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Updating the Option Implied Probability of Default
Methodology

Johannes Vilsmeier

Abstract

In this paper we ‘update’ the option implied probability of default (option iPoD) approach
recently suggested in the literature. First, a numerically more stable objective function for
the estimation of the risk neutral density is derived whose integrals can be solved analytically.
Second, it is reasoned that the originally proposed approach for the estimation of the PoD
has some serious drawbacks and hence an alternative procedure is suggested that is based
on the Lagrange multipliers. Carrying out numerical evaluations and a practical application
we find that the framework provides very promising results.
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1 Introduction

The extraction of information from option prices is a very appealing way to construct mean-
ingful indicators for financial fragility. Risk neutral densities (RNDs) derived from option
data observed at the market can give us an image of the investors’ expectation regarding the
future evolution of a bank’s equity. Hence, one directly obtains a forward looking measure
for the bank’s soundness without any need to construct comprehensive forecast models and
especially avoiding the drawbacks of traditional forecast models based on backward looking
accounting data.1 Particularly during crisis periods it is a well known fact that traditional
models almost exclusively fail to provide reasonable signals in advance of crisis periods. The
reasons are manifold, ranging from problems to identify potential risk factors and transmis-
sion channels, to correctly modeling the highly nonlinear character of risk transmission in
advance of crisis periods, and last but not least to obtaining the necessary data.

Facing these problems, we stress the proper use of information from investors through the
option market. Due to high potential losses and the fact that banks and institutional in-
vestors use options to hedge their risk positions the market participants should be at least
partly ‘well informed’ and changing risks should hence be displayed to a certain degree in
the observed option prices. By estimating a RND one derives an entire probability distri-
bution from the option prices and accordingly observes the market consensus (the expected
value) for the future value of equity as well as the uncertainty prevailing among investors
regarding the consensus. Any changes in the distribution will be associated with changes
in some investors’ expectation and hence may provide essential information. Consequently,
one should try to impose as few a priori restrictions as possible on the shape of the density
when estimating the RND as otherwise one may bias the information contained in higher
statistical moments of the density.

An appealing methodology that is able to estimate RNDs of almost arbitrary form was sug-
gested by Capuano (2008). The flexibility of the framework allows to incorporate the idea
of the structural approach of Merton (1974) in a risk neutral pricing framework in order to
define a default mechanism for a bank. In this way one can derive a (risk neutral) option
implied probability of default (option iPoD) for a bank from the estimated RND. Contrary
to other approaches based on information in market instruments the methodology requires
no assumptions for the recovery rate to determine the PoD. The PoD estimates provide
information regarding the expectation of the most pessimistic investors at the market, i.e.

1See e.g. Knaup (2011) for a discussion on the drawbacks and information content of accounting data.
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the fraction of investors that expects the bank to default. One may expect the fraction of
pessimists to increase in advance of crisis periods even though the market consensus may
stay unchanged. The option iPoD hence is a promising addition to the usual set of option
based financial indicators consisting of the statistical moments characterizing the RND.

Despite of offering an attractive tool for the construction of financial indicators the frame-
work of Capuano (2008) faces some serious problems regarding its numerical stability and, as
shown in the numerical evaluations in this paper, also regarding the accuracy of its estimates.

We suggest in this paper some technical modifications to the original framework which solve
these problems to a large degree and hence considerably improve the general applicability
of the option iPoD approach. The first modification concerns the estimation procedure for
the cross entropy distribution as the approach applied in Capuano (2008) is generally known
to be highly unstable due to singularity problems in wide ranges of its parameter space.
Following Alhassid et al. (1978), the search for the roots of a highly non-linear system of
equations is transformed into a stable and computationally efficient minimization problem
for a strictly convex scalar function. This is done by defining a lower bound on the value of
the cross entropy function for the minimum cross entropy density compatible with the avail-
able information. Further, we provide an analytical solution to the integrals of the objective
function, such that no numerical methods are necessary.

The second modification concerns the determination of the optimal PoD. Numerical evalu-
ations of the framework in this paper show that the originally suggested procedure for the
estimation of the PoD is unreliable and crucially depends on the choice of arbitrary model
parameters. We suggest an alternative procedure which is based on the evolution of the
Lagrange multipliers when estimating the RND for different default barriers. Despite of the
ad hoc nature of our approach the numerical evaluations show clearly its accuracy. In an
application to option data for the Bank of America the framework indicates an elevated level
of risk way before the actual downgrading by Moody’s took place.

The remainder of the paper is organized as follows. In the next section the general idea of
the framework suggested in Capuano (2008) is explained. Section 3 presents the updated
methodology for the estimation of the cross entropy density. This comprises a detailed
derivation of a new objective function and an analytical solution to the involved integrals.
Section 4 provides an analysis of the mechanism that allows for the estimation of the option
iPoD followed by an discussion on how to determine the optimal PoD. In this context an
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ad hoc procedure is suggested whose accuracy is comprehensively evaluated in section 5.
The evaluation comprises numerical examples as well as an application to real option data.
Section 6 offers some conclusions.

2 The General Idea of the Option iPoD Framework

The basic idea of the option iPoD framework can be described as follows. One aims for a
procedure that allows to estimate a ‘mass point‘ in the RND that indicates the probability
that the underlying of a stock option will have value zero at time of maturity of the op-
tion. This mass point can be interpreted as a probability of default as it corresponds to the
fraction of investors’ that expects events leading to a stock price of zero and consequently
to the default of the issuing firm. In order to be able to estimate a potential ‘jump’ in the
RND (if a PoD exists) at a stock price of zero within a continuous estimation framework a
’trick’ is applied in Capuano (2008). This trick is to define an interval of negative equity
values in the RND such that density assigned to this interval in the estimation process can
be interpreted as a PoD. Formally, this is achieved by integrating the structural approach of
Merton (1974) in an entropy based RND estimation framework. In the following we sketch
the basic building blocks of the framework.

