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Endothelium-dependent vasoconstrictions

Abstract

Background: YC-1 (3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole) is an allosteric 

activator of soluble guanylyl cyclase (sGC) and a vasodilator. This study describes a 

paradox action of YC-1 in isolated vessels of coronary artery disease (CAD) patients 

which appears to trigger an endothelium-dependent vasoconstrictor pathway present 

in vessels with endothelial dysfunction. Methods: Effects of YC-1 on isolated vessel 

tensions were investigated in an organ bath. Vasoconstrictors released from vessels 

were quantified by ELISA. Results: YC-1 elicited long-lasting constrictions in saphen-

ous veins and radial arteries from CAD patients, but not in human umbilical veins. 

Half-maximal effective dose was 1.0 μmol L-1. Constrictions were attenuated by 

nifedipine (L-type Ca channel blocker), bosentan (ETA/ETB inhibitor), BQ-788 (ETB in-

hibitor), and by denuding, but not by ODQ (sGC inhibitor), BQ-123 (ETA inhibitor), 

and phosphoramidon (endothelin converting enzyme inhibitor). Indometacin (cyc-

looxygenase-1/2 inhibitor) and SQ 29,548 (TP receptor antagonist) suppressed YC-1 

induced constrictions, whereas 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-

methylsulphonyl)phenyl-2(5H)-furanone (DFU, cyclooxygenase-2 inhibitor) had no 

effect. Saphenous vein rings released significantly more endothelin-1 in the pres-

ence of YC-1. Conclusions: YC-1 induced vasoconstrictions demonstrate the exist-

ence of an endothelium-dependent vasoconstrictor pathway in vessels of CAD pa-

tients which to date has only been described in animal models of hypertension. CAD 

patients with elevated endothelin-1 plasma levels are thus prone to endothelium-de-

pendent vasoconstrictions which may also play a role in graft vasospasms.
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Introduction

Coronary vasospasm is one of the major causes of ischemic heart conditions and 

may lead to stable and unstable angina, myocardial infarction, and sudden death. 

Endothelial dysfunction, elevated plasma levels of endothelin-1 (ET-1), and reactive 

oxygen species play a crucial role in the pathogenesis of vasospasm [1].

Vasospasm also affects the patency rates of coronary artery bypass grafts. The risk 

of vasospasm can be reduced by an appropriate choice of the graft source [2]. Ven-

ous grafts are commonly distended, although this may cause structural damages [3]. 

Arterial grafts are often treated with vasodilators [4] to suppress vasospasm. The 

nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system [5] is one of the 

targets of vasospasm prevention. YC-1 (3-(5'-hydroxymethyl-2'furyl)-1-ben-

zyl-indazole) was found to activate soluble guanylyl cyclase (sGC), a key enzyme of 

this system, by a different mechanism than NO-releasing agents [6], which initiated 

the development of related vasodilator drugs for arterial and pulmonary hypertension 

as well as angina pectoris [7]. YC-1 and related compounds activate sGC in a syner-

gistic fashion with NO and carbon monoxide [8,9]. In contrast to organic nitrates they 

do not cause tolerance.

YC-1 and related drugs may therefore be useful tools in vasospasm prevention. 

However, we noticed a paradox vasoconstrictor action of YC-1 in addition to the well-

known vasodilator action in vessel segments from CAD patients. This study investig-

ated key aspects of the mechanism of this vasoconstrictor action and its relationship 

to endothelial dysfunction.
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Methods

Study subjects

Vessel segments were obtained from 157 patients (138 male, 19 female) who under-

went elective aortocoronary bypass surgery (Table 1). The patients' mean age was 

68.3±7.9 years (range: 48-87). Risk factors included hypertension in 132 patients, 

hyperlipidemia (99), and type 2 diabetes (49), with only 12 patients not diagnosed 

with any of these conditions.

Harvesting of blood vessels

All experiments were approved by the local ethics committee. Undistended seg-

ments of human saphenous vein (HSV) and radial artery (HRA) were harvested after 

obtaining written informed consent from the patients. Human umbilical cords were 

collected from term pregnancies after obtaining written informed consent from the 

expectant mothers, and umbilical veins (HUV) were dissected.

