph), 127.7(*C*_{ar}H), 127.8 (*C*_{ar}H), 128.3 (Ph), 129.8 (*C*_{ar}H), 130.0 (Ph), 130.3 (*C*_{ar}H), 131.1 (Ph), 131.2 (*C*_{ar}H), 131.5 (*C*_{ar}), 134.3 (Pht), 136.0 (*C*_{ar}), 137.1 (Pht), 142.0 (*C*_{ar}), 156.8 (C-4 phenyl), 167.8 (*C*=O Pht), 168.1 (*C*=O lactam), 169.9 (**C**ON<), 171.3 (**C**ONH₂), 171.6 (**C**ON^αH Orn), 172.7 (**C**ON^αH Tyr(OBn)-amide) ppm; MS (ES, +p) m/z (%): 958 (100) $[M+H]^+$; C₅₆H₅₉N₇O₈ (957.44).

General procedure for the synthesis of N^{δ} -Pht deprotected ornithinamides 3.27 and 3.28⁸

The compounds were prepared according to the experimental protocol for the synthesis of **3.15** and **3.16**. The crude products were purified by flash chromatography (eluent: $CH_2Cl_2/MeOH + 1$ Vol% NEt₃ 10/1 to 3/1) yielding white solids.

(2S)-N^α-[2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)-

piperazin-1-yl]ethyl}cyclopentyl)acetyl]ornithylphenylalaninamide (3.27). Yield: 84 %. ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.37$ (m, 2H, C^YH₂), 1.49 and 1.64 (m, 4H, 3/4-H cyclopentyl), 1.50 and 1.64 (m, 2H, $C^{\beta}H_{2}$ Orn), 1.50 and 1.72 (m, 4H, 2/5-H cyclopentyl), 2.15 and 2.19 (m, 4H, 3/5-H piperazine), 2.25 and 2.45 (m, 2H, $CH_2CON^{\alpha}H$), 2.49 (m, 2H, >NCOC H_2 -cyclopentyl), 2.58 (m, 2H, $C^{\delta}H_2$), 2.87 and 3.16 (m, 2H, $C^{\beta}H_{2}$ Phe-amide), 3.37-3.58 (m, 4H, 2/6-H piperazine), 4.15 (m, 1H, $C^{\alpha}H$ Orn), 4.21 (m, 1H, 11-H dibenzazepine-11-yl), 4.56 (m, 1H, $C^{\alpha}H$ Phe-amide), 7.10 (m, 2H, H_{ar}), 7.16 (m, 2H, *H*_{ar}), 7.23 (m, 3H, *H*_{ar}), 7.26 (m, 1H, *H*_{ar}), 7.32 (m, 1H, *H*_{ar}), 7.37 (m, 1H, *H*_{ar}), 7.40 (m, 1H, *H*_{ar}), 7.48 (m, 1H, *H*_{ar}), 7.79 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 29.0 (C^{γ}), 29.9 (C^{β} Orn), 38.3 and 38.4 (C^{β} Phe-amide), 39.4 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCO CH_{2} cyclopentyl), 41.6 (C^{δ}), 42.8 (C-2/6 piperazine), 44.5 ($CH_2CON^{\alpha}H$), 45.8 (C-1 cyclopentyl), 52.1 and 52.6 (C-3/5 piperazine), 54.7 (C^{α} Orn), 55.8 (C^{α} Phe-amide), 75.8 (C-11 dibenzazepine-11-yl), 122.9 (*C*_{ar}H), 126.0 (*C*_{ar}H), 127.7 (*C*_{ar}H), 128.8 (*C*_{ar}H), 129.3 (**C**_{ar}H), 129.8 (**C**_{ar}H), 130.3 (**C**_{ar}H), 131.0 (**C**_{ar}H), 131.6 (**C**_{ar}H), 132.5 (**C**_{ar}), 133.0 (C_{ar}H), 133.5 (C_{ar}), 136.8 (C_{ar}), 138.9 (C_{ar}), 144.3 (C_{ar}), 172.2 (C=O lactam), 172.8 (**C**ON<), 174.3 (**C**ON^{α}H Phe-amide), 175.3 (**C**ON^{α}H Orn), 176.2 (**C**ONH₂) ppm; MS (ES, +p) m/z (%): 722 (95) $[M+H]^+$, 362 (100) $[M+2H]^{2+}$; C₄₁H₅₁N₇O₅ (721.40).

(2S)-N^α-[2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)-

piperazin-1-yl]ethyl]cyclopentyl)acetyl]ornithyl-O-benzyl-tyrosinamide (3.28). Yield: 40 %. ¹H NMR (400 MHz, CD₃OD, HSQC): δ = 1.37 (m, 2H, C^VH₂), 1.48 and 1.61 (m, 4H, 3/4-H cyclopentyl), 1.48 and 1.72 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.64 (m, 2H, $C^{\beta}H_{2}$ Orn), 2.13 (m, 4H, 3/5-H piperazine), 2.24 and 2.45 (m, 2H, $CH_{2}CON^{\alpha}H$), 2.36 and 2.46 (m, 2H, >NCOC H_2 -cyclopentyl), 2.56 (m, 2H, $C^{\delta}H_2$), 2.82 and 3.10 (m, 2H, $C^{\beta}H_2$) Tyr(OBn)-amide), 3.32-3.56 (m, 4H, 2/6-H piperazine), 4.17 (m, 1H, 11-H dibenzazepine-11-yl), 4.18 (m, 1H, $C^{\alpha}H$ Orn), 4.51 (m, 1H, $C^{\alpha}H$ Tyr(OBn)-amide), 4.98 (m, 2H, OCH₂), 6.80 and 6.84 (m, 2H, 3/5-H phenyl), 7.09 (m, 2H, H_{ar}), 7.14 (m, 2H, *H*_{ar}), 7.32 (m, 9H, Ph), 7.46 (m, 1H, *H*_{ar}), 7.79 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (100 MHz, CD₃OD, HSQC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 29.3 (C^{γ}), 29.9 (C^{β} Orn), 37.6 and 37.7 (C^{β} Tyr(OBn)-amide), 39.4 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCO CH_2 cyclopentyl), 41.7 (C°), 42.8 (C-2/6 piperazine), 44.5 ($CH_2CON^{\alpha}H$), 45.8 (C-1 cyclopentyl), 52.2 and 52.7 (C-3/5 piperazine), 54.5 and 54.8 (C^{α} Orn), 55.8 (C^{α} Tyr(OBn)-amide), 71.0 (OCH₂), 75.8 (C-11 dibenzazepine-11-yl), 115.9 (C-3/5 phenyl), 122.9 (*C*_{ar}H), 125.9 (*C*_{ar}H), 128.5 (Ph), 128.9 (*C*_{ar}H), 129.3 (*C*_{ar}H), 129.5 (Ph), 129.8 (*C*_{ar}H), 131.0 (*C*_{ar}H), 131.4 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.0 (*C*_{ar}H), 133.4 (*C*_{ar}), 136.8 (*C*_{ar}), 138.7 (C_{ar}), 144.2 (C_{ar}), 159.0 (C-4 phenyl), 172.0 (C=O lactam), 172.7 (CON<), 174.2 (CON^{α}H Tyr(OBn)-amide), 175.1 (CON^αH Orn), 176.1 (CONH₂) ppm; MS (ES, +p) m/z (%): 828 $(50) [M+H]^+$, 415 (100) $[M+2H]^{2+}$; C₄₈H₅₇N₇O₆ (827.44).

tert-Butyl (2-aminoethyl)-{2-[(*tert*-butoxycarbonyl)amino]ethyl}carbamate (3.29).³⁹⁻ ⁴⁰ A solution of ethyl trifluoroacetate (2.93 g, 20.6 mmol) in CH₂Cl₂ (24 mL) was added dropwise to a solution of diethylenetriamine (2.13 g, 20.6 mmol) in the same solvent (24 mL), while keeping the temperature at 0 °C. After complete addition, the mixture was stirred for 2 h at 0 °C and then for 2 h at rt. Removal of the solvent under reduced pressure yielded $H_2N(CH_2)_2NH(CH_2)_2NH(COCF_3)$ as a yellow oil. This compound was dissolved in CH₂Cl₂ (40 mL) and the resulting solution was cooled to – 10 °C. Di-tert-butyl dicarbonate (9.0 g, 41.2 mmol) dissolved in CH₂Cl₂ (40 mL) was added dropwise to the cooled solution, and then the reaction mixture was stirred for 24 h at rt. After evaporation of the solvent, $(Boc)NH(CH_2)_2N(Boc)(CH_2)_2NH(COCF_3)$ was obtained as a dense oil, which was dissolved in a mixture of methanol (280 mL) and distilled water (12 mL). Then, K₂CO₃ (55.28 g, 0.4 mmol) was added and the mixture was refluxed for 2 h. After filtration, the solvent was removed under reduced pressure, the residue was redissolved in distilled water and the pH adjusted to pH = 13 with 40% aq. NaOH. Extraction with CHCl₃, followed by evaporation of the organic phase, gave the product as a yellow oil (3.80 g; 61 %). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.39 (s, 9H, Boc), 2.61 (m, 2H, CH₂), 3.01 (m, 2H, CH₂), 3.14 (m, 4H, $(CH_2)_2$, 6.88 (br, 1H, NH) ppm; MS (CI, NH₃) m/z (%): 304 (61) $[M+H]^+$, 106 (100) $[M+H-2Boc]^+$; C₁₄H₂₉N₃O₄ (303.22).

5-{2-[(2-tert-Butoxycarbonylaminoethyl)(tert-butoxycarbonyl)amino]ethylamino}-

5-oxopentanoic acid (3.30).²⁵ Compound **3.29** (1.00 g, 3.30 mmol) was dissolved in 5 mL THF and a solution of glutaric anhydride (0.38 g, 3.30 mmol) in 5 mL THF was added. Then NEt₃ (0.69 mL, 4.95 mmol) was added to the mixture. The mixture was stirred overnight at rt. The solvent was removed under reduced pressure and the crude product was redissolved in 25 mL CH₂Cl₂, washed with 5 % aq. KHSO₄ (40 mL), dried over Na₂SO₄ and the solvent was evaporated giving a white solid (1.19 g, 86%). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.39 (s, 9H, Boc), 1.68 (p, ³*J* = 7.3 Hz, 2H, CH₂CH₂COOH), 2.07 (m, 2H, (CH₂)₂CH₂COOH), 2.19 (t, ³*J* = 7.3Hz, 2H, CH₂(CH₂)₂COOH), 3.01 (m, 2H, BocNHCH₂), 3.15 (m, 6H, BocNHCH₂CH₂N(Boc)(CH₂)₂), 6.81 (br, 1H, NHBoc), 7.85 (br, 1H, NH), 12.02 (s, 1H, COOH) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 20.5 (COCH₂CH₂CH₂COOH), 25.0 (BocNHCH₂) 27.9 and 28.1 (C(CH₃)₃), 29.2 ((CH₂)₂CH₂COOH), 32.9 (CH₂(CH₂)₂COOH), 34.3 (CONHCH₂), 77.4 and 78.4 (C(CH₃)₃), 154.6 and 155.5 (COOC(CH₃)₃), 171.5 (NHCO(CH₂)₃COOH), 174.1 (COOH) ppm; MS (ES, +p) *m/z* (%): 853 (60) [2*M*+NH₄]⁺, 418 (100) [*M*+H]⁺; C₁₉H₃₅N₃O₇ (417.25).

Preparation of the carboxylic acids 3.31 and 3.32⁴¹

Glutaric anhydride (1 eq) was added to a solution of mono-Boc-protected ethane-1,2diamine or mono-Boc-protected propane-1,3-diamine, respectively, in CH_2Cl_2 and the mixture was stirred for 2 h at rt. A 6-fold volume of CH_2Cl_2 was added prior to washing with a saturated solution of NH_4Cl (2-fold volume) and brine (2-fold volume). Drying over Na_2SO_4 , filtration and removal of the solvent under reduced pressure yielded the products as highly viscous yellowish oils (95-97 %).

4-(2-*tert*-Butoxycarbonylaminoethyl)aminocarbonylbutanoic acid (3.31). ¹H NMR (300 MHz, CD₃OD): δ = 1.42 (s, 9H, Boc), 1.88 (m, 2H, NHCOCH₂CH₂CH₂COOH), 2.24 (t, ³J = 7.4 Hz, 2H, NHCOCH₂CH₂CH₂COOH), 2.32 (t, ³J = 7.4 Hz, 2H, NHCOCH₂CH₂CH₂COOH), 3.14 and 3.24 (m, 4H, NHCH₂CH₂NHCO) ppm; MS (CI, NH₃) *m/z* (%): 275 (100) [*M*+H]⁺; C₁₂H₂₂N₂O₅ (274.31).

4-(3-tert-Butoxycarbonylaminopropyl)aminocarbonylbutanoic acid (3.32). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.47 (m, 2H, NHCH₂CH₂CH₂NHCO), 1.69 (m, 2H, NHCOCH₂CH₂CH₂COOH), 2.07 (t, ³J = 7.4 Hz, 2H, NHCOCH₂CH₂CH₂COOH), 2.19 $(t, {}^{3}J = 7.4 \text{ Hz}, 2H, \text{ NHCOCH}_{2}CH_{2}CH_{2}COOH), 2.89 (quat, 2H, {}^{3}J = 6.7 \text{ Hz},$ NHC H_2 CH₂CH₂CH₂NHCO), 3.00 (quat, 2H, ³J = 6.7 Hz, NHCH₂CH₂CH₂CH₂NHCO), 6.75 (m, 1H, N**H**), 7.76 (m, 1H, N**H**), 12.02 (s, 1H, COO**H**) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 20.6 (NHCOCH₂CH₂CH₂CO₂H), 28.1 (C(CH₃)₃), 29.5 (NHCH₂CH₂CH₂NHCO), 32.9 (NHCOCH₂CH₂CH₂COOH), 34.3 (NHCOCH₂CH₂CH₂COOH), 36.0 (NHCH₂CH₂CH₂NHCO), $(NHCH_2CH_2CH_2NHCO),$ (*C*(CH₃)₃), 37.5 77.3 155.4 $(CO(O)C(CH_3)_3),$ 171.4 (NHCOCH₂CH₂CH₂COOH), 174.0 (NHCOCH₂CH₂CH₂COOH) ppm; MS (CI, NH₃) *m/z* (%): 289 (100) $[M+H]^+$, 233 (50) $[M+H-C_4H_8]^+$; $C_{13}H_{24}N_2O_5$ (288.17).

6-(tert-Butoxycarbonylamino)hexanoic acid (3.33).⁴² To a solution of 6-aminohexanoic acid (1.97 g, 15 mmol) and NaHCO₃ (3.16 g, 37.5 mmol) in 30 mL H₂O was added di-*tert*-butyl dicarbonate (3.93 g, 18 mmol) in 30 mL 1,4-dioxane and stirred overnight at rt. The solution was washed with diethyl ether (30 mL) and the ether phase was discarded. The pH of the solution was adjusted to pH = 2 with 2 m HCl, washed with ethyl acetate (3 × 30 mL) and the organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvent the product was obtained as a colorless solid (3.13 g, 90 %). ¹H NMR (300 MHz, CDCl₃): δ = 1.44 (s, 9H, Boc), 1.32-1.55 (m, 4H, (CH₂)₂(CH₂)₂CH₂NHBoc), 1.75 (p, ³J = 7.4 Hz, 2H, CH₂CH₂(CH₂)₃NHBoc), 2.36 (t, ³J = 7.4 Hz, 2H, CH₂(CH₂)₄NHBoc), 3.12 (m, 2H, (CH₂)₃CH₂NHBoc), 4.55 (br, 1H, NHBoc) ppm; MS (CI, NH₃) *m/z* (%): 232 (13) [*M*+H]⁺, 193 (100) [*M*+NH₄–C₄H₈]⁺; C₁₁H₂₁NO₄ (231.15).

Experimental details for the variously substituted S-methylisothioureas 3.34-3.45

N,*N*'-Bis(*tert*-butoxycarbonyl)-*S*-methylisothiourea (3.34).⁴³ *S*-Methylisothiouronium sulfate (3.02 g, 10.8 mmol) was dissolved in 60 mL water-dioxane 1:1 (v/v) and treated with 1 M aq. NaOH solution (20 mL) and Boc₂O (12.62 g, 53.8 mmol). After stirring for 16 h the precipitated product was filtered off and washed with a small amount of water; the filtrates were concentrated under reduced pressure to half the volume, and additional product was collected by filtration. The combined solid products were dried by lyophilization. Yield: 3.02 g (96 %). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.44 (s, 18H, 2x Boc), 2.28 (s, 3H, SCH₃), 11.06 (br, 1H, NHBoc) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 13.7 (SCH₃), 27.6 (2x C(CH₃)₃), 164.9 (2x C(O)OC(CH₃)₃) ppm; MS (CI, NH₃) *m/z* (%): 291 (100) [*M*+H]⁺; C₁₂H₂₂N₂O₄S (290.13).

S-Methylisothiourea and *N*-tert-butoxycarbonyl-*S*-methylisothiourea were prepared as previously described.^{16, 25}

N'-Substituted N-tert-butoxycarbonyl-S-methylisothioureas (3.35-3.38, 3.43-3.45)

TBTU (1 eq) was added to a solution of the respective carboxylic acid (1 eq), HOBt × H_2O (1 eq), DIPEA (1 eq) in DMF. *N*-tert-butoxycarbonyl-*S*-methylisothiourea (1 eq) was introduced and the solution was shaken for 16 h, diluted with ethyl acetate, washed with 5 % aq. KHCO₃, 5 % aq. KHSO₄, and brine. The crude product was dried over anhydrous Na_2SO_4 and evaporated to dryness. Purification by flash chromatography (eluent: $CH_2Cl_2/ethyl$ acetate) afforded the title compounds.

Preparation of the guanidinylating agents 3.39-3.42

The succinimidyl ester of the corresponding carbamic acid (1.5 mmol) in DMF (1 mL) was added to a stirred solution of *N*-tert-butoxycarbonyl-*S*-methylisothiourea (0.29 g, 1.5 mmol) and DIPEA (0.51 mL, 3.0 mmol) in DMF (2 mL), and stirring was continued for 16 h. The solution was diluted with ethyl acetate (30 mL) and washed with 5 % aq. KHSO₄, 5 % aq. KHCO₃ and brine, dried over anhydrous Na₂SO₄ and evaporated. The crude products were purified by flash chromatography (eluent: $CH_2Cl_2/ethyl$ acetate 20:1 v/v).

N-tert-Butoxycarbonyl-*N'*-[4-(2-*tert*-butoxycarbonylaminoethyl)aminocarbonylbutanoyl]-*S*-methylisothiourea (3.35). Yield: 64 %, as colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.44$ (s, 9H, Boc), 1.52 (s, 9H, Boc), 2.00 (quat, ³J = 7.2 Hz, 2H, COCH₂CH₂CH₂CO), 2.26 (t, ³J = 7.2 Hz, 2H, CO(CH₂)₂CH₂CO), 2.40 (s, 3H, SCH₃), 2.52 (t, ³J = 7.0 Hz, 2H, COCH₂(CH₂)₂CO), 3.27 (m, 2H, NHCH₂CH₂NHBoc), 3.35 (m, 2H, NHCH₂CH₂NHBoc) ppm; MS (ES, +p) *m/z* (%):447 (100) [*M*+H]⁺; C₁₉H₃₄N₄O₆S (446.22). *N-tert*-Butoxycarbonyl-*N'*-[4-(3-*tert*-butoxycarbonylaminopropyl)aminocarbonylbutanoyl]-*S*-methylisothiourea (3.36). Yield: 70 %, as yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.43 (s, 9H, Boc), 1.51 (s, 9H, Boc), 1.61 (m, 2H, NHCH₂CH₂CH₂NHBoc), 2.01 (m, 2H, COCH₂CH₂CH₂CO), 2.27 (m, 2H, CO(CH₂)₂CH₂CO), 2.39 (s, 3H, SCH₃), 2.52 (m, 2H, COCH₂(CH₂)₂CO), 3.16 (m, 2H, NH(CH₂)₂CH₂NHBoc), 3.29 (m, 2H, NHCH₂(CH₂)₂NHBoc) ppm; MS (CI, NH₃) *m/z* (%): 461 (100) [*M*+H]⁺; C₂₀H₃₆N₄O₆S (460.24).

N-tert-Butoxycarbonyl-N'-{4-[2-(2-tert-butoxycarbonylaminoethyl)tert-butoxy-

carbonylaminoethyl]aminocarbonylbutanoyl}-S-methylisothiourea (3.37). Yield: 78 %, as yellow oil. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.36 (s, 9H, Boc), 1.39 (s, 9H, Boc), 1.42 (s, 9H, Boc), 1.72 (p, ³*J* = 7.3 Hz, 2H, CH₂CH₂CO₂CO₂), 2.27 (s, 3H, SCH₃), 2.35 (m, 2H, (CH₂)₂CH₂CON=), 2.69 (m, 2H, CH₂(CH₂)₂CON=), 3.01 (m, 2H, CH₂NHBoc), 3.15 (m, 6H, BocNHCH₂CH₂N(Boc)(CH₂)₂), 6.82 (br, 1H, NHBoc), 7.86 (br, 1H, NH), 11.20 (br, 1H, NHBoc) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 14.0 (SCH₃), 20.7 (CH₂CH₂CH₂CON=), 27.6 and 27.9 and 28.1 (C(CH₃)₃), 29.0 ((CH₂)₂CH₂CON=), 29.9 (CH₂(CH₂)₂CON=), 34.3 (CONHCH₂CH₂), 39.7 (CONHCH₂), 59.6 (CH₂N(Boc)CH₂), 77.4 and 78.4 and 80.0 (C(CH₃)₃), 154.6 and 155.5 and 155.6 (C(O)OC(CH₃)₃) ppm; MS (ES, +p) *m/z* (%): 590 (100) [*M*+H]⁺; C₂₆H₄₇N₅O₈S (589.31).

N-tert-Butoxycarbonyl-N'-(18-tert-butoxycarbonylamino-4-oxo-9,12,15-trioxa-5azaoctadecanoyl)-S-methylisothiourea (3.38). Yield: 58 %, as yellow oil. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.42 (s, 9H, Boc), 1.59 (m, 4H, $OCH_2CH_2CH_2NHBoc + NHCH_2CH_2CH_2O)$, 2.27 (s, 3H, SCH₃), 2.35 (m, 2H, =NCOCH₂C H_2 CONH), 2.56 (m, 2H, =NCOCH₂CH₂CONH), 2.95 (m. 2H, OCH₂CH₂CH₂NHBoc), 3.06 (m, 2H, NHCH₂CH₂CH₂O), 3.38 (m, 4H, ((NH(CH₂)₂CH₂O)₂), 3.50 (m, 8H, (O(CH₂)₂O)₂), 5.76 (s, 1H, BocNHC(SCH₃)=N), 6.75 (m, 1H, NH), 7.87 (m, 1H, N**H**) ppm; MS (ES, +p) *m/z* (%): 593 (100) [*M*+H]⁺; C₂₆H₄₈N₄O₉S (592.31).

N-tert-Butoxycarbonyl-*N'*-[*N*-(2-*tert*-butoxycarbonylaminoethyl)aminocarbonyl]-*S*methylisothiourea (3.39). Yield: 0.33 g (60 %, as colorless oil). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.44 (s, 9H, Boc), 2.28 (s, 3H, SC*H*₃), 3.02 (m, 4H, NHC*H*₂C*H*₂NHBoc), 6.84 (m, 1H, N*H*), 7.74 (m, 1H, N*H*), 12.33 (m, 1H, N*H*) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 13.5 (SCH₃), 27.5 (C(CH₃)₃), 28.1 (C(CH₃)₃), 77.5 (*C*(CH₃)₃), 82.0 (*C*(CH₃)₃), 150.1 (*C*=O carbonyl), 155.5 (*C*=O carbonyl), 161.5 (*C*=N), 164.7 (*C*=O carbonyl) ppm; MS (ES, +p) *m/z* (%): 753 (40) [2*M*+H]⁺, 377 (100) [*M*+H]⁺; C₁₅H₂₈N₄O₅S (376.18). *N-tert*-Butoxycarbonyl-*N'*-[*N*-(3-*tert*-butoxycarbonylaminopropyl)aminocarbonyl]-*S*methylisothiourea (3.40). Yield: 0.30 g (51 %, as colorless oil). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.44 (s, 9H, Boc), 1.53 (m, 2H, NHCH₂CH₂CH₂NH), 2.28 (s, 3H, SCH₃), 2.91 and 3.03 (m, 2H, NHCH₂CH₂CH₂NH), 6.78 (m, 1H, NH), 7.75 (m, 1H, NH), 12.40 (br, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-d₆): δ = 13.5 (SCH₃), 27.5 (C(CH₃)₃), 28.1 (C(CH₃)₃), 29.4 (NHCH₂CH₂CH₂NH), 54.8 (NHCH₂CH₂CH₂NH), 77.4 (C(CH₃)₃), 82.0 (C(CH₃)₃), 150.1 (CO(O)^tBu), 155.5 (CO(O)^tBu), 161.3 (NC(N)SCH₃), 164.7 (NCONH) ppm; MS (ES, +p) *m/z* (%): 391 (100) [*M*+H]⁺; C₁₆H₃₀N₄O₅S (390.19).

N-tert-Butoxycarbonyl-*N'*-[*N*-(4-*tert*-butoxycarbonylaminobutyl)aminocarbonyl]-*S*-methylisothiourea (3.41). Yield: 0.30 g (48 %, as colorless oil); ¹H NMR (300 MHz, DMSO-d₆): δ = 1.27-1.53 (m, 22H, 2 x Boc, CH₂(CH₂)₂CH₂), 2.28 (s, 3H, SCH₃), 2.89 (m, 2H, CH₂NH), 3.01 (m, 2H, CH₂NH), 6.80 (t, ³J = 5.2 Hz, 1H, CH₂NH), 7.79 (t, ³J = 5.8 Hz, 1H, CH₂NH), 12.44 (s, 1H, NH) ppm; MS (ES, +p) *m/z* (%): 405 (100) [*M*+H]⁺; C₁₇H₃₂N₄O₅S (404.21).

N-tert-Butoxycarbonyl-*N'*-[*N*-(6-*tert*-butoxycarbonylaminohexyl)aminocarbonyl]-*S*methylisothiourea (3.42). Yield: 0.29 g (45 %, as yellow oil). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.23 (m, 4H, NH(CH₂)₂(CH₂)₂(CH₂)₂NH), 1.32-1.48 (m, 22H, 2x Boc + NHCH₂CH₂(CH₂)₂CH₂CH₂NH), 2.28 (s, 3H, SCH₃), 2.88 (m, 2H, NHCH₂(CH₂)₅NH), 3.01 (m, 2H, NHCH₂(CH₂)₅NH), 6.77 (m, 1H, NH), 7.78 (m, 1H, NH), 12.43 (br, 1H, NH) ppm; MS (ES, +p) *m/z* (%): 433 (100) [*M*+H]⁺; C₁₉H₃₆N₄O₅S (432.24).

N-tert-Butoxycarbonyl-N'-[6-(tert-butoxycarbonylamino)hexanoyl]-S-methyl-

isothiourea (3.43). Yield: 85 %, as white solid. ¹H NMR (300 MHz, CDCl₃): δ = 1.40-1.60 (m, 4H, (CH₂)₂(CH₂)₂CH₂NHBoc), 1.44 (s, 9H, Boc), 1.52 (s, 9H, Boc), 1.70 (m, 2H, CH₂CH₂(CH₂)₃NHBoc), 2.40 (s, 3H, SCH₃), 2.45 (t, ³J = 7.3 Hz, 2H, CH₂(CH₂)₄NHBoc), 3.12 (m, 2H, (CH₂)₄CH₂NHBoc), 4.56 (br, 1H, NH) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 14.5 (SCH₃), 24.4 (CH₂CH₂(CH₂)₃NHBoc), 26.2 (CH₂CH₂CH₂CH₂CH₂NHBoc), 28.0 (Boc), 28.4 (Boc), 29.8 ((CH₂)₃CH₂CH₂NHBoc), 37.1 (CH₂(CH₂)₄NHBoc), 40.4 ((CH₂)₄CH₂NHBoc), 77.2 (Boc), 79.1 (Boc), 156.0 (Boc), 169.3 (NC(SMe)N), 171.1 (C=O) ppm; MS (ES, +p) *m/z* (%): 404 (100) [*M*+H]⁺, 304 (45) [*M*+H–Boc]⁺; C₁₈H₃₃N₃O₅S (403.54).

N-tert-Butoxycarbonyl-*N'*-[8-(*tert*-butoxycarbonylamino-3,6-dioxa)octanoyl]-*S*methylisothiourea (3.44). Yield: 45 %, as yellow oil. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 (s, 9H, Boc), 1.45 (s, 9H, Boc), 2.30 (s, 3H, SC*H*₃), 3.06 (quat, ³*J* = 5.9 Hz, 2H, NHC*H*₂CH₂O), 3.39 (t, ³*J* = 5.9 Hz, 2H, NHCH₂C*H*₂O), 3.57 and 3.65 (m, 4H, OC*H*₂C*H*₂O), 4.15 (s, 2H, =NCOC*H*₂O), 6.75 (m, 1H, N*H*), 12.22 (br, 1H, N*H*) ppm; MS (ES, +p) *m/z* (%): 436 (100) [*M*+H]⁺, 336 (25) [*M*+H–Boc]⁺; C₁₈H₃₃N₃O₇S (435.20). *N-tert*-Butoxycarbonyl-*N'*-[15-(*tert*-butoxycarbonylamino-4,7,10,13-tetraoxa)pentadecanoyl]-*S*-methylisothiourea (3.45). Yield: 80 %, as slightly yellow oil. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.37 and 1.43 (m, 18H, Boc), 2.28 (s, 3H, SCH₃), 2.59 (t, ³*J* = 5.8 Hz, 2H, NCOCH₂CH₂O), 3.05 (quat, ³*J* = 5.9 Hz, 2H, NHCH₂CH₂O), 3.36 (m, 2H, NHCH₂CH₂O), 3.49 (m, 12H, (OCH₂CH₂O)₃), 3.63 (m, 2H, NCOCH₂CH₂O), 6.76 (m, 1H, NH) ppm; MS (ES, +p) *m/z* (%): 538 (100) [*M*+H]⁺, 438 (19) [*M*+H–Boc]⁺; C₂₃H₄₃N₃O₉S (537.27).

General procedure for the guanidinylation with *S*-methylisothioureas (3.46a-3.62a)^{16, 20, 25}

For the synthesis of **3.46a-3.62a** HgCl₂ (1 eq) was added to a solution of the corresponding ornithinamide (**3.15**, (*S*)-**3.16**, **3.27**, **3.28**) (1 eq), substituted *S*-methylisothiourea (1 eq), and NEt₃ (2 eq) in DMF (approx. 1 mL/0.1 mmol substrate). After stirring overnight the resulting mixture was diluted with ethyl acetate (10 mL/0.1 mmol substrate). Insoluble Hg-salts were separated by vacuum filtration through a short bed of Celite[®] in a Pasteur pipette plugged with some cotton wool and washed with ethyl acetate. The combined filtrates were washed with 5 % aq. KHSO₄ and brine and dried over anhydrous Na₂SO₄. The products were purified by flash chromatography (eluent: CH₂Cl₂/methanol 40/1 to 10/1).

(2*S*)-*N*^ω,*N*^{ω'}-Bis(*tert*-butoxycarbonyl)-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginyl-*O*-benzyl-tyrosinamide (3.46a). Yield: 84 %. MS (ES, +p) m/z (%): 1070 (25) $[M+H]^+$, 536 (100) $[M+2H]^{2+}$; C₅₉H₇₅N₉O₁₀ (1069.56).

(2*R*)- and (2*S*)- N^{ω} , $N^{\omega'}$ -Bis-*tert*-butoxycarbonyl-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*R*)-3.47a, (*S*)-3.47a). Yield: 73 %. MS (ES, +p) m/z (%): 549 (100) $[M+2H]^{2+}$; C₅₉H₇₃N₁₁O₁₀ (1095.55).

(2*R*)- and (2*S*)- $N^{\omega'}$ -*tert*-Butoxycarbonyl- N^{ω} -[4-(2-*tert*-butoxycarbonylaminoethyl)aminocarbonylbutanoyl]-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl]acetyl]argininamide ((*R*)-3.48a, (*S*)-3.48a). Yield: 72 %. MS (ES, +p) m/z (%): 627 (100) $[M+2H]^{2+}$; C₆₆H₈₅N₁₃O₁₂ (1251.64). (2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[4-(3-*tert*-butoxycarbonylaminopropyl)aminocarbonylbutanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.49a) Yield: 79 %. MS (ES, +p) *m/z* (%): 1266 (26) $[M+H]^+$, 634 (100) $[M+2H]^{2+}$; C₆₇H₈₇N₁₃O₁₂ (1265.66).

(2*R*)- and (2*S*)- $N^{\omega'}$ -*tert*-Butoxycarbonyl- N^{ω} -{4-[2-(2-tert-butoxycarbonylaminoethyl)*tert*-butoxycarbonylaminoethyl]aminocarbonylbutanoyl}-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*R*)-3.50a, (*S*)-3.50a). Yield: 72 %. MS (ES, +p) m/z (%): 699 (100) $[M+2H]^{2+}$; C₇₃H₉₈N₁₄O₁₄ (1394.74).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-(18-*tert*-butoxycarbonylamino-4-oxo-9,12,15-trioxa-5-azaoctadecanoyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.51a). Yield: 69 %. MS (ES, +p) *m/z* (%): 1399 (4) $[M+H]^+$, 700 (100) $[M+2H]^{2+}$; C₇₃H₉₉N₁₃O₁₅ (1397.74).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[*N*-(2-*tert*-butoxycarbonylaminoethyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.52a). Yield: 43 %. MS (ES, +p) *m/z* (%): 1183 (20) $[M+H]^+$, 592 (100) $[M+2H]^{2+}$; C₆₂H₇₉N₁₃O₁₁ (1181.60).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[*N*-(3-*tert*-butoxycarbonylaminopropyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.53a). Yield: 65 %. MS (ES, +p) *m/z* (%): 1197 (20) $[M+H]^+$, 599 (100) $[M+2H]^{2+}$; C₆₃H₈₁N₁₃O₁₁ (1195.62).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[*N*-(4-*tert*-butoxycarbonylaminobutyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.54a). Yield: 83 %. MS (ES, +p) m/z (%): 1211 (100) $[M+H]^+$, 715 (20); C₆₄H₈₃N₁₃O₁₁ (1209.63). (2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[*N*-(6-*tert*-butoxycarbonylaminohexyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.55a). Yield: 72 %. MS (ES, +p) *m/z* (%): 1239 (100) $[M+H]^+$, 715 (30), 620 (33) $[M+2H]^{2+}$; C₆₆H₈₇N₁₃O₁₁ (1237.66).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[6-(*tert*-butoxycarbonylamino)hexanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-di-hydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginin-amide ((*S*)-3.56a). Yield: 86 %. MS (ES, +p) m/z (%): 1210 (50) $[M+H]^+$, 606 (100) $[M+2H]^{2+}$; C₆₅H₈₄N₁₂O₁₁ (1209.44).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[8-(*tert*-butoxycarbonylamino-3,6-dioxa)octanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.57a). Yield: 83 %. MS (ES, +p) *m/z* (%): 1242 (7) [*M*+H]⁺, 621 (100) [*M*+2H]²⁺; C₆₅H₈₄N₁₂O₁₃ (1240.63).

(2*S*)-*N*^{ω'}-*tert*-Butoxycarbonyl-*N*^ω-[15-(*tert*-butoxycarbonylamino-4,7,10,13-tetraoxa)pentadecanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.58a). Yield: 62 %. MS (ES, +p) *m/z* (%): 1366 (5) $[M+Na]^+$, 1344 (5) $[M+H]^+$, 683 (30) $[M+H+Na]^{2+}$, 672 (100) $[M+2H]^{2+}$; C₇₀H₉₄N₁₂O₁₅ (1342.70).

(2*S*)-*N*^ω,*N*^{ω'}-Bis(*tert*-butoxycarbonyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-{5-oxo-5-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin1-yl]pentanoyl}argininamide ((*S*)-3.59a). Yield: 83 %. MS (ES, +p) m/z (%): 1042 (20) $[M+H]^+$; 522 (100) $[M+2H]^{2+}$; C₅₅H₆₇N₁₁O₁₀ (1041.15).

(2*S*)-*N*^ω-*tert*-Butoxycarbonyl-*N*^ω-{4-[2-(2-*tert*-butoxycarbonylaminoethyl)*tert*butoxycarbonylaminoethyl]aminocarbonylbutanoyl}-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-{5-oxo-5-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-[*b,e*]azepin-11-yl)piperazin-1-yl]pentanoyl}argininamide ((*S*)-3.60a). Yield: 67 %. MS (ES, +p) *m*/*z* (%): 1342 (35) [*M*+H]⁺; 672 (100) [*M*+2H]²⁺; C₆₉H₉₂N₁₄O₁₄ (1340.69).

(2*S*)-*N*^ω,*N*^{ω'}-Bis(*tert*-butoxycarbonyl)-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginyl-phenylalaninamide (3.61a). Yield: 95 %. MS (ES, +p) *m/z* (%): 964 (35) [*M*+H]⁺, 483 (100) [*M*+2H]²⁺; C₅₂H₆₉N₉O₉ (963.52).

(1063.59).

(2*S*)-*N*^α-[2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)-

piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginyltyrosinamide (3.46).²⁶ Compound 3.46a (0.05 g, 0.05 mmol) was treated with a 1 M solution of TMSOTf (0.87 mL, 4.5 mmol), thioanisole (0.53 mL, 4.5 mmol), and m-cresole (0.05 mL, 0.5 mmol) in TFA for 90 min at ice-bath temperature. After evaporation of the solvents the crude product was purified using preparative HPLC to obtain the title compound as a white fluffy solid (40 mg, 90 %). Mp 180 °C; ¹H NMR (400 MHz, CD₃OD, HSQC): δ = 1.50 (m, 2H, C^vH₂), 1.52 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.66 (m, 4H, 3/4-H cyclopentyl), 1.60 and 1.70 (m, 2H, $C^{\beta}H_{2}$ Orn), 2.26 (m, 4H, 3/5-H piperazine), 2.28 and 2.49 (m, 2H, $CH_2CON^{\alpha}H$), 2.48 (m, 2H, >NCOCH₂-cyclopentyl), 2.80 and 3.07 (m, 2H, $C^{\beta}H_2$ Tyr-amide), 3.11 (t, ${}^{3}J$ = 6.9 Hz, 2H, $C^{\delta}H_2$), 3.41 and 3.49 and 3.63 (m, 4H, 2/6-H piperazine), 4.22 (m, 1H, $C^{\alpha}H$ Orn), 4.33 (m, 1H, 11-H dibenzazepine-11-yl), 4.50 (m, 1H, $C^{\alpha}H$ Tyr-amide), 6.60 and 6.66 (m, 2H, 3/5-H phenyl), 7.03 (m, 2H, H_{ar}), 7.13 (m, 2H, 2/6-H phenyl), 7.29 (m, 1H, H_{ar}), 7.34 (m, 1H, H_{ar}), 7.41 (m, 2H, H_{ar}), 7.51 (m, 1H, H_{ar}), 7.83 (m, 1H, H_{ar}) ppm; ¹³C NMR (100 MHz, CD₃OD, HSQC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 26.0 (\boldsymbol{C}^{γ}), 30.0 (\boldsymbol{C}^{β} Orn), 37.8 and 37.9 (\boldsymbol{C}^{β} Tyr-amide), 39.4 and 39.5 (C-2/5 cyclopentyl), 39.8 (>NCO CH_2 -cyclopentyl), 41.9 (C^{δ}), 42.5 (C-2/6 piperazine), 44.5 (CH₂CON^αH), 45.8 (C-1 cyclopentyl), 52.2 and 52.6 (C-3/5 piperazine), 54.2 (\boldsymbol{c}^{α} Orn), 55.9 (\boldsymbol{c}^{α} Tyr-amide), 75.8 (C-11 dibenzazepine-11-yl), 116.2 (C-3/5 phenyl), 122.9 (C-2/6 phenyl), 126.1 (*C*_{ar}H), 129.6 (*C*_{ar}H), 130.1 (*C*_{ar}H), 131.4 $(C_{ar}H)$, 131.8 $(C_{ar}H)$, 132.4 (C_{ar}) , 133.2 $(C_{ar}H)$, 136.9 (C_{ar}) , 137.4 (C_{ar}) , 157.2 (C-4 phenyl), 158.6 (N**C**(N)N), 171.9 (**C**=O lactam), 172.9 (**C**ON<), 173.8 (**C**ON^αH Tyr-amide), 175.2 (**C**ON^{α}H Orn), 176.1 (**C**ONH₂) ppm; MS (ES, +p) m/z (%): 780 (30) $[M+H]^+$, 391 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for $C_{42}H_{54}N_9O_6$: 780.4197, found: 780.4211; RP-HPLC: 92 % ($t_{\rm R}$ = 12.2 min, k' = 3.5); $C_{42}H_{53}N_9O_6$ (779.41).

General procedure for the preparation of the deprotected argininamides 3.47-3.62⁸

Deprotection was carried out in TFA-CH₂Cl₂ 1:1 (v/v) (approx. 5 mL/0.2 mmol substrate). After stirring for 2 h, CCl₄ or toluene (10 mL) was added, and the volatiles were removed under reduced pressure. The crude products were purified by preparative HPLC. The final products were obtained as white to slightly yellowish powders in yields from 70 to 99 %.

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0xo-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-3.47). Mp 125 °C; $[\alpha]_D^{20} = -3.3 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.66 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, DMSO-d₆, HSQC): δ = 1.44 (m, 2H, C^{γ}H₂), 1.40 and 1.65 (m, 2H, $C^{\beta}H_{2}$), 1.40-1.55 (m, 4H, 2/5-H cyclopentyl), 1.55 (m, 4H, 3/4-H cyclopentyl), 2.11 (m, 4H, 3/5-H piperazine), 2.24 and 2.30 (m, 2H, C H_2 CON $^{\alpha}$ H), 2.46 and 2.52 (m, 2H, NCOC H_2 -cyclo-C₅H₈), 3.00 (m, 2H, C^{δ} H_2), 3.32 (m, 4H, 2/6-H piperazine), 3.29 and 3.38 (m, 2H, NHCH₂CH₂N), 3.59 (m, 2H, NHCH₂CH₂N), 4.14 (m, 1H, C^{α} **H**), 4.30 (m, 1H, 11-**H** dibenzazepin-11-yl), 7.03 (m, 1H, **H**_{ar}), 7.11 (m, 1H, **H**_{ar}), 7.21 (m, 2H, Ph), 7.22 (m, 1H, *H*_{ar}), 7.32 (m, 1H, *H*_{ar}), 7.37 (m, 8H, Ph), 7.38 (m, 2H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.73 (m, 1H, H_{ar}), 8.02 (d, ³J = 7.5 Hz, 1H, N^{α}H), 8.32 (t, ³J = 5.6 Hz, 1H, CONHC₂H₄N), 10.40 (s, 1H, C(O)NH lactam) ppm; ¹³C NMR (150 MHz, DMSOd₆, HSQC): δ = 23.2 (*C*-3/4 cyclopentyl), 24.9 (C^{γ}), 28.6 (C^{β}), 36.0 (NH*C*H₂CH₂N), 37.1 (C-2/5 cyclopentyl), 38.5 (NCOCH₂-cyclo-C₅H₈), 39.6 (NHCH₂CH₂N), 40.1 (C^{δ}), 41.9 and 45.5 (*C*-2/6 piperazine), 42.7 (*C*H₂CON^{α}H), 43.9 (*C*-1 cyclopentyl), 50.7 (*C*-3/5 piperazine), 51.9 (C^{α}), 73.7 (C-11 dibenzazepin-11-yl), 121.3 (C_{ar} H), 122.7 (Ph), 123.8 (C_{ar}H), 126.6 (Ph), 127.8 (2 C_{ar}H), 128.3 (C_{ar}H), 128.9 (Ph), 129.7 (C_{ar}H), 130.4 (C_{ar}H), 131.1 (*C*_{ar}H), 131.4 (*C*_{ar}), 136.3 (*C*_{ar}), 136.4 (*C*_{ar}), 143.4 (*C*_{ar}), 152.5 (N*C*ONPh), 156.9 (NC(N)N), 168.2 (*C*=O lactam), 169.9 (*C*ON), 171.2 (*C*ON^{α}H), 171.9 (*C*ONHC₂H₄N) ppm; IR (neat): u' = 3281, 2963, 1649, 1446, 1176, 1132 cm⁻¹; MS (ES, +p) m/z (%): 897 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd for $C_{49}H_{58}N_{11}O_6$: 896.4572, found: 896.4550; RP-HPLC: 100 % ($t_{\rm R}$ = 18.3 min, k' = 5.7); anal. calcd. for C₄₉H₅₇N₁₁O₆·4 H₂O·5 HCI: C 51.16, H 6.13, N 13.40 %, found: C 51.12, H 6.25, N 13.08 %; C₄₉H₅₇N₁₁O₆ (896.05).

 $(2R)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-oxo-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-[2-ix)ethyl]$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((R)-3.47). Mp 125 °C; $[\alpha]_D^{20}$ = +4.1 cm³ g⁻¹ dm⁻¹ (c = 0.88 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, HSQC, HMBC): δ = 1.48 and 1.72 (m, 2H, C^β**H**₂), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.51 (m, 2H, C^γ**H**₂), 1.63 (m, 4H, 3/4-H cyclopentyl), 2.21 and 2.29 (m, 4H, 3/5-H piperazine), 2.26 and 2.42 (m, 2H, $CH_2CON^{\alpha}H$, 2.47 (m, 2H, >NCOC H_2 -cyclopentyl), 3.02 (m, 2H, $C^{\delta}H_2$), 3.41-3.46 (m, 4H, 2/6-H piperazine), 3.47 and 3.53 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.23 (m, 1H, C^α*H*), 4.41 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, *H*_{ar}), 7.45 (m, 1H, *H*_{ar}), 7.52 (m, 1H, H_{ar}), 7.84 (d, ${}^{3}J$ = 7.7 Hz, 1H, H_{ar}) ppm; ${}^{13}C$ NMR (150 MHz, CD₃OD, HSQC, HMBC): $\delta = 24.5$ and 24.6 (C-3/4 cyclopentyl), 26.3 (C^{γ}), 30.0 (C^{β}), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH2-cyclopentyl), 41.2 (NHCH2CH2N<), 41.9 (C^{δ}), 44.7 ($CH_2CON^{\alpha}H$), 45.8 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 53.9 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (\boldsymbol{C}_{ar} H), 124.2 (Ph), 126.1 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.4 (*C*_{ar}H), 129.7 (*C*_{ar}H), 130.2 (Ph), 131.4 (*C*_{ar}H),

131.9 ($C_{ar}H$), 132.4 (C_{ar}), 133.3 ($C_{ar}H$), 136.9 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 158.6 (NC(N)N), 171.7 (C=O lactam), 172.8 (CON<), 174.6 ($CONH(CH_2)_2N<$), 174.7 ($CON^{\alpha}H$) ppm; MS (ES, +p) m/z (%): 897 (60) [M+H]⁺, 449 (100) [M+2H]²⁺; HRMS (LSI-MS): m/z [M+H]⁺ calcd. for C₄₉H₅₈N₁₁O₆: 896.4572, found: 896.4603; RP-HPLC: 98 % (t_R = 18.3 min, k' = 5.8); C₄₉H₅₇N₁₁O₆ (895.45).

$(2S)-N^{\omega}$ -[4-(2-Aminoethyl)aminocarbonylbutanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-3.48). Mp 138 °C; $[\alpha]_D^{20} = -7.6 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.98 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, HSQC): δ = 1.51 and 1.75 (m, 2H, C^βH₂), 1.52 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.61 (m, 2H, $C^{\gamma}H_2$), 1.93 (p, $^{3}J =$ 7.4 Hz, 2H, COCH₂CH₂CH₂CO), 2.28 and 2.36 (m, 4H, 3/5-H piperazine), 2.29 and 2.44 (m, 2H, CH₂CON^αH), 2.30 (m, 2H, COCH₂(CH₂)₂CONH), 2.49 (m, 2H, >NCOCH₂cyclopentyl), 2.51 (m, 2H, CO(CH₂)₂CH₂CONH), 3.04 (t, ${}^{3}J$ = 5.9 Hz, 2H, NHCH₂CH₂NH₂), 3.17 (m, 2H, $C^{\delta}H_{2}$), 3.34-3.55 (m, 4H, 2/6-H piperazine), 3.44 (t, ³J = 5.9 Hz, 2H, NHCH₂CH₂NH₂), 3.45 and 3.54 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α**H**), 4.51 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, **H**_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.43 (m, 1H, *H*_{ar}), 7.47 (m, 1H, *H*_{ar}), 7.54 (m, 1H, H_{ar}), 7.87 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 21.0 (COCH₂CH₂CH₂CO), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 35.4 38.2 (NH $CH_2CH_2NH_2$), $(COCH_2(CH_2)_2CONH),$ 36.8 $(CO(CH_2)_2CH_2CONH),$ 38.4 (NHCH2CH2N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH2-cyclopentyl), 40.9 $(NHCH_2CH_2NH_2)$, 41.2 $(NHCH_2CH_2N<)$, 41.9 (C^{δ}) , 44.6 $(CH_2CON^{\alpha}H)$, 45.8 (C-1)cyclopentyl), 46.7 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.6 (C_{ar}H), 130.0 (C_{ar}H), 130.2 (Ph), 131.6 (C_{ar}H), 132.2 (C_{ar}H), 132.4 (C_{ar}), 133.5 (C_{ar}H), 137.0 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.1 (N*C*(N)N), 171.2 (*C*=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.4 (CO(CH₂)₃**C**ONH), 176.7 $(CO(CH_2)_3CONH)$ ppm; MS (LSI, MeOH/gly) m/z (%): 1052 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₆H₇₀N₁₃O₈: 1052.5470, found: 1052.5462; RP-HPLC: 100 % ($t_{\rm R}$ = 14.7 min, k' = 4.4); C₅₆H₆₉N₁₃O₈ (1051.54).