The framework of Capuano (2008) starts by applying the structural approach of Merton
(1974) to a bank’s balance sheet. The structural approach assumes that a company goes
bankrupt if the value of its asset is lower than the value of its debt, implying only two claims
on firm’s asset, namely equity and debt. Hence, the value of a stock S, which is a claim on
firm’s equity E, can be expressed as the value of asset V minus debt D, i.e. S = E = (V −D).
Regarding an option written on a stock, it follows that the inner value of a call with strike
price Ki at time of maturity T must be equal to: CKi

T = max(VT −D −Ki; 0).2

Using the theory of risk neutral pricing one can obtain an estimator of the RND of VT ,
f(VT ), based on the information contained in today’s prices for calls (or equally puts) with
different strikes Ki. Based on f(VT ) one obtains for arbitrary D the following definition for
the firm’s PoD:

PoD(D) =

D∫
0

f(VT )dVT . (1)

2The reason D is not time dependent is that it is not the investors’ expectation regarding the value of debt
in T but for a value that triggers default until time of maturity.
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To extract f(VT ) from the available option prices the concept of cross entropy is applied,
originally introduced by Kullback and Leibler (1951). The term entropy originally refers to a
concept in thermodynamics but Shannon (1948) has shown that it can as well be interpreted
as a measure of the average uncertainty in a random variable. Using a weak law of large
numbers and Stirling’s approximation, the entropy function H[f(x)] = −

∫∞
0
f(x) log f(x)dx

can be directly derived from the multinomial coefficient in which the relative frequencies of
the different outcomes are replaced by probabilities (see e.g. Jaynes (1968)). Each vector of
probabilities (assignable to a given domain) entails a certain amount of possible outcomes,
whereat the degree of uncertainty in a random variable increases with the number of possible
outcomes. The maximum entropy distribution for a range of possible outcomes (domain) will
hence be that distribution that provides the most uncertainty regarding a future outcome
and it is therefore also said to be the least informative distribution. On a closed interval this
will be the uniform distribution, on a unbounded positive real valued domain (for a given
mean) the exponential distribution and on a unbounded real valued interval (given a mean
and a variance) the normal distribution.

The related cross-entropy-function CE[f(VT ), f
0(VT )] (also known as relative entropy) is

defined as:

CE[f(VT ), f
0(VT )] =

∞∫
0

f(VT ) log
f(VT )

f 0(VT )
dVT , (2)

and can be interpreted as an entropic measure of the discrepancy between the two proba-
bility distributions f(x) and f 0(x). In the following the latter can be thought of as a prior
distribution. As suggested by Jaynes (1957), both the entropy and the cross entropy func-
tion can be used for the estimation of probability distributions when there is only partial
information available, i.e. the estimation problem is under-identified as there are many dis-
tributions compatible with the information at hand. Using the measure defined in equation
(2), the so called principle of minimum cross entropy allows the estimation of probability
densities when there are a prior distribution and several constraints in form of expected
values (moment restrictions) available. The principle chooses among all distributions that
are consistent with the imposed moment conditions, the one that minimizes (2), that is
the distribution that has the closest entropic discrepancy to the (known) prior distribution.
If the chosen prior distribution is of maximum entropy on its defined domain, the result-
ing (posterior) distribution will be identical to the density that would be obtained if one
maximizes the entropy function using the same moment conditions. Consequently, among
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all distributions, consistent with the available information (restrictions), the one with the
highest degree of uncertainty regarding a future outcome will be identified as optimal. The
reason for minimizing equation (2) rather than maximizing the entropy function itself lies in
the necessity of the prior to get an estimation for the PoD, as will be seen in section 4.

Subsequently we present the mathematical methodology corresponding to the above de-
scribed framework.

3 Estimation of the RND

3.1 Basic Setup

Using the cross entropy principle, the option implied RND is obtained by minimizing equa-
tion (2) under several moment constraints given by the theory of risk neutral pricing and
the observed option prices. The theory of risk neutral pricing postulates that the expec-
tation over all inner values of an option for given Ki and maturity T (measured in years),
discounted with the (annual) risk free rate r, should be equal to the current option price
observed at the market. Formally, one gets the following constraints:

CKi
0 = e−rT

∞∫
VT=D+Ki

(VT −D −Ki)f(VT )dVT , i = 1 . . . B, (3)

with B denoting the number of observable option prices CKi
0 whereat the current stock price

S0 is included as an option with strike K1 = 0.

