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Chapter 1 

Introduction 

 

1.1 G-protein coupled receptors 

1.1.1 GPCRs as drug targets and their classification 

G-protein coupled receptors (GPCRs) constitute the largest group of integral membrane 

proteins, accounting for approximately 2–3 % of the human genome.1 GPCRs transduce 

signals through a wide range of effectors influencing a multitude of important 

physiological functions. The involvement in several diseases including pain, asthma, 

inflammation, obesity, cancer, as well as cardiovascular, metabolic, gastrointestinal and 

CNS diseases2 makes them one of the most important classes of drug targets. It is 

estimated that more than 30 % of the currently marketed therapeutic agents modulate 

GPCR activity.3-4 Half of approximately 800 identified GPCRs are chemosensory 

receptors (csGPCRs) and respond to external signals such as pheromones, odors, tastes or 

photons,5-6 The remaining receptors are addressed by endogenous ligands, for instance, 

peptides, lipids, neurotransmitter and nucleotides (endoGPCRs).4 For 140 of these 

endoGPCRs the endogenous ligands are not known to date, referred to as “orphan 

receptors”.7-10 Based on structural differences, mammalian GPCRs can be divided in five 

main families termed rhodopsin, secretin, adhesion, glutamate and frizzled/taste2.4 The 

rhodopsin-like family, also referred to as class A of GPCRs, is by far the largest and best 

studied subgroup containing receptors for odorants, small molecules such as biogenic 

amines, peptides and glycoprotein hormones (≈ 700 GPCRs, including csGPCRs and 

endoGPCRs). The binding sites of small endogenous ligands are located within the seven 

transmembrane (TM) domains, whereas binding of more space filling ligands, for 

example peptides and glycoproteins, occurs at the amino terminus (N-terminus), 

extracellular loops and amino acids located at the top of the TM helices.5 The secretin-
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like receptor family (class B) contains 15 members including GPCRs for the peptides 

secretin, calcitonin and parathyroid hormone. A large N-terminus, which is involved in 

ligand binding, is characteristic of these receptors. The third main class of GPCRs is the 

glutamate receptor family (class C), implying the metabotropic glutamate receptor, the γ-

aminobutyric acid type B (GABAB) receptor and Ca2+-sensing receptors. Herein, the 

ligands bind in the very large N-terminal region, which has a characteristic structure 

known as the “Venus flytrap” module.3 Finally, the members of the adhesion GPCRs are 

thought to participate in cell adhesion, the frizzled and smoothened receptors play a role 

in cell development and proliferation and the members of the taste2 receptor family are 

crucial for the detection of the bitter taste of substances.1,3-5 All members of the GPCR 

superfamily share a common architecture. This structural feature is the presence of seven 

hydrophobic membrane-spanning α-helical segments, the transmembrane domains, which 

are connected by three intracellular and three extracellular loops. The N-terminus is on 

the extracellular side whereas the carboxy terminus (C-terminus) is intracellular. Besides 

the structural requirement of seven TM domains, the receptor has to interact with a 

heterotrimeric G-protein, located on the intracellular side, to be classified as GPCR. But, 

given that G-protein independent signaling pathways are demonstrated for some of these 

receptors (see 1.1.3.2),1,11 the term seven transmembrane receptors (7TMRs) would be 

more appropriate. 

The determination of the crystal structure of bovine rhodopsin by Palczewski in 200012 

provided insight into the three dimensional architecture of a mammalian class A GPCR 

and offered new opportunities for GPCR research. This structure served as template for 

homology models to study GPCR conformations and ligand-receptor interaction on the 

molecular level. Recently, further crystal structures have been resolved including the 

human β2-adrenergic receptor,13-18 the turkey β1-adrenergic receptor,19 the human 

adenosine A2A receptor,20 the human dopamine D3 receptor,21 the human histamine H1 

receptor22 and opsin, the first receptor crystallized in its active state.23-24 The ionic-lock 

(salt bridge between Arg-131 (TM3) and Glu-268 (TM6)) which is suggested to stabilize 

the inactive conformation of rhodopsin and the D3R,12,21 was broken in all other 

GPCRs.13,15,19-20,22,25 In addition, observations like the presence of an α-helix in the 

second extracellular (e2) loop in the adrenergic receptors,13,15 constrain the crystal 

structure of rhodopsin as ideal representative for other GPCRs.26 Thus, the very recently 
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elucidated crystal structures will contribute to improved homology models and 

consequently facilitate the target-based drug design for many GPCRs. 

1.1.2 GPCR activation and ligand classification 

Several models have been proposed for the molecular mechanism involved in the 

activation of GPCRs upon interaction with appropriate ligands. Amongst them, the 

extended ternary complex model27-29 is considered most suitable for explaining the 

pharmacodynamic activities of the majority of interacting ligands. According to this 

model, GPCRs exist in an inactive conformation (R) and an active conformation (R*) that 

efficiently couples to a defined G-protein (G), leading to the functional species (R*G). In 

a given environment, equilibrium spontaneously establishes between the usually 

predominant inactive and the active conformation. The inactive form is allowed to 

isomerize to an active form independently from agonist binding. This spontaneous 

activation of the receptor in the absence of agonists is referred to as constitutive activity.30 

 

 

 

 

 

Figure 1.1. Two-state model of GPCR activation. This model assumes that GPCRs isomerize from an 

inactive state (R) to an active state (R*). A) Extended ternary complex model (R: inactive state of the 

receptor; R*: active state of the receptor; G: G-protein; A: agonist). B) Ligand classification according to 

their capability of shifting the equilibrium to either side of both states. According to Seifert et al.30 

Ligands are classified according to their capability of shifting the equilibrium to either 

side of both states. Agonists are ligands with higher affinity for the R* state, stabilizing 

the active conformation and therefore enhancing the functional response (receptor 

activation). On the opposite, inverse agonists preferentially interact and stabilize the 

inactive conformation R of the receptor and reduce the percentage of spontaneously 

active receptors. Neutral antagonists bind to both conformations with the same affinity 

without altering the equilibrium but impairing the binding of other ligands. Partial 

agonists and partial inverse agonists are less effective, only partially binding and 
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stabilizing the active and the inactive receptor conformation, respectively.31-32 An 

additional layer of complexity is added through allosteric ligands, which bind to sites that 

are topographically different but conformationally linked to the orthosteric site 

recognized by the endogenous ligand.33 Binding to an allosteric site on a GPCR changes 

the receptor conformation and can modulate the binding affinity as well as the signaling 

efficiency of orthosteric ligands, or can perturb signaling even in the absence of 

orthosteric ligands.34 Besides, the existence of ambiguous effects like “insurmountable 

antagonism” is discussed.35-36 Insurmountable antagonists have the ability to depress the 

maximal response of orthosteric agonists and therefore do not behave as typical 

antagonists. This effect can be explained through the longevity of the antagonist-receptor 

complex, slowly interconverting receptor conformations, allosteric binding sites or 

receptor internalization after antagonist binding.35 

It is apparent that the function of GPCRs is much more complex in terms of ligand 

binding, different conformational states, accessory protein interaction, phosphorylation, 

G-protein coupling, oligomerization and internalization than assumed previously.34,37 The 

existence of several inactive and active receptor conformations38 suggests that structurally 

different ligands stabilize distinct receptor conformations, resulting in diverse biological 

responses.39 In summary, the demonstrated two-state model provides a molecular basis 

for classical concepts of pharmacology and helps to explain the properties of drugs acting 

as agonist, antagonist and inverse agonist, but the complete real situation cannot be 

reflected. 

1.1.3 Signal transduction 

1.1.3.1 G-protein mediated signal transduction 

The classical model of GPCR signaling is based on the ability of these receptors to act as 

ligand-activated guanine nucleotide exchange factors (GEFs) for heterotrimeric G-

proteins that transmit signals through the activation of intracellular effectors from the 

extracellular to the intracellular region.11 These G-proteins consist of a Gα-subunit and a 

Gβγ-heterodimer.40-41 The binding of the G-protein to the active conformation of the 

GPCR (either stabilized by an agonist or agonist-free considering constitutively active 

GPCRs) induces a conformational change of the G-protein and results in a rapid release 

of GDP from its binding site on the Gα-subunit and in the formation of the ternary 
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the Gαi family shows inverse effects, inhibiting the AC activity (AC 5 and AC 6). cAMP 

is derived from ATP and exerts various cellular effects such as activation of the protein 

kinase A (PKA) or the mitogen-activated protein kinase (MAPK) pathway, both 

modulating gene expression.48 For instance, PKA is a serine/threonine kinase that 

phosphorylates numerous substrate proteins such as the cAMP response element binding 

protein (CREB), affecting the gene transcription driven by the cAMP response element 

(CRE).49 Inactivation of cAMP, catalyzed through phosphodiesterases, leads to 

termination of the signal transduction. The Gαq family regulates phospholipase C activity 

(PLCβ) resulting in hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) into the 

second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Elevated 

IP3 levels promote the release of Ca2+-ions from the intracellular endoplasmatic reticulum 

into the cytosol.50 DAG and Ca2+-ions stimulate the proteinkinase C (PKC), thereby 

modulating the function of cellular proteins by phosphorylation.51 Finally, the Gα12 

family interacts with Ras homology GEFs (Rho-GEFs) that regulate cytoskeletal 

assembly.5,11 In addition to the Gα-subunit, the Gβγ-heterodimer can specifically regulate 

certain effectors like PLCβ and ion channels.47 

1.1.3.2 G-protein independent signaling, ββββ-arrestin and functional 

selectivity 

Although, the vast majority of GPCRs are able to transduce signals into cells through G-

protein coupling, recent work has indicated that GPCRs participate in numerous other 

protein-protein interactions which generate intracellular signals in conjunction with, or 

even independent of, G-protein activation. Protein-protein interactions which modulate 

GPCR signaling include GPCR dimerization (see 1.1.4), the interaction with receptor 

activity-modifying proteins (RAMPs) and the binding of various scaffolding proteins to 

GPCRs.11 Most compelling, the discovery that β-arrestins (arrestin 2 and 3) function as 

alternative transducers of GPCR signals has challenged the basic concept of GPCR 

signaling.11,52-53 Originally regarded as mediators of GPCR desensitization (through 

internalization into clathrin-coated pits),54-55 β-arrestins are ubiquitously expressed 

cellular regulatory proteins that are now recognized as true adapter proteins that transduce 

signals to multiple effector pathways such as MAPKs, SRC, nuclear factor κB (Nf-κB) 

and phosphatidylinositol 3-kinase (PI3K).56 Since arrestin binding uncouples GPCRs 
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1.1.4 GPCR oligomerization and bivalent ligands 

GPCRs have classically been assumed to exist and function as monomeric entities in a 

1:1:1 stoichiometry with the G-protein and the ligand. But over the last few decades the 

understanding of GPCR structure and function has been challenged by the discovery that 

GPCRs are able to form homo- and hetero-oligomeric complexes.83-85 Evidence of GPCR 

dimerization is provided by biochemical, biophysical and functional studies, for instance, 

by cross-linking, immunoblotting, co-immunoprecipitation and atomic force microscopy 

as well as fluorescence resonance energy transfer (FRET) and bioluminescence resonance 

energy transfer (BRET). The latter have been used to substantiate the occurrence of 

GPCR dimerization in living cells.84,86 For receptors, such as the tyrosine-kinase and the 

steroid-hormone receptor, constitutive or ligand-induced oligomerization has long been 

known as essential for signaling.87 Meanwhile, the existence of homodimers has also been 

demonstrated for several class A and C GPCRs including dopamine D2 and D3 

receptors,88-89 the β2-adrenoceptor,90 the 5-HT1D serotonin receptor,88 the histamine 

receptor subtypes,91-95 opioid receptors,96-98 the mGluRs99-100 and the Ca2+-sensing 

receptor.101 Besides homodimerization, there is growing evidence that heterodimerization 

can result in receptor complexes that have ligand-binding and signaling properties distinct 

from their constituent monomers.83 Distinct characteristics arising from hetero-

dimerization have been demonstrated for the κ- and δ-opioid receptors,98 the µ- and δ-

opioid receptors102 or the angiotensin AT1 and bradykinin B2 receptors.103 For class C 

GPCRs dimerization is essential for function, with the association of two identical or two 

distinct monomers being required to get a functional receptor, for example, 

GABAB1/GABAB2 is known as an obligate heterodimer.104 Although few is known about 

the physiological role of GPCR dimerization, recent findings indicate a pivotal role in 

receptor trafficking, signaling, pharmacology and internalization.84,105 Three sites could 

be involved in receptor-receptor interactions of GPCRs: extracellular loops, 

transmembrane helices and intracellular loops. These regions can interact via covalent 

bonds (e.g. disulfide bonds), non-covalent interactions (e.g. hydrophobic interactions 

between TM helices or coiled coil structures) or a combination of both. While for the 

majority of class C receptors, an intermolecular disulfide bond between the amino termini 

has been shown to be crucial,83 for class A receptors, the TM helices 1 and 4-6 are 

thought to be involved in oligomerization.106-108  
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Provided that oligomeric GPCRs have biological functions, oligomeric entities offer new 

opportunities for drug design by exploiting multivalency. Usually, the term “bivalent 

ligands” refers to molecules containing two sets of pharmacophoric entities linked 

through a spacer. However, in the broader sense bivalent ligands can be divided in 

molecules containing two sets of pharmacophoric groups or a single pharmacophore 

connected to a non-pharmacophoric recognition unit.109 The design of bivalent ligands 

requires the consideration of various general features including a suitable monomeric lead 

compound, an appropriate attachment point of the spacer and a spacer with suitable length 

and chemical composition.110-111 Different binding modes of bivalent ligands at the 

receptor(s) are imaginable (Figure 1.4). If the spacer is of sufficient length the ligand may 

bridge two neighboring receptors, each pharmacophoric moiety simultaneously 

interacting with the recognition sites of both protomers. For bivalent ligands with shorter 

linkers an accessory recognition site next to the orthosteric binding site of a single 

protomer is probable. In both cases, the ligand first binds in a univalent manner to the 

receptor. Thereby, the second pharmacophoric moiety of the bivalent ligand is arranged in 

closer proximity to the second binding site (neighboring protomer or accessory binding 

site) corresponding to a high local concentration of the second recognition unit. Bivalent 

ligands are thought to exhibit a greater potency than that corresponding to double 

concentration of a monovalent ligand.85,109 This concept has been studied for many 

GPCRs, for instance, for opioid receptors in more detail.112 The bivalent ligand approach 

has proven to be promising to improve not only potency and selectivity but also the 

pharmacokinetic profile of compounds.110,113-114 

There is evidence that GPCRs can form homo- and heterodimers, yet many of the most 

potent bivalent ligands have relatively short linking groups, suggesting that the 

compounds interact with neighboring binding sites on a single receptor (cf. Fig. 1.4 

A).113-114 This mechanism fits to the message-address concept proposed by Schwyzer,115 

in which the pharmacophore can be considered as the “message” that is recognized by a 

family of receptors and the second (non-)pharmacophoric entity is considered as the 

“address” conferring additional affinity. Another explanation to account for differences 

between monomeric and bivalent ligands involves the induction and stabilization of 

receptor dimerization, as dimerization plays an important role in the function of 

GPCRs.113 Finally, the affinity of bivalent ligands can also be influenced by cooperative 
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effects.85,109,116 For instance, the phenomenon that binding of one pharmacophoric moiety 

facilitates the binding of the second pharmacophore is te

Figure 1.4. Bivalent ligand binding to 

The bivalent ligand is believed to bind in a univalent manner before addressing the second binding site.
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drugs for decades. While H1R antagonists (“antihistamines”) are well established in the 

treatment of allergic disorders, H2R antagonists have been used as antiulcer drugs (“H2R 

blockers”).118 The identification of the presynaptic H3R as a new receptor subtype124-125 

gave rise to a new field of interest. The H3R is now regarded as a general regulatory 

system in the CNS and a potential target for new therapeutics.126 More recently, the use of 

genomic databases resulted in the identification of the fourth histamine receptor due to its 

homology with the H3R.127-128 The average sequence homology between the HR subtypes 

is relatively low (20 %) except for H3R and H4R, which share overall sequence homology 

as high as 37 %.119 

The histamine H1R is mainly expressed on smooth muscle cells, endothelial cells, cells of 

the immune system and the CNS.129 The human receptor represents a 487 amino acid 

protein that preferentially couples to the pertussis-toxin insensitive Gq/11-protein. Its 

stimulation affects the inositol phospholipid signaling system, resulting in the formation 

of IP3 and DAG (as explained in chapter 1.1.3.1), which yields in Ca2+-mobilization from 

intracellular stores and activation of protein kinase C.129-130 Most effort has been directed 

towards the development of H1R antagonists, whereas H1R agonists are useful as 

pharmacological tools rather than as drugs. The only H1R agonist used in therapy is 

betahistine (Aquamen®) for the treatment of Menière`s disease.131 Other H1R agonists like 

the histaprodifens represent valuable pharmacological tools to analyze H1R function in 

cellular and organ systems.132-134 The first generation H1R antagonists like mepyramine 

(Pyrilamine®), chlorpheniramine and promethazine (Prothazin®) have been 

therapeutically used for the treatment of allergic diseases since the 1940s.135 Currently, 

mepyramine is the most commonly used reference H1R antagonist for pharmacological 

studies. To reduce the sedative side effects, more polar antagonists that are no longer able 

to pass the blood brain barrier like cetirizine (Zyrtec®) and fexofenadine (Telfast®) were 

developed. These compounds belong to the non-sedating second generation of H1R 

antagonists and are still among the top selling drugs for the treatment of allergic 

disorders.  
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Figure 1.5. Structures of selected H1R ligands. 

A detailed description of the H2R is given in chapter 1.3. 

The histamine H3R was discovered by Schwartz and co-workers in 1983125 and firstly 

cloned in 1999.136 The hH3R consists of 445 amino acids and is mainly expressed in the 

CNS, where it acts as a presynaptic auto- and heteroreceptor controlling the release of 

histamine and various other neurotransmitters, including dopamine, serotonin, 

noradrenalin and acetylcholine.137-138 As such, the H3R is supposed to be involved in a 

multitude of CNS functions, like locomotor activity, wakefulness, food intake, 

thermoregulation and memory.91 Receptor activation leads to the recruitment of Gi/o-

proteins, which in turn lowers the cAMP level by inhibition of the adenylyl cyclase. In 

addition, a variety of other effector pathways can be activated including the activation of 
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MAPK, PI3K and phospholipase A2 (PLA2).
139-140 Up to now, no H3R ligand is on the 

drug market. However, the H3R has attracted interest as a potential drug target for the 

treatment of various disorders and diseases, including dementia, Alzheimer`s disease, 

narcolepsy, insomnia, attention deficit hyperactivity disorder, schizophrenia as well as for 

the treatment of myocardial ischemic arrythmias, migraine and inflammatory and gastric 

acid related diseases.140-145 Therefore, H3R agonists as well as antagonists and inverse 

agonists are needed and currently many compounds from different pharmaceutical 

companies are under clinical investigation.146 H3R antagonists can be divided into 

imidazole-containing antagonists such as thioperamide and clobenpropit and non-

imidazole antagonists, for example JNJ10181457,147 with improved drug-like properties 

and selectivity, in particular over the closely related H4R. Typical H3R agonists are Nα-

methylhistamine and (R)-α-methylhistamine148 as well as imetit149 and the H3R selective 

methimmepip,142 which are structurally less related to histamine. To increase the 

bioavailability and CNS permeability of the very polar (R)-α-methylhistamine more 

lipophilic azomethine prodrugs like BP 2-94 were successfully developed.150 

 

Figure 1.6. Structures of selected H3R ligands. 

Cloning of the H3R gene provided the basis for a fourth histamine receptor subtype.127-128 

The histamine H4R is mainly expressed in various cells of the immune system like mast 
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cells, basophils, eosinophils, T-lymphocytes and dendritic cells128,143 suggesting that it 

plays an important role in different inflammatory, autoimmune and allergic disorders.151 

Additionally, the H4R is also expressed in the CNS.152 The human receptor subtype 

consists of 390 amino acid and just as the H3R couples to Gi/o-proteins resulting in AC 

inhibition and activation of MAPKs.128,153 Little is known about the exact 

(patho)physiological roles of the H4R, but the activation of H4Rs has been shown to 

induce several responses closely associated to immune cells, e.g. chemotaxis, chemokine 

production and Ca2+-mobilization in mast cells, monocytes and eosinophils.143 Currently, 

drug research in the H4R field is focused on antagonists due to the prospect of new 

therapies for the treatment of inflammatory diseases. The blockade of the receptor by 

antagonists is considered a promising approach for the treatment of diseases like purities, 

asthma, inflammatory bowel disease or rheumatoid arthritis.154 The supposed role of the 

H4R in immunological responses overlaps with the function of the H1R, suggesting that 

combined H1- and H4-receptor ligands might be beneficial for the treatment of 

inflammatory diseases. On the other hand, selective agonists definitely represent valuable 

pharmacological tools for further investigations on the biological role of the H4R. Due to 

the high homology with the H3R, many H3R ligands also bind to the H4R, albeit with a 

different rank order of affinity and potency. In search for selective ligands for the latest 

histamine receptor subtype, many GPCR ligands were pharmacologically studied 

resulting in the identification of numerous ligands from different structural classes.143 The 

first selective H4R agonists were OUP-16, a chiral tetrahydrofuran analog,155 and later 5-

methylhistamine (also referred to as 4-methylhistamine), which was originally considered 

as a selective H2R agonist. Very recently, highly potent and selective cyanoguanidine-

type H4R agonists such as UR-PI376 were successfully developed in our working 

group.117,143,156 Interestingly, thioperamide is not only an inverse H3R agonist, but also 

acts as a highly active inverse H4R agonist.128,153,157 Meanwhile, selective H4R antagonists 

such as the indole-2-carboxamide JNJ7777120158 and different 2-aminopyrimidines159 

have been developed. Most notably, JNJ7777120 is a valuable pharmacological tool and 

has already been employed in several animal models to study the biological function of 

the H4R.160-162 However, the investigation of the biological role of the H4R in animal 

models is hampered by species-dependent discrepancies regarding receptor selectivity, 

potencies and even by opposite qualities of action of the available pharmacological 

tools.143,163 
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Figure 1.7. Structures of selected H4R ligands. 

 

1.3 The histamine H2 receptor and its ligands 

The histamine H2R was pharmacologically characterized by Black et al. in 1972 using the 

first H2R antagonist burimamide.164 Contrary to the classical antihistamines, burimamide 

was able to block the histamine mediated gastric acid secretion and positive chronotropic 

effect on the heart. In 1991, Gantz and coworkers cloned human and canine H2Rs.122-123 

The human H2R consists of 359 amino acids and couples to the Gs-protein, resulting in 

increased cAMP levels via activation of the adenylyl cyclase.118,165-166 As explained in 

section 1.1.3.1, cAMP can activate protein kinases which phosphorylate regulatory 

proteins, leading, for instance, to an influx and intracellular mobilization of Ca2+ in 

cardiac myocytes (Figure 1.8). Besides the phosphodiesterase-catalyzed inactivation of 

cAMP, the cAMP response attenuates after minutes due to agonists-mediated receptor 

desensitization and internalization of the receptor.167-168 It is demonstrated that β-arrestin, 

dynamin (a 100 kDa GTPase) and clathrin are involved in H2R internalization and its 

rapid recycling to the cell surface.167 In several systems, the H2R also couples to the Gq-

protein resulting in PLC stimulation.169-170 Thus, the activity of the H2R results from a 

regulated balance among the diverse mechanism of receptor signaling and trafficking.  
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Figure 1.8. H2R mediated signaling;
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decades.118 The search for H2R antagonists as drugs for the treatment of gastric and 

duodenal ulcer started with burimamide,164 the first selective H2R antagonist and resulted 

in the development of cimetidine (Tagamet®) and its introduction into the clinic about 35 

years ago. Very fast, cimetidine and other H2R blockers such as famotidine (Pepdul®) and 

ranitidine (Zantic®) became blockbuster drugs.118,180 In addition to the marketed drugs (in 

Germany: cimetidine, ranitidine, nizatidine, famotidine, roxatidine acetate), numerous 

structurally diverse highly active H2R antagonists are known, for example, tiotidine and 

aminopotentidine, which are used as pharmacological tools. Very recently, a new series 

of H2R antagonists was developed in our working group, replacing the cyanoguanidine 

group of potentidine-related piperidinomethylphenoxyalkylamines by squaramides. 

Additional coupling with ω-aminoalkyl spacers allows for labeling reactions or bivalent 

ligand construction (cf. UR-DE96, Fig. 1.9).181 

 

Figure 1.9. Structures of selected H2R antagonists.   

Whereas H2R antagonists became standard drugs for the treatment of gastric and 

duodenal ulcers,180,182 H2R agonists are mainly used as pharmacological tools to study the 

physiological and pathophysiological role of this histamine receptor. Nevertheless, H2R 

agonists are of potential therapeutic value as positive inotropic vasodilators for the 
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treatment of acute congestive heart failure,183 as anti-inflammatory agents,184-185 or as 

differentiation-inducing agents in acute myelogenous leukemia (AML).176 Actually, 

histamine dihydrochloride (Ceplene®) is administered in conjunction with low doses of 

immune-activating cytokine interleukin-2 (IL-2) in the post-remission phase of AML. 

Given that the effect of histamine is mediated via the H2R, new selective H2R agonists 

with suitable pharmacokinetic properties for in vivo applications are promising drug 

candidates. Compared to the amine-type H2R agonists (histamine, dimaprit, amthamine), 

guanidine-type compounds (impromidine,186-187 arpromidine188-190) are much more potent. 

At the guinea pig right atrium, these compounds show up to 400 times the potency of 

histamine. The binding site of histamine in the H2R was identified by molecular modeling 

approaches and in vitro mutagenesis studies. Hence, histamine probably binds in its Nπ-

tautomeric form to the receptor by forming H-bonds with Asp-186 and Tyr-182 in TM5 

and the protonated primary amino group interacts with the highly conserved Asp-98 in 

TM3 (cf. Figure 1.11 B).191-192 As an alternative to Tyr-182, Thr-190 is discussed to 

participate in ligand binding.193-194 The interaction of guanidine-type agonists may be 

interpreted by analogy with this model: the strongly basic guanidino group (pKa ≈ 13), 

considered a mimic of the primary amino group in histamine, is essential for the H2R 

agonistic activity of guanidine-type compounds, but is also responsible for very low oral 

bioavailability and lack of CNS penetration.191 In principle, this problem can be solved by 

prodrug strategies as demonstrated by the introduction of alkoxycarbonyl groups at the 

guanidine group.195 Though, such derivatives were not active until ester cleavage and 

decarboxylation, and centrally active H2R agonists could not be obtained following this 

approach.  

Major progress in the development of orally active non-prodrug H2R agonists was 

achieved with the bioisosteric exchange of the guanidine by an acylguanidine moiety, 

resulting in NG-acylated imidazolylpropylguanidines (e.g. UR-AK24, Fig. 1.10), a new 

class of potent H2R agonists with substantially reduced basicity (by 4-5 orders of 

magnitude). In vivo studies confirmed that the reduced basicity results in absorption from 

the gastrointestinal tract and penetration across the blood brain barrier.191 Unfortunately, 

the selectivity of NG-acylated imidazolylpropylguanidines for the H2R turned out to be 

poor, in particular versus H3R and H4R. This drawback appears to depend on the 

“privileged” imidazole moiety. Therefore, the bioisosteric replacement of the imidazole 

ring is the key to improve the selectivity for the H2R. The 2-amino-4-methylthiazol-5-yl 
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moiety is a bioisostere of the imidazole ring in the moderately potent H2R-selective 

amthamine, a thiazole analog of histamine and a cyclic analog of dimaprit. Amthamine is 

a full H2R agonist with slightly higher potency than histamine at the isolated guinea pig 

right atrium196-197 and most notably, it is devoid of histamine H1R, H3R and H4R 

stimulatory activities at relevant concentrations.198-199 Very recently, supported by 

docking studies (cf. Figure 1.11 A), this bioisosteric approach was successfully applied to 

acylguanidine-type H2R agonists. The bioisosteric replacement of the imidazole ring in 

NG-acylated imidazolylpropylguanidines by a 2-aminothiazol-5-yl moiety resulted in 

potent H2R agonists with much greater selectivity for the human H2R over H3 and H4 

receptors.192 Thus, NG-acylated aminothiazolylpropylguanidines (e.g. UR-PG278, Fig. 

1.10) combine the high selectivity for the H2R with improved pharmacokinetic properties, 

resulting in valuable pharmacological tools to evaluate the physiological role of H2Rs, for 

instance, in the CNS, and are promising starting points for the development of 

compounds suitable for in vivo application. 

 

Figure 1.10. Structures of selected H2R agonists. 
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Figure 1.11. A: Model of the gpH2R binding 

site for UR-PG278 with illustration of side 

chains and Cα atoms of all amino acids 

within 3 Å around the ligand and, 

additionally, the putative toggle switch Trp-

247. The backbone and the C atoms of the 

amino acids are individually drawn in 

spectral colors: TM2 – orange, TM3 – 

yellow, e2 – cyan, TM5 – greenblue, TM6 – 

blue, TM7 – purple. All nitrogens – blue, 

oxygens – red, C and H atoms of the ligand 

– grey, Cα trace – lines, binding site Cα 

atoms and side chains – sticks, ligand – balls 

and sticks. Adapted from Kraus et al192 with 

permission from John Wiley and Sons, 

copyright 2009. B: Proposed binding mode 

of histamine at the H2R. 
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Chapter 2 

Scope and objectives 

 

Although numerous compounds were described as histamine H2 receptor (H2R) agonists 

decades ago, after discovery of the histamine H3 (H3R) and H4 receptors (H4R), the H2R 

selectivity of compounds such as 5-methylhistamine,1 dimaprit,2 impromidine3 or 

arpromidine4 turned out to be comprised.5-7 For instance, 5-methylhistamine is nowadays 

considered as selective for the H4R. Thus, new selective H2R agonists are needed as 

pharmacological tools to explore the (patho)physiological role of the H2R and as potential 

drug candidates, for instance, for the treatment of acute myelogenous leukemia. Recently, 

in search for H2R agonists derived from guanidine-type compounds, NG-acylated 

hetarylpropylguanidines were discovered in our laboratory as a new class of potent H2R 

agonists with considerably reduced basicity.6-7 Lowering the basicity resulted in improved 

pharmacokinetic properties such as oral bioavailability and CNS penetration.6 Moreover, 

these acylguanidines proved to be highly selective for the H2R, when the imidazole ring 

was replaced with a bioisosteric amino(methyl)thiazole moiety.7 

Based on these preceding proof-of-concept studies, this thesis aimed at novel NG-acylated 

3-(2-aminothiazol-5-yl)propylguanidines as potent and selective H2R agonists, which 

might be useful as pharmacological tools to evaluate the physiological role of H2Rs, for 

instance, in the CNS. The structure-activity relationships, the selectivity profiles and the 

contribution of the 4-methyl substituent in the thiazole ring should be discussed. 

As ligands containing two pharmacophoric entities should possess increased H2R 

agonistic potency8-10 and might be useful to investigate GPCR dimerization,11-12 the 

feasibility of the bivalent ligand approach to acylguanidine-type H2R agonists was 

intended to be evaluated by linking two hetarylpropylguanidines through dicarboxylic 

acids of different structure and length. In continuation to this approach, unsymmetrical 
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bivalent compounds bearing two different pharmacophoric moieties had to be designed, 

synthesized and pharmacologically investigated in order to elaborate structure-activity 

relationships with respect to the role and the interaction site of the second set of 

pharmacophoric groups. Herein, bivalent compounds with combined agonistic and 

antagonistic pharmacophores should be considered. 

 Figure 2.1. General structure of mono- and bivalent acylguanidine-type H2R agonists. 