$(2R)-N^{\omega}$ -[4-(2-Aminoethyl)aminocarbonylbutanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-[h clazonin 11 yl)ninorazin 1 yllothylleyclonontyl)acetyllargininamide ((*R*) 2.48

[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*R*)-3.48). Mp 138 °C; $[\alpha]_D^{20}$ = +5.6 cm³ g⁻¹ dm⁻¹ (c = 0.57 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, HSQC): δ = 1.51 and 1.75 (m, 2H, C^βH₂), 1.52 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.61 (m, 2H, C^γH₂), 1.93 (p, ³J = 7.4 Hz, 2H, COCH₂CH₂CH₂CO), 2.28 and 2.36 (m, 4H, 3/5-H piperazine), 2.29 and 2.44 (m, 2H, CH₂CON^αH), 2.30 (m, 2H, COCH₂(CH₂)₂CONH), 2.49 (m, 2H, >NCOCH₂- cyclopentyl), 2.51 (m, 2H, CO(CH₂)₂C H_2 CONH), 3.04 (t, ³J = 5.9 Hz, 2H, NHCH₂C H_2 NH₂), 3.17 (m, 2H, $C^{\delta}H_{2}$), 3.34-3.55 (m, 4H, 2/6-H piperazine), 3.44 (t, ^{3}J = 5.9 Hz, 2H, NHCH₂CH₂NH₂), 3.45 and 3.54 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.51 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, H_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.43 (m, 1H, *H*_{ar}), 7.47 (m, 1H, *H*_{ar}), 7.54 (m, 1H, H_{ar}), 7.87 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 21.0 $(COCH_2CH_2CH_2CO)$, 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}) , 30.0 (C^{β}) , 35.4 38.2 (NH*C*H₂CH₂NH₂), $(COCH_2(CH_2)_2CONH),$ 36.8 $(CO(CH_2)_2CH_2CONH),$ 38.4 (NHCH2CH2N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH2-cyclopentyl), 40.9 $(NHCH_2CH_2NH_2)$, 41.2 $(NHCH_2CH_2N<)$, 41.9 (C^{δ}) , 44.6 $(CH_2CON^{\alpha}H)$, 45.8 (C-1)cyclopentyl), 46.7 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.6 (*C*_{ar}H), 130.0 (*C*_{ar}H), 130.2 (Ph), 131.6 (*C*_{ar}H), 132.2 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.5 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.1 (N*C*(N)N), 171.2 (*C*=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.4 (CO(CH₂)₃**C**ONH), 176.7 $(CO(CH_2)_3CONH)$ ppm; MS (LSI, MeOH/gly) m/z (%): 1052 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₆H₇₀N₁₃O₈: 1052.5470, found: 1052.5462; RP-HPLC: 100 % ($t_{\rm R}$ = 10.3 min, k' = 2.9); $C_{56}H_{69}N_{13}O_8$ (1051.54).

$(2S)-N^{\omega}$ -[4-(3-Aminopropyl)aminocarbonylbutanoyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-

1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo-[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.49)**. Mp 129 °C; ¹H NMR (600 MHz, CD₃OD): δ = 1.51 and 1.74 (m, 2H, C^βH₂), 1.50 und 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 und 1.63 (m, 4H, 3/4-H cyclopentyl), 1.62 (m, 2H, $C^{\gamma}H_2$), 1.83 (p, ${}^{3}J$ = 7.0 Hz, 2H, CONHCH₂CH₂CH₂NH₂), 1.92 (p, ${}^{3}J$ = 7.3 Hz, 2H, COCH₂CH₂CH₂CONH), 2.17 und 2.24 (m, 4H, 3/5-H piperazine), 2.27 (m, 2H, $COCH_2(CH_2)_2CONH)$, 2.50 (m, 2H, $CO(CH_2)_2CH_2CONH)$, 2.93 (t, ³J = 7.2 Hz, 2H, CONH(CH₂)₂CH₂NH₂), 3.18 (m, 2H, $C^{\delta}H_{2}$), 3.27 (t, ³J = 6.6 Hz, 2H, CONHCH₂(CH₂)₂NH₂), 3.37 und 3.54 (m, 4H, 2/6-H piperazine), 3.54 (m, 2H, NHCH₂CH₂N), 3.77 (m, 2H, NHCH₂C H_2 N), 4.25 (m, 1H, C^{α}H), 4.33 (br, 1H, 11-H dibenzazepine-11-yl), 7.12 (m, 1H, H_{ar}), 7.13 (m, 1H, H_{ar}), 7.20 (m, 1H, H_{ar}), 7.31 (m, 2H, Ph), 7.34 (m, 1H, H_{ar}), 7.37 (m, 8H, Ph), 7.39 (m, 1H, *H*_{ar}), 7.43 (m, 1H, *H*_{ar}), 7.51 (m, 1H, *H*_{ar}), 7.82 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 21.3 (NCOCH₂CH₂CH₂CONH), 24.5 und 24.6 (C-3/4 $(CONHCH_2CH_2CH_2NH_2),$ $(\boldsymbol{C}^{\beta}).$ cyclopentyl), 25.4 (**C**^γ), 28.8 30.0 35.5 (NCOCH₂(CH₂)₂CONH), 36.8 (NCO(CH₂)₂CH₂CONH), 38.2 (CONHCH₂(CH₂)₂NH₂), 38.5 (NHCH₂CH₂N), 39.2 und 39.3 (C-2/5 cyclopentyl), 39.4 und 39.7 (NCOCH₂-cyclopentyl), 40.9 (CONH(CH₂)₂CH₂NH₂), 41.2 (NHCH₂CH₂N), 41.9 (C^{δ}), 42.4 und 47.3 (C-2/6 piperazine), 44.7 ($CH_2CON^{\alpha}H$), 45.8 (C-1 cyclopentyl), 52.2 und 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (\boldsymbol{C}_{ar} H), 124.1 (Ph), 126.1 (C_{ar}H), 128.1 (C_{ar}H), 129.2 (C_{ar}H), 129.6 (C_{ar}H), 130.1 (C_{ar}), 130.2 (Ph), 131.2 (C_{ar}H), 131.8 (**C**_{ar}H), 132.4 (**C**_{ar}), 133.2 (**C**_{ar}H), 136.9 (**C**_{ar}), 137.8 (**C**_{ar}), 154.5 (N(**C**ONPh)₂), 155.1 (NC(N)N), 171.8 (*C*=O lactam), 172.7 (*C*ON^{α}H), 174.5 (*C*ONHC₂H₄N), 174.7 (*C*ON), 175.9 (N*C*O(CH₂)₃CONH), 176.6 (NCO(CH₂)₃*C*ONH) ppm; IR (neat): υ' = 3277, 2948, 1648, 1442, 1192, 1130 cm⁻¹; MS (ES, +p) *m/z* (%): 1066 (100) [*M*+H]⁺; HRMS (LSI-MS): *m/z* [*M*+H]⁺ calcd for C₅₇H₇₂N₁₃O₈: 1066.5621, found: 1066.5642; RP-HPLC: 100 % (*t*_R = 14.8 min, *k*['] = 4.5); anal. calcd. for C₅₇H₇₁N₁₃O₈·1.75 H₂O·3.25 TFA: C 51.95, H 5.32, N 12.40 %, found: C 51.86, H 5.10, N 12.44 %; C₅₇H₇₁N₁₃O₈ (1065.55).

$(2S)-N^{\omega}-{4-[2-(2-Aminoethyl]aminoethyl]aminocarbonylbutanoyl}-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide$

((S)-3.50). Mp 108-110 °C; $[\alpha]_D^{20} = -10.4 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.52 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_{2}$), 1.93 (p, ${}^{3}J$ = 7.4 Hz, 2H, COCH₂CH₂CH₂CO), 2.19 and 2.26 (m, 4H, 3/5-H piperazine), 2.28 and 2.42 (m, 2H, C H_2 CON $^{\alpha}$ H), 2.31 (t, ³J = 7.4 Hz, 2H, $COCH_2(CH_2)_2CONH)$, 2.48 (m, 2H, >NCOCH_2-cyclopentyl), 2.50 (t, ³J = 7.4 Hz, 2H, CO(CH₂)₂CH₂CONH), 3.17 (m, 2H, $C^{\delta}H_{2}$), 3.22 (t, ³J = 5.7 Hz, 2H, NHCH₂CH₂NH), 3.33 (t, ${}^{3}J$ = 6.5 Hz, 2H, NHCH₂C**H**₂NH₂), 3.36-3.50 (m, 4H, 2/6-H piperazine), 3.40 (t, ${}^{3}J$ = 6.5 Hz, 2H, NHC H_2 CH₂NH₂), 3.45 and 3.54 (m, 2H, NHC H_2 CH₂N<), 3.51 (t, ³J = 5.7 Hz, 2H, NHCH₂CH₂NH), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.37 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.40 (m, 1H, H_{ar}), 7.44 (m, 1H, H_{ar}), 7.51 (m, 1H, H_{ar}), 7.83 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 21.0 (COCH₂CH₂CH₂CO), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{\vee}), 30.0 (C^{β}), 35.3 (CO CH_2 (CH₂)₂CONH), 36.8 $(CO(CH_2)_2CH_2CONH),$ 36.9 $(NHCH_2CH_2NH_2),$ 37.1 (CONHCH2CH2NH), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 41.1 $(NHCH_2CH_2N<)$, 42.0 (C^{δ}) , 44.7 $(CH_2CON^{\alpha}H)$, 45.7 $(NHCH_2CH_2NH_2)$, 45.8 (C-1)cyclopentyl), 47.2 (C-2/6 piperazine), 49.5 (CONHCH₂CH₂NH), 52.2 and 52.6 (C-3/5 piperazine), 53.8 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (\boldsymbol{C}_{ar} H), 124.1 (Ph), 126.1 (C_{ar}H), 128.1 (C_{ar}H), 129.2 (C_{ar}H), 129.6 (C_{ar}H), 130.2 (Ph), 131.3 (C_{ar}H), 131.9 (C_{ar}H), 132.4 (*C*_{ar}), 133.2 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.0 (N*C*(N)N), 171.7 (**C**=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.6 (CO(CH₂)₃CONH), 176.7 (CO(CH₂)₃CONH) ppm; MS (ES, +p) *m/z* (%): 549 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₈H₇₅N₁₄O₈: 1095.5892, found: 1095.5912; RP-HPLC: 99 % ($t_{\rm R}$ = 13.0 min, k' = 3.8); C₅₈H₇₄N₁₄O₈ (1094.58).

 $(2R)-N^{\omega}-\{4-[2-(2-Aminoethyl)aminoethyl]aminocarbonylbutanoyl\}-N-[2-(3,5-dioxo-$ 1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-0x0-2-[4-(6-0x0-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((R)-3.50). Mp 108-110 °C; $[\alpha]_D^{20}$ = +2.5 cm³ g⁻¹ dm⁻¹ (c = 0.63 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, HSQC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_{2}$), 1.93 (p, ${}^{3}J$ = 7.4 Hz, 2H, COCH₂CH₂CH₂CO), 2.19 and 2.26 (m, 4H, 3/5-H piperazine), 2.28 and 2.42 (m, 2H, CH₂CON^αH), 2.31 (t, ³J = 7.4 Hz, 2H, COCH₂(CH₂)₂CONH), 2.48 (m, 2H, >NCOC H_2 -cyclopentyl), 2.50 (t, ${}^{3}J$ = 7.4 Hz, 2H, CO(CH₂)₂C H_2 CONH), 3.17 (m, 2H, C ${}^{\delta}H_2$), 3.22 (t, ${}^{3}J$ = 5.7 Hz, 2H, NHCH₂CH₂NH), 3.33 (t, ${}^{3}J$ = 6.5 Hz, 2H, NHCH₂CH₂NH₂), 3.36-3.50 (m, 4H, 2/6-H piperazine), 3.40 (t, ${}^{3}J$ = 6.5 Hz, 2H, NHC H_{2} CH₂NH₂), 3.45 and 3.54 (m, 2H, NHC H_2 CH₂N<), 3.51 (t, ³J = 5.7 Hz, 2H, NHC H_2 CH₂NH), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^αH), 4.48 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, H_{ar}), 7.46 (m, 1H, H_{ar}), 7.53 (m, 1H, H_{ar}), 7.86 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 21.0 (COCH₂CH₂CH₂CO), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 30.0 (C^{β}), 35.3 (COCH₂(CH₂)₂CONH), $(\boldsymbol{C}^{\boldsymbol{\gamma}})_{\boldsymbol{\mu}}$ 36.8 (CO(CH₂)₂CH₂CONH), 36.9 (NHCH₂CH₂NH₂), 37.1 (CONHCH₂CH₂NH), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO CH_2 -cyclopentyl), 41.1 (NHCH₂ CH_2 N<), 42.0 (C°), 44.7 (CH₂CON^aH), 45.7 (NHCH₂CH₂NH₂), 45.8 (C-1 cyclopentyl), 46.8 (C-2/6 piperazine), 49.5 (CONHCH₂**C**H₂NH), 52.2 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.6 (*C*_{ar}H), 129.9 (*C*_{ar}H), 130.2 (Ph), 130.4 (*C*_{ar}H), 131.5 (*C*_{ar}H), 132.1 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.4 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.0 (NC(N)N), 171.3 (C=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.6 (**C**O(CH₂)₃**C**ONH) ppm; MS (ES, +p) m/z (%): 549 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): m/z $[M+H]^+$ calcd. for $C_{58}H_{75}N_{14}O_8$: 1095.5892, found: 1095.5912; RP-HPLC: 97 % (t_R = 13.6 min, k' = 4.1), gradient: 0 to 20 min: A/B 10/90 to 60/40, 20 to 21 min: 95/5, 21 to 29 min: 95/5; $C_{58}H_{74}N_{14}O_8$ (1094.58).

(2*S*)-*N*^ω-(18-Amino-4-oxo-9,12,15-trioxa-5-azaoctadecanoyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-**3.51).** ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.52$ and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.52 and 1.69 (m, 4H, 2/5-H cyclopentyl), 1.52 and 1.74 (m, 2H, C^β*H*₂), 1.63 (m, 2H, C^γ*H*₂), 1.74 (m, 2H, NHCH₂C*H*₂CH₂O), 1.90 (m, 2H, H₂NCH₂C*H*₂CH₂O), 2.26 and 2.43 (m, 2H, C*H*₂CON^αH), 2.28 and 2.41 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOC*H*₂-cyclopentyl), 2.55 and 2.73 (m, 4H, =NCO(C*H*₂)₂CONH), 3.08 (m, 2H, H₂NC*H*₂(CH₂)₂O), 3.16 (m, 2H, C^δ*H*₂), 3.23 (m, 2H, NHC*H*₂(CH₂)₂O), 3.37-3.51 (m, 4H, 2/6-H piperazine), 3.44 and 3.56 (m, 2H, NHC*H*₂CH₂N<), 3.49 (m, 2H, NH(CH₂)₂C*H*₂O), 3.56 and 3.61 (m, 8H, (O(C*H*₂)₂O)₂), 3.64 (m, 2H, H₂N(CH₂)₂C*H*₂O), 3.78 (m, 2H,

NHCH₂C H_2 N<), 4.25 (m, 1H, C^{α}H), 4.53 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 1H, *H*_{ar}), 7.17 (m, 1H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.43 (m, 1H, **H**_{ar}), 7.47 (m, 1H, **H**_{ar}), 7.54 (m, 1H, **H**_{ar}), 7.88 (m, 1H, **H**_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 28.0 $(NHCH_2CH_2CH_2O)$, 30.0 (C^{β}) , 30.4 $(H_2NCH_2CH_2O)$, 30.5 $(=NCOCH_2CH_2CO)$, 32.9 (=NCOCH₂CH₂CO), 37.8 (NHCH₂(CH₂)₂O), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 40.1 (H₂NCH₂(CH₂)₂O), 41.2 (NHCH₂CH₂N<), 41.9 (\boldsymbol{C}^{δ}), 44.6 (\boldsymbol{C} H₂CON^{α}H), 45.8 (C-1 cyclopentyl), 46.7 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (\boldsymbol{C}^{α}), 69.6 (NH(CH₂)₂ \boldsymbol{C} H₂O), 70.4 (H₂N(CH₂)₂ \boldsymbol{C} H₂O), 71.0 and 71.4 ((O(CH₂)₂O)₂), 75.9 (C-11 dibenzazepine-11-yl), 123.1 (C_{ar}H), 124.2 (Ph), 126.2 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.7 (*C*_{ar}H), 130.0 (*C*_{ar}), 130.2 (Ph), 130.5 (*C*_{ar}H), 131.6 $(C_{ar}H)$, 132.2 $(C_{ar}H)$, 132.4 (C_{ar}) , 133.5 $(C_{ar}H)$, 137.0 (C_{ar}) , 137.8 (C_{ar}) , 154.5 $(N(CONPh)_2)$, 155.0 (NC(N)N), 171.1 (C=O | actam), 172.8 $(CON^{\alpha}H)$, 173.8 (=NCO(CH₂)₂CO), 174.5 (CONH(CH₂)₂N<), 174.7 (CON<), 176.4 (=NCO(CH₂)₂CO) ppm; MS (ES, +p) m/z (%): 1199 (4) $[M+H]^+$, 600 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): m/z[*M*+2H]²⁺ calcd. for C₆₃H₈₄N₁₃O₁₁: 599.8246, found: 599.8261; HRMS (FAB): *m/z* $[M+H]^{+}$ calcd. for C₆₃H₈₄N₁₃O₁₁: 1198.6413, found: 1198.6423; RP-HPLC: 99 % ($t_{\rm R}$ = 15.1 min, k' = 4.6; C₆₃H₈₃N₁₃O₁₁ (1197.63).

$(2S)-N^{\omega}$ -[(2-Aminoethyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.52)**. ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, C^Y**H**₂), 2.21 and 2.30 (m, 4H, 3/5-H piperazine), 2.28 and 2.43 (m, 2H, $CH_2CON^{\alpha}H$), 2.48 (m, 2H, >NCOC H_2 -cyclopentyl), 3.08 (t, ³J = 5.7 Hz, 2H, NHCH₂C H_2 NH₂), 3.15 (m, 2H, C^{δ} H_2), 3.36-3.53 (m, 4H, 2/6-H piperazine), 3.40-3.58 (m, 2H, NHCH₂CH₂N<), 3.48 (m, 2H, NHCH₂CH₂NH₂), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α**H**), 4.41 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, **H**_{ar}), 7.19 (m, 2H, **H**_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.85 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.6 (C^{γ}), 30.0 (C^{β}), 38.4 (NHCH₂CH₂N<), 38.5 (NHCH₂CH₂NH₂), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 40.8 $(NHCH_2CH_2NH_2)$, 41.2 $(NHCH_2CH_2N<)$, 41.9 (C^{δ}) , 44.7 $(CH_2CON^{\alpha}H)$, 45.8 (C-1)cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.5 (*C*_{ar}H), 129.8 (*C*_{ar}H), 130.2 (Ph), 130.3 (*C*_{ar}), 131.4 (*C*_{ar}H), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.7 (NC(N)N), 156.5 (=NCONH), 171.5 (**C**=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH) ppm; MS (ES, +p) m/z (%): 492 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): m/z $[M+H]^+$ calcd. for $C_{52}H_{64}N_{13}O_7$: 982.5052, found: 982.5071; RP-HPLC: 100 % ($t_R = 14.3 \text{ min}, k' = 4.3$); $C_{52}H_{63}N_{13}O_7$ (981.50).

$(2S)-N^{\omega}$ -[(3-Aminopropyl)aminocarbonyl]-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-tri-azolidin-4-yl)ethyl]-N^{α}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.53)**. Mp 146 °C; ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_{2}$), 1.86 (p, ${}^{3}J$ = 7.4 Hz, 2H, NHCH₂CH₂CH₂NH₂), 2.24 and 2.31 (m, 4H, 3/5-H piperazine), 2.28 and 2.43 (m, 2H, CH₂CON^αH), 2.49 (m, 2H, >NCOCH₂cyclopentyl), 2.96 (t, ${}^{3}J$ = 7.4 Hz, 2H, NH(CH₂)₂CH₂NH₂), 3.14 (m, 2H, C^{δ}H₂), 3.29 (m, 2H, NHCH₂(CH₂)₂NH₂), 3.39-3.58 (m, 4H, 2/6-H piperazine), 3.46 and 3.54 (m, 2H, NHC**H**₂CH₂N<), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^α**H**), 4.44 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, H_{ar}), 7.19 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, *H*_{ar}), 7.45 (m, 1H, *H*_{ar}), 7.52 (m, 1H, *H*_{ar}), 7.85 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.7 $(NHCH_2CH_2CH_2NH_2),$ 30.0 $(\boldsymbol{C}^{\beta}),$ $(\boldsymbol{C}^{\boldsymbol{\gamma}}),$ 28.7 37.6 $(NHCH_2(CH_2)_2NH_2),$ 38.3 (NH(CH₂)₂CH₂NH₂), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO**C**H₂-cyclopentyl), 41.2 (NHCH₂**C**H₂N<), 41.8 (C^{δ}), 44.7 (**C**H₂CON^{α}H), 45.8 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.5 (C_{ar}H), 129.8 (C_{ar}H), 130.2 (Ph), 130.3 (C_{ar}), 131.4 (C_{ar}H), 132.0 (C_{ar}H), 132.4 (C_{ar}), 133.4 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.7 (NC(N)N), 156.1 (=NCONH), 171.4 (**C**=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH) ppm; IR (neat): $\upsilon' = 3252$, 2949, 1650, 1443, 1180, 1129 cm⁻¹; MS (LSI, MeOH/gly) m/z (%): 997 (100) [*M*+H]⁺; HRMS (LSI-MS): *m*/*z* [*M*+H]⁺ calcd. for C₅₃H₆₆N₁₃O₇: 996.5208, found: 996.5200; RP-HPLC: 98 % (t_R = 15.0 min, k' = 4.5); anal. calcd. for C₅₃H₆₅N₁₃O₇·1.75 H₂O·2.75 TFA: C 52.38, H 5.37, N 13.57 %, found: C 52.36, H 5.32, N 13.56 %; C₅₃H₆₅N₁₃O₇ (995.51).

$(2S)-N^{\omega}-[(4-Aminobutyl)aminocarbonyl]-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-tri-azolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-(6-0x0-6,11-dihydro-5H-dibenzo-2-(4-(6-0x0-6))))))))$

[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.54). Mp 146 °C; $[\alpha]_D^{20} = -1.7 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.98 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.51 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.74 (m, 2H, C^βH₂), 1.59 (m, 2H, NH(CH₂)₂CH₂CH₂NH₂), 1.66 (m, 2H, C^VH₂), 1.66 (m, 2H, NHCH₂CH₂(CH₂)₂NH₂), 2.28 and 2.43 (m, 2H, CH₂CON^αH), 2.26 and 2.34 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOCH₂-cyclopentyl), 2.93 (t, ³J = 7.5 Hz, 2H, NH(CH₂)₃CH₂NH₂), 3.14 (m, 2H, C^δH₂), 3.21 (t, ³J = 6.6 Hz, 2H, NHCH₂(CH₂)₃NH₂), 3.37-3.58 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.47 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, H_{ar}), 7.19 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.53 (m, 1H, H_{ar}), 7.86 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.7 (C^{V} + NH(CH₂)₂ CH_2 CH₂NH₂), 27.4 (NHCH₂CH₂(CH₂)₂NH₂), 30.0 (C^{β}), 38.4 (NH CH_2 CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO CH_2 -cyclopentyl), 39.9 (NH CH_2 (CH₂)₃NH₂), 39.9 (NH(CH₂)₃ CH_2 NH₂), 41.2 (NHCH₂ CH_2 N<), 41.8 (C^{δ}), 44.6 (CH_2 CON^{α}H), 45.8 (C-1 cyclopentyl), 46.8 (C-2/6 piperazine), 52.3 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar} H), 124.1 (Ph), 126.2 (C_{ar} H), 128.1 (C_{ar} H), 129.6 (C_{ar} H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.8 (NC(N)N), 155.9 (=NCONH), 171.3 (C=O lactam), 172.7 (CON<), 174.6 (CONH(CH₂)₂N<), 174.7 (CON^{α}H) ppm; IR (neat): u['] = 3284, 2958, 1652, 1445, 1175, 1131 cm⁻¹; MS (LSI, MeOH/gly) m/z (%): 1011 (100) [M+H]⁺; HRMS (LSI-MS): m/z [M+H]⁺ calcd. for C₅₄H₆₈N₁₃O₇: 1010.5365, found: 1010.5361; RP-HPLC: 98 % (t_R = 15.0 min, k' = 4.5); anal. calcd. for C₅₄H₆₇N_{13O7}· 2 H₂O· 2.5 TFA: C 53.21, H 5.60, N 13.67 %, found: C

$(2S)-N^{\omega}$ -[(6-Aminohexyl)aminocarbonyl]-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

53.24, H 5.87, N 13.77 %; C₅₄H₆₇N₁₃O₇ (1009.53).

[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-3.55). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): $\delta = 1.37$ (m, 4H, NH(CH₂)₂(CH₂)₂(CH₂)₂NH₂), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.52 (m, 2H, NHCH₂C H_2 (CH₂)₄NH₂), 1.63 (m, 2H, C^{γ} H_2), 1.64 (m, 2H, NH(CH₂)₄C H_2 CH₂NH₂), 1.74 (m, 2H, $C^{\beta}H_{2}$), 2.20 and 2.28 (m, 4H, 3/5-H piperazine), 2.27 and 2.42 (m, 2H, $CH_2CON^{\alpha}H$), 2.49 (m, 2H, >NCOC H_2 -cyclopentyl), 2.90 (t, ³J = 7.6 Hz, 2H, NH(CH₂)₅CH₂NH₂), 3.14 (m, 2H, C^δH₂), 3.17 (m, 2H, NHCH₂(CH₂)₅NH₂), 3.37-3.51 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^αH), 4.38 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, H_{ar}), 7.19 (m, 2H, H_{ar}), 7.31 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.40 (m, 1H, H_{ar}), 7.44 (m, 1H, H_{ar}), 7.51 (m, 1H, H_{ar}), 7.83 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): $\delta = 24.5$ and 24.6 (C-3/4 cyclopentyl), 25.7 (C^{γ}), 27.0 and 27.2 $(NH(CH_2)_2(CH_2)_2(CH_2)_2NH_2),$ 28.4 $(NH(CH_2)_4CH_2CH_2NH_2),$ 30.0 (**C**^β), 30.2 (NHCH₂CH₂(CH₂)₄NH₂), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 $(>NCOCH_2-cyclopentyl), 40.5 (NHCH_2(CH_2)_5NH_2), 40.6 (NH(CH_2)_5CH_2NH_2), 41.2$ $(NHCH_2CH_2N<)$, 41.8 (C°) , 44.6 $(CH_2CON^{\alpha}H)$, 45.8 (C-1 cyclopentyl), 47.1 (C-2/6) piperazine), 52.3 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11yl), 123.0 (**C**_{ar}H), 124.1 (Ph), 126.1 (**C**_{ar}H), 128.1 (**C**_{ar}H), 129.3 (**C**_{ar}H), 129.7 (**C**_{ar}H), 130.2 (Ph), 130.2 (*C*_{ar}), 131.3 (*C*_{ar}H), 131.9 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.6 (=NCONH), 155.8 (NC(N)N), 171.6 (C=O lactam), 172.7 (CON<), 174.5 (CONH(CH₂)₂N<), 174.7 (CON^{α}H) ppm; MS (LSI, MeOH/gly) m/z (%): 1039 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₆H₇₂N₁₃O₇: 1038.5678, found: 1038.5667; RP-HPLC: 93 % (t_R = 15.5 min, k' = 4.7); C₅₆H₇₂N₁₃O₇ (1037.56).

$(2S)-N^{\omega}$ -(6-Aminohexanoyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^{α}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-

yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-3.56). $[\alpha]_D^{20}$ = +12.0 cm³ g^{-1} dm⁻¹ (c = 0.49 in CH₃CN/H₂O 9:1); ¹H NMR (600 MHz, DMSO-d₆, HSQC): δ = 1.31 (m, 2H, CO(CH₂)₂C H_2 (CH₂)₂NH₂), 1.49 (m, 2H, C^{γ} H_2), 1.45 and 1.64 (m, 2H, C^{β} H_2), 1.39-1.56 (m, 4H, 2/5-H cyclopentyl), 1.53 (m, 2H, CH₂CH₂NH₂), 1.54 (m, 2H, COCH₂CH₂), 1.54 (m, 4H, 3/4-H cyclopentyl), 2.08 and 2.10 (m, 4H, 3/5-H piperazine), 2.21 and 2.30 (m, 2H, C**H**₂CON^αH), 2.41 (t, ³J = 7.3 Hz, 2H, C(O)C**H**₂CH₂), 2.41 and 2.49 (m, 2H, NCOC**H**₂cyclopentyl), 2.77 (m, 2H, CH₂NH₂), 3.18 (m, 2H, C^δH₂), 3.31-3.33 (m, 4H, 2/6-H piperazine), 3.31 and 3.38 (m, 2H, NHC H_2 CH $_2$ N), 3.60 (t, 3J = 6.0 Hz, 2H, NHCH $_2$ C H_2 N), 4.16 (m, 1H, $C^{\alpha}H$), 4.32 (br, 1H, 11-H dibenzazepine-11-yl), 7.06 (m, 1H, H_{ar}), 7.10 (m, 1H, **H**_{ar}), 7.22 (m, 2H, Ph), 7.25 (m, 1H, **H**_{ar}), 7.33 (m, 1H, **H**_{ar}), 7.37 (m, 8H, Ph), 7.39 (m, 1H, H_{ar}), 7.41 (m, 1H, H_{ar}), 7.49 (m, 1H, H_{ar}), 7.75 (m, 1H, H_{ar}), 7.84 (br, 3H, N H_{3}^{+}), 7.99 (d, ${}^{3}J$ = 8.0 Hz, 1H, N^{α}H), 8.25 (t, ${}^{3}J$ = 5.8 Hz, 1H, CONHC₂H₄N), 8.61 and 9.15 (br, 2H, $N^{\omega}H_{2}$), 9.47 (t, ${}^{3}J$ = 5.4 Hz, 1H, $N^{\delta}H$), 10.36 (s, 1H, C(O)NH lactam), 12.30 (s, 1H, $N^{\omega'}H$) ppm; ¹³C NMR (150 MHz, DMSO-d₆, HSQC): δ = 23.2 (COCH₂CH₃), 23.2 (C-3/4 cyclopentyl), 24.2 (C^{γ}), 25.2 ($CH_2(CH_2)_2NH_2$), 26.6 ($CH_2CH_2NH_2$), 28.7 (C^{β}), 35.9 (C(O)CH₂), 36.1 (NHCH₂CH₂N), 37.2 (C-2/5 cyclopentyl), 38.5 (NCOCH₂-cyclopentyl), 38.5 (CH_2NH_2), 39.6 (NHCH₂ CH_2N), 40.5 (C^{δ}), 40.5 and 45.3 (C-2/6 piperazine), 42.8 $(CH_2CON^{\alpha}H)$, 44.0 (C-1 cyclopentyl), 50.6 and 51.2 (C-3/5 piperazine), 51.8 (C^{α}) , 73.6 (C-11 dibenzazepine-11-yl), 121.3 (*C*_{ar}H), 122.6 (Ph), 123.7 (*C*_{ar}H), 126.6 (Ph), 127.8 (C_{ar}H), 128.1 (C_{ar}H), 128.4 (C_{ar}H), 128.9 (Ph), 129.9 (C_{ar}H), 130.5 (C_{ar}H), 131.3 (C_{ar}H), 131.6 (*C*_{ar}), 136.1 (*C*_{ar}), 136.5 (*C*_{ar}), 141.5 (*C*_{ar}), 152.5 (N(*C*ONPh)₂), 153.1 (N*C*(N)N), 167.9 (**C**=O lactam), 169.9 (**C**ON), 171.2 (**C**ON^{α}H), 171.9 (**C**ONHC₂H₄N), 175.3 $(CO(CH_2)_5)$ ppm; IR (neat): $\upsilon' = 3298$, 2954, 1665, 1447, 1179, 1130 cm⁻¹; MS (ES, +p) m/z (%): 1010 (32) $[M+H]^+$, 803 (70) $[MH-207]^+$; RP-HPLC: 100 % (t_R = 15.2 min, k' = 4.6); anal. calcd. for C₅₅H₆₈N₁₂O₇·5 H₂O·5 HCl: C 51.54, H 6.53, N 13.12 %, found: C 51.23, H 6.53, N 13.00%; C₅₅H₆₈N₁₂O₇ (1009.20).

(2*S*)-*N*^{ω}-(8-Amino-3,6-dioxaoctanoyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^{α}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl})piperazin-1-yl]ethyl}cyclopentyl)-acetyl]argininamide ((*S*)-3.57). Mp 142-145 °C; ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.77 (m, 2H, C^{β}*H*₂), 1.63 (m, 2H, C^{γ}*H*₂), 2.20 and 2.29 (m, 4H, 3/5-H piperazine), 2.27 and 2.43 (m, 2H, C*H*₂CON^{α}H), 2.47 (m, 2H, >NCOC*H*₂-cyclopentyl), 3.12 (t, ³*J* = 5.0 Hz, 2H, OCH₂C*H*₂NH₂), 3.20 (m, 2H, C^{δ}*H*₂), 3.37-3.51 (m, 4H, 2/6-H piperazine), 3.45 and 3.54 (m, 2H, NHC*H*₂CH₂N<), 3.70 (m, 2H, OC*H*₂CH₂NH₂), 3.72 and 3.78 (m, 4H, O(C*H*₂)₂O), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.25 (s, 2H, =NCOCH₂O), 4.40 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, *H*_{ar}), 7.19 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.84 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO**C**H₂-cyclopentyl), 40.6 (OCH₂**C**H₂NH₂), 41.1 (NHCH₂**C**H₂N<), 42.1 (C^{δ}), 44.6 $(CH_2CON^{\alpha}H)$, 45.8 (C-1 cyclopentyl), 47.1 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 67.9 (O $CH_2CH_2NH_2$), 71.1 (=NCO CH_2O), 71.3 and 72.1 (O(CH₂)₂O), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar}H), 124.1 (Ph), 126.1 (C_{ar}H), 128.1 (**C**_{ar}H), 129.4 (**C**_{ar}H), 129.7 (**C**_{ar}H), 130.2 (Ph), 130.2 (**C**_{ar}), 131.3 (**C**_{ar}H), 131.9 (C_{ar}H), 132.4 (C_{ar}), 133.3 (C_{ar}H), 136.9 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 154.8 (NC(N)N), 171.6 (C=O lactam), 172.8 (CON<), 174.0 (=NCOCH₂O), 174.5 $(CONH(CH_2)_2N<)$, 174.7 $(CON^{\alpha}H)$ ppm; MS (LSI, MeOH/gly) m/z (%): 1042 (100) $[M+H]^{\dagger}$; HRMS (LSI-MS): m/z $[M+H]^{\dagger}$ calcd. for C₅₅H₆₉N₁₂O₉: 1041.5310, found: 1041.5272; RP-HPLC: 93 % ($t_{\rm R}$ = 15.2 min, k' = 4.6); C₅₅H₆₈N₁₂O₉ (1040.52).

$(2S)-N^{\omega}$ -(15-Amino-4,7,10,13-tetraoxapentadecanoyl)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.58). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): δ = 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.52 and 1.74 (m, 4H, 2/5-H cyclopentyl), 1.50 and 1.69 (m, 2H, $C^{\beta}H_{2}$), 1.60 (m, 2H, $C^{\gamma}H_2$), 2.18 and 2.25 (m, 4H, 3/5-H piperazine), 2.27 and 2.43 (m, 2H, C H_2 CON^{α}H), 2.47 (m, 2H, >NCOCH₂-cyclopentyl), 2.72 (t, ³J = 5.9 Hz, 2H, =NCOCH₂CH₂O), 3.12 (t, ³J = 5.0 Hz, 2H, OCH₂CH₂NH₂), 3.17 (m, 2H, $C^{\delta}H_{2}$), 3.35-3.51 (m, 4H, 2/6-H piperazine), 3.44 and 3.53 (m, 2H, NHCH₂CH₂N<), 3.62 and 3.64 (m, 12H, (O(CH₂)₂O)₃), 3.70 (t, ³J = 5.0 Hz, 2H, OC H_2 CH₂NH₂), 3.78 (t, ³J = 5.9 Hz, 2H, =NCOCH₂C H_2 O), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.36 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.40 (m, 1H, H_{ar}), 7.44 (m, 1H, *H*_{ar}), 7.52 (m, 1H, *H*_{ar}), 7.83 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 29.9 (C^{β}), 38.4 (NHCH₂CH₂N<), 38.4 (=NCOCH₂CH₂O), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 40.6 (OCH₂CH₂NH₂), 41.1 (NHCH₂CH₂N<), 42.0 (C°), 44.7 (CH₂CON^{α}H), 45.8 (C-1 cyclopentyl), 47.2 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 66.9 (=NCOCH₂CH₂O), 67.8 (OCH₂CH₂NH₂), 71.1 and 71.3 and 71.5 ((O(CH₂)₂O)₃), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.2 (*C*_{ar}H), 129.6 (*C*_{ar}H), 130.2 (Ph), 131.3 (*C*_{ar}H), 131.9 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.2 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.0 (N*C*(N)N), 171.7 (*C*=O lactam), 172.7 (*C*ON<), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^{α}H), 175.4 (=N**C**O(CH₂)₂O) ppm; MS (LSI, MeOH/gly) m/z (%): 1144 (100) $[M+H]^{+}$; HRMS (LSI-MS): $m/z [M+H]^{+}$ calcd for : , found: ; RP-HPLC: 93 % ($t_{\rm R}$ = 15.4 min, k' = 4.7); C₆₀H₇₈N₁₂O₁₁ (1142.59).

$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-{5-oxo-5-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]pentanoyl}argininamide$

((S)-3.59). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.51$ (m, 2H, C^YH₂), 1.51 and 1.72 (m, 2H, C^β*H*₂), 1.81 (m, 2H, >NCOCH₂C*H*₂CH₂CO), 2.23 (t, ³*J* = 7.1 Hz, 2H, >NCO(CH₂)₂CH₂CO), 2.28 and 2.33 (m, 4H, 3/5-H piperazine), 2.34 (m, 2H, >NCOC**H**₂(CH₂)₂CO), 3.02 (m, 2H, C^δ**H**₂), 3.37 and 3.43 (m, 4H, 2/6-H piperazine), 3.46 and 3.57 (m, 2H, NHCH₂CH₂N<), 3.77 (m, 2H, NHCH₂CH₂N<), 4.24 (m, 1H, C^αH), 4.48 (br, 1H, 11-H dibenzazepin-11-yl), 7.15 (m, 2H, H_{ar}), 7.21 (m, 2H, H_{ar}), 7.33 (m, 5H, Ph), 7.38 (m, 5H, Ph), 7.42 (m, 1H, **H**_{ar}), 7.46 (m, 1H, **H**_{ar}), 7.53 (m, 1H, **H**_{ar}), 7.86 (d, ³J = 7.6 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 22.2 $(>NCOCH_2CH_2CH_2CO), 26.2 (C^{\gamma}), 30.0 (C^{\beta}), 33.1 (>NCOCH_2(CH_2)_2CO),$ 35.7 (>NCO(CH₂)₂CH₂CO), 38.4 (NHCH₂CH₂N<), 41.3 (NHCH₂CH₂N<), 41.9 (C⁶), 46.0 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 54.1 (C^{α}), 75.9 (C-11 dibenzazepine-11yl), 123.0 (*C*_{ar}H), 124.2 (Ph), 126.2 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.6 (*C*_{ar}H), 129.9 (*C*_{ar}H), 130.2 (Ph), 130.5 (*C*_{ar}H), 131.5 (*C*_{ar}H), 132.1 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.4 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (Car), 154.5 (N(CONPh)₂), 158.6 (NC(N)N), 171.2 (C=O lactam), 173.2 (CON<), 174.6 $(CONH(CH_2)_2N<)$, 175.5 $(CON^{\alpha}H)$ ppm; MS (ES, +p) m/z (%): 842 (50) $[M+H]^+$, 422 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for $C_{45}H_{52}N_{11}O_6$: 842.4102, found: 842.4089; RP-HPLC: 99 % ($t_{\rm R}$ = 14.3 min, k' = 4.3); C₄₅H₅₁N₁₁O₆ (841.40).

$(2S)-N^{\omega}-\{4-[2-(2-Aminoethyl]aminoethyl]aminocarbonylbutanoyl\}-N-[2-(3,5-dioxo-10,10)]-N-[2-(3,5-d$

1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{α} -{5-oxo-5-[4-(6-oxo-6,11-dihydro-5*H*-di**benzo**[b,e]azepin-11-yl)piperazin-1-yl]pentanoyl}argininamide ((S)-3.60). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.52$ and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_2$), 1.81 (m, 2H, >NCOCH₂CH₂CH₂CO), 1.93 (p, ³J = 7.4 Hz, 2H, =NCOCH₂CH₂CH₂CO), 2.23 (t, ${}^{3}J$ = 7.0 Hz, 2H, >NCO(CH₂)₂CH₂CO), 2.23 and 2.29 (m, 4H, 3/5-H piperazine), 2.29 and 2.35 (m, 2H, >NCOCH₂(CH₂)₂CO), 2.31 and 2.51 (m, 2H, t, ³J = 7.4 Hz, 2H, =NCOC H_2 CH₂CH₂CO), 3.16 (m, 2H, C^{δ} H_2), 3.22 (t, ³J = 5.7 Hz, 2H, NHCH₂C H_2 NH), 3.33 (t, ${}^{3}J$ = 6.0 Hz, 2H, NHCH₂CH₂NH₂), 3.36 (m, 4H, 2/6-H piperazine), 3.40 (t, ${}^{3}J$ = 6.0 Hz, 2H, NHC H_2 CH₂NH₂), 3.47 and 3.53 (m, 2H, NHC H_2 CH₂N<), 3.51 (t, ³J = 5.7 Hz, 2H, NHCH₂CH₂NH), 3.77 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.42 (br, 1H, 11-H dibenzazepin-11-yl), 7.15 (m, 2H, *H*_{ar}), 7.21 (m, 2H, *H*_{ar}), 7.33 (m, 5H, Ph), 7.38 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.53 (m, 1H, H_{ar}), 7.86 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): $\delta = 20.9$ (=NCOCH₂CH₂CH₂CONH), 22.2 (>NCOCH₂CH₂CH₂CO), 25.4 (C^γ), 29.9 (C^β), 33.1 (>NCOCH₂(CH₂)₂CO), 35.3 and 36.8 (=NCOCH₂CH₂CH₂CONH), 35.7 (>NCO(CH₂)₂CH₂CO), 36.9 (NHCH₂CH₂NH₂), 37.1 (CONH CH_2CH_2NH), 38.4 (NH $CH_2CH_2N<$), 41.3 (NHCH₂ $CH_2N<$), 41.9 (C°), 45.7 (NHCH₂CH₂NH₂), 46.2 (C-2/6 piperazine), 49.5 (CONHCH₂CH₂NH), 52.2 and 52.6 (C-3/5 piperazine), 54.0 (C^{α}), 75.9 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar} H), 124.2 (Ph), 126.2 (C_{ar}H), 128.2 (C_{ar}H), 129.4 (C_{ar}H), 129.8 (C_{ar}H), 130.2 (Ph), 130.3 (C_{ar}H), 131.4 (C_{ar}H), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.1

(N*C*(N)N), 171.5 (*C*=O lactam), 173.2 (*C*ON<), 174.5 (*C*ONH(CH₂)₂N<), 175.5 (*C*ON^{α}H), 176.6 and 176.7 (=N*C*O(CH₂)₃*C*ONH) ppm; MS (ES, +p) *m/z* (%): 1041 (10) [*M*+H]⁺, 521 (80) [*M*+2H]²⁺, 348 (100) [*M*+3H]³⁺; HRMS (LSI-MS): *m/z* [*M*+H]⁺ calcd. for C₅₄H₆₉N₁₄O₈: 1041.5423, found: 1041.5410; RP-HPLC: 99 % (*t*_R = 11.8 min, *k*['] = 3.4); C₅₄H₆₈N₁₄O₈ (1040.53).

(2S)-N^α-[2-(1-{2-Oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)-

piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginylphenylalaninamide (3.61). Mp 148 °C; ¹H NMR (400 MHz, CD₃OD, HSQC): δ = 1.47 (m, 2H, C^γH₂), 1.50 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.57 and 1.65 (m, 2H, $C^{\beta}H_{2}$ Orn), 2.28 and 2.47 (m, 2H, $CH_2CON^{\alpha}H$), 2.30 (m, 4H, 3/5-H piperazine), 2.45 and 2.50 (m, 2H, >NCOC H_2 -cyclopentyl), 2.87 and 3.17 (m, 2H, C^{β} H_2 Phe-amide), 3.09 (t, ³J = 6.9 Hz, 2H, $C^{\delta}H_{2}$), 3.34-3.55 (m, 4H, 2/6-H piperazine), 4.21 (m, 1H, $C^{\alpha}H$ Orn), 4.43 (m, 1H, 11-H dibenzazepine-11-yl), 4.58 (m, 1H, C^α**H** Phe-amide), 7.15 (m, 4H, Ph), 7.22 (m, 3H), 7.30 (m, 1H, **H**_{ar}), 7.43 (m, 3H), 7.52 (m, 1H, **H**_{ar}), 7.85 (m, 1H, **H**_{ar}) ppm; ¹³C NMR (100 MHz, CD₃OD, HSQC): δ = 23.2 (C-3/4 cyclopentyl), 24.6 (C^{γ}), 28.4 (C^{β} Orn), 37.2 (C^{β} Phe-amide), 38.1 and 38.2 (C-2/5 cyclopentyl), 38.4 (>NCO CH_2 -cyclopentyl), 40.5 (C^{δ}), 43.1 ($CH_2CON^{\alpha}H$), 44.3 (C-1 cyclopentyl), 45.5 (C-2/6 piperazine), 50.8 and 51.2 (C-3/5 piperazine), 53.0 (C^{α} Orn), 54.3 (C^{α} Phe-amide), 74.4 (C-11 dibenzazepine-11yl), 121.6 (*C*_{ar}H), 124.8 (*C*_{ar}H), 126.3 (Ph), 128.0 (Ph), 128.4 (*C*_{ar}H), 129.0 (Ph), 130.0 (C_{ar}H), 130.6 (C_{ar}H), 131.0 (C_{ar}), 132.0 (C_{ar}H), 135.5 (C_{ar}), 137.4 (C_{ar}), 157.2 (NC(N)N), 170.1 (**C**=O lactam), 171.5 (**C**ON<), 172.5 (**C**ON^αH Phe-amide), 173.8 (**C**ON^αH Orn), 174.7 (**C**ONH₂) ppm; MS (LSI, MeOH/gly) m/z (%): 765 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₄₂H₅₄N₉O₅: 764.4248, found: 764.4247; RP-HPLC: 98 % (t_R = 14.9 min, k' = 4.5; $C_{42}H_{53}N_9O_5$ (763.42).

$(2S)-N^{\omega}-[(3-Aminopropyl)aminocarbonyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-(6-0x0-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]arginyl-$

phenylalaninamide (3.62). ¹H NMR (400 MHz, CD₃OD, HSQC): δ = 1.50 (m, 2H, C^γH₂), 1.50 and 1.65 (m, 2H, C^βH₂ Orn), 1.50 and 1.71 (m, 4H, 2/5-H cyclopentyl), 1.64 (m, 4H, 3/4-H cyclopentyl), 1.88 (p, ³J = 7.2 Hz, 2H, NHCH₂CH₂CH₂NH₂), 2.28 and 2.47 (m, 2H, CH₂CON^αH), 2.28 (m, 4H, 3/5-H piperazine), 2.46 (m, 2H, >NCOCH₂-cyclopentyl), 2.87 and 3.17 (m, 2H, C^βH₂ Phe-amide), 2.98 (t, ³J = 7.5 Hz, 2H, NH(CH₂)₂CH₂NH₂), 3.20 (m, 2H, C^δH₂), 3.30 (m, 2H, NHCH₂(CH₂)₂NH₂), 3.35-3.54 (m, 4H, 2/6-H piperazine), 4.19 (m, 1H, C^αH Orn), 4.40 (m, 1H, 11-H dibenzazepine-11-yl), 4.59 (m, 1H, C^αH Pheamide), 7.11-7.26 (m, 7H), 7.30 (m, 1H, H_{ar}), 7.35 (m, 1H, H_{ar}), 7.43 (m, 2H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.85 (m, 1H, H_{ar}) ppm; ¹³C NMR (100 MHz, CD₃OD, HSQC): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.5 (C^γ), 28.7 (NHCH₂CH₂CH₂NH₂), 29.6 and 29.7 (C^β Orn), 37.6 (NHCH₂(CH₂)₂NH₂), 38.3 (NH(CH₂)₂CH₂NH₂), 38.4 and 38.5 (C^β Phe-amide), 39.4 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 41.8 (C^δ), 44.4 (CH₂CON^αH), 45.8 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 54.3 and 54.4 (C^{α} Orn), 55.7 (C^{α} Phe-amide), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar} H), 126.2 (C_{ar} H), 127.7 (C_{ar} H), 128.8 (C_{ar} H), 129.4 (Ph), 129.7 (C_{ar} H), 130.3 (Ph), 131.4 (C_{ar}), 132.0 (C_{ar} H), 132.4 (C_{ar}), 133.3 (C_{ar} H), 136.9 (C_{ar}), 138.8 (C_{ar}), 155.8 (NC(N)N), 156.1 (=NCONH), 171.6 (C=O lactam), 172.8 (CON<), 173.9 (CON^{α}H Phe-amide), 175.3 (CON^{α}H Orn), 176.0 (CONH₂) ppm; MS (LSI, MeOH/gly) m/z (%): 865 (100) [M+H]⁺; HRMS (LSI-MS): m/z [M+H]⁺ calcd. for C₄₆H₆₂N₁₁O₆: 864.4885, found: 864.4899; RP-HPLC: 97 % (t_{R} = 13.1 min, k' = 3.9); C₄₆H₆₁N₁₁O₆ (863.48).

General procedure for the preparation of the potential radioligands (S)-3.63-(S)-3.84:²¹

The pertinent amine precursor (1 eq) and NEt₃ (2.5 eq) were dissolved in CH₃CN (1 mL/20 μ mol) followed by the addition of the corresponding active ester (1 eq) in CH₃CN (0.5 mL/20 μ mol). The reaction was stopped by addition of 10 % aq. TFA (corresponding to 2-3 eq of TFA) after an incubation period of 16 h at rt. Purification with preparative HPLC and lyophilization afforded the products as white fluffy solids in yields from 65 to 90 %.