Organ bath experiments

Vessel tensions were measured in an organ bath as described previously [10,11]. 

Vessel rings were equilibrated for at least 2h. Resting tensions were adjusted re-

peatedly to 25 mN. A stable baseline was confirmed by adding KCl (150 mmol L-1) 

followed by a washout. Receptor-dependent contractions were measured using 

either norepinephrine or 5-hydroxytryptamine (for HUV).

Antagonist actions were investigated by recording cumulative YC-1 dose-response 
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curves with 45 min incubation time per dose. Antagonists were added 15 min before 

the first YC-1 dose. To record vasodilator dose-response curves, vessels were con-

stricted by norepinephrine to 80% of the previously established maximum. Concen-

tration series of vasodilators were added to all rings but the time controls.

Some vessels were endothelium-denuded by rubbing the luminal surface with a 

wooden toothpick for approx. 60 s. Endothelium removal was ascertained in repres-

entative samples by histology and scanning electron microscopy as described previ-

ously [10], and YC-1 dose-response curves were constructed. As denuding may 

cause partial damage of the smooth muscle layer, tension data of experiments in-

volving denuded vessels were normalized to their responses to 150 mmol L-1 KCl.

Determination of endothelin release

Vessel rings were mounted in organ baths. YC-1 or DMSO as solvent control were 

added to the baths. After 60 min, bath contents were concentrated approx. 20-fold at 

4°C using centrifugal devices (Pall, Dreieich, Germany). Concentrates were stored at 

-80°C, and analyzed using an endothelin-1 ELISA kit (Enzo).

Data analysis and statistical procedures

Data are presented as mean±standard deviation. n refers to the number of patients. 

Four to eight rings were analyzed per subject for each type of experiment. Mul-

tiple-dose substance effects were compared to the vehicle control using analysis of 

variance (ANOVA) followed by Dunnett's post-test. Dose-response curves were com-

pared by a two-way repeated measurements ANOVA, followed by Holm-Sidak post-

test. Differences were assumed to be significant if the error probability p was less 
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than 0.05. Half maximal effective concentrations (EC50) were calculated by fitting Hill 

functions.

Drugs, chemicals, and reagents

Sodium nitroprusside, 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one (ODQ), NG-nitro-

L-arginine-methyl ester (L-NAME), indometacin, N-(α-rhamnopyranosyloxyhy-

droxyphosphinyl)-L-leucyl-L-tryptophan (phosphoramidon), BQ-123, BQ-788, and 

SQ 29,548 (1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-

7-oxabicyclo[2.2.1]hept-2-yl]-5-heptanoic acid) were obtained from Alexis (Läufelfin-

gen, Switzerland). 5-Hydroxytryptamine (serotonin) and sodium nitroprusside were 

purchased from Sigma (Taufkirchen, Germany). Norepinephrine was from Aventis 

(Frankfurt/Main, Germany) and nifedipine was obtained from Bayer (Leverkusen, 

Germany). 4-tert-Butyl-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-2,2'-

bipyrimidin-4-yl]-benzenesulfonamide (bosentan) sodium salt and 5,5-dimethyl-3-(3-

fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone (DFU) were generous 

gifts from Actelion (Allschwil, Switzerland) and from MSD Sharp & Dohme (Haar, 

Germany), respectively. To exclude artifacts due to potential impurities, different 

batches of YC-1 from two unrelated manufacturers (Alexis and Sigma) were used in 

this study with identical results.

Results

YC-1 constricted human saphenous veins

HSV rings treated with YC-1 (3 μmol L-1) developed tonic contractions after a lag 
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phase and did not return to their resting tensions even after repeated wash cycles 

(Figure 1A). Rings precontracted with YC-1 still responded to norepinephrine, and 

the NO donor sodium nitroprusside (50 μmol L-1) relaxed them completely. Contrac-

tions persisted for at least 2 h (not shown). Some vessels developed low frequency 

oscillations (Figure 1B). The median lag phase between YC-1 administration and the 

onset of contractions was 16.1 min (6.0 to 24.8 min). The intensity of contractions 

showed a large inter-patient variability (Figure 1C).