In addition, as a prerequisite for the application of acylguanidine-type H2R agonists as 

pharmacological tools in cell based in vitro studies or future in vivo experiments, 

representative compounds should be examined with respect to their drug-like properties 

and toxic effects. For this purpose, selected compounds had to be investigated for 

hemolytic activity, cytotoxicity and plasma protein binding. 
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Chapter 3 

NG-Acylated 3-(2-aminothiazol-5-yl)propyl-

guanidines: towards selective histamine H2 

receptor agonists 

 

3.1 Introduction 

NG-Acylated imidazolylpropylguanidines (e.g. 

UR-AK24) developed in our workgroup are 

potent histamine H2R agonists, but lacking 

selectivity for the H2R, in particular versus H3 

and H4 receptors.1-3 Very recently, the 

bioisosteric replacement of the imidazole ring 

in the “privileged” imidazolylpropylguanidine 

moiety of acylguanidine-type H2R agonists by 

a 2-aminothiazol-5-yl group resulted in almost 

equipotent H2R agonists with much greater 

selectivity for the human H2R over H3 and H4 

receptors.4 Based on these preceding proof-of-

concept studies, the bioisosteric approach was 

continued, aiming at NG-acylated 3-(2-aminothiazol-5-yl)propylguanidines as potent and 

selective H2R agonists, which might be useful as pharmacological tools to evaluate the 

physiological role of H2Rs, for instance, in the CNS. The structure-activity relationships 

(SAR), the selectivity profiles and the contribution of the 4-methyl substituent in the 

thiazole ring will be discussed. 
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Figure 3.1. Bioisosteric replacement of the 

imidazole ring in NG-aclyated imidazolyl-

propylguanidines (e.g. UR-AK24) resulting in 

the title compounds with 2-aminothiazol-5-yl 

moiety. 
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3.2 Chemistry 

The preparation of the title compounds was preferentially performed according to the 

recently published procedures.4 The thiazolylpropylamines 3.13 and 3.14 were 

synthesized from thiourea and N-protected α-halo-ω-amino ketone 3.7 or aldehyde 3.8, 

respectively (Scheme 3.2). The amines 3.13 and 3.14 were treated with the isothiourea 

derivative 3.3,5-7 a well established guanidinylating reagent, in the presence of HgCl2. 

Hereby, the metal ion acts as a desulfurizing agent via complex formation.8-9 After 

hydrogenolytic cleavage of the Cbz-protecting group, the Boc-protected aminothiazolyl-

propylguanidine building blocks 3.17 and 3.18 were ready for NG-acylation, which can be 

achieved by the aid of peptide coupling reagents, such as EDAC or CDI, or using 

anhydrides, acid chlorides and active esters. 

 
Scheme 3.1. Synthesis of N-tert-butoxycarbonyl-N´-benzyloxycarbonyl-S-methylisothiourea (3.3). 

Reagents and conditions: (i) MeI (1 eq), MeOH, 1h, reflux; (ii) (Boc)2O (1 eq), NEt3 (1 eq), DCM/abs, 

overnight, rt; (iii) CbzOSu (1 eq), DCM/abs, 20 h, rt. 
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Scheme 3.2. General procedure for the preparation of the Boc-protected aminothiazolylpropylguanidines 

3.17 and 3.18. Reagents and conditions: (i) phthalic anhydride (1 eq), 3 h, 80-100 °C; (ii) (COCl)2 (1.25 

eq), DMSO (2.65 eq), NEt3 (5.5 eq), DCM/abs, -50 °C, 45 min; (iii) phthalimide (0.5 eq), K2CO3 (0.75 eq), 

DMF, 24 h, 80 °C; (iv) Br2 (1 eq), dioxane, DCM/abs, 1 h, rt; (v) thiourea (1 eq), DMF, 3 h, 100 °C; (vi) 

(Boc)2O (1.08 eq), NEt3 (1.16 eq), DMAP (cat.), CHCl3, overnight, rt; (vii) N2H4·H2O (5 eq), EtOH, 

overnight, rt; (viii) 3.3 (1 eq), HgCl2 (2 eq), NEt3 (3 eq), DCM/abs, 48 h, rt; (ix) H2, Pd/C (10 %), 

MeOH/THF (1:1), 8 bar, 3-4 d, rt. 

The synthetic strategies aimed at compounds of high purity on the low mg scale rather 

than at optimization of yields and synthetic routes. In this study, the guanidine building 

blocks 3.17 and 3.18 were coupled to commercially available and recently synthesized 

carboxylic acids using EDAC, HOBt and DIEA as coupling reagents as well as to 

pentanoyl and nonanoyl chloride. The resulting NG-acylated di-Boc-protected 

aminothiazolylpropylguanidines 3.19a-3.55a were deprotected using trifluoroacetic acid 

and purified by preparative RP-HPLC to yield the acylguanidines 3.19-3.55 as TFA salts 

with purities > 95 %.  

The required carboxylic acids were mainly synthesized from commercially available or 

synthesized ketons according to standard procedures, including Horner-Wadsworth-
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Emmons reaction with triethyl phosphonoacetate and hydrogenation of benzene rings 

over Rh/Al2O3 or Rh/C catalyst.1,4,10-11 

 

Compd. R R1 R2 R3 n Compd. R R1 R2 R3 n 

3.19a, 319 CH3 H H H 0 3.38a, 3.38 H Ph cHex - 1 

3.20a, 3.20 CH3 H H CH3 1 3.39a, 3.39 H CH3 H Ph 0 

3.21a, 3.21 CH3 H H CH3 5 3.40a, 3.40 H CH2CH3 H Ph 0 

3.22a, 3.22 CH3 - Ph - 0 3.41a, 3.41 H H CH3 4-Me-Ph 0 

3.23a, 3.23 CH3 H Ph - 1 3.42a, 3.42 H H H 4-OH-Ph 0 

3.24a, 3.24 CH3 H H Ph 0 3.43a, 3.43 H H (CH2)3NH2 Ph 0 

3.25a, 3.25 CH3 H H Ph 1 3.44a, 3.44 H H CH3 Ph 1 

3.26a, 3.26 CH3 H H Ph 2 3.45a, 3.45 H H CH3 3-OMe-Ph 1 

3.27a, 3.27 CH3 H H Ph 3 3.46a, 3.46 H H CH3 4-OMe-Ph 1 

3.28a, 3.28 CH3 H Ph Ph 0 3.47a, 3.47 H - cHex - 1 

3.29a, 3.29 CH3 - cHex - 0 3.48a, 3.48 H H H cHex 0 

3.30a, 3.30 CH3 H cHex - 1 3.49a, 3.49 H H H cHex 1 

3.31a, 3.31 CH3 H H NH2 8 3.50a, 3.50 H H CH2CH(CH3)2 cHex 0 

3.32a, 3.32 H H H H 0 3.51a, 3.51 H H CH3 cHex 1 

3.33a, 3.33 H H H CH3 1 3.52a, 3.52 H H CH2CH3 cHex 1 

3.34a, 3.34 H H H CH3 5 3.53a, 3.53 H H H NH2 3 

3.35a, 3.35 H H H CH3 15 3.54a, 3.54 H H H NH2 8 

3.36a,3.36 H H H Ph 1 3.55a, 3.55 H H H SCOCH3 3 

3.37a, 3.37 H H H Ph 2       
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Scheme 3.3. General procedure for the coupling of the building blocks 3.17 and 3.18, respectively, with 

various carboxylic acids. Reagents and conditions: (i) for 3.19a, 3.22a-3.32a and 3.35a-3.55a: EDAC (1 

eq), HOBt (1 eq), DIEA (1 eq), DCM/abs, 16 h, rt; for 3.20a, 3.21a, 3.33a and 3.34a: pertinent acid 

chloride (1 eq), NEt3 (1 eq), DCM/abs, 20 h, rt; (ii) 20 % TFA, DCM/abs, 3-5 h, rt.  

Compound 3.56 with a free thiol group was conveniently synthesized from 3.55 by 

cleavage of the thioester group under basic conditions followed by separation with 

preparative RP-HPLC. 

 

Scheme 3.4. Synthesis of 3.56. Reagents and conditions: (i) 1N NaOH, MeCN, 30 min, rt. 

As depicted in Scheme 3.5, the free amino groups in compounds 3.31, 3.53 and 3.71 

(methylated analog of 3.43, UR-AK466)4,10 were acylated by stirring with the pertinent 

succinimidyl ester for a few hours at room temperature affording the compounds 3.57, 

3.59 and 3.61-3.63. In addition, the fluorescent compounds 3.58 and 3.60 were 

synthesized from the amines 3.31 and 3.71, respectively, and the pyrylium dye py-1 by 

ring transformation within one hour at room temperature. Due to the ring transformation, 

resulting in positively charged pyridinium compounds, the absorption maximum is shifted 

from about 600 nm to 500 nm.12 This is visible by change in color from dark blue to red 

(“chameleon dye”). All labeled compounds were purified by preparative RP-HPLC. 
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Scheme 3.5. General procedure for the preparation of compounds 3.57-3.63. Reagents and conditions: (i) 

for 3.57 and 3.63: succinimidyl 4-F-benzoate (0.8 eq), NEt3 (3 eq), MeCN, 4-5 h, rt; for 3.59 and 3.62: 

succinimidyl propionate (0.8 eq), NEt3 (3 eq), MeCN, 4-5 h, rt; (ii) py-1 (0.4 eq), NEt3 (3 eq), MeCN, 

DMF, 1h, rt; (iii) succinimidyl ester of the cyanine dye S0586 (0.5 eq), NEt3 (3 eq), MeCN, DMF, 20 h, rt. 

Finally, deprotection of the building blocks 3.17 and 3.18 under acidic conditions resulted 

in 3-(2-amino-4-methylthiazol-5-ylpropyl)guanidine 3.64 and 3-(2-aminothiazol-5-

ylpropyl)guanidine 3.65, respectively. 

 
Scheme 3.6. Synthesis of the 2-aminothiazolylpropylguanidines 3.64 and 3.65. Reaction and conditions: (i) 

20 % TFA, DCM/abs, 3 h, rt. 
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3.3 Pharmacological results and discussion 

In addition to the newly synthesized NG-acylated 3-(2-amino-4-methylthiazol-5-

yl)propylguanidines 3.19-3.31 and 3.57-3.61 and NG-acylated 3-(2-aminothiazol-5-yl)-

propylguanidines 3.32-3.56, 3.62 and 3.63, previously prepared NG-acylated amino-

thiazolylpropylguanidines are included in this section to a more comprehensive overview 

of the structure-activity relationships of this class of compounds. All investigated 

compounds are listed in Table 3.1.  

Table 3.1. Structural overview of investigated NG-acylated aminothiazolylpropylguanidines. 

 

Compd. 
R1 Compd. 

R1 

R = CH3 R = H R = CH3 R = H 

3.19 3.32 
 

3.29  
 

3.20 3.33 
 

3.30 3.47 
 

3.21 3.34 
 

 3.48 
 

 3.35 
 

 3.49 
 

3.22  
 

3.75a 3.84a 

 

3.23  
 

3.76a  
 

3.24 3.80a 

 
3.77a 3.85a 

 

3.25 3.36 
 

 3.50 

 

3.26 3.37 
 

3.78a 3.51 
 

3.27  
 

3.79a 3.52 
 

 3.38 

 

 3.53 
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Table 3.1. (continued)    

3.66a 3.39 
 

3.31 3.54 
 

3.67a 3.40 
 

 3.55 
 

 3.81a 

 
 3.56 

 

3.68a 3.82a 

 

3.57b  

 

3.28 3.83a 

 

3.58b  

 

3.69a 3.41 
 

3.59  
 

3.70a 3.42 
 

3.60b  
 

3.71a 3.43 

 

3.61b  
 

3.72a 3.44 
 

 3.62 
 

3.73a 3.45 

 

 3.63 

 

3.74a 3.46 
 

3.64 3.65 - 

a Compounds 3.66-3.85 were provided by Dr. A. Kraus. For experimental data see Ref.4,10 b For full 
chemical structure see Scheme 3.5. 

The acylguanidines, structurally related compounds (3.64, 3.65) and reference substances 

were investigated for H2R agonism in the steady-state GTPase assay using membrane 

preparations of Sf9 insect cells expressing human (h) or guinea pig (gp) H2R-GsαS fusion 

proteins, measuring the enzymatic hydrolysis of radioactively labeled [γ-32P]GTP or [γ-
33P]GTP, respectively, induced by H2R-mediated G-protein activation (Table 3.2).13 

Additionally, selected compounds were investigated at the spontaneously beating gp right 

atrium as a pharmacological standard model for the characterization of H2R ligands, 

determining the positive chronotropic response versus histamine as reference compound 

(Table 3.3).14 To study receptor selectivity, representative compounds were investigated 

in GTPase assays at recombinant human histamine H1, H3 and H4 receptors (Table 3.4), 

using membrane preparations of Sf9 insect cells expressing the hH1R plus RGS4, the 
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hH3R plus Gαi2 plus Gβ1γ2 plus RGS4 and the hH4R-RGS19 fusion protein plus Gαi2 plus 

Gβ1γ2. The major advantage of the well-proven test system applied in this study is that an 

identical, very proximal read-out in G-protein-mediated signaling is used for any given 

HR subtype, namely, steady-state GTP hydrolysis. This read-out avoids bias in data 

interpretation caused by limited availability of downstream effectors. 

3.3.1 Histamine H2 receptor agonism 

3.3.1.1 H2R agonism at human and guinea pig H2R fusion proteins in the 

GTPase assay 

All investigated NG-acylated aminothiazolylpropylguanidines proved to be partial or full 

agonists in the GTPase assay at hH2R-GsαS and gpH2R-GsαS fusion proteins expressed in 

Sf9 insect cells (Table 3.2). The most potent H2R agonists of this series surpassed the 

potency of histamine about 100 and 400 times at hH2R-GsαS and gpH2R-GsαS, 

respectively. Comparison of the activities of 3.64 and 3.65 with the NG-acylated 

compounds clearly demonstrated that the H2R agonistic potency is strongly dependent on 

the structure of the acyl substituent (cf. R1 in Table 3.1). This confirms previous 

observations from guanidine-type H2R agonists revealing that the hetarylpropylguanidine 

part is crucial for H2R agonism, whereas the substituent at the NG-nitrogen is necessary as 

affinity-conferring moiety.15-16 

2-Aminothiazoles lacking the 4-methyl group (3.32-3.34, 3.36-3.37, 3.39-3.47, 3.51-3.52, 

3.54, 3.65, 3.80 and 3.82-3.85) showed slightly lower potencies and similar or slightly 

higher efficacies than their corresponding methylated analogs (3.19-3.21, 3.24-3.26, 3.28, 

3.30-3.31, 3.64, 3.66-3.75 and 3.77-3.79). In contrast to the thiazolylethylamine 

amthamine,17 the introduction of a methyl group at position 4 of the thiazole ring did not 

generally increase the agonistic activity of the acylguanidine-type H2R ligands. Thus, the 

methyl group is not necessary for H2R agonistic activity. On the other hand, the 4-methyl 

group may be beneficial in terms of toxicity. Recently, strong evidence was arising 

concerning a toxic potential of 2-aminothiazoles due to bioactivation of the heterocycle 

resulting in electrophilic intermediates capable of binding to proteins covalently.18-19 

In accordance to the structure-activity relationships of NG-acylated imidazolylpropyl-

guanidines,1 the replacement of a phenyl with a cyclohexyl ring resulted mostly in higher 
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potencies and efficacies at hH2R-GsαS and gpH2R-GsαS, for example, 3.29 versus 3.22, 

3.30 versus 3.23, 3.84 versus 3.83 and 3.85 versus 3.82. The agonistic activity was 

strongly affected by the chain between carbonyl group and phenyl or cyclohexyl ring, 

respectively: compounds with a two- to three-membered carbon chain (3.25, 3.26; 3.36, 

3.37; 3.48, 3.49) were most potent at both hH2R-GsαS (pEC50 values ≤ 7.83) and gpH2R-

GsαS (pEC50 values ≤ 8.13). While methyl substituents in α- or β-position to the carbonyl 

group in 3-phenyl- and 3-cylohexylpropanoyl compounds were well tolerated, the 

introduction of more bulky side chains reduced potencies and efficacies on both receptors 

(3.28, 3.40, 3.50, 3.67, 3.68, 3.76, 3.77, 3.82, 3.83 and 3.85). Introduction of a para 

hydroxy group at the aromatic ring of the 3-phenylpropanoyl analogs (3.24 → 3.70; 3.80 

→ 3.42) resulted in decreased potencies but increased efficacies at hH2R-GsαS and 

gpH2R-GsαS. Compounds 3.42 and 3.70 were nearly full agonists at hH2R-GsαS (Emax > 

0.86) and gpH2R-GsαS (Emax > 0.89), respectively. Notably, for compound 3.42 the 

preference for the recombinant gpH2R relative to the hH2R diminished significantly. The 

3-methyl-4-phenylbutanoyl compounds (3.72, 3.44) exhibited nearly the same efficacies 

as the 4-phenylbutanoyl derivatives (3.26, 3.37) but had significantly lower potencies. 

The introduction of meta or para methoxy substituents, respectively, was well tolerated, 

whereas the meta substitution was slightly favored (3.73 vs. 3.74, 3.45 vs. 3.46). 

Moreover, the branched 2-cyclohexyl-2-phenylacetyl residue in compound 3.38 caused a 

complete loss of agonistic activity at the hH2R-GsαS. Thus, hydrophobic properties of the 

acyl residue as well as sterical factors proved to play an important role in ligand - H2R 

interaction.  

Concerning guanidines bearing simple NG-alkanoyl substituents, compounds 3.20 and 

3.33 with a pentanoyl residue showed moderate H2R agonistic activity at both hH2R-GsαS 

and gpH2R-GsαS fusion proteins. Shortening (3.19, 3.32) and elongation (3.21, 3.34, 

3.35) of the carbon chain resulted in considerably reduced potencies or a complete loss of 

agonistic activity at the hH2R-GsαS (3.35). Introduction of a thiol group in the side chain 

(3.56) resulted in decreased potency, whereas the maximal reponse at the gpH2R-GsαS 

was drastically increased. Compound 3.55, the acetic acid thioester of 3.56, was 7-fold 

more potent at hH2R-GsαS and gpH2R-GsαS. Most notably, the 11-aminoundecanoyl 

guanidines 3.31 and 3.54 were potent H2R agonists with up to 45 and 230 times higher 

potencies than histamine at hH2R-GsαS and gpH2R-GsαS, respectively. Comparison of the 

agonistic potency of 3.54 with the 6-aminohexanoyl guanidine 3.53 and the alkanoyl 
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guanidines 3.32-3.35 suggested that the increase in potency resulted from the additional 

basic group at appropriate distance to the pharmacophore and that the contribution of the 

hydrophobic alkyl linker was rather low (cf. Figure 3.4). Notably, masking of the basic 

amino group in 3.31 by propionylation (3.59) resulted in a decrease in potency by a factor 

of 2-3 at both receptors, whereas efficacies were not affected.  
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Figure 3.2. Effects of 3.32-3.34, 3.53 and 3.54 on the GTPase activity. Mean values ± SEM of 

representative experiments performed in duplicate in membranes expressing hH2R-GsαS (A) and gpH2R-

GsαS (B). Data are expressed as percentage change in GTPase activity relative to the effect induced by 

histamine (100 µM) = 100 %. 

In principle, a free amino group in the acyl residue of the molecules allows for convenient 

fluorescence and radio labeling. Recently, such an approach was developed in our 

workgroup for the labeling of argininamide-type neuropeptide Y (NPY) Y1 receptor 

antagonists.20 In those NPY receptor ligands, space-filling acyl moieties attached to the 

guanidine group were tolerated without drastic decrease in activity. Therefore, 

prototypical compounds were synthesized to explore the applicability of this labeling 

strategy to acylguanidine-type radiotracers and fluorescent ligands for the H2R. The free 

amino groups in compounds 3.31, 3.53 and 3.71 were acylated with the “cold” versions of 

succinimidyl propionate (3.31 → 3.59, 3.53 → 3.62) or 4-F-benzoate (3.53 → 3.63, 3.71 

→ 3.57) or the succinimidyl ester of the cyanine dye S0586 (3.31 → 3.61). In addition, 

3.31 and 3.71 were derivatized with the fluorescent pyrylium dye py-1 (3.31 → 3.60, 3.71 

→ 3.58).  
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Table 3.2. Potencies and efficacies of NG-acylated aminothiazolylpropylguanidines at hH2R-GsαS and 

gpH2R-GsαS fusion proteins in the steady-state GTPase assay.a 

Compd. 

hH2R-GsαS gpH2R-GsαS EC50 (hH2R-

GsαS) / EC50 

(gpH2R-GsαS) 
pEC50 ± SEM Emax ± SEM Potrel pEC50 ± SEM Emax ± SEM Potrel 

His13 5.90 ± 0.09 1.00 1.0 5.92 ± 0.09 1.00 1.0 1.05 

Amt 13 6.72 ± 0.10 0.91 ± 0.02 6.6 6.72 ± 0.09 1.04 ± 0.01 6.3 1.00 

3.64 6.01 ± 0.05 0.32 ± 0.0 1.3 6.37 ± 0.07 0.76 ± 0.02 2.8 2.19 

3.65 5.48 ± 0.02 0.34 ± 0.03 0.4 5.91 ± 0.11 0.69 ± 0.05 1.0 2.57 

3.19 5.83 ± 0.27 0.62 ± 0.04 0.9 6.71 ± 0.02 0.91 ± 0.03 6.2 7.24 

3.20 7.06 ± 0.03 0.69 ± 0.03 14.5 7.54 ± 0.01 0.82 ± 0.02 41.7 2.88 

3.21 7.02 ± 0.15 0.52 ± 0.07 13.2 7.46 ± 0.29 0.69 ± 0.06 34.7 2.63 

3.22 5.83 ± 0.04 0.56 ± 0.02 0.9 6.52 ± 0.14 0.80 ± 0.06 4.0 4.68 

3.23 7.02 ± 0.03 0.68 ± 0.01 13.2 7.67 ± 0.33 0.79 ± 0.01 56.2 4.27 

3.24 7.69 ± 0.13 0.77 ± 0.02 61.7 8.13 ± 0.05 0.76 ± 0.02 162.2 2.63 

3.25 7.83 ± 0.10 0.66 ± 0.04 85.1 8.08 ± 0.20 0.80 ± 0.09 144.5 1.70 

3.26 7.66 ± 0.16 0.63 ± 0.02 57.5 7.86 ± 0.06 0.68 ± 0.07 87.1 1.51 

3.27 7.54 ± 0.14 0.49 ± 0.01 43.7 7.92 ± 0.24 0.46 ± 0.02 100.0 2.29 

3.66 7.82 ± 0.17 0.75 ± 0.03 83.2 8.55 ± 0.07 0.76 ± 0.08 426.6 5.13 

3.67 7.38 ± 0.20 0.49 ± 0.01 30.2 8.14 ± 0.11 0.68 ± 0.06 166.0 5.50 

3.68 7.70 ± 0.07 0.52 ± 0.04 63.1 8.44 ± 0.09 0.85 ± 0.09 331.1 5.25 

3.28 7.04 ± 0.07 0.45 ± 0.04 13.8 7.98 ± 0.18 0.84 ± 0.02 114.8 8.32 

3.69 7.56 ± 0.24 0.75 ± 0.07 45.7 8.16 ± 0.23 0.73 ± 0.07 173.8 3.80 

3.70 7.52 ± 0.03 0.86 ± 0.02 41.7 8.07 ± 0.24 0.88 ± 0.07 141.3 3.39 

3.71 6.83 ± 0.04 0.66 ± 0.04 8.5 8.16 ± 0.32 1.03 ± 0.11 173.8 20.42 

3.72 7.39 ± 0.02 0.63 ± 0.03 30.9 7.59 ± 0.32 0.73 ± 0.03 46.8 1.51 

3.73 7.44 ± 0.19 0.69 ± 0.03 34.7 7.87 ± 0.17 0.66 ± 0.02 89.1 2.57 

3.74 7.12 ± 0.07 0.48 ± 0.01 16.6 7.56 ± 0.19 0.50 ± 0.05 43.7 2.63 

3.29 7.29 ± 0.10 0.72 ± 0.01 24.6 7.80 ± 0.22 0.78 ± 0.06 75.9 3.09 

3.30 7.31 ± 0.04 0.71 ± 0.08 25.7 7.78 ± 0.23 0.83 ± 0.09 72.4 2.82 

3.75 7.88 ± 0.16 0.62 ± 0.03 95.5 8.18 ± 0.23 0.54 ± 0.13 182.0 1.91 

3.76 7.42 ± 0.03 0.20 ± 0.01 33.1 7.76 ± 0.16 0.52 ± 0.05 69.2 2.09 

3.77 7.83 ± 0.01 0.64 ± 0.02 85.1 8.10 ± 0.11 0.82 ± 0.02 151.4 1.78 

3.78 7.61 ± 0.03 0.42 ± 0.03 51.3 7.85 ± 0.16 0.62 ± 0.04 45.7 0.89 

3.79 7.99 ± 0.13 0.19 ± 0.02 123.0 8.37 ± 0.10 0.41 ± 0.01 281.8 2.29 

3.31 7.45 ± 0.14 0.66 ± 0.07 35.5 8.00 ± 0.09 0.86 ± 0.03 120.2 3.39 

3.57 6.51 ± 0.17 0.47 ± 0.01 4.1 6.60 ± 0.10 0.57 ± 0.01 4.8 1.17 

3.58 6.27 ± 0.09 0.42 ± 0.07 2.4 6.53 ± 0.03 0.82 ± 0.02 4.1 1.74 

3.59 7.09 ± 0.01 0.63 ± 0.04 15.5 7.58 ± 0.10 0.91 ± 0.06 45.7 2.95 
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Table 3.2. (continued)      

3.60 6.95 0.49 11.2 7.19 ± 0.07 0.52 ± 0.07 18.6 1.66 

3.61 5.52 0.46 0.4 5.46 0.32 0.4 0.83 

3.32 6.44 ± 0.06 0.76 ± 0.04 3.5 6.90 0.85 9.6 2.75 

3.33 6.82 ± 0.02 0.73 ± 0.01 8.3 7.28 ± 0.01 0.82 ± 0.04 22.9 2.75 

3.34 7.11 ± 0.06 0.59 ± 0.01 16.2 7.36 ± 0.05 0.83 ± 0.02 27.5 1.70 

3.35 (- - -)b 5.43 ± 0.17 0.39 ± 0.07 0.3 - 

3.80 7.63 ± 0.03 0.82 ± 0.02 53.7 8.01 ± 0.15 0.80 ± 0.18 123.0 2.29 

3.36 7.17 ± 0.05 0.75 ± 0.01 18.6 7.50 ± 0.03 0.92 ± 0.01 38.0 2.04 

3.37 7.25 ± 0.03 0.66 ± 0.02 22.4 7.55 ± 0.0 0.82 ± 0.01 42.7 1.91 

3.38 (- - -)b 6.41 ± 0.02 0.33 ± 0.01 3.1 - 

3.39 7.41 ± 0.04 0.77 ± 0.02 32.4 7.87 ± 0.02 0.91 ± 0.02 89.1 2.75 

3.40 7.12 ± 0.0 0.51 ± 0.01 16.6 7.31 ± 0.03 0.74 ± 0.05 24.6 1.48 

3.81 7.57 ± 0.13 0.81 ± 0.07 46.8 8.21 ± 0.15 0.84 ± 0.04 195.0 4.17 

3.82 7.53 ± 0.09 0.67 ± 0.05 42.7 7.69 ± 0.20 0.87 ± 0.21 58.9 1.38 

3.83 7.33 ± 0.17 0.66 ± 0.05 26.9 8.15 ± 0.24 0.88 ± 0.06 169.8 6.31 

3.41 7.38 ± 0.18 0.74 ± 0.02 30.2 7.76 ± 0.21 1.00 ± 0.03 69.2 2.29 

3.42 7.46 ± 0.03 0.90 ± 0.04 36.3 7.45 ± 0.04 0.93 ± 0.02 33.9 0.93 

3.43 6.57 ± 0.07 0.52 ± 0.05 4.7 7.71 ± 0.11 0.91 ± 0.02 61.7 13.80 

3.44 7.10 ± 0.10 0.70 ± 0.03 15.9 7.23 ± 0.02 0.93 ± 0.01 20.4 1.29 

3.45 7.16 ± 0.06 0.69 ± 0.01 18.2 7.27 ± 0.07 0.87 ± 0.02 22.4 1.23 

3.46 7.09 ± 0.05 0.49 ± 0.02 15.5 7.13 ± 0.05 0.58 ± 0.02 16.2 1.05 

3.47 7.23 ± 0.01 0.73 ± 0.04 21.4 7.47 ± 0.01 0.99 ± 0.04 35.5 1.66 

3.48 7.65 ± 0.01 0.74 ± 0.01 56.2 8.09 ± 0.02 0.93 ± 0.01 147.9 2.63 

3.49 7.28 ± 0.09 0.56 ± 0.02 24.0 7.71 ± 0.24 0.80 ± 0.01 61.7 2.57 

3.84 7.70 ± 0.18 0.72 ± 0.07 63.1 7.97 ± 0.06 0.79 ± 0.11 112.2 1.78 

3.85 7.90 ± 0.13 0.68 ± 0.05 100.0 8.22 ± 0.33 0.88 ± 0.06 199.5 2.00 

3.50 7.47 ± 0.07 0.17 ± 0.01 37.2 7.31 ± 0.21 0.61 ± 0.02 24.6 0.66 

3.51 7.36 ± 0.03 0.49 ± 0.0 28.8 7.43 ± 0.22 0.72 ± 0.02 32.4 1.12 

3.52 7.26 ± 0.0 0.26 ± 0.02 22.9 7.36 ± 0.04 0.45 ± 0.01 27.5 1.20 

3.53 6.36 ± 0.28 0.42 ± 0.01 2.9 7.35 ± 0.05 0.79 ± 0.04 26.9 9.33 

3.54 7.55 ± 0.17 0.69 ± 0.01 44.7 8.29 ± 0.07 0.92 ± 0.02 234.4 5.25 

3.55 7.48 ± 0.13 0.75 ± 0.03 38.0 7.74 ± 0.12 0.85 ± 0.01 66.1 1.74 

3.56 6.64 ± 0.02 0.54 ± 0.11 5.5 6.86 ± 0.11 1.04 ± 0.05 8.7 1.58 

3.62 6.25 ± 0.06 0.74 ± 0.01 2.2 6.38 ± 0.01 0.76 ± 0.0 2.9 1.29 

3.63 7.00 ± 0.01 0.75 ± 0.02 12.6 7.36 ± 0.08 0.58 ± 0.07 27.5 2.29 
a Steady-state GTPase activity in Sf9 membranes expressing hH2R-GsαS and gpH2R-GsαS was determined as 
described under Pharmacological methods. Reaction mixtures contained ligands at concentrations from 1 
nM to 10 µM as appropriate to generate saturated concentration-response curves. Data were analyzed by 
nonlinear regression and were best fit to sigmoidal concentration-response curves. Typical basal GTPase 
activities ranged between ≈ 0.5 and 2.5 pmol.mg-1.min-1, and activities stimulated by histamine (100 µM) 
ranged between ≈ 2 and 13 pmol.mg-1.min-1. The efficacy (Emax) of histamine was determined by nonlinear 
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regression and was set to 1.0. The Emax values of other agonists were referred to this value. Data shown are 
means ± SEM of 1-4 independent experiments, each performed in duplicate. The relative potency of 
histamine was set to 1.0, and the potencies of other agonists were referred to this value. b No agonistic 
activity.  

Masking of the free amino groups with propionate or 4-F-benzoate, respectively, resulted 

in considerably decreased potencies (except for 3.63) at hH2R-GsαS and gpH2R-GsαS. 