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0xo-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2$ (6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -[4-(2-propanoylaminoethyl)aminocarbonylbutanoyl]argininamide **(**(*S*)-**3.63).** Mp 127 °C; ¹H NMR (600 MHz, CD₃OD, HSQC): $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.52 and 1.75 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_{2}$), 1.91 (p, ³J = 7.3 Hz, 2H, COCH₂CH₂CH₂CO), 2.18 and 2.25 (m, 4H, 3/5-H piperazine), 2.19 (quat, ³J = 7.6 Hz, 2H, $COCH_2CH_3$), 2.24 (t, ³J = 7.3 Hz, 2H, $COCH_2(CH_2)_2CONH$), 2.25 and 2.42 (m, 2H, $CH_2CON^{\alpha}H$), 2.47 (m, 2H, >NCOC H_2 -cyclopentyl), 2.47 (m, 2H, CO(CH₂)₂C H_2CONH), 3.17 (m, 2H, $C^{\delta}H_2$), 3.27 (m, 4H, CONH(C H_2)₂NH), 3.33-3.53 (m, 4H, 2/6-H piperazine), 3.46 and 3.54 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.34 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 6H, Ph), 7.44 (m, 1H, H_{ar}), 7.51 (m, 1H, H_{ar}), 7.83 (d, ³J = 7.6 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): $\delta = 10.4$ (COCH₂CH₃), 21.4 (COCH₂CH₂CH₂CO), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 30.2 (COCH₂CH₃), 35.6 (COCH₂(CH₂)₂CONH), 36.9 (CO(CH₂)₂CH₂CONH), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.6 (>NCOCH₂-cyclopentyl), 40.0 and 40.2 $(CONH(CH_2)_2NH)$, 41.2 $(NHCH_2CH_2N<)$, 42.0 (C^{δ}) , 44.7 $(CH_2CON^{\alpha}H)$, 45.9 (C-1)cyclopentyl), 47.1 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.3 (C_{ar}H), 129.7 (C_{ar}H), 130.2 (Ph), 131.3 (C_{ar}H), 131.8 (C_{ar}H), 132.4 (C_{ar}), 133.2 (C_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 154.9 (N*C*(N)N), 172.8 (*C*ON<), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.4 (**C**O(CH₂)₃CONH), 177.4 (**C**OCH₂CH₃) ppm; MS

(ES, +p) m/z (%): 1108 (100) $[M+H]^+$; HRMS (LSI-MS): m/z $[M+H]^+$ calcd. for $C_{59}H_{74}N_{13}O_9$: 1108.5732, found: 1108.5712; RP-HPLC: 95 % (t_R = 17.0 min, k' = 5.3); $C_{59}H_{73}N_{13}O_9$ (1107.57).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-1,2],2-(1-1,2),2$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -[4-(3-propanoylaminopropyl)aminocarbonylbutanoyl]argininamide ((S)-**3.64).** ¹H NMR (600 MHz, CD₃OD): δ = 1.11 (COCH₂CH₃), 1.51 and 1.74 (m, 2H, C^βH₂), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.62 (m, 2H, $C^{\gamma}H_2$), 1.66 (m, 2H, CONHCH₂CH₂CH₂NH), 1.92 (p, ³J = 7.3 Hz, 2H, COCH₂CH₂CH₂CONH(CH₂)₃NH), 2.18 and 2.25 (m, 4H, 3/5-H piperazine), 2.20 (m, 2H, $COCH_2(CH_2)_2CONH(CH_2)_3NH),$ $COCH_2CH_3),$ 2.27 (m, 2H, 2.48 (m, 2H, CO(CH₂)₂CH₂CONH(CH₂)₃NH), 3.18 (m, 6H, CONHCH₂CH₂CH₂CH₃, C^oH₂), 3.34-3.48 (m, 4H, 2/6-H piperazine), 3.54 (m, 2H, NHCH₂CH₂N), 3.78 (m, 2H, NHCH₂CH₂N), 4.25 (m, 1H, $C^{\alpha}H_{2}$), 4.41 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 1H, H_{ar}), 7.15 (m, 1H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.85 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 10.5 (COCH₂CH₃), 21.4 (=NCOCH₂CH₂CH₂CONH), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 $(\boldsymbol{C}^{\beta}),$ $(\boldsymbol{C}^{\gamma}),$ 28.8 $(CONHCH_2CH_2CH_2NH),$ 30.0 30.2 $(COCH_2CH_3),$ 35.6 $(=NCOCH_2(CH_2)_2CONH(CH_2)_3NH),$ 36.8 $(=NCO(CH_2)_2CH_2CONH(CH_2)_3NH),$ 37.7 (CONHCH₂CH₂CH₂NH), 38.2 (CONHCH₂CH₂CH₂NH), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.5 and 39.7 (>NCOCH₂-cyclopentyl), 41.2 (NHCH₂CH₂N<), 42.0 (\mathbf{C}^{δ}) , 44.7 (\mathbf{C} H₂CON^{α}H), 45.8 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (\boldsymbol{C}_{ar} H), 124.2 (Ph), 126.1 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.3 (*C*_{ar}H), 129.7 (*C*_{ar}H), 130.2 (Ph), 131.4 (*C*_{ar}H), 132.0 (C_{ar}H), 132.4 (C_{ar}), 133.3 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.0 172.8 (*C*ON^αH), 174.5 (*C*ONHC₂H₄N<), (NC(N)N),174.7 (*C*ON<), 175.9 (=NCO(CH₂)₃CONH), 176.4 (=NCO(CH₂)₃CONH), 177.2 (NHCOCH₂CH₃) ppm; MS (ES, +p) m/z (%): 1122 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd for $C_{60}H_{76}N_{13}O_9$: 1122.5889, found: 1122.5834; RP-HPLC: 99 % ($t_{\rm R}$ = 14.7 min, k' = 4.4); $C_{60}H_{75}N_{13}O_9$ (1121.58).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-*N*^ω-{4-[2-(2-propanoylaminoethyl]aminoethyl]aminocarbonylbutanoyl}argininamide ((*S*)-3.65). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.12 (t, ³*J* = 7.6 Hz, 3H, COCH₂C*H*₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.52 and 1.75 (m, 2H, C^β*H*₂), 1.60 (m, 2H, C^γ*H*₂), 1.93 (p, ³*J*

= 7.4 Hz, 2H, COCH₂CH₂CH₂CO), 2.20 and 2.28 (m, 4H, 3/5-H piperazine), 2.25 (m, 2H, COCH₂CH₃), 2.26 and 2.43 (m, 2H, CH₂CON^{α}H), 2.32 (t, ³J = 7.4 Hz, 2H, COCH₂(CH₂)₂CONH), 2.48 (m, 2H, >NCOCH₂-cyclopentyl), 2.51 (m, 2H,

CO(CH₂)₂CH₂CONH), 3.16 (m, 4H, 2 x CONHCH₂CH₂NH), 3.18 (m, 2H, C^δH₂), 3.35-3.52 (m, 4H, 2/6-H piperazine), 3.45 and 3.54 (m, 2H, NHCH₂CH₂N<), 3.46 (m, 4H, CONHCH₂CH₂NH), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.39 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.84 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 10.0 (COCH₂CH₃), 21.0 (COCH₂CH₂CH₂CO), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^Y), 29.8 (COCH₂CH₃), 30.0 (C^{β}) , 35.3 (CO CH_2 (CH₂)₂CONH), 36.8 (CO(CH₂)₂ CH_2 CONH), 37.3 (2 x CONH CH_2 CH₂NH), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 41.2 (NHCH₂CH₂N<), 42.0 (C^{δ}), 44.7 (CH₂CON^{α}H), 45.8 (C-1 cyclopentyl), 47.1 (C-2/6 piperazine), 49.3 (2 x CONHCH₂CH₂NH), 52.2 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.3 (**C**_{ar}H), 129.7 (**C**_{ar}H), 130.2 (Ph), 131.3 (**C**_{ar}H), 131.9 (**C**_{ar}H), 132.4 (**C**_{ar}), 133.3 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.0 (N*C*(N)N), 171.6 (*C*=O lactam), 172.8 (**C**ON<), 174.6 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 176.6 (CO(CH₂)₃**C**ONH), 176.7 $(CO(CH_2)_3CONH)$, 178.7 $(COCH_2CH_3)$ ppm; MS (ES, +p) m/z (%): 576 (65) $[M+2H]^{2+}$, 385 (100) $[M+3H]^{3+}$; HRMS (ESI-MS): $m/z [M+H]^+$ calcd. for C₆₁H₇₉N₁₄O₉: 1151.6149, found: 1151.6144; RP-HPLC: 98 % ($t_{\rm R}$ = 14.5 min, k' = 4.4); C₆₁H₇₈N₁₄O₉ (1150.61).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-oxo-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-\{2-ix)ethyl]-N^{\alpha}-[2-(1-[2-ix)ethyl]$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-N^{\u03c4}-(18-propanoylamino-4-oxo-9,12,15-trioxa-5-azaoctadecanoyl)argininamide ((S)-3.66). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.52 (m, 2H, $C^{\beta}H_{2}$), 1.58 (m, 2H, $C^{\gamma}H_{2}$), 1.73 (m, 4H, (NHCH₂(CH₂CH₂O)₂), 2.25 and 2.42 (m, 2H, CH₂CON^αH), 2.16-2.28 (m, 4H, 3/5-H piperazine), 2.17 (quat, ³J = 7.6 Hz, 2H, COCH₂CH₃), 2.48 (m, 2H, >NCOCH₂-cyclopentyl), 2.55 and 2.69 (m, 4H, =NCO(C H_2)₂CONH), 3.16 (m, 2H, C^{δ} H_2), 3.23 (m, 4H, (NHC H_2 (CH₂)₂O)₂), 3.37-3.51 (m, 4H, 2/6-H piperazine), 3.44 and 3.56 (m, 2H, NHCH₂CH₂N<), 3.50 (m, 4H, (NH(CH₂)₂CH₂O)₂), 3.56 and 3.62 (m, 8H, (O(CH₂)₂O)₂), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α*H*), 4.37 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, *H*_{ar}), 7.20 (m, 2H, **H**_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, **H**_{ar}), 7.44 (m, 1H, **H**_{ar}), 7.51 (m, 1H, H_{ar}), 7.83 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 10.6 $(COCH_2CH_3)$, 24.6 and 24.7 (C-3/4 cyclopentyl), 25.4 (C^{γ}) , 30.0 (C^{β}) , 30.3 $(COCH_2CH_3)$, 30.4 (NHCH₂CH₂CH₂O), 30.4 (=NCOCH₂CH₂CO), 33.0 (=NCOCH₂CH₂CO), 37.9 (NHCH₂(CH₂)₂O), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 $(>NCOCH_2-cyclopentyl)$, 41.2 $(NHCH_2CH_2N<)$, 42.1 (C°) , 44.7 $(CH_2CON^{\alpha}H)$, 45.9 (C-1)cyclopentyl), 47.2 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.7 (C^{α}), 54.8 (CH₃CH₂CONHCH₂(CH₂)₂O), 69.9 ((NH(CH₂)₂CH₂O)₂), 71.2 and 71.5 ((O(CH₂)₂O)₂), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (*C*_{ar}H), 124.2 (Ph), 126.1 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.2 (*C*_{ar}), 129.7 (*C*_{ar}H), 130.2 (Ph), 131.3 (*C*_{ar}H), 131.9 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.2 (*C*_{ar}H), 136.9

 (C_{ar}) , 137.8 (C_{ar}) , 154.5 $(N(CONPh)_2)$, 154.9 (NC(N)N), 172.8 $(CON^{\alpha}H)$, 173.7 $(=NCO(CH_2)_2CO)$, 174.5 $(CONH(CH_2)_2N<)$, 174.7 (CON<), 176.3 $(=NCO(CH_2)_2CO)$, 177.0 $(COCH_2CH_3)$ ppm; MS (ES, +p) m/z (%): 628 (100) $[M+2H]^{2+}$; HRMS (ESI-MS): m/z $[M+H]^+$ calcd. for $C_{66}H_{88}N_{13}O_{12}$: 1254.6670, found: 1254.6670; RP-HPLC: 99 % ($t_R = 17.7 \text{ min}$, k' = 5.6); $C_{66}H_{87}N_{13}O_{12}$ (1253.66).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -[(2-propanoylaminoethyl)aminocarbonyl]argininamide ((S)-**3.67).** ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.73 (m, 2H, $C^{\beta}H_{2}$), 1.57 (m, 2H, $C^{\gamma}H_{2}$), 2.19 (quat, ${}^{3}J$ = 7.6 Hz, 2H, COC H_{2} CH₃), 2.22 and 2.29 (m, 4H, 3/5-H piperazine), 2.28 and 2.43 (m, 2H, CH₂CON^αH), 2.48 (m, 2H, >NCOC H_2 -cyclopentyl), 3.14 (m, 2H, C⁶ H_2), 3.27 (m, 2H, NHC H_2 CH₂NHCOCH₂CH₃), 3.29 (m, 2H, NHCH₂CH₂NHCOCH₂CH₃), 3.44 (br, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHC**H**₂CH₂N<), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^α**H**), 4.40 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.45 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.85 (d, ³J = 7.5 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 10.4 (COCH₂CH₃), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.6 (C^{γ}), 30.1 (C^{β}), 30.2 (COCH₂CH₃), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO*C*H₂-cyclopentyl), 39.9 $(NHCH_2CH_2COCH_2CH_3)$, 40.7 $(NHCH_2CH_2NHCOCH_2CH_3)$, 41.2 $(NHCH_2CH_2N<)$, 41.9 (C°) , 44.7 (*C*H₂CON^αH), 45.9 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar} H), 124.1 (Ph), 126.2 (C_{ar}H), 128.1 (C_{ar}H), 129.5 (C_{ar}H), 129.8 (C_{ar}H), 130.2 (Ph), 130.3 (C_{ar}), 131.4 (C_{ar}H), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.6 (=NCONH), 155.7 (NC(N)N), 171.6 (C=O lactam), 172.8 (CON<), 174.5 (CONH(CH₂)₂N<), 174.7 ($CON^{\alpha}H$), 177.5 ($COCH_2CH_3$) ppm; MS (ES, +p) m/z (%): 1039 (45) [M+H]⁺, 520 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₅H₆₈N₁₃O₈: 1038.5314, found: 1038.5273; RP-HPLC: 100 % (t_{R} = 17.1 min, k' = 5.3); C₅₅H₆₇N₁₃O₈ (1037.52).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-*N*^ω-[(3-propanoylaminopropyl)aminocarbonyl]argininamide ((*S*)-3.68). ¹H NMR (600 MHz, CD₃OD): δ = 1.11 (t, ³*J* = 7.6 Hz, 3H, COCH₂C*H*₃), 1.51 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.52 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.74 (m, 2H, C^β*H*₂), 1.59 (m, 2H, C^γ*H*₂), 1.67 (m, 2H, NHCH₂C*H*₂CH₂NH), 2.18 (quat, ³*J* = 7.6 Hz, 2H, COC*H*₂CH₃), 2.26 and 2.44 (m, 2H, C*H*₂CON^αH), 2.26 and 2.35 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOC*H*₂-cyclopentyl), 3.14 (m, 2H, C^δ*H*₂), 3.19 (m, 4H, NHC*H*₂CH₂CH₂NH), 3.38-3.59 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHC*H*₂CH₂N<), 3.78 (m, 2H, NHCH₂C*H*₂N<), 4.25 (m, 1H, C^α*H*), 4.47 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, H_{ar}), 7.46 (m, 1H, H_{ar}), 7.53 (m, 1H, H_{ar}), 7.86 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD): $\delta = 10.5$ (COCH₂CH₃), 24.6 (C-3/4 cyclopentyl), 25.7 (C^{V}), 30.1 (C^{β}), 30.2 (COCH₂CH₃), 30.4 (NHCH₂CH₂CH₂NH), 38.2 and 39.4 (NHCH₂CH₂CH₂NH), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 41.2 (NHCH₂CH₂N<), 41.8 (C^{δ}), 44.6 (CH₂CON^{α}H), 45.8 (C-1 cyclopentyl), 46.9 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11yl), 123.0 (C_{ar} H), 124.2 (Ph), 126.2 (C_{ar} H), 128.2 (C_{ar} H), 129.5 (C_{ar} H), 129.9 (C_{ar} H), 130.2 (Ph), 130.4 (C_{ar}), 131.5 (C_{ar} H), 132.0 (C_{ar} H), 132.4 (C_{ar}), 133.4 (C_{ar} H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.4 (=NCONH), 155.7 (NC(N)N), 171.4 (C=O lactam), 172.8 (CON<), 174.5 ($CONH(CH_{2})_2N<$), 174.7 (CON^{α} H), 177.2 ($COCH_2CH_3$) ppm; MS (LSI, MeOH/gly) m/z (%): 1053 (100) [M+H]⁺, 846 (30); HRMS (LSI-MS): m/z [M+H]⁺ calcd. for C₅₆H₇₀N₁₃O₈ (1051.54).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-$ (6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -[(4-propanoylaminobutyl)aminocarbonyl]argininamide ((S)-3.69). Mp 127-130 °C; ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.10 (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.51 (m, 4H, NHCH₂(CH₂)₂CH₂NH), 1.52 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.74 (m, 2H, $C^{\beta}H_{2}$), 1.59 (m, 2H, $C^{\gamma}H_{2}$), 2.17 (quat, ³J = 7.6 Hz, 2H, COC H_{2} CH₃), 2.26 and 2.44 (m, 2H, CH₂CON^αH), 2.26 and 2.35 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOCH₂cyclopentyl), 3.15 (m, 2H, C^oH₂), 3.16 (m, 4H, NHCH₂(CH₂)₂CH₂NH), 3.38-3.55 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.50 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, H_{ar}), 7.19 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.36 (m, 5H, Ph), 7.43 (m, 1H, H_{ar}), 7.47 (m, 1H, H_{ar}), 7.53 (m, 1H, H_{ar}), 7.87 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 10.6 (COCH₂ CH_3), 24.6 (C-3/4 cyclopentyl), 25.7 (**C**^γ), 27.7 and 27.8 (NHCH₂(**C**H₂)₂CH₂NH), 30.0 (**C**^β), 30.2 (CO**C**H₂CH₃), 38.4 (NH**C**H₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 39.9 and 40.4 (NHCH₂(CH₂)₂CH₂NH), 41.2 (NHCH₂CH₂N<), 41.8 (C^δ), 44.6 (CH₂CON^αH), 45.8 (C-1 cyclopentyl), 46.8 (C-2/6 piperazine), 52.3 and 52.6 (C-3/5 piperazine), 53.8 (C^{α}), 75.8 (C-11 dibenzazepine-11yl), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.6 (*C*_{ar}H), 130.0 (*C*_{ar}H), 130.2 (Ph), 130.4 (*C*_{ar}), 131.5 (*C*_{ar}H), 132.1 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.4 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (Car), 154.5 (N(CONPh)₂), 155.4 (=NCONH), 155.8 (NC(N)N), 171.2 (C=O lactam), 172.8 (CON<), 174.5 (CONH(CH₂)₂N<), 174.7 (CON^αH), 177.1 (COCH₂CH₃) ppm; MS (LSI, MeOH/gly) m/z (%): 1067 (100) $[M+H]^+$; HRMS (LSI-MS): m/z $[M+H]^+$ calcd. for $C_{57}H_{72}N_{13}O_8$: 1066.5627, found: 1066.5602; RP-HPLC: 99 % (t_R = 18.3 min, k' = 5.8); C₅₇H₇₁N₁₃O₈ (1065.55).

(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -[6-(propanoylaminohexyl)aminocarbonyl]argininamide ((S)-3.70). ^{1}H NMR (600 MHz, CD₃OD, COSY, HSQC): δ = 1.10 (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.31 (m, 4H, NH(CH₂)₂(CH₂)₂(CH₂)₂NH), 1.48 (m, 4H, NHCH₂CH₂(CH₂)₂CH₂CH₂NH), 1.52 and 1.69 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.54 and 1.75 (m, 2H, $C^{\beta}H_{2}$), 1.60 (m, 2H, $C^{\gamma}H_{2}$), 2.16 (guat, ${}^{3}J$ = 7.6 Hz, 2H, COC H_{2} CH₃), 2.26 and 2.45 (m, 2H, CH₂CON^αH), 2.35 and 2.44 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOCH₂cyclopentyl), 3.13 and 3.15 (m, 4H, NHC H_2 (CH₂)₄C H_2 NH), 3.15 (m, 2H, C^b H_2), 3.42-3.57 (m, 4H, 2/6-H piperazine), 3.45 and 3.56 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH), 4.63 (br, 1H, 11-H dibenzazepine-11-yl), 7.19 (m, 4H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.36 (m, 5H, Ph), 7.45 (m, 1H, *H*_{ar}), 7.48 (m, 1H, *H*_{ar}), 7.56 (m, 1H, H_{ar}), 7.91 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 10.6 24.6 (C-3/4 cyclopentyl), 25.7 (**C**^γ), $(COCH_2CH_3),$ 27.4 and 27.5 $(NH(CH_2)_2(CH_2)_2(CH_2)_2NH)$, 30.1 (C^{β}) , 30.2 and 30.4 $(NHCH_2CH_2(CH_2)_2CH_2CH_2NH)$, 30.3 (COCH₂CH₃), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.8 (>NCOCH₂cyclopentyl), 40.2 and 40.7 (NHCH₂(CH₂)₄CH₂NH), 41.2 (NHCH₂CH₂N<), 41.8 (C^b), 44.6 (CH₂CON^αH), 45.8 (C-1 cyclopentyl), 46.3 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (C^{α}), 75.9 (C-11 dibenzazepine-11-yl), 123.1 (C_{ar} H), 124.2 (Ph), 126.3 (C_{ar}H), 128.2 (C_{ar}H), 129.9 (C_{ar}H), 130.2 (Ph), 130.8 (C_{ar}H), 131.7 (C_{ar}H), 132.3 (C_{ar}H), 133.6 (**C**_{ar}H), 137.1 (**C**_{ar}), 137.8 (**C**_{ar}), 154.5 (N(**C**ONPh)₂), 155.4 (=N**C**ONH), 155.8 (NC(N)N), 170.9 (C=O lactam), 172.8 (CON<), 174.6 (CONH(CH₂)₂N<), 174.7 (CON^αH), 177.0 (COCH₂CH₃) ppm; MS (LSI, MeOH/gly) m/z (%): 1095 (100) [M+H]⁺; HRMS (LSI-MS): *m/z* [*M*+H]⁺ calcd. for C₅₉H₇₆N₁₃O₈: 1094.5940, found: 1094.5925; RP-HPLC: 99 % $(t_{\rm R} = 19.6 \text{ min}, k' = 6.3); C_{59}H_{75}N_{13}O_8 (1093.59).$

(2*S*)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^{α}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-*N*^{ω}-(6-propanoylaminohexanoyl)argininamide ((*S*)-3.71). MS (ES, +p) *m/z* (%): 1065 (100) [*M*+H]⁺; HRMS(LSI-MS): *m/z* [*M*+H]⁺ calcd. for C₅₈H₇₃N₁₂O₈: 1065.5674, found: 1065.5694; RP-HPLC: 88 % (*t*_R = 18.9 min, *k*['] = 6.0); C₅₈H₇₂N₁₂O₈ (1064.56).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^{α}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-*N*^{ω}-(8-propanoylamino-3,6-dioxaoctanoyl)argininamide ((*S*)-3.72). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): δ = 1.10 (t, ³*J* = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.76 (m, 2H, C^{β}H₂), 1.63 (m, 2H, C^{γ}H₂), 2.18 (quat, ³*J* = 7.6 Hz, 2H, COCH₂CH₃), 2.25 and 2.34 (m, 4H, 3/5-H piperazine), 2.26 and 2.44 (m, 2H, CH₂CON^{α}H), 2.48 (m, 2H, >NCOCH₂cyclopentyl), 3.21 (m, 2H, C^{δ}H₂), 3.35 (t, ³*J* = 5.6 Hz, 2H, OCH₂CH₂NH), 3.38-3.53 (m, 4H, 2/6-H piperazine), 3.46 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.54 (t, ³*J* = 5.6 Hz, 2H, OCH₂CH₂NH), 3.66 and 3.73 (m, 4H, O(CH₂)₂O), 3.78 (m, 2H, NHCH₂CH₂N<), 4.20 (s, 2H, =NCOC H_2O), 4.26 (m, 1H, C^{α}H), 4.48 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, *H*_{ar}), 7.46 (m, 1H, **H**_{ar}), 7.54 (m, 1H, **H**_{ar}), 7.87 (m, 1H, **H**_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): $\delta = 10.5$ (COCH₂**C**H₃), 24.6 (C-3/4 cyclopentyl), 25.5 (**C**^{γ}), 30.0 (**C**^{β}), 30.2 (COCH₂CH₃), 38.4 (NHCH₂CH₂N<), 39.3 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂cyclopentyl), 40.2 and 42.0 (OCH₂CH₂NH), 41.2 (NHCH₂CH₂N<), 42.1 (C°), 44.7 $(CH_2CON^{\alpha}H)$, 45.8 (C-1 cyclopentyl), 46.8 (C-2/6 piperazine), 52.3 and 52.6 (C-3/5 piperazine), 53.7 and 53.8 (C^{α}), 70.7 (O CH_2CH_2NH), 71.2 (=NCO CH_2O), 71.2 and 72.2 (O(CH₂)₂O), 75.8 (C-11 dibenzazepine-11-yl), 123.1 (C_{ar}H), 124.2 (Ph), 126.2 (C_{ar}H), 128.2 (*C*_{ar}H), 129.5 (*C*_{ar}H), 129.9 (*C*_{ar}H), 130.2 (Ph), 130.4 (*C*_{ar}), 131.5 (*C*_{ar}H), 132.1 (C_{ar}H), 132.4 (C_{ar}), 133.4 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 154.7 (NC(N)N), 171.3 (C=O lactam), 172.8 (CON<), 173.9 (=NCOCH₂O), 174.5 (CONH(CH₂)₂N<), 174.7 (CON^αH), 177.4 (COCH₂CH₃) ppm; MS (LSI, MeOH/gly) m/z (%): 1098 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for $C_{58}H_{73}N_{12}O_{10}$: 1097.5573, found: 1097.5531; RP-HPLC: 94 % ($t_{\rm R}$ = 18.4 min, k' = 5.8); $C_{58}H_{72}N_{12}O_{10}$ (1096.55).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0xo-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-N^{\alpha}-[2-$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]- N^{ω} -(15-propanoylamino-4,7,10,13-tetraoxapentadecanoyl)argininamide ((S)-**3.73).** ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): $\delta = 1.10$ (t, ³J = 7.6 Hz, 3H, COCH₂CH₃), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.52 and 1.75 (m, 2H, $C^{\beta}H_{2}$), 1.60 (m, 2H, $C^{\gamma}H_{2}$), 2.18 (quat, ${}^{3}J$ = 7.6 Hz, 2H, COC H_{2} CH₃), 2.21 and 2.29 (m, 4H, 3/5-H piperazine), 2.25 and 2.43 (m, 2H, CH₂CON^αH), 2.48 (m, 2H, >NCOC H_2 -cyclopentyl), 2.69 (t, ${}^{3}J$ = 5.7 Hz, 2H, =NCOC H_2 CH₂O), 3.17 (m, 2H, C ${}^{\delta}H_2$), 3.33 (t, ${}^{3}J$ = 5.6 Hz, 2H, OCH₂CH₂NH), 3.37-3.51 (m, 4H, 2/6-H piperazine), 3.44 and 3.55 (m, 2H, NHC H_2 CH₂N<), 3.51 (t, ³J = 5.6 Hz, 2H, OC H_2 CH₂NH), 3.60 (m, 12H, (O(CH₂)₂O)₃), 3.77 (m, 2H, =NCOCH₂CH₂O), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α*H*), 4.41 (br, 1H, 11-H dibenzazepine-11-yl), 7.15 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.41 (m, 1H, *H*_{ar}), 7.45 (m, 1H, *H*_{ar}), 7.53 (m, 1H, *H*_{ar}), 7.85 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 10.5 (COCH₂CH₃), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 30.1 (CO CH_2CH_3), 38.4 and 38.5 (NHCH₂CH₂N<), 38.6 (=NCOCH₂CH₂O), 39.4 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCO**C**H₂-cyclopentyl), 40.3 and 42.2 (OCH₂**C**H₂NH), 41.2 (NHCH₂**C**H₂N<), 42.0 (C^{δ}), 44.7 (CH₂CON^αH), 45.8 and 45.9 (C-1 cyclopentyl), 47.0 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 53.7 and 53.8 (C^{α}), 66.9 (=NCOCH₂ CH_2O), 70.6 (O CH_2CH_2NH), 71.3 and 71.4 and 71.5 (($O(CH_2)_2O)_3$), 75.8 (C-11 dibenzazepine-11-yl), 123.0 ($C_{ar}H$), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.4 (*C*_{ar}H), 129.8 (*C*_{ar}H), 130.2 (Ph), 130.3 (*C*_{ar}), 131.4 (**C**_{ar}H), 132.0 (**C**_{ar}H), 132.4 (**C**_{ar}), 133.3 (**C**_{ar}H), 137.0 (**C**_{ar}), 137.8 (**C**_{ar}), 154.5 (N(CONPh)₂), 154.9 (NC(N)N), 171.5 (C=O lactam), 172.8 (CON<), 174.5
(**C**ONH(CH₂)₂N<), 174.7 (**C**ON^{α}H), 175.3 (=N**C**O(CH₂)₂O), 177.1 (**C**OCH₂CH₃) ppm; MS (LSI, MeOH/gly) *m/z* (%): 1200 (100) [*M*+H]⁺; HRMS (LSI-MS): *m/z* [*M*+H]⁺ calcd. for C₆₃H₈₃N₁₂O₁₂: 1199.6253, found: 1199.6267; RP-HPLC: 100 % (*t*_R = 18.2 min, *k*['] = 5.7); C₆₃H₈₂N₁₂O₁₂ (1198.62).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{<math>\omega$}-{4-[2-(4-fluorobenzoylamino)ethyl]aminocarbonylbutanoyl}- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-3.74). ¹H NMR (300 MHz, CD₃OD): δ = 1.51 and 1.72 (m, 2H, C^βH₂), 1.51 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.62 (m, 2H, C^Y**H**₂), 1.90 (p, ³J = 7.2 Hz, 2H, COCH₂CH₂CH₂CONH(CH₂)₂NH), 2.20-2.37 (m, 6H, 3/5-H piperazine, COCH₂(CH₂)₂CONH(CH₂)₂NH), 2.40-2.53 (m, 4H, >NCOCH₂cyclopentyl, CO(CH₂)₂CH₂CONH(CH₂)₂NH), 3.18 (m, 2H, C^bH₂), 3.35-3.62 (m, 10H, CONHCH₂CH₂NH, 2/6-H piperazine, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α*H*₂), 4.46 (br, 1H, 11-H dibenzazepine-11-yl), 7.13-7.23 (m, 6H, *H*_{ar}, Ph), 7.32 (m, 5H, Ph), 7.36 (m, 7H, Ph, **H**_{ar}), 7.51 (m, 1H, **H**_{ar}), 7.85 (m, 3H, Ph, **H**_{ar}) ppm; ¹³C NMR (75 MHz, CD₃OD): δ = 21.4 (NCOCH₂CH₂CH₂CONH), 24.6 and 24.7 (C-3/4 $(\boldsymbol{C}^{\beta}),$ $(=NCOCH_2(CH_2)_2CONH),$ cyclopentyl), 25.5 (**C**^γ), 30.1 35.7 36.9 (NCO(CH₂)₂CH₂CONH(CH₂)₂NH), 37.8 (CONHCH₂CH₂NH), 38.5 (NHCH₂CH₂N<), 39.2 and cyclopentyl), 39.5 39.7 (>NCO*C*H₂-cyclopentyl), 39.3 (C-2/5 and 40.1 (CONHCH₂CH₂NH), 41.0 (NHCH₂CH₂N<), 42.0 (C^{δ}), 44.7 (CH₂CON^{α}H), 45.9 (C-1 cyclopentyl), 52.3 and 52.7 (C-3/5 piperazine), 53.8 (\boldsymbol{C}^{α}), 75.9 (C-11 dibenzazepine-11yl), 116.3 (*C*_{ar}H), 116.6 (*C*_{ar}H), 123.1 (*C*_{ar}H), 124.2 (Ph), 126.2 (*C*_{ar}H), 128.2 (Ph), 129.4 (*C*_{ar}H), 129.9 (*C*_{ar}H), 130.3 (Ph), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.4 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (C_{ar}) , 154.5 $(N(CONPh)_2)$, 169.4 (COC_6H_4F) , 172.8 $(CON^{\alpha}H)$, 174.6 $(CONHC_2H_4N<)$, 174.8 (*C*ON<), 175.6 (=N*C*O(CH₂)₃CONH), 176.5 (=NCO(CH₂)₃*C*ONH) ppm; MS (ES, +p) m/z (%): 1174 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₆₃H₇₃FN₁₃O₉: 1174.5638, found: 1174.5636; RP-HPLC: 95 % ($t_{\rm R}$ = 19.3 min, k' = 6.1); $C_{63}H_{72}FN_{13}O_9$ (1173.56).

$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-{4-[3-(4-fluoro-benzoylamino)propyl]aminocarbonylbutanoyl}-N^{\alpha}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}piperazin-1-yl]ethyl}cyclopentyl)acetyl]-$

argininamide ((*S*)-3.75). ¹H NMR (400 MHz, CD₃OD): δ = 1.50 and 1.70 (m, 2H, C^β*H*₂), 1.50 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.62 (m, 2H, C^γ*H*₂), 1.78 (p, ³*J* = 6.8 Hz, 2H, CONHCH₂C*H*₂CH₂NH), 1.93 (p, ³*J* = 7.3 Hz, 2H, COCH₂C*H*₂CH₂CONH(CH₂)₃NH), 2.24 and 2.29 (m, 4H, 3/5-H piperazine), 2.27 (m, 2H, COC*H*₂(CH₂)₂CONH(CH₂)₃NH), 2.49 (m, 2H, >NCOC*H*₂-cyclopentyl), 2.50 (m, 2H, CO(CH₂)₂C*H*₂CONH(CH₂)₃NH), 3.18 (m, 2H, C^δ*H*₂), 3.25 (t, ³*J* = 6.7 Hz, 2H, CONHCH₂CH₂C*H*₂NH), 3.34 and 3.50 (m, 4H, 2/6-H piperazine), 3.39 (t, ³*J* = 6.9 Hz, 2H, CONHC*H*₂CH₂CH₂NH), 3.54 (m, 2H, NHC*H*₂CH₂N<), 3.78 (m, 2H, NHCH₂C*H*₂N<), 4.25 (m, 1H, $C^{\alpha}H_{2}$), 4.40 (br, 1H, 11-H dibenzazepine-11-yl), 7.13 (m, 1H, H_{ar}), 7.14 (m, 1H, H_{ar}), 7.16 (m, 1H, H_{ar}), 7.19 (m, 2H, Ph), 7.31 (m, 5H, Ph), 7.35 (m, 1H, H_{ar}), 7.36 (m, 5H, Ph), 7.41 (m, 1H, *H*_{ar}), 7.44 (m, 1H, *H*_{ar}), 7.52 (m, 1H, *H*_{ar}), 7.84 (m, 1H, *H*_{ar}), 7.86 (m, 2H, Ph) ppm; ¹³C NMR (100 MHz, CD₃OD): δ = 21.4 (NCOCH₂CH₂CH₂CONH), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (\boldsymbol{C}^{γ}), 30.0 (\boldsymbol{C}^{β}), 30.3 (CONHCH₂ \boldsymbol{C} H₂CH₂NH), 35.6 (=NCOCH₂(CH₂)₂CONH), 36.9 (=NCO(CH₂)₂CH₂CONH), 37.8 (CONHCH₂CH₂CH₂NH), 38.4 (CONHCH2CH2CH2NH), 38.5 (NHCH2CH2N<), 39.2 and 39.3 (C-2/5 cyclopentyl), 39.5 and 39.7 (>NCO CH_2 -cyclopentyl), 41.2 (NHCH₂ CH_2 N<), 42.0 (C^{δ}), 42.2 und 47.0 (C-2/6 piperazine), 44.7 ($CH_2CON^{\alpha}H$), 45.9 (C-1 cyclopentyl), 52.2 and 52.7 (C-3/5 piperazine), 53.7 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 116.3 (C_{ar} H), 116.5 (C_{ar} H), 123.0 (*C*_{ar}H), 124.2 (Ph), 126.1 (*C*_{ar}H), 128.2 (Ph), 129.3 (*C*_{ar}H), 129.7 (*C*_{ar}H), 130.2 (Ph), 131.3 (*C*_{ar}H), 131.9 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 142.8 (*C*_{ar}), 154.5 (N(**C**ONPh)₂), 155.0 (NC(N)N), 167.4 (**C**_{ar}F), 169.1 (**C**OC₆H₄F), 171.6 (**C**=O lactam), 172.8 (**C**ON^αH), 174.5 (**C**ONHC₂H₄N<), 174.7 (**C**ON<), 175.2 (=N**C**O(CH₂)₃CONH), 176.5 $(=NCO(CH_2)_3CONH)$ ppm; MS (ES, +p) m/z (%): 1188 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₆₄H₇₅FN₁₃O₉: 1188.5795, found: 1188.5807; RP-HPLC: 100 % (t_R = 19.6 min, k' = 6.3); C₆₄H₇₄FN₁₃O₉ (1187.57).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{ω} -[18-(4-fluoro-benzoylamino)-4-oxo-9,12,15-trioxa-5-azaoctadecanoyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)-

acetyl]argininamide ((S)-3.76). ¹H NMR (600 MHz, CD₃OD, HSQC): δ = 1.50 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.50 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.50 (m, 2H, $C^{\beta}H_{2}$), 1.58 (m, 2H, $C^{\gamma}H_{2}$), 1.71 (m, 2H, NHCH₂CH₂CH₂O), 1.86 (m, 2H, OCH₂CH₂CH₂NHCOC₆H₄F), 2.26 and 2.42 (m, 2H, CH₂CON^αH), 2.19 and 2.26 (m, 4H, piperazine), 2.47 (m, 2H, >NCOC H_2 -cyclopentyl), 2.55 (m, 3/5-H 2H, =NCOCH₂CH₂CONH), 2.68 (m, 2H, =NCOCH₂CH₂CONH), 3.16 (m, 2H, C^bH₂), 3.22 (m, 2H, NHCH₂(CH₂)₂O), 3.35-3.49 (m, 4H, 2/6-H piperazine), 3.43 and 3.57 (m, 2H, NHCH₂CH₂N<), 3.46 (m, 2H, O(CH₂)₂CH₂NHCOC₆H₄F), 3.46 and 3.57 (m, 4H, (NH(CH₂)₂CH₂O)₂) 3.53 and 3.59 (m, 8H, (O(CH₂)₂O)₂), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^α*H*), 4.36 (br, 1H, 11-H dibenzazepine-11-yl), 7.16 (m, 6H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.36 (m, 5H, Ph), 7.40 (m, 1H, *H*_{ar}), 7.44 (m, 1H, *H*_{ar}), 7.51 (m, 1H, *H*_{ar}), 7.84 (m, 3H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 24.6 and 24.7 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 30.4 ((NHCH₂CH₂CH₂O)₂), 30.4 (=NCOCH₂CH₂CO), 33.0 $(=NCOCH_2CH_2CO),$ 38.0 (NHCH₂(CH₂)₂O), 38.5 $(NHCH_2CH_2N<),$ 38.8 (O(CH₂)₂CH₂NHCOC₆H₄F), 39.3 and 39.5 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂cyclopentyl), 41.2 (NHCH₂CH₂N<), 42.1 (C°), 44.7 (CH₂CON^{α}H), 45.9 (C-1 cyclopentyl), 47.2 (C-2/6 piperazine), 52.3 and 52.7 (C-3/5 piperazine), 53.7 (C^{α}), 69.9 and 70.2 ((NH(CH₂)₂CH₂O)₂), 71.3 and 71.5 ((O(CH₂)₂O)₂), 75.8 (C-11 dibenzazepine-11-yl), 116.3 (*C*_{ar}H), 116.5 (*C*_{ar}H), 123.0 (*C*_{ar}H), 124.2 (Ph), 126.1 (*C*_{ar}H), 128.2 (*C*_{ar}H), 129.2 (*C*_{ar}H), 129.7 (*C*_{ar}H), 130.2 (Ph), 130.9 (*C*_{ar}H), 131.3 (*C*_{ar}H), 131.9 (*C*_{ar}H), 132.2 (*C*_{ar}), 132.4 (C_{ar}), 133.2 (C_{ar} H), 136.9 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 154.9 (NC(N)N), 165.3 (C_{ar} F), 167.0 ($COC_{6}H_{4}$ F), 171.7 (C=O lactam), 172.8 (CON^{α} H), 173.7 (=NCO(CH₂)₂CO), 174.5 ($CONH(CH_{2})_{2}N<$), 174.7 (CON<), 176.2 (=N $CO(CH_{2})_{2}CO$) ppm; MS (ES, +p) m/z (%): 1321 (5) [M+H]⁺, 661 (100) [M+2H]²⁺; HRMS (ESI-MS): m/z[M+H]⁺ calcd. for C₇₀H₈₇FN₁₃O₁₂: 1320.6576, found: 1320.6572; RP-HPLC: 96 % (t_{R} = 20.1 min, k' = 6.4); C₇₀H₈₆FN₁₃O₁₂ (1319.65).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{<math>\omega$}-{[3-(4-fluoro-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.77**). ¹H NMR (600 MHz, CD₃OD): δ = 1.50 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.52 and 1.66 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.73 (m, 2H, $C^{\beta}H_{2}$), 1.61 (m, 2H, $C^{\gamma}H_{2}$), 1.80 (p, ${}^{3}J$ = 6.6 Hz, 2H, NHCH₂CH₂CH₂NH), 2.25 and 2.35 (m, 4H, 3/5-H piperazine), 2.26 and 2.44 (m, 2H, CH₂CON^αH), 2.47 (m, 2H, >NCOCH₂-cyclopentyl), 3.14 (m, 2H, $C^{\delta}H_{2}$), 3.26 and 3.40 (t, ${}^{3}J$ = 6.4 Hz, 2H, t, ${}^{3}J$ = 6.8 Hz, 2H, NHC H_{2} CH₂CH₂NH), 3.38-3.58 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^αH), 4.44 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, 4/5-H 4-fluorobenzoyl), 7.17 (m, 2H, *H*_{ar}), 7.19 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.36 (m, 5H, Ph), 7.41 (m, 1H, *H*_{ar}), 7.45 (m, 1H, *H*_{ar}), 7.52 (m, 1H, *H*_{ar}), 7.86 (m, 3H, *H*_{ar}, 2/6-H 4-fluorobenzoyl) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.7 (\boldsymbol{C}^{γ}), 30.0 (\boldsymbol{C}^{β}), 30.4 (NHCH₂ \boldsymbol{C} H₂CH₂NH), 38.2 and 38.3 (NHCH₂CH₂CH₂NH), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 $(>NCOCH_2-cyclopentyl), 41.2 (NHCH_2CH_2N<), 41.9 (<math>C^{\delta}$), 44.7 ($CH_2CON^{\alpha}H$), 45.9 (C-1) cyclopentyl), 46.9 (C-2/6 piperazine), 52.3 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 116.3 and 116.5 (C-3/5 4-fluorobenzoyl), 123.0 (C_{ar}H), 124.1 (Ph), 126.2 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.4 (C-2/6 4-fluorobenzoyl), 129.8 (*C*_{ar}H), 130.2 (Ph), 130.8 (*C*_{ar}), 131.4 (C-1 4-fluorobenzoyl), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.4 (C_{ar}H), 137.0 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.5 (=NCONH), 155.7 (NC(N)N), 167.0 (C-4 4-fluorobenzoyl), 169.2 (*C*=O 4-fluorobenzoyl), 171.5 (*C*=O lactam), 172.8 (CON<), 174.5 $(CONH(CH_2)_2N<)$, 174.7 $(CON^{\alpha}H)$ ppm; MS (LSI, MeOH/gly) m/z (%): 1119 (100) $[M+H]^+$, 912 (50); HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₆₀H₆₉FN₁₃O₈: 1118.5376, found: 1118.5348; RP-HPLC: 98 % ($t_{\rm R}$ = 20.7 min, k' = 6.7); C₆₀H₆₈FN₁₃O₈ (1117.53).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-*N*^ω-{[4-(4-fluorobenzoylamino)butyl]aminocarbonyl}-*N*^α-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((*S*)-3.78). ¹H NMR (600 MHz, CD₃OD): δ = 1.50 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.50 (m, 4H, NHCH₂(C*H*₂)₂CH₂NH), 1.52 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.73 (m, 2H, C^β*H*₂), 1.59 (m, 2H, C^γ*H*₂), 2.10 and 2.19 (m, 4H, 3/5-H piperazine), 2.19 and 2.40 (m, 2H, C*H*₂CON^αH), 2.47 (m, 2H, >NCOC*H*₂-cyclopentyl), 3.12 (m, 2H, C^δ*H*₂), 3.22

and 3.37 (t, ${}^{3}J$ = 6.3 Hz, 2H, t, ${}^{3}J$ = 6.7 Hz, 2H, NHCH₂(CH₂)₂CH₂NH), 3.34-3.58 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 2H, C^αH, 11-H dibenzazepine-11-yl), 7.13 (m, 2H, 4/5-H 4-fluorobenzoyl), 7.16 (m, 2H, H_{ar}), 7.19 (m, 2H, H_{ar}), 7.32 (m, 6H, Ph), 7.36 (m, 5H, Ph), 7.41 (m, 1H, H_{ar}), 7.49 (m, 1H, H_{ar}), 7.80 (d, ${}^{3}J$ = 7.5 Hz, 1H, H_{ar}), 7.85 (m, 2H, 2/6-H 4fluorobenzoyl) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.7 (C^{γ}), 27.8 and 27.9 (NHCH₂(CH₂)₂CH₂NH), 30.0 (C^{β}), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH₂-cyclopentyl), 40.5 and 42.6 (NHCH₂(CH₂)₂CH₂NH), 41.2 (NHCH₂CH₂N<), 41.9 (C^{δ}), 44.7 (CH₂CON^{α}H), 45.9 (C-1 cyclopentyl), 47.5 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 116.3 and 116.4 (C-3/5 4-fluorobenzoyl), 122.8 (Ph), 123.0 (**C**_{ar}H), 124.1 (Ph), 126.0 (**C**_{ar}H), 128.1 (**C**_{ar}H), 129.0 and 129.4 (C-2/6 4fluorobenzoyl), 129.9 (**C**_{ar}H), 130.0 (**C**_{ar}H), 130.2 (Ph), 130.8 (**C**_{ar}), 131.1 (C-1 4fluorobenzoyl), 131.7 (*C*_{ar}H), 132.1 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.1 (*C*_{ar}H), 136.8 (*C*_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 155.4 (=NCONH), 155.7 (NC(N)N), 167.0 (C-4 4fluorobenzoyl), 169.0 (C=O 4-fluorobenzoyl), 172.0 (C=O lactam), 172.7 (CON<), 174.5 $(CONH(CH_2)_2N<)$, 174.7 $(CON^{\alpha}H)$ ppm; MS (LSI, MeOH/gly) m/z (%): 1133 (100) $[M+H]^{+}$, 928 (50); HRMS (LSI-MS): $m/z [M+H]^{+}$ calcd. for C₆₁H₇₁FN₁₃O₈: 1132.5533, found: 1132.5541; RP-HPLC: 98 % ($t_{\rm R}$ = 20.8 min, k' = 6.7); C₆₁H₇₀FN₁₃O₈ (1131.55).

(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{ω}-{[6-(4-fluoro-

benzoylamino)hexyl]aminocarbonyl}- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5Hdibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.79).** ¹H NMR (600 MHz, CD₃OD): δ = 1.36 (m, 4H, NH(CH₂)₂(CH₂)₂(CH₂)₂NH), 1.49 (m, 4H, NHCH₂CH₂(CH₂)₂CH₂CH₂NH), 1.50 and 1.62 (m, 4H, 3/4-H cyclopentyl), 1.50 and 1.68 (m, 4H, 2/5-H cyclopentyl), 1.52 and 1.73 (m, 2H, $C^{\beta}H_{2}$), 1.61 (m, 2H, $C^{\gamma}H_{2}$), 2.23 and 2.46 (m, 2H, $CH_2CON^{\alpha}H$), 2.28 and 2.41 (m, 4H, 3/5-H piperazine), 2.49 (m, 2H, >NCOC H_2 -cyclopentyl), 3.15 and 3.35 (m, 4H, NHC H_2 (CH₂)₄C H_2 NH), 3.16 (m, 2H, C⁶ H_2), 3.36-3.59 (m, 4H, 2/6-H piperazine), 3.45 and 3.55 (m, 2H, NHCH₂CH₂N<), 3.77 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^α**H**), 4.32 (br, 1H, 11-H dibenzazepine-11-yl), 7.14 (m, 2H, 4/5-H 4-fluorobenzoyl), 7.15 (m, 1H, *H*_{ar}), 7.17 (m, 1H, *H*_{ar}), 7.18 (m, 2H, *H*_{ar}), 7.28-7.40 (m, 11H), 7.42 (m, 1H, H_{ar}), 7.50 (m, 1H, H_{ar}), 7.84 (m, 3H, 2/6-H 4fluorobenzoyl, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.7 (C^{γ}), 27.4 and 27.6 (NH(CH₂)₂(CH_2)₂(CH₂)₂NH), 30.0 (C^{β}), 30.4 (NHCH₂CH₂(CH₂)₂CH₂CH₂NH), 38.5 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCOCH2-cyclopentyl), 40.7 and 42.4 (NHCH2(CH2)4CH2NH), 41.2 (NHCH2CH2N<), 41.8 (C°), 44.7 ($CH_2CON^{\alpha}H$), 45.9 (C-1 cyclopentyl), 47.2 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 116.3 and 116.4 (C-3/5 4-fluorobenzoyl), 122.6 (Ph), 123.0 (*C*_{ar}H), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.2 and 129.6 (C-2/6 4-fluorobenzoyl), 130.2 (Ph), 130.8 (Car), 131.2 (C-1 4fluorobenzoyl), 131.8 (*C*_{ar}H), 132.2 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.2 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (C_{ar}) , 154.5 (N(*C*ONPh)₂), 155.4 (=N*C*ONH), 155.7 (N*C*(N)N), 167.0 (C-4 4fluorobenzoyl), 169.0 (*C*=O 4-fluorobenzoyl), 171.8 (*C*=O lactam), 172.7 (*C*ON<), 174.5 (*C*ONH(CH₂)₂N<), 174.7 (*C*ON^{α}H) ppm; MS (LSI, MeOH/gly) *m*/*z* (%): 1161 (100) [*M*+H]⁺, 954 (40); HRMS (LSI-MS): *m*/*z* [*M*+H]⁺ calcd. for C₆₃H₇₅FN₁₃O₈: 1160.5846, found: 1160.5816; RP-HPLC: 98 % (*t*_R = 22.1 min, *k*['] = 7.2); C₆₃H₇₄FN₁₃O₈ (1159.58).