Applying the Lagrange multiplier technique, and taking into account the additivity con-
straint

∫∞
0
f(VT )dVT = 1 to ensure that the density integrates to one, the Lagrangian reads

as:

L =

∞∫
VT=0

f(VT )

[
log

f(VT )

f 0(VT )

]
dVT + λ0

1− ∞∫
VT=0

f(VT )dVT


+

B∑
i=1

λi

CKi
0 − e−rT

∞∫
VT=D+Ki

(VT −D −Ki)f(VT )dVT

 , (4)

where f 0(VT ) is the distribution of maximum entropy on the defined domain and λ0, . . . , λB
are the Lagrange multipliers. To obtain the first order conditions for f(VT ) one needs the
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Fréchet derivative of the Lagrange function with respect to the density (see e.g. Cover and
Thomas (2006)). The Fréchet derivative corresponds to the total differential generalized to
infinite-dimensional function spaces and can be expressed by the Jacobi matrix Jf whose
elements are the partial derivatives ∂L(f(VT = vi))/∂f(VT = vi). Setting Jf equal to zero,
one obtains:

f ∗(VT ) = f 0(VT ) exp

[
λ0 − 1 +

B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
, (5)

where f ∗(VT ) = (f ∗(VT = v1) · · · f ∗(VT = vN))
′ is an infinite-dimensional vector and 1 is an

indicator function that is one if the condition is true and zero otherwise.

By inserting equation (5) in the additivity constraint, exp[λ0−1] can be expressed as function
of the residual λi such that f ∗(VT ) can be rewritten as:

f ∗(VT ) =
1

µ(λ)
f 0(VT ) exp

[
B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
, (6)

with

µ(λ) = exp(1−λ0) = exp(−λ′0) =
∞∫

VT=0

f 0(VT ) exp

[
B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
dVT .

(7)

It turns out that for a given value of debtD the optimization for f(VT ) results in the necessity
to determine the optimal set of λi’s in (6). This can be achieved by inserting equation (6) in
equation (4), deriving the resulting function with respect to the remaining λi’s and setting
the latter to zero. One obtains the following nonlinear system of equations:

∂L

∂λi
= e−rt

∞∫
VT=0

1VT>D+Ki
(VT −D −Ki)f

∗(VT )dVT − CKi
0

!
= 0, i = 1 . . . B. (8)

The optimal set is usually calculated by solving (8) with a multivariate Newton-Raphson
algorithm (see e.g. Zellner and Highfield (1988)), that is by linearizing the system with
a first order Taylor approximation. Unfortunately the search for the roots of the system
is unfeasible in many applications for various reasons. First, the Jacobi matrix resulting
from the Taylor approximation has near singularities in large regions of the λ-space which
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makes the required inversion of the Jacobi matrix impossible in most cases. Matters are
further complicated by the fact that the iterative procedure used by the Newton-Raphson
algorithm is very vulnerable to inaccuracies in the numerical solution of the integrals involved
in equation (8). As a result, the search for the roots is unstable and converges only for a
small number of constraints and when the initial values for λ are set near the final solution
(see e.g. Ormoneit and White (1999), Maasoumi (1993)). Hence, following Alhassid et al.
(1978), we subsequently suggest a robust and computationally efficient algorithm to calculate
the optimal set of λ in equation (6).

3.2 Derivation of the New Objective Function

Alhassid et al. (1978) showed that a function can be defined such that for any trial set of
parameters λT1 . . . λTB it provides a theoretical upper bound to the entropy of the maximum
entropy density that satisfies the imposed moment conditions. Equivalently, we will derive a
lower bound to the cross entropy of the corresponding minimum cross entropy. The resulting
function can also be derived directly from the Lagrange function (4) using a so called Leg-
endre transform. In physics this kind of transformation is used to convert the fundamental
equation of thermodynamics in so called thermodynamical potentials which are scalar func-
tions and embody the same information as the original equation. Therefore, subsequently
we will refer to the new objective function as a potential.

To derive the potential function we start by denoting every density that satisfies the moment
constraints given by equations (3) with f(VT ) and the particular f(VT ) that is of minimum
cross entropy with f ∗(VT ). Further we define fTr(VT ) as any (trial) distribution of minimum
cross entropy, that is a distribution of form (6) with parameters λTr1 . . . λTrB . Subsequently
we will show that a strictly convex function W of λTr1 . . . λTrB exists which has a minimum
at that set of λTri = λ∗i that satisfies the system of equations (8) and therefore provides us
with f ∗(VT ).

In order to obtain W we use the non-negativity characteristic (Cover and Thomas (2006),
p. 28) of the cross entropy function, that is

CE[f(VT ), f
Tr(VT )] =

∞∫
VT=0

f(VT ) log
f(VT )

fTr(VT )
dVT ≥ 0. (9)

Adding and subtracting
∫∞
VT=0

f(VT ) log f
0(VT )dVT on the LHS of (9) and rearranging terms
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yields:

CE[f(VT ), f
0(VT )] =

∞∫
VT=0

f(VT ) log
f(VT )

f 0(VT )
dVT ≥

∞∫
VT=0

f(VT ) log
fTr(VT )

f 0(VT )
dVT , (10)

with equality if and only if f(VT ) = fTr(VT ). Next we insert equation (6) for fTr(VT ) and
get for the RHS of (10):

∞∫
VT=0

f(VT )

[
λTr

′

0 +
B∑
i=1

λTri e
−rT1VT>D+Ki

(VT −D −Ki)

]
dVT , (11)

where λT ′
0 = (λT0 − 1).

As it holds that
∫∞
VT=0

f(VT )λ
Tr′
0 dVT = λTr

′
0 and

∫∞
VT=0

f(VT )e
−rT1VT>D+Ki

(VT−D−Ki)dVT =

CKi
0 one finally obtains:

CE[f(VT ), f
0(VT )] ≥ CE[f ∗(VT ), f

0(VT )] ≥ λTr
′

0 +
B∑
i=1

λTr
′

i CKi
0 , (12)

whereat the first inequality holds because f ∗(VT ) is just a particular f(VT ) such that the
RHS also applies to CE[f ∗(VT ), f 0(VT )]. Therefore equation (12) provides a lower bound
on the entropy of the distribution of minimum cross entropy, with equality if and only if
fTr(VT ) = f ∗(VT ), implying λTr1 . . . λTrB = λ∗1 . . . λ

∗
B.