Moreover, 3.61, coupled to the cyanine dye (S0586), showed only negligible activities at 

both recombinant H2Rs (pEC50 ≤ 5.5), whereas the py-labeled compounds 3.58 and 3.60 

retained weak to moderate H2R agonistic activities (pEC50 ≤ 7.2). Fluorescent H2R 

agonists should be useful pharmacological tools for studies on the cellular level, for 

example, to investigate receptor internalization. Unfortunately, the new fluorescence-

labeled compounds turned out to be inappropriate for confocal microscopy due to low 

specific binding (3.61) or receptor-independent diffusion through the cell membrane 

(3.58, 3.60). Thus, there is no universal recipe for labeling of GPCR ligands. The 

optimization of the structures for individual biological targets with respect to potency and 

physicochemical properties is indispensable. 

In accordance with previous results for alkylated and acylated imidazolylalkylguanidines, 

the aminothiazolylpropylguanidines described in this chapter exhibited higher potencies 

and efficacies at gpH2R-GsαS compared to hH2R-GsαS.
3-4,13,21 In particular, a free amino 

group (3.43, 3.53, 3.54 and 3.71) enhanced the preference for the gpH2R ortholog. Figure 

3.3 shows the comparison of potencies and efficacies of selected NG-acylated 

aminothiazolylpropylguanidines at hH2R-GsαS versus gpH2R-GsαS. Very recently, the 

highest ratio of EC50 values (EC50 (hH2R-GsαS)/ EC50 (gpH2R-GsαS)) was found for 

compound 3.71 with a 6-amino-3-phenylhexanoyl residue.4 The high species-dependent 

preference was confirmed for the corresponding unmethylated analog 3.43. These 

compounds exhibited moderate agonistic activities at hH2R-GsαS, but were 14-20 times 

more potent at gpH2R-GsαS and therefore exhibited the highest selectivity towards 

gpH2R-GsαS within this series of H2R agonists. Notably, derivatization of the free amino 

group diminished the preference for the gpH2R species ortholog, for example, 3.71 versus 

3.57 (ratio of EC50 values: 20.4 → 1.17) and 3.71 versus 3.58 (20.4 → 1.74). 
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Figure 3.3. Efficacies and potencies of selected title compounds (3.19-3.21, 3.23-3.26, 3.28-3.31, 3.39-

3.43, 3.51-3.55, 3.57, 3.58 and 3.71) at hH2R-GsαS in comparison with gpH2R-GsαS as determined in the 

steady-state GTPase assay. The dotted lines represent the line of identity. A:  Plot of efficacies at gpH2R-

GsαS vs. hH2R-GsαS. B: Plot of pEC50 at gpH2R-GsαS vs. hH2R-GsαS. 

3.3.1.2 H2R agonism on the isolated guinea pig right atrium 

In addition to the GTPase assay, selected compounds were investigated on the isolated 

spontaneously beating guinea pig right atrium as a more complex, well established 

standard model for the characterization of H2R ligands. As reported recently,4 compared 

with the gpH2R-GsαS fusion protein the potencies of the aminothiazolylpropylguanidines 

were lower at the gp right atrium (Table 3.3), but the order of potency was essentially in 

good agreement. The most potent H2R agonists surpassed the potency of histamine by a 

factor of about 40. Aminothiazoles lacking the 4-methyl substituent showed slightly 

higher potencies relative to their methylated analogs, for example, 3.24 versus 3.80 and 

3.77 versus 3.85. The positive chronotropic response was mediated by the H2R since it 

could be blocked by the H2R antagonist cimetidine (10-100 µM). Typical competition 

experiments are shown for 3.71 in Figure 3.4.4 
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Table 3.3. H2R agonism on the guinea pig right atrium. 

Compd. pEC50 ± SEMa Emax ± SEMb Potrel
c 

His 6.00 ± 0.02 1.0 ± 0.02 1.0 

Amt 22 6.21 ± 0.09 0.95 ± 0.02 1.6 

3.23 6.22 ± 0.01 0.82 ± 0.03 1.7 

3.24 6.72 ± 0.04 0.78 ± 0.02 5.8 

3.714 7.55 ± 0.03 0.97 ± 0.02 35.3 

3.30 6.61 ± 0.07 0.86 ± 0.02 4.1 

3.754 6.75 ± 0.10 0.65 ± 0.03 5.7 

3.774 7.25 ± 0.12 0.70 ± 0.03 17.6 

3.804 7.18 ± 0.04 0.92 ± 0.02 15.2 

3.834 7.54 ± 0.08 0.74 ± 0.05 34.7 

3.854 7.61 ± 0.12 0.74 ± 0.04 40.7 
a pEC50 values were calculated from the mean shift ∆pEC50 of the agonist curve relative to the histamine 
reference curve by equation: pEC50 = 6.00 + 0.13 + ∆pEC50; summand 0.13 represents the mean 
desensitization observed for control organs when two successive curves for histamine were performed (0.13 
± 0.02, N = 16); the SEM given for pEC50 is the SEM calculated for ∆pEC50 for 3-7 experiments. b Intrinsic 
activity, maximal response, relative to the maximal increase in heart rate induced by the reference 
compound histamine (30 µM) = 1.0. c Potency relative to histamine = 1.0. 
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Figure 3.4. Concentration-response curves on the guinea pig right atrium. Histamine (�, pEC50 = 6.00 ± 

0.06, N = 4), 3.71 alone (�, pEC50 = 7.42 ± 0.04, relative potency 3,530 % (95 % confidence limits 2,900 – 

4,310), Emax = 97 ± 2, N = 4) and 3.71 (����) in the presence of the H2R antagonist cimetidine (10 µM, 

preincubation for 30 min, pA2 = 6.24 ± 0.12, N = 2). Addition of cimetidine (30 µM and 100 µM, 

preincubation for 60 min each) led to a fading of the maximum response induced by 3.71 (10 µM, �) to 76 

± 2 % (�) and 50 ± 4 % () (N = 4 each). Also from these experiments, affinity of cimetidine was 

estimated to be pA2 = 6.32 ± 0.08 and 6.40 ± 0.05, respectively (N = 4 each) by measuring the horizontal 

distance of � and  relative to the agonist curve (�).4 
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3.3.2 Receptor selectivity 

To determine the histamine receptor selectivity profile (human H2R vs. H1R, H3R, H4R), 

representative compounds were investigated in GTPase assays on recombinant human H1, 

H3 and H4 receptors for agonism and antagonism, respectively (Table 3.4). Except for 

compounds 3.31 and 3.54, which also showed moderate antagonistic effects at the hH1R, 

the investigated NG-acylated aminothiazolylpropylguanidines showed no agonistic or 

relevant antagonistic effects in the GTPase assays on hH1R, hH3R and hH4R. It can be 

speculated whether the moderate antagonistic effects at the hH1R of the two 11-

aminoundecanoyl guanidines (3.31, 3.54) depend on the free amino group in the side 

chain, as capping of the amino group resulted in a drop of the antagonistic effect (3.31 vs. 

3.59). However, all other 2-aminothiazoles containing free amino functions (3.43, 3.53 

and 3.71) showed only negligible effects at non-H2 histamine receptors. Thus, in 

agreement with recent results the investigated NG-acylated aminothiazolylpropyl-

guanidines are highly selective for the H2R.2,4 These data confirm the working hypothesis 

that the 2-aminothiazole and the imidazole moiety are bioisosteric groups at the H2R but 

not at the H3R and the H4R.4 

Table 3.4. Agonistic, antagonistic and inverse agonistic effects of bivalent ligands at hH1R + RGS4, hH3R 

+ Gαi2 + Gβ1γ2 + RGS4 and hH4R-RGS19 + Gαi2 + Gβ1γ2 expressed in Sf9 cell membranes.a 

Compd. 
hH1R hH3R hH4R 

Compd. 
hH1R hH3R hH4R 

pK B pK B pKB pKB pK B pKB 

3.20 < 5.00 < 5.00 < 5.00 3.53 < 6.00 ndb ndb 

3.24 < 6.00 < 5.00 < 5.00 3.54 7.48 ± 0.01 ndb ndb 

3.28 < 6.00 < 5.00 < 6.00 3.59 < 6.00 < 6.00 < 6.00 

3.31 7.06 ± 0.09 < 5.00 < 5.00 3.71 < 5.00 < 5.00 < 6.00 

3.42 < 5.00 < 5.00 < 5.00 3.78 < 6.00 < 6.00 < 6.00 

3.43 < 6.00 ndb ndb 3.80 < 5.00 < 5.00 < 5.00 

3.44 < 6.00 < 5.00 < 5.00 3.81 < 5.00 < 5.00 < 5.00 

3.48 < 6.00 < 5.00 < 6.00 3.83 < 5.00 < 5.00 < 6.00 

3.51 < 5.00 < 5.00 < 6.00     
a Steady state GTPase activity in Sf9 membranes expressing hH1R+RGS4, hH3R+Gαi2+Gβ1γ2+RGS4 and 
hH4R-RGS19+Gαi2+Gβ1γ2 was determined as described under Pharmacological methods. Reaction 
mixtures contained ligands at concentrations from 1 nM to 100 µM as appropriate to generate saturated 
concentration-response curves. For the determination of antagonism, reaction mixtures contained histamine 
(hH1R: 1 µM; hH3R, hH4R: 100 nM) and ligands at concentrations from 1 nM to 1 mM. Data were analyzed 
by nonlinear regression and were best fitted to sigmoidal concentration-response curves. Typical basal 
GTPase activities stimulated by histamine (10 µM) ranged between ≈ 3.0 and 4.5 pmol.mg-1.min-1. Data 
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shown are mean values from one to three experiments performed in duplicate. IC50 values were converted to 
KB values using the Cheng-Prusoff equation.23 b nd: not determined. 

 

3.4 Summary 

Based on previous studies,4,10 NG-acylated aminothiazolylpropylguanidines were 

synthesized and pharmacologically characterized to gain more insight into the structure-

activity relationships and to develop selective H2R agonists as pharmacological tools for 

more detailed investigations of the biological role of the H2R. The title compounds 

proved to be partial to full agonists at the guinea pig right atrium as well as at hH2R-GsαS 

and gpH2R-GsαS fusion proteins, respectively. The replacement of a phenyl with a 

cyclohexyl ring resulted mainly in higher potencies and efficacies at both H2R orthologs. 

Highest potency resided in compounds having a two- to three-membered carbon chain 

between carbonyl group and phenyl or cyclohexyl ring, respectively. Whereas methyl 

substituents in α- or β-position to the carbonyl group in 3-phenyl- and 3-cylohexyl-

propanoyl compounds were well tolerated, the introduction of more bulky side chains 

reduced the potency and efficacy at the H2Rs. Notably, the introduction of a free amino 

group at an appropriate distance to the pharmacophore was beneficial with respect to H2R 

agonistic potency. The H2R agonistic activities of analogs lacking the 4-methyl group at 

the thiazole ring indicate that, in contrast to amthamine, this methyl substituent neither 

increased the agonistic activity for acylguanidine-type compounds in the GTPase assay 

nor at the gp right atrium. Moreover, in accordance to the structure-activity relationships 

of NG-acylated imidazolylpropylguanidines, all investigated aminothiazolylpropyl-

guanidines exhibited higher potencies and efficacies at gpH2R-GsαS compared to hH2R-

GsαS. In particular, a free amino group (3.43, 3.53, 3.54 and 3.71) enhanced the 

preference for the gpH2R. Furthermore, investigation of the receptor selectivity profile 

(human H2R vs. H1R, H3R, H4R) revealed that NG-acylated aminothiazolylpropyl-

guanidines are highly selective for the H2R. Whereas compounds of the imidazole series 

are very potent agonists or antagonists at the hH3R and hH4R, respectively, the 

investigated NG-acylated aminothiazolylpropylguanidines showed only negligible effects 

at non-H2 histamine receptors. Thus, this study substantiates previous results, confirming 

that the 2-aminothiazole and the imidazole moiety are bioisosteric groups at the H2R but 

not at the H3R and H4R. 
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3.5 Experimental section 

3.5.1 Chemistry 

3.5.1.1 General conditions 

Commercially available reagents were purchased from Acros Organics (Geel, Belgium), 

Lancaster Synthesis GmbH (Frankfurt, Germany), Sigma-Aldrich Chemie GmbH 

(München, Germany), Alfa Aesar GmbH & Co KG (Karlsruhe, Germany), Iris Biotech 

GmbH (Marktredwitz, Germany) or Merck KGaA (Darmstadt, Germany) and used as 

received. Where indicated, reactions were carried out under a dry, oxygen-free argon 

atmosphere. All solvents used were of analytical grade or distilled before use. THF and 

Et2O were distilled over Na, DCM was predried over CaCl2 or distilled from P2O5 and 

stored under argon atmosphere over molecular sieves 3 Å. Column chromatography was 

carried out using Merck silica gel Geduran 60 (0.063-0.200) and Merck silica gel 60 

(0.040-0.063) for flash column chromatography. In certain cases, flash chromatography 

was performed on an Intelli Flash 310 Flash Chromatography Workstation from Varian 

Deutschland GmbH (Darmstadt, Germany). Reactions were monitored by thin layer 

chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets and spots were 

visualized with UV light at 254 nm.   

Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectra were recorded on a 

Bruker Avance 300 spectrometer using per-deuterated solvents. The chemical shift δ is 

given in parts per million (ppm) with reference to the chemical shift of the residual protic 

solvent compared to tetramethylsilane (δ = 0 ppm). Multiplicities were specified with the 

following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as 

well as combinations thereof. The multiplicity of carbon atoms (13C-NMR) were 

determined by DEPT 135 and DEPT 90 (distortionless enhancement by polarization 

transfer): “+” primary and tertiary carbon atom (positive DEPT 135 signal), “-“ secondary 

carbon atom (negative DEPT 135 signal), “quat” quaternary carbon atom. Mass 

spectrometry analysis (MS) was performed on a Finnigan MAT 95, a Finnigan SSQ 710A 

and on a Finnigan ThermoQuest TSQ 7000 spectrometer. Melting points (mp) were 

measured on a BÜCHI 530 electrically heated copper block apparatus using an open 

capillary and are uncorrected.  
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Preparative HPLC was performed with a pump model K-1800 (Knauer, Berlin, 

Germany), the column was either a Eurosphere-100 (250 x 32 mm) (Knauer) or a 

Nucleodur-100 C18ec (250 x 21 mm) (Macherey-Nagel, Düren, Germany), which were 

attached to the UV-detector model K-2000 (Knauer). UV-detection was done at 210 nm. 

The temperature was 25 °C and the flow rate 37 ml/min (Eurosphere-100) or 20 ml/min 

(Nucleodur-100 C18ec), respectively. The mobile phase was 0.1% TFA in millipore water 

and MeCN. Analytical HPLC was performed on a system from Thermo Separation 

Products equipped with an SN400 controller, P4000 pump, an AS3000 autosampler, and 

a Spectra Focus UV/Vis detector. Stationary phase was either a Eurosphere-100 C18 (250 

x 4.0, 5 µM) column (Knauer, column A) or a Nucleodur-C18HTec (250 x 4.0, 5µM) 

column (Macherey-Nagel, column B), thermostated at 30°C. As mobile phase, gradients 

of MeCN/TFA (0.05 % aq) were used. Column A: gradient mode: 0 min: MeCN/TFA 

(0.05% aq) 10:90, 20 min: 60:40, 23 min: 95:5, -33 min: 95:5; flow rate = 0.7 mL min-1; 

t0 = 3.318 min. Column B: gradient mode: 0 min: MeCN/TFA (0.05% aq) 10:90, 20 min: 

60:40, 21 min: 95:5, -29 min: 95:5 ; flow rate = 0.75 mL min-1; t0 = 2.675 min; k`= (tR–

t0)/t0. Absorbance was detected at 210 nm. Compound purities were calculated as the 

percentage peak area of the analyzed compound by UV detection at 210 nm. An overview 

of HPLC conditions, retention times (tR), capacity factors (k`) and purities of the 

synthesized compounds is given in chapter 8. 

3.5.1.2 Preparation of the guanidinylating reagent 3.3  

S-Methylthiouronium iodide (3.1)24 

Thiourea (9.2 g, 120 mmol) and methyl iodide (17 g, 120 mmol) in MeOH (100 ml) were 

refluxed for 1 h. After evaporation, the crude product was taken up in Et2O, sucked off 

and washed twice with Et2O to yield 3.1 (25.6 g, 117 mmol, 98 %) as white solid. The 

crude product was used in the next step without further purification. 1H-NMR (DMSO-d6) 

δ (ppm): 8.88 (br s, 4H, NH2), 2.57 (s, 3H, CH3); ES-MS (DCM/MeOH + NH4OAc) m/z 

(%): 91 (M+, 100); C2H7IN2S (218.06). 

N-tert-Butoxycarbonyl-S-methylisothiourea (3.2)10 

To a solution of 3.1 (25.6 g, 117 mmol) in DCM/abs (200 ml) were added NEt3 (11.8 ml, 

117 mmol) and Boc2O (25.6 g, 117 mmol) in DCM/abs (50 ml) and stirred for 24 h at 

room temperature. The mixture was subsequently washed with water and brine, and the 

organic phase was dried over MgSO4. After removing the solvent under reduced pressure, 
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the crude product was subjected to flash chromatography (PE/EtOAc 90/10 v/v) yielding 

3.2 (14.5 g, 65 %) as white solid. 1H-NMR (DMSO-d6) δ (ppm): 8.54 (br s, 2H, NH2), 

2.31 (s, 3H, CH3), 1.40 (s, 9H, C(CH3)3); CI-MS (NH3) m/z (%): 191 (MH+, 100); 

C7H14N2O2S (190.26). 

N-Benzyloxycarbonyl-N`-tert-butoxycarbonyl-S-methylisothiourea (3.3)11 

To a solution of 3.2 (14.5 g, 76.5 mmol) in DCM/abs (150 ml) was added benzyl 

succinimidyl carbonate (CbzOSu, 19.1 g, 76.5 mmol) and stirred for 20 h at ambient 

temperature. The mixture was subsequently extracted with DCM and basified with 

Na2CO3 (pH 9-10). The organic phase was washed with water, dried over MgSO4 and the 

solvent removed under reduced pressure. The crude product was subjected to flash 

chromatography (PE/EtOAc 90/10 v/v) yielding 3.3 (22.5 g, 91 %) as white solid. mp = 

64 °C; 1H-NMR (CDCl3) δ (ppm): 11.58 (br s, 1H, NH), 7.37 (m, 5H, Ar-H), 5.19 (s, 2H, 

CH2-Ar), 2.40 (s, 3H, CH3), 1.50 (s, 9H, C(CH3)3); CI-MS (NH3) m/z (%): 325 (MH+, 

100); C15H20N2O4S (324.40). 

3.5.1.3 Preparation of NG-Boc-protected building blocks 3.17 and 3.18 

2-(5-Hydroxypentyl)-1,3-dihydro-2H-isoindol-1,3-dione (3.4)17 

5-Amino-1-pentanol (8.3 g, 80 mmol) and phthalic anhydride (11.9 g, 80 mmol) were 

heated to 80-100 °C for 3 h. After cooling, 40 ml ice cold water was added and extracted 

three times with CHCl3. The organic phase was washed with 5 % NaHCO3 and three 

times with H2O and the organic phase was dried over MgSO4. After removing of the 

solvent under reduced pressure, the crude product was subjected to flash chromatography 

(PE/EtOAc 70/30 v/v) yielding 3.4 (14 g, 75 %) as pale yellow solid. mp = 43 °C; 1H-

NMR (CDCl3) δ (ppm): 7.75 (m, 2H, Ar-H), 7.64 (m, 2H, Ar-H), 3.58 (m, 4H, Pht-CH2, 

CH2OH), 2.16 (s, 1H, OH), 1.63 (m, 2H, Pht-CH2CH2), 1.53 (m, 2H, CH2CH2OH), 1.34 

(m, 2H, CH2CH2CH2OH); CI-MS (NH3) m/z (%): 251 (M+NH4
+, 100); C13H15NO3 

(233.36). 

2-(5-Oxohexyl)-1,3-dihydro-2H-isoindol-1,3-dione (3.5)17 

A mixture of phthalimide (8.2 g, 65 mmol), 6-chlorohexan-2-one (15.1 g, 112 mmol) and 

K2CO3 (10.4 g, 75 mmol) in 110 ml DMF was heated to 80 °C for 24 h. After cooling to 

room temperature, the mixture was added to ice cold water and extracted with CHCl3. 

The organic layer was dried over MgSO4 and evaporated under reduced pressure. The 
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crude product was subjected to flash chromatography (PE/EtOAc 90/10 to 70/30 v/v) 

yielding 3.5 (7.18 g, 79 %) as white solid. mp = 73-75 °C; 1H-NMR (CDCl3) δ (ppm): 

7.9-7.3 (m, 4H, Ar-H), 3.7 (m, 2H, COCH2), 2.50 (m, 2H, CH2-Pht), 2.15 (s, 3H, CH3), 

1.9-1.5 (m, 4H, COCH2CH2, COCH2CH2CH2); CI-MS (NH3) m/z (%): 263 (M+NH4
+, 

100), 246 (MH+, 15); C14H15NO3 (245.10). 

5-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)pentanal (3.6)17 

Oxalyl chloride (3.2 ml, 37. 5 mmol) in 80 ml DCM/abs was cooled to -50 °C and DMSO 

(5.7 ml, 80 mmol) in 25 ml DCM/abs was added under stirring and argon atmosphere at 

such a rate that the temperature was maintained at -50 °C. After the addition was 

complete, stirring was continued for 15 min. A solution of 3.4 (7 g, 30 mmol) in 40 ml 

DCM/abs was added slowly and stirring was continued for another 15 min. After the 

addition of NEt3 (22 ml, 160 mmol), the mixture was allowed to warm to room 

temperature, 80 ml H2O was added and stirring continued for 30 min. The organic phase 

was separated and washed with H2O to almost neutral reaction. The organic phase was 

dried over MgSO4 and the solvent removed under reduced pressure yielding crude 3.6 

(6.24 g, 90 %) as yellow oil which was stored under argon and used without further 

purification. 1H-NMR (CDCl3) δ (ppm): 9.75 (t, 3J = 1.5 Hz, 1H, COH), 7.82 (m, 2H, Ar-

H), 7.70 (m, 2H, Ar-H), 3.70 (t, 3J = 6.8 Hz, 2H, Pht-CH2), 2.50 (m, 2H, CH2COH), 1.69 

(m, 4H, Pht-CH2CH2CH2, Pht-CH2CH2CH2); CI-MS (NH3) m/z (%): 249 (M+NH4
+, 

100); C13H13NO3 (231.25). 

General procedure for the bromination of 3.5 and 3.6 

To a solution of 3.5 or 3.6 (1 eq) in dioxane and DCM/abs (1.5:1) bromine (1 eq) was 

slowly added in a way that the brown color always disappeared. After complete addition 

of bromine the mixture was allowed to stir for 1 h at room temperature. Subsequently, the 

mixture was washed two times with water and extracted with EtOAc. The organic layer 

was dried over MgSO4 and evaporated under reduced pressure. The crude product was 

obtained as yellow oil and used in the next step without further purification.  

2-(4-Bromo-5-oxohexyl)-1,3-dihydro-2H-isoindol-1,3-dione (3.7)17 

The title compound was prepared from 3.5 (12.9 g, 53 mmol) in 250 ml dioxane and 165 

ml DCM/abs and bromine (2.72 ml, 53 mmol) according to the general procedure 

yielding 3.7 as yellow oil (16.8 g, 98 %). 1H-NMR (CDCl3) δ (ppm): 7.9-7.7 (m, 4H, Ar-

H), 4.37 (m, 1H, CHBr), 3.77 (m, 2H, CH2-Pht), 2.37 (s, 3H, COCH3), 2.2-1.6 (m, 4H, 
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COCHCH2CH2, COCHCH2CH2); CI-MS (NH3) m/z (%): 324 (MH+, 100); C14H14NBrO3 

(323.61). 

2-Bromo-5-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)pentanal (3.8)10,17 

The title compound was prepared from 3.6 (5.77 g, 25 mmol) in 150 ml dioxane and 100 

ml DCM/abs and bromine (1.28 ml, 25 mmol) according to the general procedure 

yielding 3.8 (7.86 g, 100 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 9.44 (d, 3J = 2.3 

Hz, 1H, COH), 7.83 (m, 2H, Ar-H), 7.71 (m, 2H, Ar-H), 4.34 (m, 1H, CHBr), 3.73 (t, 3J 

= 6.6 Hz, 2H, Pht-CH2), 1.87 (m, 4H, Pht-CH2CH2CH2, Pht-CH2CH2CH2); CI-MS (NH3) 

m/z (%): 329 (MNH4
+, 100); C13H12NO3Br (310.14). 

General procedure for the synthesis of the 2-aminothiazoles 3.9 and 3.104 

To a stirred solution of crude 3.7 or 3.8 (1 eq) in DMF, a solution of thiourea (1 eq) in 

DMF was added and the mixture was heated to 100 °C for 3 h. After cooling and 

removing the solvent in vacuo, a mixture of EtOAc/MeOH (1:1 v/v) was added and 

stirred for 30 min. Subsequently, the precipitate was filtered off, washed with EtOAc and 

Et2O and the solid dried in vacuo. 

2-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-1,3-dihydro-2H-isoindol-1,3-dione 

(3.9)17 

The title compound was prepared from crude 3.7 (18.1 g, 56 mmol) in 50 ml DMF and a 

solution of thiourea (4.26 g, 56 mmol) in 50 ml DMF according to the general procedure 

yielding 3.9 (12 g, 71 %) as colorless solid. mp = 242 °C; 1H-NMR (DMSO-d6) δ (ppm): 

11.96 (s, 2H, NH2), 7.84 (m, 4H, Ar-H), 3.62 (m, 2H, CH2-Pht), 2.72 (m, 2H, Thiaz-5-

CH2), 2.15 (s, 3H, Thiaz-4-CH3), 1.85 (m, 2H, Thiaz-5-CH2CH2); CI-MS (NH3) m/z (%): 

302 (MH+, 100); C15H15N3O2S (301.4). 

2-[3-(2-Aminothiazol-5-yl)propyl]-1,3-dihydro-2H-isoindol-1,3-dione (3.10)4  

The title compound was prepared from crude 3.8 (7.86 g, 25.3 mmol) in 20 ml DMF and 

a solution of thiourea (1.9 g, 25.3 mmol) in 20 ml DMF according to the general 

procedure yielding 3.10 (14.71 g, 64 %) as light brown solid. 1H-NMR (DMSO-d6) δ 

(ppm): 7.84 (m, 4H, Ar-H), 7.20 (s, 1H, Thiaz-4-H), 3.62 (t, 3J = 6.9 Hz, 2H, CH2-Pht), 

2.79 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 1.91 (m, 2H, Thiaz-5-CH2CH2); CI-MS (NH3) 

m/z (%): 288 (MH+, 100); C14H13N3O2S (287.34). 
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General procedure for the tert-butoxycarbonyl protection of the 2-aminothiazoles 

3.9 and 3.10 (3.11, 3.12) 

Compound 3.9 and 3.10 (1 eq), respectively, was dissolved in CHCl3 and Boc2O (1.1 eq), 

NEt3 (1.2) and DMAP (cat.) were added. The mixture was stirred overnight at ambient 

temperature. The mixture was extracted with DCM, the organic phase washed with 0.1N 

HCl, brine and water, dried over MgSO4 and evaporated under reduced pressure. The 

crude product was purified by flash chromatography.  

tert-Butyl 4-methyl-5-[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl]thiazol-2-yl-

carbamate (3.11)4  

The title compound was prepared from 3.9 (11.9 g, 40 mmol) in 100 ml CHCl3, Boc2O 

(9.6 g, 44 mmol), NEt3 (6.7 ml, 48 mmol) and DMAP (cat.) according to the general 

procedure (PE/EtOAc 80/20 v/v) to obtain 3.11 (7.4 g, 46 %) as colorless foam-like solid. 

mp = 70-72 °C; 1H-NMR (CDCl3) δ (ppm): 7.77 (m, 4H, Ar-H), 3.75 (t, 3J = 6.9 Hz, 2H, 

CH2-Pht), 2.72 (t, 3J = 7.8 Hz, 2H, Thiaz-5-CH2), 2.21 (s, 3H, Thiaz-4-CH3), 1.98 (m, 

2H, Thiaz-5-CH2CH2), 1.52 (s, 9H, C(CH3)3); EI-MS (70 eV) m/z (%): 402 (MH+, 100); 

C20H23N3O4S (401.5). 

tert-Butyl 5-[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl]thiazol-2-ylcarbamate 

(3.12)4  

Prepared from 3.10 (23 g, 80 mmol) in 200 ml CHCl3, Boc2O (19.2 g, 88 mmol), NEt3 

(13.3 ml, 96 mmol) and DMAP (cat.) according to the general procedure (PE/EtOAc 

60/40 v/v) to obtain 3.12 (15.8 g, 51 %) as colorless foam-like solid. mp = 166 °C; 1H-

NMR (CDCl3) δ (ppm): 7.83 (m, 2H, Ar-H), 7.71 (m, 2H, Ar-H), 7.06 (s, 1H, Thiaz-4-

H), 3.76 (t, 3J = 6.9 Hz, 2H, CH2-Pht), 2.79 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.04 (m, 

2H, Thiaz-5-CH2CH2), 1.57 (s, 9H, C(CH3)3); CI-MS (NH3) m/z (%): 388 (MH+, 100); 

C19H21N3O4S (387.45). 

General procedure for the preparation of the thiazolylpropylamines (3.13, 3.14) by 

hydrazinolysis of the phthalimides 

To a suspension of 3.11 or 3.12 (1 eq) in EtOH was added hydrazine-monohydrate (5 eq). 

After stirring for 30 min at room temperature, the solution became clear and stirring was 

continued overnight. The mixture was cooled in an ice bath, the precipitate was removed 

by filtration and the filtrate evaporated to dryness. The crude product was subjected to 

flash chromatography (CHCl3/MeOH/ NEt3 94/5/1 v/v/v).  
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tert-Butyl 5-(3-aminopropyl)-4-methylthiazol-2-ylcarbamate (3.13)4  

The title compound was prepared from 3.11 (7.38 g, 18.4 mmol) in 70 ml EtOH and 

hydrazine-monohydrate (4.5 ml, 92 mmol) according to the general procedure yielding 

3.13 (4.9 g, 98 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 2.70 (m, 4H, CH2NH2, 

Thiaz-5-CH2), 2.23 (s, 3H, Thiaz-4-CH3), 1.74 (m, 2H, Thiaz-5-CH2CH2), 1.53 (s, 9H, 

C(CH3)3); CI-MS (NH3) m/z (%): 272 (MH+, 100); C12H21N3O2S (271.4). 

tert-Butyl 5-(3-aminopropyl)thiazol-2-ylcarbamate (3.14)4  

The title compound was prepared from 3.12 (17.2 g, 44.5 mmol) in 170 ml EtOH and 

hydrazine-monohydrate (10.8 ml, 223.3 mmol) according to the general procedure 

yielding 3.14 (7.07 g, 62 %) as pale yellow solid. mp = 109 °C; 1H-NMR (CDCl3) δ 

(ppm): 7.02 (s, 1H, Thiaz-4-H), 2.77 (m, 4H, CH2NH2, Thiaz-5-CH2), 1.78 (m, 2H, 

Thiaz-5-CH2CH2), 1.56 (s, 9H, C(CH3)3); CI-MS (NH3) m/z (%): 258 (MH+, 100); 

C11H19N3O2S (257.35). 