(2*S*)-*N*-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{ω} -[6-(4-fluoro-benzoylamino)hexanoyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo-

[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.80)**. $[\alpha]_D^{20} = -4.7 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 0.71 in CH₃CN/H₂O 10:1); ¹H NMR (600 MHz, DMSO-d₆, HSQC): $\delta = 1.32$ (m, 2H, CH₂(CH₂)₂NH), 1.48 (m, 2H, C^{γ}H₂), 1.44 and 1.63 (m, 2H, C^{β}H₂), 1.41-1.63 (m, 4H, 2/5-H cyclopentyl), 1.52 (m, 2H, CH₂CH₂NHBz(4F)), 1.55 (m, 4H, 3/4-H cyclopentyl), 1.57 (m, 2H, COCH₂CH₂), 2.16 and 2.18 (m, 4H, 3/5-H piperazine), 2.21 and 2.32 (m, 2H, C H_2 CON $^{\alpha}$ H), 2.41 (t, ^{3}J = 7.3 Hz, 2H, C(O)C H_2 CH₂), 2.42 and 2.50 (m, 2H, NCOCH₂-cyclopentyl), 3.17 (m, 2H, C⁸H₂), 3.25 (m, 2H, CH₂NHBz(4F)), 3.33-3.37 (m, 4H, 2/6-H piperazine), 3.31 and 3.40 (m, 2H, NHC H_2 CH₂N), 3.60 (t, ³J = 6.0 Hz, 2H, NHCH₂C H_2 N), 4.17 (m, 1H, C^{α}H), 4.43 (br, 1H, 11-H dibenzazepine-11-yl), 7.08 (m, 1H, *H*_{ar}), 7.14 (m, 1H, *H*_{ar}), 7.22 (m, 2H, Ph), 7.28 (m, 1H, *H*_{ar}), 7.35 (m, 1H, *H*_{ar}), 7.37 (m, 8H, Ph), 7.41 (m, 1H, *H*_{ar}), 7.43 (m, 1H, *H*_{ar}), 7.52 (m, 1H, *H*_{ar}), 7.78 (m, 1H, *H*_{ar}), 7.98 (d, ${}^{3}J$ = 8.0 Hz, 1H, N^{α}H), 8.24 (t, ${}^{3}J$ = 5.7 Hz, 1H, CONHC₂H₄N), 8.48 (t, ${}^{3}J$ = 5.5 Hz, 1H, N**H**Bz(4F)), 8.68 and 8.81 (br, 2H, N^{ω}**H**₂), 9.20 (t, ³J = 5.6 Hz, 1H, N^{δ}**H**), 10.40 (s, 1H, C(O)N*H* lactam), 11.83 (s, 1H, N^{ω} *H*) ppm; ¹³C NMR (150 MHz, DMSO-d₆, HSQC): δ = 23.3 (C-3/4 cyclopentyl), 23.6 (COCH₂CH₃), 24.1 (\boldsymbol{C}^{γ}), 25.7 (CH₂(CH₂)₂NH), 28.7 (\boldsymbol{C}^{β}), 28.8 (CH₂CH₂CH₂NH), 36.0 (C(O)CH₂), 36.1 (NHCH₂CH₂N), 37.2 (C-2/5 cyclopentyl), 38.5 (NCOCH₂-cyclopentyl), 39.0 (CH₂NHBz(4F)), 39.6 (NHCH₂CH₂N), 40.5 (C^δ), 40.4 and 44.9 (C-2/6 piperazine), 42.8 ($CH_2CON^{\alpha}H$), 44.0 (C-1 cyclopentyl), 50.7 and 51.2 (C-3/5 piperazine), 51.7 (C^{α}), 73.6 (C-11 dibenzazepine-11-yl), 115.0 (d, ${}^{2}J_{CF}$ = 21.6 Hz), 121.3 (*C*_{ar}H), 122.6 (Ph), 123.8 (*C*_{ar}H), 126.5 (Ph), 128.1 (*C*_{ar}H), 128.4 (*C*_{ar}H), 128.7 ($C_{ar}H$), 128.9 (Ph), 129.7 (d, ${}^{3}J_{C,F}$ = 8.9 Hz), 130.2 ($C_{ar}H$), 130.7 ($C_{ar}H$), 131.1 (d, ${}^{4}J_{C,F}$ = 2.9 Hz), 131.5 (C_{ar} H), 131.1 (C_{ar}), 136.2 (C_{ar}), 136.5 (C_{ar}), 141.5 (C_{ar}), 152.5 $(N(CONPh)_2)$, 152.9 (NC(N)N), 163.7 (d, ${}^{1}J_{C,F}$ = 248.0 Hz), 165.0 (COC_6H_4F) , 167.9 (C=O)lactam), 170.0 (**C**ON), 171.2 (**C**ON^αH), 171.9 (**C**ONHC₂H₄N), 175.2 (**C**O(CH₂)₅) ppm; IR (neat): $\upsilon' = 3300$, 2943, 1641, 1443, 1289, 1172 cm⁻¹; MS (ES, +p) m/z (%): 1132 (100) $[M+H]^+$; RP-HPLC: 98 % ($t_{\rm R}$ = 22.1 min, k' = 7.8); anal. calcd. for C₆₂H₇₁FN₁₂O₈·2 H₂O·2 HCI: C 60.04, H 6.26, N 13.56 %, found: C 60.27, H 6.55, N 13.51 %; C₆₂H₇₁FN₁₂O₈ (1131.30).

(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{ω}-[8-(4-fluorobenzoylamino)-3,6-dioxaoctanoyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5Hdibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide ((S)-**3.81).** ¹H NMR (600 MHz, CD₃OD): δ = 1.50 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.75 (m, 2H, $C^{\beta}H_{2}$), 1.63 (m, 2H, $C^{\gamma}H_{2}$), 2.12 and 2.39 (m, 4H, 3/5-H piperazine), 2.26 and 2.44 (m, 2H, CH₂CON^αH), 2.48 (m, 2H, >NCOCH₂-cyclopentyl), 3.18 (m, 2H, C^δH₂), 3.34-3.49 (m, 4H, 2/6-H piperazine), 3.43 and 3.53 (m, 2H, NHC H_2 CH₂N<), 3.57 (t, ³J = 5.6 Hz, 2H, OCH₂C H_2 NH), 3.66 (t, ³J = 5.6 Hz, 2H, OCH₂CH₂NH), 3.70 and 3.75 (m, 4H, O(CH₂)₂O), 3.78 (m, 2H, NHCH₂CH₂N<), 4.19 (s, 2H, COC**H**₂O), 4.26 (m, 1H, C^αH), 4.28 (br, 1H, 11-H dibenzazepine-11-yl), 7.13 (m, 2H, 4/5-H 4-fluorobenzoyl), 7.15 (m, 1H, *H*_{ar}), 7.16 (m, 1H, *H*_{ar}), 7.19 (m, 2H, *H*_{ar}), 7.27-7.40 (m, 11H), 7.42 (m, 1H, H_{ar}), 7.50 (m, 1H, H_{ar}), 7.81 (d, ³J = 7.6 Hz, 1H, H_{ar}), 7.85 (m, 2H, 2/6-H 4-fluorobenzoyl) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 38.5 (NHCH₂CH₂N<), 39.3 and 39.5 (C-2/5 cyclopentyl), 39.6 (>NCO CH_2 -cyclopentyl), 40.8 and 42.5 (OCH₂ CH_2 NH), 41.2 $(NHCH_2CH_2N<)$, 42.1 (C^{δ}) , 44.7 $(CH_2CON^{\alpha}H)$, 45.9 (C-1 cyclopentyl), 47.4 (C-2/6)piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 70.6 (O CH_2CH_2NH), 71.2 (=NCOCH₂O), 71.2 and 72.2 (O(CH₂)₂O), 75.8 (C-11 dibenzazepine-11-yl), 116.4 and 116.5 (C-3/5 4-fluorobenzoyl), 122.9 (*C*_{ar}H), 124.1 (Ph), 126.1 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.0 (C-2/6 4-fluorobenzoyl), 130.2 (Ph), 130.9 (Car), 131.2 (C-1 4-fluorobenzoyl), 131.7 (**C**_{ar}H), 132.0 (**C**_{ar}H), 132.4 (**C**_{ar}), 133.1 (**C**_{ar}H), 136.9 (**C**_{ar}), 137.8 (**C**_{ar}), 154.5 (N(CONPh)₂), 154.6 (NC(N)N), 167.0 (C-4 4-fluorobenzoyl), 169.3 (C=0 4fluorobenzoyl), 171.9 (C=O lactam), 172.7 (CON<), 173.8 (=NCOCH₂O), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH) ppm; MS (ES, +p) *m/z* (%): 1164 (50) [*M*+H]⁺, 582 (100) $[M+2H]^{2+}$; HRMS (ESI-MS): $m/z [M+H]^+$ calcd. for C₆₂H₇₂FN₁₂O₁₀: 1163.5473, found: 1163.5492; RP-HPLC: 97 % ($t_{\rm R}$ = 20.7 min, k' = 6.7); C₆₂H₇₁FN₁₂O₁₀ (1162.54).

(2*S*)-*N*-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]- N^{ω} -[15-(4-fluoro-benzoylamino)-4,7,10,13-tetraoxapentadecanoyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-

argininamide ((*S*)-3.82). Mp 112-115 °C; ¹H NMR (600 MHz, CD₃OD): δ = 1.50 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.51 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.53 and 1.75 (m, 2H, C^β*H*₂), 1.63 (m, 2H, C^γ*H*₂), 2.12 and 2.39 (m, 4H, 3/5-H piperazine), 2.26 and 2.44 (m, 2H, C*H*₂CON^αH), 2.48 (m, 2H, >NCOC*H*₂-cyclopentyl), 2.66 (t, ³*J* = 5.7 Hz, 2H, =NCOC*H*₂CH₂O), 3.17 (m, 2H, C^δ*H*₂), 3.34-3.49 (m, 4H, 2/6-H piperazine), 3.43 and 3.53 (m, 2H, NHC*H*₂CH₂N<), 3.56 (m, 2H, OCH₂C*H*₂NH), 3.56 and 3.63 (m, 12H, (O(C*H*₂)₂O)₃), 3.59 (m, 2H, OC*H*₂CH₂NH), 3.74 (t, ³*J* = 5.7 Hz, 2H, =NCOC*H*₂C*H*₂O), 3.78 (m, 2H, NHCH₂C*H*₂N<), 4.26 (m, 2H, C^α*H*, 11-H dibenzazepine-11-yl), 7.13 (m, 2H, 4/5-H 4-fluorobenzoyl), 7.15 (m, 1H, *H*_{ar}), 7.81 (d, ³*J* = 7.6 Hz, 1H, *H*_{ar}), 7.87 (m, 2H, 2/6-H 4-fluorobenzoyl) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4

cyclopentyl), 25.4 (**C**^γ), 30.0 (**C**^β), 38.5 (NH**C**H₂CH₂N<), 38.6 (=NCO**C**H₂CH₂O), 39.3 and 39.5 (C-2/5 cyclopentyl), 39.6 (>NCOCH2-cyclopentyl), 41.0 and 42.5 (OCH2CH2NH), 41.2 (NHCH₂CH₂N<), 42.1 (C^δ), 44.7 (CH₂CON^αH), 45.9 (C-1 cyclopentyl), 47.4 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (C^{α}), 66.9 (=NCOCH₂CH₂O), 70.5 (OCH₂CH₂NH), 71.3 and 71.4 and 71.5 ((O(CH₂)₂O)₃), 75.8 (C-11 dibenzazepine-11-yl), 116.3 and 116.5 (C-3/5 4-fluorobenzoyl), 122.9 (*C*_{ar}H), 124.1 (Ph), 126.0 (*C*_{ar}H), 128.1 (*C*_{ar}H), 129.0 (C-2/6 4-fluorobenzoyl), 129.5 (*C*_{ar}H), 130.0 (*C*_{ar}H), 130.2 (Ph), 130.9 (*C*_{ar}), 131.2 (C-1 4-fluorobenzoyl), 131.7 (*C*_{ar}H), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.1 (*C*_{ar}H), 136.9 (C_{ar}), 137.8 (C_{ar}), 154.5 (N(CONPh)₂), 154.8 (NC(N)N), 167.0 (C-4 4-fluorobenzoyl), 169.1 (**C**=O 4-fluorobenzoyl), 171.9 (**C**=O lactam), 172.7 (**C**ON<), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 175.2 (=N**C**OCH₂CH₂O) ppm; MS (ES, +p) *m/z* (%): 1266 (25) $[M+H]^+$, 633 (100) $[M+2H]^{2+}$; HRMS (ESI-MS): $m/z [M+H]^+$ calcd. for $C_{67}H_{82}FN_{12}O_{12}$: 1265.6154, found: 1265.6171; RP-HPLC: 99 % (t_R = 20.7 min, k' = 6.7); C₆₇H₈₁FN₁₂O₁₂ (1264.61).

$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-{4-[3-(2-fluoro-propanoylamino)propyl]aminocarbonylbutanoyl}-N^{\alpha}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl}piperazin-1-yl]ethyl}cyclopentyl)acetyl]-$

argininamide ((S)-3.83). Mp 129 °C; ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): δ = 1.50 (d, ${}^{3}J$ = 6.8 Hz, 3H, COCHFC**H**₃), 1.51 and 1.74 (m, 2H, C^βH₂), 1.50 and 1.69 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.60 (m, 2H, $C^{\gamma}H_{2}$), 1.69 (p, ³J = 6.8 Hz, 2H, CONHCH₂CH₂CH₂NH), 1.92 (p, ${}^{3}J$ = 7.3 Hz, 2H, =NCOCH₂CH₂CH₂CONH), 2.24 and 2.31 (m, 4H, 3/5-H piperazine), 2.25 (m, 2H, =NCOCH₂(CH₂)₂CONH), 2.26 and 2.43 (m, 2H, CH₂CON^αH), 2.48 (m, 2H, =NCO(CH₂)₂CH₂CONH), 2.49 (m, 2H, >NCOCH₂cyclopentyl), 3.17 (m, 2H, $C^{\delta}H_2$), 3.20 (t, ${}^{3}J$ = 6.7 Hz, 2H, CONHC H_2 (CH₂)₂NH), 3.25 (t, ${}^{3}J$ = 6.9 Hz, 2H, CONH(CH₂)₂CH₂NH), 3.45 and 3.54 (m, 4H, 2/6-H piperazine), 3.45 and 3.56 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.25 (m, 1H, C^αH₂), 4.43 (br, 1H, 11-H dibenzazepine-11-yl), 4.96 (quat, ³J = 6.8 Hz, 1H, COC**H**FCH₃), 7.15 (m, 2H, *H*_{ar}), 7.20 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.42 (m, 1H, *H*_{ar}), 7.46 (m, 1H, *H*_{ar}), 7.53 (m, 1H, *H*_{ar}), 7.85 (m, 1H, *H*_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HCQC): ⁶ = 18.9 and 19.0 (COCHFCH₃), 21.4 (=NCOCH₂CH₂CH₂CONH), 24.5 und 24.6 (C-3/4 cyclopentyl), 25.4 (**C**^γ), 30.0 $(\boldsymbol{C}^{\boldsymbol{\beta}}),$ 30.2 (CONHCH₂CH₂CH₂NH), 35.6 (=NCOCH₂(CH₂)₂CONH), 36.9 (=NCO(CH₂)₂CH₂CONH), 37.4 (CONH(CH₂)₂CH₂NH), 37.6 (CONHCH₂(CH₂)₂NH), 38.4 (NHCH₂CH₂N<), 39.3 (C-2/5 cyclopentyl), 39.5 and 39.7 $(>NCOCH_2 cyclopentyl), 41.2 (NHCH_2CH_2N<), 42.0 (C^{<math>\delta$}), 44.6 (CH_2CON^{$\alpha$}H), 47.0 (C-2/6) piperazine), 45.8 (C-1 cyclopentyl), 52.2 und 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepine-11-yl), 88.8 and 90.0 (COCHFCH₃), 123.0 (C_{ar}H), 124.2 (Ph), 126.2 (C_{ar}H), 128.2 (C_{ar}H), 129.4 (C_{ar}H), 129.8 (C_{ar}H), 130.2 (Ph), 130.3 (C_{ar}), 131.4 (C_{ar}H), 132.0 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.3 (*C*_{ar}H), 137.0 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.0 (NC(N)N), 172.8 (CON^αH), 173.4 and 173.5 (COCHFCH₃), 174.5 (CONHC₂H₄N<), 174.7 (CON<), 175.2 (=NCO(CH₂)₃CONH), 176.4 (=NCO(CH₂)₃CONH) ppm; MS (ES, +p) m/z

(%): 1141 (30) $[M+H]^+$, 571 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for $C_{60}H_{75}FN_{13}O_9$: 1140.5795, found: 1140.5799; RP-HPLC: 99 % ($t_R = 17.7 \text{ min}, k' = 5.6$); $C_{60}H_{74}FN_{13}O_9$ (1139.57).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl]ethyl]-N^{\omega}-[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl]ethyl]ethyl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethyl[18-(2-fluoro-1,2-diphenyl-1,2-dipheny$ propanoylamino)-4-oxo-9,12,15-trioxa-5-azaoctadecanoyl]- N^{α} -[2-(1-{2-oxo-2-[4-(6oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl}acetyl]argininamide ((S)-3.84). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC): δ = 1.47 and 1.50, (2x d, ${}^{3}J$ = 6.8 Hz, 3H, CFHC**H**₃), 1.50 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.50 and 1.67 (m, 4H, 2/5-H cyclopentyl), 1.50 (m, 2H, $C^{\beta}H_{2}$), 1.58 (m, 2H, $C^{\gamma}H_{2}$), 1.73 (m, 2H, NHCH₂CH₂CH₂O), 1.77 (m, 2H, NHCH₂CH₂CH₂O), 2.14 and 2.21 (m, 4H, 3/5-H piperazine), 2.23 and 2.41 (m, 2H, $CH_2CON^{\alpha}H$), 2.47 and 2.49 (m, 2H, >NCOC H_2 cyclopentyl), 2.55 and 2.70 (2x m, 4H, =NCO(C H_2)₂CONH), 3.16 (m, 2H, C^b H_2), 3.24 (t, ³J = 6.8 Hz, 2H, NHC**H**₂(CH₂)₂O), 3.31 (m, 2H, NHC**H**₂(CH₂)₂), 3.32-3.49 (m, 4H, 2/6-H piperazine), 3.44 and 3.53 (m, 2H, NHCH₂CH₂N<), 3.49 (m, 2H, NH(CH₂)₂CH₂O), 3.51 (m, 2H, NH(CH₂)₂CH₂O), 3.56 and 3.61 (m, 8H, (O(CH₂)₂O)₂), 3.78 (m, 2H, NHCH₂C H_2 N<), 4.25 (m, 1H, C^{α}H), 4.28 (br, 1H, 11-H dibenzazepine-11-yl), 4.90 and 4.98 (2x quat, ${}^{3}J$ = 6.8 Hz, 1H, C**H**FCH₃), 7.12 (m, 1H, H_{ar}), 7.13 (m, 1H, H_{ar}), 7.20 (m, 2H, H_{ar}), 7.32 (m, 5H, Ph), 7.33 (m, 1H, H_{ar}), 7.38 (m, 5H, Ph), 7.42 (m, 1H, H_{ar}), 7.50 (m, 1H, H_{ar}), 7.81 (m, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC): δ = 18.9 (COCHF**C**H₃), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (C^{γ}), 30.0 (C^{β}), 30.3 and 30.4 (2x NHCH₂CH₂CH₂O), 30.3 (=NCOCH₂CH₂CO), 33.0 (=NCOCH₂CH₂CO), 37.8 and 38.0 (2x NHCH₂(CH₂)₂O), 38.5 (NHCH₂CH₂N<), 39.3 (C-2/5 cyclopentyl), 39.6 (>NCOCH₂cyclopentyl), 41.2 (NHCH₂CH₂N<), 42.0 (C°), 44.7 (CH₂CON^{α}H), 45.9 (C-1 cyclopentyl), 47.5 (C-2/6 piperazine), 52.2 and 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 69.9 and 70.1 (2x HN(CH₂)₂CH₂O), 71.2 and 71.3 ((O(CH₂)₂O)₂), 75.8 (C-11 dibenzazepine-11-yl), 88.8 and 90.0 (COCHFCH₃), 122.9 (C_{ar}H), 124.1 (Ph), 126.0 (C_{ar}H), 128.1 (C_{ar}H), 129.0 (C_{ar}H), 129.4 (*C*_{ar}H), 130.0 (*C*_{ar}), 130.2 (Ph), 131.2 (*C*_{ar}H), 131.7 (*C*_{ar}H), 132.4 (*C*_{ar}), 133.1 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 154.9 (N*C*(N)N), 172.0 (*C*=O lactam), 172.7 (**C**ON^αH), 173.1 (**C**OCHFCH₃), 173.7 (=NCO(CH₂)₂**C**O), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON<), 176.4 (=N**C**O(CH₂)₂CO) ppm; MS (ES, +p) m/z (%): 1273 (12) [M+H]⁺, 637 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₆₆H₈₇FN₁₃O₉: 1272.6581, found: 1272.6562; RP-HPLC: 97 % ($t_{\rm R}$ = 18.2 min, k' = 5.7); C₆₆H₈₆FN₁₃O₁₂ (1271.65).

$(2S)-N^{\omega}-tert-Butoxycarbonyl-N-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)-ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-(6-0x0-6,11-dihydro-5H-dibenz0[b,e]azepin-11-yl)-$

piperazin-1-yl]ethyl}cyclopentyl)acetyl]argininamide (3.85). A solution of (*S*)-**3.47a** (0.10g, 0.09 mmol) in CH₃CN (6 mL) and 0.1 % aq. TFA (3 mL) was stirred for 2 h at rt. Subsequently, 4 mL of 0.1 % aq. TFA was added and stirring was continued for another 24 h. The deprotection was aborted with a few drops of NEt₃ (pH 9-10) and the solvent was removed under reduced pressure. The aqueous phase was washed

twice with CH_2Cl_2 (20 mL). Then the organic phase was dried over Na_2SO_4 , evaporated, and the crude product was purified with the Varian flash chromatography workstation (eluent: CH_2Cl_2 (A), MeOH (B); gradient: 0 to 20 min: A/B 100/0 to 75/25) yielding the title compound as a yellow solid (0.05 g, 60 %). MS (ES, +p) m/z (%): 997 (15) $[M+H]^+$, 499 (100) $[M+2H]^{2+}$; $C_{54}H_{65}N_{11}O_8$ (995.50).

Preparation of the N^G-acylated analogs 3.86, 3.87:²¹

3.85 (50 mg, 45 μ mol) and NEt₃ (6.2 μ L, 45 μ mol) was dissolved in CH₃CN (2 mL). The active ester (1.2 eq) was added and the mixture was stirred for 16 h prior to the addition of TFA (1.5 mL). After 2 h the deprotection mixtures were subjected to preparative HPLC to obtain the products as white solids (53-63 %).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-\{2-0x0-2-[4-1,2])ethyl]-N^{\alpha}-[2-(1-[4-1,2])ethyl]-$ (6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetyl]-N^ω-(propanoyl)argininamide (3.86). Mp 125 °C; ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.12$ (t, ${}^{3}J = 7.4$ Hz, 3H, COCH₂CH₃), 1.50 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.50 and 1.70 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.75 (m, 2H, $C^{\beta}H_{2}$), 1.60 (m, 2H, $C^{\gamma}H_{2}$), 2.19 and 2.26 (m, 4H, 3/5-H piperazine), 2.25 and 2.43 (m, 2H, CH₂CON^αH), 2.44 (m, 2H, COCH₂CH₃), 2.47 (m, 2H, >NCOCH₂-cyclopentyl), 3.18 (m, 2H, $C^{\circ}H_{2}$), 3.43 (br, 4H, 2/6-H piperazine), 3.44 and 3.54 (m, 2H, NHC H_{2} CH₂N<), 3.78 (m, 2H, NHCH₂C**H**₂N<), 4.25 (m, 1H, C^α**H**), 4.35 (br, 1H, 11-H dibenzazepine-11yl), 7.14 (m, 2H, *H*_{ar}), 7.19 (m, 2H, *H*_{ar}), 7.32 (m, 5H, Ph), 7.37 (m, 5H, Ph), 7.40 (m, 1H, H_{ar}), 7.44 (m, 1H, H_{ar}), 7.52 (m, 1H, H_{ar}), 7.83 (d, ³J = 7.7 Hz, 1H, H_{ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): $\delta = 8.5$ (COCH₂CH₃), 24.5 and 24.6 (C-3/4 cyclopentyl), 25.5 (C^{γ}), 30.0 (C^{β}), 31.1 (COCH₂CH₃), 38.4 (NHCH₂CH₂N<), 39.3 and 39.4 (C-2/5 cyclopentyl), 39.7 (>NCO CH_2 -cyclopentyl), 41.2 (NHCH $_2CH_2$ N<), 42.0 (C^{δ}), 44.7 $(CH_2CON^{\alpha}H)$, 45.8 (C-1 cyclopentyl), 47.2 (C-2/6 piperazine), 52.2 and 52.7 (C-3/5 piperazine), 53.7 (C^{α}), 75.8 (C-11 dibenzazepine-11-yl), 123.0 (C_{ar} H), 124.1 (Ph), 126.1 (C_{ar}H), 128.1 (C_{ar}H), 129.2 (C_{ar}H), 129.7 (C_{ar}H), 130.2 (Ph), 131.3 (C_{ar}H), 131.9 (C_{ar}H), 132.4 (*C*_{ar}), 133.2 (*C*_{ar}H), 136.9 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.0 (N*C*(N)N), 171.7 (**C**=O lactam), 172.8 (**C**ON<), 174.5 (**C**ONH(CH₂)₂N<), 174.7 (**C**ON^αH), 177.7 (COCH₂CH₃) ppm; MS (ES, +p) m/z (%): 477 (100) $[M+2H]^{2+}$; HRMS (LSI-MS): m/z $[M+H]^{+}$ calcd. for C₅₂H₆₂N₁₁O₇: 952.4834, found: 952.4845; RP-HPLC: 99 % ($t_{\rm R}$ = 13.5 min, k' = 4.0; C₅₂H₆₁N₁₁O₇ (951.48).

 $(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{<math>\omega$}-(4-fluorobenzoyl)- N^{α} -[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl]ethyl}cyclopentyl)acetyl]argininamide (3.87). ¹H NMR (600 MHz, CD₃OD): δ = 1.51 and 1.79 (m, 2H, $C^{\beta}H_{2}$), 1.50 and 1.64 (m, 4H, 2/5-H cyclopentyl), 1.51 and 1.63 (m, 4H, 3/4-H cyclopentyl), 1.66 (m, 2H, C^YH₂), 2.12 and 2.18 (m, 4H, 3/5-H piperazine), 3.26 (m, 2H, $C^{\delta}H_{2}$), 3.39 and 3.46 (m, 4H, 2/6-H piperazine), 3.54 (m, 2H, NHCH₂CH₂N<), 3.78 (m, 2H, NHCH₂CH₂N<), 4.24 (br, 1H, 11-H dibenzazepine-11-yl), 4.28 (m, 1H, C^α*H*₂), 7.10 (m, 1H, *H*_{ar}), 7.12 (m, 1H, *H*_{ar}), 7.18 (m, 2H, Ph), 7.28 (m, 1H, H_{ar}), 7.30 (m, 8H, Ph), 7.37 (m, 4H, Ph), 7.41 (m, 1H, H_{ar}), 7.49 (m, 1H, H_{ar}), 7.80 (m, 1H, H_{ar}), 8.00 (m, 2H, Ph) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 24.5 and 24.6 (C-3/4 cyclopentyl), 25.4 (\mathbf{C}^{γ}), 30.0 (\mathbf{C}^{β}), 38.5 (NH \mathbf{C} H₂CH₂N<), 39.3 (C-2/5 cyclopentyl), 39.4 and 39.6 (>NCO CH_2 -cyclopentyl), 41.2 (NHCH₂ CH_2 N<), 42.3 (C^{δ}), 42.6 and 47.6 (C-2/6 piperazine), 44.7 ($CH_2CON^{\alpha}H$), 45.9 (C-1 cyclopentyl), 52.1 and 52.6 (C-3/5 piperazine), 53.7 (\boldsymbol{C}^{α}), 75.8 (C-11 dibenzazepin-11-yl), 117.2 (\boldsymbol{C}_{ar} H), 117.3 (\boldsymbol{C}_{ar} H), 123.0 (C_{ar}H), 124.1 (Ph), 126.0 (C_{ar}H), 128.1 (C_{ar}H), 128.9 (C_{ar}H), 129.4 (C_{ar}H), 129.9 (C_{ar}), 130.2 (Ph), 131.1 (*C*_{ar}H), 131.6 (*C*_{ar}H), 132.2 (Ph), 132.4 (*C*_{ar}), 133.1 (*C*_{ar}H), 136.8 (*C*_{ar}), 137.8 (*C*_{ar}), 154.5 (N(*C*ONPh)₂), 155.5 (NC(N)N), 168.6 (*C*OC₆H₄F), 172.1 (*C*=O lactam), 172.7 (**C**ON^{α}H), 174.5 (**C**ONHC₂H₄N<), 174.7 (**C**ON<) ppm; MS (ES, +p) m/z (%):1018 (100) $[M+H]^+$; HRMS (LSI-MS): $m/z [M+H]^+$ calcd. for C₅₆H₆₁FN₁₁O₇: 1018.4739, found: 1018.4742; RP-HPLC: 98 % ($t_{\rm R}$ = 21.5 min, k' = 7.0); C₅₆H₆₀FN₁₁O₇ (1017.47).

3.5.3 Investigation of the Chemical Stability

The stability of the Y₂R antagonists (S)-**3.48**-(S)-**3.50**, (S)-**3.53**-(S)-**3.55**, (S)-**3.57**, (S)-3.58, (S)-3.63, (S)-3.69, (S)-3.72 and (S)-3.74 regarding the formation of BIIE 0246 ((S)-3.47) was investigated at neutral pH in FACS-buffer (cf. section 3.5.1). Incubation was started by addition of 10 µL of a 1 mM solution of the compounds in DMSO to 190 µL of buffer to give a final concentration of 50 µM. After incubation times between 15 and 180 min a 80 µL aliquot was taken and diluted with a mixture of acetonitrile, H₂O and 1 % aq. TFA (5:1:4, 80 μ L). 100 μ L of the resulting solution (pH = 2-3) was analyzed by HPLC on a RP-column (Eurospher-100 C18, 250 × 4 mm, 5 μm, Knauer, Berlin, Germany) using a system from Thermo Separation Products (composed of a SN400 controller, a P4000 pump, a degasser (Degassex DG-4400, phenomenex), an AS3000 autosampler and a Spectra Focus UV-VIS detector. Mixtures of acetonitrile (A) and 0.05 % aq. TFA (B) were used as mobile phase (gradient: 0-30 min: A/B 20/80 to 95/5, 30 to 37 min: A/B 95/5). The flow rate was set to 0.8 mL/min, the column temperature to 30 °C and the detection wavelength to 220 nm. The quantity of decomposition product (S)-3.47 was estimated from the peak integrals of the incubation sample and a reference chromatogram of the analyzed compound.

3.5.4 Pharmacology: Cell Culture, Fura-2 Assay and Flow Cytometry

Cell culture. CHO cells were cultured as described elsewhere.²⁹

Fura-2 assay on CHO cells. The fura-2 assay was performed as previously described³⁰ using a LS50 B spectrofluorimeter from Perkin Elmer (Überlingen, Germany).

Flow cytometric competition binding assay. The binding assay was performed as described elsewhere²⁹ with the following adaptations. Samples were measured without further processing using a FACSCaliburTM flow cytometer from Becton Dickinson (Heidelberg, Germany), equipped with an argon laser (488 nm) and a red diode laser (635 nm); instrument settings were: FSC: E-1, SSC: 350 V, FL4: 800 V, Flow: HI; measurement stopped when 10000 gated events were counted. The experiments were performed using 490 µL of cell suspension, 5 µL of Cy5-pNPY (final concentration 5 nM) and 5 µL of test compound (100-fold concentrated). If indicated, 5 µL of Dy-635-pNPY (final concentration 10 nM) was used as fluorescent ligand. Incubation time was 90 min at room temperature. K_i values were obtained from 2-3 independent experiments.

Flow cytometric selectivity assay. The selectivity of the new Y_2R antagonists for human NPY Y_2 over Y_1 , Y_4 and Y_5 receptors was proven by flow cytometric binding assays on Cy5-pNPY (Y_1R , Y_5R), and Cy5-[K⁴]-hPP (Y_4R) according to previously described methods.^{29, 44-45} All flow cytometric measurements were performed on a FACSCaliburTM flow cytometer from Beckton Dickinson (Heidelberg, Germany), equipped with an argon laser (488 nm) and a red diode laser (635 nm). The compounds were tested at two concentrations (1 μ M and 10 μ M) in duplicates.

3.6 References

- 1. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y(2) receptor antagonist. *Eur. J. Pharmacol.* **1999**, 384, R3-5.
- Dumont, Y.; Cadieux, A.; Doods, H.; Pheng, L. H.; Abounader, R.; Hamel, E.; Jacques, D.; Regoli, D.; Quirion, R. BIIE0246, a potent and highly selective non-peptide neuropeptide Y Y(2) receptor antagonist. *Br. J. Pharmacol.* 2000, 129, 1075-88.
- 3. Smith-White, M. A.; Hardy, T. A.; Brock, J. A.; Potter, E. K. Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. *Br. J. Pharmacol.* **2001**, 132, 861-8.
- 4. Dautzenberg, F. M.; Neysari, S. Irreversible binding kinetics of neuropeptide Y ligands to Y2 but not to Y1 and Y5 receptors. *Pharmacology* **2005**, 75, 21-9.
- Rudolf, K.; Eberlein, W.; Engel, W.; Mihm, G.; Doods, H. N.; Willim, K. D.; Krause, J.; Wieland, H. A.; Schnorrenberg, G.; Esser, F.; Dollinger, H. Preparation of piperazinecontaining peptidomimetics for use as NPY antagonists. DE 19816929, 1999.

- 6. Esser, F.; Schnorrenberg, G.; Dollinger, H.; Gaida, W. Preparation of novel peptides for use as NPY antagonists. DE19816932, 1999.
- 7. Dollinger, H.; Esser, F.; Mihm, G.; Rudolf, K.; Schnorrenberg, G.; Gaida, W.; Doods, H. N. Preparation of novel peptides for use as NPY antagonists. DE 19816929, 1999.
- 8. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide Y Y1 and Y2 receptor antagonists: synthesis, stability and pharmacological activity. Doctoral thesis, Universität Regensburg, Regensburg, 2006.
- 9. Merten, N.; Lindner, D.; Rabe, N.; Rompler, H.; Mörl, K.; Schöneberg, T.; Beck-Sickinger, A. G. Receptor subtype-specific docking of Asp6.59 with C-terminal arginine residues in Y receptor ligands. *J. Biol. Chem.* **2007**, 282, 7543-51.
- Salaneck, E.; Holmberg, S. K.; Berglund, M. M.; Boswell, T.; Larhammar, D. Chicken neuropeptide Y receptor Y2: structural and pharmacological differences to mammalian Y2(1). FEBS Lett. 2000, 484, 229-34.
- 11. Berglund, M. M.; Fredriksson, R.; Salaneck, E.; Larhammar, D. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding. *FEBS Lett.* **2002**, 518, 5-9.
- Akerberg, H.; Fallmar, H.; Sjodin, P.; Boukharta, L.; Gutierrez-de-Teran, H.; Lundell, I.; Mohell, N.; Larhammar, D. Mutagenesis of human neuropeptide Y/peptide YY receptor Y2 reveals additional differences to Y1 in interactions with highly conserved ligand positions. *Regul. Pept.* **2010**, 163, 120-9.
- 13. Fallmar, H.; Kerberg, H.; Gutierrez-de-Teran, H.; Lundell, I.; Mohell, N.; Larhammar, D. Identification of positions in the human neuropeptide Y/peptide YY receptor Y2 that contribute to pharmacological differences between receptor subtypes. *Neuropeptides* **2011**.
- Kanno, T.; Kanatani, A.; Keen, S. L.; Arai-Otsuki, S.; Haga, Y.; Iwama, T.; Ishihara, A.; Sakuraba, A.; Iwaasa, H.; Hirose, M.; Morishima, H.; Fukami, T.; Ihara, M. Different binding sites for the neuropeptide Y Y1 antagonists 1229U91 and J-104870 on human Y1 receptors. *Peptides* 2001, 22, 405-13.
- Sautel, M.; Rudolf, K.; Wittneben, H.; Herzog, H.; Martinez, R.; Munoz, M.; Eberlein, W.; Engel, W.; Walker, P.; Beck-Sickinger, A. G. Neuropeptide Y and the nonpeptide antagonist BIBP 3226 share an overlapping binding site at the human Y1 receptor. *Mol. Pharmacol.* **1996**, 50, 285-92.
- Kraus, A.; Ghorai, P.; Birnkammer, T.; Schnell, D.; Elz, S.; Seifert, R.; Dove, S.; Bernhardt, G.; Buschauer, A. N(G)-acylated aminothiazolylpropylguanidines as potent and selective histamine H(2) receptor agonists. *ChemMedChem* 2009, 4, 232-40.
- 17. Xie, S. X.; Ghorai, P.; Ye, Q. Z.; Buschauer, A.; Seifert, R. Probing ligand-specific histamine H1- and H2-receptor conformations with NG-acylated Imidazolylpropylguanidines. *J. Pharmacol. Exp. Ther.* **2006**, 317, 139-46.
- 18. Igel, P.; Schneider, E.; Schnell, D.; Elz, S.; Seifert, R.; Buschauer, A. N(G)-acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the N(G)-substituent. *J. Med. Chem.* **2009**, 52, 2623-7.
- 19. Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-MK136: a highly potent and selective radioligand for neuropeptide Y Y1 receptors. *ChemMedChem* **2011**, 6, 1566-71.

- Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Red-fluorescent argininamide-type NPY Y(1) receptor antagonists as pharmacological tools. *Bioorg. Med. Chem.* **2011**, 19, 2859-78.
- Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist. *J. Med. Chem.* 2008, 51, 8168-72.
- 22. Dains, F. B.; Wertheim, E. The action of ammonia and amines on the substituted ureas and urethanes. II. Allophanic ester. *J. Am. Chem. Soc.* **1920**, 42, 2303-2309.
- Altmann, E.; Aichholz, R.; Betschart, C.; Buhl, T.; Green, J.; Lattmann, R.; Missbach, M. Dipeptide nitrile inhibitors of cathepsin K. *Bioorg. Med. Chem. Lett.* 2006, 16, 2549-54.
- 24. Jacobi, P. A.; DeSimone, R. W.; Ghosh, I.; Guo, J.; Leung, S. H.; Pippin, D. New syntheses of the C,D-ring pyrromethenones of phytochrome and phycocyanin. *J. Org. Chem.* **2000**, 65, 8478-89.
- Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; König, B. N(G)-Acyl-argininamides as NPY Y(1) receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. *Bioorg. Med. Chem.* **2010**, 18, 6292-304.
- Fujii, N.; Otaka, A.; Ikemura, O.; Akaji, K.; Funakoshi, S.; Hayashi, Y.; Kuroda, Y.; Yajima, H. Trimethylsilyl Trifluoromethanesulfonate as a Useful Deprotecting Reagent in Both Solution and Solid-Phase Peptide Syntheses. *J. Chem. Soc., Chem. Commun.* **1987**, 274-275.
- Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A. Tritium-labeled N(1)-[3-(1H-imidazol-4-yl)propyl]-N(2)-propionylguanidine ([(3)H]UR-PI294), a high-affinity histamine H(3) and H(4) receptor radioligand. *ChemMedChem* **2009**, 4, 225-31.
- 28. Brennauer, A.; Keller, M.; Freund, M.; Bernhardt, G.; Buschauer, A. Decomposition of 1-(w-aminoalkanoyl)guanidines under alkaline conditions. *Tetrahedron Lett.* **2007**, 48, 6996-9.
- 29. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. *Eur. J. Pharmacol.* **2006**, 551, 10-8.
- 30. Müller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Synthesis and neuropeptide Y Y₁ receptor antagonistic activity of N,N-disubstituted w-guanidinoand w-aminoalkanoic acid amides. *Arch. Pharm.* **1997**, 330, 333-42.
- 31. Keller, M.; Teng, S.; Bernhardt, G.; Buschauer, A. Bivalent argininamide-type neuropeptide y y(1) antagonists do not support the hypothesis of receptor dimerisation. *ChemMedChem* **2009**, 4, 1733-45.
- 32. Velazquez-Campoy, A.; Todd, M. J.; Freire, E. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. *Biochemistry* **2000**, 39, 2201-7.
- Ghorai, P.; Kraus, A.; Keller, M.; Gotte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A. Acylguanidines as bioisosteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists. *J. Med. Chem.* **2008**, 51, 7193-204.

- 34. Bodanszky, M.; Ondetti, M. A.; Birkhimer, C. A.; Thomas, P. L. Synthesis of argininecontaining peptides through their omithine analogs. Synthesis of arginine vasopressin, arginine vasotocin, and L-histidyl-L-phenylalanyl-L-arginyl-L-tryptoph-ylglycine. *J. Am. Chem. Soc.* **1964**, 86, 4452-9.
- 35. Leschke, C.; Storm, R.; BreitwegLehmann, E.; Exner, T.; Nurnberg, B.; Schunack, W. Alkyl-substituted amino acid amides and analogous di- and triamines: New non-peptide G protein activators. *J. Med. Chem.* **1997**, 40, 3130-3139.
- 36. Waring, W. S.; Whittle, B. A. Basic dihydromorphanthridinones with anticonvulsant activity. *J. Pharm. Pharmacol.* **1969**, 21, 520-30.
- 37. Tadros, Z.; Lagriffoul, P. H.; Mion, L.; Taillades, J.; Commeyras, A. Enantioselective Hydration of Alpha-Aminonitriles Using Chiral Carbonyl Catalysts. *J. Chem. Soc., Chem. Commun.* **1991**, 1373-1375.
- Moriguchi, T.; Yanagi, T.; Kunimori, M.; Wada, T.; Sekine, M. Synthesis and properties of aminoacylamido-AMP: chemical optimization for the construction of an N-acyl phosphoramidate linkage. *J. Org. Chem.* **2000**, 65, 8229-38.
- Moura, C.; Vitor, R. F.; Maria, L.; Paulo, A.; Santos, I. C.; Santos, I. Rhenium(V) oxocomplexes with novel pyrazolyl-based N4- and N3S-donor chelators. *Dalton Trans.* 2006, 5630-40.
- 40. Bergeron, R. J.; McManis, J. S. Reagents for the Stepwise Functionalization of Spermine *J. Org. Chem.* **1988**, 53, 3108-3111.
- 41. Imming, P.; Yang, X.-G. On the reaction of dicarboxylic anhydrides with 1,w-diamines. *Arch. Pharm. (Weinheim, Ger.)* **1994,** 327, 747-750.
- 42. Quelever, G.; Kachidian, P.; Melon, C.; Garino, C.; Laras, Y.; Pietrancosta, N.; Sheha, M.; Louis Kraus, J. Enhanced delivery of gamma-secretase inhibitor DAPT into the brain via an ascorbic acid mediated strategy. *Org. Biomol. Chem.* **2005**, 3, 2450-7.
- 43. Gers, T.; Kunce, D.; Markowski, P.; Izdebski, J. Reagents for efficient conversion of amines to protected guanidines. *Synthesis* **2004**, 1, 37-42.
- 44. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A. A simple and powerful flow cytometric method for the simultaneous determination of multiple parameters at G protein-coupled receptor subtypes. *Chembiochem* **2006**, 7, 1400-9.
- 45. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of affinity and activity of ligands at the human neuropeptide Y Y4 receptor by flow cytometry and aequorin luminescence. *J. Recept. Signal Transduct. Res.* **2007**, 27, 217-33.

Chapter 4 Bivalent Argininamide-Type NPY Y₂ Receptor Antagonists

4.1 Introduction

For many years G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomers. However, there is a growing number of reports that suggest homo- and hetero-dimerization of numerous GPCRs, e.g. adrenergic receptors,¹ GABA_B receptors,²⁻³ opioid receptors,⁴⁻⁶ muscarinic receptors,⁷⁻⁹ vasopressin receptors,¹⁰⁻¹¹ chemokine receptors,¹²⁻¹³ dopamine receptors,¹⁴⁻¹⁵ histamine receptors,¹⁶⁻¹⁷ etc.¹⁸⁻²¹ FRET experiments clearly proved the ability of human neuropeptide Y receptors Y_1 , Y_2 and Y_5 (hY₁R, hY₂R, hY₅R) to form homodimers, whereas the hY₂R is less prone to dimerization than the hY₁R and the hY₅R, respectively.²² More detailed investigations on the localization, formation and composition of Y₂R dimers were performed by Parker et al. on different tissues of the rabbit.²³⁻²⁴ Therein, the Y₂R was observed to be largely dimeric in the kidney, but monomeric in the forebrain, possibly due to variable levels of G-proteins containing the $G\alpha_i$ subunit in different tissues.²⁴ Furthermore, in the renal cortex a proteincomplex of about 300 kDa was detected, which was postulated to result from the association of both Y_2R protomers of the homo-dimer with two G-protein $\alpha\beta\gamma$ heterotrimers.²³ The dimerization might be enabled by a tryptophan-tryptophan H-bonding in TM4,²⁴ as suggested for dopamine D₂ receptor dimers.²⁵ Commonly applied techniques for the identification of GPCR oligomers include co-immunoprecipitation,²⁶ functional studies (e.g. measurement of GPCR- β -arrestin interactions with β -galactosidase enzyme complementation technique²⁷), mutation studies of putative dimerization motives,²⁸ bioluminescence resonance energy transfer (BRET)¹ and molecular modeling.²⁹ However, all experiments demonstrating a physical interaction between GPCRs have up to now been performed ex vivo in transfected cells, which implies non-physiological cellular environments and - in most cases unrealistically high concentrations of receptors in the membranes. In this context, the in vivo demonstration of GPCR dimers of the luteinizing hormone receptor (LHR) by Rivero-Müller et al. constitutes a major contribution to the proof of GPCR oligomerization.³⁰ Co-transfection with a binding-deficient and a signaling-deficient LHR resulted in a guasi wild-type phenotype after activation with LH. Thus, functional activity could only be generated by the dimerization of the loss-of-function LHR mutants.³¹

The use of bivalent ligands as an alternative to the aforementioned methods offers the possibility to investigate native GPCRs, expressed endogenously by normal wildtype cells. Such compounds, defined as two pharmacophoric moieties linked through a spacer, should bring more insight into the phenomenon of GPCR dimerization. Moreover, the bivalent ligand approach is discussed as an alternative drug design strategy. On the one hand, bivalent ligands can interact with the orthosteric and an additional allosteric binding site (cf. Figure 4.1). Such key interactions may be formed with residues that reside within extracellular loop domains,³³ which often display lower homology between receptor subtypes in comparison to transmembrane domains. Thus, a higher degree of receptor-subtype selectivity may be achieved by this approach. On the other hand, bivalent ligands addressing two protomers should enhance tissue specificity, as receptor oligomers (especially hetero-oligomers) are coexpressed in certain tissues with a distinct pharmacology and function.²⁷ Hence, concerning side-effects, ligands combining two distinct pharmacophoric moieties in one molecule should be superior to combined administration of two monomeric drugs. This renders the bivalent ligand approach a very interesting topic in drug design.

However, there are a few spatial requirements to be fulfilled for a successful application of bivalent ligands: firstly, the spacer length must be sufficient to address the binding sites of both protomers. Secondly, flexibility and appropriate chemical nature of the linker are essential for the correct positioning of each pharmacophore. Studies on bivalent based drug design applied to opioid and serotonin receptors suggested a distance between the binding sites of 22-32 Å (corresponding to 16-24 atoms).^{32, 34-35}

The distance between the two binding sites is difficult to predict as there are several variants of contact dimers discussed in the literature.^{25, 32, 34} Molecular modeling stu-

dies revealed a distance of about 27 Å in case of a TM5,6 interface, while a TM4,5 interface leads to a substantially longer distance of approximately 32 Å.³² Also, the linker might span the transmembrane domains or it may bridge the two binding sites on the extracellular side, complicating the prediction of an optimal spacer length. Moreover, an affinity-enhancing effect might occur due to cooperativity by interaction with an allosteric site, rather than bridging the orthosteric pockets of two protomers (Figure 4.1). Thus, length and chemical nature of the spacer must be optimized for each GPCR dimer empirically

Figure 4.1. Illustration of the bivalent ligand concept for bridging of a hypothetical GPCR dimer. a) Occupation of an allosteric binding site by the second pharmacophore of a bivalent ligand. b) The unoccupied dimer undergoes univalent binding followed by either bridging of the bivalent ligand, or binding of a second ligand to give the dimer with both sides occupied. Adopted from Portoghese.³²

by screening several ligands.³⁶ To date, besides the aforementioned opioid and serotonin receptors, a variety of successful applications of the bivalent ligand approach to GPCRs is reported in the literature.³⁶⁻³⁹ In case of NPY receptors, the first studies focused on the preparation of peptidic bivalent antagonists derived from porcine NPY (pNPY). The first dimeric ligands, consisting of two nonapeptides mimicking the C-terminal part, were bridged by either disulfide bonds, 2,6-diaminopimelic acid and 2,3-diaminopropionic acid, respectively. These antagonists showed high affinity for both the Y₁R and the Y₂R (K_i (Y₁R) = 0.2-2.9 nM; K_i (Y₂R) = 0.02-8.8 nM).⁴⁰ Balasubramaniam *et al.* constructed the first highly potent and selective Y₁R bivalent antagonist based on the C-terminal hexapeptide of NPY.⁴¹ The only non-peptidic bivalent ligands for the Y₁R known so far were prepared in our laboratory as analogs of BIBP 3226⁴² linked by a spacer attached to the guanidino group.⁴³

This chapter presents the first non-peptide bivalent Y_2R antagonists, derived from BIIE 0246⁴⁴ by application of the guanidine-acylguanidine bioisosteric approach in analogy to the recently developed Y_1R bivalent ligands. The amine precursors used for the linkage with dicarboxylic acids are presented in Figure 4.2.

Figure 4.2. Argininamide-type amine precursors derived from BIIE 0246 used for the preparation of bivalent Y_2R antagonists.