Rewriting (12) we get our working function W :

W =

(
CE[f ∗(VT ), f

0(VT )]− (λTr
′

0 +
B∑
i=1

λTri C
Ki
0 )

)
≥ 0, (13)

which can be interpreted as a ’goodness of fit’ measure of fTr(VT ) regarding f ∗(VT ) and is
therefore minimized.

The FOCs for W are given by the conditions:

∂W/∂λTri
!
= 0 or − ∂λTr′0 /∂λTri

!
= CKi

0 , i = 1 . . . B. (14)

In the Appendix it is shown that W is a strictly convex function for any set of λTri imply-
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ing a unique minimum. Consequently one faces a simple minimization problem for a scalar
function in B variables which, given that there is a solution3, will yield convergence for any
starting values λTri,0 .

In practice we will minimize the potential F = −λTr′0 −
∑B

i=1 λiC
Ki
0 rather thanW as the two

functions differ only by the constant CE[f ∗(VT ), f 0(VT )] and hence F is also strictly convex
and has a unique minimum. Further, following Agmon et al. (1979), we can calculate F in
a computationally more efficient way by multiplying equation (5) with exp(

∑B
i=1 λiC

Ki
0 −∑B

i=1 λiC
Ki
0 ), yielding:

exp(−λTr′′0 ) = exp(−λTr′0 +
B∑
i=1

λTri C
Ki
0 ), (15)

and

F = −λTr′′0 = log


∞∫

VT=0

f 0(VT ) exp

[
B∑
i=1

λTri (e−rT1VT>D+Ki
(VT −D −Ki)− CKi

0 )

]
dVT

 ,

(16)

which is the function that we minimize in our applications. Subsequently we show that we
can carry out the integration implied by (16) analytically such that no numerical quadrature
methods are necessary.

3.3 Analytical Solution of the Integrals

In order to derive an analytical solution for the integration we assume a finite domain for
VT with lower bound Vmin and upper bound Vmax. Further we define an uniform prior, i.e.
f 0(VT ) = 1

Vmax−Vmin
. Then we split up the integral in (16) such that we can rewrite the

3This requires the derivative to change sign from positive to negative as the set λTr
i varies from −∞ to

+∞ (see Alhassid et al. (1978)).
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objective function F without the indicator function:

F = log

(
1

Vmax − Vmin

)
+ log


D∫

Vmin

exp

(
−

B∑
i=1

λiC
Ki
0

)
dVT

+
B−1∑
i=1

D+Ki+1∫
D+Ki

exp

(
i∑

j=1

λj(e
−rT (VT −D −Kj)− C

Kj

0 )−
B∑

k=i+1

λkC
Kk
0

)
dVT

+

Vmax∫
D+KB

exp

(
B∑
j=1

λj(e
−rT (VT −D −Kj)− C

Kj

0

)
dVT

 , (17)

For this form of F the implied integrals can be solved in a straightforward way, leading to:

F = log

(
1

Vmax − Vmin

)
+ log

{
exp

(
B∑
i=1

λiC
Ki
0

)
(D − Vmin)

−
B−1∑
i=1

exp
(∑i

j=1 λj(e
−rTKj − C

Kj

0 )−
∑B

k=i+1 λkC
Kk
0

)
e−rT (

∑i
j=1 λj)

−
exp

(∑i
j=1 λj(e

−rT (Kj+1 −Kj)− C
Kj

0 )−
∑B

k=i+1 λkC
Kk
0

)
e−rT (

∑i
j=1 λj)



−

exp
(∑B

j=1 λj(e
−rT (KB −Kj)− C

Kj

0

)
− exp

(∑B
j=1 λj(e

−rT (Vmax −D −Kj)− C
Kj

0

)
e−rT (

∑B
j=1 λj)


(18)

4 Estimation of the option iPoD

So far we focused on the estimation of the optimal set of λ where we had to assume that the
default barrier D is known. In this section we turn to the estimation of the optimal D and
the related determination of the option implied PoD. In 4.1 we provide deeper insight to the
PoD estimation mechanism and show that the accuracy of the PoD estimates depends on
the choice for the length of the interval [Vmin, D]. In 4.2 we discuss how we can identify this
optimal interval length.
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4.1 The Mechanism

We start by taking a closer look at the mechanism that enables us to estimate the option
iPoD. The basic idea is to allow for a mass point for the value zero of the stock price at
time of maturity of the option. In order to estimate that mass point we define a uniform
prior f 0(VT ) = 1

(Vmax−Vmin)
for an interval [Vmin, Vmax], with Vmin < D. The exact values

of Vmin and Vmax can be freely chosen, but only the choice of Vmin will essentially influence
the results of the estimation.4 The estimation procedure will use the moment constraints
(3) to modify the prior to the posterior density whereat all restrictions are equal to zero for
any values VT ≤ D except of the additivity constraint. The additivity constraint will assign
equal density according to f ∗(VT ) = 1

(Vmax−Vmin)

exp(−
∑B

i=1 C
Ki
0 λi)

exp(F )
to all values VT ∈ [Vmin, D].