General procedure for the guanidinylation of 3.13 and 3.14 with 3.3 

NEt3 (3 eq) was added to a suspension of the thiazolylpropylamines 3.13 or 3.14 (1 eq), 

3.3 (1 eq) and HgCl2 (2 eq) in DCM/abs and the mixture was stirred at ambient 

temperature for 48 h. Subsequently, EtOAc was added and the precipitate filtered over 

Celite. The crude product was purified by flash chromatography (PE/EtOAc 80/20 v/v). 

tert-Butyl 5-[3-(3-benzyloxycarbonyl-2-tert-butyloxycarbonylguanidino)propyl]-4-

methylthiazol-2-ylcarbamate (3.15)8 

The title compound was prepared from 3.13 (4.9 g, 18 mmol), 3.3 (5.84 g, 18 mmol), 

HgCl2 (9.8 g, 36 mmol) and NEt3 (7.5 ml, 54 mmol) in 500 ml DCM/abs and 500 ml 

EtOAc according to the general procedure yielding 3.15 (8.6 g, 87 %) as brown oil. 1H-

NMR (CDCl3) δ (ppm): 11.4 (br s, 1H, NH), 9.6 (s, 1H, NH), 8.5 (t, 3J = 5.1 Hz, 1H, 

CH2NH), 7.34 (m, 5H, Ar-H), 5.14 (s, 2H, CH2-Ar), 3.47 (m, 2H, CH2NH), 2.71 (t, 3J = 

7.5 Hz, 2H, Thiaz-5-CH2), 2.21 (s, 3H, Thiaz-4-CH3), 1.89 (m, 2H, Thiaz-5-CH2CH2), 

1.52 (s, 9H, C(CH3)3), 1.48 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 

548 (MH+, 100); C26H37N5O6S (547.67). 

tert-Butyl 5-[3-(3-benzyloxycarbonyl-2-tert-butyloxycarbonylguanidino)propyl]-

thiazol-2-ylcarbamate (3.16)4  



Chapter 3 
____________________________________________________________________________________________________________ 

66 
 

The title compound was prepared from 3.14 (6 g, 23.2 mmol), 3.3 (7.5 g, 23.2 mmol), 

HgCl2 (12.6 g, 46.4 mmol) and NEt3 (9.6 ml, 69.6 mmol) in 500 ml DCM/abs and 500 ml 

EtOAc according to the general procedure yielding 3.16 (11.76 g, 95 %) as colorless 

foam-like solid. mp = 140-142 °C; 1H-NMR (CDCl3) δ (ppm): 11.35 (s, 1H, NH), 8.47 (t, 
3J = 5.4 Hz, 1H, CH2NH), 7.34 (m, 5H, Ar-H), 7.04 (s, 1H, Thiaz-4-H), 5.13 (s, 2H, 

CH2-Ph), 3.47 (m, 2H, CH2NH), 2.75 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 1.92 (m, 2H, 

Thiaz-5-CH2CH2), 1.55 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 534 (MH+, 100); C25H35N5O6S (533.64). 

General procedure for the hydrogenolytic cleavage of Cbz groups (3.17, 3.18)11 

To a solution of 3.15 or 3.16 in a mixture of THF/MeOH (1:1) was added Pd/C (10 %) 

and hydrogenated at 8 bar for 3-4 days (TLC control). The catalyst was removed by 

filtration over Celite and washed with MeOH. The solvent was removed in vacuo. 

tert-Butyl 5-[3-(2-tert-butoxycarbonylguanidino)propyl]-4-methylthiazol-2-yl-

carbamate (3.17) 

The title compound was prepared from 3.15 (8.54 g, 15.6 mmol) and 8 g of Pd/C (10 %) 

in a mixture of 160 ml THF/MeOH (1:1) according to the general procedure yielding 3.17 

(4.38 g, 100 %) as white solid. mp = 111-114 °C; 1H-NMR (CD3OD) δ (ppm): 3.20 (t, 3J 

= 6.9 Hz, 2H, CH2NH), 2.74 (t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.16 (s, 3H, Thiaz-4-

CH3), 1.83 (m, 2H, Thiaz-5-CH2CH2), 1.52 (s, 9H, C(CH3)3), 1.48 (s, 9H, C(CH3)3); ES-

MS (DCM/MeOH + NH4OAc) m/z (%): 414 (MH+, 100); C18H31N5O4S (413.53). 

tert-Butyl 5-[3-(2-tert-butoxycarbonylguanidino)propyl]thiazol-2-ylcarbamate (3.18) 

The title compound was prepared from 3.16 (5.8 g, 10.6 mmol) and 6 g of Pd/C (10 %) in 

a mixture of 160 ml THF/MeOH (1:1) according to the general procedure yielding 3.18 

(3.39 g, 75 %) as colorless foam-like solid. 1H-NMR (CD3OD) δ (ppm): 7.03 (s, 1H, 

Thiaz-4-H), 3.26 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.80 (t, 3J = 7.2 Hz, 2H, Thiaz-5-CH2), 

1.95 (m, 2H, Thiaz-5-CH2CH2), 1.55 (s, 9H, C(CH3)3), 1.47 (s, 9H, C(CH3)3); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 400 (MH+, 100); C17H29N5O4S (399.50). 

3.5.1.4 Preparation of the Boc-protected NG-acylated aminothiazolyl-

propylguanidines 3.19a-3.55a  

General procedure for the synthesis of 3.19a, 3.22a-3.32a and 3.35a-3.55a 
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DIEA (1 eq) was added to a solution of carboxylic acid (1 eq), EDAC (1 eq) and HOBt-

monohydrate (1 eq) in DCM/abs under argon and stirred for 15 min. A solution of 3.17 or 

3.18 (1 eq) in DCM/abs was added and the mixture stirred overnight at room temperature. 

The solvent was removed under reduced pressure and EtOAc and water was added to the 

resulting residue. The organic phase was separated and the aqueous phase extracted twice 

with EtOAc. After drying over MgSO4, the organic solvent was removed in vacuo. The 

crude product was purified by flash-chromatography (PE/EtOAc 80/20 v/v) unless 

otherwise indicated. 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-propionylguanidino]propyl}-4-methyl-

thiazol-2-ylcarbamate (3.19a) 

The title compound was prepared from propanoic acid (30 mg, 0.4 mmol), EDAC (77 mg, 

0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 0.4 mmol) in 3 ml 

DCM/abs and 3.17 (165 mg, 0.4 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.19a (170 mg, 91 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 3.46 

(m, 2H, CH2NH), 2.71 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.44 (q, 3J = 7.5 Hz, 2H, 

COCH2), 2.20 (s, 3H, Thiaz-4-CH3), 1.87 (m, 2H, Thiaz-5-CH2CH2), 1.52 (s, 9H, 

C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.17 (m, 3H, COCH2CH3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 470.1 (MH+, 100); C21H35N5O5S (469.60). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-benzoylguanidino]propyl}-4-methyl-

thiazol-2-ylcarbamate (3.22a) 

The title compound was prepared from benzoic acid (61 mg, 0.5 mmol), EDAC (96 mg, 

0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 mmol) in 3 ml 

DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.22a (200 mg, 78 %) as colorless foam-like solid. 1H-NMR (CDCl3) 

δ (ppm): 8.17 (m, 2H, Ar-H), 7.58-7.35 (m, 3H, Ar-H), 3.60 (m, 2H, CH2NH), 2.77 (t, 3J 

= 7.5 Hz, 2H, Thiaz-5-CH2), 2.23 (s, 3H, Thiaz-4-CH3), 2.01 (m, 2H, Thiaz-5-CH2CH2), 

1.51 (s, 18H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 518 (MH+, 100); 

C25H35N5O5S (517.24). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-phenylacetyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.23a) 

The title compound was prepared from 2-phenylacetic acid (68 mg, 0.5 mmol), EDAC 

(96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 mmol) in 3 
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ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.23a (212.5 mg, 80 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 

7.35-7.20 (m, 5H, Ar-H), 3.67 (s, 2H, COCH2), 3.43 (m, 2H, CH2NH), 2.68 (t, 3J = 7.1 

Hz, 2H, Thiaz-5-CH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.95 (m, 2H, Thiaz-5-CH2CH2), 1.52 

(s, 9H, C(CH3)3), 1.46 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 532 

(MH+, 100); C26H37N5O5S (531.25). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-phenylpropanoyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.24a) 

The title compound was prepared from 3-phenylpropanoic acid (75 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.24a (201.8 mg, 74 %) as colorless oil. 1H-NMR (CDCl3) δ 

(ppm): 7.30-7.15 (m, 5H, Ar-H), 3.45 (m, 2H, CH2NH), 3.0 (m, 2H, CH2-Ar), 2.78-2.65 

(m, 4H, Thiaz-5-CH2, COCH2), 2.20 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-

CH2CH2), 1.52 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 546 (MH+, 100); C27H39N5O5S (545.27). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(4-phenylbutanoyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.25a) 

The title compound was prepared from 4-phenylbutanoic acid (82 mg, 0.5 mmol), EDAC 

(96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 mmol) in 3 

ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.25a (223 mg, 80 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 

7.30-7.15 (m, 5H, Ar-H), 3.45 (m, 2H, CH2NH), 2.62 (m, 4H, Thiaz-5-CH2, CH2-Ar), 

2.40 (m, 2H, COCH2), 2.20 (s, 3H, Thiaz-4-CH3), 1.99 (m, 2H, Thiaz-5-CH2CH2), 1.87 

(m, 2H, COCH2CH2), 1.52 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 560 (MH+, 100); C28H41N5O5S (559.28). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(5-phenylpentanoyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.26a) 

The title compound was prepared from 5-phenylpentanoic acid (89 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.26a (240.7 mg, 84 %) as yellow oil. 1H-NMR (CDCl3) δ 
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(ppm): 7.30-7.10 (m, 5H, Ar-H), 3.40 (m, 2H, CH2NH), 2.64 (m, 4H, Thiaz-5-CH2, CH2-

Ar), 2.35 (m, 2H, COCH2), 2.15 (s, 3H, Thiaz-4-CH3), 1.83 (m, 2H, Thiaz-5-CH2CH2), 

1.70-1.55 (m, 2H, COCH2CH2, COCH2CH2CH2), 1.48 (s, 18H, C(CH3)3); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 574.2 (MH+, 100); C29H43N5O5S (573.3). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(6-phenylhexanoyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.27a) 

The title compound was prepared from 6-phenylhexanoic acid (96 mg, 0.5 mmol), EDAC 

(96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 mmol) in 3 

ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.27a (240.8 mg, 82 %) as pale yellow oil. 1H-NMR (CDCl3) δ (ppm): 

7.18 (m, 5H, Ar-H), 3.46 (m, 2H, CH2NH), 2.71 (t, 3J = 7.1 Hz, 2H, Thiaz-5-CH2), 2.63 

(m, 2H, CH2-Ar), 2.38 (m, 2H, COCH2), 2.19 (s, 3H, Thiaz-4-CH3), 1.89 (m, 2H, Thiaz-

5-CH2CH2), 1.76-1.57 (m, 6H, COCH2CH2, COCH2CH2CH2, CH2CH2-Ar), 1.52 (s, 9H, 

C(CH3)3), 1.50 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 588 (MH+, 

100); C30H45N5O5S (587.31). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3,3-diphenylpropanoyl)guanidino]-

propyl}-4-methylthiazol-2-ylcarbamate (3.28a) 

The title compound was prepared from 3,3-diphenylpropanoic acid (113 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.28a (282.7 mg, 91 %) as colorless oil. 1H-NMR (CDCl3) δ 

(ppm): 7.50-7.30 (m, 4H, Ar-H), 7.25-7.1 (m, 6H, Ar-H), 4.60 (m, 1H, CH(Ar)2), 3.39 

(m, 2H, CH2NH), 3.12 (m, 2H, COCH2), 2.70 (m, 2H, Thiaz-5-CH2), 2.15 (s, 3H, Thiaz-

4-CH3), 1.83 (m, 2H, Thiaz-5-CH2CH2), 1.49 (s, 9H, C(CH3)3), 1.45 (s, 9H, C(CH3)3); 

ES-MS (DCM/MeOH + NH4OAc) m/z (%): 622 (MH+, 100); C33H43N5O5S (621.3). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(cyclohexanecarbonyl)guanidino]propyl}-

4-methylthiazol-2-ylcarbamate (3.29a) 

The title compound was prepared from cyclohexanecarboxylic acid (64 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.29a (220 mg, 84 %) as white foam-like solid. 1H-NMR 

(CDCl3) δ (ppm): 3.46 (m, 2H, CH2NH), 2.70 (m, 2H, Thiaz-5-CH2),  2.30 (m, 1H, 
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COCH), 2.17 (s, 3H, Thiaz-4-CH3), 2.0-1.76 (m, 10H, Thiaz-5-CH2CH2, cHex-H), 1.53 

(s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 524 

(MH+, 100); C25H41N5O5S (523.28). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-cyclohexylacetyl)guanidino]propyl}-4-

methylthiazol-2-ylcarbamate (3.30a) 

The title compound was prepared from 2-cyclohexylacetic acid (71 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.30a (240 mg, 89 %) as yellow oil. 1H-NMR (CDCl3) δ 

(ppm): 3.45 (m, 2H, CH2NH), 2.70 (m, 2H, Thiaz-5-CH2),  2.25 (m, 1H, COCH2), 2.18 

(s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.86-1.60 (m, 8H, cHex-H), 1.54 

(s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 538 

(MH+, 100); C26H43N5O5S (537.3). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-[11-(tert-butoxycarbonylamino)-

undecanoyl]guanidino]propyl}-4-methylthiazol-2-ylcarbamate (3.31a) 

The title compound was prepared from 11-(tert-butoxycarbonylamino)undecanoic acid 

(226 mg, 0.75 mmol), EDAC (160 mg, 0.75 mmol), HOBt-monohydrate (127 mg, 0.75 

mmol), DIEA (0.14 ml, 0.75 mmol) in 3 ml DCM/abs and 3.17 (310 mg, 0.75 mmol) in 2 

ml DCM/abs according to the general procedure yielding 3.31a (300 mg, 57 %) as yellow 

oil. 1H-NMR (CDCl3) δ (ppm): 3.45 (m, 2H, CH2NH), 3.09 (m, 2H, CH2NHBoc), 2.70 (t, 
3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.39 (t, 3J = 7.5 Hz, 2H, COCH2), 2.20 (s, 3H, Thiaz-4-

CH3), 1.87 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2, CH2CH2NH2), 1.52 (s, 

9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.44 (s, 9H, C(CH3)3), 1.28 (m, 12H, (CH2)6); ES-

MS (DCM/MeOH + NH4OAc) m/z (%): 697.3 (MH+, 100); C34H60N6O7S (696.94). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-propanoylguanidino]propyl}thiazol-2-yl-

carbamate (3.32a) 

The title compound was prepared from propanoic acid (30 mg, 0.4 mmol), EDAC (77 mg, 

0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 0.4 mmol) in 3 ml 

DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.32a (150 mg, 82 %) as pale yellow oil. 1H-NMR (CDCl3) δ (ppm): 

7.04 (s, 1H, Thiaz-4-H), 3.48 (m, 2H, CH2NH), 2.79 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 

2.44 (q, 3J = 7.5 Hz, 2H, COCH2), 1.94 (m, 2H, Thiaz-5-CH2CH2), 1.54 (s, 9H, 
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C(CH3)3), 1.48 (s, 9H, C(CH3)3), 1.17 (m, 3H, COCH2CH3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 456.1 (MH+, 100); C20H33N5O5S (455.57). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-nonadecanoylguanidino]propyl}thiazol-2-

ylcarbamate (3.35a) 

The title compound was prepared from nonadecanoic acid (120 mg, 0.4 mmol), EDAC 

(77 mg, 0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 0.4 mmol) in 3 

ml DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-4 min: PE/EtOAc 100/0, 6-

15 min: 80/20, 19-24 min: 50/50) yielded 3.32a (150 mg, 82 %) as colorless oil. 1H-NMR 

(CDCl3) δ (ppm): 7.04 (s, 1H, Thiaz-4-H), 3.47 (m, 2H, CH2NH), 2.79 (t, 3J = 7.41 Hz, 

2H, Thiaz-5-CH2), 2.40 (m, 2H, COCH2), 1.92 (m, 2H, Thiaz-5-CH2CH2), 1.67 (m, 2H, 

COCH2CH2), 1.56 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.31 (m, 2H, CH2CH3), 1.25 

(m, 28H, (CH2)14), 0.88 (t, 3J = 7.1 Hz, 3H, CH2CH3); ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 680.6 (MH+, 100); C36H65N5O5S (680). 

tert-Butyl 5-{3-[3(tert-butoxycarbonyl)-2-(4-phenylbutanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.36a) 

The title compound was prepared from 4-phenylbutanoic acid (66 mg, 0.4 mmol), EDAC 

(77 mg, 0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 0.4 mmol) in 3 

ml DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.36a (196 mg, 90 %) as yellow oil. ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 546.1 (MH+, 100); C27H39N5O5S (545.69). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(5-phenylpentanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.37a) 

The title compound was prepared from 5-phenylvaleric acid (89 mg, 0.5 mmol), EDAC 

(96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 mmol) in 3 

ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 3.37a (240 mg, 86 %) as pale yellow oil. 1H-NMR (CDCl3) δ (ppm): 

7.25-7.12 (m, 4H, Ar-H), 7.04 (s, 1H, Thiaz-4-H), 3.46 (m, 2H, CH2NH), 2.82 (m, 2H, 

Thiaz-5-CH2), 2.65 (m, 2H, CH2Ar), 2.36 (m, 2H, COCH2) 1.96 (m, 2H, Thiaz-5-

CH2CH2), 1.69 (m, 4H, COCH2CH2, CH2CH2Ar), 1.55 (s, 9H, C(CH3)3), 1.49 (s, 9H, 

C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 560.3 (MH+, 100); C28H41N5O5S 

(559.72). 
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tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-cyclohexyl-2-phenylacetyl)-

guanidino]propyl}thiazol-2-ylcarbamate (3.38a) 

The title compound was prepared from 2-cyclohexyl-2-phenylacetic acid (87 mg, 0.4 

mmol), EDAC (77 mg, 0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 

0.4 mmol) in 3 ml DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to 

the general procedure yielding 3.38a (200 mg, 83 %) as pale yellow oil. 1H-NMR 

(CDCl3) δ (ppm): 7.36-7.15 (m, 5H, Ar-H), 7.01 (s, 1H, Thiaz-4-CH), 3.50 (m, 1H, 

CH(Ar)cHex), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.79 (m, 2H, Thiaz-5-CH2), 2.23 (m, 

1H, cHex-H), 1.91 (m, 2H, Thiaz-5-CH2CH2), 1.75-1.61 (m, 4H, cHex-H), 1.52 (s, 9H, 

C(CH3)3), 1.46 (s, 9H, C(CH3)3), 1.27 (m, 6H, cHex-H); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 600.3 (MH+, 100); C31H45N5O5S (599.79). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-methyl-3-phenylpropanoyl)guanidino])-

propyl}thiazol-2-ylcarbamate (3.39a) 

The title compound was prepared from 2-methyl-3-phenylpropanoic acid (82 mg, 0.5 

mmol), EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 

0.5 mmol) in 3 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs according to 

the general procedure yielding 3.39a (240 mg, 88 %) as brown oil. 1H-NMR (CDCl3) δ 

(ppm): 7.25-7.12 (m, 5H, Ar-H), 7.04 (s, 1H, Thiaz-4-H),  3.45 (m, 2H, CH2NH), 3.06 

(m 1H, COCH), 2.79 (t. 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.68 (m, 2H CH2Ar), 1.93 (m, 

2H, Thiaz-5-CH2CH2), 1.55 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3), 1.09 (d, 3J = 6.7 Hz, 

3H, CHCH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 546.3 (MH+, 100); 

C27H39N5O5S (545.69). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-benzylbutanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.40a) 

The title compound was prepared from 2-benzylbutanoic acid (18 mg, 0.1 mmol), EDAC 

(20 mg, 0.1 mmol), HOBt-monohydrate (15 mg, 0.1 mmol), DIEA (17 µl, 0.1 mmol) in 3 

ml DCM/abs and 3.18 (40 mg, 0.1 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 3-

10 min: 80/20, -20 min: 50/50) yielded 3.40a (40 mg, 67 %) as yellow oil. 1H-NMR 

(CDCl3) δ (ppm): 7.30-7.13 (m, 5H, Ar-H), 7.04 (s, 1H, Thiaz-4-H),  3.44 (m, 2H, 

CH2NH), 3.02-2.74 (m, 4H, Thiaz-5-CH2, CH2Ar), 2.53 (m, 1H, COCH), 1.91 (m, 2H, 

Thiaz-5-CH2CH2), 1.70 (m, 2H, CH2CH3), 1.56 (s, 9H, C(CH3)3), 1.48 (s, 9H, C(CH3)3), 
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0.96 (t, 3J = 7.41 Hz, 3H, CH2CH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 560.2 

(MH+, 100); C28H41N5O5S (559.72). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-p-tolylbutanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.41a) 

The title compound was prepared from 3-p-tolylbutanoic acid (36 mg, 0.2 mmol), EDAC 

(39 mg, 0.2 mmol), HOBt-monohydrate (30 mg, 0.2 mmol), DIEA (34 µl, 0.2 mmol) in 3 

ml DCM/abs and 3.18 (80 mg, 0.2 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 3-

10 min: 80/20, -20 min: 50/50) yielded 3.41a (75 mg, 67 %) as yellow oil. 1H-NMR 

(CDCl3) δ (ppm): 7.11 (m, 4H, Ar-H), 7.03 (s, 1H, Thiaz-4-H), 3.43 (m, 2H, CH2NH), 

3.28 (q, 3J = 7.1 Hz, 1H, CHCH3), 2.76 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.66-2.57 (m, 

2H, COCH2), 2.31 (s, 3H, Ar-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.56 (s, 9H, 

C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.47 (s, 3H, CHCH3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 560.2 (MH+, 100); C28H41N5O5S (559.72). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-[3(4-hydroxyphenyl)propanoyl]-

guanidino]propyl}thiazol-2-ylcarbamate (3.42a) 

The title compound was prepared from 3-(4-hydroxyphenyl)propanoic acid (67 mg, 0.4 

mmol), EDAC (77 mg, 0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 

0.4 mmol) in 3 ml DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to 

the general procedure yielding 3.42a (180 mg, 82 %) as white foam-like solid. 1H-NMR 

(CDCl3) δ (ppm): 7.04 (m, 2H, Ar-H), 7.01 (s, 1H, Thiaz-4-H), 6.76(m, 2H, Ar-H), 3.46 

(m, 2H, CH2NH), 2.92 (m, CH2-Ar), 2.76 (m, 2H, Thiaz-5-CH2), 2.68 (m, 2H, COCH2), 

1.90 (m, 2H, Thiaz-5-CH2CH2), 1.56 (s, 9H, C(CH3)3), 1.48 (s, 9H, C(CH3)3); 

C26H37N5O6S (547.67). 

tert-Butyl 5-(3-{3-(tert-butoxycarbonyl)-2-[6-(tert-butoxycarbonylamino)-3-

phenylhexanoyl]guanidino}propyl)thiazol-2-ylcarbamate (3.43a) 

The title compound was prepared from 6-(tert-butoxycarbonylamino)-3-phenylhexanoic 

acid10 (110 mg, 0.336 mmol), EDAC (69 mg, 0.36 mmol), HOBt-monohydrate (55 mg, 

0.36 mmol), DIEA (62 µl, 0.36 mmol) in 3 ml DCM/abs and 3.18 (144 mg, 0.36 mmol) 

in 2 ml DCM/abs according to the general procedure yielding 3.43a (45 mg, 18 %) as 

white yellow oil. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 345 ((M+2H)2+, 100), 689.3 

(MH+, 75); C34H52N6O7S (688.88). 
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tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-methyl-4-phenylbutanoyl)guanidino]-

propyl}thiazol-2-ylcarbamate (3.44a) 

The title compound was prepared from 3-methyl-4-phenylbutanoic acid (45 mg, 0.25 

mmol), EDAC (48 mg, 0.25 mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (43 

µl, 0.25 mmol) in 3 ml DCM/abs and 3.18 (100 mg, 0.25 mmol) in 2 ml DCM/abs 

according to the general procedure. Purification by flash chromatography (gradient: 0-2 

min: PE/EtOAc 100/0, 3-10 min: 80/20, -20 min: 50/50) yielded 3.44a (110 mg, 79 %) as 

colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.32-7.15 (m, 5H, Ar-H), 7.04 (s, 1H, Thiaz-4-

H),  3.46 (m, 2H, CH2NH), 2.79 (t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.64-2.16 (m, 5H, 

COCH2, CH2Ar, CHCH3), 1.91 (m, 2H, Thiaz-5-CH2CH2), 1.56 (s, 9H, C(CH3)3), 1.51 

(s, 9H, C(CH3)3), 0.99 (d, 3J = 6.6 Hz, 3H, CHCH3); ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 560.2 (MH+, 100); C28H41N5O5S (559.72). 

tert-Butyl 5-(3-{3-(tert-butoxycarbonyl)-2-[4-(3-methoxyphenyl)-3-methylbutanoyl]-

guanidino}propyl)thiazol-2-ylcarbamate (3.45a) 

The title compound was prepared from 4-(3-methoxyphenyl)-3-methylbutanoic acid (79 

mg, 0.38 mmol), EDAC (73 mg, 0.38 mmol), HOBt-monohydrate (58 mg, 0.38 mmol), 

DIEA (65 µl, 0.38 mmol) in 3 ml DCM/abs and 3.18 (152 mg, 0.38 mmol) in 2 ml 

DCM/abs according to the general procedure. Purification by flash chromatography 

(gradient: 0-2 min: PE/EtOAc 100/0, 3-10 min: 80/20, 12-18 min: 20/80) yielded 3.45a 

(100 mg, 45 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.19 (m, 1H, Ar-H), 7.03 (s, 

1H, Thiaz-4-H), 6.75 (m, 2H, Ar-H), 3.79 (s, 3H, OCH3), 3.46 (m, 2H, CH2NH), 2.78 

(m, 2H, Thiaz-5-CH2), 2.60-2.29 (m, 4H, COCH2, Ar-CH2), 2.18 (m, 1H, CHCH3), 1.93 

(m, 2H, Thiaz-5-CH2CH2), 1.56 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 0.99 (d, 3J = 

6.31 Hz, 3H, CHCH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 590.3 (MH+, 100); 

C29H43N5O6S (589.75). 

tert-Butyl 5-(3-{3-(tert-butoxycarbonyl)-2-[4-(4-methoxyphenyl)-3-methylbutanoyl]-

guanidino}propyl)thiazol-2-ylcarbamate (3.46a) 

The title compound was prepared from 4-(4-methoxyphenyl)-3-methylbutanoic acid (65 

mg, 0.31 mmol), EDAC (60 mg, 0.31 mmol), HOBt-monohydrate (47 mg, 0.31 mmol), 

DIEA (53 µl, 0.31 mmol) in 2 ml DCM/abs and 3.18 (124 mg, 0.31 mmol) in 2 ml 

DCM/abs according to the general procedure. Purification by flash chromatography 

(gradient: 0-2 min: PE/EtOAc 100/0, 3-12 min: 80/20, 13-20 min: 50/50) yielded 3.46a 
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(80 mg, 44 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.07 (m, 2H, Ar-H), 7.03 (s, 

1H, Thiaz-4-H), 6.81 (m, 2H, Ar-H), 3.77 (s, 3H, OCH3), 3.46 (m, 2H, CH2NH), 2.78 (t, 
3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.62-2.13 (m, 5H, COCH2, Ar-CH2, CHCH3), 1.91 (m, 

2H, Thiaz-5-CH2CH2), 1.55 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 0.97 (d, 3J = 6.31 

Hz, 3H, CHCH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 590.3 (MH+, 100); 

C29H43N5O6S (589.75). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(2-cyclohexylacetyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.47a) 

The title compound was prepared from 2-cyclohexylacetic acid (28 mg, 0.2 mmol), 

EDAC (39 mg, 0.2 mmol), HOBt-monohydrate (30 mg, 0.2 mmol), DIEA (34 µl, 0.2 

mmol) in 3 ml DCM/abs and 3.18 (80 mg, 0.2 mmol) in 2 ml DCM/abs according to the 

general procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 

100/0, 3-15 min: 80/20) yielded 3.47a (70 mg, 67 %) as colorless oil. 1H-NMR (CDCl3) δ 

(ppm): 7.08 (s, 1H, Thiaz-4-H), 3.48 (m, 2H, CH2NH), 2.80 (t, 3J = 7.5 Hz, 2H, Thiaz-5-

CH2), 2.27 (d, 3J = 7.0 Hz, 2H, COCH2) 1.93 (m, 2H, Thiaz-5-CH2CH2), 1.73 (m, 7H, 

cHex-H), 1.55 (s, 9H, C(CH3)3), 1.51 (s, 9H, C(CH3)3), 1.25 (m, 4H, cHex-H); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 524.1 (MH+, 100); C25H41N5O5S (523.69). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-cyclohexylpropanoyl)guanidino]-

propyl}thiazol-2-ylcarbamate (3.48a) 

The title compound was prepared from 3-cylcohexylpropanoic acid (78 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.48a (240 mg, 89 %) as yellow oil. ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 538.3 (MH+, 100); C26H43N5O5S (537.72). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(4-cyclohexylbutanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.49a) 

The title compound was prepared from 4-cyclohexylbutanoic acid (68 mg, 0.4 mmol), 

EDAC (77 mg, 0.4 mmol), HOBt-monohydrate (61 mg, 0.4 mmol), DIEA (69 µl, 0.4 

mmol) in 3 ml DCM/abs and 3.18 (160 mg, 0.4 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.49a (170 mg, 77 %) as pale yellow oil. 1H-NMR (CDCl3) δ 

(ppm): 7.03 (s, 1H, Thiaz-4-H), 3.42 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.81 (t, 3J = 7.4 Hz, 

2H, Thiaz-5-CH2), 2.40 (t, 3J = 7.4 Hz, 2H, COCH2), 1.93 (m, 2H, Thiaz-5-CH2CH2), 
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1.77-1.57 (m, 11H, COCH2CH2, cHex-H), 1.53 (s, 9H, C(CH3)3), 1.48 (s, 9H, C(CH3)3), 

1.29 (m, 2H, cHex-H), 1.24 (m, 2H, cHex-H); ES-MS (DCM/MeOH + NH4OAc) m/z 

(%): 552.3 (MH+, 100); C27H45N5O5S (551.74). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-cyclohexyl-5-methylhexanoyl)-

guanidino]propyl}thiazol-2-ylcarbamate (3.50a) 

The title compound was prepared from 3-cyclohexyl-5-methylhexanoic acid (61 mg, 0.3 

mmol), EDAC (58 mg, 0.3 mmol), HOBt-monohydrate (46 mg, 0.3 mmol), DIEA (52 µl, 

0.3 mmol) in 3 ml DCM/abs and 3.18 (120 mg, 0.3 mmol) in 2 ml DCM/abs according to 

the general procedure yielding 3.50a (150 mg, 84 %) as yellow oil. ES-MS (DCM/MeOH 

+ NH4OAc) m/z (%): 594.3 (MH+, 100); C30H51N5O5S (593.82). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(4-cyclohexyl-3-methylbutanoyl)-

guanidino]propyl}thiazol-2-ylcarbamate (3.51a) 

The title compound was prepared from 4-cyclohexyl-3-methylbutanoic acid (28 mg, 0.15 

mmol), EDAC (30 mg, 0.15 mmol), HOBt-monohydrate (24 mg, 0.15 mmol), DIEA (27 

µl, 0.15 mmol) in 3 ml DCM/abs and 3.18 (60 mg, 0.15 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 3.51a (80 mg, 94 %) as yellow-brown oil. 