4.2 Chemistry

The synthesis of the amine precursors ((*S*)-**3.48**-(*S*)-**3.50**, (*S*)-**3.52** and (*S*)-**3.54**), which were used for the preparation of bivalent Y₂R antagonists is described in chapter 3 (for structures cf. Figure 4.2). These building blocks contain two amino groups prone to acylation, namely the free N^{ω}H₂ and the terminal amine in the acyl- or carbamoyl linker. The terminal amino function is more reactive than the acylguanidine due to higher basicity and less sterical hindrance. Hence, the guanidino function was not protected as the synthetic strategy aimed at a minimum number of reaction steps and maximal purity on the low mg scale rather than at optimization of yields and synthetic routes. Various alkanedioic acids and amine precursors, respectively, were employed to synthesize bivalent ligands with spacer lengths between 16 and 35 atoms linking the two pharmacophoric moieties. Furthermore, the aforementioned building blocks (Figure 4.2) were chosen for linkage in order to obtain compounds differing in the chemical nature of the spacer.

For the preparation of the bivalent ligands **4.1-4.9** the amine precursors were acylated with the corresponding alkanedioic acid in an EDC/DMAP-mediated coupling step under microwave irradiation followed by purification with preparative HPLC (Scheme 4.1; for structures of the bivalent ligands **4.1-4.11** cf. Table 4.1). In case of the antagonists **4.10** and **4.11**, the terminal amino group of the branched linker was Boc-protected to avoid side reactions. Thus, acidic deprotection was necessary prior to the purification of the product (Scheme 4.1). The branched linkers were kindly provided by Dr. M. Keller from our laboratory.⁴³

Scheme 4.1. Synthesis of the bivalent ligands **4.1-4.11**. Reagents and conditions: a) alkanedioic acid (1 eq), amine precursor (2.4 eq), EDC × HCl (2.1 eq), NEt₃ (6 eq), DMAP (cat.), CH_2Cl_2 , DMF, MW, 35 min, 65 °C; b) TFA/CH₂Cl₂ 1:1 (v/v), 2 h, rt.

The title compounds were obtained in low yields (10-30 %). HPLC reaction monitoring revealed four major peaks (Figure 4.3 shows a representative chromatogram for the synthesis of **4.6**). After HPLC purification several compounds were identified by MS analysis. Peak A corresponds to non-reacted amine precursor which was used in excess. Peak B is assigned to a trifluoroacetylated by-product. This side reaction resulted from the application of the amine precursors as TFA salts. As these salts proved to be highly stable, they were not converted into the less stable free amines before coupling (see also Chapter 3.2.2). The monoacylated compound corresponds to peak C, whereas peak D with the longest retention time was identified as the respective bivalent ligand.

Figure 4.3. HPLC reaction monitoring of the preparation of bivalent ligands exemplified by the synthesis of **4.6**. Conditions: eluent: mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5, 30 to 40 min: 95/5. Chromatogram cut after 30 min as there were no further peaks. Peak A: starting material (S)-**3.50** (t_R = 17.2 min), peak B: TFA-acylated compound (t_R = 18.6 min), peak C: monoacylated by-product (t_R = 19.8 min), peak D: product **4.6** (t_R = 19.8 min).

4.3 Pharmacological Results and Discussion

The synthesized bivalent ligands were investigated for Y_2R binding in a flow cytometric binding assay using CHO cells, stably expressing the h Y_2R ,⁴⁵ and fluorescence-labeled Cy5-pNPY. NPY Y_2R antagonistic activities were determined in a spectrofluorimetric Ca²⁺ assay (fura-2 assay) on CHO cells, stably expressing the h Y_2R .⁴⁶ The selectivity for the Y_2R over Y_1R , Y_4R and Y_5R was examined by means of flow cytometry.⁴⁷

Table 4.1. Structures, Y_2R antagonistic activities (K_B) and binding affinities (K_i) of the bivalent Y_2R antagonists.

0

No	Spacer	No of atoms ^a	$K_{\rm B}$ / nM ^b	<i>K</i> _i / nM ^c					
4.1		22	82 ± 2	161 ± 10					
	n	m							
4.2	2	2	22	5 ± 3	69 ± 7				
4.3	2	4	24	61 ± 2	103 ± 57				
4.4	2	6	26	44 ± 27	300 ± 81				
4.5	3	8	30	241 ± 68	61 ± 4				
4.6		$ \begin{array}{c} & H \\ & H $	30	15 ± 3	21 ± 6				
	$ \begin{array}{c} \circ \\ & \circ \\ & & \circ \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $								
	n	m							
4.7	2	4	16	4.5 ± 1.9	74 ± 13				
4.8	2	6	18	119 ± 41	83 ± 7				
4.9	4	4	20	30 ± 12	171 ± 18				
4.10			35	11 ± 2	62 ± 34				
4.11	$\mathcal{A}_{\mathrm{H}}^{\mathrm{A}} \mathcal{A}_{\mathrm{H}}^{\mathrm{A}} \mathcal{A}_{\mathrm{3}}^{\mathrm{A}} \mathcal{A}_{\mathrm{1}}^{\mathrm{A}} \mathcal{A}_{\mathrm{3}}^{\mathrm{A}} \mathcal{A}_{\mathrm{1}}^{\mathrm{A}} \mathcal{A} \mathcal{A}_{\mathrm{1}}^{\mathrm{A}} \mathcal{A} \mathcal{A}_{\mathrm{1}}^{\mathrm{A}} \mathcal{A} \mathcal{A}_{\mathrm{1}}^{\mathrm{A}} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} $		31	20 ± 4	97 ± 15				
(S)- 3.47 ^d				5.6 ± 0.4	10.2 ± 1.1				

^{*a*} Number of atoms between the two guanidine functions ("length" of the spacer). ^{*b*} Inhibition of 70 nM pNPY-induced $[Ca^{2+}]_i$ mobilization in CHO cells; mean values ± SEM (n = 2-3). ^{*c*} Flow cytometric binding assay using Cy5-pNPY (K_D = 5.2 nM; c = 5.0 nM) in CHO cells; mean values ± SEM (n = 2-3). ^{*d*} BIIE 0246.

Figure 4.4. Displacement of 5 nM Cy5-pNPY by (S)-**3.47** (BIIE 0246) and the acylguanidine-type bivalent ligands **4.1**, **4.2**, **4.6**, **4.10**, respectively (mean values \pm SEM; n = 2).

Functional and binding data as well as the structures of the prepared bivalent compounds are summarized in Table 4.1. All bivalent NPY Y₂R antagonists showed binding affinities in the two to three-digit nM range. In most cases, the K_B values determined in the calcium assay were even lower. Rigidization by introduction of a double-bond in the spacer is moderately tolerated by the receptor as shown for compound **4.1** in comparison with the flexible analog **4.2** (K_i (**4.1**) = 161 nM vs. K_i (**4.2**) = 69 nM; Figure 4.4). The acylguanidine-bridged ligands **4.2-4.5** showed the highest affinities with linker lengths of 22 and 30 atoms, respectively, bridging the two pharmacophoric moieties (K_i (**4.2**) = 61 nM; K_i (**4.5**) = 69 nM), whereas Y₂R antagonistic activities decreased with increasing spacer lengths. The introduction of a second positively charged amino group in the linker of antagonist **4.6** led to a gain in affinity. With a K_i value of 21 nM **4.6** (spacer length: 30 atoms) was the most potent bivalent ligand of this small series (Figure 4.4), confirming a possible additional electrostatic interaction with the receptor, as already discussed for the monovalent ligands (cf. Chapter 3).

The affinity of carbamoylguanidine **4.9** (spacer length: 20 atoms) corresponds to about half of that of the lower homologs **4.7** and **4.8** with spacer lengths of 16 and 18 atoms, respectively. The K_i values of the latter are in the same range of those of **4.2** and **4.5**. Unfortunately, acylguanidine analogs of **4.7-4.9** have not been available, yet, in order to compare the impact of alkanoyl- and carbamoyl-linkage on binding. As already observed for argininamide-type Y₂R antagonists (cf. Chapter 3), the presence of the carbamoyl NH-group might implicate a different orientation of the N^{G} -substituent. Moreover, carbamoylguanidines are slightly more basic than acylguanidines. This should be affinity-enhancing, as the guanidino group is supposed to undergo an ionic interaction with an acidic residue of the Y₂R.

All bivalent Y_2R ligands show mono-phasic competition binding curves with Hill slopes not statistically significantly different from unity. Furthermore, the binding affinities of the bivalent antagonists are lower than that of the parent compound BIIE 0246. Thus, bridging of a Y_2R dimer, or an allosteric modulation by these bivalent ligands is very unlikely. Nevertheless, a larger library of structurally diverse bivalent Y₂R ligands is necessary for more detailed structure-activity investigations.

The bivalent ligands **4.10** and **4.11** with a terminal positively charged amino function in the branched part of the linker revealed K_i values below 100 nM. These compounds are considered appropriate precursors for the synthesis of radio- or fluorescence-labeled bivalent Y₂R antagonists.

The introduction of a second pharmacophoric entity into the bivalent ligands might change the selectivity profile, as observed for several argininamide-type bivalent Y_1R antagonists. A few eutomeric (*R*,*R*)-configured compounds appeared to be highly potent ligands⁴³ with a decreased selectivity against Y_4R , and some of the distomeric (*S*,*S*)-configured antagonists⁴³ turned out to bind at the Y_4R , rather than at the Y_1R .⁴⁸ Thus, the high selectivity of monovalent antagonists used as building blocks is not necessarily retained with the corresponding bivalent ligands. Nevertheless, in the case of the bivalent Y_2R antagonists presented in this thesis, the Y_2R selectivity was not compromised compared to the monovalent parent compounds, as confirmed by flow cytometric binding studies (Table 4.2).

No	K _i / nM ^a		Ne	$K_{\rm i}$ / nM ^a			
NO	Y ₁ R	Y_4R	Y ₅ R	NO	Y ₁ R	Y_4R	Y₅R
4.1	> 3500	> 6500	> 5000	4.7	> 3500	> 6500	> 5000
4.2	> 3500	> 6500	> 5000	4.8	> 3500	> 6500	> 5000
4.3	> 3500	> 6500	> 5000	4.9	> 2000	> 6500	> 5000
4.4	> 3500	> 6500	> 5000	4.10	> 1500	> 3200	> 5000
4.5	> 3500	> 6500	> 5000	4.11	> 800	> 7500	> 5000
4.6	> 2000	> 650	> 5000				

Table 4.2. NPY receptor subtype selectivity of the bivalent Y₂R antagonists.

^{*a*} Flow cytometric binding assays using 10 nM Cy5-pNPY (Y_1R), 5 nM Cy5-pNPY (Y_5R) or 3 nM Cy5-[K^4]-hPP (Y_4R) in HEL-Y₁ cells, CHO-Y₄ cells, and HEC-1B-Y₅ cells, respectively.

4.4 Summary and Conclusion

A small set of bivalent argininamide-type Y₂R antagonists was synthesized by linkage of various monomeric amine precursors derived from the reference compound BIIE 0246, using aliphatic dicarboxylic acids or a branched dicarboxylic acid comprising a primary amine. These bivalent ligands cover a wide range of linker lengths (number of atoms: 16-35). Flow cytometric determination of binding data revealed high Y_2R affinities (K_i values in the range of 61 to 300 nM) and high selectivity for the Y_2R compared to Y_1R , Y_4R and Y_5R . Interestingly, compound **4.6**, bearing two additional positively charged amines in the acyl linker was the only compound that exhibited a binding affinity ($K_i = 21 \text{ nM}$) and potency ($K_B = 15 \text{ nM}$) in the same range as the corresponding monovalent N^{G} -(ω -aminoalkylacylated) and N^{G} -(ω -aminoalkylcarbamoylated) antagonists. This is in agreement with the affinity-enhancing effect of a positively charged amino group in the N^G-substituent of monovalent acylguanidinetype Y₂R antagonists (cf. Chapter 3), suggesting an additional electrostatic interaction with the receptor. The prepared bivalent ligands exhibited monophasic competition binding curves with Hill slopes close to unity and decreased binding affinities compared to the monovalent analogs. Hence, positive cooperativity due to interactions with an allosteric site, or even by bridging two monomers of the Y2R could not be observed.

Lastly, the identification of receptor oligomers by non-labeled bivalent ligands is very challenging as there are only competition binding data available. Thus, a larger library of compounds and more detailed pharmacological studies would be indispensable to draw reliable conclusions from competition binding curves (bi-phasic curves, Hill slope with statistically high significance). Therefore, radio- and fluorescent-labeled bivalent ligands could serve as pharmacological tools for the identification and investigation of putative receptor oligomers. In particular, radiolabeled bivalent ligands could be useful to determine the ligand-receptor stoichiometry in order to distinguish between binding to monomeric or dimeric Y₂Rs. The compounds **4.10** and **4.11** can be regarded the first amine precursors allowing for the synthesis of labeled "twin compounds". Of course, additional branched analogs with various linker lengths have to be prepared and checked for stability under assay conditions in order to select an appropriate candidate for labeling.

4.5 Experimental Section

4.5.1 General Experimental Conditions

Unless otherwise stated, chemicals and solvents were purchased from commercial suppliers and used without further purification. The dicarboxylic acids were obtained from Sigma-Aldrich Chemie GmbH (Munich, Germany) and from Merck KGaA (Darmstadt, Germany). Deuterated solvents for NMR spectroscopy were from Deutero GmbH (Kastellaun, Germany). All solvents were of analytical grade or distilled prior to use. If moisture-free conditions were required, reactions were performed in dried glassware under argon atmosphere; DMF (H₂O < 0.01 %) was purchased from Sigma-Aldrich Chemie GmbH. Thin layer chromatography was performed on Merck silica gel 60 F_{254} TLC aluminum plates. Spots were visualized with UV light at 254 nm, and/or ninhydrin or ammonium molybdate/cerium (IV) sulfate solution.

NMR spectra were recorded on an Avance 300, an Avance 400 and an Avance III 600 spectrometer from Bruker BioSpin GmbH (Rheinstetten, Germany) with TMS as external standard. Multiplicities are specified with the following abbreviations: s (singlet), d (doublet), t (triplet), quat (quartet), q (quintet), m (multiplet), br (for broad singulet), as well as combinations thereof. Low resolution mass spectrometry analysis (MS) was performed in-house on a Finnigan ThermoQuest TSQ 7000 (ES-MS) and a Finnigan SSQ 710A (EI-MS 70 eV, CI-MS). High resolution mass spectrometry was performed on a Finnigan MAT 95 (LSI-MS). Lyophilization was done with a Christ alpha 2-4 LD equipped with a vacuubrand RZ 6 rotary vane vacuum pump. Preparation of the bivalent ligands was performed on the Microwave Synthesizer Initiator from Biotage (Uppsala, Sweden).

Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and a RP-column (Nucleodur 100-5 C18ec, 250 × 21 mm, 5 μ m) at a flow rate of 22 mL/min. Mixtures of acetonitrile and 0.1 % aq. TFA were used as mobile phase. Acetonitrile was removed from the eluates under reduced pressure (final pressure: 90 mbar) at 45 °C prior to lyophilization. Analytical HPLC analysis was performed on two different systems (Thermo Separation Products, Merck) which are listed in detail below. Mixtures of acetonitrile (A) and 0.05 % aq. TFA (B) (Thermo Separation Products), and mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B) (Merck) respectively were used as mobile phase. Helium degassing was used throughout.

The buffer for the Y₂R binding studies on CHO cells was prepared by the addition of BSA (1 %) and bacitracin (100 μ g/mL) to a buffer (pH 7.4) consisting of HEPES (25 mM), CaCl₂ × 2 H₂O (2.5 mM), MgCl₂ × 6 H₂O (1 mM). The loading buffer (pH 7.4) for the determination of the mobilization of intracellular Ca²⁺ in CHO cells was prepared by dissolving NaCl (120 mM), KCl (5 mM), MgCl₂ × 6 H₂O (2 mM), CaCl₂ × 2 H₂O (1.5 mM), HEPES (25 mM), and glucose (10 mM). Stock solutions of all

compounds were prepared in DMSO at concentrations of 2 or 10 mM and stored at – 20 °C.

Analytical HPLC systems:

System 1: Thermo Separation Products; composed of a SN400 controller, a P4000 pump, a degasser (Degassex DG-4400, phenomenex), an AS3000 autosampler and a Spectra Focus UV-VIS detector; flow rate: 0.8 mL/min; UV detection: 220 nm.

System 2: Merck; composed of a L-5000 controller, a 655A-12 pump, a 655A-40 autosampler and a L-4250 UV-VIS detector; flow rate: 0.7 mL/min; UV detection: 220 nm.

Applied gradients:

Gradient 1 (Thermo Separation Products): 0 to 30 min: A/B 20/80 to 95/5, 30 to 37 min: 95/5.

Gradient 2 (Merck): 0 to 30 min: A/B 20/80 to 95/5, 30 to 40 min: 95/5.

The purity of all compounds was determined with HPLC system 1 (gradient 1) on a Eurospher-100 C18 column (250 × 4 mm, 5 μ m, Knauer, Berlin, Germany) for compounds **4.1-4.4**, **4.6**, **4.9-4.11** and a Nucleodur H-Tec 100-5 C18 column (250 × 4 mm, 5 μ m, Macherey-Nagel, Düren, Germany) for compounds **4.5**, **4.8**, **4.9** respectively. The HPLC system 2 (gradient 2) was used for reaction monitoring with a Eurospher-100 C18 column (250 × 4 mm, 5 μ m, Knauer, Berlin, Germany).

4.5.2 Chemistry: Experimental Protocols and Analytical Data

General procedure for the preparation of the bivalent ligands 4.1-4.11:

NEt₃ (6 eq) and DMAP (0.1 eq) were added to a stirred solution of the pertinent amine precursor (2.4 eq) and the corresponding alkanedioic acid (1 eq) in CH₂Cl₂. EDC \times HCl (2.1 eq) was added and the mixture was stirred in a microwave synthesizer for 35 min at 65 °C. The reaction was stopped by addition of 10 % aq. TFA (corresponding to 2-3 eq of TFA) and the solvents were removed under reduced pressure. Purification with preparative HPLC and lyophilization afforded the products as white fluffy solids in yields from 10 to 30 %.

(11*E*)-*N*¹,*N*²²-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,10,13,18-tetroxo-6,9,14,17-tetraazadocosa-11-enediamide (4.1). MS (ES, +p) *m/z* (%): 1093 (40) $[M+2H]^{2+}$, 729 (100) $[M+3H]^{3+}$; RP-HPLC: 99 % (t_R = 20.1 min, k' = 6.4); C₁₁₆H₁₃₈N₂₆O₁₈ (2138.07). *N*¹,*N*²²-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,10,13,18tetroxo-6,9,14,17-tetraazadocosanediamide (4.2). ¹H NMR (300 MHz, CD₃OD): δ = 1.42-1.80 (m, 24H, 2 x 3/4-H cyclopentyl, 2 x 2/5-H cyclopentyl, 2 x C^β*H*₂C^{*Y*}*H*₂), 1.93 (m, 4H, 2 x COCH₂CH₂CQ), 2.00-2.30 (m, 16H, 2 x 3/5-H piperazine, 2 x COC*H*₂CH₂CH₂CO), 2.28 and 2.46 (m, 4H, 2 x C*H*₂CON^αH), 2.46 (m, 8H, CO(C*H*₂)₂CO, 2 x >NCOC*H*₂-cyclopentyl), 3.18 (m, 4H, 2 x C^δ*H*₂), 3.26 (m, 8H, 2 x NH(C*H*₂)₂NH), 3.35-3.57 (m, 12H, 2 x 2/6-H piperazine, 2 x NHC*H*₂CH₂N<), 3.78 (br, 4H, 2 x NHCH₂C*H*₂N<), 4.25 (br, 4H, 2 x 11-H dibenzazepine-11-yl, 2 x C^α*H*), 7.13 (m, 4H, *H*_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.36 (m, 20H, Ph), 7.36 (m, 2H, *H*_{Ar}), 7.42 (m, 2H, *H*_{Ar}), 7.51 (m, 2H, *H*_{Ar}), 7.80 (m, 2H, *H*_{Ar}) ppm; MS (ES, +p) *m/z* (%): 1094 (10) [*M*+2H]²⁺, 730 (75) [*M*+3H]³⁺, 548 (100) [*M*+4H]⁴⁺; RP-HPLC: 97 % (*t*_R = 19.6 min, *k*' = 6.3); C₁₁₆H₁₄₀N₂₆O₁₈ (2185.08).

 N^{1} , N^{24} -Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,10,15,20tetroxo-6,9,16,19-tetraazatetracosanediamide (4.3). MS (ES, +p) m/z (%): 1108 (20) $[M+2H]^{2+}$, 739 (80) $[M+3H]^{3+}$, 555 (100) $[M+4H]^{4+}$; RP-HPLC: 97 % (t_{R} = 19.5 min, k' = 6.2); $C_{118}H_{144}N_{26}O_{18}$ (2213.12).

*N*¹,*N*²⁶-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl]acetamido]pentylamino}methylene)-5,10,17,22tetroxo-6,9,18,21-tetraazahexacosanediamide (4.4). ¹H NMR (600 MHz, CD₃OD): δ = 1.31 (m, 4H, CO(CH₂)₂(CH₂)₂(CH₂)₂CO), 1.49-1.80 (m, 28H, 2 x 3/4-H cyclopentyl, 2 x 2/5-H cyclopentyl, 2 x C^βH₂C^YH₂, COCH₂CH₂(CH₂)₂CH₂CH₂CO), 1.91 (p, ³*J* = 7.3 Hz, 4H, 2 x COCH₂CH₂CH₂CO), 2.02-2.13 (m, 8H, 2 x 3/5-H piperazine), 2.16 and 2.24 (2 x m, 8H, 2 x COCH₂CH₂CQ), 2.16 and 2.46 (m, 4H, COCH₂(CH₂)₄CH₂CO), 2.27 and 2.41 (m, 4H, 2 x CH₂CON^αH), 2.48 (m, 4H, 2 x >NCOCH₂-cyclopentyl), 3.18 (m, 4H, 2 x C⁶H₂), 3.26 (m, 8H, 2 x NH(CH₂)₂NH), 3.35-3.57 (m, 8H, 2 x 2/6-H piperazine), 3.46 and 3.51 (m, 4H, 2 x NHCH₂CH₂N<), 3.77 (m, 4H, 2 x NHCH₂CH₂N<), 4.22 (br, 2H, 2 x 11-H dibenzazepine-11-yl), 4.25 (m, 2H, 2 x C^αH), 7.12 (m, 4H, H_{Ar}), 7.20 (m, 4H, H_{Ar}), 7.28 (m, 2H, H_{Ar}), 7.32 (m, 10H, Ph), 7.37 (m, 10H, Ph), 7.41 (m, 2H, H_{Ar}), 7.49 (m, 2H, H_{Ar}), 7.79 (m, 2H, H_{Ar}) ppm; MS (ES, +p) *m/z* (%): 1122 (10) [*M*+2H]²⁺, 749 (75) [*M*+3H]³⁺, 562 (100) [*M*+4H]⁴⁺; RP-HPLC: 100 % (*t*_R = 20.2 min, *k*[′] = 6.5); C₁₂₀H₁₄₈N₂₆O₁₈ (2241.15). N^1 , N^{30} -Bis(amino{(4S)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-y])piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,11,20,26tetroxo-6,10,21,25-tetraazatriacontanediamide (4.5). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): $\delta = 1.29$ (m, 8H, CO(CH₂)₂(CH₂)₄(CH₂)₂CO), 1.51 and 1.64 (m, 8H, 2 x 3/4-H cyclopentyl), 1.51 and 1.67 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.76 (m, 4H, 2 x $C^{\beta}H_{2}$), 1.57 (m, 4H, COCH₂CH₂(CH₂)₄CH₂CO), 1.59 (m, 4H, 2 x NHCH₂CH₂CH₂NH), 1.60 (m, 4H, 2 x $C^{\gamma}H_2$), 1.92 (p, ³J = 7.2 Hz, 4H, 2 x COCH₂CH₂CH₂CO), 2.16 (m, 4H, COCH₂(CH₂)₆CH₂CO), 2.11 and 2.17 (m, 8H, 2 x 3/5-H piperazine), 2.26 and 2.48 (m, 8H, 2 x COCH₂CH₂CH₂CO), 2.28 and 2.43 (m, 4H, 2 x $CH_2CON^{\alpha}H$, 2.49 (m, 4H, 2 x >NCOC H_2 -cyclopentyl), 3.19 (m, 4H, 2 x $C^{\delta}H_2$), 3.20 (m, 8H, 2 x NHCH₂CH₂CH₂CH₂NH), 3.39 (br, 8H, 2 x 2/6-H piperazine), 3.45 and 3.55 (m, 4H, 2 x NHC H_2 CH₂N<), 3.78 (m, 4H, 2 x NHCH₂C H_2 N<), 4.25 (br, 4H, 2 x C^{α}H, 2 x 11-H dibenzazepine-11-yl), 7.12 (m, 4H, *H*_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.28 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.37 (m, 10H, Ph), 7.41 (m, 2H, **H**_{Ar}), 7.49 (m, 2H, **H**_{Ar}), 7.79 (m, 2H, **H**_{Ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 21.5 (2 x COCH₂**C**H₂CH₂CO), 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.5 (2 x C^{γ}), 27.0 (2 x NHCH₂CH₂CH₂NH), 27.1 $(COCH_2CH_2(CH_2)_4CH_2CH_2CO)$, 30.0 (2 x C^{β}), 30.3 $(CO(CH_2)_2(CH_2)_4(CH_2)_2CO)$, 35.5 (2 x COCH₂CH₂CH₂CO), 36.9 and 37.2 (COCH₂(CH₂)₆CH₂CO), 37.8 (2 x NHCH₂CH₂CH₂NH), 38.4 (2 x NHCH2CH2N<), 39.4 and 39.5 (2 x C-2/5 cyclopentyl), 39.7 (2 x >NCOCH2cyclopentyl), 41.2 (2 x NHCH₂CH₂N<), 42.1 (2 x C^{δ}), 44.8 (2 x CH₂CON^{α}H), 45.9 (2 x C-1 cyclopentyl), 47.6 (2 x C-2/6 piperazine), 52.2 and 52.6 (2 x C-3/5 piperazine), 53.7 (2 x C^{α}), 75.8 (2 x C-11 dibenzazepine-11-yl), 123.0 (2 x C_{Ar} H), 124.1 (2 x Ph), 126.1 (2 x **C**_{Ar}H), 128.1 (2 x **C**_{Ar}H), 129.0 (2 x **C**_{Ar}H), 129.4 (2 x **C**_{Ar}H), 129.9 (2 x **C**_{Ar}H), 130.2 (2 x Ph), 131.1 (2 x *C*_{Ar}H), 131.7 (*C*_{Ar}H), 133.1 (*C*_{Ar}H), 137.8 (2 x *C*_{Ar}), 154.5 (2 x N(*C*ONPh)₂), 154.8 (2 x N**C**(N)N), 172.7 (2 x **C**ON<), 174.5 (2 x **C**ONH(CH₂)₂N<), 174.7 (2 x **C**ON^αH), 175.0 (2 x =NCO(CH₂)₃CO), 176.3 (2 x =NCO(CH₂)₃CO), 176.4 (CO(CH₂)₈CO) ppm; a peak for C=O lactam could not be detected; MS (ES, +p) m/z (%): 1151 (25) $[M+2H]^{2+}$, 767 (95) $[M+3H]^{3+}$, 576 (100) $[M+4H]^{4+}$; RP-HPLC: 94 % ($t_{\rm R}$ = 14.3 min, k' = 4.3); C₁₂₄H₁₅₆N₂₆O₁₈ (2297.21).

*N*¹,*N*³⁰-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,13,18,26tetroxo-6,9,12,19,22,25-hexaazatriacontanediamide (4.6). ¹H NMR (600 MHz, CD₃OD): δ = 1.49-1.80 (m, 28H, 2 x 3/4-H cyclopentyl, 2 x 2/5-H cyclopentyl, 2 x C^β*H*₂C^V*H*₂, COCH₂(C*H*₂)₂CH₂CO), 1.93 (p, ³*J* = 7.4 Hz, 4H, 2 x COCH₂C*H*₂CH₂CO), 2.00-2.20 (m, 8H, 2 x 3/5-H piperazine), 2.16 and 2.25 (2 x m, 4H, COC*H*₂(CH₂)C*H*₂CO), 2.27 and 2.41 (m, 4H, 2 x C*H*₂CON^αH), 2.31 and 2.51 (t, ³*J* = 7.4 Hz, 8H, 2 x COC*H*₂CH₂C*H*₂CO), 2.48 (m, 4H, 2 x >NCOC*H*₂-cyclopentyl), 3.18 (m, 4H, 2 x C^δ*H*₂), 3.18 (m, 8H, 2 x CONHCH₂C*H*₂NHC*H*₂), 3.35-3.57 (m, 12H, 2 x 2/6-H piperazine, 2 x NHC H_2 CH₂N<), 3.47 (t, ³*J* = 5.6 Hz, 8H, 4 x CONHC H_2), 3.77 (m, 4H, 2 x NHCH₂C H_2 N<), 4.22 (br, 2H, 2 x 11-H dibenzazepine-11-yl), 4.25 (m, 2H, 2 x C^{α}H), 7.12 (m, 4H, H_{Ar}), 7.20 (m, 4H, H_{Ar}), 7.28 (m, 2H, H_{Ar}), 7.32 (m, 10H, Ph), 7.37 (m, 10H, Ph), 7.41 (m, 2H, H_{Ar}), 7.49 (m, 2H, H_{Ar}), 7.79 (m, 2H, H_{Ar}) ppm; MS (ES, +p) m/z (%): 768 (30) $[M+3H]^{3+}$, 576 (100) $[M+4H]^{4+}$; RP-HPLC: 91 % (t_R = 16.9 min, k' = 5.3); C₁₂₂H₁₅₄N₂₈O₁₈ (2299.20).

N,N'-Bis(amino{(4S)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-6,11-dioxo-2,5,12,15-tetraazahexadecanediamide (4.7). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.49 and 1.62 (m, 8H, 2 x 3/4-H cyclopentyl), 1.49 and 1.65 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.73 (m, 4H, 2 x $C^{\beta}H_{2}$), 1.57 (m, 4H, 2 x $C^{\gamma}H_{2}$), 1.59 (m, 4H, COCH₂(CH₂)₂CH₂CO), 2.10 and 2.15 (m, 8H, 2 x 3/5-H piperazine), 2.20 (m, 4H, COCH₂(CH₂)₂CH₂CO), 2.28 and 2.40 (m, 4H, 2 x CH₂CON^αH), 2.46 (m, 4H, 2 x >NCOCH₂cyclopentyl), 3.15 (m, 4H, 2 x $C^{\delta}H_{2}$), 3.28 (m, 4H, 2 x =NCONHC H_{2} CH₂NH), 3.30 (m, 4H, 2 x =NCONHCH₂CH₂NH), 3.38 (br, 8H, 2 x 2/6-H piperazine), 3.46 and 3.51 (m, 4H, 2 x NHCH₂CH₂N<), 3.77 (m, 4H, 2 x NHCH₂CH₂N<), 4.21 (s, 2H, 2 x 11-H dibenzazepine-11yl), 4.25 (m, 2H, 2 x C^α*H*), 7.11 (m, 4H, *H*_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.27 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.36 (m, 10H, Ph), 7.41 (m, 2H, *H*_{Ar}), 7.49 (m, 2H, *H*_{Ar}), 7.79 (m, 2H, *H*_{Ar}) ppm; 13 C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.7 (2 x C^{γ}), 26.2 (COCH₂(CH₂)₂CH₂CO), 30.0 (2 x C^{β}), 36.7 (COCH₂(CH₂)₂CH₂CO), 38.4 (2 x NHCH₂CH₂N<), 39.4 and 39.5 (2 x C-2/5 cyclopentyl), 39.7 (2 x >NCO*C*H₂-cyclopentyl), 39.8 (2 x =NCONHCH₂*C*H₂NH), 40.6 (2 x =NCONH**C**H₂CH₂NH), 41.2 (2 x NHCH₂**C**H₂N<), 41.9 (2 x **C**^δ), 44.8 (2 x **C**H₂CON^αH), 45.9 (2 x C-1 cyclopentyl), 47.6 (2 x C-2/6 piperazine), 52.2 and 52.6 (2 x C-3/5 piperazine), 53.7 (2 x C^{α}), 75.8 (2 x C-11 dibenzazepine-11-yl), 123.0 (2 x C_{Ar} H), 124.1 (2 x Ph), 126.0 (2 x $C_{Ar}H$), 128.1 (2 x $C_{Ar}H$), 128.9 (2 x $C_{Ar}H$), 129.4 (2 x $C_{Ar}H$), 129.9 (2 x $C_{Ar}H$), 130.2 (2 x Ph), 131.0 (2 x **C**_{Ar}H), 131.6 (**C**_{Ar}H), 132.5 (2 x **C**_{Ar}), 133.1 (**C**_{Ar}H), 137.0 (2 x **C**_{Ar}), 137.9 (2 x **C**_{Ar}), 144.0 (2 x **C**_{Ar}), 154.5 (2 x N(**C**ONPh)₂), 155.5 (2 x =N**C**ONH), 155.6 (2 x NC(N)N), 172.2 (2 x C=O lactam), 172.6 (2 x CON<), 174.5 (2 x CONH(CH₂)₂N<), 174.7 (2 x $CON^{\alpha}H$), 176.3 ($CO(CH_2)_4CO$) ppm; MS (ES, +p) m/z (%): 1038 (30) $[M+2H]^{2+}$, 692 (100) $[M+3H]^{3+}$; RP-HPLC: 97 % ($t_{\rm R}$ = 14.6 min, k' = 4.4); C₁₁₀H₁₃₂N₂₆O₁₆ (2073.03).

N,*N*[']-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-6,13-dioxo-2,5,14,17-tetraazaoctadecanediamide (4.8). ¹H NMR (600 MHz, CD₃OD, HSQC, HMBC): $\delta = 1.29$ (m, 4H, CO(CH₂)₂(CH₂)₂(CH₂)₂CO), 1.49 and 1.63 (m, 8H, 2 x 3/4-H cyclopentyl), 1.49 and 1.65 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.74 (m, 4H, 2 x C^βH₂), 1.57 (m, 4H, 2 x C^γH₂), 1.57 (m, 4H, COCH₂CH₂(CH₂)₂CO), 2.28 and 2.40 (m, 4H, 2 x C H_2 CON^{α}H), 2.46 (m, 4H, 2 x >NCOC H_2 -cyclopentyl), 3.14 (m, 4H, 2 x C^{δ} H_2), 3.28 (m, 4H, 2 x =NCONHCH₂CH₂NH), 3.29 (m, 4H, 2 x =NCONHCH₂CH₂NH), 3.38 (br, 8H, 2 x 2/6-H piperazine), 3.46 and 3.51 (m, 4H, 2 x NHCH₂CH₂N<), 3.77 (m, 4H, 2 x NHCH₂C**H**₂N<), 4.23 (s, 2H, 2 x 11-H dibenzazepine-11-yl), 4.25 (m, 2H, 2 x C^α**H**), 7.12 (m, 4H, *H*_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.30 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.36 (m, 10H, Ph), 7.41 (m, 2H, *H*_{Ar}), 7.49 (m, 2H, *H*_{Ar}), 7.79 (m, 2H, *H*_{Ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.7 (2 x C^{γ}), 26.7 $(COCH_2CH_2(CH_2)_2CH_2CH_2CO), 29.9 (CO(CH_2)_2(CH_2)_2CO), 30.0 (2 \times C^{\beta}), 37.0$ (COCH₂(CH₂)₄CH₂CO), 38.5 (2 x NHCH₂CH₂N<), 39.4 and 39.5 (2 x C-2/5 cyclopentyl), 39.7 (2 x >NCO*C*H₂-cyclopentyl), 39.9 (2 x =NCONHCH₂*C*H₂NH), 40.6 (2 x =NCONH**C**H₂CH₂NH), 41.2 (2 x NHCH₂**C**H₂N<), 41.9 (2 x C^{δ}), 44.8 (2 x **C**H₂CON^{α}H), 46.0 (2 x C-1 cyclopentyl), 47.6 (2 x C-2/6 piperazine), 52.2 and 52.6 (2 x C-3/5 piperazine), 53.7 (2 x C^{α}), 75.8 (2 x C-11 dibenzazepine-11-yl), 123.0 (2 x C_{Ar} H), 124.1 (2 x Ph), 126.0 (2 x $C_{Ar}H$), 128.1 (2 x $C_{Ar}H$), 129.0 (2 x $C_{Ar}H$), 129.4 (2 x $C_{Ar}H$), 129.9 (2 x $C_{Ar}H$), 130.2 (2 x Ph), 131.0 (2 x **C**_{Ar}H), 131.6 (**C**_{Ar}H), 132.5 (2 x **C**_{Ar}), 133.1 (**C**_{Ar}H), 136.9 (2 x *C*_{Ar}), 137.9 (2 x *C*_{Ar}), 154.5 (2 x N(*C*ONPh)₂), 155.5 (2 x =N*C*ONH), 155.6 (2 x N*C*(N)N), 172.1 (2 x C=O lactam), 172.6 (2 x CON<), 174.5 (2 x CONH(CH₂)₂N<), 174.7 (2 x $CON^{\alpha}H$, 176.7 ($CO(CH_2)_6CO$) ppm; MS (ES, +p) m/z (%): 1053 (15) $[M+2H]^{2+}$, 702 (100) $[M+3H]^{3+}$; RP-HPLC: 98 % (t_{R} = 14.6 min, k' = 4.5); $C_{112}H_{136}N_{26}O_{16}$ (2101.06).

N,*N*[']-Bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-8,13-dioxo-

2,7,14,19-tetraazaicosanediamide (4.9). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.49 and 1.62 (m, 8H, 2 x 3/4-H cyclopentyl), 1.50 and 1.66 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.73 (m, 4H, 2 x $C^{\beta}H_{2}$), 1.50 (m, 8H, 2 x NHCH₂(CH₂)₂CH₂NH), 1.57 (m, 4H, 2 x C^YH₂), 1.59 (m, 4H, COCH₂(CH₂)₂CH₂CO), 2.17 (m, 4H, COCH₂(CH₂)₂CH₂CO), 2.10 and 2.18 (m, 8H, 2 x 3/5-H piperazine), 2.26 and 2.41 (m, 4H, 2 x CH₂CON^αH), 2.49 (m, 4H, 2 x >NCOCH₂-cyclopentyl), 3.13 (m, 4H, 2 x C^oH₂), 3.16 and 3.17 (m, 8H, 2 x NHCH₂(CH₂)₂CH₂NH), 3.31-3.47 (m, 8H, 2 x 2/6-H piperazine), 3.45 and 3.55 (m, 4H, 2 x NHCH₂CH₂N<), 3.78 (m, 4H, 2 x NHCH₂CH₂N<), 4.24 (br, 4H, 2 x $C^{\alpha}H$, 2 x 11-H dibenzazepine-11-yl), 7.12 (m, 4H, H_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.27 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.37 (m, 10H, Ph), 7.42 (m, 2H, *H*_{Ar}), 7.50 (m, 2H, H_{Ar}), 7.80 (m, 2H, H_{Ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.7 (2 x C^{γ}), 26.6 (COCH₂(CH₂)₂CH₂CO), 27.9 (2 x NHCH₂(CH₂)₂CH₂NH), 30.0 (2 x C^{β}), 36.8 (COCH₂(CH₂)₂CH₂CO), 38.4 (2 x NHCH₂CH₂N<), 39.3 and 39.4 (2 x C-2/5 cyclopentyl), 39.7 (2 x >NCOCH₂-cyclopentyl), 39.9 and 40.4 $(2 \times \text{NH}CH_2(\text{CH}_2)_2CH_2\text{NH}), 41.2 (2 \times \text{NH}CH_2CH_2\text{N}<), 41.8 (2 \times C^{\delta}), 44.7 (2 \times CH_2CON^{\alpha}H),$ 45.9 (2 x C-1 cyclopentyl), 47.5 (2 x C-2/6 piperazine), 52.2 and 52.6 (2 x C-3/5 piperazine), 53.7 (2 x C^{α}), 75.8 (2 x C-11 dibenzazepine-11-yl), 123.0 (2 x C_{Ar} H), 124.1 (2 x Ph), 126.1 (2 x **C**_{Ar}H), 128.1 (2 x **C**_{Ar}H), 129.0 (2 x **C**_{Ar}H), 129.4 (2 x **C**_{Ar}H), 129.9 (2 x

 C_{Ar} H), 130.2 (2 x Ph), 131.1 (2 x C_{Ar} H), 131.7 (C_{Ar} H), 132.5 (2 x C_{Ar}), 133.1 (C_{Ar} H), 137.0 (2 x C_{Ar}), 137.8 (2 x C_{Ar}), 154.5 (2 x N(CONPh)₂), 155.3 (2 x =NCONH), 155.7 (2 x NC(N)N), 172.0 (2 x C=O lactam), 172.7 (2 x CON<), 174.5 (2 x $CONH(CH_2)_2N<$), 174.7 (2 x CON^{α} H), 175.8 and 179.3 ($CO(CH_2)_4CO$) ppm; MS (ES, +p) m/z (%): 1066 (25) $[M+2H]^{2+}$, 711 (100) $[M+3H]^{3+}$, 534 (90) $[M+4H]^{4+}$; RP-HPLC: 95 % (t_R = 20.8 min, k' = 6.7); $C_{114}H_{140}N_{26}O_{16}$ (2129.09).

18-(2-Aminoethyl)- N^1 , N^{35} -bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-5,10,14,22,26,31-hexaoxo-6,9,15,18,21,27,30-heptaazapentatria-

contanediamide (4.10). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.49 and 1.62 (m, 8H, 2 x 3/4-H cyclopentyl), 1.49 and 1.68 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.73 (m, 4H, 2 x $C^{\beta}H_{2}$), 1.60 (m, 4H, 2 x $C^{\gamma}H_{2}$), 1.87 and 1.91 (m, 8H, 4 x COCH₂CH₂CH₂CO), 2.11 and 2.18 (m, 8H, 2 x 3/5-H piperazine), 2.21 and 2.25 and 2.41 and 2.48 (m, 16H, 4 x COCH₂CH₂CH₂CO), 2.27 and 2.41 (m, 4H, 2 x CH₂CON^αH), 2.48 (m, 4H, 2 x >NCOC H_2 -cyclopentyl), 2.74 (br, 4H, NHCH₂C H_2 N(C₂H₄NH₂)C H_2 CH₂NH), 3.06 (m, 4H, >N(CH₂)₂NH₂), 3.26 and 3.83 (m, 8H, 2 x NH(CH₂)₂NH), 3.18 (m, 4H, 2 x $C^{\delta}H_{2}$), 3.28 (m, 4H, NHC H_{2} CH₂N(C₂H₄NH₂)CH₂C H_{2} NH), 3.31-3.48 (m, 8H, 2 x 2/6-H piperazine), 3.45 and 3.53 (m, 4H, 2 x NHCH₂CH₂N<), 3.78 (m, 4H, 2 x NHCH₂CH₂N<), 4.25 (m, 4H, 2 x $C^{\alpha}H$, 2 x 11-H dibenzazepine-11-yl), 7.12 (m, 4H, H_{Ar}), 7.20 (m, 4H, *H*_{Ar}), 7.27 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.37 (m, 10H, Ph), 7.42 (m, 2H, *H*_{Ar}), 7.50 (m, 2H, H_{Ar}), 7.80 (m, 2H, H_{Ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 21.4 and 23.0 (4 x COCH₂CH₂CH₂CO), 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.4 (2 x C^{γ}), 30.0 (2 x \mathbf{C}^{β}), 35.6 and 36.2 and 36.8 (4 x CO \mathbf{C} H₂CH₂ \mathbf{C} H₂CO), 38.1 (>NCH₂ \mathbf{C} H₂NH₂), 38.3 (2 x NH(CH₂)₂NH), 38.4 (2 x NHCH₂CH₂N<), 39.2 and 39.3 (2 x C-2/5 cyclopentyl), 39.5 (2 x >NCOCH₂-cyclopentyl), 39.8 (NHCH₂CH₂N(C₂H₄NH₂)CH₂CH₂NH), 41.2 (2 x NHCH₂*C*H₂N<), 42.0 (2 x C^{δ}), 44.7 (2 x *C*H₂CON^{α}H), 45.9 (2 x C-1 cyclopentyl), 47.5 (2 x C-2/6 piperazine), 52.1 and 52.6 (2 x C-3/5 piperazine), 53.7 (2 x C^{α}), 55.6 (>N*C*H₂CH₂NH₂), $(NHCH_2CH_2N(C_2H_4NH_2)CH_2CH_2NH),$ 59.5 75.8 (2 Х C-11 dibenzazepine-11-yl), 123.0 (2 x C_{Ar}H), 124.1 (2 x Ph), 126.0 (2 x C_{Ar}H), 128.1 (2 x **C**_{Ar}H), 129.0 (2 x **C**_{Ar}H), 129.4 (2 x **C**_{Ar}H), 129.9 (2 x **C**_{Ar}H), 130.2 (2 x Ph), 131.1 (2 x **C**_{Ar}H), 131.7 (**C**_{Ar}H), 132.3 (2 x **C**_{Ar}), 133.2 (**C**_{Ar}H), 136.8 (2 x **C**_{Ar}), 137.8 (2 x **C**_{Ar}), 154.5 (2 x N(CONPh)₂), 155.0 (2 x NC(N)N), 172.7 (2 x CON<), 174.5 (2 x CONH(CH₂)₂N<), 174.7 (2 x **C**ON^αH), 175.4 and 175.8 and 176.4 (2 x =N**C**O(CH₂)₃**C**ONH, 2 x NH**C**O(CH₂)₃**C**ONH) ppm; a peak for C=O lactam could not be detected; MS (ES, +p) m/z (%): 815 (35) $[M+3H]^{3+}$, 612 (100) $[M+4H]^{4+}$, 490 (40) $[M+5H]^{5+}$; RP-HPLC: 98 % ($t_{\rm R}$ = 16.9 min, k' = 5.2); C₁₂₈H₁₆₄N₃₀O₂₀ (2441.27).

16-(2-Aminoethyl)-*N*,*N* -bis(amino{(4*S*)-5-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylamino]-5-oxo-4-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)acetamido]pentylamino}methylene)-8,12,20,24-tetroxo-2,7,13,16,19,25,30-heptaazahentriacontanediamide (4.11). ¹H NMR (600 MHz, CD₃OD, COSY, HSQC, HMBC): δ = 1.50 (m, 8H, 2 x NHCH₂(CH₂)₂CH₂NH), 1.50 and 1.62 (m, 8H, 2 x 3/4-H cyclopentyl), 1.50 and 1.68 (m, 8H, 2 x 2/5-H cyclopentyl), 1.51 and 1.75 (m, 4H, 2 x $C^{\beta}H_{2}$), 1.57 (m, 4H, 2 x $C^{\gamma}H_{2}$), 1.87 (m, 4H, 2 x COCH₂CH₂CH₂CO), 2.13 and 2.19 (m, 8H, 2 x 3/5-H piperazine), 2.19 and 2.23 (m, 8H, 2 x COCH₂CH₂CH₂CO), 2.27 and 2.41 (m, 4H, 2 x CH₂CON^αH), 2.48 (m, 4H, 2 x >NCOCH₂-cyclopentyl), 2.79 (br, 4H, NHCH₂CH₂N(C₂H₄NH₂)CH₂CH₂NH), 3.14 (m, 4H, 2 x $C^{\delta}H_2$), 3.16 (m, 4H, >N(CH₂)₂NH₂), 3.17 (m, 8H, 2 x NHCH₂(CH₂)₂CH₂NH), 3.31 (m, 4H, NHCH₂CH₂N(C₂H₄NH₂)CH₂CH₂NH), 3.32-3.48 (m, 8H, 2 x 2/6-H piperazine), 3.46 and 3.53 (m, 4H, 2 x NHCH₂CH₂N<), 3.77 (m, 4H, 2 x NHCH₂CH₂N<), 4.26 (m, 4H, 2 x $C^{\alpha}H$, 2 x 11-H dibenzazepine-11-yl), 7.13 (m, 4H, H_{Ar}), 7.20 (m, 4H, H_{Ar}), 7.29 (m, 2H, *H*_{Ar}), 7.32 (m, 10H, Ph), 7.36 (m, 10H, Ph), 7.42 (m, 2H, *H*_{Ar}), 7.50 (m, 2H, *H*_{Ar}), 7.80 (m, 2H, H_{Ar}) ppm; ¹³C NMR (150 MHz, CD₃OD, HSQC, HMBC): δ = 23.2 (2 x $COCH_2CH_2CH_2CO$), 24.5 and 24.6 (2 x C-3/4 cyclopentyl), 25.7 (2 x C^{γ}), 27.7 and 27.9 (2 x NHCH₂(**C**H₂)₂CH₂NH), 29.9 (2 x **C**^β), 36.2 and 36.3 (2 x CO**C**H₂CH₂CH₂CH₂CO), 38.2 (NHCH₂CH₂N(C₂H₄NH₂)CH₂CH₂NH), 38.4 (2 x NHCH₂CH₂N<), 39.2 and 39.3 (2 x C-2/5 cyclopentyl), 39.5 (2 x >NCO*C*H₂-cyclopentyl), 39.9 (>NCH₂*C*H₂NH₂), 40.4 (2 x NH**C**H₂(CH₂)₂**C**H₂NH), 41.2 (2 x NHCH₂**C**H₂N<), 41.8 (2 x **C**^δ), 44.7 (2 x **C**H₂CON^αH), 45.9 (2 x C-1 cyclopentyl), 47.4 (2 x C-2/6 piperazine), 52.2 and 52.6 (2 x C-3/5 piperazine), 53.6 (2 x C^{α}), 55.8 (NHCH₂CH₂N(C₂H₄NH₂)CH₂CH₂NH), 59.5 (>NCH₂CH₂NH₂), 75.8 (2 x C-11 dibenzazepine-11-yl), 123.0 (2 x *C*_{Ar}H), 124.1 (2 x Ph), 126.0 (2 x *C*_{Ar}H), 128.1 (2 x **C**_{Ar}H), 129.0 (2 x **C**_{Ar}H), 129.4 (2 x **C**_{Ar}H), 129.9 (2 x **C**_{Ar}H), 130.2 (2 x Ph), 131.1 (2 x **C**_{Ar}H), 131.7 (**C**_{Ar}H), 132.4 (2 x **C**_{Ar}), 133.2 (**C**_{Ar}H), 136.9 (2 x **C**_{Ar}), 137.9 (2 x **C**_{Ar}), 154.5 (2 x N(CONPh)2), 155.4 (2 x =NCONH), 155.7 (2 x NC(N)N), 172.7 (2 x CON<), 174.5 (2 x **CONH**(CH₂)₂N<), 174.7 (2 x **C**ON^{α}H), 175.2 and 176.2 (2 x NH**C**O(CH₂)₃**C**ONH) ppm; a peak for C=O lactam could not be detected; MS (ES, +p) m/z (%): 787 (50) $[M+3H]^{3+}$, 591 (100) $[M+4H]^{4+}$, 473 (40) $[M+5H]^{5+}$; RP-HPLC: 95 % (t_R = 17.3 min, k' = 5.4);C₁₂₄H₁₆₀N₃₀O₁₈ (2357.25).