These values of VT do not contribute to the value of the option as the inner values are all
zero for VT ≤ D but they contribute in that way that the density above D might be more
consistent with the constraints if the density for VT > D does not integrate to one. It’s
important to note that all VT ∈ [Vmin, D] imply a future stock price of zero such that the
integral over the assigned density for this interval can be interpreted as a PoD. Accordingly,
we can define the following PoD function:

PoD(λ,D) =
1

(Vmax − Vmin)
exp(−

∑B
i=1C

Ki
0 λi)

exp(F (λ,D))
(D − Vmin). (19)

As can be seen from (19) the PoD depends crucially on the length of the interval [Vmin, D]

as a longer interval implies more values VT < D for which a density has to be assigned. On
the other hand one has to take into account that the nonparametric estimation procedure
that we use will find a density that provides a similar good fit to the observed option prices
for any interval length. As we will see these two features lead to a trade-off problem when
searching for an optimal interval length.

If we assume that there is a mass point and hence a PoD in the true RND then there is just
one interval length that provides a density that fits the prices and simultaneously exhibits
the correct PoD. This will be that density that has an interval [Vmin, D] which leads, after
apportioning the true PoD equally to the values within this interval, to a density at VT = D

that is equal to the density of the true RND at VT = D + ε, with ε as an infinitesimal
increment of VT . This is required by the continuity restriction of the estimation framework,
and otherwise the estimated RND can not coincide with the true density.

4Note that not the absolute level of Vmin does influence the results but the value of Vmin relative to D.
Further, the ’location’ of the interval [Vmin, Vmax] does not influence the results as the inner values of
the options depend on VT −D, and D will increase by the same amount as VT if we move the interval.
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If we choose the interval too short, apportioning the true PoD to the available values in
[Vmin, D] will lead to a density at VT = D that is too high for a smooth transition to the true
density at VT = D+ε and hence the estimation procedure has to carry out some adjustments
to the true density form in order to meet the observed option prices. In order to fit the prices
the approach will adjust the true density such that very small values for VT ∈ [D, Vmax] will
get higher density and larger values accordingly lower density. The estimated RND will ex-
hibit a too low PoD and a too high density for small values for VT ∈ [D, Vmax]. In contrast,
an interval that is too long will lead after apportioning the true PoD to a density at VT = D

that is too low for a smooth transition to the true density at VT = D + ε and hence the es-
timated PoD will be too large and the density for VT > D too low for small values of VT > D.

The Tables 1 and 2 as well as the Figures 1.(a)-1.(d) illustrate the mentioned problems using
numerical evaluation examples for our estimation procedure. For the numerical evaluation
user specified (’true’) densities were created (see Figure 1.(a)) and the theoretically implied
option prices for different strike prices were calculated from these densities. The theoretical
option prices were subsequently used as input data in the cross entropy estimations for dif-
ferent interval lengths (see Figures 1.(b)-1.(d)). To get a realistic impression of the reliability
of the estimates in practice we used about ten equally spaced different strike prices within a
range of [0.7 × S0, 1.3 × S0] in order to estimate the respective densities. This corresponds
to a quite realistic set of strikes for options with time to maturity of 3 months.

D − Vmin 1 2 3 4 5 6 10 15 20
PoD 0.010 0.017 0.022 0.027 0.027 0.032 0.037 0.042 0.045

Table 1: Estimated PoDs for different interval lengths (Specified PoD: 0.031).

D − Vmin 1 2 3 4 5 7 10 15 20
PoD 0.0004 0.0009 0.0012 0.0016 0.0020 0.00279 0.0037 0.0055 0.0065

Table 2: Estimated PoDs for different interval lengths (Specified PoD: 0.0028).

The Tables 1 and 2 show the PoD estimates for differing interval lengths D − Vmin for two
different user specified densities. As expected the estimated PoDs clearly increase with the
length of the intervals, but also can be seen that the estimation procedure roughly gets the
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magnitude of the PoD right even for too long intervals. Especially notable is the fact, as will
be illustrated in section 4.2, that the estimation procedure can clearly distinguish between
a RND with a PoD and a RND that does not exhibit a PoD.

Figure 1.(a): User-Specified density with
PoD= 0.032.

Figure 1.(b): Cross-Entropy density estimate
with Vmin = 9 and D = 10. Estimated
PoD=0.010.

Figure 1.(c): Cross-Entropy density estimate
with Vmin = 4 and D = 10. Estimated
PoD=0.32.

Figure 1.(d): Cross-Entropy density estimate
with Vmin = 4 and D = 10. PoD assigned to
VT = D.
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4.2 Determination of the optimal D

A closer look at the results in Table 1 and 2 reveals that we should aim for more than
just rough estimates for the PoD. The flexibility of the framework allows us to obtain very
accurate estimates for any PoD level and RND form if we are able to identify the correct
interval length. An obvious approach is to evaluate our objective function (18) for different
D and leaving Vmin fixed (this is the approach suggested by Capuano (2008)). We can derive
a formula for the optimal D for a given set of λ from the objective function in (18). Solving
∂F
∂D

= 0 for D yields D∗ = Vmax −
∑B

j=1 λjKj∑B
j=1 λj

. Inserting this formula for D in the objective
function and optimizing will give us the optimal interval length.

However, the flexibility of our approach is a curse here. To show this, a Loss-Function which
measures the quadratic distance between the observed prices and the prices that are implied
by the respective RND estimate for differing interval length D − Vmin is defined. In Figure
2.(a) the Loss-Function for the numerical example of 1 is displayed, and one notes that for
arbitrary interval lengths a good fit to the data can be achieved. Hence, we have no moment
restrictions to identify the optimal D as any D provides a good data fit, and we will only
minimize the cross entropy function if we optimize (18). Consequently we will identify that
density as optimal that is the closest to the uniform distribution.