ES-MS (DCM/MeOH + NH4OAc) m/z (%): 565.3 (MH+, 100); C28H47N5O5S (565.77). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(3-(cyclohexylmethyl)pentanoyl)-

guanidino]propyl}thiazol-2-ylcarbamate (3.52a) 

The title compound was prepared from 3-(cyclohexylmethyl)pentanoic acid (45 mg, 0.23 

mmol), EDAC (44 mg, 0.23 mmol), HOBt-monohydrate (35 mg, 0.23 mmol), DIEA (39 

µl, 0.23 mmol) in 3 ml DCM/abs and 3.18 (92 mg, 0.23 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 3.52a (100 mg, 75 %) as yellow oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 580.3 (MH+, 100); C29H49N5O5S (579.79). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(6-(tert-butoxycarbonylamino)hexanoyl)-

guanidino]propyl}thiazol-2-ylcarbamate (3.53a) 

The title compound was prepared from 6-(tert-butoxycarbonylamino)hexanoic acid (230 

mg, 1 mmol), EDAC (192 mg, 1 mmol), HOBt-monohydrate (153 mg, 1 mmol), DIEA 

(170 µl, 1 mmol) in 3 ml DCM/abs and 3.18 (400 mg, 1 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 3.53a (490 mg, 82 %) as yellow oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 613.2 (MH+, 100); C28H48N6O7S (612.78). 
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tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-(11-aminoundecanoyl)guanidino]propyl}-

thiazol-2-ylcarbamate (3.54a) 

The title compound was prepared from 11-(tert-butoxycarbonylamino)undecanoic acid 

(250 mg, 0.83 mmol), EDAC (159 mg, 0.83 mmol), HOBt-monohydrate (127 mg, 0.83 

mmol), DIEA (206 µl, 0.83 mmol) in 3 ml DCM/abs and 3.18 (330 mg, 0.83 mmol) in 2 

ml DCM/abs according to the general procedure yielding 3.54a (420 mg, 74 %) as 

colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.03 (s, 1H, Thiaz-4-H), 3.48 m, 2H, CH2NH), 

3.09 (m, 2H, CH2NHBoc), 2.79 (t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.39 (t, 3J = 7.7 Hz, 

2H, COCH2), 1.92 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2, 

CH2CH2NHBoc), 1.55 (s, 9H, (CH3)3), 1.50 (s, 9H, (CH3)3) 1.44 (s, 9H, (CH3)3), 1.28 

(m, 12H, (CH2)6); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 683.4 (MH+, 100); 

C33H58N6O7S (682.91). 

S-6-((tert-Butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)thiazol-5-yl]-

propylamino}methyleneamino)-6-oxohexyl ethanethioate (3.55a) 

The title compound was prepared from 6-(acetylthio)hexanoic acid (95 mg, 0.5 mmol), 

EDAC (96 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (86 µl, 0.5 

mmol) in 3 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 3.55a (260 mg, 91 %) as dark yellow oil. 1H-NMR (CDCl3) δ 

(ppm): 7.05 (s, 1H, Thiaz-4-H), 3.47 (m, 2H, CH2NH), 2.86 (m, 2H, SCH2), 2.79 (t, 3J = 

7.5 Hz, 2H, Thiaz-5-CH2), 2.40 (t, 3J = 7.5 Hz, 2H, COCH2), 2.32 (s, 3H, COCH3), 1.90 

(m, 2H, Thiaz-5-CH2CH2), 1.73-1.58 (m, 6H, SCH2CH2, COCH2CH2, COCH2CH2), 1.54 

(s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 

572.2 (MH+, 100); C25H41N5O6S2 (571.75). 

General procedure for the synthesis of 3.20a, 3.21a, 3.33a and 3.34a 

NEt3 (1 eq) and the pertinent acid chloride (1 eq) was added to a solution of 3.17 or 3.18 

(1 eq) in 4 ml DCM/abs. The mixture was stirred overnight at room temperature. The 

solvent was removed under reduced pressure, EtOAc and water were added to the 

residue, the organic phase was separated and the aqueous layer extracted three times with 

EtOAc. After drying over MgSO4, the solvent was removed in vacuo. The crude product 

was purified by flash chromatography. 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-pentanoylguanidino]propyl}-4-methyl-

thiazol-2-ylcarbamate (3.20a) 
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The title compound was prepared from 3.17 (165 mg, 0.4 mmol), NEt3 (55 µl, 0.4 mmol) 

and pentanoyl chloride (47 µl, 0.4 mmol) in 4 ml DCM/abs according to the general 

procedure (PE/EtOAc 70/30 v/v) yielding 3.20a (180 mg, 90 %) as pale yellow oil. 1H-

NMR (CDCl3) δ (ppm): 3.46 (m, 2H, CH2NH), 2.70 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 

2.40 (m, 2H, COCH2), 2.21 (s, 3H, Thiaz-4-CH3), 1.87 (m, 2H, Thiaz-5-CH2CH2), 1.67 

(m, 2H, COCH2CH2), 1.52 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.38 (m, 2H, 

CH2CH3), 0.96 (m, 3H, CH2CH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 498.1 

(MH+, 100); C23H39N5O5S (497.65). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-nonanoylguanidino]propyl}-4-methyl-

thiazol-2-ylcarbamate (3.21a) 

The title compound was prepared from 3.17 (207 mg, 0.5 mmol), NEt3 (71 µl, 0.5 mmol) 

and nonanoyl chloride (92 µl, 0.5 mmol) in 5 ml DCM/abs according to the general 

procedure (PE/EtOAc 80/20 v/v) yielding 3.21a (240 mg, 87 %) as colorless oil. 1H-NMR 

(CDCl3) δ (ppm): 3.45 (m, 2H, CH2NH), 2.70 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.39 (t, 
3J = 7.5 Hz, 2H, COCH2), 2.20 (s, 3H, Thiaz-4-CH3), 1.88 (m, 2H, Thiaz-5-CH2CH2), 

1.65 (m, 2H, COCH2CH2), 1.53 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.26 (m, 10H, 

(CH2)5), 0.93 (m, 3H, CH2CH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 554.2 

(MH+, 100); C27H47N5O5S (553.76). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-pentanoylguanidino]propyl}thiazol-2-yl-

carbamate (3.33a) 

The title compound was prepared from 3.18 (160 mg, 0.4 mmol), NEt3 (55 µl, 0.4 mmol) 

and pentanoyl chloride (47 µl, 0.4 mmol) in 4 ml DCM/abs according to the general 

procedure (PE/EtOAc 70/30 v/v) yielding 3.33a (95 mg, 50 %) as pale yellow oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 484.1 (MH+, 100); C22H37N5O5S (483.62). 

tert-Butyl 5-{3-[3-(tert-butoxycarbonyl)-2-nonanoylguanidino]propyl}thiazol-2-yl-

carbamate (3.34a) 

The title compound was prepared from 3.18 (200 mg, 0.5 mmol), NEt3 (71 µl, 0.5 mmol) 

and nonanoyl chloride (92 µl, 0.5 mmol) in 5 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 3-8 

min: 90/10, 9-20 min: 80/20) yielded 3.34a (130 mg, 60 %) as colorless oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 540.3 (MH+, 100); C26H45N5O5S (539.73). 
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3.5.1.5 Preparation of the deprotected NG-acylated aminothiazolyl-

propylguanidines 3.19-3.65  

General procedure for the synthesis of deprotected acylguanidines 3.19-3.55, 3.64 

and 3.65 

TFA (20 %) was added to a solution of the protected acylguanidines 3.19-3.55, 3.64 and 

3.65 in DCM/abs, and the mixture was stirred at ambient temperature until the protecting 

groups were removed (3-5 h) (TLC control). Subsequently, the solvent was evaporated in 

vacuo and the residue was purified by preparative RP-HPLC. All compounds were 

obtained as trifluoroacetic acid salts. 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-propanoylguanidine (3.19) 

Prepared from 3.19a (170 mg, 0.36 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.19 (110 mg, 61 %) as pale yellow oil. 1H-NMR 

(CD3OD) δ (ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-

CH2), 2.49 (q, 3J = 7.4 Hz, 2H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-

5-CH2CH2), 1.14 (t, 3J = 7.41 Hz, 3H, COCH2CH3); 
13C-NMR (CD3OD) δ (ppm): 178.01 

(quat. C=O), 170.37 (quat. Thiaz-2-C), 146.13 (quat. Thiaz-4-C), 118.44 (quat. Thiaz-5-

C), 41.60 (-, CH2NH), 31.07 (-, COCH2), 29.71 (-, Thiaz-5-CH2CH2), 23.63 (-, Thiaz-5-

CH2), 11.44 (+, Thiaz-4-CH3), 8.57 (+, COCH2CH3); HREIMS: m/z for ([C11H19N5OS]+•) 

calcd. 269.1310, found 269.1303; prep HPLC: MeCN/0.1 % TFA/aq (10/90-50/50); anal. 

HPLC: k`= 0.73 (tR = 4.62 min, column B), purity = 99 %; C11H19N5OS · 2TFA (497.41). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-pentanoylguanidine (3.20) 

Prepared from 3.20a (180 mg, 0.36 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.20 (100 mg, 53 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.71 (t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.47 

(t, 3J = 7.41 Hz, 2H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-

CH2CH2), 1.64 (m, 2H, COCH2CH2), 1.38 (m, 2H, CH2CH3), 0.94 (t, 3J = 7.41 Hz, 3H, 

CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.41 (quat. C=O), 170.97 (quat. Thiaz-2-C), 

118.44 (quat. Thiaz-5-C), 41.61 (-, CH2NH), 37.52 (-, COCH2), 29.73 (-, Thiaz-5-

CH2CH2), 27.57 (-, COCH2CH2), 23.63 (-, Thiaz-5-CH2), 23.12 (-, CH2CH3), 14.05 (+, 

COCH2CH3), 11.44 (+, Thiaz-4-CH3); HREIMS: m/z for ([C13H23N5OS]+•) calcd. 
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297.1623, found 297.1623; prep HPLC: MeCN/0.1 % TFA/aq (10/90-50/50); anal. 

HPLC: k`= 2.96 (tR = 7.91 min, column B), purity = 96 %; C13H23N5OS · 2TFA (525.26). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-nonanoylguanidine (3.21) 

Prepared from 3.21a (230 mg, 0.42 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.21 (60 mg, 25 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.71 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.47 (t, 
3J = 7.4 Hz, 2H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 

1.65 (m, 2H, COCH2CH2), 1.31 (m, 10H, (CH2)5), 0.90 (t, 3J = 6.9 Hz, 3H, CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.42 (quat. C=O), 162.80 (quat. Thiaz-2-C), 155.31 

(quat. C=NH), 132.61 (quat. Thiaz-4-C), 118.44 (quat. Thiaz-5-C), 41.60 (-, CH2NH), 

37.79 (-, COCH2), 33.00 (-, CH2), 30.37 (-, CH2), 30.29 (-, CH2), 30.04 (-, CH2), 29.74 (-, 

Thiaz-5-CH2CH2), 25.49 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 23.62 (-, CH2CH3), 

14.45 (+, CH2CH3), 11.45 (+, Thiaz-4-CH3); HREIMS: m/z for ([C17H31N5OS]+•) calcd. 

353.2249, found 353.2247; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. 

HPLC: k`= 4.06 (tR = 13.54 min, column B), purity = 96 %; C17H31N5OS · 2TFA 

(581.57). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-benzoylguanidine (3.22) 

Prepared from 3.22a (180 mg, 0.35 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.22 (130 mg, 68 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 8.00 (m, 2H, Ar-H), 7.75 (m, 1H, Ar-H), 7.70-7.55 (m, 2H, Ar-H), 3.50 (m, 2H, 

CH2NH), 2.76 (m, 2H, Thiaz-5-CH2), 2.20 (s, 3H, Thiaz-4-CH3), 1.95 (m, 2H, Thiaz-5-

CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 171.27 (quat. C=O), 135.27 (quat. Ar-C), 132.37 

(quat. Thiaz-4-C), 130.19 (+, Ar-C), 129.32 (+, Ar-C), 118.40 (quat. Thiaz-5-C), 41.90 (-, 

CH2NH), 29.81 (-, Thiaz-5-CH2CH2), 23.65 (-, Thiaz-5-CH2), 11.48 (+, Thiaz-4-CH3); 

HREIMS: m/z for ([C15H19N5OS]+•) calcd. 317.1310, found 317.1307; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.0 (tR = 9.95 min, column A), 

purity = 98 %; C15H19N5OS · 2TFA (545.17). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(2-phenylacetyl)guanidine (3.23) 

Prepared from 3.23a (200 mg, 0.38 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.23 (190 mg, 90 %) as yellow-brown oil. 1H-NMR 

(CD3OD) δ (ppm): 7.40-7.20 (m, 5H, Ar-H), 3.79 (s, 2H, COCH2), 3.35 (m, 2H, 

CH2NH), 2.70 (m, 2H, Thiaz-5-CH2), 2.16 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-
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CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 175.25 (quat. C=O), 170.37 (quat. Thiaz-2-C), 

143.31 (quat. Ar-C), 132.58 (quat. Thiaz-4-C), 130.60 (+, Ar-C), 129.80 (+, Ar-C), 

128.62 (+, Ar-C), 118.41 (quat. Thiaz-5-C), 44.42 (-, COCH2), 41.64 (-, CH2NH), 29.66 

(-, Thiaz-5-CH2CH2), 23.59 (-, Thiaz-5-CH2), 11.43 (+, Thiaz-4-CH3); HREIMS: m/z for 

([C16H21N5OS]+•) calcd. 331.1467, found 331.1464; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 2.25 (tR = 10.79 min, column A), purity = 100 %; 

C16H21N5OS · 2TFA (559.48). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(3-phenylpropanoyl)guanidine (3.24) 

Prepared from 3.24a (180 mg, 0.33 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.24 (170 mg, 90 %) as yellow-brown oil. 1H-NMR 

(CD3OD) δ (ppm): 7.30-7.10 (m, 5H, Ar-H), 3.35 (m, 2H, CH2NH), 2.96 (t, 3J = 7.7 Hz, 

2H, COCH2), 2.79 (t, 3J = 7.6 Hz, 2H, CH2-Ar), 2.70 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 

2.17 (s, 3H, Thiaz-4-CH3), 1.89 (m, 2H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 

176.52 (quat. C=O), 141.36 (quat. Ar-C), 132.60 (quat. Thiaz-4-C), 129.62 (+, Ar-C), 

129.48 (+, Ar-C), 127.51 (+, Ar-C), 118.42 (quat. Thiaz-5-C), 41.59 (-, CH2NH), 39.52 (-

, COCH2), 31.29 (-, CH2-Ar), 29.70 (-, Thiaz-5-CH2CH2), 23.60 (-, Thiaz-5-CH2), 11.45 

(+, Thiaz-4-CH3); HREIMS: m/z for ([C17H23N5OS]+•) calcd. 345.1623, found 345.1624; 

prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.39 (tR = 11.23 min, 

column A), purity = 99 %; C17H23N5OS · 2TFA (573.5). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(4-phenylbutanoyl)guanidine (3.25) 

Prepared from 3.25a (200 mg, 0.36 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.25 (121 mg, 57 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.30-7.10 (m, 5H, Ar-H), 3.34 (m, 2H, CH2NH), 2.70 (m, 2H, Thiaz-5-CH2), 2.68 

(m, 2H, CH2-Ar), 2.48 (t, 3J = 7.1 Hz, 2H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.97 (m, 

2H, Thiaz-5-CH2CH2), 1.89 (m, 2H, CH2CH2-Ar); 13C-NMR (CD3OD) δ (ppm): 176.37 

(quat. C=O), 142.04 (quat. Ar-C), 132.63 (quat. Thiaz-4-C), 129.60 (+, Ar-C), 129.51 (+, 

Ar-C), 127.17 (+, Ar-C), 118.44 (quat. Thiaz-5-C), 41.62 (-, CH2NH), 37.11 (-, COCH2), 

35.90 (-, CH2-Ar), 29.78 (-, Thiaz-5-CH2CH2), 27.14 (-, COCH2CH2), 23.62 (-, Thiaz-5-

CH2), 11.46 (+, Thiaz-4-CH3); HREIMS: m/z for ([C18H25N5OS]+•) calcd. 359.1780, 

found 359.1785; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.87 

(tR = 12.83 min, column A), purity = 100 %; C18H25N5OS · 2TFA (587.53). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(5-phenylpentanoyl)guanidine (3.26) 
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Prepared from 3.26a (200 mg, 0.35 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.26 (189 mg, 90 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.29-7.10 (m, 5H, Ar-H), 3.34 (m, 2H, CH2NH), 2.93 (m, 2H, Thiaz-5-CH2), 2.63 

(m, 2H, CH2-Ar), 2.50 (m, 2H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-

5-CH2CH2), 1.65 (m, 4H, COCH2CH2, CH2CH2-Ar); 13C-NMR (CD3OD) δ (ppm): 

177.26 (quat. C=O), 163.79 (quat. Thiaz-2-C), 142.31 (quat. Ar-C), 132.63 (quat. Thiaz-

4-C), 129.45 (+, Ar-C), 129.39 (+, Ar-C), 126.88 (+, Ar-C), 118.44 (quat. Thiaz-5-C), 

41.60 (-, CH2NH), 37.59 (-, COCH2), 36.47 (-, CH2-Ar), 31.86 (-, Thiaz-5-CH2CH2), 

25.02 (-, COCH2CH2, CH2CH2-Ar), 23.61 (-, Thiaz-5-CH2), 11.45 (+, Thiaz-4-CH3); 

HREIMS: m/z for ([C19H27N5OS]+•) calcd. 373.1936, found 373.1938; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.24 (tR = 14.06 min, column A), 

purity = 99 %; C19H27N5OS · 2TFA (601.56). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(6-phenylhexanoyl)guanidine (3.27) 

Prepared from 3.27a (200 mg, 0.34 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.27 (167 mg, 80 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.35-7.09 (m, 5H, Ar-H), 3.34 (m, 2H, CH2NH), 2.70 (m, 2H, Thiaz-5-CH2), 2.60 

(m, 2H, CH2-Ar), 2.45 (m, 2H, COCH2), 2.16 (s, 3H, Thiaz-4-CH3), 1.89 (m, 2H, Thiaz-

5-CH2CH2), 1.62 (m, 4H, COCH2CH2, CH2CH2-Ar), 1.37 (m, 2H, COCH2CH2CH2); 
13C-

NMR (CD3OD) δ (ppm): 177.37 (quat. C=O), 170.36 (quat. Thiaz-2-C), 155.32 (quat. 

C=NH), 143.65 (quat. Ar-C), 132.59 (quat. Thiaz-4-C), 129.40 (+, Ar-C), 129.28 (+, Ar-

C), 126.70 (+, Ar-C), 118.39 (quat. Thiaz-5-C), 41.55 (-, CH2NH), 37.66 (-, COCH2), 

36.62 (-, CH2-Ar), 32.23 (-, CH2CH2-Ar), 29.45 (-, Thiaz-5-CH2CH2), 29.28 (-, 

CH2CH2CH2-Ar), 25.26 (-, COCH2CH2), 23.58 (-, Thiaz-5-CH2), 11.41 (+, Thiaz-4-CH3); 

HREIMS: m/z for ([C20H29N5OS]+•) calcd. 387.2093, found 387.2088; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.58 (tR = 15.21 min, column A), 

purity = 95 %; C20H29N5OS · 2TFA (615.58). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(3,3-diphenylpropanoyl)guanidine 

(3.28) 

Prepared from 3.28a (200 mg, 0.32 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.28 (62 mg, 30 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.29 (m, 8H, Ar-H), 7.17 (m, 2H, Ar-H), 4.59 (t, 3J = 8.2 Hz, 1H, CH(Ar)2), 3.27 

(m, 2H, CH2NH), 3.25 (m, 2H, COCH2), 2.65 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.13 (s, 
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3H, Thiaz-4-CH3), 1.86 (m, 2H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 175.55 

(quat. C=O), 170.33 (quat. Thiaz-2-C), 144.49 (quat. Ar-C), 132.83 (quat. Thiaz-4-C), 

129.86 (+, Ar-C), 129.70 (+, Ar-C), 129.57 (+, Ar-C), 129.16 (+, Ar-C), 128.81 (+, Ar-

C), 127.80 (+, Ar-C), 118.36 (quat. Thiaz-5-C), 43.80 (-, COCH2), 41.49 (-, CH2NH), 

29.61 (-, Thiaz-5-CH2CH2), 23.51 (-, Thiaz-5-CH2), 11.52 (+, Thiaz-4-CH3); HREIMS: 

m/z for ([C23H27N5OS]+•) calcd. 421.1936, found 421.1935; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 3.46 (tR = 14.81 min, column A), purity = 100 

%; C23H27N5OS · 2TFA (649.6). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(cyclohexanecarbonyl)guanidine 

(3.29) 

Prepared from 3.29a (190 mg, 0.36 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.29 (188 mg, 95 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.42 

(m, 1H, COCH), 2.17 (s, 3H, Thiaz-4-CH3), 1.91 (m, 2H, Thiaz-5-CH2CH2), 1.80 (m, 

2H, cHex-H), 1.69 (m, 2H, cHex-H), 1.45 (m, 2H, cHex-H), 1.36 (m, 2H, cHex-H); 13C-

NMR (CD3OD) δ (ppm): 180.18 (quat. C=O), 170.35 (quat. Thiaz-2-C), 155.58 (quat. 

C=NH), 132.59 (quat. Thiaz-4-C), 118.39 (quat. Thiaz-5-C), 43.78 (+, COCH), 41.63 (-, 

CH2NH), 29.89 (-, Thiaz-5-CH2CH2), 29.64 (-, cHex-C), 26.62 (-, cHex-C), 26.25 (-, 

cHex-C), 23.64 (-, Thiaz-5-CH2), 11.41 (+, Thiaz-4-CH3); HREIMS: m/z for 

([C15H25N5OS]+•) calcd. 323.1780, found 323.1778; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 2.42 (tR = 11.34 min, column A), purity = 98 %; 

C15H25N5OS · 2TFA (551.22). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(2-cyclohexylacetyl)guanidine (3.30) 

Prepared from 3.30a (150 mg, 0.28 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.30 (150 mg, 95 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.35 (t, 3J = 7.4 Hz, 2H, CH2NH), 2.71 (t, 3J = 7.1 Hz, 2H, Thiaz-5-CH2), 2.34 (d, 
3J = 6.9 Hz, 2H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.93 (m, 2H, Thiaz-5-CH2CH2), 

1.80-1.60 (m, 5H, cHex-H), 1.40-1.17 (m, 6H, cHex-H); 13C-NMR (CD3OD) δ (ppm): 

176.69 (quat. C=O), 170.37 (quat. Thiaz-2-C), 155.28 (quat. C=NH), 132.61 (quat. Thiaz-

4-C), 118.43 (quat. Thiaz-5-C), 48.75 (-, COCH2), 41.61 (-, CH2NH), 32.92 (+, cHex-C), 

29.71 (-, Thiaz-5-CH2CH2), 27.18 (-, cHex-C), 27.14 (-, cHex-C), 23.62 (-, Thiaz-5-CH2), 

11.45 (+, Thiaz-4-CH3); HREIMS: m/z for ([C16H27N5OS]+•) calcd. 337.1936, found 
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337.1930; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.85 (tR = 

12.77 min, column A), purity = 98 %; C16H27N5OS · 2TFA (565.52). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-(11-aminoundecanoyl)guanidine 

(3.31) 

Prepared from 3.31a (50 mg, 0.07 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.31 (30 mg, 58 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.90 (t, 3J = 7.41 Hz, 2H, CH2NH2), 2.71 (t, 3J 

= 7.68 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.41 Hz, 2H, COCH2), 2.18 (s, 3H, Thiaz-4-

CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.64 (m, 4H, COCH2CH2, CH2CH2NH2), 1.33 (m, 

12H, (CH2)6); 
13C-NMR (CD3OD) δ (ppm): 177.49 (quat. C=O), 170.39 (quat. Thiaz-2-

C), 155.39 (quat. C=NH), 132.59 (quat. Thiaz-4-C), 118.41 (quat. Thiaz-5-C), 41.57 (-, 

CH2NH), 40.77 (-, CH2NH2), 37.77 (-, COCH2), 30.47 (-, CH2CH2NH2), 30.35 (-, CH2), 

30.22 (-, CH2), 30.02 (-, CH2), 29.69 (-, Thiaz-5-CH2CH2), 28.62 (-, CH2), 27.47 (-, 

CH2CH2CH2NH2), 25.51 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 11.44 (+, Thiaz-4-

CH3); HREIMS: m/z for ([C19H36N5OS]+•) calcd. 396.2671, found 396.2683; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 1.94 (tR = 7.89 min, column B), 

purity = 96 %; C19H36N6OS · 3TFA (738.65). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-propanoylguanidine (3.32) 

Prepared from 3.32a (65 mg, 0.14 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.32 (25 mg, 37 %) as white amorphous solid. 1H-NMR 

(CD3OD) δ (ppm): 7.02 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.77 (t, 3J 

= 7.6 Hz, 2H, Thiaz-5-CH2), 2.49 (q, 3J = 7.4 Hz, 2H, COCH2), 1.95 (m, 2H, Thiaz-5-

CH2CH2), 1.15 (t, 3J = 7.4 Hz, 3H, CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.97 (quat. 

C=O), (quat. Thiaz-2-C), 155.34 (quat. C=NH), (quat. Thiaz-5-C), 120,01 (+, Thiaz-4-

CH), 41.50 (-, CH2NH), 31.08 (-, COCH2), 29.55 (-,Thiaz-5-CH2CH2), 24.96 (-, Thiaz-5-

CH2), 8.57 (+, CH2CH3); HREIMS: m/z for ([C10H17N5OS]+•) calcd. 255.1154, found 

255.1154; prep HPLC: MeCN/0.1 % TFA/aq (10/90-35/65); anal. HPLC: k`= 0.61 (tR = 

4.31 min, column B), purity = 100 %; C10H17N5OS · 2TFA (483.38). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-pentanoylguanidine (3.33) 

Prepared from 3.33a (55 mg, 0.11 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.33 (10 mg, 18 %) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 7.01 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.78 (t, 3J = 7.5 Hz, 
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2H, Thiaz-5-CH2), 2.47 (t, 3J = 7.4 Hz, 2H, COCH2), 1.95 (m, 2H, Thiaz-5-CH2CH2), 

1.64 (m, 2H, CH2CH3), 1.39 (m, 2H, COCH2CH2), 0.94 (t, 3J = 7.3 Hz, 3H, CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.35 (quat. C=O), (quat. Thiaz-2-C), (quat. C=NH), 

127.53 (quat. Thiaz-5-C), 122.57 (+, Thiaz-4-CH), 41.52 (-, CH2NH), 37.53 (-, COCH2), 

29.52 (-,Thiaz-5-CH2CH2), 27.56 (-, COCH2CH2), 24.91 (-, Thiaz-5-CH2), 23.13 (-, 

CH2CH3), 14.06 (+, CH2CH3); HREIMS: m/z for ([C12H21N5OS]+•) calcd. 283.1467, 

found 283.1469; prep HPLC: MeCN/0.1 % TFA/aq (10/90-50/50); anal. HPLC: k`= 1.74 

(tR = 7.34 min, column B), purity = 100 %; C12H21N5OS · 2TFA (511.43). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-nonanoylguanidine (3.34) 

Prepared from 3.34a (60 mg, 0.11 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.34 (40 mg, 64 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.12 (s, 1H, Thiaz-4-H), 3.51 (m, 2H, CH2NH), 2.88 (t, 3J = 7.3 Hz, 

2H, Thiaz-5-CH2), 2.49 (t, 3J = 7.4 Hz, 2H, COCH2), 2.01 (m, 2H, Thiaz-5-CH2CH2), 

1.63 (m, 2H, COCH2CH2), 1.30 (m, 10H, (CH2)5), 0.87 (t, 3J = 6.0 Hz, 3H, CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.61 (quat. C=O), 155.45 (quat. C=NH), 125.42 (quat. 

Thiaz-5-C), 124.46 (+, Thiaz-4-CH), 40.85 (-, CH2NH), 37.10 (-, COCH2), 32.54 (-, 

CH2CH2CH3), 29.95 (-, Thiaz-5-CH2CH2), 29.35 (-, CH2), 29.26 (-, CH2), 29.09 (-, CH2), 

25.19 (-, COCH2CH2), 24.56 (-, Thiaz-5-CH2), 23.29 (-, CH2CH3), 14.35 (+, CH2CH3); 

HREIMS: m/z for ([C16H29N5OS]+•) calcd. 339.2093, found 339.2095; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.97 (tR = 13.30 min, column B), 

purity = 100 %; C16H29N5OS · 2TFA (567.54). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-nonadecanoylguanidine (3.35) 

Prepared from 3.35a (50 mg, 0.07 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.35 (15 mg, 30 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.00 (s, 1H, Thiaz-4-H), 3.36 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.77 (t, 3J 

= 7.5 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 2H, COCH2), 1.95 (m, 2H, Thiaz-5-

CH2CH2), 1.30 (m, 30H, (CH2)15), 0.89 (t, 3J = 6.9 Hz, 3H, CH2CH3); 
13C-NMR 

(CD3OD) δ (ppm): 177.40 (quat. C=O), 154.34 (quat. C=NH), 126.36 (quat. Thiaz-5-C), 

123.71 (+, Thiaz-4-CH), 41.50 (-, CH2NH), 37.80 (-, COCH2), 33.12 (-, CH2CH2CH3), 

30.81 (-, CH2), 30.74 (-, CH2), 30.60 (-, CH2), 30.52 (-, CH2), 30.40 (-, CH2), 30.04 (-, 

CH2), 29.54 (-, Thiaz-5-CH2CH2), 25.48 (-, COCH2CH2), 24.90 (-, Thiaz-5-CH2), 23.78 (-

, CH2CH3), 14.48 (+, CH2CH3); HREIMS: m/z for ([C26H49N5OS]+•) calcd. 479.3658, 
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found 479.3655; prep HPLC: MeCN/0.1 % TFA/aq (40/60-70/30); anal. HPLC: k`= 7.80 

(tR = 23.53 min, column B), purity = 93 %; C26H49N5OS · 2TFA (707.81). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(4-phenylbutanoyl)guanidine (3.36) 

Prepared from 3.36a (180 mg, 0.33 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.36 (160 mg, 85 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.22 (m, 5H, Ar-H), 7.01 (s, 1H, Thiaz-4-H), 3.36 (t, 3J = 7.35 Hz, 2H, CH2NH), 

2.76 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.67 (t, 3J = 7.7 Hz, 2H, COCH2), 2.48 (t, 3J = 7.4 

Hz, 2H, CH2-Ar), 1.96 (m, 4H, Thiaz-5-CH2CH2, COCH2CH2); 
13C-NMR (CD3OD) δ 

(ppm): 175.07 (quat. C=O), 166.27 (quat. Thiaz-2-C), 142.57 (quat. Ar-C), 129.59 (+, 2 

Ar-CH), 129.50 (+, 2 Ar-CH), 127.16 (+, Ar-CH), 126.23 (quat. Thiaz-5-C), 123.36 (+, 

Thiaz-4-CH), 41.49 (-, CH2NH), 37.12 (-, COCH2), 35.90 (-, Ar-CH2), 29.49 (-, Thiaz-5-

CH2CH2), 27.13 (-, COCH2CH2), 24.89 (-, Thiaz-5-CH2); HREIMS: m/z for 

([C17H23N5OS]+•) calcd. 345.1623, found 345.1624; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 2.95 (tR = 9.60 min, column B), purity = 99 %; 

C17H23N5OS · 2TFA (573.5). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(5-phenylpentanoyl)guanidine (3.37) 

Prepared from 3.37a (100 mg, 0.18 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.37 (40 mg, 38 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.22 (m, 2H, Ar-H), 7.14 (m, 2H, Ar-H), 7.01 (s, 1H, Thiaz-4-H), 3.35 (t, 3J = 6.9 

Hz, 2H, CH2NH), 2.76 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.63 (m, 2H, CH2Ar), 2.48 (m, 

2H, COCH2) 1.95 (m, 2H, Thiaz-5-CH2CH2), 1.68 (m, 4H, COCH2CH2, CH2CH2Ar); 
13C-NMR (CD3OD) δ (ppm): 177.26 (quat. C=O), 143.31 (quat. Ar-C), 129.45 (+, Ar-C), 

129.38 (+, Ar-C), 126.87 (+, Ar-C), 41.48 (-, CH2NH), 37.58 (-, Ar-CH2), 36.47 (-, 

COCH2), 31.84 (-, Ar-CH2CH2), 29.50 (-,Thiaz-5-CH2CH2), 25.00 (-, COCH2CH2), 24.92 

(-,Thiaz-5-CH2); HREIMS: m/z for ([C18H25N5OS]+•) calcd. 359.1780, found 359.1781; 

prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.28 (tR = 11.44 min, 

column B), purity = 100 %; C18H25N5OS · 2TFA (587.53). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(2-cyclohexyl-2-phenylacetyl)guanidine (3.38) 

Prepared from 3.38a (210 mg, 0.35 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.38 (150 mg, 68 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.37-7.26 (m, 5H, Ar-H), 6.99 (s, 1H, Thiaz-4-CH), 3.38 (m, 1H, CH(Ar)cHex), 

3.31 (m, 2H, CH2NH), 2.73 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.13 (m, 1H, cHex-H), 
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1.92 (m, 2H, Thiaz-5-CH2CH2), 1.85-1.60 (m, 4H, cHex-CH), 1.41-1.10 (m, 6H, cHex-

H); 13C-NMR (CD3OD) δ (ppm): 177.74 (quat. C=O), 171.80 (quat. Thiaz-2-C), 155.24 

(quat. C=NH), 138.14 (quat. Ar-C), 129.84 (+, Ar-C), 129.74 (+, Ar-C), 128.92 (+, Ar-

C), 126.33 (quat. Thiaz-5-C), 123.27 (+, Thiaz-4-CH), 61.35 (+, CH(Ar)cHex), 41.82 (+, 

cHex-C), 41.55 (-, CH2NH), 32.97 (-, cHex-C), 31.20 (-, cHex-C), 29.39 (-, Thiaz-5-

CH2CH2), 27.35 (-, cHex-C), 27.07 (-, cHex-C), 27.00 (-, cHex-C), 24.88 (-, Thiaz-5-

CH2); HREIMS: m/z for ([C21H29N5OS]+•) calcd. 399.2093, found 399.2096; prep HPLC: 

MeCN/0.1 % TFA/aq (30/70-60/40); anal. HPLC: k`= 3.97 (tR = 13.31 min, column B), 

purity = 100 %; C21H29N5OS · 2TFA (627.59). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(2-methyl-3-phenylpropanoyl)guanidine (3.39) 

Prepared from 3.39a (90 mg, 0.16 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.39 (20 mg, 22 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.30-7.14 (m, 5H, Ar-H), 6.99 (s, 1H, Thiaz-4-H), 3.33 (t, 3J = 6.9 Hz, 2H, 

CH2NH), 2.99 (dd, 2J = 12.7 Hz, 3J = 7.6 Hz, 1H, Ar-CHHCH), 2.89 (m, 1H, 

COCH(CH3)CH2), 2.72 (m, 3H, Thiaz-5-CH2, Ar-CHHCH), 1.92 (m, 2H, Thiaz-5-

CH2CH2), 1.18 (d, 3J = 6.6 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ (ppm): 180.27 (quat. 