4.5.3 Pharmacology: Cell Culture, Fura-2 Assay and Flow Cytometry

Cell culture. CHO cells were cultured as described elsewhere.⁴⁵

Fura-2 assay on CHO cells. The fura-2 assay was performed as previously described⁴⁶ using a LS50 B spectrofluorimeter from Perkin Elmer (Überlingen, Germany).

Flow cytometric competition binding assay. The binding assay was performed as described elsewhere⁴⁵ with the adaptations according to Chapter 3.5.4.

Flow cytometric selectivity assay. The selectivity was determined as described in Chapter 3.5.4.

4.6 References

- 1. Angers, S.; Salahpour, A.; Joly, E.; Hilairet, S.; Chelsky, D.; Dennis, M.; Bouvier, M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). *Proc. Natl. Acad. Sci. U. S. A.* **2000**, 97, 3684-9.
- Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; Karschin, A.; Bettler, B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. *Nature* **1998**, 396, 683-7.
- White, J. H.; Wise, A.; Main, M. J.; Green, A.; Fraser, N. J.; Disney, G. H.; Barnes, A. A.; Emson, P.; Foord, S. M.; Marshall, F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. *Nature* **1998**, 396, 679-82.
- 4. Cvejic, S.; Devi, L. A. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. *J. Biol. Chem.* **1997**, 272, 26959-64.
- 5. George, S. R.; Fan, T.; Xie, Z.; Tse, R.; Tam, V.; Varghese, G.; O'Dowd, B. F. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. *J. Biol. Chem.* **2000**, 275, 26128-35.
- 6. Jordan, B. A.; Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. *Nature* **1999**, 399, 697-700.
- 7. Wreggett, K. A.; Wells, J. W. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. *J. Biol. Chem.* **1995**, 270, 22488-99.
- 8. Zeng, F. Y.; Hopp, A.; Soldner, A.; Wess, J. Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. *J. Biol. Chem.* **1999**, 274, 16629-40.
- 9. Zeng, F. Y.; Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. *J. Biol. Chem.* **1999**, 274, 19487-97.
- 10. Terrillon, S.; Barberis, C.; Bouvier, M. Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, 101, 1548-53.
- 11. Terrillon, S.; Bouvier, M. Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. *EMBO J.* **2004**, 23, 3950-61.
- 12. Chen, C.; Li, J.; Bot, G.; Szabo, I.; Rogers, T. J.; Liu-Chen, L. Y. Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. *Eur. J. Pharmacol.* **2004**, 483, 175-86.
- 13. Suzuki, S.; Chuang, L. F.; Yau, P.; Doi, R. H.; Chuang, R. Y. Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. *Exp. Cell Res.* **2002**, 280, 192-200.
- 14. Rocheville, M.; Lange, D. C.; Kumar, U.; Patel, S. C.; Patel, R. C.; Patel, Y. C. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. *Science* **2000**, 288, 154-7.

- 15. Zawarynski, P.; Tallerico, T.; Seeman, P.; Lee, S. P.; O'Dowd, B. F.; George, S. R. Dopamine D2 receptor dimers in human and rat brain. *FEBS Lett.* **1998**, 441, 383-6.
- Fukushima, Y.; Asano, T.; Saitoh, T.; Anai, M.; Funaki, M.; Ogihara, T.; Katagiri, H.; Matsuhashi, N.; Yazaki, Y.; Sugano, K. Oligomer formation of histamine H2 receptors expressed in Sf9 and COS7 cells. *FEBS Lett.* **1997**, 409, 283-6.
- Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. Discovery of a novel member of the histamine receptor family. *Mol. Pharmacol.* **2001**, 59, 427-33.
- 18. George, S. R.; O'Dowd, B. F.; Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. *Nat. Rev. Drug Discov.* **2002**, 1, 808-20.
- 19. Milligan, G. G protein-coupled receptor dimerisation: molecular basis and relevance to function. *Biochim. Biophys. Acta* **2007**, 1768, 825-35.
- 20. Prinster, S. C.; Hague, C.; Hall, R. A. Heterodimerization of g protein-coupled receptors: specificity and functional significance. *Pharmacol. Rev.* **2005**, 57, 289-98.
- Smith, N. J.; Milligan, G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. *Pharmacol. Rev.* 2010, 62, 701-25.
- Dinger, M. C.; Bader, J. E.; Kobor, A. D.; Kretzschmar, A. K.; Beck-Sickinger, A. G. Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells. *J. Biol. Chem.* **2003**, 278, 10562-71.
- 23. Parker, M. S.; Sah, R.; Balasubramaniam, A.; Sallee, F. R.; Sweatman, T.; Park, E. A.; Parker, S. L. Dimers of the neuropeptide Y (NPY) Y2 receptor show asymmetry in agonist affinity and association with G proteins. *J. Recept. Signal Transduct. Res.* **2008**, 28, 437-51.
- Parker, S. L.; Parker, M. S.; Estes, A. M.; Wong, Y. Y.; Sah, R.; Sweatman, T.; Park, E. A.; Balasubramaniam, A.; Sallee, F. R. The neuropeptide Y (NPY) Y2 receptors are largely dimeric in the kidney, but monomeric in the forebrain. *J. Recept. Signal Transduct. Res.* 2008, 28, 245-63.
- 25. Guo, W.; Shi, L.; Javitch, J. A. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. *J. Biol. Chem.* **2003**, 278, 4385-8.
- Hebert, T. E.; Moffett, S.; Morello, J. P.; Loisel, T. P.; Bichet, D. G.; Barret, C.; Bouvier, M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. *J. Biol. Chem.* **1996**, 271, 16384-92.
- 27. del Burgo, L. S.; Milligan, G. Heterodimerisation of G protein-coupled receptors: implications for drug design and ligand screening. *Expert Opin. Drug. Discov.* **2010**, 5, 461-474.
- Salahpour, A.; Angers, S.; Mercier, J. F.; Lagace, M.; Marullo, S.; Bouvier, M. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. *J. Biol. Chem.* **2004**, 279, 33390-7.
- 29. Simpson, L. M.; Taddese, B.; Wall, I. D.; Reynolds, C. A. Bioinformatics and molecular modelling approaches to GPCR oligomerization. *Curr. Opin. Pharmacol.* **2010**, 10, 30-7.

- 30. Vassart, G. An in vivo demonstration of functional G protein-coupled receptor dimers. *Proc. Natl. Acad. Sci. U. S. A.* **2010**, 107, 1819-20.
- Rivero-Müller, A.; Chou, Y. Y.; Ji, I.; Lajic, S.; Hanyaloglu, A. C.; Jonas, K.; Rahman, N.; Ji, T. H.; Huhtaniemi, I. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, 107, 2319-2324.
- 32. Portoghese, P. S. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. *J. Med. Chem.* **2001**, 44, 2259-69.
- 33. Jones, R. M.; Hjorth, S. A.; Schwartz, T. W.; Portoghese, P. S. Mutational evidence for a common kappa antagonist binding pocket in the wild-type kappa and mutant mu[K303E] opioid receptors. *J. Med. Chem.* **1998**, 41, 4911-4.
- 34. Lezoualc'h, F.; Jockers, R.; Berque-Bestel, I. Multivalent-based drug design applied to serotonin 5-HT(4) receptor oligomers. *Curr. Pharm. Des.* **2009**, 15, 719-29.
- Portoghese, P. S.; Larson, D. L.; Sayre, L. M.; Yim, C. B.; Ronsisvalle, G.; Tam, S. W.; Takemori, A. E. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. *J. Med. Chem.* **1986**, 29, 1855-61.
- 36. Berque-Bestel, I.; Lezoualc'h, F.; Jockers, R. Bivalent ligands as specific pharmacological tools for G protein-coupled receptor dimers. *Curr. Drug Discov. Technol.* **2008**, 5, 312-8.
- 37. Halazy, S. G-protein coupled receptors bivalent ligands and drug design. *Expert Opinion on Therapeutic Patents* **1999**, 9, 431-446.
- 38. Messer, W. S., Jr. Bivalent ligands for G protein-coupled receptors. *Curr. Pharm. Des.* **2004**, 10, 2015-20.
- 39. Shonberg, J.; Scammells, P. J.; Capuano, B. Design strategies for bivalent ligands targeting GPCRs. *ChemMedChem* **2011**, 6, 963-74.
- 40. Daniels, A. J.; Matthews, J. E.; Slepetis, R. J.; Jansen, M.; Viveros, O. H.; Tadepalli, A.; Harrington, W.; Heyer, D.; Landavazo, A.; Leban, J. J.; Spaltenstein, A. High-affinity neuropeptide Y receptor antagonists. *Proc. Natl. Acad. Sci. U. S. A.* **1995**, 92, 9067-71.
- Balasubramaniam, A.; Zhai, W.; Sheriff, S.; Tao, Z.; Chance, W. T.; Fischer, J. E.; Eden, P.; Taylor, J. Bis(31/31') ([CYS(31), Trp(32), Nva(34)] NPY-(31-36)): a specific NPY Y-1 receptor antagonist. *J. Med. Chem.* **1996**, 39, 811-3.
- 42. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Beck-Sickinger, A. G.; Doods, H. N. The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. *Eur. J. Pharmacol.* **1994,** 271, R11-3.
- 43. Keller, M.; Teng, S.; Bernhardt, G.; Buschauer, A. Bivalent argininamide-type neuropeptide y y(1) antagonists do not support the hypothesis of receptor dimerisation. *ChemMedChem* **2009**, 4, 1733-45.
- 44. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y(2) receptor antagonist. *Eur. J. Pharmacol.* **1999**, 384, R3-5.

- 45. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. *Eur. J. Pharmacol.* **2006**, 551, 10-8.
- 46. Müller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Synthesis and neuropeptide Y Y₁ receptor antagonistic activity of N,N-disubstituted ω-guanidinoand ω-aminoalkanoic acid amides. *Arch. Pharm.* **1997**, 330, 333-42.
- 47. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A. A simple and powerful flow cytometric method for the simultaneous determination of multiple parameters at G protein-coupled receptor subtypes. *Chembiochem* **2006**, 7, 1400-9.
- 48. Kaske, M.; Keller, M.; Weiß, S.; König, B.; Bernhardt, G.; Buschauer, A. Monovalent and bivalent argininamide-type antagonists of the human NPY Y4 receptor. In *XXIst International Symposium on Medicinal Chemistry*, Brussels (Belgium), 2010.
Chapter 5 Red-Fluorescent NPY Y₂ Receptor Antagonists

5.1 Introduction

There has been a remarkable growth in the use of fluorescence-based techniques for the investigation of ligand-receptor interactions over the past two decades. In the field of G-protein coupled receptor (GPCR) research, recent advances in both labeling methods and measuring techniques have made fluorescence assays indispensable tools for the exploration and visualization of GPCRs.¹⁻² The receptors can be labeled, for instance, with auto-fluorescent proteins, e. g., for direct detection *in vivo*, as well as for the investigation of protein-protein-interactions by the measurement of fluorescence-resonance energy transfer (FRET) of an appropriate donor-acceptor pair.³⁻⁵ Moreover, indirect labeling with fluorescence ligands is commonly used to explore ligand-receptor interactions and to visualize GPCRs without modification of the receptor protein.

In the field of peptidergic GPCRs, fluorescence-labeled endogenous ligands are often used. In the case of peptides the decrease in affinity caused by attachment of a fluorophore is usually rather low, as the structures of such larger molecules are only moderately changed and the interactions with the receptor are hardly affected by the introduction of the dye. There are several examples in the literature for the application of NPY fluorescent probes.⁶⁻⁸ Such fluorescent NPY analogs can be utilized, e.g. for internalization studies by means of confocal microscopy or flow cytometry⁹ and as standard ligand in fluorescence-based binding experiments¹⁰, respectively. The synthesis of fluorescent small-molecule ligands for GPCRs is by far more challenging. Herein, a potential site for fluorophore conjugation is in much closer proximity to the pharmacophore and as a consequence, much more likely to affect ligand affinity and efficacy. Nevertheless, there are several examples for the successful development of low molecular weight fluorescent ligands and their application in the investigation of GPCRs.¹¹⁻¹⁹

Usually, endogenous ligands and their labeled analogues do not discriminate between subtypes of the GPCRs of interest. For the detection and investigation of receptor subtypes on cells and in tissues selective high affinity fluorescence ligands are required. Fluorescent non-peptide antagonists are superior to peptides concerning selectivity, kinetics, stability and mode of action. Antagonists do not induce receptor internalization, which may complicate the determination of binding kinetics and increase non-specific binding due to intracellular accumulation, thus, leading to a high fluorescence background, e.g., in flow cytometric binding assays. Additionally, peptides show slower kinetics and hence longer incubation periods are needed. Besides, peptides are susceptible to enzymatic cleavage.

The lack of selective non-peptide fluorescent ligands for the Y₂R prompted us to develop fluorescent probes starting from BIIE 0246,²⁰ the first highly potent selective Y₂R antagonist. The guanidine-acylguanidine bioisosteric approach, which was successfully applied in our group for the synthesis of fluorescent Y₁R antagonists,¹² is an efficient strategy to combine labeling with lowering of the basicity of guanidine containing GPCR ligands. Therefore, the applicability of this concept to argininamide-type Y₂R antagonists was explored aiming at the development of potent and selective fluorescent ligands.

Figure 5.1. Structures of the dyes used for the preparation of the red-fluorescent Y₂R antagonists (5.1-5.27).

5.2 Chemistry

5.2.1 Synthesis

With respect to potential use in cellular assays red fluorescent dyes depicted in Figure 5.1 with a fluorescence emission wavelength over 590 nm were selected to reduce the background fluorescence and thus to improve the signal-to-noise ratio. Preferably, we used the new class of pyrylium dyes (Py-1 and Py-5)²¹⁻²² as well as the Cy5²³-related cyanine dyes S0436¹⁹ and S0387. Furthermore, the Dyomics dyes Dy-630²⁴ and Dy-633²⁵⁻²⁶ with an unsymmetrical hemicyanine structure consisting of an indol and a benzopyrane moiety, and the boron-containing Bodipy[®] 650/665-X dye²⁷ were applied in order to expand the structural diversity of fluorescent Y₂R antagonists.

The (hemi-)cyanine dyes and the Bodipy dye, respectively, are excitable at 635 nm with a red diode laser,²⁸ commonly used as light source in commercial flow cytometers. The pyrylium dyes (Py-1 and Py-5) belong to the new class of "chameleon labels", which has been developed for the staining and quantification of proteins at picomolar concentrations.²¹ These dyes widen the pharmacological applicability of fluorescent ligands, as they are excitable at lower wavelengths by a widely used argon laser (λ = 488 nm). Thus, Py-labeled compounds and, e.g., cyanine fluorescent ligands can be applied simultaneously in cellular assays. Another advantage of pyrylium dyes is their lower molecular weight compared to other dye classes. In this case especially coupling to small molecules should be more tolerated, as the affinity-lowering influence of the fluorophore should be less pronounced.

The pyrylium dyes react very rapidly and regioselectively with primary amines at pH 8-9 at room temperature to form the resonance-stabilized pyridinium compound with retained charge at the nitrogen. This ring transformation is accompanied by a hypsochromic shift of the absorption maximum by more than 100 nm (621 nm to 503 nm for Py-1; 644 nm to 465 nm for Py-5).²² Thus, the reaction can be followed visually due to a change in color from blue to red. The mechanism of the pyrylium-pyridinium conversion has been studied extensively (Scheme 5.1a).²⁹ Addition of the primary amine at position 2 yields the 2*H*-pyran. This intermediate is energetically unfavored in terms of aromaticity and hence the ring opens to form the second intermediate, a divinylogous amide which is usually more stable. This amide tautomerizes in the rate-determining step into an imino-enol which rapidly cyclizes into the pyridinium product.

The other dyes (S0436, S0387, Dy-630, Dy-633, Bodipy[®] 650/665) contain a hexanoyl side chain, which enables coupling to amines *via* the succinimidyl active esters (Scheme 5.1b).

Scheme 5.1. a) General mechanism for the reaction of pyrylium dyes with primary amines. b) Principle of the acylation of primary amines with fluorescent active esters; (FL: Fluorophore).

For the preparation of fluorescent Y₂R antagonists derived from BIIE 0246 the unprotected amine precursors (*S*)-**3.48**-(*S*)-**3.58** (for the preparation cf. chapter 3) were used. Labeling with the aforementioned amino-reactive dyes under basic conditions yielded compounds **5.1-5.27** (Scheme 5.2). Coupling of Py-5 and S0436-NHS, respectively, to the amine precursor (*S*)-**3.60** resulted in fluorescent ligands **5.28** and **5.29** with reduced lipophilicity in the ornithinamide building block as well as an additional positive charge in the acyllinker (Scheme 5.3). The primary amine in the acyl- or carbamoyllinker is more reactive and sterically well accessible compared with the free guanidino group. Therefore, the products were obtained in satisfactory yields despite the lack of protection at the free N^{ω}'H₂. The labeling reactions were stopped with 10 % aq. TFA and the crude products were purified by preparative HPLC.

For structures of the fluorescent ligands 5.1-5.27 cf. Table 5.3

	No	X	n
	(S)- 3.48	(CH ₂) ₂	1
$R_{1} \rightarrow N_{1} N_{1}$	(S)- 3.49	(CH ₂) ₃	1
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(S)- 3.50	$(CH_2)_2NH(CH_2)_2$	1
	(S)- 3.51	$CH_2(CH_2CH_2O)_3(CH_2)_3$	0
()	(S)- 3.52	NH	0
	(S)- 3.53	NH	1
$R $ NH_2 n	(S)- 3.54	NH	2
0	(S)- 3.55	NH	4
	(S)- 3.56	CH ₂	2
$R_{1} ()^{n}_{O} (0)_{M} NH_{2}$	No	n	m
	(S)- 3.57	1	1
	(S)- 3.58	2	3

Scheme 5.2. Preparation of the fluorescent Y₂R antagonists **5.1-5.27** derived from BIIE 0246. Reagents and conditions: a) Pyrylium dye (1 eq), amine precursor (4 eq), NEt₃ (15 eq), CH₃CN, DMF, 1-2 h, rt; b) pertinent dye succinimidyl ester (1 eq), amine precursor (2 eq), NEt₃ (10-15 eq), CH₃CN, DMF, 7-16 h, rt. ^{*a*} The succinimidyl ester of S0436 was purchased from FEW Chemicals (Germany) under the name S0536. ^{*b*} The succinimidyl ester of S0387 was purchased from FEW Chemicals (Germany) under the name S0586.

Scheme 5.3. Synthesis of the fluorescence ligands 5.28 and 5.29. Reagents and conditions: a) Py-5 (1 eq), (S)-3.60 (3 eq), NEt₃ (15 eq), CH₃CN, DMF, 1 h, rt; b) S0436-NHS (1 eq), (S)-3.60 (3 eq), NEt₃ (10 eq), CH₃CN, DMF, 16 h, rt.

5.2.2 Fluorescence Properties of the Labeled Y₂R Antagonists

The absorption and emission spectra of the fluorescent ligands were measured in three different solvents: in phosphate buffered saline (PBS) at pH 7.0, in PBS with 1 % of bovine serum albumin (BSA) and in ethanol (EtOH). The fluorescence quantum yields (QY; φ) were determined with cresyl violet perchlorate as reference. PBS represents a commonly used standard solvent. By the addition of 1 % of BSA, assay conditions are simulated and the influence of proteins on the spectral properties are taken into account, whereas the determination in EtOH is regarded useful to observe the influence of the polarity of the solvent (solvatochromism). The fluorescence properties of the labeled Y₂R antagonists are summarized in Table 5.1. Generally, the chemical structure of the linkers, connecting the fluorophore with the pharmacophoric moiety, has almost no effect on the fluorescence properties.

The majority of fluorescent ligands shows very high QYs (up to circa 50 %) in PBS + 1 % BSA and very low QYs in pure PBS (< 6.2 %) except for compounds **5.17** and **5.23** (11-13 % in PBS). The increase in QY by a factor of around 10 for cyanine dyes and by up to over 100 in case of pyrylium coupled fluorophores after the addition of BSA results from intermolecular interactions of the fluorophores with the protein. Binding of the fluorescent ligands to proteins leads to a rigidization of the molecule, which is

followed by an increase in fluorescence intensity and therefore in QY.³⁰ Thus, when BSA-free buffers are used for flow cytometric binding assays, the fluorescence intensity of these fluorescent ligands would probably increase in the receptor bound state. Nevertheless, an increase in fluorescence intensity could also be related to non-specific interactions with other proteins or with the cell membrane. Furthermore, the protein binding to BSA is accompanied by a hypsochromic shift of the emission maxima of Py-labeled ligands, presumably, due to reduced molecular vibrations. The Bodipy derivatives **5.26** and **5.27** have exceptionally poor quantum yields in PBS + 1 % BSA. Presumably, the spectroscopic properties of the Bodipy dyes are less affected by protein binding and rigidization.

perchlo	perchlorate) and on the excitation and emission maxima (λ_{ex} , λ_{em}), respectively.							
No	Duo	PBS		PBS + 1 % E	BSA	EtOH		
NO	Dye	λ_{ex} / λ_{em} / nm	φ/%	λ_{ex} / λ_{em} / nm	φ/%	λ_{ex} / λ_{em} / nm	φ/%	
5.1	Py-1	511 / 636	0.6	513 / 609	50	523 / 634	2.3	
5.2	Py-1	522 / 642	0.3	511/606	43	523 / 632	1.8	
5.3	Py-5	490 / 706	2.2	487 / 634	35	505 / 703	19	
5.4	Py-1	525 / 643	0.9	514 / 612	39	527 / 636	1.9	
5.5	Py-1	505 / 638	1.4	511/608	37	519 / 631	2.0	
5.6	Py-1	532 / 641	0.5	536 / 619	43			
5.7	Py-1	516 / 640	0.5	519 / 608	49	525 / 634	1.9	
5.8	Py-5	489 / 702	0.5	492 / 640	27	505 / 705	18	
5.9	Py-1	515 / 641	1.2	515 / 609	47	524 / 634	2.4	
5.10	Py-5	490 / 704	1.4	485 / 641	36	502 / 705	23	
5.11	Py-1	515 / 645	0.6	516 / 608	56	522 / 634	2.1	
5.12	Py-5	485 / 705	1.1	488 / 642	44	502 / 706	24	
5.13	Py-1	516 / 641	0.6	517 / 612	44	525 / 635	2.2	
5.14	Py-5	475 / 707	5.1	490 / 644	32	502 / 705	22	
5.15	S0436	661 / 664	1.6	660 / 677	40	651/673	34	
5.16	S0387	657 / 667	4.9	660 / 677	34	654 / 675	37	
5.17	S0436	649 / 663	13	659 / 676	36	651/674	30	
5.18	S0387	654 / 667	6.2	658 / 675	47	654 / 676	35	
5.20	S0436	663 / 664	2.5	659 / 674	32	653 / 672	44	
5.21	S0387	654 / 667	3.3	659 / 675	36	654 / 675	41	
5.22	S0436	658 / 664	1.4	661/675	28	652 / 674	30	
5.23	Dy-633	634 / 652	11	644 / 656	55	640 / 660	24	
5.24	Dy-630	651/655	1.7	644 / 662	52	640 / 662	11	
5.25	Dy-633	653 / 655	0.5	647 / 659	23	639 / 660	21	
5.26	"Bodipy"	671/	(0.05)	667 / 670	5.6			

5.27

"Bodipy"

673 / --

(0.1)

665 / 671

18

652 / 668

34

Table 5.1. Spectroscopic properties of the fluorescent Y₂R antagonists **5.1-5.18**, **5.20-5.27**: Influence of the polarity of the solvent (PBS, pH = 7.0 vs. EtOH) and protein (BSA) on the quantum yield φ (reference: cresyl violet perchlorate) and on the excitation and emission maxima (λ_{ex} , λ_{em}), respectively.

Figure 5.2. Absorption and corrected emission spectra in PBS + 1 % BSA exemplified for Py-1, Py-5, S0436, S0387, Dy-630, Dy-633 and Bodipy 650/665 ("Bodipy") labeled antagonists (recorded at 22 °C).

In EtOH, the differences in QYs of the various fluorophores are much more pronounced. Whereas the Py-1 labeled antagonists hold very low QYs in the same range as in PBS, the Py-5 as well as the Dy-630 and Dy-633 containing ligands, respectively, exhibit moderate QYs (up to 24 % for **5.12** and **5.23**). The cyanine labeled ligands **5.15-5.22** display QYs up to 44 %, which is comparable to the yields measured in PBS + 1 % BSA. Lastly, the Bodipy-labeled analog **5.27** even shows a higher QY in EtOH, than in PBS containing BSA. Obviously, Py-1 labeled Y₂R antagonists are less sensitive towards hydrophobic interactions compared to the ligands labeled with other dyes.

The absorption and corrected emission spectra of various fluorescence labeled Y_2R antagonists in PBS containing 1 % of BSA are depicted in Figure 5.2. The Py-5 labeled ligands show the largest Stokes shift (\approx 150 nm; in pure PBS more than 200 nm) followed by the Py-1 derivatives (\approx 100 nm). Hence, the pyrylium coupled red-fluorescent ligands can be excited by the argon laser at 488 nm. The cyanine- (S0436, S0387), hemicyanine- (Dy-630, Dy-633), and Bodipy-labeled antagonists reveal a much smaller Stokes shift and are excitable at 635 nm with the red diode laser, commonly used in flow cytometry.

In conclusion, the fluorescence properties of all synthesized fluorescent ligands allow for an application to flow cytometric equilibrium binding studies and confocal microscopy. It is noticeable that the pyridinium fluorophores can be investigated in the presence of, e.g., cyanine-labeled fluorescent probes and *vice versa* due to different excitation wavelengths.

5.2.3 Stability of the Fluorescence Ligands

As already discussed in Chapter 3, N^{ω} -acylated argininamides were recently reported to be problematic in terms of stability of the acylguanidine side chain.³¹⁻³² However, HPLC analysis revealed high stability for the majority of the investigated Y₂R antagonists under assays-like conditions over a period of (at least) 90 minutes (Chapter 3.2.2). Especially, the acylation of the amine precursor appeared to be beneficial in terms of stability. Therefore, compounds labeled with pyrylium dyes were of special interest in this investigation due to their preserved positive charge in the linker. The percentage of decomposition resulting in BIIE 0246 was determined at physiological pH (Table 5.2).

The Py-5 labeled antagonists **5.10** and **5.14** comprising a positive charge in the fluorophore moiety proved to be stable. Even compound **5.4** including a secondary amine in the linker showed a very low decomposition giving BIIE 0246 (1.5 %; Figure 5.3). Interestingly, the amount of formed BIIE 0246 was even lower with respect to the appropriate amine precursor (*S*)-**3.50** (2.9 %), comprising two reactive amino moieties in the linker. Moreover, the S0436 labeled fluorescent ligands **5.17** and **5.22** exhibited a high stability within 90 minutes. In conclusion, the affinities examined in

the flow cytometric equilibrium binding assay are supposed to be not affected by the formation of BIIE 0246.

Table 5.2. Chemical stability (aqueous buffer, pH 7.4, 20 °C, 90 min) of the fluorescent Y_2R antagonists.

No.	% Decomposition	No.	% Decomposition
5.4	1.5	5.17	1.0
5.10	1.8	5.22	1.5
5.14	1.0		

Cleavage of the acyl or carbamoyl substituent from the guanidine moiety resulting in BIIE 0246 was analyzed by HPLC.

Figure 5.3. HPLC analysis of the Py-1 labeled fluorescent Y_2R antagonist **5.4** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

5.3 Pharmacological Results and Discussion

5.3.1 Pharmacology: Y₂R Antagonism, Affinity and Selectivity

The fluorescent Y₂R antagonists were investigated for Y₂R antagonism in a spectrofluorimetric Ca²⁺ assay (fura-2 assay) on CHO-hY₂R cells. The calcium indicator dye fura-2 is excited at 340 and 380 nm and the fluorescence intensity is measured at 510 nm. Hence, the spectroscopic properties of the fluorescence ligands do not interfere with the excitation and emission wavelengths of the fura-2-Ca²⁺ complex. Furthermore, binding of the Py-1 and Py-5 labeled antagonists 5.1-5.14 and 5.28 at the Y₂R was determined in a flow cytometric binding assay using Cy5-pNPY or Dy-635pNPY. All other fluorescent ligands exhibit spectral properties similar to those of the applied labeled NPY derivatives. Thus, alternative standard ligands, excitable at wavelengths other than 635 nm (red diode laser), are needed to investigate these antagonists. Therefore, the Py-1 labeled compound 5.4 (excitable with an Ar laser at 488 nm) was used for the displacement with a selection of fluorescent Y₂R antagonists. Moreover, fluorescence ligands 5.4 and 5.16 were investigated in a radioligand binding assay displacing the novel Y₂R selective tritiated ligand [³H]-UR-PLN196. The development and characterization of this radioligand is discussed in detail in Chapter 6. The results are summarized in Table 5.3.

The pyrylium-labeled ligands **5.1-5.14** proved to be highly potent antagonists at the Y_2R with K_i values in the range of the parent compound BIIE 0246. Only the Py-5 labeled compound **5.28** showed lower affinity than BIIE 0246 due to the alteration in the argininamide building block, but retained affinity referred to its guanidine analog (*S*)-**3.59**. In comparison to the appropriate amine precursors, the Py-labeling gave compounds with retained or slightly decreased affinity. Obviously, the introduction of the pyridinium fluorophores does not negatively affect binding and antagonistic activity because of the retained positive charge in the linker. Hence, a positive charge in the linker may contribute to Y_2 receptor binding by means of an additional interaction with the receptor as previously discussed. Lastly, the length of the linker seems to have a rather low impact on binding affinity.

Table 5.3. Structures, Y₂R antagonism and binding data of BIIE 0246 and fluorescent ligands 5.1-5.29.

Table 3.3 (0	ontinucu)				
5.17	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH$	С	12	14 ± 0.2	69 ^f
5.18	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH$	D	12	12 ± 4	nd
5.19	$CO(CH_2)_2CONHCH_2(CH_2CH_2O)_3(CH_2)_3NH$	С	19	106 ± 34	nd
5.20	CONH(CH ₂) ₂ NH	С	5	51 ± 35	nd
5.21	CONH(CH ₂) ₃ NH	D	5	2714 ± 671	> 1000 ^f
5.22	$COCH_2(OCH_2CH_2)_2NH$	С	9	259 ± 67	nd
5.23	CO(CH ₂) ₃ CONH(CH ₂) ₃ NH	F	10	663 ± 210	> 1000 ^f
5.24	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH$	Е	12	7.9 ± 3.6	nd
5.25	CONH(CH ₂) ₆ NH	F	9	711 ± 203	> 1000 ^f
5.26	CO(CH ₂) ₃ CONH(CH ₂) ₃ NH	G	10	nd	48 ^f
5.27	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH$	G	12	63 ± 29	nd
(S)- 3.59	Н			28 ± 3	96 ± 13
5.28	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2$	В	11	11 ± 0.8	102 ± 2
5.29	$CO(CH_2)_3CONH(CH_2)_2NH(CH_2)_2NH$	С	12	70 ± 11	nd

Table 5.3	(continued)	١
	continucu	1

^{*a*} Length of the linker between the argininamide and the fluorescent dye given as number of atoms. ^{*b*} Inhibition of 70 nM pNPY induced $[Ca^{2+}]_i$ mobilization at CHO-hY₂-K9-qi5-K9-mtAEQ-A7 cells expressing the human Y₂R; mean values ± SEM (n = 2-4). ^{*c*} Flow cytometric binding assay using 5 nM Cy5-pNPY, or 10 nM Dy-635-pNPY as standard ligand at CHO-hY₂-K9-qi5-K9-mtAEQ-A7 cells; mean values ± SEM (n = 2-3). ^{*d*} BIIE 0246. ^{*e*} Displacement of $[^{3}H]$ -UR-PLN196 (K_{D} = 65 nM; *c* = 75 nM) in a radioligand binding assay at CHO-hY₂-K9-qi5-K9-mtAEQ-A7 cells; mean values ± SEM (n = 2-3). ^{*f*} **5.4** (K_{D} = 24 nM; *c* = 40 nM) used as fluorescent ligand in flow cytometric competition binding; mean values ± SEM (n = 2-3).

Insertion of the higher molecular weight (hemi-)cyanine and Bodipy dyes by acylation of the amine precursors yielded fluorescent ligands devoid of a positive charge in the linker. This modification led to a drastic decrease in both potency and binding affinity of most of these compounds, apparently, because of the lack of a positive charge and the steric demand of the bulky fluorophore in proximity to the pharmacophoric moiety. Furthermore, S0387 and Dy-633 labeled fluorescent ligands 5.16, 5.21, 5.23 and 5.25 were inferior compared to the S0436 and Dy-630 coupled analogs. Strikingly, these ligands have one structural motif in common, namely an additional SO₃ group in the fluorophore (for structures see Figure 5.1 and Table 5.3, respectively). When the pharmacophoric moiety of the fluorescent ligand is binding to the Y_2R , it is very likely that the fluorophores are oriented towards the extracellular region of the receptor protein due to lack of sufficient space between transmembrane domains. The extracellular loops of the Y₂R contain numerous acidic (negatively charged) amino acids.³³⁻³⁴ Thus, the additional SO_3^- moiety could exhibit an electrostatic repulsion. Moreover, the sterical hindrance has to be taken into account. The drop in affinity proved to be less pronounced for antagonists 5.17, 5.18, 5.24 and 5.26. Interestingly, these four fluorescent ligands have the same acyl linker, which includes a secondary amine function, in common. This observation once more underlines the affinity-enhancing effect of a positive charge in the linker.

The Y₂R selectivity was exemplarily investigated for compound **5.9** and **5.10** in flow cytometric binding studies using Cy5-pNPY at cells stably expressing human Y₁, Y₄ or Y₅ receptors (Table 5.4). Labeling with pyrylium dyes did not result in an alteration in selectivity compared to the precursors. As already discussed, the selectivity of S0436, S0387, Dy-630, Dy-633 and "Bodipy" labeled ligands could not be determined by flow cytometry due to their excitability with the red diode laser. For these compounds appropriate radiolabeled standard ligands have to be used.

					14 1		a			
(Py-1	labele	ed) an	d 5.10 (P	y-5 labele	ed).					
Table	5.4.	NPY	receptor	subtype	selectivity	ot	the	fluorescent	ligands	5.9

No	K_i / nM^a					
NO	Y_2R	Y ₁ R	Y_4R	Y₅R		
5.9	6.6	> 350	> 6500	> 4500		
5.10	31	> 3500	> 6500	> 4500		

 a Flow cytometric binding assays using 10 nM Cy5-pNPY (Y₁R), 5 nM Cy5-pNPY (Y₂R, Y₅R) or 3 nM Cy5-[K⁴]-hPP (Y₄R) in HEL-Y₁ cells, CHO-Y₂ cells, CHO-Y₄ cells and HEC-1B-Y₅ cells, respectively.

5.3.2 Application of Fluorescent Y₂R Antagonists to Confocal Laser Scanning Microscopy

Various fluorescent Y₂R antagonists were screened for their applicability in confocal laser scanning microscopy on CHO cells expressing the hY₂R. The non-specific binding was determined in the presence of the non-fluorescent Y₂R selective antagonist BIIE 0246 in 100-fold excess. As shown in Figure 5.4 (panel A) the Py-1 labeled antagonist **5.2** is predominantly localized inside the cells. Fluorescence of the ligands was not detected in the nucleus. The uptake into the cells occurs within a few minutes even at very low concentrations (panel A2), presumably due to passive diffusion of the very lipophilic compound. Receptor internalization seems very unlikely, as antagonists have not been reported to cause internalization and down-regulation of GPCRs. The Py-1 labeled ligand **5.4** with an additional positive charge in the linker and concomitant reduced lipophilicity showed higher specific binding at the Y₂R (Figure 5.4 panel B).

Among the Py-labeled antagonists compound **5.28**, the Py-5 coupled analog of **5.4** lacking the cyclopentyl moiety in the argininamide pharmacophore, was found most suitable. Thus, the lower lipophilicity resulted in reduced diffusion through the cell membrane (Figure 5.4 panel C).

Figure 5.4. Binding of the fluorescent ligands **5.2** (panel A), **5.4** (panel B), **5.28** (panel C) to Y_2R expressed in CHO-h Y_2R cells, visualized by confocal microscopy. Non-specific binding was determined in the presence of BIIE 0246 at 100-fold excess. Cells were incubated with the fluorescent ligands at rt in Leibowitz L15 culture medium. All images were acquired with a Zeiss Axiovert 200 M microscope.

Figure 5.6. Binding of the fluorescent ligands **5.16** (panel G), **5.22** (panel H), **5.29** (panel I) to Y_2R expressed in CHO-h Y_2R cells, visualized by confocal microscopy. 1: Total binding; 2: Displacement with pNPY at 500-fold excess; 3: Non-specific binding determined in the presence of BIIE 0246 at 100-fold excess. Cells were incubated with the fluorescent ligands at rt in Leibowitz L15 culture medium. All images were acquired with a Zeiss Axiovert 200 M microscope.

Figure 5.7. Binding of the fluorescent ligands **5.24** (panel J) and **5.25** (panel K) to Y_2R expressed in CHO-h Y_2R cells, visualized by confocal microscopy. J1: Total binding merged; J2: Non-specific binding determined in the presence of BIIE 0246 at 100-fold excess (fluorescence image); K1: Total binding; K2: Non-specific binding determined in the presence of BIIE 0246 at 100-fold excess (fluorescence image). Cells were incubated with the fluorescent ligands at rt in Leibowitz L15 culture medium. All images were acquired with a Zeiss Axiovert 200 M microscope.

The S0436 and S0387 labeled fluorescent ligands which were applied to confocal laser scanning microscopy showed high specific binding to the Y₂R at a concentration as low as 50 nM (Figure 5.5 and Figure 5.6). Even compounds **5.16** and **5.22**, which are rather weak Y₂R antagonists (K_B values: 90 nM and 259 nM, respectively), revealed intense fluorescence in the membrane (Figure 5.6 panel G and H). Moreover, binding to the Y₂R seems to occur quite fast, as a high fluorescence signal was already observed after 15 min of incubation (Figure 5.6 G1). Non-specific binding was detected mainly inside the cells (cf. Figure 5.5 F2 and Figure 5.6 G3). However, penetration through the cell membrane was considerably reduced in comparison to the pyrylium labeled ligands.

Displacement of the fluorescent ligands **5.16**, **5.22** and **5.29** was performed with the endogenous ligand pNPY at a 500-fold excess – initially, in order to distinguish total and non-specific binding (Figure 5.6 panels G2, H2, I2). Surprisingly, the Y_2R antagonists were hardly displaced by pNPY. Interestingly, BIIE 0246 was reported to exhibit an insurmountable antagonism against NPY after pre-incubation with the cells

for 20 min, whereas it behaved as a competitive antagonist when co-incubated in a functional Ca^{2+} assay.³⁵ Nevertheless, in the case of the fluorescent ligands the poor displacement was observed despite co-incubation with pNPY. Thus, with respect to an explanation of this unusual behavior, more detailed investigations of the binding mode of argininamide-type Y₂R antagonists are urgently needed.

Furthermore, the Dy-630 and Dy-633 fluorophore containing antagonists **5.23-5.25** (data shown for **5.24** and **5.25** in Figure 5.7, panel J and K) showed high specific binding at the Y₂R with binding characteristics similar to S0436 and S0387 labeled fluorescent ligands. Binding was detectable at different concentrations corresponding to the antagonistic activities of the fluorescent ligands (cf. Table 5.3). While a 50 nM concentration was sufficient for the detection of the highly potent fluorescent ligand **5.24** (Figure 5.7 panel J1), membranes could only be visualized at a 500 nM concentration in case of the weak antagonist **5.25** (Figure 5.7 panel K1).

5.3.3 Fluorescent Y₂R Antagonists in Flow Cytometry: Kinetics, Saturation and Competition Binding Experiments

Several fluorescent Y₂R antagonists were chosen for more detailed investigations in flow cytometric binding experiments due to suited properties in terms of binding affinity, antagonistic activity, fluorescence properties and applicability in confocal microscopy. All experiments were performed on CHO-hY₂R cells.

5.3.3.1 Saturation Binding Experiments

To optimize the assay conditions, saturation binding experiments were performed with compounds **5.15** and **5.17** at different incubation periods using BSA containing or BSA free binding buffer. There was a significant increase in the ratio of total to non-specific binding when BSA free buffer was used (Table 5.5). Presumably, the increase in fluorescence intensity in the receptor bound state, resulting from rigidization, is more pronounced in the absence of BSA, compared to BSA containing binding buffer. Consequently, the following experiments were performed with BSA free binding buffer.

Four fluorescent Y_2R antagonists were chosen for saturation binding experiments (**5.4**, **5.15-5.17**). Besides compound **5.17**, all investigated fluorescent ligands showed very low non-specific binding even at high concentrations (Figure 5.8 and Figure 5.9). The saturation binding of the Py-1 labeled compound **5.4** was measured in the fluorescence channels Fl-2 (585 ± 21 nm) and Fl-3 (> 670 nm) and K_D values of 25 nM and 27 nM, respectively, were obtained (Figure 5.8). These data are in excellent agreement with the binding affinity

Table 5.5. Preliminary investigation on total (T) and non-specific (NS) binding of **5.15** (c = 25 nM; K_B = 35 nM). Influence of incubation time (t_{inc}) and BSA on receptor binding. NS was determined with 5 μ M BIIE 0246.

t _{inc} /min	addition of BSA ^a	Ratio T / NS
15	+	3.9
15	-	9.3
30	+	3.8
30	-	8.1

^{*a*} +: Addition of 1 % BSA to binding buffer (pH = 7.4); -: No BSA in the binding buffer (pH = 7.4).

determined by the displacement of Cy5-pNPY ($K_i = 23 \text{ nM}$).

Figure 5.8. Flow cytometric saturation binding experiment with fluorescent ligand **5.4** at CHO-hY₂R cells (mean values \pm SEM, n = 2, experiments performed in triplicate). Non-specific binding was determined in the presence of BIIE 0246 (100-fold excess); incubation time: 30 min. a) Measurement in FI-2 (585 \pm 21 nm); b) Measurement in FI-3 (> 670 nm).

Figure 5.9. Flow cytometric saturation binding experiment with fluorescent ligands **5.16** and **5.17** at CHO- hY_2R cells (mean values ± SEM, n = 2, experiments performed in triplicate). Non-specific binding was determined in the presence of BIIE 0246 (100-fold excess); incubation time: 30 min; measurement in FI-4 (661 ± 8 nm). a) Saturation binding of **5.16**. b) Saturation binding of **5.17**.

In case of the S0436 and S0387 labeled ligands **5.15-5.17** the fluorescence channel Fl-4 (661 \pm 8 nm) was used for the determination of the dissociation constants. All ligands exhibited high to moderate binding affinity with K_D values of 42-143 nM (Table 5.6). It is noteworthy, that the S0387 labeled ligand **5.16** showed much higher binding affinity in saturation binding than expected from competition binding studies with the fluorescent ligand **5.4** and the radioligand [³H]-UR-PLN196, and from the

functional fura-2 assay, respectively (cf. Table 5.3 and Table 5.6, respectively).

In summary, the fluorescent ligands **5.4** and **5.15**-**5.17** revealed satisfactory results in saturation binding experiments, and therefore, were used in flow cytometric competition binding studies. Especially the Py-1 labeled ligand **5.4**, excitable by the argon laser (λ = 488 nm), and the S0387 labeled antagonist **5.16**, excitable by the red diode laser (λ = 635nm), showed favorable properties in terms of specific binding and affinity. Therefore, both compounds were selected for more detailed binding studies.

Table	5.6.	Εqι	uilibrium	diss	ociation	con-
stants	of	the	fluoresc	cent	ligands	5.4 ,
5.15-5	.17.					

No	Saturation binding
NO	$K_{\rm D}$ / nM ^a
F 4	25 ± 1.4^{b}
5.4	27 ± 2^{c}
5.15	143 ± 16
5.16	62 ± 5
5.17	42 ± 3

^{*a*} Equilibrium dissociation constant determined on CHO-hY₂R cells, measured in Fl-4 (mean values \pm SEM, n = 2, performed in triplicate). ^{*b*} Measurement in Fl-2. ^{*c*} Measurement in Fl-3.

5.3.3.2 Association and Dissociation Kinetics

The investigation of the association and the dissociation of compounds **5.4** and **5.16** should provide more detailed information about the binding properties of argininamide-type Y_2R antagonists. Therefore, the on- and off-rate (k_{on} , k_{off}), the half-life ($t_{1/2}$) and the kinetically derived equilibrium dissociation constant were determined.

The data of **5.16** are summarized in Table 5.7. The association reaches 90 % of maximum binding within around 30 minutes (Figure 5.10a), i. e., the association rate is rather slow in comparison to other non-peptidic antagonists. However, the fluorescent antagonist showed faster association than Cy5-pNPY, which reaches 90 % of maximum binding after about 110 minutes³⁶. Interestingly, the dissociation of **5.16** remained incomplete even after 60 minutes (\approx 40 % specifically bound; Figure 5.10b).

Table 5.7. Y₂R binding characteristics of 5.16.

k _{off} / min ^{-1 a}	$k_{on} / min^{-1} \cdot nM^{-1b}$	k _{off} /k _{on} / nM ^c	$K_{\rm D}$ / nM ^d
0.01285	0.000526	24	62

^{*a*} Dissociation rate constant determined by linear regression. ^{*b*} Association rate constant determined by linear regression. ^{*c*} Kinetically derived dissociation constant. ^{*d*} Equilibrium dissociation constant determined in saturation binding experiments.

Apparently, slow dissociation resulted in pseudo-irreversible binding. However, the dissociation rate of **5.16** was sufficient to calculate the kinetically derived K_D ($k_{off}/k_{on} = 24 \text{ nM}$) by linearization of the association and dissociation curves (Figure 5.10c, d). This value is 2.5-times lower than the K_D received from saturation binding experiments (62 nM; Figure 5.9a). Yet, both values are in the same range. Taking the incomplete displacement of **5.16** into account, the calculated values can only be considered as an approximation of the actual half-lives ($t_{1/2}$) and off/on rates.³⁷ These findings prompted us to investigate the dissociation of the fluorescent labeled endogenous ligand Cy5-pNPY, a high affinity fluorescent ligand, which has been characterized in our workgroup in detail.^{10, 38} In contrast to **5.16** the Cy5 labeled peptide revealed complete and relatively fast dissociation (Figure 5.11). 90 % of Cy5-pNPY were dissociated from the receptor after 60 minutes. Thus, the calculated K_D from kinetic studies is in good agreement with the dissociation constant from saturation binding (K_D (kinetic) = 6.1 nM; K_D (saturation) = 5.2 nM¹⁰) proving that the binding of the fluorescent peptide follows the law of mass action.³⁹

Figure 5.10. Binding kinetics of **5.16** at CHO-hY₂R cells. a) Association of **5.16** (c = 60 nM) as a function of time. b) Dissociation kinetics of **5.16** (pre-incubation: 60 nM, 30 min) in the presence of BIIE 0246 (c = 6 μ M), monophasic exponential decay, t_{1/2} = 11.9 min. c) Linearization of the association (In[B_{eq}/(B_{eq}-B)] vs. time) for the determination of the on-rate (k_{on}): slope = k_{ob} = 0.04442 min⁻¹, k_{on} = (k_{ob} - k_{off})/[L] = 0.000526 min⁻¹ · nM⁻¹. d) Linearization of the dissociation (In(B/B₀) vs. time) for the determination of the off-rate (k_{off}): slope (-1) = k_{off} = 0.01285 min⁻¹. (n = 3).

Figure 5.11. Dissociation of Cy5-pNPY (c = 5 nM) from the Y₂R as a function of time in the presence of pNPY (c = 500 nM), monophasic exponential decay, $t_{1/2} = 11.2$ min.

For the Py-1 labeled fluorescent ligand 5.4 a time-dependent association similar to that of **5.16** was observed (Figure 5.12). Surprisingly, the dissociation experiments failed. There was no displacement in the presence of 100-fold excess of BIIE 0246, although the same concentration of BIIE 0246 was sufficient to determine the nonspecific binding of 5.4 in saturation binding assays (cf. Figure 5.8). The critical difference between the assay procedures is the co-incubation of the fluorescent ligand with BIIE 0246 in case of saturation binding, whereas for dissociation experiments the fluorescent ligand is initially pre-incubated for 30 min with the cells, followed by a washing step and the addition of BIIE 0246 to the cell suspension. Thus, BIIE 0246 is unable to displace 5.4 when the latter has been pre-incubated with the cells. In principle, such a behavior could implement a distinct binding site or covalent binding of **5.4** to the receptor. However, both scenarios are highly unlikely. Both compounds share the same pharmacophoric moiety, irreversible binding of the Py-1 labeled fluorescent ligand was not observed when 5.4 was displaced with BIIE 0246 in saturation and competition binding experiments, and 5.4 does not possess reactive groups prone to covalent binding.

Figure 5.12. Association kinetic of **5.4** (c = 40 nM). Non-specific binding was determined with 100-fold excess of BIIE 0246.

5.3.3.3 Competition Binding Experiments

The applicability of selected fluorescent ligands (5.4, 5.15-5.17) as reference compounds for the determination of Y₂R binding affinity was explored in competition binding experiments using several reference Y₂R ligands and new compounds described in this work. The fluorescent compounds were used at concentrations around their $K_{\rm D}$ values determined by saturation, taking into consideration the large specific and non-specific difference between binding at the respective concentrations, resulting in a high signal-to-noise ratio. The standard antagonist BIIE 0246 was used in equilibrium competition binding experiments with all four fluorescent ligands. Furthermore, the endogenous ligand pNPY, the potential radioligand (S)-3.63, and the recently developed small molecule Y₂R antagonist SF-11 were used for the displacement of the Py-1 labeled antagonist 5.4 and the S0387 coupled analog **5.16**. Unfortunately, SF-11 exhibited low binding affinities in the μ M range at the Y₂R, despite moderate antagonism demonstrated in functional assays $(IC_{50} = 199 \text{ nM}^{40}; IC_{50} \text{ (fura-2)} = 349 \text{ nM}; K_B = 77 \text{ nM})$. The calculated K_i values are summarized in Table 5.8.