We remember that we uniformly apportion the PoD to values VT ∈ [Vmin, D] such that the
’uniform nature’ of our posterior will increase with increasing D. As a consequence one will
identify that D as optimal that is as large as possible and simultaneously still can provide a
good fit to the data. The fit will decrease if D is so close to Vmax that there are not enough
inner values left to guarantee a good fit. As a consequence the optimal PoD will depend
on how large we set Vmax relative to Vmin. If we choose a large interval [Vmin, Vmax] we will
estimate a large PoD as for the optimal default barrier D − Vmin will be large. Figure 2.(b)
illustrates these detections by showing the value of the cross entropy function of estimated
densities for different D using the same numerical example as in Table 1.

Noting the arbitrariness of the results using the above described approach, we suggest an
alternative approach. The approach is still quite ad hoc and requires further research but,
as will be seen in section 5, provides very promising results. It is based on the evolution of
the PoD function (19) and of the Lagrange multipliers when estimating the optimal density
for different D. We start by looking at a numerical example in which we define a RND with
no PoD and estimate this RND for different D. The Figure 3.(a) shows the evolution of the
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PoD and Figure 3.(b) the ’aggregated’ evolution of the estimated Lagrange multipliers.

Figure 2.(a): Quadratic Loss-Function for es-
timates with different interval lengths.

Figure 2.(b): Value of cross entropy function
for different interval lengths.

One sees that the estimated Lagrange multipliers stay the same for all chosen D and conse-
quently the PoD function increases linearly with growing interval length. The reason is that
there is no PoD to assign to the interval [Vmin, D] and hence no shape modifications have
to be carried out for the RND for VT > D (which would be displayed in changing λs) for
changing D.

Now we look in contrast at the evolution of the PoD and the Lagrange multipliers if we define
the same RND as for Table 1 (see Figure 4.(a) and 4.(b)). The evolution of the Lagrange
multipliers illustrates the shape adjustments that are necessary for increasing D in order to
get a good fit to the data in each case. The PoD function displays clearly a concave form
and hence the slope of the function decreases with growing D. Empirically we found the
PoD to be more concave if the PoD is high. Looking at the evolution of the λs one detects
strong fluctuations. These fluctuations will be the stronger the higher the PoD is. But equal
to the PoD function (which is governed by the λ) the λ-function is flattening with increasing
D. This characteristic would clearly be more striking if the function would be smoothed.

The exact nature of the evolution of the PoD and the λ-Function are matter of current
research. It seems that the exact determination of the optimal interval length has to be
based on the second derivative of the functions as the slope of the functions is the steepest
before reaching the optimal interval length of six (see Table 1) and is flattening afterwards.
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This fast convergence to the true PoD was found in all of our empirical evaluations. So far
though, it is not clear what the exact decision rule should be as the degree of flattening
depends on the level of the PoD.

Figure 3.(a): Evolution of the PoD for differ-
ent D; Specified PoD=0.

Figure 3.(b): Sum of estimated Lagrange
multipliers (

∑B
i=1 λi); Specified PoD=0.

Figure 4.(a): Evolution of the PoD for differ-
ent D; Specified PoD=0.031

Figure 4.(b): Sum of estimated Lagrange
multipliers (

∑B
i=1 λi); Specified PoD=0.031

Until now we suggest the following ad hoc procedure which led to convincing results in our
numerical experiments (see section 5). As we do not know the exact decision rule we decide
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to average estimated PoDs over several interval lengths after deciding for an upper bound to
the interval length. Empirically we found that setting Vmin equal to zero and choosing 20 as
our maximal value for D provides accurate results for arbitrary PoD levels and RND forms.
The decision for Dmax = 20 is backed by the finding that the PoD function is quite flat
for this value of D for any PoD level that we specified in our numerical experiments. This
strongly indicates that in practical applications the true PoD will also be within an interval
of length D − Vmin = 20 and averaging over estimates for lengths close to the optimal one
will provide good results. To identify the optimal D and RND one chooses that interval
length as optimal that provides a PoD estimate that is the closest to the ’average PoD’.

In the next section we examine the accuracy and reliability of the suggested framework
regarding shape and PoD estimates for the RND.

5 Evaluation

As addressed in the previous section, we evaluate the estimation procedure by defining dif-
ferent densities from which we generate our option data.

Figure 5.(a) and 6.(a) show two user-specified densities, Table 3 their respective statistical
characteristics. The density in 5.(a) exhibits the typical shape of RNDs often found in
empirical studies (negative skewness and positive excess kurtosis (’fat tails’)) except that
the entire density below the default barrier is assigned to D leading in this case to a negative
(excess) kurtosis. In contrast, in Figure 6.(a) a density of quite unusual form is specified
such that the great flexibility of the estimation procedure can be demonstrated. In Figures
5.(b), 6.(b) and Table 3 the respective results of the estimation are shown.

PoD Mean Variance Skewness Kurtosis
Figure 5.(a) 0.0496 40.6024 213.3029 -0.4614 -0.6215
Figure 5.(b) 0.0478 40.6205 214.1831 -0.4392 -0.6058
Figure 6.(a) 0.0027 85.8212 680.5172 -0.1146 -0.6574
Figure 6.(b) 0.0032 86.2269 676.8333 -0.0584 -0.4193

Table 3: PoDs and moments of specified densities and their corresponding cross-entropy density
estimates.
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Figure 5.(a): User-Specified density with
PoD= 0.049.