C=O), 155.13 (quat. C=NH), 140.02 (quat. Ar-C), 130.14 (+, Ar-C), 129.54 (+, Ar-C), 

127.68 (+, Ar-C), 126.33 (quat. Thiaz-5-C), 123.38 (+, Thiaz-4-CH), 45.02 (+, 

COCHCH3), 41.46 (-, CH2NH), 40.63 (-, Ar-CH2), 29.44 (-, Thiaz-5-CH2CH2), 24.88 (-, 

Thiaz-5-CH2), 17.04 (+, CHCH3); HREIMS: m/z for ([C17H23N5OS]+•) calcd. 345.1623, 

found 345.1625; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.73 

(tR = 9.98 min, column B), purity = 99 %; C17H23N5OS · 2TFA (573.5). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(2-benzylbutanoyl)guanidine (3.40) 

Prepared from 3.40a (35 mg, 0.06 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.40 (27 mg, 77 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.22 (m, 5H, Ar-H), 7.12 (s, 1H, Thiaz-4-H), 3.48 (m, 2H, CH2NH), 

2.96 (m, 2H, Ar-CH2), 2.85 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.75 (m, 1H, COCH), 2.00 

(m, 2H, Thiaz-5-CH2CH2), 1.77-1.45 (m, 2H, CH2CH3), 0.90 (t, 3J = 7.4 Hz, 3H, 

CH2CH3); 
13C-NMR (CD3OD) δ (ppm): 180.02 (quat. C=O), 155.53 (quat. C=NH), 

139.93 (quat. Ar-C), 129.93 (+, Ar-C), 129.15 (+, Ar-C), 127.21 (+, Ar-C), 125.29 (quat. 

Thiaz-5-C), 123.97 (+, Thiaz-4-CH), 51.03 (+, COCH), 40.89 (-, CH2NH), 38.66 (-, Ar-

CH2), 29.14 (-, Thiaz-5-CH2CH2), 25.30 (-, CH2CH3), 24.56 (-, Thiaz-5-CH2), 11.83 (+, 
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CHCH3); HREIMS: m/z for ([C18H25N5OS]+•) calcd. 359.1780, found 359.1787; prep 

HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.07 (tR = 10.89 min, 

column B), purity = 100 %; C18H25N5OS · 2TFA (587.53). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(3-p-tolylbutanoyl)guanidine (3.41) 

Prepared from 3.41a (70 mg, 0.13 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.41 (31 mg, 41 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.10 (m, 4H, Ar-H), 6.98 (s, 1H, Thiaz-4-H),  3.33 (m, 2H, CH2NH), 3.23 (m, 1H, 

CHCH3), 2.73 (m, 4H, Thiaz-5-CH2, COCH2), 2.27 (s, 3H, Ar-CH3), 1.91 (m, 2H, Thiaz-

5-CH2CH2), 1.28 (d, 3J = 7.0 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ (ppm): 176.12 

(quat. C=O), 171.83 (quat. Thiaz-2-C), 155.18 (quat. C=NH), 143.31 (quat. Ar-C), 137.27 

(quat. Ar-C-CH3), 130.22 (+, Ar-CH), 127.29 (+, Ar-CH), 126.31 (quat, Thiaz-5-C), 

123.33 (+, Thiaz-4-CH), 46.35 (-, COCH2), 41.41 (-, CH2NH), 37.37 (+, CHCH3), 29.43 

(-, Thiaz-5-CH2CH2), 24.83 (-, Thiaz-5-CH2), 22.33 (+, Ar-C-CH3), 21.07 (+, CHCH3); 

HREIMS: m/z for ([C18H25N5OS]+•) calcd. 359.1780, found 359.1788; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.14 (tR = 11.09 min, column B), 

purity = 99 %; C18H25N5OS · 2TFA (587.53). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(4-hydroxyphenylpropanoyl)guanidine (3.42) 

Prepared from 3.42a (100 mg, 0.18 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.42 (25 mg, 24 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.04 (d, 3J = 8.5 Hz, 2H, Ar-H), 6.99 (s, 1H, Thiaz-4-H), 6.69 (d, 3J = 

8.5 Hz, 2H, Ar-H), 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.87 (t, 3J = 7.1 Hz, CH2-Ar), 2.73 

(m, 4H, Thiaz-5-CH2, COCH2), 1.94 (m, 2H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ 

(ppm): 176.65 (quat. C=O), 157.05 (quat. Ar-C-OH), 132.01 (quat. Ar-C), 130.44 (+, 2 

Ar-C), 123.46 (+, Thiaz-4-C), 116.32 (+, 2 Ar-C), 41.47 (-, CH2NH), 39.99 (-, COCH2), 

30.62 (-, Ar-CH2), 29.49 (-, Thiaz-5-CH2CH2), 24.87 (-, Thiaz-5-CH2); HREIMS: m/z for 

([C16H21N5O2S]+•) calcd. 347.1416, found 347.1416; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 1.54 (tR = 6.80 min, column B), purity = 100 %; 

C16H21N5O2S · 2TFA (575.48). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(6-amino-3-phenylhexanoyl)guanidine (3.43) 

Prepared from 3.43a (40 mg, 0.06 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.40 (20 mg, 46 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.33-7.18 (m, 5H, Ar-H), 6.98 (s, 1H, Thiaz-4-H), 3.28 (m, 2H, CH2NH), 3.18 
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(m, 1H, CH2CH), 2.85 (m, 4H, COCH2, CH2NH2), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-

CH2), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.76 (m, 2H, CH2CH2CH2NH2), 1.50 (m, 2H, 

CH2CH2NH2); 
13C-NMR (CD3OD) δ (ppm): 175.77 (quat. CO), 169.64 (quat. Thiaz-2-

C), 155.15 (quat. C=NH), 143.69 (quat. Ar-C), 129.85 (+, 2 Ar-C), 128.82 (+, 2 Ar-C), 

128.17 (+, Ar-C), 126.29 (quat. Thiaz-5-C), 123.40 (+, Thiaz-4-C), 44.82 (-, CH2NH2), 

42.88 (+, CH2CH), 41.32 (-, CH2NH), 40.56 (-, COCH2), 33.82 (-, CH2CH2CH2NH2), 

29.41 (-, Thiaz-5-CH2CH2), 26.64 (-, CH2CH2NH2), 24.80 (-, Thiaz-5-CH2); HREIMS: 

m/z for ([C19H28N6OS]+•) calcd. 389.2118, found 389.2121; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-35/65); anal. HPLC: k`= 1.04 (tR = 5.46 min, column B), purity = 97 %; 

C19H28N6OS · 2TFA (730.59). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(3-methyl-4-phenylbutanoyl)guanidine (3.44) 

Prepared from 3.44a (60 mg, 0.10 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.44 (50 mg, 85 %) as white amorphous solid. 1H-NMR 

(CD3OD) δ (ppm): 7.25 (m, 5H, Ar-H), 7.14 (s, 1H, Thiaz-4-H), 3.51 (m, 2H, CH2NH), 

2.88 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.71 (dd, 2J = 13.2 Hz, 3J = 5.8 Hz, 1H, Ar-

CHHCH), 2.51 (m, 2H, COCHHCH, CHCH3), 2.35 (m, 2H, Ar-CHHCH, COCHHCH), 

2.01 (m, 2H, Thiaz-5-CH2CH2), 0.92 (d, 3J = 6.2 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ 

(ppm): 176.89 (quat. C=O), 155.38 (quat. C=NH), 141.23 (quat. Ar-C), 130.08 (+, Ar-C), 

129.07 (+, Ar-C), 126.88 (+, Ar-C), 125.32 (quat. Thiaz-5-C), 123.75 (+, Thiaz-4-CH), 

44.10 (-, Ar-CH2), 43.46 (-, COCH2), 40.84 (-, CH2NH), 33.02 (+, CHCH3), 29.09 (-, 

Thiaz-5-CH2CH2), 24.56 (-, Thiaz-5-CH2), 19.51 (+, CHCH3); HREIMS: m/z for 

([C18H25N5OS]+•) calcd. 359.1780, found 359.1786; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 3.10 (tR = 10.96 min, column B), purity = 99 %; 

C18H25N5OS · 2TFA (587.53). 

1[3-(2-Aminothiazol-5-yl)propyl]-2-[4-(3-methoxyphenyl)-3-methylbutanoyl]-

guanidine (3.45) 

Prepared from 3.45a (50 mg, 0.08 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.45 (27 mg, 55 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.16 (m, 1H, Ar-H), 7.00 (s, 1H, Thiaz-4-H), 6.74 (m, 3H, Ar-H), 3.75 (s, 3H, 

OCH3), 3.34 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.76 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.65-

2.25 (m, 5H, COCH2, Ar-CH2, CHCH3), 1.94 (m, 2H, Thiaz-5-CH2CH2), 0.97 (d, 3J = 

6.2 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ (ppm): 176.78 (quat. C=O), 171.83 (quat. 
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Thiaz-2-C), 161.20 (quat. Ar-C(3)), 155.18 (quat. C=NH), 142.95 (quat. Ar-1-C)), 130.33 

(+, Ar-5-C), 126.34 (quat, Thiaz-5-C), 123.33 (+, Thiaz-4-CH), 122.74 (+, Ar-6-C), 

115.95 (+, Ar-2-C), 112.68 (+, Ar-4-C), 55.59 (+, OCH3), 44.55 (-, Ar-CH2), 43.99 (-, 

COCH2), 41.45 (-, CH2NH), 33.32 (+, CHCH3), 29.47 (-, Thiaz-5-CH2CH2), 24.89 (-, 

Thiaz-5-CH2), 20.10 (+, CHCH3); HREIMS: m/z for ([C19H27N5O2S]+•) calcd. 389.1885, 

found 389.1886; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.15 

(tR = 11.09 min, column B), purity = 99 %; C19H27N5O2S · 2TFA (617.55). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-[4-(4-methoxyphenyl)-3-methylbutanoyl]-

guanidine (3.46) 

Prepared from 3.46a (60 mg, 0.10 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.46 (49 mg, 79 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.07 (d, 3J = 8.6 Hz, 2H, Ar-H), 7.00 (s, 1H, Thiaz-4-H), 6.80 (d, 3J = 8.6 Hz, 2H, 

Ar-H), 3.74 (s, 3H, OCH3), 3.33 (m, 2H, CH2NH), 2.75 (t, 3J = 7.5 Hz, 2H, Thiaz-5-

CH2), 2.57-2.21 (m, 5H, COCH2, Ar-CH2, CHCH3), 1.93 (m, 2H, Thiaz-5-CH2CH2), 

0.96 (d, 3J = 6.2 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ (ppm): 176.90 (quat. C=O), 

171.85 (quat. Thiaz-2-C), 159.65 (quat. Ar-4-C), 155.21 (quat. C=NH), 133.29 (quat. Ar-

1-C), 131.36 (+, Ar-C), 126.32 (quat. Thiaz-5-C), 123.31 (+, Thiaz-4-CH), 114.74 (+, Ar-

C), 55.69 (+, OCH3), 44.57 (-, Ar-CH2), 43.16 (-, COCH2), 41.43 (-, CH2NH), 33.64 (+, 

CHCH3), 29.46 (-, Thiaz-5-CH2CH2), 24.89 (-, Thiaz-5-CH2), 20.14 (+, CHCH3); 

HREIMS: m/z for ([C19H27N5O2S]+•) calcd. 389.1885, found 389.1887; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.11 (tR = 10.99 min, column B), 

purity = 100 %; C19H27N5O2S · 2TFA (617.55). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(2-cyclohexylacetyl)guanidine (3.47) 

Prepared from 3.47a (70 mg, 0.13 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.47 (43 mg, 60 %) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 7.01 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.77 (t, 3J = 7.5 Hz, 

2H, Thiaz-5-CH2), 2.33 (d, 3J = 6.9 Hz, 2H, COCH2), 1.96 (m, 2H, Thiaz-5-CH2CH2), 

1.82-1.63 (m, 6H, cHex-CH), 1.27 (m, 3H, cHex-CH), 1.04 (m, 2H, cHex-CH); 13C-

NMR (CD3OD) δ (ppm): 176.66 (quat. C=O), 155,63 (quat. C=NH), 126.16 (quat. Thiaz-

5-C), 123.43 (+, Thiaz-4-CH), 45.53 (-, COCH2), 41.52 (-, CH2NH), 36.02 (+, cHex-C), 

33.92 (-, cHex-C), 29.50 (-, Thiaz-5-CH2CH2), 27.18 (-, cHex-C), 27.14 (-, cHex-C), 

24.90 (-, Thiaz-5-CH2); HREIMS: m/z for ([C15H25N5OS]+•) calcd. 323.1780, found 
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323.1786; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.79 (tR = 

10.13 min, column B), purity = 100 %; C15H25N5OS · 2TFA (551.5). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(3-cyclohexylpropanoyl)guanidine (3.48) 

Prepared from 3.48a (90 mg, 0.17 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.48 (38 mg, 40 %) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 7.00 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.77 (t, 3J = 7.7 Hz, 

2H, Thiaz-5-CH2), 2.48 (t, 3J = 7.7 Hz, 2H, COCH2) 1.95 (m, 2H, Thiaz-5-CH2CH2), 

1.78-1.63 (m, 5H, cHex-CH2, cHex-CH), 1.55 (m, 2H, CH2-cHex), 1.25 (m, 4H, cHex-

CH2); 
13C-NMR (CD3OD) δ (ppm): 177.57 (quat. C=O), 158,35 (quat. Thiaz-2-C), 

126.40 (quat. Thiaz-5-C), 123.82 (+, Thiaz-4-CH), 41.55 (-, CH2NH), 38.42 (-, COCH2), 

35.49 (-, COCH2CH2), 34.14 (-, cHex-C), 32.87 (+, cHex-C), 29.56 (-, Thiaz-5-CH2CH2), 

27.62 (-, cHex-C), 27.35 (-, cHex-C), 24.90 (-, Thiaz-5-CH2); HREIMS: m/z for 

([C16H27N5OS]+•) calcd. 337.1935, found 337.1936; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 3.34 (tR = 11.60 min, column B), purity = 99 %; 

C16H27N5OS · 2TFA (565.52). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(4-cyclohexylbutanoyl)guanidine (3.49) 

Prepared from 3.49a (170 mg, 0.31 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.49 (150 mg, 83 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.01 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.77 (t, 3J = 7.6 Hz, 

2H, Thiaz-5-CH2), 2.44 (t, 3J = 7.4 Hz, 2H, COCH2) 1.96 (m, 2H, Thiaz-5-CH2CH2), 

1.78-1.60 (m, 7H, cHex-H), 1.40 (m, 4H, CH2CH2-cHex, cHex-H), 1.23 (m, 4H, CH2-

cHex, cHex-H); 13C-NMR (CD3OD) δ (ppm): 177.36 (quat. C=O), 155,15 (quat. C=NH), 

126.37 (quat. Thiaz-5-C), 123.29 (+, Thiaz-4-CH), 41.51 (-, CH2NH), 38.73 (-, COCH2), 

38.06 (-, CH2-cHex), 37.83 (+, cHex-C), 34.41 (-, cHex-C), 29.48 (-, Thiaz-5-CH2CH2), 

27.77 (-, cHex-C), 27.46 (-, cHex-C), 24.89 (-, Thiaz-5-CH2), 22.88 (-, COCH2CH2); 

HREIMS: m/z for ([C17H29N5OS]+•) calcd. 351.2093, found 351.2088; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.66 (tR = 12.46 min, column B), 

purity = 100 %; C17H29N5OS · 2TFA (579.55). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(3-cyclohexyl-5-methylhexanoyl)guanidine 

(3.50) 

Prepared from 3.50a (60 mg, 0.10 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.50 (30 mg, 48 %) as white amorphous solid. 1H-NMR 
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(CD3OD) δ (ppm): 7.00 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.76 (t, 3J 

= 7.4 Hz, 2H, Thiaz-5-CH2), 2.49 (dd, 2J = 15.6 Hz, 3J = 7.0 Hz, 1H, COCHHCH), 2.29 

(dd, 2J = 15.6 Hz, 3J = 7.0 Hz, 1H, COCHHCH), 1.96 (m, 3H, Thiaz-5-CH2CH2, 

CH(CH3)2), 1.81-1.50 (m, 6H, cHex-H, CH-cHex), 1.43-1.14 (m, 6H, cHex-H), 1.06 (m, 

2H, CH2CH(CH3)2), 0.89 (d, 3J = 3.1 Hz, 3H, CHCH3), 0.87 (d, 3J = 3.1 Hz, 3H, 

CHCH3); 
13C-NMR (CD3OD) δ (ppm): 177.68 (quat. C=O), 171.79 (quat. Thiaz-2-C), 

(quat. C=NH), 126.34 (quat. Thiaz-5-C), 123.66 (+, Thiaz-4-CH), 42.02 (+,CH-cHex), 

41.81 (-, CH2CH(CH3)2), 41.50 (-, CH2NH), 40.26 (-, COCH2), 38.84 (+, cHex-C), 30.98 

(-, cHex-C), 30.11 (-, cHex-C), 29.54 (-,Thiaz-5-CH2CH2), 27.97 (-, cHex-C), 27.91 (-, 

cHex-C), 27.83 (-, cHex-C), 26.69 (+, CH(CH3)2), 24.87 (-, Thiaz-5-CH2), 23.35 (+, 

CHCH3), 22.98 (+, CHCH3); HREIMS: m/z for ([C20H35N5OS]+•) calcd. 393.2562, found 

393.2563; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 4.77 (tR = 

15.44 min, column B), purity = 99 %; C20H35N5OS · 2TFA (621.63). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(4-cyclohexyl-3-methylbutanoyl)guanidine 

(3.51) 

Prepared from 3.51a (40 mg, 0.07 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.51 (15 mg, 25 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.00 (s, 1H, Thiaz-4-H), 3.36 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.76 (t, 3J 

= 7.5 Hz, 2H, Thiaz-5-CH2), 2.44 (dd, 2J = 14.7 Hz, 3J = 8.1 Hz, 1H, COCHHCH), 2.22 

(dd, 2J = 14.7 Hz, 3J = 8.1 Hz, 1H, COCHHCH), 2.11 (m, 1H, CHCH3), 1.95 (m, 2H, 

Thiaz-5-CH2CH2), 1.78-1.61 (m, 6H, cHex-H), 1.38-1.04 (m, 7H, cHex-H, cHexCH2), 

0.93 (d, 3J = 6.4 Hz, 3H, CHCH3); 
13C-NMR (CD3OD) δ (ppm): 176.95 (quat. C=O), 

171.61 (quat. Thiaz-2-C), 155.28 (quat. C=NH), 126.35 (quat. Thiaz-5-C), 123.65 (+, 

Thiaz-4-CH), 45.80 (-, CH2-cHex), 45.58 (-, COCH2), 41.51 (-, CH2NH), 36.10 (+, cHex-

CH), 35.12 (-, cHex-CH2), 34.14 (-, cHex-CH2), 29.52 (-, Thiaz-5-CH2CH2), 28.30 (+, 

CHCH3), 27.78 (-, cHex-CH2), 27.48 (-, cHex-CH2), 27.40 (-, cHex-CH2), 24.89 (-, 

Thiaz-5-CH2), 20.07 (+, CHCH3); HREIMS: m/z for ([C18H31N5OS]+•) calcd. 365.2249, 

found 365.2247; prep HPLC: MeCN/0.1 % TFA/aq (25/75-50/50); anal. HPLC: k`= 4.15 

(tR = 13.78 min, column B), purity = 99 %; C18H31N5OS · 2TFA (593.58). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-[3-(cyclohexylmethyl)pentanoyl]guanidine 

(3.52) 
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Prepared from 3.52a (50 mg, 0.09 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.52 (25 mg, 46 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 6.98 (s, 1H, Thiaz-4-H), 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.74 (t, 3J = 7.5 Hz, 

2H, Thiaz-5-CH2), 2.35 m, 2H, COCH2), 1.95 (m, 3H, Thiaz-5-CH2CH2, CHCH2CH3), 

1.76-1.57 (m, 5H, cHex-H), 1.43-1.03 (m, 10H, cHex-H, CH2-cHex, CH2CH3), 0.89 (d, 
3J = 7.4 Hz, 3H, CHCH3); 

13C-NMR (CD3OD) δ (ppm): 177.31 (quat. C=O), 171.79 

(quat. Thiaz-2-C), 155.29 (quat. C=NH), 126.32 (quat. Thiaz-5-C), 123.40 (+, Thiaz-4-

CH), 42.64 (-, CH2-cHex, COCH2), 41.45 (-, CH2NH), 36.13(+, CHCH2CH2), 34.78 (-, 

cHex-C), 34.68 (-, cHex-C), 34.25 (+, cHex-C), 29.49 (-, Thiaz-5-CH2CH2), 27.75 (-, 

CH2CH3), 27.53 (-, cHex-C), 27.44 (-, cHex-C), 24.86 (-, Thiaz-5-CH2), 10.90 (+, 

CH2CH3); HREIMS: m/z for ([C19H33N5OS]+•) calcd. 379.2406, found 379.2407; prep 

HPLC: MeCN/0.1 % TFA/aq (25/75-50/50); anal. HPLC: k`= 4.47 (tR = 14.63 min, 

column B), purity = 100 %; C19H33N5OS · 2TFA (607.6). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(6-aminohexanoyl)guanidine (3.53) 

Prepared from 3.53a (400 mg, 0.65 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.53 (350 mg, 82 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 7.01 (s, 1H, Thiaz-4-H), 3.36 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.92 (t, 3J = 7.6 Hz, 

2H, CH2NH2), 2.77 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.52 (t, 3J = 7.4 Hz, 2H, COCH2), 

1.95 (m, 2H, Thiaz-5-CH2CH2), 1.64 (m, 4H, COCH2CH2, CH2CH2NH2), 1.46 (m, 2H, 

COCH2CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.28 (quat. C=O), 126.34 (quat. Thiaz-

5-C), 123.31 (+, Thiaz-4-CH), 41.43 (-, CH2NH), 40.51 (-, CH2NH2), 37.33 (-, COCH2), 

29.49 (-, Thiaz-5-CH2CH2), 28.25 (-, CH2CH2NH2), 26.73 (-, COCH2CH2CH2), 24.88 (-, 

Thiaz-5-CH2), 24.75 (-, COCH2CH2); HREIMS: m/z for ([C13H24N6OS]+•) calcd. 

312.1732, found 312.1726; prep HPLC: MeCN/0.1 % TFA/aq (10/90-50/50); anal. 

HPLC: k`= 0.28 (tR = 3.42 min, column B), purity = 98 %; C13H24N6OS · 3TFA (654.49). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(11-aminoundecanoyl)guanidine (3.54) 

Prepared from 3.54a (80 mg, 0.12 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.54 (40 mg, 46 %) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 7.00 (s, 1H, Thiaz-4-H), 3.36 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.90 (t, 3J = 7.9 Hz, 

2H, CH2NH2), 2.76 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.41 Hz, 2H, COCH2), 

1.90 (m, 2H, Thiaz-5-CH2CH2), 1.64 (m, 4H, COCH2CH2, CH2CH2NH2), 1.32 (m, 12H, 

(CH2)6); 
13C-NMR (CD3OD) δ (ppm): 177.47 (quat. C=O), 171,85 (quat. Thiaz-2-C), 
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155.38 (quat. C=NH), 126.33 (quat. Thiaz-5-C), 123.32 (+, Thiaz-4-CH), 41.44 (-, 

CH2NH), 40.77 (-, CH2NH2), 37.77 (-, COCH2), 30.44 (-, CH2CH2NH2), 30.33 (-, CH2), 

30.21 (-, CH2), 30.01 (-, CH2), 29.47 (-, Thiaz-5-CH2CH2), 28.60 (-, COCH2CH2CH2), 

27.46 (-, CH2CH2CH2NH2), 25.49 (-, COCH2CH2), 24.98 (-, Thiaz-5-CH2); HREIMS: 

m/z for ([C18H34N6OS]+•) calcd. 382.2515, found 382.2514; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-50/50); anal. HPLC: k`= 1.83 (tR = 7.56 min, column B), purity = 100 %; 

C18H34N6OS · 3TFA (724.63). 

S-6-{3-[3-(2-aminothiazol-5-yl)propyl]guanidin-2-yl}-6-oxohexyl ethanethioate (3.55) 

Prepared from 3.55a (250 mg, 0.44 mmol) in 5 ml DCM/abs and 1 ml TFA according to 

the general procedure yielding 3.55 (220 mg, 83 %) as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 7.01 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.87 (t, 3J 

= 7.2 Hz, 2H, SCH2), 2.77 (t, 3J = 7.2 Hz, 2H, Thiaz-5-CH2), 2.47 (t, 3J = 7.3 Hz, 2H, 

COCH2), 2.30 (s, 3H, COCH3), 1.95 (m, 2H, Thiaz-5-CH2CH2), 1.69 (m, 2H, SCH2CH2), 

1.58 (m, 2H, COCH2CH2), 1.46 (m, 2H, COCH2CH2); 
13C-NMR (CD3OD) δ (ppm): 

177.15 (quat. C=O), 126.38 (quat. Thiaz-5-C), 123.53 (+, Thiaz-4-C), 41.51 (-, CH2NH), 

37.53 (-, COCH2), 30.52 (+, COCH3), 30.47 (-, SCH2), 29.57 (-, Thiaz-5-CH2-CH2), 

28.98 (-, SCH2CH2), 24.90 (-, COCH2CH2, SCH2CH2CH2), 24.84 (-, Thiaz-5-CH2); ES-

MS (DCM/MeOH + NH4OAc) m/z (%): 206.9 ((M+2H)2++MeCN, 100), 372 (MH+, 50); 

HRLSIMS: m/z for ([C15H25N5O2S2 + H]+) calcd. 372.1522, found 372.1523; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.48 (tR = 9.30 min, column B), 

purity = 98 %; C15H25N5O2S2 · 2TFA (599.56). 

3-(2-Amino-4-methylthiazol-5-yl)propylguanidine (3.64) 

Prepared from 3.17 (80 mg, 0.19 mmol) in 5 ml DCM/abs and 1 ml TFA according to the 

general procedure yielding 3.65 (56 mg, 67 %) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 3.21 (t, 3J = 6.8 Hz, 2H, CH2NH), 2.68 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.17 (s, 

3H, Thiaz-4-CH3), 1.83 (m, 2H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.47 

(quat. C=O), 170.39 (quat. Thiaz-2-C), 155.39 (quat. C=NH), 132.61 (quat. Thiaz-4-C), 

118.43 (quat. Thiaz-5-C), 41.61 (-, CH2NH), 29.74 (-, Thiaz-5-CH2CH2), 23.84 (-, Thiaz-

5-CH2), 11.45 (+, Thiaz-4-CH3); HREIMS: m/z for ([C8H15N5S]+•) calcd. 213.1048, found 

213.1048; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 0.27 (tR = 

3.41 min, column B), purity = 95 %; C8H15N5S · 2TFA (441.34). 

3-(2-Aminothiazol-5-yl)propylguanidine (3.65) 



NG-Acylated 3-(2-aminothiazol-5-yl)propylguanidines: towards selective H2R agonists 
____________________________________________________________________________________________________________ 

95 
 

Prepared from 3.18 (90 mg, 0.22 mmol) in 5 ml DCM/abs and 1 ml TFA according to the 

general procedure yielding 3.65 (70 mg, 75 %) as yellow oil. 1H-NMR (CD3OD) δ (ppm): 

6.98 (s, 1H, Thiaz-4-H), 3.24 (t, 3J = 7.5 Hz, 2H, CH2NH), 2.73 (t, 3J = 7.4 Hz, 2H, 

Thiaz-5-CH2), 1.88 (m, 2H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.47 

(quat. C=O), 170.72 (quat. Thiaz-2-C), 155.38 (quat. C=NH), 126.49 (quat. Thiaz-5-C), 

123.14 (+, Thiaz-4-CH), 41.36 (-, CH2NH), 30.30 (-, Thiaz-5-CH2CH2), 24.79 (-, Thiaz-

5-CH2); HREIMS: m/z for ([C7H13N5S]+•) calcd. 199.0892, found 199.0892; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 0.27 (tR = 3.40 min, column B), 

purity = 100 %; C7H13N5S · 2TFA (427.32). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-(6-sulfanylhexanoyl)guanidine (3.56) 

1 N NaOH (1 ml) was added to a solution of 3.55 (200 mg, 0.33 mmol) in MeCN (2 ml) 

and the mixture was stirred for 30 min. After neutralization with 1 N HCl the solvent was 

removed under reduced pressure and the product purified with preparative RP-HPLC to 

give 3.56 (49 mg, 27 %) as white foam-like solid. 1H-NMR (CD3OD) δ (ppm): 7.00 (s, 

1H, Thiaz-4-H), 3.37 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.76 (t, 3J = 7.5 Hz, 2H, Thiaz-5-

CH2), 2.69 (t, 3J = 7.1 Hz, 2H, SCH2), 2.49 (t, 3J = 7.3 Hz, 2H, COCH2), 1.96 (m, 2H, 

Thiaz-5-CH2CH2), 1.79-1.60 (m, 4H, SCH2CH2, COCH2CH2), 1.46 (m, 4H, CH2); 
13C-

NMR (CD3OD) δ (ppm): 177.23 (quat. C=O), 171.77 (quat. Thiaz-2-C), 155.32 (quat. 