As already observed in confocal microscopy, the high affinity agonist pNPY failed to displace the fluorescent antagonists (Figure 5.13). By contrast, the argininamide-type Y_2R fluorescent ligands were able to displace Cy5-pNPY in flow cytometric competition binding with high affinities (e.g., **5.4**: $K_i = 23$ nM). Presumably, interaction of pNPY with the agonist binding pocket is prevented by the antagonist priorly bound to the Y_2R . Thus, BIIE 0246-type ligands act as insurmountable (non-competitive) antagonists versus the endogenous agonist, probably due to distinct or at least not totally overlapping binding sites, or because of the stabilization of a ligand (antagonist)-specific receptor conformation. However, the calculated K_i values of BIIE 0246 and (S)-**3.63** are in good agreement with data from flow cytometric competition binding using Cy5-pNPY as standard ligand (Table 5.8).

Hence, the fluorescent antagonists are useful pharmacological tools in flow cytometric binding experiments for the characterization of non-peptidic antagonists. Yet, the characterization of peptide ligands could result in "false negatives" due to insurmountable ((pseudo)-irreversible) antagonism (Figure 5.13).

Figure 5.13. Flow cytometric competition binding on CHO-hY₂R cells; incubation time: 30 min for non-peptidic antagonists; incubation time: 90 min for pNPY; non-specific binding was determined with BIIE 0246 (c = 10 μ M); mean values ± SEM (n = 2-5). a) Displacement of **5.4** (c = 40 nM, K_D = 25 nM) measured in FI-2. b) Displacement of **5.16** (c = 60 nM, K_D = 60 nM) measured in FI-4.

Table 5.8. K_i values determined in flow cytometric competition binding assays on CHO-hY₂R cells.

	Flow cytometric competition binding assay, K _i / nM							
Compd.	displacement of							
	5.4 ^{<i>a</i>}	5.16 ^b	5.15 ^c	5.17 ^d	Cy5-pNPY ^e			
BIIE 0246	22 ± 6	2.9 ± 0.3	19 ± 4	15 ± 1	10.2 ± 1.1			
pNPY	12040 ± 1009	770 ± 190	nd	nd	0.8 ± 0.2^{10}			
(S)- 3.63	77 ± 3	11 ± 0.6	nd	nd	9.9 ± 1.0^{f}			
SF-11	4915 ± 836	2890 ± 938	nd	nd	1251 ± 348			

^{*a*} $K_{\rm D}$ = 25 nM (FI-2), c = 40 nM. ^{*b*} $K_{\rm D}$ = 62 nM (FI-4), c = 60 nM. ^{*c*} $K_{\rm D}$ = 143 nM (FI-4), c = 100 nM. ^{*d*} $K_{\rm D}$ = 42 nM (FI-4), c = 40 nM. ^{*e*} $K_{\rm D}$ = 5.2 nM (FI-4), c = 5 nM. ^{*f*} Determined with Dy-635-pNPY. (mean values ± SEM, n = 2-5).

5.4 Summary and Conclusion

The design of fluorescent Y_2R ligands was based on the application of the guanidineacylguanidine bioisosteric approach to the argininamide-type Y_2R antagonist BIIE 0246. Herein, the guanidine group was linked to fluorophores *via* ω -aminoacyl spacers of different lengths and chemical nature. The fluorescent label was attached to the primary amines by acylation with succinimidyl esters or by ring transformation of pyrylium dyes. The majority of the synthesized derivatives proved to be potent and selective fluorescence labeled Y_2R antagonists. However, the binding affinity strongly depended on the chemical nature of the fluorescent dye.

The low molecular weight pyrylium dyes turned out to be well suited for fluorescence labeling of Y_2R antagonists exhibiting retained affinity compared to the parent compound BIIE 0246. Hence, a preserved positive charge in the ω -aminoacyl spacer after ring transformation is assumed to be favorable in terms of receptor binding, as the positively charged resonance-stabilized pyridinium may contribute to Y_2R binding by electrostatic interactions. The attachment of bulky dyes by acylation and concomitant elimination of the positive charge led to a more or less pronounced decrease in activity compared to the parent argininamide. As expected, a preserved positive charge in the linker was favorable in terms of antagonistic activity (5.17, 5.18, 5.24). By contrast, S0387 and Dy-633 labeled compounds (5.16, 5.21, 5.23, 5.25), comprising a SO_3^- moiety in the fluorophore, appeared to be inferior compared to their S0436 and Dy-630 coupled analogs (5.15, 5.20), presumably due to electrostatic repulsion with extracellular loop regions of the receptor.

The majority of the cyanine (S0436, S0387), Dy-630 and Dy-633 labeled fluorescent ligands were successfully applied in confocal microscopy even at very low concentrations relative to their K_B and K_i values (cf. **5.16**). In case of pyrylium coupled ligands, **5.4** and **5.28** revealed suitable binding properties, whereas rapid diffusion into the cells was observed for the Py-1 and Py-5 fluorescent antagonists **5.1-5.3**, **5.5-5.14**. A selection of fluorescent ligands turned out to be appropriate for investigations in flow cytometric equilibrium binding studies. The versatility of this application makes fluorescence-labeled Y₂R antagonists a promising alternative to the commonly used universal NPY receptor ligand Cy5-pNPY.

In addition, the novel fluorescent probes were utilized in more detailed studies on the binding mode of argininamide-type Y₂R antagonists. In contrast to Cy5-pNPY, kinetic experiments with the fluorescent ligand **5.16** revealed pseudo-irreversible binding. Furthermore, an insurmountable binding versus the natural ligand pNPY was observed for several fluorescent antagonists in flow cytometric competition binding (**5.4**, **5.16**) and confocal microscopy (**5.16**, **5.22**, **5.29**), respectively.

In summary, the new fluorescent probes can be regarded as useful reference compounds and pharmacological tools for fluorescence-based screening and detailed pharmacological characterization of small molecule Y_2R ligands. Moreover, these fluorescent ligands enable the optical detection of NPY Y_2 receptors *in vitro* as demonstrated on hY_2R expressing CHO cells.

5.5 Experimental Section

5.5.1 General Experimental Conditions

Chemicals and solvents were purchased from commercial suppliers and used without further purification. Pyrylium dyes Py-1 and Py-5 (tetrafluoroborate salts) were kindly provided by the Institute of Analytical Chemistry, Chemo- and Biosensors at the University of Regensburg (Prof. Dr. O. S. Wolfbeis). These dyes are also commercially available from Active Motif Chromeon (www.activemotif.com). The succinimidyl esters of fluorescent dyes S0436 and S0387 were obtained from FEW Chemicals (Bitterfeld-Wolfen, Germany). The succinimidyl esters of fluorescent dyes Dy-630 and Dy-633 were obtained from Dyomics (Jena, Germany). The Bodipy 650/665-X succinimidyl ester (SE) and Cy5-NHS ester were obtained from Molecular Probes (now Invitrogen; Darmstadt, Germany) and GE Healthcare LifeSciences (Freiburg,

Germany), respectively. Porcine NPY (pNPY) was kindly provided by the Institute of Organic Chemistry I at the Ruhr-University Bochum (Prof. Dr. C. Cabrele). SF-11 was purchased from Tocris Bioscience (Bristol, United Kingdom). All solvents were of analytical grade or distilled prior to use. DMF ($H_2O < 0.01$ %) was purchased from Sigma-Aldrich Chemie GmbH.

Low resolution mass spectrometry analysis (MS) was performed in-house on a Finnigan ThermoQuest TSQ 7000 (ES-MS) and a Finnigan SSQ 710A (EI-MS 70 eV, CI-MS). High resolution mass spectrometry analysis (HRMS) for compound **5.5** was performed on a JMS-700 instrument (JOEL Ltd, Tokyo, Japan). Lyophilization was done with a Christ alpha 2-4 LD equipped with a vacuubrand RZ 6 rotary vane vacuum pump.

Preparative HPLC was performed on a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector and two RP-columns (Nucleodur 100-5 C18ec, 250 × 21 mm, 5 μ m; Gemini-NX C18, 250 × 21 mm, 5 μ m, AXIA Packed) at a flow rate of 22 mL/min. Mixtures of acetonitrile and 0.1 % aq. TFA were used as mobile phase. Acetonitrile was removed from the eluates under reduced pressure (final pressure: 90 mbar) at 45 °C prior to lyophilization. Analytical HPLC analysis was performed on two different systems (Thermo Separation Products, Merck) which are listed in detail below. Mixtures of acetonitrile (A) and 0.05 % aq. TFA (B) (Thermo Separation Products), and mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B) (Merck), respectively, were used as mobile phase. Helium degassing was used throughout.

Stock solutions (2 or 10 mM) of all compounds were prepared in DMSO and stored at -20 °C.

Analytical HPLC systems:

System 1: Thermo Separation Products; composed of a SN400 controller, a P4000 pump, a degasser (Degassex DG-4400, phenomenex), an AS3000 autosampler and a Spectra Focus UV-VIS detector; flow rate: 0.8 mL/min; UV detection: 220 nm.

System 2: Merck; composed of a L-5000 controller, a 655A-12 pump, a 655A-40 autosampler and a L-4250 UV-VIS detector; flow rate: 0.7 mL/min; UV detection: 220 nm.

Applied gradients:

Gradient 1 (Thermo Separation Products): 0 to 30 min: A/B 20/80 to 95/5, 30 to 37 min: 95/5.

Gradient 2 (Merck): 0 to 30 min: A/B 20/80 to 95/5, 30 to 40 min: 95/5.

The purity of all compounds was determined by HPLC using system 1 (gradient 1) on a Eurospher-100 C18 column (250 × 4 mm, 5 μ m, Knauer, Berlin, Germany), except for compounds **5.18**, **5.24** and **5.27**, which were measured with a Nucleodur H-Tec 100-5 C18 column (250 × 4 mm, 5 μ m, Macherey-Nagel, Düren, Germany). HPLC system 2

(gradient 2) was used for reaction monitoring on a Eurospher-100 C18 column (250 \times 4 mm, 5 μ m, Knauer, Berlin, Germany).

5.5.2 Chemistry: Experimental Protocols and Analytical Data

General procedure for the preparation of Py-1 and Py-5 labeled fluorescent ligands 5.1-5.14, 5.28:

The pertinent amine precursor (2-4 eq) and NEt₃ (8-15 eq) were dissolved in a mixture of CH₃CN and DMF (\approx 10 % DMF v/v, total volume: 400-800 µL) followed by the addition of the pyrylium dye × BF₄⁻ (1 eq) in DMF (\approx 50 µL). The reaction was stopped by addition of 10 % aq. TFA (corresponding to 6-10 eq TFA) after an incubation period of 1-3 h at rt. The reaction mixture was adjusted with 0.1 % aq. TFA to a volume of \approx 2-4 mL resulting in a ratio of CH₃CN/0.1 % aq. TFA, which approximately corresponds to the ratio of the solvents CH₃CN/0.1 % TFA in the starting eluent (max. two times higher concentration of CH₃CN). The reaction mixtures were subjected to preparative HPLC yielding the products as red solids after lyophilization.

1-((15*S*)-10-Amino-19-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,8,16-trioxo-15-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl}ethyl)cyclopentyl]acetamido}-3,9,11,17-tetraazanonadec-9-enyl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.1). Yield: 52 % (1.73 mg); MS (ES, +p) m/z (%): 671 (100) $[M+H]^{2+}$; RP-HPLC: 92 % (t_R = 22.7 min, k' = 7.4); C₇₇H₉₁N₁₄O₈⁺ × C₂F₃O₂⁻ (1425.70).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12,16-trioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl}ethyl)cyclopentyl]acetamido}-3,9,11,17-tetraazaicos-10-en-20-yl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.2). Yield: 35 % (1.20 mg); MS (ES, +p) m/z (%): 678 (100) $[M+H]^{2+}$; RP-HPLC: 94 % (t_R = 22.9 min, k' = 7.5); C₇₈H₉₃N₁₄O₈⁺ × C₂F₃O₂⁻ (1466.72).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12,16-trioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,17-tetraazaicos-10-en-20-yl)-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.3). Yield: 36 % (1.59 mg); MS (ES, +p) m/z (%): 665 (100) $[M+H]^{2+}$, 443 (32) $[M+2H]^{3+}$; RP-HPLC: 96 % (t_R = 20.8 min, k' = 6.7); C₇₆H₉₁N₁₄O₈⁺ × C₂F₃O₂⁻ (1440.70). 1-((18*S*)-13-Amino-22-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-7,11,19-trioxo-18-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl}ethyl)cyclopentyl]acetamido}-3,6,12,14,20-pentaazadocos-12-enyl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.4). Yield: 39 % (1.79 mg); MS (ES, +p) m/z (%): 692 (30) $[M+H]^{2+}$, 462 (100) $[M+2H]^{3+}$; RP-HPLC: 90 % (t_{R} = 18.3 min, k' = 5.8); $C_{79}H_{96}N_{15}O_{8}^{+} \times C_{2}F_{3}O_{2}^{-}$ (1495.75).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12,15-trioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1yl}ethyl)cyclopentyl]acetamido}-20,23,26-trioxa-3,9,11,16-tetraazanonacos-10-en-29-yl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6dimethylpyridinium 2,2,2-trifluoroacetate (5.5). Yield: 50 % (2.25 mg); MS (ES, +p) m/z (%): 744 (100) $[M+H]^{2+}$; HRMS (LSI-MS): m/z $[M+H]^+$ calcd. for C₈₄H₁₀₆N₁₄O₁₁⁺: 1486.8160, found: 1486.8101; RP-HPLC: 62 % (t_R = 23.9 min, k' = 7.9); C₈₄H₁₀₅N₁₄O₁₁⁺ × C₂F₃O₂⁻ (1598.80).

1-((11*S*)-6-Amino-15-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12-dioxo-11-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,5,7,13-tetraazapentadec-5-enyl)-4-[2-(1,2,3,5,6,7hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.6). Yield: 49 % (1.86 mg); MS (ES, +p) m/z (%): 636 (100) $[M+H]^{2+}$; RP-HPLC: 64 % (t_R = 22.8 min, k' = 7.4); $C_{73}H_{85}N_{14}O_7^+ \times C_2F_3O_2^-$ (1382.66).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12-dioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,13-tetraazahexadec-10-en-16-yl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.7). Yield: 45 % (1.68 mg); MS (ES, +p) m/z (%): 643 (100) $[M+H]^{2+}$; RP-HPLC: 61 % (t_{R} = 24.6 min, k' = 8.1); $C_{74}H_{87}N_{14}O_{7}^{-+} \times C_{2}F_{3}O_{2}^{--}$ (1396.68).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12-dioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,13-tetraazahexadec-10-en-16-yl)-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.8). Yield: 17 % (0.73 mg); MS (ES, +p) m/z (%): 630 (100) $[M+H]^{2+}$; RP-HPLC: 98 % ($t_{\rm R}$ = 21.7 min, k' = 7.0); C₇₂H₈₅N₁₄O₇⁺ × C₂F₃O₂⁻ (1370.66). 1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12-dioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,13-tetraazaheptadec-10-en-17-yl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.9). Yield: 35 % (1.52 mg); MS (ES, +p) m/z (%): 650 (100) $[M+H]^{2+}$; RP-HPLC: 66 % (t_{R} = 25.1 min, k' = 8.3); $C_{75}H_{89}N_{14}O_{7}^{-+} \times C_{2}F_{3}O_{2}^{--}$ (1410.69).

1-((5*S*)-10-Amino-1-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-4,12-dioxo-5-{2-[1-(2-oxo-2-{4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl)piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,13-tetraazanonadec-10-en-19-yl)-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.10). Yield: 33 % (1.88 mg); MS (ES, +p) m/z (%): 651 (100) $[M+H]^{2+}$; RP-HPLC: 78 % (t_R = 23.2 min, k' = 7.6); C₇₅H₉₁N₁₄O₇⁺ × C₂F₃O₂⁻ (1412.71).

1-{6-[Amino((4*S*)-5-{2-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethylamino}-5oxo-4-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}pentylamino)methyleneamino]-6-oxohexyl}-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.11). Yield: 67 % (3.31 mg); MS (ES, +p) m/z (%): 649 (100) $[M+H]^{2+}$; RP-HPLC: 72 % (t_R = 24.0 min, k' = 7.9); C₇₆H₉₀N₁₃O₇⁺ × C₂F₃O₂⁻ (1409.70).

1-{6-[Amino((4*S*)-5-{2-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]ethylamino}-5oxo-4-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}pentylamino)methyleneamino]-6-oxohexyl}-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.12). Yield: 36 % (1.25 mg); MS (ES, +p) m/z (%): 636 (100) $[M+H]^{2+}$; RP-HPLC: 98 % (t_R = 22.6 min, k' = 7.4); $C_{72}H_{84}N_{13}O_7^{-+} \times C_2F_3O_2^{--}$ (1355.65).

1-((15*S*)-10-Amino-19-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-8,16-dioxo-15-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,6-dioxa-9,11,17-triazanonadec-9-enyl)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-*ij*]quinolin-9-yl)vinyl]-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.13). Yield: 24 % (1.18 mg); MS (ES, +p) m/z (%): 665 (100) $[M+H]^{2+}$; RP-HPLC: 90 % (t_R = 24.1 min, k' = 7.9); C₇₆H₉₀N₁₃O₉⁺ × C₂F₃O₂⁻ (1441.69).

1-((22*S*)-17-Amino-26-[3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl]-15,23-dioxo-22-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1yl}ethyl)cyclopentyl]acetamido}-3,6,9,12-tetraoxa-16,18,24-triazahexacos-16-enyl)-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2trifluoroacetate (5.14). Yield: 23 % (0.90 mg); MS (ES, +p) *m/z* (%): 703 (100) [*M*+H]²⁺; RP-HPLC: 90 % ($t_{\rm R}$ = 22.0 min, k' = 7.1); C₇₉H₉₈N₁₃O₁₁⁺ × C₂F₃O₂⁻ (1517.74). 1-((18*S*)-13-Amino-18-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylcarbamoyl]-7,11,20,24-tetraoxo-24-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl]piperazin-1-yl}-3,6,12,14,19-pentaazatetracos-12-enyl)-4-{4-[4-(dimethylamino)phenyl]buta-1,3-dienyl}-2,6-dimethylpyridinium 2,2,2-trifluoroacetate (5.28). Yield: 15 % (0.75 mg); MS (ES, +p) m/z (%): 652 (75) $[M+H]^{2+}$, 435 (100) $[M+2H]^{3+}$; RP-HPLC: 94 % (t_{R} = 15.2 min, k' = 4.6); $C_{73}H_{88}N_{15}O_{8}^{+} \times C_{2}F_{3}O_{2}^{-}$ (1415.68).

General procedure for the preparation of S0436, S0387, Dy-630, Dy-633, and Bodipy 650/665-X labeled fluorescent ligands 5.15-5.27, 5.29:

The pertinent amine precursor (2 eq) and NEt₃ (8 eq) were dissolved in CH₃CN (200-400 μ L), followed by the addition of the dye-NHS ester (1 eq) in CH₃CN (100-200 μ L) and DMF resulting in a total volume of 300-600 μ L. For the acylation with S0387-NHS ester \approx 10-20 % DMF v/v was added to the CH₃CN solution prior to addition to the stirred reaction mixture. The reaction was stopped by addition of 10 % aq. TFA (corresponding to 6-10 eq TFA) after an incubation period of 8-16 h at rt. The reaction mixture was adjusted to a volume of \approx 2-4 mL by addition of 0.1 % aq. TFA resulting in a ratio of CH₃CN/0.1 % aq. TFA, which approximately corresponds to the ratio of the solvents (CH₃CN/0.1 % TFA) in the starting eluent (max. two times higher concentration of CH₃CN). The reaction mixtures were subjected to preparative HPLC yielding the products as cyan or blue solids after lyophilization.

4-[2-(5-{1-[(5*S*)-10-Amino-1-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)-4,12,16,22-tetraoxo-5-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,17,21-pentaazaheptacos-10-en-27-yl]-3,3-dimethylindolin-2-ylidene}penta-1,3-dienyl)-1,1-dimethyl-1*H*-isoindolium-3-yl]butane-1-sulfonate 2,2,2-trifluoroacetate (5.15). Yield: 73 % (2.88 mg); MS (ES, +p) m/z (%): 1654 (40) $[M+H]^+$, 827 (100) $[M+2H]^{2+}$; RP-HPLC: 92 % (t_R = 24.3 min, k' = 8.0); C₉₂H₁₁₃N₁₂O₁₂S × C₂HF₃O₂ (1765.83).

Compound (S)-3.49 labeled with S0387 (5.16). Yield: 23 % (0.56 mg); MS (ES, +p) m/z (%): 868 (100) $[M+3H]^{2+}$; RP-HPLC: 99 % ($t_{\rm R}$ = 16.5 min, k' = 5.1); $C_{92}H_{112}N_{15}O_{15}S_2^- \times C_4H_2F_6O_4$ (1958.77).

Compound (S)-3.50 labeled with S0436 (5.17). Yield: 58 % (1.54 mg); MS (ES, +p) m/z (%): 842 (25) $[M+2H]^{2+}$, 562 (100) $[M+3H]^{3+}$; RP-HPLC: 97 % ($t_{\rm R}$ = 20.2 min, k' = 6.5); $C_{93}H_{116}N_{16}O_{12}S \times C_2HF_3O_2$ (1794.86).

Compound (S)-3.50 labeled with S0387 (5.18). Yield: 34 % (1.20 mg); MS (ES, +p) m/z (%): 882 (100) $[M+3H]^{2+}$; RP-HPLC: 99 % ($t_{\rm R}$ = 12.5 min, k' = 4.4); $C_{93}H_{115}N_{16}O_{12}S_2^- \times C_4H_2F_6O_4$ (1987.80).

Compound (S)-3.51 labeled with S0436 (5.19). Yield: 83 % (1.83 mg); MS (ES, +p) m/z (%): 1786 (30) $[M+H]^+$, 894 (100) $[M+2H]^{2+}$; RP-HPLC: 87 % (t_R = 23.9 min, k' = 7.9); $C_{98}H_{125}N_{15}O_{15}S \times C_2HF_3O_2$ (1897.91).

Compound (S)-3.52 labeled with S0436 (5.20). Yield: 65 % (1.54 mg); MS (ES, +p) m/z (%): 785 (100) $[M+2H]^{2+}$; RP-HPLC: 97 % ($t_{\rm R}$ = 24.9 min, k' = 8.2); $C_{87}H_{105}N_{15}O_{11}S \times C_2HF_3O_2$ (1681.77).

Compound (S)-3.53 labeled with S0387 (5.21). Yield: 43 % (1.05 mg); MS (ES, +p) m/z (%): 832 (100) $[M+3H]^{2+}$; RP-HPLC: 97 % ($t_{\rm R}$ = 17.5 min, k' = 5.5); $C_{87}H_{105}N_{15}O_{11}S^{-} \times C_4H_2F_6O_4$ (1795.76).

Compound (S)-3.57 labeled with S0436 (5.22). Yield: 29 % (1.84 mg); MS (ES, +p) m/z (%): 1628 (20) $[M+H]^+$, 815 (100) $[M+2H]^{2+}$; RP-HPLC: 93 % (t_R = 24.5 min, k' = 8.1); $C_{90}H_{110}N_{14}O_{13}S \times C_2HF_3O_2$ (1740.80).

Compound (S)-3.49 labeled with Dy-633 (5.23). Yield: 73 % (0.81 mg); MS (ES, +p) m/z (%): 889 (100) $[M+3H]^{2+}$; RP-HPLC: 98 % ($t_{\rm R}$ = 18.8 min, k' = 6.0); $C_{94}H_{116}N_{15}O_{16}S_2^- \times C_4H_2F_6O_4$ (2002.80).

1-[(5*S*)-10-Amino-1-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)-4,12,16,24-tetraoxo-5-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,17,20,23-hexaazanonacos-10-en-29-yl]-2-{3-[2-tert-butyl-7-(diethylamino)chromenylium-4-yl]allylidene}-3,3-dimethylindoline-5-sulfonate 2,2,2-trifluoroacetate (5.24). Yield: 34 % (0.93 mg); MS (ES, +p) m/z (%): 857 (35) $[M+2H]^{2+}$, 572 (100) $[M+3H]^{3+}$; RP-HPLC: 100 % (t_R = 15.0 min, k' = 5.5); $C_{94}H_{118}N_{16}O_{13}S \times C_2HF_3O_2$ (1824.87).

Compound (S)-3.55 labeled with Dy-633 (5.25). Yield: 23 % (0.26 mg); MS (ES, +p) m/z (%): 875 (100) $[M+3H]^{2+}$; RP-HPLC: 93 % ($t_{\rm R}$ = 22.0 min, k' = 7.1); $C_{93}H_{116}N_{15}O_{15}S_2^-$ × $C_4H_2F_6O_4$ (1974.80).

3-{4-[(5*S*)-10-Amino-1-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)-4,12,16,22,29pentaoxo-5-{2-[1-(2-oxo-2-{4-[6-oxo-6,11-dihydro-5*H*-dibenzo[*b,e*]azepin-11-yl]piperazin-1-yl}ethyl)cyclopentyl]acetamido}-3,9,11,17,21,28-hexaazatriacont-10-en-30-yloxy]styryl}-5,5-difluoro-7-(1*H*-pyrrol-2-yl)-5*H*-dipyrrolo[1,2-*c*:1',2'-*f*]-[1,3,2]diazaborinin-4-ium-5-uide 2,2,2-trifluoroacetate (5.26). Yield: 40 % (0.60 mg); MS (ES, +p) m/z (%): 798 (100) $[M+2H]^{2+}$; RP-HPLC: 98 % (t_R = 25.6 min, k' = 8.5); C₈₆H₉₈BF₂N₁₇O₁₁ (1593.77). **Compound (S)-3.50 labeled with Bodipy 650/665-X (5.27).** Yield: 56 % (1.27 mg); MS (ES, +p) m/z (%): 812 (30) $[M+2H]^{2+}$, 542 (100) $[M+3H]^{3+}$; RP-HPLC: 87 % ($t_{\rm R}$ = 15.5 min, k' = 5.7); $C_{87}H_{102}BF_2N_{18}O_{11}$ (1623.80).

4-{2-[5-(1-{(7*S*)-12-Amino-7-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethylcarbamoyl]-1,5,14,18,26-pentaoxo-1-[4-(6-oxo-6,11-dihydro-5*H*-dibenzo[*b*,*e*]azepin-11-yl)piperazin-1-yl]-6,11,13,19,22,25-hexaazahentriacont-12-en-31-yl}-3,3-dimethylindolin-2-ylidene)penta-1,3-dienyl]-3,3-dimethyl-3*H*-indolium-1-yl}butane-1sulfonate 2,2,2-trifluoroacetate (5.29). Yield: 57 % (1.48 mg); MS (ES, +p) m/z (%): 815 (85) $[M+2H]^{2+}$, 544 (100) $[M+3H]^{3+}$; RP-HPLC: 87 % (t_R = 18.0 min, k' = 5.7); C₈₉H₁₁₀N₁₆O₁₂S × C₂HF₃O₂ (1740.81).

5.5.3 Synthesis and Purification of Cy5-pNPY

Cy5-pNPY was synthesized as previously described.³⁸ HPLC purification was performed by analytical HPLC using system 2 equipped with a Jupiter 300 C18 column (250 × 4.6 mm, 5µm, Phenomenex, Aschaffenburg, Germany). Conditions: UV detection: 275 nm; fluorescence detection: λ_{ex} = 645 nm, λ_{em} = 670 nm; eluent: mixtures of acetonitrile + 0.025 % TFA (A) and 0.025 % aq. TFA (B), gradient: 0 to 30 min: A/B 25/75 to 35/65, 30 to 32 min: 35/65 to 95/5, 32 to 47 min: 95/5, t_R = 32.0 min (UV). After evaporation the product was re-diluted in CH₃CN/0.1 aq. TFA (20/80, v/v). The concentration was determined by UV/vis spectroscopy at 649 nm, using the molar extinction coefficient of cy5 for the appropriate solvent mixture determined previously by R. Ziemek (313568 L · mol⁻¹ · cm⁻¹)³⁶. Afterwards, the labeled peptide was aliquoted (1 nmol) into siliconized microtubes (1.5 mL) and the solvent was evaporated in the vacuum concentrator at room temperature. The purified product was analyzed by MS (MALDI-TOF: m/z = 4927).

5.5.4 Fluorescence Spectroscopy and Determination of Quantum Yields

The quantum yields were determined with a Cary Eclipse spectrofluorimeter and a Cary 100 UV/VIS photometer (Varian Inc., Mulgrave, Victoria, Australia). The photomultiplier voltage of the Cary Eclipse spectrofluorimeter was set to 400 V throughout. Recording of excitation spectra was performed with an excitation slit of 5 nm and an emission slit of 10 nm. Emission spectra depicted in Figure 5.2 were recorded with an excitation slit and an emission slit of 10 nm, respectively. The quantum yields were determined by analogy with a previously reported protocol¹² using cresyl violet perchlorate (Acros Organics, Geel, Belgium) as red fluorescent standard, for which a quantum yield of 54 % in ethanol was reported in the literature⁴¹. Determination of the spectra was performed in acryl cuvettes (10×10 mm, Ref. 67.755, Sarstedt, Nümbrecht, Germany). For fluorescence spectroscopy, solutions corresponding to absorbances between 0.08 and 0.2 at the respective

excitation wavelength were used. The appropriate concentration of the fluorescent ligands was determined by UV/vis spectroscopy; absorption spectra were recorded within a concentration range of 3-10 μ M. For the pyrylium labeled compounds **5.1-5.14** the excitation wavelength was chosen as close to the absorption maximum as possible. The (hemi-)cyanine- and Bodipy-labeled ligands (**5.15-5.27**) were excited at a plateau of the absorption spectrum. It was strictly avoided to excite the fluorescent compounds in flank of the excitation spectrum.

Solutions of the fluorescent ligands were freshly prepared from 2 or 10 mM stock solutions of the compounds in DMSO and immediately protected from light. Fluorescence spectra were recorded at two different slit adjustments (excitation/emission): 10/5 nm, 10/10 nm. For the determination of reference spectra, the pure solvents with the same DMSO content were measured.

Instrument settings for the recorded emission spectra: T = 22 °C; `medium scan rate'; filter settings: auto (excitation filter), open (emission filter); $\lambda_{em} = \lambda_{ex} + 10-15$ nm.

Substraction of the corresponding reference spectrum from every emission spectrum yielded the net spectra, which were multiplied with the appropriate lamp correction spectra, resulting in the corrected emission spectra (cf. Figure 5.2). The corrected emission spectra were integrated up to 850 nm.

The absorbance at the excitation wavelength was determined by recording absorption spectra immediately after recording the emission spectra (within 30 min after preparation of test solutions). Baselines were stored using reference solutions and substracted from the raw spectra. The quantum yield was calculated according to the following equation⁴¹:

 $\phi_{F(X)} = (A_s/A_x) (F_x/F_s) (n_x/n_s)^2 \phi_{F(S)}$

A: absorbance of the corrected absorption spectrum at the excitation wavelength;

F: integral of the corrected emission spectrum;

n: refraction index of the solvent;

 ϕ_F : quantum yield / %;

s: cresyl violet perchlorate standard; $\phi_{F(S)} = 54$;

x: fluorescent ligand (sample).

5.5.5 Investigation of the Chemical Stability

The stability of the fluorescent Y₂R antagonists **5.4**, **5.10**, **5.14**, **5.17** and **5.22** regarding the formation of BIIE 0246 was investigated at neutral pH in FACS binding buffer (cf. Chapter 5.5.6.1). Incubation was started by addition of 10 μ L of a 1 mM solution of the compounds in DMSO to 190 μ L of buffer giving a final concentration of 50 μ M. After 90 minutes incubation, a 80 μ L aliquot was taken and diluted with a mixture of CH₃CN, H₂O and 1 % aq. TFA (5:1:4, 80 μ L). 100 μ L of the resulting solution (pH = 2-3) was analyzed by HPLC on a RP-column (Eurospher-100 C18, 250 × 4 mm, 5 μ m, Knauer, Berlin, Germany) using a system from Thermo Separation Products

(composed of a SN400 controller, a P4000 pump, a degasser (Degassex DG-4400, phenomenex), an AS3000 autosampler and a Spectra Focus UV/vis detector). Mixtures of acetonitrile (A) and 0.05 % aq. TFA (B) were used as mobile phase (gradient: 0 to 30 min: A/B 20/80 to 95/5, 30 to 37 min: A/B 95/5). The flow rate was set to 0.8 mL/min, the column temperature to 30 °C and the detection wavelength to 220 nm. The quantity of decomposition product BIIE 0246 ((*S*)-**3.47**) was estimated from the peak integrals of the incubation sample and a reference chromatogram of the analyzed compound (incubation time: 0 min).

5.5.6 Receptor Binding and Functional Assays

5.5.6.1 Cell Culture and Buffers

Cell culture. CHO cells stably expressing the hY_2R were cultured as described elsewhere. 10

Buffers. The buffer for the Y₂R binding studies on CHO cells was prepared by the addition of BSA (1 %) and bacitracin (100 μ g · L⁻¹) to a buffer (pH 7.4) consisting of HEPES (25 mM), CaCl₂ × 2 H₂O (2.5 mM), MgCl₂ × 6 H₂O (1 mM). BSA and bacitracin were omitted in saturation binding, kinetic and competition binding experiments with non-peptide fluorescent antagonists. For the displacement of **5.4** and **5.16** with pNPY only BSA was omitted. The loading buffer (pH 7.4) for the determination of the mobilization of intracellular Ca²⁺ in CHO cells was prepared by dissolving NaCl (120 mM), KCl (5 mM), MgCl₂ × 6 H₂O (2 mM), CaCl₂ × 2 H₂O (1.5 mM), HEPES (25 mM), and glucose (10 mM).

5.5.6.2 Fura-2 Calcium Assay and Radioligand Competition Binding Experiments

The fura-2 assay was performed as previously described using a LS50 B spectrofluorimeter from Perkin Elmer (Überlingen, Germany).⁴² Radioligand competition binding experiments with [³H]-UR-PLN196 were performed for the determination of K_i values of the fluorescent ligands **5.4** and **5.16**. as described in Chapter 6.

5.5.6.3 Flow Cytometry

All flow cytometric binding assays were performed with a FACSCaliburTM flow cytometer (Becton Dickinson, Heidelberg, Germany), equipped with an argon laser (488 nm) and a red diode laser (635 nm).^{10, 38, 43} All binding assays were performed in a final volume of 500 μ L containing labeled ligand and unlabeled peptide or antagonist as needed.

Selectivity assay. The selectivity of the new Y_2R antagonists for human NPY Y_2 over Y_1 , Y_4 and Y_5 receptors was investigated by flow cytometric binding assays on Cy5-pNPY (Y_1R , Y_5R), and Cy5-[K⁴]-hPP (Y_4R) according to previously described methods.^{10, 38, 44} The compounds were tested at two concentrations (1 μ M and 10 μ M) in duplicate.

Competition binding assay with Cy5-pNPY. The binding assay was performed as described elsewhere¹⁰ with the following adaptations. Instrument settings were: FSC: E-1, SSC: 350 V, FI-4: 800 V, Flow: HI; measurement stopped when 10000 gated events were counted. The experiments were performed using 490 μ L of cell suspension, 5 μ L of Cy5-pNPY (final concentration 5 nM) and 5 μ L of test compound (100-fold concentrated). If indicated, 5 μ L of Dy-635-pNPY (final concentration 10 nM) was used as fluorescent ligand. Incubation time was 90 min at room temperature. *K*_i values were obtained from 2-3 independent experiments.

Displacement of fluorescent ligands 5.4, and 5.15-5.17. The cells were seeded three days prior to the experiment (90-95 % confluency), trypsinized and resuspended in Ham's F12 medium, containing 10 % fetal calf serum for the inactivation of trypsin. After centrifugation at 1,000 rpm for 5 min, the cells were suspended in binding buffer without BSA to a density of $2-3 \cdot 10^6$ cells/mL. Bacitracin (0.1 g/L) was added in case of competition binding with pNPY in order to prevent protease-mediated degradation of the peptide. The experiments were performed with the respective fluorescent ligand (c (5.4) = 40 nM, c (5.15) = 100 nM, c (5.16) = 60 nM, c (5.17) = 40 nM) in the presence and absence of various competitors at different concentrations (10^{-10} to 10^{-4} M). Non-specific binding was determined in the presence of 10 μ M BIIE 0246. The samples were incubated in siliconized reaction vessels for 30 min (90 min for pNPY) at room temperature before flow cytometer analysis. Instrument settings for fluorescent ligand 5.4: FSC: E-1, SSC: 360 V, Fl-2: 550 V, Fl-3: 800 V, Flow: HI; measurement stopped when 10000 gated events were counted; Instrument settings for fluorescent ligands 5.15-5.17: FSC: E-1, SSC: 350 V, Fl-4: 600 V, Flow: HI; measurement stopped when 10000 gated events were counted.

Saturation binding experiments with 5.4, and 5.15-5.17. Saturation binding experiments were performed by analogy with the above mentioned competition binding assays with following adaptations. The cells were incubated with the respective fluorescent ligand in increasing concentrations ($c \approx 0.2 \times K_D - 10 \times K_D$) for 30 min. Non-specific binding was determined with 100-fold excess of BIIE 0246.

Kinetics of Y₂R binding of Cy5-pNPY, 5.4 and 5.16. The cells were treated as already described. Association kinetics was determined by incubation of the cells with a constant concentration of labeled ligand (c (Cy5-pNPY) = 5 nM, c (**5.4**) = 40 nM, c (**5.16**) = 60 nM). Samples were taken at different time periods and measured (For
instrument settings see the respective competition binding protocols). Non-specific binding was measured with 100-fold excess of pNPY in case of Cy5-pNPY and BIIE 0246 for the labeled non-peptide ligands, respectively.

For dissociation experiments cells were pre-incubated with the corresponding labeled ligand at the above mentioned concentrations for 30 min (Cy5-pNPY: 120 min) in binding buffer without BSA, bacitracin, except for Cy5-pNPY (buffer + 1 % BSA and 0.1 g/L bacitracin). For non-specific binding, pre-incubation was performed in pre-sence of 100-fold excess of pNPY in case of Cy5-pNPY and BIIE 0246 for the non-peptide labeled ligands, respectively. Afterwards, cells were washed with cold binding buffer and resuspended in binding buffer consisting of pNPY and BIIE 0246 (100-fold excess), respectively. Samples were taken at different time periods and measured. (For instrument settings see the respective competition binding protocols).

5.5.6.4 Data Processing

All data to be fitted were processed with GraphPad Prism 5.

Fura-2 Assay. The ratio of fluorescence intensities at 510 nm after excitation at 340 and 380 nm was used for the calculation of the calcium concentration according to the Grynkiewicz equation.⁴⁵ At least two points between 20 and 80 % inhibition served for the calculation of IC_{50} values after logit-log transformation using the following equation:

logit (P) = log [P/(100-P)]

IC₅₀ values were obtained by plotting logit (*P*) versus log B with the slope *n* according to logit (*P*) = $n\log B-n\log IC_{50}$ by linear regression. The K_B value was calculated using the Cheng-Prusoff equation⁴⁶:

 $K_{\rm B} = IC_{50} \cdot [EC_{50}/(EC_{50}+L)]$

P: mean percent inhibition with SEM < 10 %, determined from 2-3 independent experiments performed on different days;

B: antagonist concentration;

IC₅₀: concentration of competitor producing 50 % inhibition;

EC₅₀: agonist concentration that induces 50 % of the maximum response;

L: concentration of pNPY.

Radioligand Binding Assay. IC₅₀ values were converted to K_i values according to the Cheng-Prusoff equation⁴⁶ using the respective K_D value of the radioligand.

Flow Cytometry. The geometric means of fluorescence in the corresponding fluorescence channel (FI-2, FI-3, FI-4) of the gated cells were calculated using the WinMDI 2.9 software. The inhibition constant K_i was calculated using the Cheng-Prusoff equation⁴⁶:

 $K_{\rm i} = {\rm IC}_{50} \cdot [K_{\rm D}/(K_{\rm D} + {\rm L})]$

*K*_i: inhibition constant of the competitor;

 $K_{\rm D}$: dissociation constant of the labeled ligand;

 IC_{50} : concentration of unlabeled competitor producing 50 % inhibition of the specific binding of the labeled ligand;

L: concentration of the labeled ligand.

Data from saturation binding were evaluated by one-site saturation fits. Rate constants (k_{ob} , k_{off}) were analyzed by linear regressions. The association rate constant (k_{on}) was calculated according to the following equation:

 $k_{on} = (k_{ob} - k_{off})/L$

L: concentration of the ligand;

k_{ob}: observed/macroscopic association rate constant;

k_{off}: dissociation rate constant.

5.5.7 Confocal Microscopy

Two days prior to the experiment CHO-hY₂R cells were trypsinized and seeded in Nunc LabTekTM II chambered coverglasses with 8 chambers (Nunc, Wiesbaden, Germany), or in 1 μ -Slides 8 well ibiTreat sterile glasses (ibidi GmbH; München, Germany) in Ham's F12 medium, containing 10 % fetal calf serum. On the day of the experiment confluency of the cells was 60-90 %. The culture medium was removed, the cells were washed twice with Leibowitz L15 culture medium (200 μ L) and covered with L15 medium (120 μ L). L15 medium (40 μ L) and 5-fold concentrated fluorescent probe in L15 medium (40 μ L) was added for total binding. For non-specific binding L15 medium (40 μ L) with the competing agent BIIE 0246 (5-fold concentrated) and L15 medium (40 μ L) with the fluorescent probe (5-fold concentrated) was added. Images of total and non-specific binding were acquired after an incubation period of 5-50 min.

Confocal microscopy was performed with a Zeiss Axiovert 200 M microscope, equipped with the LSM 510 laser scanner. The objective was a Plan-Apochromat 63x/1.4 with oil immersion. Table 5.9 shows the most important settings for the detection of the investigated fluorescent ligands.

No	Excitation (laser transmission)	Filter	Pinhole / μm
5.2	514 nm (10 %)	LP 560	78
5.4	488 nm (10 %)	LP 560	276
5.15	633 nm (10 %)	LP 650	276
5.16	633 nm (10 %)	LP 650	276
5.17	633 nm (10 %)	LP 650	276
5.20	633 nm (10 %)	LP 650	276
5.22	633 nm (10 %)	LP 650	94
5.23	633 nm (10 %)	LP 650	276
5.24	633 nm (10 %)	LP 650	288
5.25	633 nm (10 %)	LP 650	276
5.26	633 nm (10 %)	LP 650	276
5.28	488 nm (10 %)	LP 650	276
5.29	633 nm (10 %)	LP 650	276

Table 5.9. Conditions for the detection of the fluorescent ligands 5.2, 5.4, 5.15-5.17,5.20, 5.22-5.26, 5.28 and 5.29 with the Zeiss Axiovert 200 M microscope.

5.6 References

- 1. Böhme, I.; Beck-Sickinger, A. G. Illuminating the life of GPCRs. *Cell. Commun. Signal.* **2009**, 7, 16.
- 2. Cottet, M.; Faklaris, O.; Zwier, J. M.; Trinquet, E.; Pin, J. P.; Durroux, T. Original fluorescent ligand-based assays open new perspectives in G-protein coupled receptor drug screening. *Pharmaceuticals* **2011**, 4, 202-214.
- 3. Dinger, M. C.; Bader, J. E.; Kobor, A. D.; Kretzschmar, A. K.; Beck-Sickinger, A. G. Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells. *J. Biol. Chem.* **2003**, 278, 10562-71.
- 4. Karasawa, S.; Araki, T.; Nagai, T.; Mizuno, H.; Miyawaki, A. Cyan-emitting and orangeemitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. *Biochem. J.* **2004**, 381, 307-12.
- 5. Zacharias, D. A.; Violin, J. D.; Newton, A. C.; Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. *Science* **2002**, 296, 913-6.
- Dumont, Y.; Gaudreau, P.; Mazzuferi, M.; Langlois, D.; Chabot, J. G.; Fournier, A.; Simonato, M.; Quirion, R. BODIPY-conjugated neuropeptide Y ligands: new fluorescent tools to tag Y1, Y2, Y4 and Y5 receptor subtypes. *Br. J. Pharmacol.* 2005, 146, 1069-81.
- 7. Fabry, M.; Cabrele, C.; Hocker, H.; Beck-Sickinger, A. G. Differently labeled peptide ligands for rapid investigation of receptor expression on a new human glioblastoma cell line. *Peptides* **2000**, 21, 1885-93.
- 8. Ingenhoven, N.; Beck-Sickinger, A. G. Fluorescent labelled analogues of neuropeptide Y for the characterization of cells expressing NPY receptor subtypes. *J. Recept. Signal Transduct. Res.* **1997**, 17, 407-18.

- 9. Fabry, M.; Langer, M.; Rothen-Rutishauser, B.; Wunderli-Allenspach, H.; Hocker, H.; Beck-Sickinger, A. G. Monitoring of the internalization of neuropeptide Y on neuroblastoma cell line SK-N-MC. *Eur. J. Biochem.* **2000**, 267, 5631-7.
- 10. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. *Eur. J. Pharmacol.* **2006**, 551, 10-8.
- Cowart, M.; Gfesser, G. A.; Bhatia, K.; Esser, R.; Sun, M.; Miller, T. R.; Krueger, K.; Witte, D.; Esbenshade, T. A.; Hancock, A. A. Fluorescent benzofuran histamine H(3) receptor antagonists with sub-nanomolar potency. *Inflamm. Res.* 2006, 55 Suppl 1, S47-8.
- Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Red-fluorescent argininamide-type NPY Y(1) receptor antagonists as pharmacological tools. *Bioorg. Med. Chem.* **2011**, 19, 2859-78.
- Leopoldo, M.; Lacivita, E.; Passafiume, E.; Contino, M.; Colabufo, N. A.; Berardi, F.; Perrone, R. 4-[omega-[4-arylpiperazin-1-yl]alkoxy]phenyl)imidazo[1,2-a]pyridine derivatives: fluorescent high-affinity dopamine D3 receptor ligands as potential probes for receptor visualization. *J. Med. Chem.* 2007, 50, 5043-7.
- 14. Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Buschauer, A. Synthesis and pharmacological activity of fluorescent histamine H1 receptor antagonists related to mepyramine. *Bioorg. Med. Chem. Lett.* **2003**, 13, 1245-8.
- 15. Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Elz, S.; Buschauer, A. Synthesis and pharmacological activity of fluorescent histamine H2 receptor antagonists related to potentidine. *Bioorg. Med. Chem. Lett.* **2003**, 13, 1717-20.
- Malan, S. F.; van Marle, A.; Menge, W. M.; Zuliana, V.; Hoffman, M.; Timmerman, H.; Leurs, R. Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization. *Bioorg. Med. Chem.* **2004**, 12, 6495-503.
- Middleton, R. J.; Briddon, S. J.; Cordeaux, Y.; Yates, A. S.; Dale, C. L.; George, M. W.; Baker, J. G.; Hill, S. J.; Kellam, B. New fluorescent adenosine A1-receptor agonists that allow quantification of ligand-receptor interactions in microdomains of single living cells. *J. Med. Chem.* **2007**, 50, 782-93.
- Tahtaoui, C.; Parrot, I.; Klotz, P.; Guillier, F.; Galzi, J. L.; Hibert, M.; Ilien, B. Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor. *J. Med. Chem.* **2004**, 47, 4300-15.
- Xie, S. X.; Petrache, G.; Schneider, E.; Ye, Q. Z.; Bernhardt, G.; Seifert, R.; Buschauer, A. Synthesis and pharmacological characterization of novel fluorescent histamine H2receptor ligands derived from aminopotentidine. *Bioorg. Med. Chem. Lett.* 2006, 16, 3886-90.
- Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y(2) receptor antagonist. *Eur. J. Pharmacol.* **1999**, 384, R3-5.
- Craig, D. B.; Wetzl, B. K.; Duerkop, A.; Wolfbeis, O. S. Determination of picomolar concentrations of proteins using novel amino reactive chameleon labels and capillary electrophoresis laser-induced fluorescence detection. *Electrophoresis* 2005, 26, 2208-13.

- 22. Wetzl, B. K.; Yarmoluk, S. M.; Craig, D. B.; Wolfbeis, O. S. Chameleon labels for staining and quantifying proteins. *Angew. Chem. Int. Ed. Engl.* **2004**, 43, 5400-2.
- 23. Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Waggoner, A. S. Cyanine dye labeling reagents containing isothiocyanate groups. *Cytometry* **1989**, 10, 11-9.
- 24. Czerney, P.; Lehmann, F.; Wenzel, M.; Buschmann, V.; Dietrich, A.; Mohr, G. J. Tailormade dyes for fluorescence correlation spectroscopy (FCS). *Biol. Chem.* **2001**, 382, 495-8.
- 25. Derwinska, K.; Sauer, U.; Preininger, C. Reproducibility of hydrogel slides in on-chip immunoassays with respect to scanning mode, spot circularity, and data filtering. *Anal. Biochem.* **2007**, 370, 38-46.
- Rinne, J.; Albarran, B.; Jylhava, J.; Ihalainen, T. O.; Kankaanpaa, P.; Hytonen, V. P.; Stayton, P. S.; Kulomaa, M. S.; Vihinen-Ranta, M. Internalization of novel non-viral vector TAT-streptavidin into human cells. *BMC Biotechnol.* 2007, 7, 1.
- Kang, H. C.; Haugland, R. P.; Fisher, P. J.; Prendergast, F. G. Spectral properties of 4sulfonato-3,3',5,5'-tetramethyl-2,2'-pyrromethen-1,1'-borondifluoride complex (Bodipy), its sodium salt, and protein derivatives. *Proc. SPIE-Int. Soc. Opt. Eng.* **1989**, 1063, 68-73.
- 28. Buschmann, V.; Weston, K. D.; Sauer, M. Spectroscopic study and evaluation of redabsorbing fluorescent dyes. *Bioconjug. Chem.* **2003**, 14, 195-204.
- 29. Caro, B.; Le Guen-Robin, F.; Salmain, M.; Jaouen, G. 4-benchrotrenyl pyrylium salts as protein organometallic labelling reagents. *Tetrahedron* **2000**, 56, 257-263.
- Pauli, J.; Vag, T.; Haag, R.; Spieles, M.; Wenzel, M.; Kaiser, W. A.; Resch-Genger, U.; Hilger, I. An in vitro characterization study of new near infrared dyes for molecular imaging. *Eur. J. Med. Chem.* **2009**, 44, 3496-503.
- Brennauer, A.; Keller, M.; Freund, M.; Bernhardt, G.; Buschauer, A. Decomposition of 1-(ω-aminoalkanoyl)guanidines under alkaline conditions. *Tetrahedron Lett.* 2007, 48, 6996-9.
- Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; König, B. N(G)-Acyl-argininamides as NPY Y(1) receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. *Bioorg. Med. Chem.* 2010, 18, 6292-304.
- Ammar, D. A.; Eadie, D. M.; Wong, D. J.; Ma, Y. Y.; Kolakowski, L. F., Jr.; Yang-Feng, T. L.; Thompson, D. A. Characterization of the human type 2 neuropeptide Y receptor gene (NPY2R) and localization to the chromosome 4q region containing the type 1 neuropeptide Y receptor gene. *Genomics* **1996**, 38, 392-8.
- 34. Gehlert, D. R.; Beavers, L. S.; Johnson, D.; Gackenheimer, S. L.; Schober, D. A.; Gadski, R. A. Expression cloning of a human brain neuropeptide Y Y2 receptor. *Mol. Pharmacol.* **1996**, 49, 224-8.
- 35. Dautzenberg, F. M.; Neysari, S. Irreversible binding kinetics of neuropeptide Y ligands to Y2 but not to Y1 and Y5 receptors. *Pharmacology* **2005**, 75, 21-9.
- 36. Ziemek, R. Development of binding and functional assays for the neuropeptide Y Y2 and Y4 receptors. PhD, University of Regensburg, Regensburg, Germany, 2006.