Figure 5.(b): Cross-Entropy density for the
density in Figure 5.(a), with vector of strikes
K = (0, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39).

Figure 6.(a): User-Specified density with
PoD= 0.0027.

Figure 6.(b): Cross-Entropy density for the
density in Figure 6.(a), with vector of strikes
K = (0, 55, 60, 65, 70, 75, 80, 85, 90, 95).

One can easily verify the accuracy of the estimates regarding shape and PoD of the RNDs.
In each case the optimal PoD was determined as the mean of the PoDs estimated for differing
interval lengths (Dmax = 20). The optimal density was then identified as the density that
exhibits a PoD that is the closest to the average PoD.
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In Table 4 one can see the results of density estimates for further density specifications
with PoDs ranging from very high (≈ 20%) to very low (0.0078%) and differing statistical
moments. Also for these numerical experiments the framework provided very reliable results.
Especially remarkable is that our easy ad hoc procedure regarding the determination of the
PoD is able to obtain accurate estimates for any levels of the true PoD. A clear feature of
the framework seems that lower PoDs can be estimated more accurate than high PoDs. This
is due to the strong shape modifications that have to be carried out when estimating RNDs
with high PoDs for different interval lengths. Consequently the PoD estimates for different
D vary more for high PoDs than for low PoDs and the averaging approach is less accurate.

PoD Mean Variance Skewness Kurtosis
Specified 0.1977 45.8692 179.3605 0.5490 -0.0811

Estimated 0.2044 45.0393 185.9304 0.7241 0.5073
Specified 0.0838 70.6151 9.5013 0.6569 4.5840

Estimated 0.0873 70.6192 8.8162 0.3001 1.4496
Specified 0.0159 23.0837 23.1187 -0.5768 -0.0459

Estimated 0.0188 23.1054 23.5051 -0.5481 0.0833
Specified 0.0010 70.0067 8.8962 -0.6949 0.4190

Estimated 0.0040 70.0634 8.9593 -0.7501 0.8354
Specified 0.000078 90.6685 51.5272 -3.6873 24.6349

Estimated 0.000121 90.6784 51.3571 -3.6397 19.8385
Specified − 155.1997 24.9505 -1.0545 2.4086

Estimated 10−23 155.0426 25.4788 -0.9470 1.9518

Table 4: PoDs and Moments of specified densities and their corresponding (optimal) Cross-Entropy
density estimates.

Finally, we want to show a short application of our framework to real option prices of banks.
The true shapes and PoDs of banks are of course not known, hence we evaluate our approach
by contrasting the estimation results with real events.

On 9/21/2011 the Bank of America (BoA) was downgraded two levels by Moody’s. This
implies that BoA should clearly exhibit a higher level of PoD than e.g. JP Morgan Chase
& Co. (JPM), whose top rating stayed unchanged. We now want to test if our frame-
work is able to identify this elevated risk for BoA relative to JPM months before the ac-
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tual downgrade did happen. We look at two data sets, each available at Yahoo!Finance
(http://finance.yahoo.com). One for 4/25/2011, and one for 8/30/2011. The used options
are 3 month contracts with maturity at 07/15/2011 and 11/19/2011 respectively.5

4/25/2011 PoD Mean Variance Skewness Kurtosis
JP Morgan Chase & Co. (JPM) 5.8×10−9 54.8529 19.9191 0.0382 0.6768

Bank of America (BoA) 0.00152 22.4115 3.5336 -0.3701 6.6342

Table 5: PoD and moments of RNDs for JP Morgan Chase & Co. and Bank of America based on
Options from 4/25/2011.

8/30/2011 PoD Mean Variance Skewness Kurtosis
JP Morgan Chase & Co. (JPM) 2.4×10−14 47.6295 42.8599 1.3031 0.9717

Bank of America (BoA) 0.04568 17.4347 8.2326 -0.2795 2.6762

Table 6: PoD and moments of RNDs for JP Morgan Chase & Co. and Bank of America based on
Options from 8/30/2011.

We clearly see that the framework indicates an elevated PoD of BoA relative to JPM for
both dates. In addition, the PoD for BoA increases sharply getting closer to the date of the
downgrading, which seems highly plausible. Finally, one notices an increasing variance for
both banks, JPM and BoA, which might indicate a general increase in risk perception in the
market regarding financial institutions in the last months.

6 Conclusion

We presented in this paper some technical modifications to the framework proposed in Ca-
puano (2008) to derive an option implied probability of default (option iPoD). The first
modification concerns the optimization algorithm to calculate the cross entropy density as-
sociated with the option prices observed at the market. We derived an objective function
whose minimization is stable and yields unique solutions for the Lagrange parameters which
determine the optimal density. Further, we show how the integrals of the objective function
can be solved analytically. Another modification was proposed regarding the determination

5Note that both data sets have the same time to maturity such that the densities for both dates can be
compared, as the maturity dependence is equal in both cases.
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of the optimal PoD. After reasoning that a pure entropic approach to determining the op-
timal default barrier leads to quite arbitrary results, we suggested an easy to implement
algorithm for the calculation of the optimal PoD based on the characteristics of the PoD
function. Both modifications to the framework increase the general practical applicability of
the option iPoD framework.

In section 5 we comprehensively tested our approach by applying it to user-specified data
sets as well as to real option data observed at the market. The results are very convincing
as the estimation procedure was shown to be highly accurate regarding the estimation of
the moments and the PoD of the true density. Especially remarkable is the ability of the
framework to estimate densities with very low probability of defaults which is essential for
practical applications as in these one will mostly deal with low-PoD densities. In our ap-
plication to real option data the framework is able to anticipate the downgrading decision
taken by Moody’s regarding the Bank of America.