C=NH), 126.36 (quat. Thiaz-5-C), 123.51 (+, Thiaz-4-C), 41.49 (-, CH2NH), 39.25 (-, 

SCH2), 37.98 (-, COCH2), 29.77 (-, SCH2CH2), 29.48 (-, Thiaz-5-CH2-CH2), 28.67 (-, 

SCH2CH2CH2), 24.99 (-, COCH2CH2), 24.89 (-, Thiaz-5-CH2); HRLSIMS: m/z for 

([C13H23N5OS2 + H]+) calcd. 330.1422, found 330.1422; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 2.17 (tR = 8.49 min, column B), purity = 97 %; 

C13H23N5OS2 · 2TFA (557.52). 

General procedure for the preparation of compounds 3.57, 3.59, 3.62 and 3.63 

NEt3 (3 eq) was added to a solution of 3.31, 3.53 or 3.7110 (1 eq) in MeCN. Subsequently, 

a solution of succinimidyl 4-F-benzoate or propionate (0.8 eq), respectively, in MeCN 

was added and stirred for 4-5 h at room temperature. The solvent was removed under 

reduced pressure and the product purified by preparative RP-HPLC. 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-[6-(4-fluorobenzoylamino)-3-phenyl hexanoyl]-

guanidine (3.57) 
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The title compound was prepared from 3.7110 (23 mg, 31 µmol) in 1.5 ml MeCN, 

succinimidyl 4-F-benzoate (6 mg, 25 µmol) in 0.5 ml MeCN and NEt3 (13 µl, 93 µmol) 

according to the general procedure yielding 3.57 (25 mg, 75 %) as pale yellow oil. 1H-

NMR (CD3OD) δ (ppm): 7.81 (m, 2H, Ar-H), 7.22 (m, 7H, Ar-H), 3.33 (m, 2H, CH2NH), 

3.26 (m, 2H, CH2NHCO), 3.19 (m, 1H, CH2CH), 2.82 (m, 2H, COCH2), 2.65 (m, 2H, 

Thiaz-5-CH2), 2.14 (s, 3H, Thiaz-4-CH3), 1.89-1.70 (m, 4H, Thiaz-5-CH2CH2, 

CH2CH2CHNH), 1.48 (m, 2H, CH2CH2CH2NH); 13C-NMR (CD3OD) δ (ppm): 175.96 

(quat. C=O), 170.48 (quat. Thiaz-2-C), 169.06 (quat. C=O), 155.09 (quat. C=NH), 144.37 

(quat. Ar-C), 132.58 (quat. Ar-C), 130.89 (+,Ar-C), 130.77 (+, Ar-C), 129.72 (+, Ar-C), 

128.76 (+, Ar-C), 127.93 (+, Ar-C), 118.38 (quat. Thiaz-5-C), 116.51 (+, Ar-C), 116.22 

(+, Ar-C), 45.06 (+, CH2CH), 42.93 (-, CH2NHCO), 41.52 (-, COCH2), 40.56 (-, 

CH2NH), 34.40 (-, CH2CH2CH2NH2), 29.63 (-, Thiaz-5-CH2CH2), 28.38 (-, 

CH2CH2NH2), 23.53 (-, Thiaz-5-CH2), 11.45 (+,Thiaz-4-CH3); HREIMS: m/z for 

([C27H33FN6O2S]+•) calcd. 524.2370, found 524.2376; prep HPLC: MeCN/0.1 % TFA/aq 

(20/80-50/50); anal. HPLC: k`= 3.49 (tR = 12.02 min, column B), purity = 99 %; 

C27H33FN6O2S · 2TFA (752.68). 

1-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-2-[11-(propionylamino)undecanoyl]-

guanidine (3.59) 

The title compound was prepared from 3.31 (23 mg, 31 µmol) in 1.5 ml MeCN, NHS-

propionate (4.3 mg, 25 µmol) in 0.5 ml MeCN and NEt3 (13 µl, 93 µmol) according to 

the general procedure yielding 3.59 (10 mg, 75 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.36 (m, 2H, CH2NH), 3.14 (t, 3J = 7. 1 Hz, 2H, CH2NHCO), 2.71 (t, 3J = 7.6 Hz, 

2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 2H, COCH2), 2.18 (m, 5H, COCH2CH3, Thiaz-4-

CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 2H, COCH2CH2), 1.48 (m, 2H, 

CH2CH2NH), 1.31 (m, 12H, (CH2)6), 1.11 (t, 3J = 7.6 Hz, 2H, CH2CH3); 
13C-NMR 

(CD3OD) δ (ppm): 177.38 (quat. C=O), 170.40 (quat. Thiaz-2-C), 155.47 (quat. C=NH), 

132.71 (quat. Thiaz-4-C), 118.46 (quat. Thiaz-5-C), 41.62 (-, CH2NH), 40.39 (-, 

CH2NHCO), 37.79 (-, COCH2), 30.60 (-, CH2CH2NHCO), 30.45 (-, CH2CH3), 30.37 (-, 

CH2), 30.34 (-, CH2), 30.27 (-, CH2), 30.00 (-, Thiaz-5-CH2CH2), 27.98 (-, 

CH2CH2CH2NH), 25.47 (-, COCH2CH2), 23.61 (-, Thiaz-5-CH2), 11.49 (+, Thiaz-4-CH3), 

10.67 (+, CH2CH3); HREIMS: m/z for ([C22H40N6O2S]+•) calcd. 492.2933, found 

492.2943; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.19 (tR = 

11.21 min, column B), purity = 98 %; C22H40N6O2S · 2TFA (680.7). 



NG-Acylated 3-(2-aminothiazol-5-yl)propylguanidines: towards selective H2R agonists 
____________________________________________________________________________________________________________ 

97 
 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-[6-(propionylamino)hexanoyl]guanidine (3.62) 

The title compound was prepared from 3.53 (34 mg, 52 µmol) in 1.5 ml MeCN, NHS-

propionate (7 mg, 42 µmol) in 0.5 ml MeCN and NEt3 (22 µl, 160 µmol) according to the 

general procedure yielding 3.62 (23 mg, 74 %) as yellow oil. 1H-NMR (CD3OD) δ (ppm): 

7.01 (s, 1H, Thiaz-4-H), 3.37 (t, 3J = 7.3 Hz, 2H, CH2NH), 3.16 (m, 2H, CH2NHCO), 

2.79 (m, 2H, Thiaz-5-CH2), 2.48 (t, 3J = 7.4 Hz, 2H, COCH2), 2.18 (q, 3J = 7.6 Hz, 2H, 

COCH2CH3), 1.96 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2, 

CH2CH2NHCO), 1.35 (m, 2H, COCH2CH2CH2), 1.11 (t, 3J = 7.6 Hz, 3H, COCH2CH3); 
13C-NMR (CD3OD) δ (ppm): 177.15 (quat. C=O), 126.38 (quat. Thiaz-5-C), 123.47 (+, 

Thiaz-4-CH), 41.55 (-, CH2NH), 40.06 (-, CH2NHCO), 37.65 (-, COCH2), 30.27 (-, 

CH2CH2NHCO), 30.12 (-, CH2CH3), 29.53 (-,Thiaz-5-CH2CH2), 27.27 (-, 

COCH2CH2CH2), 25.02 (-, COCH2CH2), 24.92 (-, Thiaz-5-CH2), 10.63 (+, CH2CH3); 

HREIMS: m/z for ([C16H28N6O2S]+•) calcd. 368.1994, found 368.1993; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 1.18 (tR = 5.84 min, column B), 

purity = 85 %; C16H28N6O2S · 2TFA (596.54). 

1-[3-(2-Aminothiazol-5-yl)propyl]-2-[6-(4-fluorobenzoylamino)hexanoyl]guanidine 

(3.63) 

The title compound was prepared from 3.53 (44 mg, 67 µmol) in 1.5 ml MeCN, NHS-4-

F-benzoate (13 mg, 54 µmol) in 0.5 ml MeCN and NEt3 (38 µl, 0.2 mmol) according to 

the general procedure yielding 3.63 (14 mg, 39 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 7.85 (m, 2H, Ar-H), 7.17 (t, 3J = 8.7 Hz, 2H, Ar-H), 7.00 (s, 1H, Thiaz-4-H), 3.36 

(m, 4H, CH2NH, CH2NHCO), 2.76 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.49 (t, 3J = 7.4 

Hz, 2H, COCH2), 1.94 (m, 2H, Thiaz-5-CH2CH2), 1.68 (m, 4H, COCH2CH2, 

CH2CH2NHCO), 1.43 (m, 2H, CH2); 
13C-NMR (CD3OD) δ (ppm): 177.22 (quat. C=O), 

164.51 (quat. Ar-C-F), 162.39 (quat. Thiaz-2-C), 155.29 (quat. C=NH), 130.89 (+, Ar-C), 

130.78 (+, Ar-C), 126.36 (quat. Thiaz-5-C), 123.36 (+, Thiaz-4-CH), 116.53 (+, Ar-C), 

116.23 (+, Ar-C), 41.51 (-, CH2NH), 40.74 (-, CH2NHCO), 37.63 (-, COCH2), 30.16 (-, 

CH2CH2NHCO), 29.49 (-, Thiaz-5-CH2CH2), 27.29 (-, COCH2CH2CH2), 25.06 (-, 

COCH2CH2), 24.91 (-, Thiaz-5-CH2); HREIMS: m/z for ([C20H27FN6O2S]+•) calcd. 

434.1900, found 434.1900; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. 

HPLC: k`= 2.33 (tR = 8.90 min, column B), purity = 100 %; C20H27FN6O2S · 2TFA 

(662.57). 
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General procedure for the preparation of the fluorescent compounds 3.58 and 3.60 

To a solution of 3.31 or 3.7110 (2.5 eq) in MeCN was added NEt3 (7.5 eq). Subsequently, 

a solution of py-112 ((E)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-

ethenyl]-2,6-dimethylpyrylium tetrafluoroborate, 1 eq) in DMF was added. After 1-2 min 

the color changed from blue to red. The reaction was stopped by addition of 10 % TFA/aq 

after an incubation period of 1 h at room temperature. The product was purified by 

preparative RP-HPLC. 

1-(6-{Amino[3-(2-amino-4-methylthiazol-5-yl)propylamino]methyleneamino}-6-oxo-

4-phenylhexyl)-4-[(E)-2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)ethenyl]-

2,6-dimethylpyridinium trifluoroacetate (3.58) 

The title compound was prepared from 3.7110 (4.59 mg, 6.2 µmol) in 0.8 ml MeCN, NEt3 

(2.6 µl, 18.5 µmol) and py-1 (0.97 mg. 2.5 µmol) in 50 µl DMF according to the general 

procedure affording 3.58 (1.5 mg, 58 %) as red oil. ES-MS (MeOH + 0.1 % FAc) m/z 

(%): 345.6 ((M+2H)2+, 100); prep. HPLC: MeCN/0.1 % TFA/aq (40/60-60/40); anal. 

HPLC: k`= 4.66 (tR = 15.15 min, column B), purity = 97 %; [C41H52N7OS]+ · 3TFA 

(1033.02). 

1-(11-{Amino[3-(2-amino-4-methylthiazol-5-yl)propylamino]methyleneamino}-11-

oxoundecyl)-4-[(E)-2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)ethenyl]-

2,6-dimethylpyridinium trifluoroacetate (3.60) 

The title compound was prepared from 3.31 (4.7 mg, 6.4 µmol) in 0.8 ml MeCN, NEt3 

(2.7 µl, 19 µmol) and py-1 (1.0 mg. 2.5 µmol) in 50 µl DMF according to the general 

procedure affording 3.60 (1.6 mg, 62 %) as red oil. ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 342.7 ((M+2H)2+, 100); HPLC: MeCN/0.1 % TFA/aq (40/60-60/40); anal. 

HPLC: k`= 4.92 (tR = 15.84 min, column B), purity = 96 %; [C40H58N7OS]+ · 3TFA 

(1027.06). 

(E)-1-[6-(11-{Amino[3-(2-amino-4-methylthiazol-5-yl)propylamino]methylene-

amino}-11-oxoundecylamino)-6-oxohexyl]-2-{(2E,4E)-5-[3,3-dimethyl-1-(4-

sulfonatobutyl)-3H-indolium-2-yl]penta-2,4-dienylidene}-3,3-dimethylindoline-5-

sulfonate (3.61) 

NEt3 (4.1 µl, 15 µmol) was added to a solution of 3.31 (4.8 mg, 3.3 µmol) in 0.8 ml 

MeCN. Subsequently, a solution of NHS-S0586 (1.16 mg, 1.5 µmol) in 0.1 ml DMF was 

added and stirred overnight at room temperature. The reaction was stopped by addition of 
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10 % TFA/aq (15 µl). The product was purified by preparative RP-HPLC (MeCN/0.1 % 

TFA/aq (30/70-70/30)) yielding 3.61 (1.3 mg, 67 %) as blue oil. ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 532.3 ((M+2H)2+, 100), 1063.7 (MH+, 10); prep. HPLC: MeCN/0.1 % 

TFA/aq (30/70-70/30); anal. HPLC: k`= 2.15 (tR = 8.43 min, column B), purity = 97 %; 

[C54H77N8O8S3]
- · TFA (1176.45). 

3.5.2 Pharmacological methods 

3.5.2.1 Materials 

Histamine dihydrochloride was purchased from Alfa Aesar GmbH & Co. KG (Karlsruhe, 

Germany). [γ-32P]GTP and [γ-33P]GTP, respectively, were synthesized according to a 

previously described method.25 [32P]Pi (8,500 – 9,100 Ci/mmol orthophosphoric acid) and 

[33P]Pi (3,000 Ci/mmol orthophosphoric acid) were purchased from Hartmann Analytics 

GmbH (Braunschweig, Germany). All unlabeled nucleotides, glycerol-3-phosphate 

dehydrogenase, triose phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase 

and lactate dehydrogenase were from Roche (Mannheim, Germany). 3-Phosphoglycerate 

kinase and L-α-glycerol phosphate were from Sigma-Aldrich Chemie GmbH (München, 

Germany). Unlabeled GTPγS was from Roche (Mannheim, Germany) and [35S]GTPγS 

was from Hartmann Analytics GmbH (Braunschweig, Germany). GF/B filters were from 

Brandel (Gaithersburg, MD, USA). 

3.5.2.2 Determination of histamine receptor agonism and antagonism in 

GTPase assays 

Generation of recombinant baculoviruses, cell culture and membrane preparation 

Recombinant baculoviruses encoding human H1R, or a fusion protein of the human H2R 

with GsαS, or a fusion protein of the guinea pig H2R with GsαS, or the human H3R or a 

fusion protein of the human H4R with RGS19 were prepared as described,13,26-28 using the 

BaculoGOLD transfection kit (BDPharmingen, San Diego, CA) according to the 

manufacturer’s instructions. 

Sf9 cells were cultured in 250 or 500 ml disposable Erlenmeyer flasks at 28 °C under 

rotation at 150 rpm in Insect-Xpress medium (Lonza, Velviers, Belgium) supplemented 

with 5 % (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 mg/ml gentamicin 
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(Lonza, Walkersville, MD). Cells were maintained at a density of 0.5 – 6.0 x 106 cells/ml. 

After initial transfection, high-titer virus stocks were generated by two sequential virus 

amplifications. In the first amplification, cells were seeded at 2.0 x 106 cells/ml and 

infected with a 1:100 dilution of the supernatant from the initial transfection. Cells were 

cultured for 7 days, resulting in the lysis of the entire cell population. The supernatant 

was harvested and stored under light protection at 4 °C. In a second amplification, cells 

were seeded at 3.0 x 106 cells/ml and infected with a 1:20 dilution of the supernatant fluid 

from the first amplification. Cells were cultured for 48 h, and the supernatant was 

harvested. After a 48 h culture period, the majority of cells showed signs of infections 

(e.g. altered morphology, viral inclusion bodies), whereas most of the cells were still 

intact. The supernatant fluid from the second amplification was stored under light 

protection at 4 °C and used as routine virus stock for membrane preparations. For 

membrane preparation, cells were sedimented by centrifugation (1000 rpm, 5 min, rt) and 

suspended in fresh medium at 3.0 x 106 cells/ml. Cells were infected with 1:100 dilutions 

of high-titer baculovirus stocks encoding the various histamine receptors, histamine 

receptor fusion proteins, G-protein subunits and RGS proteins. Cells were cultured for 48 

h before membrane preparation. Sf9 membranes were prepared as described,29 using 1 

mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 10 µg/ml benzamidine and 10 µg/ml 

leupeptin as protease inhibitors. Membranes were suspended in binding buffer (12.5 mM 

MgCl2, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4) and stored at -80 °C until use. Protein 

concentrations were determined using the DC protein assay kit (Bio-Rad, München, 

Germany). 

Steady-state GTPase activity assay with Sf9 insect cell membranes expressing 

histamine H1-H4 receptors 

Membranes were thawed, sedimented and resuspended in 10 mM Tris/HCl, pH 7.4. In the 

case of the H1R and H2R, Sf9 membranes expressing either H1R isoforms plus RGS4 or 

H2R-GsαS fusion proteins, respectively, were used.13,21 H3R-regulated GTP hydrolysis 

was determined with membranes co-expressing human H3R, mammalian Gαi2, Gβ1γ2 and 

RGS4. Human H4R activity was measured with membranes co-expressing an H4R-

RGS19 fusion protein with Gαi2 and Gβ1γ2. Assay tubes contained Sf9 membranes (10-20 

µg of protein/tube), MgCl2 (H1R, H2R: 1.0 mM; H3R, H4R: 5.0 mM), 100 µM EDTA, 100 

µM ATP, 100 nM GTP, 100 µM adenylyl imidodiphosphate, 5 mM creatine phosphate, 

40 µg creatine kinase and 0.2 % (w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4, 
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as well as ligands at various concentrations. In H4R assays, NaCl (final concentration of 

100 mM) was included. Reaction mixtures (80 µl) were incubated for 2 min at 25 °C 

before the addition of 20 µl [γ-32P]GTP (0.1 µCi/tube) or [γ-33P]GTP (0.05 µCi/tube). 

Reactions were run for 20 min at 25 °C and terminated by the addition of 900 µl of slurry 

consisting of 5% (w/v) activated charcoal suspended in 50 mM NaH2PO4, pH 2.0. 

Charcoal absorbs nucleotides but not Pi. Charcoal-quenched reaction mixtures were 

centrifuged for 7 min at room temperature at 13.000 g. 600 µl of the supernatant fluid 

were removed and 32Pi or 33Pi was determined by Cerenkov or liquid scintillation 

counting, respectively. Enzyme activities were corrected for spontaneous hydrolysis of [γ-
32P]GTP or [γ-33P]GTP, respectively, determined in tubes containing all components 

described above, plus a high concentration of unlabeled GTP (1 mM) to prevent 

enzymatic hydrolysis of the labeled nucleotides in the presence of Sf9 membranes. 

Spontaneous [γ-32P]GTP or [γ-33P]GTP degradation was <1 % of the total amount of 

radioactivity added. The experimental conditions chosen ensured that not more than 10% 

of the total amount of added [γ-32P]GTP and [γ-33P]GTP was converted to 32Pi and 33Pi, 

respectively. All experimental data were analyzed by non-linear regression with the Prism 

5 program (GraphPad Software, San Diego, CA). 

3.5.2.3 Histamine H2 receptor assay on isolated guinea pig right atrium 

Guinea pigs of either sex (250-500 g) were stunned by a blow on the neck and 

exsanguinated. The heart was rapidly removed, and the right atrium was quickly dissected 

and set up isometrically in Krebs-Henseleit`s solution under a diastolic resting force of 

approximately 5 mN in a jacketed 20 ml organ bath of 32.5 °C as previously described.14  

The bath fluid (composition [mM]: NaCl 118.1, KCl 4.7, CaCl2 1.8, MgSO4 1.64, 

KH2PO4 1.2, NaHCO3 25.0, glucose 5.0, sodium pyruvate 2.0) was equilibrated with 95% 

O2 - 5% CO2 and additionally contained (RS)-propanolol (0.3 µM) to block β-adrenergic 

receptors. Stock solutions (10 mM) and all dilutions of ligands (1, 0.1 and 0.01 mM) were 

made in freshly prepared bath fluid instead of distilled water in order to prevent 

absorption at glass surfaces. Experiments were started after 30 min of continuous washing 

and an additional equilibration period of 15 min. Two successive curves for histamine 

displayed a significant desensitization of 0.13 ± 0.02 (N = 16 control organs). This value 

was used to correct each individual experiment. Agonists: Two successive concentration-

frequency curves were established: the first to histamine (0.1-30 µM) and the second for 
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the agonist under study in the absence or presence of cimetidine (10 µM, 30 min 

incubation time). Furthermore, the sensitivity to 30, 100 or 300 µM cimetidine was 

routinely checked at the end of each H2R agonist concentration-effect curve and a 

significant reduction of frequency was observed. Relative potency of the agonist under 

study was calculated from the corrected pEC50 difference. pEC50 values are given relative 

to the long term mean value for histamine (pEC50 = 6.00) in our laboratory (pEC50 = 6.00 

+ ∆pEC50). 
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Chapter 4 

Homobivalent acylguanidines: twin 

compounds as histamine H2 receptor agonists 

 

4.1 Introduction 

As demonstrated in chapter 3, the structure-activity relationships of NG-acylated 3-(2-

aminothiazol-5-yl)propylguanidines (cf. Figure 4.1) revealed that even space-filling 

substituents at the guanidine group are well tolerated.1 This prompted us to explore the 

applicability of the bivalent ligand approach, based on the working hypothesis that such 

compounds should possess increased H2R agonistic potency and might be useful to study 

hypothetical H2R dimers. 

Over the last few decades the understanding of GPCR structure and function has been 

challenged by the discovery that GPCRs are able to form homo- and hetero-oligomeric 

complexes.2-4 Meanwhile, the existence of homo- and hetero-dimers has been 

demonstrated for several class A GPCRs including opioid receptors,5-7 adrenergic 

receptors,8 somatostatin receptors,9-10 dopaminergic receptors,11-13 muscarinergic 

receptors14-15 as well as the histamine receptor subtypes.16-20 The term bivalent ligand is 

widely used and refers to molecules containing two sets of pharmacophoric entities linked 

through a spacer.21 The design of bivalent ligands requires considerations of various 

aspects, including the choice of the initial monomeric lead compound, the choice of an 

appropriate attachment point for the spacer and the choice of length and chemical 

composition of the spacer.22 Bivalent ligands are thought to exhibit a greater potency than 

that corresponding to double concentration of a monovalent ligand.3,21 This concept has 

been studied for various GPCRs,22 for instance, for opioid receptors,23 in more detail. The 
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bivalent ligand approach has proven to be promising to improve potency and selectivity 

but also the pharmacokinetic profile of compounds.24  

 
Figure 4.1. Overview of structural modifications resulting in the bivalent title compounds. 

For opioid receptors, the distance between two recognition sites of a contact dimer with a 

TM5/TM6 interface is about 22 to 27 Å as suggested from molecular modeling.3 In an 

approach to explore the structural requirements of putative bivalent H2R agonists, we 

synthesized and pharmacologically investigated bivalent ligands (“twin compounds”) 

with two hetarylpropylguanidine entities, linked at the NG-nitrogen atoms with 

dicarboxylic acids as spacers with lengths between 6 and 27 Å. 

 

4.2 Chemistry 

The bivalent acylguanidine-type compounds were preferentially synthesized by analogy 

with the procedure developed for the NG-acylation of monovalent hetarylpropyl-

guanidines as described in chapter 3,1,25 using two equivalents of mono Boc-protected 

hetarylpropylguanidines 3.17, 3.18 and 4.8 and one equivalent of the pertinent 

dicarboxylic acids. The synthetic strategies aimed at compounds of maximal purity on the 

low mg scale rather than at the optimization of yields and synthetic routes.  

The required Boc-protected N-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine building 

block 4.8 was synthesized with minor modifications as previously described starting from 

urocanic acid (Scheme 4.1).25 After esterification, hydrogenation of the double bond and 

trityl-protection of the imidazole-NH, the ester group was reduced with LiAlH4 to obtain 

the alcohol 4.4. Conversion of the alcohol functionality to the primary amine 4.6 was 

accomplished under Mitsunobu conditions26 via the phthalimide 4.5 and subsequent 
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treatment with hydrazine monohydrate. The free amine 4.6 was then coupled to the 

guanidinylating reagent 3.3 by analogy with the procedure described for the 

aminothiazoles in chapter 3.1 Finally, the Cbz-group was removed by hydrogenation to 

yield the NG-Boc-,NIm-Trt-protected imidazolylpropylguanidine 4.8.  

Scheme 4.1. Synthesis of the imidazolylpropylguanidine building block 4.8. Reagents and conditions: (i) 

anhydrous Na2SO4, H2SO4/conc., MeOH/abs, 30 h, reflux;27 (ii) H2, Pd/C (10 %) cat., MeOH, 5 bar, 24 h, 

rt; (iii) CPh3Cl (1.1 eq), NEt3 (2.8 eq), MeCN, 12 h, rt; (iv) LiAlH4 (2 eq), THF/abs, Et2O/abs, 2 h, reflux; 

(v) phthalimide (1 eq), PPh3 (1 eq), DIAD (1 eq), THF/abs, 24 h, rt; (vi) N2H2·H2O (5 eq), EtOH, 1 h, 

reflux; (vii) 3.3 (1 eq), HgCl2 (2 eq), NEt3 (3 eq), DCM/abs, 48 h, rt; (viii) H2, Pd/C (10 %), MeOH/THF 

(1:1), 8 bar, 6-7 d, rt. 

To obtain the designated symmetrical bivalent ligands 4.9-4.19, the mono Boc-protected 

hetarylpropylguanidines 3.17, 3.18 and 4.8 were coupled to alkanedioic acids of various 

length using EDAC, HOBt and DIEA as standard coupling reagents to yield the protected 

acylguanidines 4.9a-4.19a. Thereby, the Boc-protected guanidine (3.17, 3.18, 4.8), at its 

terminal position (NG), reacts similarly to amines but at lower reaction rates. Finally, 

removal of the protecting groups under acidic conditions gave the symmetrical bivalent 

acylguanidines 4.9-4.19 (Scheme 4.2), which were purified by preparative RP-HPLC. In 

certain cases, mono-acylated side products were able to be separated during the 

purification step via preparative RP-HPLC. In this way, low amounts of the mono-

acylated imidazolylpropylguanidines 4.20-4.22 with one free carboxylic function were 

obtained. In addition, the bivalent NG-acylated 1,2,4-triazol-5-ylpropylguanidine 4.24 was 

synthesized starting from the Trt-protected triazolylpropylguanidine building block 4.23 

(cf. Scheme 4.2), which was recently prepared in our workgroup.28 In contrast to the 

aforementioned acylation steps, the guanidine building block 4.23 was deprotonated with 
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NaH and coupled to decanedioic acid, which was activated by CDI, to yield the Trt-

protected precursor 4.24a. Treatment with TFA/aq (20 %) and purification with 

preparative RP-HPLC gave N1,N10-Bis{[3-(1H-1,2,4-triazol-5-yl)propylamino](amino)-

methylene}decanediamide (4.24) in high purity. 

 

Scheme 4.2. General procedure for the preparation of the symmetrical bivalent acylguanidines 4.9-4.19 and 

4.24 and the mono-acylated imidazolylpropylguanidines 4.20-4.22. Reagents and conditions: (i) for 4.9-

4.19: EDAC (1 eq), HOBt (1 eq), DIEA (1 eq), DCM/abs, 16 h, rt; for 4.24: CDI (1.2 eq), NaH (60 % 

dispersion in mineral oil) (2 eq), THF/abs, 3-4 h, rt; (ii) 20 % TFA, DCM/abs, 3-5 h, rt. Compound 4.23 

was provided by Dr. P. Igel. For experimental data see Ref.28 

 

4.3 Pharmacological results and discussion 

In addition to the newly synthesized acylguanidines 4.9-4.22 and 4.24, previously 

prepared bivalent H2R agonists29 are included in this section to a more comprehensive 

overview of the structure-activity relationships of this class of compounds. Table 4.1 

gives a structural overview of all investigated ligands. 
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Table 4.1. Structural overview of investigated twin compounds (4.9-4.19, 4.24 and 4.25-4.31) and related 

NG-acylated imidazolylpropylguanidines (4.20-4.22 and 4.32). 

 

Compd. Het n Compd. Het n 

4.25a 

2-amino-4-methylthiazol-5-yl 

4 4.14 

imidazol-4-yl 

4 

4.26a 6 4.15 5 

4.9 7 4.16 6 

4.27a 8 4.17 7 

4.28a 10 4.31a 8 

4.29a 14 4.18 14 

4.30a 20 4.19 20 

4.10 

2-aminothiazol-5-yl 

6 4.20 

- 

4 

4.11 8 4.21 6 

4.12 14 4.32a 8 

4.13 20 4.22 20 

4.24 1,2,4-triazol-5-yl 8    

a Compounds 4.25-4.32 were provided by Dr. A. Kraus. For experimental data see Ref.29 

All compounds were examined for histamine H2R agonism on human (h) and guinea pig 

(gp) H2 receptors in steady-state GTPase assay using membranes of Sf9 insect cells 

expressing hH2R-GsαS and gpH2R-GsαS fusion proteins, respectively (Table 4.2).30 In 

addition, selected compounds were investigated at the isolated spontaneously beating gp 

right atrium31 as a pharmacological standard model for the characterization of H2R 

ligands (positive chronotropic response) (Table 4.3), and in the GTPγS binding assay on 

gpH2R-GsαS fusion proteins. Furthermore, with respect to information about the 

molecular determinants of different agonist potencies at human and guinea pig H2R 

orthologs, selected bivalent ligands were tested on H2R mutants, in which Cys-17 and 

Ala-271 in the hH2R were replaced by Tyr-17 and Asp-271 as in the gpH2R and four 

different amino acids in the e2 loop were reciprocally mutated (hH2R-C17Y-A271D-

GsαS, hH2R-C17Y-GsαS, hH2R-gpE2-GsαS, gpH2R-hE2-GsαS) (Table 4.4).30,32-33 

Moreover, the histamine receptor selectivities of representative compounds were explored 
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in GTPase assays using recombinant human histamine H1, H3 and H4 receptors (Table 

4.5). 

4.3.1 Histamine H2 receptor agonism 

4.3.1.1 H2R agonism at human and guinea pig H2R fusion proteins in the 

GTPase assay 

Pharmacophore duplication led to potent partial to full agonists in the GTPase assay at 

hH2R-GsαS and gpH2R-GsαS fusion proteins (Table 4.2). Investigations of three different 

series of twin compounds containing either two (2-amino-4-methylthiazolyl)propyl-

guanidines (4.9 and 4.25-4.30), two (2-aminothiazolyl)propylguanidines (4.10-4.13) or 

two imidazolylpropylguanidines (4.14-4.19 and 4.31) revealed the following results (see 

Figure 4.2): when increasing the spacer length from four to twenty C-atoms, covering a 

distance of ≈ 6 to ≈ 27 Å between the carbonyl groups, highest potencies were obtained 

with octanedioyl or decanedioyl spacers at both, hH2R-GsαS (pEC50 values ≤ 8.2) and 

gpH2R-GsαS fusion proteins (pEC50 values ≤ 9.4). These compounds exceeded the 

potency of histamine up to 200 and over 3000 times at hH2R-GsαS and gpH2R-GsαS, 

respectively. Further extension of the spacer length resulted in a significant drop in 

potency or in a complete loss of agonistic activity at hH2R-GsαS and switch to H2R 

antagonism (pKB values, 4.13: 5.8, 4.19: 6.4, 4.30: 6.1). 