Differentiation of relaxing and constricting effects of YC-1

Preconstricted vessel rings were relaxed by a concentration series of YC-1 (Figure 

2). The relaxing effect was noticeable at concentrations as low as 100 nmol L-1 YC-1, 

although the highest dose did not relax the rings completely. A single dose of the NO 

donor SNP (10 nmol L-1) prior to the YC-1 concentration series sensitized the vessels 

towards YC-1 and increased the relaxing effect. SNP relaxed the vessels completely, 

with visible effects starting at 10 nmol L-1.

To demonstrate vasodilating and vasoconstricting effects of YC-1 in the same vessel, 

the sGC inhibitor ODQ (10 mmol L-1) was added to HSV before recording YC-1 dose-

response curves (Figure 3). In the presence of ODQ, the vessels responded signific-

antly stronger to 10 and 30 μmol L-1 YC-1 (p=0.012, ANOVA, n=6), indicating that the 

dilating but not the constricting action of YC-1 can be suppressed by inhibiting cGMP 

synthesis.

Requirement of vascular endothelium

Denuding significantly attenuated, but did not abolish completely, HSV responses to 
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YC-1 (ANOVA, p<0.001, n=8, Figure 4).

Dependence on calcium influx

To assess the participation of voltage-gated calcium channels (Cav1.2), YC-1 dose-

response curves were recorded in the presence and absence of nifedipine (1 μmol L-

1). In the absence of inhibitors, HSV tensions reached a maximum between 3 and 

10 μmol L-1 YC-1 with an EC50 of 1.00 μmol L-1 (log(EC50) = -6.00±0.08). Nifedipine 

prevented constrictions by YC-1 of HSV completely (ANOVA, p<0.001, n=5, Fig-

ure 5). Vasoconstrictions induced by YC-1, but not those induced by norepinephrine, 

were also suppressed in the absence of external Ca2+ (not shown).

Involvement of endothelin

The ETA receptor antagonist BQ-123 (3 μmol L-1) and the endothelin-converting-en-

zyme inhibitor phosphoramidon (10 μmol L-1) did not affect YC-1 dose-response 

curves, whereas the mixed ETA/ETB receptor antagonist bosentan (3 μmol L-1) and 

the ETB receptor antagonist BQ-788 (0.5 μmol L-1) significantly lowered contractile 

responses towards YC-1 (Figure 5, ANOVA, p<0.001, n=6-7), resulting in maximum 

tensions of 14.6% and 32.0% of YC-1 without inhibitors, respectively.

HSV rings were incubated in the presence of different YC-1 concentrations. ET-1 ac-

cumulation in the baths increased with the YC-1 concentration (Figure 6, ANOVA, 

p=0.032, n=7).

Participation of COX-derived prostanoids

Constrictions induced by 3 μmol L-1 YC-1 were partially suppressed by 10 μmol L-1 of 
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the COX-1/COX-2 inhibitor indometacin and completely suppressed by 50 μmol L-1 

indometacin (Table 2, ANOVA, p<0.001, n=4-6). In contrast, administration of 1 μmol 

L-1 of the COX-2 specific inhibitor DFU did not affect YC-1 induced contractions.

The TP receptor antagonist SQ 29,548 (0.3 μmol L-1) suppressed YC-1-induced con-

strictions completely (Figure 5, ANOVA, p<0.001, n=6).

Evidence of endothelial dysfunction

L-NAME, an inhibitor of nitric oxide synthases, did not alter basal tones of HSV signi-

ficantly (control: 1.01±2.12 mN vs. L-NAME 100 μmol L-1: -0.43±2.17 mN) or their re-

sponses to 1 μmol L-1 norepinephrine (control: 51.78±15.78 mN vs L-NAME: 

56.53±15.42 mN).

Other vessel types

HRA was used to determine whether YC-1 induced vasoconstrictions are a particular 

feature of venous vessels of CAD patients. HUV were used as readily available hu-

man control vessels. YC-1 was used at 3 μmol L-1 as there was no noticeable contri-

bution of the relaxing effect at this dose (cf. Figure 3). YC-1 contracted HRA but not 

HUV (Table 3, ANOVA, p<0.001, n=3-6).