We conclude that the suggested framework can be very useful in the derivation of market
based stability indicators, e.g. for the financial system. Compared to other estimation pro-
cedures which try to extract RNDs from market data our framework is extremely flexible
regarding the underlying shape of the density, assuming the least information regarding the
future evolution of the firm beyond what is known from the data. In contrast to other ap-
proaches estimating PoDs from market instruments (e.g. using Credit Default Swaps) our
framework has the great advantage that we do not have to assume a recovery rate for the
case that the firm defaults.

Further research is required regarding the exact nature of the PoD function and the evolution
of the Lagrange multipliers when the default barrier D is changed in order to obtain an exact
decision rule for the determination of the option iPoD.
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Appendix

Proof A: The strict convexity of W

The proof follows strongly Alhassid et al. (1978) and it is shown that the Hessian matrix for
the function W is positive definite. We start by deriving the negative definiteness and hence
strict concavity for the function F ′′ = −F = λTr

′
0 +

∑B
i=1 λ

Tr
i C

Ki
0 .

From our definition forW in equation (13) it follows that F ′′ is smaller than CE[f ∗(VT ), f 0(VT )]

for arbitrary λTr1 . . . λTrB , except if λTr1 . . . λTrB = λ∗1 . . . λ
∗
B for which both terms are equal.

Therefore, F ′′ is a concave function with a unique maximum at F ′′ = CE[f ∗(VT ), f
0(VT )] if

its Hessian matrix is negative definite for arbitrary λTr1 . . . λTrB .

We define the following shorthand notations:

φi(VT ) = e−rT1VT>D+Ki
(VT −D −Ki) (20)

and

CKi,T r
0 =

Vmax∫
0

φi(VT )f
Tr(VT )dVT

=

Vmax∫
0

φi(VT )
1

µ(λ)
f 0(VT ) exp

[
B∑
i=1

λTri φi(VT )

]
dVT = −∂λTr′0 /∂λTri . (21)

Hence, we get for the first derivative of F ′′ with respect to λTri :

∂F ′′/∂λTri = ∂λTr
′

0 /∂λTri + CKi
0 = CKi

0 − C
Ki,T r
0 , (22)

and the Hessian of F ′′ is given by:

∂F ′′2/∂λTri ∂λ
Tr
j = −∂CKi,T r

0 /∂λTrj = −∂CKj ,T r
0 /∂λTri

= (CKi,T r
0 C

Kj ,T r
0 )−

Vmax∫
0

φi(VT )φj(VT )f
Tr(VT )dVT

= −
Vmax∫
0

fTr(VT )
[
φi(VT )− CKi,T r

0

] [
φj(VT )− C

Kj ,T r
0

]
dVT , (23)
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where we use the expansion ±CKi,T r
0 C

Kj ,T r
0 and the fact that CKi,T r

0 C
Kj ,T r
0 can be rewritten

as CKi,T r
0

∫ V max
0

fTr(VT )φj(VT )dVT to get from the second to the third line.

The Hessian can be interpreted as a covariance matrix of φi(VT ) and φj(VT ) where CKi,T r
0

and CKj ,T r
0 are the respective expected values. To formally show that the Hessian is positive

definite we have to show that for linearly independent constraints the matrix M with

Mi,j = ∂F ′′2/∂λTri ∂λ
Tr
j (24)

satisfies for any column vector x (x 6= 0), xtMx > 0. To do so we note that we can write
Mi,j as a (weighted) scalar-product of the two constraints Bi(VT ) = φi(VT ) − CKi,T r

0 and
Bj(VT ) = φj(VT )−C

Kj ,T r
0 (see e.g. Brockwell and Davis (1991) for the axioms that define a

scalar product), i.e.

Mi,j = −
Vmax∫
0

fTr(VT )Bi(VT )Bj(VT )dVT = − < Bi, Bj >
fTr

, (25)

where fTr(VT ) is a strictly positive weighting function. Using the properties of a scalar
product we can further write xtMx as:

xtMx = −
B∑

i,j=1

xi < Bi, Bj >
fTr

xj = − <
B∑
i=1

xiBi,
B∑
j=1

xjBj >
fTr

= − < C,C >fTr

. (26)

An alternative way to write < C,C > is:

< C,C >= (x1B1(V1)+ . . .+xBBB(V1))
2+ . . .+(x1B1(VVmax)+ . . .+xBBB(VVmax))

2, (27)

so that that it holds that xtMx < 0 and hence M is negative definite for arbitrary sets of
λTri if C 6= 0. One obtains C = 0 if and only if for every VT holds:

B∑
i=1

xiBi =
B∑
i=1

xiφi(VT )−
B∑
i=1

xiC
Ki,T r
0 = 0 (28)

or

B∑
i=0

xiφi(VT ) = 0, (29)
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with φ0 = 1 and x0 equal to the second term in (28). Equation (29) will only be satisfied if
one or more constraints are linearly dependent. If this is the case the cross entropy distribu-
tion will be still unique but the magnitude of the λTri are not identified uniquely. In practice
one can always eliminate one or more constraints in order to obtain a linearly independent
set of moment conditions (constraints).

The derivation of the positive definiteness for our working function W is straightforward as
we defined F ′′ = −F and W = CE[f ∗(VT ), f

0(VT )] + F where CE[f ∗(VT ), f 0(VT )] is just a
constant.
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