- 37. Kenakin, T.; Jenkinson, S.; Watson, C. Determining the potency and molecular mechanism of action of insurmountable antagonists. *J. Pharmacol. Exp. Ther.* **2006**, 319, 710-23.
- 38. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A. A simple and powerful flow cytometric method for the simultaneous determination of multiple parameters at G protein-coupled receptor subtypes. *Chembiochem* **2006**, 7, 1400-9.
- 39. Lazareno, S. Quantification of receptor interactions using binding methods. *J. Recept. Signal Transduct. Res.* **2001**, 21, 139-65.
- 40. Brothers, S. P.; Saldanha, S. A.; Spicer, T. P.; Cameron, M.; Mercer, B. A.; Chase, P.; McDonald, P.; Wahlestedt, C.; Hodder, P. S. Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole-cell high-throughput screening. *Mol. Pharmacol.* **2010**, *77*, 46-57.
- 41. Magde, D.; Brannon, J. H.; Cremers, T. L.; Olmstedt, J. Absolute luminescence yield of cresyl violet. A standard for the red. *J. Phys. Chem.* **1979**, 83, 696-9.
- 42. Müller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Synthesis and neuropeptide Y Y₁ receptor antagonistic activity of N,N-disubstituted ω-guanidinoand ω-aminoalkanoic acid amides. *Arch. Pharm.* **1997**, 330, 333-42.
- Schneider, E.; Keller, M.; Brennauer, A.; Höfelschweiger, B.; Gross, D.; Wolfbeis, O. S.; Bernhardt, G.; Buschauer, A. Synthesis and characterization of the first fluorescent nonpeptide NPY Y₁ receptor antagonist. *Chembiochem* **2007**, 8, 1981-1988.
- 44. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of affinity and activity of ligands at the human neuropeptide Y Y4 receptor by flow cytometry and aequorin luminescence. *J. Recept. Signal Transduct. Res.* **2007**, 27, 217-33.
- 45. Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. *J. Biol. Chem.* **1985**, 260, 3440-50.
- 46. Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, 22, 3099-108.

Chapter 6 [³H]-UR-PLN196: A Highly Potent and Selective Tritiated Neuropeptide Y Y₂ Receptor Antagonist

6.1 Introduction

Radioligands are frequently used as pharmacological tools to characterize new compounds with respect to their binding properties and their pharmacological profile. Such radioligands should be characterized by high purity (> 90 %), sufficient stability and high specific activity (> 10 Ci/mmol) in terms of chemical properties, as well as subtype selectivity, fast kinetics and appropriate mode of action (antagonism) with respect to the pharmacological profile. Concerning the Y₂R, the commonly applied standard ligands like [³H]-NPY,¹⁻² [¹²⁵I]-PYY³ or [¹²⁵I]-PYY(3-36)⁴⁻⁵ are not considered suitable for labeling, especially due to lacking selectivity. For instance, in autoradiography utilizing [¹²⁵I]-PYY(3-36), discrimination between BIIE 0246-sensitive and BIIE 0246-insensitive binding sites is required due to strong binding of the radioligand to the Y₅R sites (BIIE 0246-insensitive sites).⁶ Hence, novel non-peptidic highly selective radiolabeled antagonists are required as pharmacological tools for more detailed investigations of the Y₂ receptor subtype.

Therefore, we prepared a series of derivatives of the highly potent and selective argininamide-type Y_2R antagonist BIIE 0246.⁷ Previously, the parent compound was found to tolerate electron-withdrawing substituents attached to the guanidine group (N^G) , including moieties comprising a terminal amino group (N^{ω}) , in terms of Y_2R binding regardless of the lowered basicity by 4-5 orders of magnitude.⁸ These findings prompted us to synthesize a small library of potential radioligands ("cold" versions) by propionylation of the terminal amino moiety, whereof an appropriate candidate was chosen for the development of a tritiated selective Y_2R antagonist (Table 6.1).

Table 6.1. Structures and Y_2R affinities of BIIE 0246, selected N^{ω} -substituted potential radioligands and the N^{G} -propionylated analog **3.86**.

^{*a*} Displacement of Cy5-pNPY in a flow cytometric competition binding assay on CHO-hY₂R cells. ^{*b*} Displacement of Dy-635-pNPY in a flow cytometric competition binding assay on CHO-hY₂R cells. (mean values, n = 2-4)

6.2 Chemistry

The majority of the highly selective potential radioligands exhibit lower Y_2R binding affinities than the parent compound BIIE 0246 (cf. Table 6.1 for a selection of potential [³H]-radioligands; cf. Table 3.2 and Table 3.4 for binding constants and selectivity). Especially the carbamoyl-substituted analogs lose affinity compared to the corresponding amine precursors. However, several derivatives turned out to be highly potent Y_2R antagonists with affinities in the one-digit nM-range ((*S*)-**3.63**, (*S*)-**3.65**, (*S*)-**3.71**, **3.86**). Direct propionylation in N^G -position yielded **3.86**, the derivative with the highest Y_2R antagonistic activity.

Scheme 6.1. Preparation of the tritiated Y_2 receptor antagonist **6.1**. Reagents and conditions: a) (*S*)-**3.48** (40 eq), succinimidyl [³H]-propionate (1 eq), NEt₃ (80 eq), CH₃CN, 20 h, rt.

Figure 6.1. HPLC analysis of identity, purity and long-term stability (13 months) of $[^{3}H]$ -UR-PLN196 (6.1). a) Radiochromatogram of the synthesized radioligand 6.1 (purity control). b) UV chromatogram of unlabeled ligand (*S*)-3.63 (identity control). c) Long-term stability control of 6.1 with radiometric detection. Eluent: mixtures of CH₃CN + 0.05 % TFA (A) and 0.05 % aq. TFA (B), gradient: 0 to 20 min: A/B 30/70 to 60/40, 20 to 22 min: 60/40 to 95/5, 22 to 25 min: 95/5, columns: Agilent C18, 5 µm (chromatograms a) and b)), Synergi C-18, 5 µm (chromatogram c)). The minor difference in retention times (t_R) of a) and b) results from the setup of the UV and the radiodetector in series. The identity of 6.1 was confirmed by spiking with the "cold" analog (*S*)-3.63.

Considering Y₂R affinity, synthetic pathway, overall yield and supposed long-term stability, the amine precursor (*S*)-**3.48** was considered the most attractive candidate for labeling. The N^{ω} -[2,3-³H]-propionyl-substituted argininamide **6.1** ([³H]-UR-PLN196), the "hot" form of (*S*)-**3.63**, was prepared by acylation with the commercially available tritiated succinimidyl propionate (Scheme 6.1). After purification by HPLC, the designated radioligand **6.1** was obtained in a radiochemical purity of 90 % (Figure 6.1a; for comparison: (*S*)-**3.63** is obtained in 95 % chemical purity (Figure 6.1b)) with a specific activity of 73 Ci \cdot mmol⁻¹. The identity of the radioligand was confirmed by HPLC analysis of labeled (**6.1**) and unlabeled UR-PLN196 ((*S*)-**3.63**), which have identical retention times (Figure 6.1a, b). Moreover, long-term stability in ethanol containing 100 µM TFA at -20 °C was proven over a period of 13 months (Figure 6.1c).

6.3 Pharmacological Results and Discussion

6.3.1 Saturation Binding

In the first binding experiments no saturation of the Y_2R with the newly developed radioligand **6.1** was observed, despite a binding affinity of the cold analog (*S*)-**3.63** in the one-digit nM range determined in flow cytometric competition binding experiments with various fluorescent ligands (cf. Figure 6.7b). Thus, the potential adsorption of the compound to different reaction vessels and in various solvents was investigated, as a high tendency towards the adsorption to plastics was already observed in case of BIIE 0246 in a previous work.⁹ The results are presented in Figure 6.2.

Figure 6.2. Fraction of total activity recovered after solution of **6.1** (c = 17 nM) in different solvents (water, binding buffer without BSA (–) and binding buffer with 1 % BSA (+)) to variously treated reaction vessels (cups). Siliconized cups were obtained by coating with SigmacoteTM (Sigma-Aldrich, Germany). 100 % activity was calculated by means of the activity concentration a_V of the radioligand stock solution ($a_V = 9.25$ MBq · mL⁻¹; V (**6.1**) = 2 µL).

The highest fraction of recovered activity was obtained with siliconized reaction vessels in binding buffer + 1 % BSA (83 %). Adsorption increased when BSA was omitted. Thus, all dilutions were performed in siliconized cups and surface-modified

BD Primaria[™] 24-well plates (Beckton Dickinson GmbH, Germany) were used to perform radioligand binding assays.

Saturation experiments with **6.1** at CHO-hY₂R cells afforded a K_D value of 65 nM, which is higher than expected from previous flow cytometric binding assays (K_i = 9.9 nM, cf. Table 6.1, cf. Figure 6.7b). Presumably, this discrepancy results from adsorption of small amounts of the radioligand to the surface-modified plates. Furthermore, the radioligand **6.1** might occupy a second low-affinity binding site. This is rather speculative and more data points with a higher number of repetitions within high concentrations would be necessary in order to detect a second binding site. Unfortunately, the performance of such additional assays was impossible due to the limited amounts of available hot ligand. Scatchard analysis revealed linearity, which is consistent with mass action behavior at a single site (Figure 6.3b).¹⁰ Moreover, the radioligand showed a high specific binding throughout proving the applicability as a selective radioligand in binding studies on the Y₂R (Figure 6.3a). Besides the equilibrium dissociation constant K_D , saturation analysis with **6.1** revealed a maximum number of binding sites (B_{max}) of about 175,000 sites per cell.

Figure 6.3. a) Representative saturation binding curve of **6.1** at CHO-hY₂R cells; b) Representative scatchard plot for the binding of **6.1** at CHO-hY₂R cells, best fitted by linear regression, $K_D = -1/\text{slope} = 87$ nM. (mean values ± SEM, n = 4, performed in triplicate)

6.3.2 Association and Dissociation Kinetics

The results from kinetic studies of **6.1** are presented in Figure 6.4. The novel Y_2R selective radioligand exhibits rather low on- and off-rates, which was also observed for fluorescence-labeled Y_2R antagonists (cf. Chapter 5). Association was mostly completed after 30 minutes (Figure 6.4a). Pseudo-irreversible binding was observed as a consequence of slow dissociation kinetics (≈ 20 % specifically bound radioligand after 90 minutes; Figure 6.4b). There are several examples of pseudo-irreversible binding, originating from slow dissociation even for lower molecular weight GPCR radioligands, *inter alia* the Histamine H₂ receptor agonist [³H]-UR-DE257¹¹, or the NPY Y₅ receptor (Y₅R) selective antagonist [³⁵S]SCH 500946¹².

However, the equilibrium dissociation constant of **6.1**, calculated from the linearization of the kinetics ($K_D = k_{off}/k_{on} = 43$ nM; Figure 6.4c and d), was in good agreement with the K_D value derived from saturation binding experiments ($K_D = 65$ nM) proving that the radioligand **6.1** follows the law of mass action.¹⁰

Figure 6.4. Association and dissociation kinetics of the specific Y₂R binding of **6.1** at CHO-hY₂R cells. a) Radioligand (c = 75 nM) association as a function of time; b) Radioligand (pre-incubation = 75 nM, 30 min) dissociation as a function of time, monophasic exponential decay, $t_{1/2} = 9.3$ min, dissociation performed with 100-fold excess of BIIE 0246; c) Linearization ln[B_{eq}/(B_{eq}-B)] versus time of the association kinetic for the determination of k_{ob} and k_{on}, slope = k_{ob} = 0.082 min⁻¹, k_{on} = (k_{ob} - k_{off})/[L] = 6.92 · 10⁻⁴ min⁻¹ · nM⁻¹; d) Linearization ln(B/B₀) versus time of the dissociation kinetic for the determination of k_{off} = slope · (-1) = 0.030 min⁻¹. (mean values ± SEM, n = 3)

Figure 6.5. Radioligand dissociation kinetics of **6.1** on CHO-hY₂R cells. a) Dissociation in the presence of 100-fold excess of the endogenous agonist pNPY. b) Dissociation in the presence of 400-fold excess of the Y₂R antagonistic small molecule SF-11¹³. (mean values \pm SEM, n = 3)

Dissociation experiments were also performed in the presence of pNPY or the low molecular weight Y_2R antagonist SF-11¹³ instead of BIIE 0246, the parent compound of **6.1**. Displacement with structurally distinct compounds should give insights into the binding behavior of the novel radioligand. As already observed for the novel fluorescent ligands no dissociation of the argininamide-type ³H-labeled antagonist was observed with pNPY (Figure 6.5a), whereas the dissociation induced by the non-peptide antagonist SF-11 was the same as in the presence of BIIE 0246 (Figure 6.5b). Hence, **6.1** is displaceable by non-peptide antagonists such as SF-11 or BIIE 0246, but not by the peptide pNPY.

6.3.3 Y₂R Antagonism of 6.1: Ca²⁺ Assay, Schild Analysis and Displacement with pNPY

The interpretation of agonist concentration-response curves (CRCs) in the presence of an antagonist is indispensable for the elucidation of the antagonist's binding mode. As defined by Vauquelin *et al.* insurmountable antagonism refers to experiments in which the cells are pre-incubated with the antagonist before the addition of the agonist and the measurement of the response. Yet, non-competitive antagonism can only be positively identified by co-incubation experiments.¹⁴ Thus, the Y₂R antagonism of (*S*)-**3.63** was investigated in a fura-2 based Ca²⁺ assay on CHOhY₂R cells for co-application and after pre-incubation for 20 minutes, respectively (Figure 6.6a and b). CRCs were constructed in the absence and presence of the antagonist at different concentrations and the data were subjected to Schild analysis¹⁵ (Figure 6.6c).

On the one hand, co-application with increasing concentrations of the "cold" ligand (*S*)-**3.63** led to a parallel rightward shift of the CRCs of pNPY indicating competitive antagonism as already observed for BIIE 0246 in similar assays¹⁶⁻¹⁷. Unfortunately, pNPY concentrations >3 μ M result in a depression of the Ca²⁺-response. Hence, the maximal effect was not detectable for CRCs generated in the presence of high antagonist concentrations (Figure 6.6a). On the other hand, pretreatment of the cells with (*S*)-**3.63** for 20 minutes reduced the maximal agonist response strongly in a concentration-dependent manner with comparatively low effects on the EC₅₀ values of pNPY (Figure 6.6b). The strong depression of the maxima after pre-incubation indicates an insurmountable antagonism against pNPY.^{14, 17} Schild regression, constructed with the CRCs for co-application with (*S*)-**3.63** (Figure 6.5a), yielded a linear plot with a slope steeper but not significantly different from unity (Figure 6.5c). The pA₂ value reflects the affinity of the antagonist and the resulting A₂ value (43 nM) equals the K_D value determined from the study of binding kinetics.

Figure 6.6. Concentration-response curves (CRCs) of pNPY obtained from a fura-2 assay on CHO-hY₂R cells and Schild analysis. The presence of (*S*)-**3.63** (cold form of **6.1**) led to a rightward shift of the curves. a) Co-incubation with different concentrations of antagonist (*S*)-**3.63** (b) Pretreatment with different concentrations of antagonist (*S*)-**3.63** for 20 minutes. c) Schild regression: log(r–1) plotted against log antagonist concentration; the concentration ratios r (r = $10^{\Delta pEC50}$) were calculated from the rightward shifts (ΔpEC_{50}) of the CRCs when co-incubated with (*S*)-**3.63** as shown in Figure 6.6a. pA₂ = 7.37; A₂ = 43 nM. (mean values ± SEM, n = 3-8)

Recently, a Y₅R selective radioligand with similar properties in kinetic and functional experiments was reported as an insurmountable pseudo-irreversible non-peptide antagonist.¹² There are several possible explanations for an apparently insurmountable pseudo-irreversible binding. A slow rate of receptor dissociation¹⁸, a slow rate of interconversion from an inactive to an active receptor conformation¹⁹⁻²⁰ and a stabilization of an inactive ligand (antagonist) specific receptor conformation²¹, respectively, or binding to a site distinct from the peptide agonist binding site²². Interestingly, pNPY displaced the radioligand **6.1** in competition binding only at very high concentrations (Figure 6.7a; $K_i = 406 \pm 113$ nM), whereas in binding experiments with [³H]-pNPY the endogenous peptide showed a very high affinity with a 1000-fold lower dissociation constant ($K_i = 0.4 \pm 0.1 \text{ nM}$)²³. Additionally, pNPY was not able to fully displace 6.1 in dissociation experiments (Figure 6.5a). These data suggest that BIIE 0246 derived antagonists bind to a different site on the Y₂R than the endogenous peptide NPY, or at least, the binding sites overlap only partially. Apparently, argininamide-type Y₂R antagonists are characterized by two features: firstly, slow dissociation from the receptor and secondly, occupation of a distinct binding site and possibly – the stabilization of a ligand-specific conformation.

Figure 6.7. a) Displacement of the tritiated Y_2R antagonist **6.1** (c = 75 nM) by the agonist pNPY. b) Flow cytometric competition binding assay. Displacement of Dy-635-pNPY (c = 5 nM) by the "cold" radioligand (*S*)-**3.63**. The assays were performed on CHO cells stably expressing the Y_2R with an incubation period of 120 min. (mean values ± SEM, n = 3)

Table 6.2. Y₂R binding and functional characteristics of (S)-3.63/6.1.

$k_{off} / min^{-1 a}$	$k_{on} / min^{-1} \cdot nM^{-1b}$	k _{off} /k _{on} / nM ^c	$K_{\rm D}$ / nM ^d	A ₂ / nM ^e
0.030	0.000692	43	65	43

^{*a*} Dissociation rate constant from linear regression. ^{*b*} Association rate constant from linear regression. ^{*c*} Kinetically derived dissociation constant. ^{*d*} Equilibrium dissociation constant determined in saturation binding experiments. ^{*e*} Antagonist dissociation constant of (S)-**3.63** derived from Schild analysis.

6.3.4 Competition Binding Experiments: Application as Standard Ligand

Although being insurmountable against pNPY, the radioligand **6.1** was successfully applied as standard ligand in competition binding studies of non-peptide Y_2R antagonists as shown in Figure 6.8. As the receptor was not completely saturable, the K_D value received from binding kinetics was applied for the calculation of K_i values by means of the Cheng-Prusoff equation²⁴. The K_i value of BIIE 0246 ($K_i = 13$ nM) is consistent with reported data from competition binding using radio-labeled agonists ($K_i = 24$ nM⁹ and 36 nM¹⁶, resp.). Furthermore, the dissociation constants of the other investigated compounds are in good agreement with data from flow cytometry (Table 6.3). However, structurally diverse and selective Y_2R antagonists as reference compounds would be necessary for the verification of these results. In agreement with theory, the K_i value of (S)-**3.63** from competition binding experiments with the labeled analog **6.1** corresponds, within the error range of the methods, to the K_D value of compound **6.1**: 36 nM for (S)-**3.63** and 43 nM for **6.1**.

Figure 6.8. Displacement of the $[{}^{3}H]$ -labeled radioligand **6.1** (c = 75 nM, K_{D} = 43 nM) by argininamide-type Y₂R antagonists BIIE 0246, (S)-**3.53**, (S)-**3.63** (cold form of **6.1**), fluorescent Y₂R antagonists **5.4** and **5.16** and the low molecular weight Y₂R selective antagonist SF-11. The assay was performed on CHO cells stably expressing the Y₂R with an incubation period of 30 min. (mean values ± SEM, n = 2-3)

Table 6.3. K_i values from radioligand competition binding experiments using **6.1** as radioligand compared to data from flow cytometric competition binding assays with Cy5-pNPY and **5.4**, respectively.

Compd.	Radioligand binding, K _i / nM displacement of	Flow cytom displace	etry <i>, K</i> _i / nM ment of
	6.1 ^{<i>a</i>}	Cy5-pNPY ^b	5.4 ^{<i>c</i>}
BIIE 0246	13 ± 1	10 ± 1	22 ± 6
(S)- 3.50	28 ± 5	16 ± 3	
(S)- 3.53	12 ± 2	2.1 ± 0.3	
(S)- 3.63	36 ± 14	9.9 ± 1.1^{d}	77 ± 3
3.86	33 ± 7	5.2 ± 1.8	
5.4	57 ± 4	23 ± 4	
5.16	482 ± 19		982 ± 207
SF-11	2118 ± 975	1251 ± 348	4915 ± 836

^{*a*} K_D = 43 nM (kinetics), c = 75 nM. ^{*b*} K_D = 5.2 nM (FI-4), c = 5 nM. ^{*c*} K_D = 25 nM (FI-2), c = 40 nM. ^{*d*} Determined with Dy-635-pNPY. (mean values ± SEM, n = 2-5). All experiments performed at CHO-hY₂R cells.

6.4 Summary and Conclusion

The guanidine-acylguanidine bioisosteric approach was applied to the preparation of a tritiated Y₂R selective radioligand starting from the highly potent argininamide-type Y₂R antagonist BIIE 0246. Acyl and carbamoyl moieties, bearing a terminal primary amino group for radiolabeling, were attached at N^G of the guanidine function in BIIE 0246 and optimized with respect to length and chemical nature of the linker. Therefore, the "cold" versions of the corresponding propionamides were investigated in a flow cytometric Y₂R binding assay at CHO cells expressing the hY₂R to select the most suitable candidate for radiolabeling. A one step synthesis afforded the desired radioligand **6.1** by acylation of the amine precursor, the N^G -[5-(2-aminoethylamino)-5-oxopentanoyl]-substituted BIIE 0246 ((*S*)-**3.48**), with succinimidyl [2,3-³H]propionate (specific activity: 73 Ci · mmol⁻¹).

The non-peptidic radioligand [³H]-UR-PLN196 is superior to Y_2R -addressing radiolabeled peptides due to selectivity, resistance against enzymatic cleavage, long-term stability, mode of action (antagonist vs. agonist) and costs of preparation. [³H]-UR-PLN196 can be used for the detection and quantification of Y_2R binding sites. Detailed investigations in binding experiments (with **6.1**) and functional assays (with (*S*)-**3.63**) identified the novel radioligand as an insurmountable antagonist versus pNPY exhibiting pseudo-irreversible binding at the Y_2R . Moreover, the tritiated compound was successfully applied as standard ligand in competition binding experiments with several Y_2R antagonists.

In conclusion, the prepared radioligand **6.1** proved to be a valuable pharmacological tool for the detection of the Y_2R *in vitro* and for the investigation of the antagonistic binding mode, respectively, as well as for the characterization of non-peptidic Y_2 receptor antagonists.

6.5 Experimental Section

6.5.1 General Experimental Conditions

Chemicals and solvents were purchased from commercial suppliers and used without further purification. Porcine NPY (pNPY) was kindly provided by the Institute of Organic Chemistry I at the Ruhr-University Bochum (Prof. Dr. C. Cabrele). SF-11 was purchased from Tocris Bioscience (Bristol, United Kingdom). All solvents were of analytical grade or distilled prior to use.

Analytical HPLC analysis and purification, respectively, were performed on a Waters system (two pumps 510, pump control module, 486 UV detector, Packard Radiomatic Flow-1 beta Series A-500 detector, flow rate of liquid scintillator (RotiszintTM eco plus, Carl Roth GmbH & Co. KG, Karlsruhe, Germany): 4 mL/min). In general, an Agilent Scalar C18 column (250 × 4.6 mm, 5 μ m) was used. Long-term stability control was performed on a Synergi C-18 column (250 × 4.6 mm, 5 μ m).

6.5.2 Synthesis, Purification and Quantification of [³H]-UR-PLN196 (6.1)

Succinimidyl $[2,3-^{3}H]$ -propionate was purchased from Hartmann Analytic GmbH (Braunschweig, Germany) and provided in hexane/ethyl acetate 9:1 (v/v) (specific activity $a_s = 3.07$ TBq mmol⁻¹ = 83 Ci mmol⁻¹; 185 MBq/2.5 mL).

$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-{2-oxo-2-[4-(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}cyclopentyl)-acetyl]-N^{\omega}-[4-(2-[2,3-^{3}H]propanoylaminoethyl)aminocarbonylbutanoyl]arginin-$

amide (6.1). Compound (*S*)-**3.48** (1.23 mg, 0.964 µmol) was dissolved in anhydrous CH₃CN (140 µL) yielding a concentration of 6.9 mM, and NEt₃ was diluted in CH₃CN to a concentration of 2.7 µL NEt₃/100 µL. Compound (*S*)-**3.48** (6.9 mM in CH₃CN, 50 µL, 0.344 µmol) and NEt₃ (10 µL of the above described solution in CH₃CN, 1.928 µmol) were added to succinimidyl [2,3-³H]-propionate (4.22 µg, 0.0241 µmol) in 1 mL hexane/ethyl acetate 9:1 (v/v) in a 1.5 mL Eppendorf reaction vessel (screw top). The solvent was removed in a vacuum concentrator (40 °C) over a period of 20 min and (*S*)-**3.48** (6.9 mM in CH₃CN, 90 µL, 0.620 µmol) was added. Again, the solvent was removed in a vacuum concentrator (40 °C) over a period of 40 min. After addition of 100 µL of CH₃CN the reaction mixture was vigorously blended (vortexer) for 1 min, briefly centrifuged and stirred with a magnetic micro stirrer at rt overnight.

For HPLC analysis 0.5 µL of the reaction mixture (reaction control) were diluted (1:200) with 97.5 μ L of CH₃CN/0.05 % ag. TFA (30/70) and spiked with 2 μ L of "cold" radioligand (S)-3.63 (1 mM in CH₃CN) to a total volume of 100 μ L. This solution was completely injected into the HPLC system and analyzed by means of UV- and radiometric detection (Figure 6.9b). Eluent: CH₃CN + 0.05 % aq. TFA (A) and 0.05 % aq. TFA (B), gradient: 0 to 25 min: A/B 30/70 to 55/45, 25 to 27 min: 55/45 to 95/5, 27 to 35 min: 95/5. Afterwards, the reaction was stopped with 10 % ag. TFA (2.9 µL, corresponds to \approx 160 eq of TFA) and the reaction mixture was purified with analytical HPLC (Figure 6.9a). Therefore, the reaction mixture was diluted with 0.1 % aq. TFA $(350 \,\mu\text{L})$ and the product was isolated (3 injections) using the conditions specified for the reaction control. For this purpose radiometric detection was not performed. The product was eluted at 18.8 to 19.3 min and collected in a 1.5 mL Eppendorf reaction vessel (screw top), which was put into the vacuum concentrator between the injections. The combined product fractions were evaporated to dryness in a vacuum concentrator, the residue was dissolved in 300 μ L of ethanol containing TFA (100 μ M) and transferred to a clean 3 mL Amersham glass vial together with the washings (2 \times 100 μL).

Figure 6.9. a) Analytical HPLC run for the isolation of radioligand **6.1**; detection: UV (220 nm). b) HPLC analysis of the reaction mixture containing the non-purified radioligand **6.1**; radiometric detection, t_R = 19.30 min.

Quantification: A five point calibration was performed with (*S*)-**3.63** (0.25, 0.5, 1.0, 1.5 and 3.0 μ M, injection volume: 100 μ L; Figure 6.10). Eluent: CH₃CN + 0.05 % aq. TFA (A) and 0.05 % aq. TFA (B), gradient: 0 to 20 min: A/B 30/70 to 60/40, 20 to 20 min: 60/40 to 95/5, 22 to 30 min: 95/5 (retention time: 15.72 min). The solutions for injection were prepared in CH₃CN/0.05 % aq. TFA (20/80) less than 5 minutes prior to the injection. All standard solutions were prepared from a 40 μ M solution of (*S*)-**3.63** (in CH₃CN/0.05 % aq. TFA 20/80), which was freshly made from a 1 mM stock solution of (*S*)-**3.63** in CH₃CN. Two aliquots (2.0 μ L) of the ethanolic solution (total volume: 500 μ L) of the product were diluted with 100 μ L of CH₃CN/0.05 % aq. TFA (20/80), and 100 μ L were analyzed by HPLC. Whereas one sample was only used for quantification of the product by UV detection the second sample was additionally monitored radiometrically to determine radiochemical purity (Figure 6.1a and b). The molarity of the ethanolic solution of **6.1** was calculated from the mean of the peak areas and the linear calibration curve obtained from the peak areas of the standards. Yield: 9.1 μ g (7.41 nmol, 31 %).

Determination of the specific activity: 1.5 μ L of the ethanolic solution were diluted with 448.5 μ L of a mixture of CH₃CN and water (50/50) in duplicate, and 9 μ L of the 1:300 dilutions were counted in RotiszintTM eco plus (3 mL). Calculated specific activity (a_s): 2.71 TBq \cdot mmol⁻¹ (73.3 Ci \cdot mmol⁻¹). The activity concentration (a_v) was adjusted to 9.25 MBq \cdot mL⁻¹ (0.25 mCi \cdot mL⁻¹) by addition of ethanol (1685 μ L) containing TFA (100 μ M) to the residual solution yielding a molarity of 3.42 μ M. The radioligand **6.1** was stored at –20 °C.

Figure 6.10. Calibration line for the quantification of the molarity of the ethanolic solution of **6.1**. Five point calibration was performed with (*S*)-**3.63** (unlabeled analog of **6.1**). Peak areas calculated from UV detection. Straight line equation: $y = 430.963 \text{ AU} \cdot \text{s} \cdot \mu \text{M}^{-1} \cdot \text{x} - 8.159 \text{ AU} \cdot \text{s}$. Goodness of fit r² = 0.9985.

6.5.3 Pharmacology: Experimental Protocols

General. The buffer for the Y₂R binding studies of **6.1** was prepared by the addition of 1 % BSA to a buffer (pH 7.4) consisting of HEPES (25 mM), CaCl₂ × 2 H₂O (2.5 mM) and MgCl₂ × 6 H₂O (1 mM). Bacitracin (100 μ g/mL) was added for binding studies with pNPY. This HEPES buffer without the additives was used to wash the cells previous to and after radioligand binding. The loading buffer (pH 7.4) for the determination of intracellular Ca²⁺ mobilization in CHO cells was prepared by dissolving NaCl (120 mM), KCl (5 mM), MgCl₂ × 6 H₂O (2 mM), CaCl₂ × 2 H₂O (1.5 mM), HEPES (25 mM) and glucose (10 mM). The lysis solution for the radioligand binding assays consisted of urea (8 M), acetic acid (3 M), and Triton-X-100 (1 %) in water. Stock solutions of all compounds were prepared in DMSO (2 or 10 mM) and stored at -20 °C. Tritium counting was done in 3 mL of RotiszintTM eco plus with a Beckman LS 6500 beta-counter.

Cell culture. CHO cells were cultured as described elsewhere.²³

Radioligand binding assay. The radioligand binding assay was performed as essentially described.²³ Cells were seeded in 24-well plates 2-3 days prior to the experiment. On the day of the experiment confluency of the cells was at least 70 %. The culture medium was removed by suction, the cells were washed with once with buffer (500 µL), and covered with binding buffer (200 µL). Binding buffer (25 µL) and binding buffer (25 µL) with **6.1** (10-fold concentrated) was added for total binding. For non-specific binding and displacement of **6.1** binding buffer (25 µL) with the competing agent (10-fold concentrated) and binding buffer (25 µL) with **6.1** (10-fold concentrated) was added. During incubation at room temperature the plates were gently shaken. After incubation (saturation experiments and competition with BIIE 0246, SF-11, (*S*)-**3.50**, (*S*)-**3.63**, **3.86**, **5.4**, **5.16**: 30 min; competition with pNPY: 2 h) the binding buffer was removed, the cells were washed twice with buffer (500 µL, 4 °C, \approx 30 s), covered with lysis solution (200 µL) and the plates were gently

shaken for at least 30 min. The lysates were transferred into scintillation vials filled with scintillator (3 mL) and the dishes were washed once with lysis solution (100 μ L). In case of the investigation of dissociation kinetics the cells were incubated with binding buffer (250 μ L) containing the competing agent (BIIE 0246, SF-11: 100-fold higher concentrated than the previously used radioligand; pNPY: 400-fold higher concentrated than the previously used radioligand) after incubation with radioligand **6.1** (75 nM) and subsequent washing (twice 500 μ L, 4 °C). After different periods of time the cells were washed again twice with buffer (500 μ L, 4 °C) followed by the addition of lysis solution. For association kinetics cells were incubated with **6.1** (75 nM) in binding buffer (250 μ L). The supernatant was sucked off after different periods of time and the adherent cells were washed twice with cold buffer (500 μ L, 4 °C) before lysis solution was added. The non-specific binding was determined with BIIE 0246 (100 fold higher concentrated than the previously used radioligand) in kinetics. Assays were performed in triplicate.

Fura-2 assay on CHO-cells (Schild analysis). The fura-2 assay was performed as previously described²⁵ using a LS50 B spectrofluorimeter from Perkin Elmer (Überlingen, Germany).

Concentration-response curves of pNPY were constructed in the presence of (*S*)-**3.63** at different concentrations. The signal intensities were related to the maximal intensity obtained from a pNPY effect curve in the absence of (*S*)-**3.63**. For Schild analysis, $\log_{10} (r-1)$ was plotted against $\log_{10} c$ (antagonist) with $r = 10^{\Delta pEC50}$.

 ΔpEC_{50} : rightward shift of the concentration-response curves in the presence of different concentrations of antagonist.

6.6 References

- 1. Chang, R. S.; Lotti, V. J.; Chen, T. B. Specific [3H]propionyl-neuropeptide Y (NPY) binding in rabbit aortic membranes: comparisons with binding in rat brain and biological responses in rat vas deferens. *Biochem. Biophys. Res. Commun.* **1988**, 151, 1213-9.
- 2. Widdowson, P. S.; Halaris, A. E. A comparison of the binding of [3H]proprionylneuropeptide Y to rat and human frontal cortical membranes. *J. Neurochem.* **1990**, 55, 956-62.
- 3. Martel, J. C.; Fournier, A.; St Pierre, S.; Quirion, R. Quantitative autoradiographic distribution of [1251]Bolton-Hunter neuropeptide Y receptor binding sites in rat brain. Comparison with [1251]peptide YY receptor sites. *Neuroscience* **1990**, 36, 255-83.
- 4. Dumont, Y.; Fournier, A.; St-Pierre, S.; Quirion, R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [1251][Leu31, Pro34] peptide YY and [1251]Peptide YY3-36 as selective Y1 and Y2 radioligands. *J. Pharmacol. Exp. Ther.* **1995**, 272, 673-80.

- 5. Dumont, Y.; Fournier, A.; St-Pierre, S.; Quiron, R. Autoradiographic distribution of [1251][Leu31,Pro34]PYY and [1251]PYY3-36 binding sites in the rat brain evaluated with two newly developed Y1 and Y2 receptor radioligands. *Synapse (N. Y.)* **1996,** 22, 139-58.
- 6. Dumont, Y.; Chabot, J. G.; Quirion, R. Receptor autoradiography as mean to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. *Peptides* **2004**, 25, 365-91.
- 7. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y(2) receptor antagonist. *Eur. J. Pharmacol.* **1999**, 384, R3-5.
- 8. Pluym, N.; Brennauer, A.; Keller, M.; Ziemek, R.; Pop, N.; Bernhardt, G.; Buschauer, A. Application of the guanidine-acylguanidine bioisosteric approach to argininamide-type NPY Y(2) receptor antagonists. *ChemMedChem* **2011**, 6, 1727-38.
- 9. Ziemek, R. Development of binding and functional assays for the neuropeptide Y Y2 and Y4 receptors. PhD, University of Regensburg, Regensburg, Germany, 2006.
- 10. Lazareno, S. Quantification of receptor interactions using binding methods. *J. Recept. Signal Transduct. Res.* **2001**, 21, 139-65.
- 11. Erdmann, D. Histamine H2- and H3-Receptor Antagonists: Synthesis and Characterization of Radio-labelled and Fluorescent Pharmacological Tools. Doctoral Thesis, Universität Regensburg, Regensburg, 2010.
- Mullins, D.; Adham, N.; Hesk, D.; Wu, Y.; Kelly, J.; Huang, Y.; Guzzi, M.; Zhang, X.; McCombie, S.; Stamford, A.; Parker, E. Identification and characterization of pseudoirreversible nonpeptide antagonists of the neuropeptide Y Y5 receptor and development of a novel Y5-selective radioligand. *Eur. J. Pharmacol.* 2008, 601, 1-7.
- Brothers, S. P.; Saldanha, S. A.; Spicer, T. P.; Cameron, M.; Mercer, B. A.; Chase, P.; McDonald, P.; Wahlestedt, C.; Hodder, P. S. Selective and brain penetrant neuropeptide y y2 receptor antagonists discovered by whole-cell high-throughput screening. *Mol. Pharmacol.* **2010**, 77, 46-57.
- 14. Vauquelin, G.; Van Liefde, I.; Birzbier, B. B.; Vanderheyden, P. M. New insights in insurmountable antagonism. *Fundam. Clin. Pharmacol.* **2002**, 16, 263-72.
- 15. Arunlakshana, O.; Schild, H. O. Some quantitative uses of drug antagonists. *Br. J. Pharmacol. Chemother.* **1959**, 14, 48-58.
- 16. Dautzenberg, F. M. Stimulation of neuropeptide Y-mediated calcium responses in human SMS-KAN neuroblastoma cells endogenously expressing Y2 receptors by co-expression of chimeric G proteins. *Biochem. Pharmacol.* **2005**, 69, 1493-9.
- 17. Dautzenberg, F. M.; Neysari, S. Irreversible binding kinetics of neuropeptide Y ligands to Y2 but not to Y1 and Y5 receptors. *Pharmacology* **2005**, 75, 21-9.
- 18. Meini, S.; Patacchini, R.; Lecci, A.; Quartara, L.; Maggi, C. A. Peptide and non-peptide bradykinin B2 receptor agonists and antagonists: a reappraisal of their pharmacology in the guinea-pig ileum. *Eur. J. Pharmacol.* **2000**, 409, 185-94.
- 19. Fierens, F. L.; Vanderheyden, P. M.; De Backer, J. P.; Vauquelin, G. Insurmountable angiotensin AT1 receptor antagonists: the role of tight antagonist binding. *Eur. J. Pharmacol.* **1999**, 372, 199-206.

- 20. Vauquelin, G.; Morsing, P.; Fierens, F. L.; De Backer, J. P.; Vanderheyden, P. M. A two-state receptor model for the interaction between angiotensin II type 1 receptors and non-peptide antagonists. *Biochem. Pharmacol.* **2001**, 61, 277-84.
- Seifert, R.; Schneider, E. H.; Dove, S.; Brunskole, I.; Neumann, D.; Strasser, A.; Buschauer, A. Paradoxical stimulatory effects of the "standard" histamine H4-receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. *Mol. Pharmacol.* 2011, 79, 631-8.
- 22. Lazareno, S.; Birdsall, N. J. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. *Mol. Pharmacol.* **1995**, 48, 362-78.
- 23. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y2 receptor ligands. *Eur. J. Pharmacol.* **2006**, 551, 10-8.
- 24. Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, 22, 3099-108.
- 25. Müller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Synthesis and neuropeptide Y Y₁ receptor antagonistic activity of N,N-disubstituted ω-guanidinoand ω-aminoalkanoic acid amides. *Arch. Pharm.* **1997**, 330, 333-42.

Chapter 7 Summary

Neuropeptide Y (NPY), a 36 amino acid peptide, is widely distributed in the central and peripheral nervous system, where it acts as a neurotransmitter and exhibits a large number of physiological functions, including the regulation of blood pressure, control of food intake, anxiety, pain and hormone secretion. In humans, these effects are mediated by four receptor subtypes (Y_1 , Y_2 , Y_4 , Y_5), all belonging to class A of the superfamily of G-protein coupled receptors (GPCRs). The Y_2R is expressed, e. g., in sympathetic nerve endings, in the renal tubules and in distinct brain regions such as the hippocampus and the hypothalamus. It is discussed to be involved in several human diseases, for instance, epilepsy, obesity and cancer, and therefore regarded as an attractive target in drug design. However, antagonistic pharmacological tools for the elucidation of the receptor's function in health and disease are still missing.

In 1999, the (*S*)-argininamide BIIE 0246, a C-terminal mimic of NPY, was reported the first highly potent and selective Y_2R antagonist. N^G -Acylation of BIIE 0246 was demonstrated to retain or even increase the Y_2R affinity, thereby improving the pharmacokinetic properties. Thus, we prepared N^{ω} -aminoacylated analogs as precursors towards radio- and fluorescence labeled as well as bivalent pharmacological tools according to the guanidine-acylguanidine bioisosteric approach. Such derivatives, bearing a free amino group, exhibited the highest Y_2R affinities ($K_i < 10 \text{ nM}$). Interestingly, masking the positive charge, e.g. by acylation, resulted in decreased affinities, presumably, due to the loss of an additional electrostatic interaction of the primary amine with the receptor.

Bivalent ligands were synthesized starting from various amine precursors derived from BIIE 0246 by acylation with different aliphatic dicarboxylic acids. Only minor differences in affinities ($K_i = 61-300 \text{ nM}$) were observed for the majority of the compounds, irrespective of the diversity in length and chemical nature of the spacer. However, bivalent ligand **4.6**, constructed from an amine precursor bearing an additional amino group in the linker, showed a binding affinity ($K_i = 21 \text{ nM}$) and antagonistic activity ($K_B = 15 \text{ nM}$) in the same range as the monovalent antagonists, corroborating the affinity-enhancing effect of a positive charge in the linker.

Fluorescence ligands were synthesized from the amine precursors by acylation with succinimidyl esters or by ring transformation of pyrylium dyes. In terms of retaining affinity, the pyrylium dyes were superior to the bulky cyanine, hemicyanine and Bodipy dyes. Whereas the majority of the cyanine and hemicyanine labeled fluorescent ligands proved to be suitable for the detection of Y₂Rs at the cell membrane by confocal microscopy, rapid cellular uptake was observed for most of the Py-1 and Py-5 coupled antagonists. Based on the results from binding studies and confocal microscopy, four fluorescent Y₂R antagonists (**5.4**, **5.15-5.17**) were chosen for flow cytometric binding studies. These compounds turned out to be applicable as labeled standard ligands in saturation and competition binding experiments. Interestingly, kinetic studies revealed a pseudo-irreversible binding of **5.16** at the Y₂R antagonists **5.4** and **5.16** even at very high concentrations.

Acylation of the amine precursor (*S*)-**3.48** with succinimidyl $[2,3^{-3}H]$ -propionate afforded the easily accessible, highly potent and selective tritiated Y₂R antagonist $[^{3}H]$ -UR-PLN196 (A₂: 43 nM, Ca²⁺ assay; K_D: 43 nM, determined by kinetic studies), which was shown to be useful for the quantification of Y₂R binding sites and for the radiochemical determination of Y₂R binding affinities of small molecules. In addition, the novel radioligand was identified as an insurmountable antagonist against pNPY exhibiting pseudo-irreversible binding at the Y₂R similar to the fluorescent labeled antagonist **5.16**.

In conclusion, this work presents a straight-forward synthetic route towards labeled argininamide-type Y_2R antagonists related to BIIE 0246 with improved physicochemical properties. These compounds are useful pharmacological tools for the detection of the Y_2R *in vitro* and for detailed investigations of the antagonistic binding mode, respectively, as well as for the identification and characterization of small molecule Y_2R antagonists. Moreover, these tracers are suitable to replace labeled NPY standard ligands in binding assays due to their beneficial properties in terms of Y_2 receptor subtype selectivity, antagonistic mode of action, stability and kinetics.

Chapter 8 Appendix

8.1 Abbreviations

aq.	aqueous
Ar	aryl
as	specific activity
a _v	activity concentration
BBB	blood brain barrier
B _{max}	maximum number of binding sites
BIIE 0246	$(2S)-N-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-N^{\alpha}-[2-(1-{2-})^{\alpha}-[2-(1-$
	oxo-[4-(6-oxo-6,11-dihydro-5 <i>H</i> -dibenzo[<i>b,e</i>]azepin-11-yl)piperazine-1-
	yl]ethyl}cyclopentyl)acetyl]argininamide
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
Bq	becquerel
br	broad singulet
BSA	bovine serum albumin
^t Bu	<i>tert</i> -butyl
Bz	benzoyl
С	concentration
[Ca ²⁺] _i	intracellular calcium ion concentration
Cbz	benzyloxycarbonyl
CD	circular dichroism
СНО	chinese hamster ovary
Ci	curie
CI	chemical ionization
CLSM	confocal laser scanning microscopy
CNS	central nervous system
COSY	correlated spectroscopy
CRC	concentration-response curve
d	doublet
δ	chemical shift
DCC	<i>N,N</i> ´-dicyclohexylcarbodiimide
DCU	N,N´-dicyclohexylurea
DIPEA	N,N'-diisopropyl-ethylamine
DMAP	4-(dimethylamino)pyridin
DMF	dimethylformamide

DMSO	dimethylsulfoxide
DMSO-d ₆	per-deuterated dimethylsulfoxide
EC ₅₀	agonist concentration which induces 50 % of maximum response
EDC	N-(3-dimethylaminopropyl)-N'-ethyldicarbodiimide
EI	electron impact ionization
eq	equivalent(s)
EtOH	ethanol
FAB	fast atom bombardment
FACS	fluorescence activated cell sorter
FCS	fetal calf serum
Fmoc	9-fluorenylmethoxycarbonyl
FRET	fluorescence-resonance energy transfer
GPCR	G-protein coupled receptor
h	hour(s)/human
HEC-1B	human endometrial carcinoma
HEL	human erythroleukemia
HEPES	2-(4-(2-hydroxyethyl)-1-piperazinyl)ethansulfonic acid
HMBC	heteronuclear multiple bond correlation
HOBt	1-hydroxybenzotriazole
HPLC	high-pressure liquid chromatography
HR-MS	high resolution mass spectrometry
HSQC	heteronuclear single quantum coherence
HTS	high throughput screening
IBCF	isobutyl chloroformate
IC ₅₀	antagonist concentration which suppresses 50 % of an agonist induced
	effect or displaces 50 % of a labeled ligand from the binding site
IR	infrared
ⁿ J	coupling constant
k	retention (capacity) factor
K _B	dissociation constant derived from a functional assay
K _D	dissociation constant derived from a saturation experiment or kinetics
Ki	dissociation constant derived from a competition binding assay
k _{ob}	observed/macroscopic association rate constant
k _{off}	dissociation rate constant
k _{on}	association rate constant
LSI-MS	liquid secondary ion mass spectrometry
m	multiplet
Μ	molar (mol/L)
MeOH	methanol
mp	melting point
MS	mass spectrometry

MW	microwave
NHS	<i>N</i> -hydroxysuccinimide
NMR	nuclear magnetic resonance
NPY	neuropeptide Y
р	quintet
PBS	phosphate buffered saline
PET	positron emission tomography
Ph	phenyl
Pht	phthaloyl
ppm	parts per million
quat	quartet
QY	quantum yield
RP	reversed phase
rt	room temperature
S	singulet/second(s)
SAR	structure-activity relationships
SEM	standard error of the mean
t	triplet/time
t ₀	hold-up time
t _R	retention time
TBTU	2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate
TFA	trifluoroacetic acid
THF	tetrahydrofurane
TM	transmembrane domain
TMSI	trimethylsilyl iodide
TMSOTf	trimethylsilyl triflate
UV	ultraviolet
Y _n	NPY receptor subtypes, n = 1, 2, 4, 5, 6

8.2 Flow Cytometric Saturation and Competition Binding Experiments

Figure 8.2. Flow cytometric competition binding on CHO-hY₂R cells; incubation time: 30 min; non-specific binding was determined with BIIE 0246 (c = 10 μ M); mean values ± SEM (n = 2); measured in FI-4. a) Displacement of **5.15** (c = 100 nM, K_D = 143 nM). b) Displacement of **5.17** (c = 40 nM, K_D = 42 nM).

8.3 Confocal Microscopy

Figure 8.3. Binding of the fluorescent ligand **5.26** to Y_2R expressed in the cell membrane of CHO-h Y_2R cells, visualized by confocal microscopy. Non-specific binding determined in the presence of BIIE 0246 at 100-fold excess. Cells were incubated with the fluorescent ligands at rt in Leibowitz L15 culture medium. All images were acquired with a Zeiss Axiovert 200 M microscope.

8.4 HPLC Stability Investigations

Figure 8.4. HPLC analysis of the Y_2R antagonist (S)-**3.49** in buffer. BIIE 0246 ((S)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.5. HPLC analysis of the Y_2R antagonist (*S*)-**3.50** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.6. HPLC analysis of the Y_2R antagonist (*S*)-3.53 in buffer. BIIE 0246 ((*S*)-3.47) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.7. HPLC analysis of the Y_2R antagonist (*S*)-**3.55** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.8. HPLC analysis of the Y_2R antagonist (*S*)-**3.57** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.9. HPLC analysis of the Y_2R antagonist (*S*)-**3.58** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.10. HPLC analysis of the Y_2R antagonist (*S*)-**3.72** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Figure 8.11. HPLC analysis of the Y_2R antagonist (*S*)-**3.74** in buffer. BIIE 0246 ((*S*)-**3.47**) is formed by decomposition of the ligand. Incubation: 90 min in buffer, pH 7.4, 20 °C. Conditions: eluent: mixtures of acetonitrile (A) and 0.05 % aq. TFA (B), gradient: 0 to 30 min: A/B 20/80 to 95/5.

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Regensburg, im September 2011

(Nikola Pluym)