Comment

YC-1 has a variety of molecular targets other than sGC [12-16]. Nevertheless, it was 

prudent to determine whether sGC is involved in YC-1's vasoconstrictor action. The 

sGC inhibitor ODQ [17] allowed to separate the vasoconstrictor and vasodilator ac-
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tions. The former is sGC-independent with a calculated EC50 of 1.0 μmol L-1 whereas 

the latter, sGC-dependent action is noticeable only at higher doses. This agrees well 

with published data of YC-1 induced relaxations of animal vessels [18], although 

HRA relaxation by YC-1 was reported to have an EC50 of approx. 5 nmol L-1 [19]. This 

may be due to a higher level of endogenous NO in HRA compared to HSV, which en-

hances sGC stimulation by YC-1 [9].

YC-1 induced relaxations were immediate, whereas constrictions started after ap-

prox. 15 minutes and developed fully within 60 min. These properties suggest a mul-

tistep signal transduction mechanism. As YC-1 induced constriction could not be 

washed out but were terminated by sodium nitroprusside, the participation of a long-

lasting vasoconstrictor appears likely.

Denudation experiments indicated that vasoconstrictions were endothelium-depend-

ent, although a minor contribution of an endothelium-independent mechanism cannot 

be excluded. Constrictions induced by YC-1, but not those induced by norepineph-

rine, were inhibited by blocking L-type voltage-gated calcium channels (Cav1.2). Ag-

onist-induced calcium entry in non-excitable cells depends either on non-voltage-

gated calcium channels, or on receptor-activated calcium entry [20]. Therefore YC-1 

apparently triggers release or synthesis of an endothelium-derived vasoconstrictor 

which depolarizes smooth muscle via Cav1.2 channels.

ET-1 has unique properties that match the characteristics of YC-1 induced contrac-

tions. ET-1 is endothelium-derived and elicits contractions of vascular smooth 

muscle which persist long after the substance has been removed from the bath [21]. 

ETA receptors of smooth muscle induce the phospholipase C pathway without requir-

10



Endothelium-dependent vasoconstrictions

ing calcium influx [22]. As YC-1 induced contractions were attenuated by nifedipine, 

but not by antagonizing ET-1A, direct stimulation of smooth muscle by ET-1 appears 

unlikely. However, ET-1 release increased after YC-1 administration, and both 

bosentan (ETA/ETB inhibitor) and BQ-788 (ETB inhibitor) attenuated contractile re-

sponses. This indicates that YC-1 triggers endothelial ET-1 release, which acts in a 

paracrine fashion on ETB receptors. As the ECE antagonist phosphoramidon [23] did 

not affect constrictions, ET-1 is apparently released from storage vesicles. Saunders 

and Scheiner-Bobis   [24]   reported that the cardiac glycoside ouabain induces the re-

lease of ET-1 from endothelial cells within several minutes [25]. The "receptor", if 

any, which is responsible for transmitting this effect of ouabain has not been identi-

fied to date, but a similar receptor may be involved in YC-1 induced constrictions.

The non-specific COX inhibitor indometacin suppressed YC-1 induced contractions, 

in contrast to the COX-2 specific inhibitor DFU. Therefore, COX-1 is involved in the 

synthesis of constricting prostanoids. Prostanoids act on smooth muscle via 

prostanoid receptors [26]. YC-1 induced constrictions were completely abolished by 

the TP receptor antagonist SQ 29,548, further corroborating the notion that vasocon-

strictor prostanoid release is essential. In rat and canine arteries thromboxane A2 in-

duced activation of TP receptors requires an influx of external Ca2+ and is therefore 

affected by blocking voltage gated calcium channels [27-29]. The sensitivity of YC-1 

induced contractions to the calcium channel blocker nifedipine thus further supports 

the assumption that TP receptors are involved.

Although our data demonstrate the participation of the above mentioned signalling 

pathway components, further work is required to unequivocally prove the sequence 
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of events suggested in Figure 7. However, a strikingly similar mechanism has been 

suggested to explain the physiological abnormalities in spontaneously hypertensive 

rats [30] which serve as a model of human hypertension caused by endothelial dys-

function. Healthy vessels from several species were reported to contract to the NOS 

inhibitor L-NAME in vitro [31] due to basal NO release. In contrast, basal HSV tones 

in the present study were not affected by L-NAME, and these vessels responded 

only weakly to endothelium-dependent vasodilators (data not shown), demonstrating 

endothelial dysfunction. ET binding to ET-1B receptors on endothelial cells induces 

vasorelaxation in healthy vessels [32], although a constricting mechanism was 

demonstrated in rat vessels [33]. This constricting mechanism becomes dominant 

under pathological conditions, with ET-1 causing endothelium-dependent vasocon-

strictions that involve the release of endothelium-derived contracting factors (EDCF) 

[34]. Aging, diabetes, and hypertension contribute to the shift of the endothelium to 

this constricting role [35,36,30]. Both the patients' characteristics and the manifest 

endothelial dysfunction are in line with the presence of a constricting endothelial 

phenotype in our study subjects. COX-derived prostanoids constitute a major part of 

EDCF [37]. Prostanoids act on smooth muscle via prostanoid receptors [26]. TP re-

ceptors have been shown to mediate vasoconstrictions by ET-1 in spontaneously hy-

pertensive rats but not in normotensive control animals [38]. There is in vivo evid-

ence that the same mechanism operates in humans suffering from endothelial dys-

function [39]. The present study is the first to demonstrate this mechanism in isolated 

human vessels of CAD patients. Due to the elevated ET-1 plasma levels in CAD pa-

tients [40] this mechanism may contribute to vasospasm in coronary arteries and by-
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pass grafts.

The current study has several limitations. Vasoactive medication used by the pa-

tients prior to surgery may influence contractile responses, although preliminary ana-

lysis did not reveal correlations with any of the patients' characteristics or medica-

tions. Specifically, the vessels obtained from the few patients which lacked the com-

mon risk factors of atherosclerosis responded to YC-1 as well. The current study was 

necessarily limited by the specificity of the inhibitors. The release of constricting 

prostanoids should be further investigated in cell culture models, but this was beyond 

the scope of this initial study.

In summary, this study has shown that the vasodilator YC-1 constricts saphenous 

veins and radial arteries from patients with severe CAD. These vasoconstrictions are 

mediated by a paracrine action of endothelium-derived ET-1 which causes synthesis 

of vasoconstrictor prostanoids via COX-1. These prostanoids contract vascular 

smooth muscle via TP receptors. YC-1 induced contractions in vessels with en-

dothelial dysfunction and endothelium-dependent contractions observed in a rat 

model of hypertension share major parts of their signalling pathways which may con-

stitute a novel mechanism of coronary artery and graft vasospasm.
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Table 1: Patient characteristics

characteristic value

age (yr) - mean±S.D (range) 68.3±7.9 (48 - 87)

male – No / % 138 / 87.9

female - No / % 19 / 12.1

body mass index - mean±S.D (range) 27.6±3.8 (19.0 - 
36.7)

ACE inhibitors – No / % 101 / 64.3

beta-adrenergic antagonists – No / % 116 / 73.9

calcium antagonists – No / % 23 / 14.6

organic nitrates – No / % 18 / 11.5

NYHA class I – No / % 2 / 1.3

NYHA class II – No / % 38 / 24.2

NYHA class III – No / % 106 / 67.5

NYHA class IV – No / % 3 / 1.9

angina pectoris – No / % 83 / 52.9

acute myocardial infarction < 90 d before surgery – No / % 14 / 8.9

type 2 diabetes – No / % 49 / 31.2

hypertension – No / % 132 / 84.1

hyperlipidemia – No / % 99 / 63.1

current or previous smoking – No / % 79 / 50.3
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Table 2: Effects of COX inhibition on YC-1 induced contractions of HSV

YC-1 3 µmol L-1 norepinephrine 1 µmol L-1

control 31.52±15.39 83.59±31.41

indomethacin 10 µmol L-1 19.81±26.01 86.04±27.89

indomethacin 50 µmol L-1 -0.54±1.53a 75.97±39.97

DFU 1 µmol L-1 18.79±17.37 76.48±25.77

asignificantly different from control (ANOVA, p <0.001, n=4-6)

21



Endothelium-dependent vasoconstrictions

Table 3: Comparison of vessel types

YC-1 (% of KCl) norepinephrine/serotonin (% of KCl)

HSV (n=6) 113.32±80.92 a 219.94±46.42 (norepinephrine)

HRA (n=3b) 40.51±23.96 127.33±27.09 (norepinephrine)

HUV (n=6) 0.19±4.68 180.93±44.38 (serotonin)

Maximum responses of vessels to YC-1 (3 µmol L-1) and to receptor-mediated 

vasoconstrictors (1 µ mol L-1). Values are reported as percentage of the constrictions 

obtained with 150 mmol L-1 KCl.  a significantly different from HUV (ANOVA, 

p<0.001). b not included in statistical tests due to low sample size. All three tested 

vessels contracted to YC-1.
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Figure 1:  YC-1 induced contractions of HSV and HRA. (A) Representative organ 

bath tracing showing the effects of 3 µmol L-1 YC-1 (upper tracing) and the solvent 

control (lower tracing; DMSO, dimethyl sulfoxide) on HSV. Arrows indicate time of 

administration. w, washing; NE, norepinephrine concentration series from 1× 1 0 -11 
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mol L-1 to 3× 1 0 -6 mol L-1 ; SNP, 50 µmol L-1 sodium nitroprusside added to both 

rings. (B) Same as (A) using HRA. Note the spontaneous oscillations in this 

example. (C) Distribution of maximum tension induced by 3 µmol L-1 YC-1 in the 

patient pool. Constrictions by both YC-1 and NE were determined in HSV from 134 

patients.

Figure 2: Organ bath tracings of YC-1 induced relaxations of HSV preconstricted 

with NE. Arrow indicates addition of 1× 1 0 -8 mol L-1 SNP. Vertical ticks indicate SNP 

dose-response curve from 1× 1 0 -10 mol L-1 to 3× 1 0 -5 mol L-1. Crosses indicate YC-1 

dose-response curve from 1× 1 0 -8 mol L-1 to 3× 1 0 -5 mol L-1. Tracings are 

representative for 5 independent experiments.
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Figure 3:  Differentiation of relaxing and constricting effects of YC-1. HSV were 

constricted with increasing doses of YC-1 in the absence (filled circles) or presence 

(open circles) of the sGC inhibitor ODQ (10 mmol L-1). *, significantly different 

(p=0.012, ANOVA, n=6)
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Figure 4: Dependence of YC-1 induced contractions on endothelium. YC-1 dose-

response curves of native (filled circles) and endothelium-denuded HSV (open 

circles). Curves are significantly different (p<0.001, ANOVA, n=8). Inserts A and B 

show representative H&E-stained cross sections of native and denuded HSV, 

respectively.
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Figure 5: Effects of calcium channel, endothelin receptor, ECE converting enzyme, 

and TP receptor antagonists on YC-1 induced contractions in HSV. Cumulative YC-1 

dose-response curves (control: filled circles) were constructed after administering 

nifedipine (1 µmol L-1, open circles), bosentan (10 µmol L-1, filled triangles), BQ-123 

(3 µmol L-1, open triangles), BQ-788 (0.5 µmol L-1, filled squares), phosphoramidon 

(10µmol L-1, open squares), and SQ 29,548 (0.3µmol L-1, filled diamonds). * 

significantly different from control (ANOVA, p<0.001, n=6-7).
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Figure 6: Endothelin-1 release from HSV rings in organ baths after administering YC-

1 for 60 min. Release changed significantly with  YC-1 concentration (ANOVA, 

p=0.032, n=7).
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Figure 7: Putative mechanism of YC-1 induced contractions. AA, arachidonic acid; 

COX, cyclooxygenase; EC, endothelial cell; ECE, endothelin-converting enzyme; ET-

1, endothelin-1; MLCK, myosin light chain kinase; PG, prostaglandin; SMC, smooth 

muscle cell.
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