Homobivalent 2-aminothiazoles lacking the 4-methyl substituent showed slightly 

decreased potencies but increased efficacies compared to their methylated analogs (4.10 

vs. 4.26, 4.11 vs. 4.27, 4.12 vs. 4.29, Fig. 4.2 C, D) at both, the hH2R-GsαS and the 

gpH2R-GsαS. Compounds 4.10 and 4.11 were full agonists at gpH2R-GsαS. Compared to 

the corresponding 2-amino-4-methylthiazoles, most imidazoles (4.16-4.18, 4.31) were 

nearly equipotent at hH2R-GsαS and slightly less potent at gpH2R-GsαS. Furthermore, the 

imidazoles revealed the highest efficacies among the three structural classes, resulting in 

full agonists at gpH2R-GsαS. 
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Figure 4.2. Effect of spacer length (n = number of methylene groups) on the potency of symmetrical 

bivalent acylguanidines. A, B: Correlation between potencies of bivalent ligands (Het: 2-amino-4-

methylthiazol-5-yl (■), 2-aminothiazol-5-yl (■) and imidazol-4-yl (□)) at hH2R-GsαS (A) and gpH2R-GsαS 

(B). At hH2R-GsαS, compounds with spacer length of 20 methylene groups showed no agonistic activity. C, 

D: Histamine H2R agonism of bivalent 3-(2-amino-4-methylthiazol-5-yl)propylguanidines (C) and 3-(2-

aminothiazol-5-yl)propylguanidines (D) with increasing spacer lengths at hH2R-GsαS. Data of 

representative experiments, expressed as percentage change in GTPase activity relative to the maximum 

effect induced by histamine (100 µM). 

Very recently, NG-acylated 1,2,4-triazolylpropylguanidines were identified as selective 

H2R agonists with low to moderate potencies.28 In contrast to 2-aminothiazoles which 

have raised suspicion to form toxic metabolites after oxidative cleavage of the ring,34-36 

the triazole ring is considered as relatively stable against oxidation by oxygenases37 and 

therefore may be a promising alternative bioisostere of the imidazole ring. Hence, a 
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bivalent compound bearing two 1,2,4-triazolylpropylguanidine residues connected with a 

decanedioyl spacer (4.24) was prepared to evaluate the H2R agonistic activity. 

Unfortunately, compound 4.24 showed up to two orders of magnitude lower potencies 

compared to the corresponding 2-aminothiazoles 4.27 and 4.11 and the imidazole 4.31 at 

hH2R-GsαS (pEC50 values, 4.24: 6.82, 4.27: 8.11, 4.11: 7.67, 4.31: 8.21) and gpH2R-GsαS 

(pEC50 values, 4.24: 7.99, 4.27: 9.41, 4.11: 8.30, 4.31: 8.94), respectively. Thus, the 

1,2,4-triazole moiety proved to be inappropriate as a bioisosteric replacement of the 

imidazole ring in bivalent acylguanidine-type H2R agonists. 

Compounds 4.20-4.22 and 4.32 with only one imidazolylpropylguanidine pharmacophore 

and a free carboxylic group were significantly less potent than the corresponding bivalent 

ligands, but the orders of potencies were in good agreement. Again, an 8- to 10-

membered carbon chain was optimal with respect to H2R agonistic activity, whereas a 20-

membered carbon chain resulted in a total loss of agonistic activity at the hH2R-GsαS. 

However, these compounds can only be considered an approximation to monomeric 

analogs as the alkyl chain including the carboxylic group, which is converted to an 

acylguanidine in the twin compounds, may also confer to H2R binding. To estimate the 

contribution of the second pharmacophoric moiety, the activities of bivalent ligands 

should be compared with more appropriate monomeric compounds. This issue has been 

investigated in chapter 5 in more detail. 

Table 4.2. Potencies and efficacies of bivalent acylguanidines and reference compounds at hH2R-GsαS and 

gpH2R-GsαS fusion proteins in the steady-state GTPase assay.a 

Compd. 

hH2R-GsαS gpH2R-GsαS 
EC50 

(hH2R-GsαS)/ 

EC50 (gpH2R-

GsαS) 

Emax 

± SEM 

pEC50/(pK B) 

± SEM 
Potrel  

Emax 

± SEM 

pEC50 

± SEM 
Potrel  

His30 1.00 5.90 ± 0.09 1.0 1.00 5.92 ± 0.09 1.0 1.05 

Amt 30 0.91 ± 0.02 6.72 ± 0.10 6.6 1.04 ± 0.01 6.72 ± 0.09 6.3 1.00 

4.25 0.68 ± 0.03 7.24 ± 0.22 21.9 0.90 ± 0.05 8.59 ± 0.30 467.7 22.39 

4.26 0.62 ± 0.03 7.32 ± 0.23 26.3 0.81 ± 0.03 9.20 ± 0.16 1,905.5 75.97 

4.9 0.48 ± 0.04 7.45 ± 0.14 35,5 0.90 ± 0.06 8.56 ± 0.16 436.5 16.24 

4.27 0.53 ± 0.04 8.11 ± 0.25 162.2 0.79 ± 0.07 9.41 ± 0.15 3,090.3 19.90 

4.28 0.46 ± 0.04 7.78 ± 0.17 75.9 0.66 ± 0.05 8.57 ± 0.32 446.7 6.17 

4.29 0.12 ± 0.02 7.59 ± 0.22 49.0 0.51 ± 0.02 7.93 ± 0.47 102.3 2.19 

4.3029 (- (6.11 ± 0.15) -)b 0.58 ± 0.02 6.48 ± 0.37 3.6 - 
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Table 4.2. (continued)      

4.10 0.79 ± 0.03 7.51 ± 0.02 40.7 1.00 ± 0.03 8.87 ± 0.28 891.3 22.89 

4.11 0.75 ± 0.03 7.67 ± 0.07 58.9 0.94 ± 0.01 8.30 ± 0.22 239.9 4.27 

4.12 0.14 ± 0.01 7.03 ± 0.13 13.5 0.59 ± 0.01 7.23 ± 0.19 20.4 1.58 

4.13 (- (5.77) -)b 0.36 ± 0.01 6.69 ± 0.01 5.9 - 

4.14 0.68 ± 0.04 6.67 ± 0.34 5.9 1.00 ± 0.02 7.96 ± 0.07 109.7 19.51 

4.15 1.02 ± 0.06 7.24 ± 0.08 21.9 1.16 ± 0.15 8.80 ± 0.09 758.6 36.31 

4.16 0.77 ± 0.12 7.25 ± 0.16 22.4 1.18 ± 0.01 8.49 ± 0.33 371.5 17.35 

4.17 0.88 ± 0.03 7.21 ± 0.04 20.4 1.19 ± 0.02 8.51 ± 0.30 389.1 19.95 

4.3129 0.81 ± 0.02 8.21 ± 0.07 204.2 0.98 ± 0.05 8.94 ± 0.16 1,047.1 5.36 

4.18 0.29 ± 0.08 7.61 ± 0.18 51.3 0.85 ± 0.10 7.70 ± 0.26 60.4 1.23 

4.19 (- (6.57 ± 0.07) -)b 0.19 ± 0.03 7.46 ± 0.12 34.7 - 

4.24 0.49 ± 0.03 6.82 ± 0.05 10.5 0.95 ± 0.04 7.99 ± 0.02 117.5 14.79 

4.20 0.49 ± 0.03 5.73 ± 0.01 0.7 0.79 ± 0.02 6.09 ± 0.02 1.5 2.29 

4.21 0.79 ± 0.04 6.87 ± 0.07 9.3 0.99 ± 0.01 6.99 ± 0.03 11.8 1.32 

4.3229 0.67 ± 0.03 7.10 ± 0.07 15.9 0.97 ± 0.04 6.82 ± 0.26 7.4 0.52 

4.22 (- - -)b 0.68 ± 0.0 5.41 ± 0.01 0.3 - 
a Steady-state GTPase activity in Sf9 membranes expressing hH2R-GsαS and gpH2R-GsαS was determined as 
described in Pharmacological methods. Reaction mixtures contained ligands at concentrations from 1 nM 
to 10 µM as appropriate to generate saturated concentration-response curves. Data were analyzed by 
nonlinear regression and were best fit to sigmoidal concentration-response curves. Typical basal GTPase 
activities ranged between ≈ 0.5 and 2.5 pmol/mg/min, and activities stimulated by histamine (100 µM) 
ranged between ≈ 2 and 13 pmol.mg-1.min-1. The efficacy (Emax) of histamine was determined by nonlinear 
regression and was set to 1.0. The Emax values of other agonists were referred to this value. Data shown are 
means ± SEM of 2-6 independent experiments performed in duplicate. The relative potency of histamine 
was set to 1.0, and the potencies of other agonists were referred to this value. b No agonistic activity. 

In agreement with previous studies on monovalent acylguanidine-type H2R agonists all 

bivalent compounds exhibited higher potencies and efficacies at gpH2R-GsαS relative to 

hH2R-GsαS (see Figure 4.3).1,25,30,38 Interestingly, compounds 4.10, 4.15, 4.17 and 4.25- 

4.27 were 20 to 76 times more potent at the gpH2R-GsαS compared to hH2R-GsαS and 

therefore exhibited the highest preference for gpH2R-GsαS among acylguanidines known 

so far. Compounds 4.10, 4.26, 4.27 and 4.31 (EC50 values at gpH2R-GsαS: 0.39 nM – 1.35 

nM) turned out to be the most potent acylguanidine-type H2R agonists identified in the 

GTPase assay. 
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Figure 4.3. Efficacies and potencies of the title compounds at hH2R-GsαS in comparison with gpH2R-GsαS 

as determined in the steady-state GTPase assay. The dotted lines represent the line of identity. A: Plot of 

efficacies at gpH2R-GsαS vs. hH2R-GsαS. B: Plot of pEC50 at gpH2R-GsαS vs. hH2R-GsαS. In B, 

compounds 4.13, 4.19, 4.20, 4.22 and 4.30 are not demonstrated as they are very weak agonists or 

antagonists. 

Given that the steady-state GTPase assay is an artificial test system using membrane 

preparations instead of intact cells, G-proteins might be directly accessible to the 

investigated compounds, i.e. the 

possibility of receptor-independent G-

protein activation has to be taken into 

account. Direct G-protein activation has 

been reported for various cationic-

amphiphilic compounds including local 

anesthetics, β-adrenoceptor antagonists 

and wasp venom mastoparan.39-42 Direct 

G-protein activation by histamine 

receptor ligands was reported to occur at 

concentrations higher than 10 µM.40-41,43 

To verify the H2R-mediated effect and to 

exclude direct G-protein activation as a 

mechanism of GTPase stimulation, 

selected bivalent H2R agonists were 

investigated in the presence of the H2R 

antagonists famotidine and ranitidine in 
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Figure 4.4. Concentration-dependent inhibition of 

GTP hydrolysis by famotidine (solid line) and 

ranitidine (dashed line) using 4.31 as the H2R agonist 

at a concentration of 1 nM at the gpH2R-GsαS. Data 

points shown are means ± SEM of representative 

experiments performed in duplicate. 
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the GTPase assay as shown for 4.31 in Figure 4.4. At both, hH2R-GsαS (data not shown) 

and gpH2R-GsαS, the 4.31-stimulated GTP hydrolysis was inhibited in a concentration-

dependent manner, confirming the measured GTPase activity to be H2R-mediated. The 

calculated KB values of famotidine (154 ± 67 nM, Fig. 4.4) and ranitidine (1755 ± 930 

nM, Fig. 4.4) determined against 4.31 at gpH2R-GsαS, respectively, are in the same range 

as data obtained from GTPase assays using histamine as the H2R agonist (reported KB 

values, famotidine: 38 ± 3 nM, ranitidine: 1000 ± 170 nM).44 

For comparison, examples of acylguanidines (3.24, 4.27, 4.31) were additionally 

investigated in GTPγS binding assays using membrane preparations of Sf9 cells 

expressing the gpH2R-GsαS fusion protein (cf. Figure 4.5). The determined pEC50 values 

and intrinsic activities were in good agreement with the data from the GTPase assay. 
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Figure 4.5. Histamine H2 receptor agonism of representative bivalent ligands 4.27 (■) and 4.31 (○) 

compared to the monovalent ligand 3.24 (∆) and histamine (▼) in the GTPγS binding assay using 

membranes expressing gpH2R-GsαS fusion proteins. Data points are means of representative experiments 

performed in duplicate, analyzed by nonlinear regression for best fit to sigmoidal concentration-response 

curves. 

4.3.1.2 H2R agonism on the isolated guinea pig right atrium 

In addition to the studies on membrane preparations, representative bivalent H2R agonists 

were investigated on the isolated spontaneously beating gp right atrium as a more 

complex, well established standard model for the characterization of H2R ligands. The 

obtained data (Table 4.3) were in good agreement with the results from the GTPase 

assays on the gpH2R-GsαS fusion proteins in terms of both potencies and intrinsic 

activities. The structure-activity relationships and the orders of potencies derived from the 
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guinea pig right atrium were comparable to those derived from the GTPase assay. 

However, the agonist potency of the long chain members of the series (19, 20 and 21) 

decreased substantially in the organ assay compared with the GTPase assay. The 

combination of two hetarylpropylguanidine moieties with octanedioyl, nonanedioyl or 

decanedioyl spacers (pEC50 values, 4.9: 9.08, 4.26: 9.61, 4.27: 8.93, 4.31: 9.22) led to the 

most potent agonists at the gp right atrium known so far, surpassing up to 4000 times the 

potency of histamine in increasing heart rate. In addition, similar to the results from the 

GTPase assay the exchange of 2-amino-4-methylthiazole against imidazole rings (4.27 vs. 

4.31) increased the efficacy at the gpH2R (0.62 → 0.91). In agreement with monovalent 

acylguanidines (see chapter 3), the positive chronotropic response was sensitive against 

the H2R antagonist cimetidine (10-100µM), thus, confirming a H2R-mediated effect of 

bivalent acylguanidines (data not shown).  

Table 4.3. Histamine H2 receptor agonism at the spontaneously beating guinea pig right atrium. 

Compd. pEC50 ± SEMa Potrel
b Emax ± SEMc 

His 6.00 ± 0.10 1.0 1.0 

Amt 45 6.21 ± 0.09 1.62 0.95 ± 0.02 

4.9 9.08 ± 0.05 1,210.1 0.71 ± 0.05 

4.25 8.59 ± 0.07 389.0 0.88 ± 0.03 

4.26 9.61 ± 0.03 4,070.0 0.64 ± 0.03 

4.27 8.93 ± 0.14 847.0 0.62 ± 0.04 

4.29 6.26 ± 0.14 1.82 0.53 ± 0.11 

4.30 5.10 ± 0.13 0.13 0.62 ± 0.07 

4.31 9.22 ± 0.06 1,640.0 0.91 ± 0.04 
a pEC50 was calculated from the mean shift ∆pEC50 of the agonist curve relative to the histamine reference 
curve by equation: pEC50 = 6.00 + 0.13 + ∆pEC50; summand 0.13 represents the mean desensitization 
observed for control organs when two successive curves for histamine were performed (0.13 ± 0.02, N = 
16); data shown are means ± SEM of three to five experiments; b Potency relative to histamine = 1.0; c 

Intrinsic activity, maximal response relative to the maximal increase in heart rate induced by the reference 
compound histamine = 1.0.  

4.3.1.3 Interaction with the recognition site of H2R dimers or binding to 

different sites of one protomer? 

The structure-activity relationships of bivalent H2R agonistic acylguanidines, resulting 

from GTPase, GTPγS binding and guinea pig right atrium assays, are not compatible with 

the possible role of such ligands as compounds “bridging” the recognition (orthosteric) 

sites of receptor dimers. The spacers of the highly potent agonists 4.9-4.11, 4.16, 4.26, 
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4.27 and 4.31 are too short to simultaneously occupy two H2R protomers. The presumed 

optimal spacer length of ≈ 22-27 Å may be attained only by compounds 4.13, 4.19 and 

4.30 (n = 20, carbonyl-carbonyl distance 26.4 Å with fully extended chain). However, 

spacers with 14 and 20 carbon atoms resulted in weak agonism (gpH2R-GsαS) or loss of 

agonistic activity and conversion to antagonism (hH2R-GsαS). Thus, the remarkable 

increase in potency compared to monovalent H2R agonists is presumably due to 

interaction with an accessory (allosteric?) binding site at the same receptor molecule 

rather than to occupation of two protomers of a receptor dimer. In fact, many bivalent 

GPCR ligands with drastically increased activities relative to the monovalent parent 

compounds in spite of insufficient linker lengths for bridging of receptor protomers have 

been reported.24,46-47 The differences in potencies and intrinsic activities between the data 

obtained on human and guinea pig H2R orthologs may be interpreted as a hint to species-

dependent molecular determinants possibly affecting both the orthosteric and the putative 

accessory binding site. Therefore, additional studies on H2R mutants were performed. 

4.3.2 Agonistic activity on histamine H2R mutants/chimera 

Unlike small H2R agonists such as histamine and amthamine, which are full agonists at 

human and guinea pig H2Rs, all bulky guanidine-type H2R agonists turned out to be 

significantly more potent and efficacious at the gpH2R relative to the hH2R.1,25,30,38 This 

species-selective activation is also true for bivalent compounds as revealed in the GTPase 

assay (cf. Table 4.2 and Figure 4.3). These differences may result from species-dependent 

interactions with both the orthosteric and the putative accessory binding site. The latter 

probably resides in the extracellular domains, and amino acids in the e2 loop are possible 

candidates to interact with bivalent ligands. Based on the crystal structure of rhodopsin,48 

the participation of residues of the e2 loop to the binding pocket was proposed and 

already experimentally demonstrated for some members of class A GPCRs.49-52 However, 

the very recently resolved crystal structures of the turkey β1- and the human β2-adrenergic 

receptor indicate a certain contribution of a phenylalanine in the e2 loop to agonist and 

antagonist binding,53-54 but this residue belongs to the orthosteric site. Since the e2 loops 

of the hH2R and the gpH2R differ by only four amino acids outside the orthosteric binding 

pocket (hH2R: G167, H169, T171, S172 vs. gpH2R: D167, D169, I171, V172), reciprocal 

mutation (hH2R-gpE2-GsαS, gpH2R-hE2-GsαS) is an approach to probe whether species 

selectivity of bivalent ligands depends on an accessory function of the e2 loop. 
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Application of this approach to N-[3-(1H-imidazol-4-yl)propyl]guanidines and NG-

acylated analogs indicated that the e2 loop does not contribute to species-selectivity of 

monovalent H2R agonists.33 Investigations of selected bivalent acylguanidines on the 

reciprocal mutants led to rather ambivalent results. As summarized in Table 4.4, all 

investigated compounds exhibited similar potencies and efficacies at mutant hH2R-gpE2-

GsαS and wild-type hH2R-GsαS. At mutant gpH2R-hE2-GsαS the compounds are equi-

efficacious compared to the wild-type gpH2R-GsαS. However, the pEC50 values are 

significantly reduced by 0.5 to 0.9 in the case of 2-amino-4-methylthiazolyl compounds 

(4.26, 4.27) except 4.29, whereas the potencies of imidazolyl (4.31) and 2-aminothiazolyl 

derivatives (4.10, 4.11) remain nearly unchanged (Figure 4.6 A). Hence, these results do 

not indicate direct interactions of the mutated residues with the bivalent ligands. 

However, the integrity of the e2 loop seems to be necessary for high-affinity gpH2R 

binding of bivalent 2-amino-4-methylthiazoles. It is not obvious whether the detrimental 

effect of the mutations is directly based on the modification of an accessory site in the 

extracellular region or indirectly due to conformational changes of the orthosteric site. 

Furthermore, as predicted by H2R models and verified by site-directed mutagenesis 

studies, the preference of the guanidine-type agonists for the gpH2R is strongly dependent 

on two amino acids, Tyr-17 and Asp-271 in TM 1 and TM 7, respectively, which are 

thought to stabilize an active receptor conformation via direct or through-water 

interactions.30,32 Cys-17 and Ala-271 in the hH2R cannot fulfill this function. 

Investigations of selected bivalent acylguanidines on H2R mutants (Table 4.4, Figure 4.6 

B), in which Cys-17 and Ala-271 of the hH2R were replaced by the corresponding amino 

acids Tyr-17 and Asp-271 of the gpH2R (hH2R-C17Y-A271D-GsαS, hH2R-C17Y-GsαS) 

confirmed that both Tyr-17 in TM1 and Asp-271 in TM7 or at least Asp-271 are key 

residues for highly potent and efficacious H2R activation. The sensitivity of the hH2R-

C17Y-A271D-GsαS double mutant against agonist stimulation was shifted to that of the 

gpH2R isoform. The single Cys-17-Tyr mutation had only slight or in some cases even 

detrimental effects on hH2R potency and efficacy. 
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 Figure 4.6. Comparison of the agonistic potencies of selected bivalent ligands at wild-type and mutant 

human and guinea pig H2 receptors as determined in GTPase assays. Data shown are the means ± SEM of 

two to five independent experiments performed in duplicate. pEC50 values were compared with each other 

using one-way ANOVA, followed by Bonferroni`s multiple comparison test. A: pEC50 values of 4.10, 4.11, 

4.26, 4.27, 4.29 and 4.31 at hH2R-GsαS (□) vs. hH2R-gpE2-GsαS (■) vs. gpH2R-hE2-GsαS (■) vs. gpH2R-

GsαS (■) fusion proteins. pEC50 significantly different to: *hH2R-GsαS, 
+hH2R-gpE2-GsαS or °gpH2R-hE2-

GsαS; one symbol: p < 0.05, two symbols: p < 0.01, three symbols: p < 0.001; 95% confidence interval. B: 

pEC50 values of 4.10, 4.11, 4.26, 4.27 and 4.31 at hH2R-GsαS (□) vs. hH2R-C17Y-A271D-GsαS double 

mutant (■) vs. gpH2R-GsαS (■). *pEC50 significantly different to hH2R-GsαS; one symbol: p < 0.05, two 

symbols: p < 0.01, three symbols: p < 0.001; 95% confidence interval. 

Table 4.4. Potencies and efficacies of bivalent acylguanidine-type H2R agonists at hH2R-gpE2-GsαS, 

gpH2R-hE2-GsαS, hH2R-C17Y-A271D-GsαS and hH2R-C17Y-GsαS expressed in Sf9 cell membranes.a 

Compd. 

hH2R-gpE2-GsαS gpH2R-hE2-GsαS hH2R-C17Y-A271D-GsαS hH2R-C17Y-GsαS 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

His32-33 1.00 
6.17 

± 0.07 
1.00 

5.86 

± 0.05 
1.00 

6.50 

± 0.01 
1.00 

6.61 

± 0.11 

Amt 32-33 
0.94 

± 0.05 

6.86 

± 0.06 

0.94 

± 0.06 

6.53 

± 0.09 

0.97 

± 0.01 

7.19 

± 0.02 

0.86 

± 0.19 

6.93 

± 0.04 

4.10 
0.69 

± 0.03 

7.48 

± 0.06 

0.97 

± 0.03 

8.53 

± 0.03 
ndb 0.82 

± 0.12 

7.23 

± 0.10 

4.11 
0.74 

± 0.05 

7.83 

± 0.15 

0.99 

± 0.05 

8.19 

± 0.04 

0.79 

± 0.02 

8.20 

± 0.14 

0.52 

± 0.08 

8.05 

± 0.22 

4.2629 
0.65 

± 0.05 

7.34 

± 0.15 

1.00 

± 0.01 

8.65 

± 0.04 

0.83 

± 0.02 

8.61 

± 0.09 

0.33 

± 0.03 

8.02 

± 0.08 

4.2729 
0.65 

± 0.01 

8.16 

± 0.06 

0.86 

± 0.03 

8.47 

± 0.21 

0.78 

± 0.01 

8.72 

± 0.13 

0.29 

± 0.02 

7.60 

± 0.03 

4.2929 
0.22 

± 0.03 

7.33 

± 0.09 

0.49 

± 0.01 

7.49 

± 0.04 

0.17 

± 0.01 

7.44 

± 0.23 
(- -)c 

4.3129 
0.82 

± 0.01 

8.47 

± 0.07 

1.11 

± 0.04 

8.92 

± 0.01 

0.97 

± 0.07 

9.19 

± 0.08 

0.94 

± 0.06 

8.16 

± 0.05 
a Steady state GTPase activity in Sf9 membranes expressing hH2R-gpE2-GsαS, gpH2R-hE2-GsαS, hH2R-
C17Y-A271D-GsαS and hH2R-C17Y-GsαS was determined as described in Pharmacological methods. 
Reaction mixtures contained ligands at concentrations from 1 nM to 100 µM as appropriate to generate 
saturated concentration-response curves. Data were analyzed by nonlinear regression and were best fit to 
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sigmoidal concentration-response curves. Typical basal GTPase activities ranged between ≈ 0.5 and 1.5 
pmol.mg-1.min-1 for hH2R-gpE2-GsαS and gpH2R-hE2-GsαS, ≈ 2.5 and 3.0 pmol.mg-1.min-1 for hH2R-C17Y-
A271D-GsαS and ≈ 0.7 and 1.3 pmol.mg-1.min-1 for hH2R-C17Y-GsαS. Activities stimulated by histamine 
(100 µM) ranged between ≈ 2.8 and 5.0 pmol.mg-1.min-1 for hH2R-gpE2-GsαS and gpH2R-hE2-GsαS, ≈ 1.1 
and 4.5 pmol.mg-1.min-1 for hH2R-C17Y-A271D-GsαS and ≈ 1.1 and 1.8 pmol.mg-1.min-1 for hH2R-C17Y-
GsαS. The intrinsic activity (Emax) of histamine was determined by nonlinear regression and was set to 1.0. 
The Emax values of other agonists were referred to this value. Data shown are means ± SEM of one to three 
experiments performed in duplicate. b nd: not determined. c No agonistic activity. 

 

4.3.3 Receptor selectivity 

To determine the histamine receptor selectivity profile (human H2R vs. H1R, H3R, H4R), 

representative compounds were investigated in GTPase assays on recombinant human H1, 

H3 and H4 receptors for agonism and antagonism, respectively (Table 4.5). These 

experiments were performed at membranes of Sf9 insect cells co-expressing the hH1R 

plus RGS4, co-expressing the hH3R plus Gαi2 plus Gβ1γ2 plus RGS4 or co-expressing the 

hH4R-RGS19 fusion protein plus Gαi2 plus Gβ1γ2. Recently reported monovalent NG-

acylated aminothiazolylpropylguanidine-type H2R agonists proved to be devoid of 

agonistic and antagonistic activities or to have only negligible effects on histamine 

receptors other than the H2R (see chapter 3).1 This also holds for bivalent ligands: the 

investigated compounds containing two 2-aminothiazole moieties (4.10, 4.11 and 4.25-

4.29) showed only very weak antagonistic effects on H1, H3 and H4 histamine receptors. 

By contrast, compounds containing two imidazole rings (4.14-4.19 and 4.31) showed, in 

addition to H2R agonism, significant agonistic, antagonistic or inverse agonistic activities 

at the other histamine receptor subtypes, depending on the spacer length. In particular, the 

imidazolylpropylguanidines with octane- (4.16) and decanedioyl spacer (4.31) turned out 

to be highly potent hH3R and hH4R partial agonists in the low nanomolar range and 

therefore may be promising starting points for the development of highly potent H3R and 

H4R agonists. Hence, the replacement of the privileged imidazolylpropylguanidine 

portion with an aminothiazolylpropylguanidine moiety strongly favors the selectivity for 

the H2R in the case of both monovalent and bivalent NG-acylated guanidines. Again, these 

data confirm the working hypothesis that the 2-aminothiazole and the imidazole moiety 

are bioisosteric groups at the H2R but not at the H3R and the H4R. 
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Table 4.5. Histamine receptor subtype selectivity of selected bivalent ligands. Agonistic, antagonistic and 

inverse agonistic effects of bivalent ligands at hH1R + RGS4, hH2R-GsαS, hH3R + Gαi2 + Gβ1γ2 + RGS4 

and hH4R-RGS19 + Gαi2 + Gβ1γ2 expressed in Sf9 cell membranes.a 

 

Compd. 

hH1R hH2R hH3R hH4R 

(pK B) 
pEC50 

(pK B) 
Emax 

pEC50 

(pK B) 
Emax

 
pEC50 

(pK B) 
Emax 

4.25 (< 6.00) 
7.24 

± 0.22 

0.68 

± 0.03 
(< 5.00) - (< 6.00) - 

4.26 (< 6.00) 
7.32 

± 0.23 

0.62 

± 0.03 
(< 5.00) - (< 6.00) - 

4.27 
(6.01 

± 0.07) 

8.11 

± 0.25 

0.53 

± 0.04 
(< 5.00) - (< 6.00) - 

4.29 (< 6.00) 
7.59 

± 0.22 

0.12 

± 0.02 
(< 6.00) - (< 6.00) - 

4.10 (< 6.00) 
7.51 

± 0.02 

0.79 

± 0.03 

(6.36 

± 0.11) 
- (< 6.00) - 

4.11 (< 6.00) 
7.67 

± 0.07 

0.75 

± 0.03 
(< 5.00) - (< 6.00) - 

4.14 
(6.13 

± 0.22) 

6.67 

± 0.34 

0.68 

± 0.04 
< 5.00 

– 0.22 

± 0.03 

7.10 

± 0.12 

0.42 

± 0.01 

4.16 
(6.70 

± 0.07) 

7.25 

± 0.16 

0.77 

± 0.12 

8.38 

± 0.11 

0.37 

± 0.08 

7.38 

± 0.02 

0.51 

± 0.04 

4.31 
(6.32 

± 0.16) 

8.21 

± 0.07 

0.81 

± 0.02 

8.75 

± 0.06 

0.63 

± 0.08 

8.07 

± 0.19 

0.44 

± 0.05 

4.18 (< 6.00) 
7.61 

± 0.18 

0.29 

± 0.08 
< 6.00 

– 1.02 

± 0.02 

6.47 

± 0.04 

– 0.29 

± 0.09 

4.19 (< 6.00) 
(6.57 

± 0.07) 
- 

6.35 

± 0.03 

– 0.77 

± 0.02 
< 6.00 

– 0.86 

± 0.02 
a Steady state GTPase activity in Sf9 membranes expressing hH1R+RGS4, hH2R-GsαS, 
hH3R+Gαi2+Gβ1γ2+RGS4 and hH4R-RGS19+Gαi2+Gβ1γ2 was determined as described in Pharmacological 
methods. Reaction mixtures contained ligands at concentrations from 1 nM to 100 µM as appropriate to 
generate saturated concentration-response curves. For antagonism, reaction mixtures contained histamine 
(hH1R: 1 µM; hH3R, hH4R: 100 nM) and ligands at concentrations from 1 nM to 1 mM. Data were analyzed 
by nonlinear regression and were best fitted to sigmoidal concentration-response curves. Typical basal 
GTPase activities ranged between ≈ 1.5 and 2.5 pmol.mg-1.min-1, and activities stimulated by histamine (10 
µM) ranged between ≈ 3.5 and 4.5 pmol.mg-1.min-1. Data shown are mean values from one to four 
experiments performed in duplicate. IC50 values were converted to KB values using the Cheng-Prusoff 
equation.55 Efficacy (Emax) relative to the maximal response of histamine = 1.00. Negative values refer to 
inverse agonistic effects. b For general structure of bivalent hetarylpropylguanidines see Table 4.1.  
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4.4 Summary 

Starting from NG-acylated hetarylpropylguanidines which were recently discovered in our 

laboratory as a new class of potent H2R agonists1,25 several bivalent histamine H2R 

agonists were synthesized by connecting two hetarylpropylguanidine entities by NG-

acylation with alkanedioic acids of various chain lengths (6 – 27 Å). The pharmacophore 

duplication resulted in novel hH2R and gpH2R agonists which may serve as 

pharmacological tools for more detailed investigations of the H2R. The bivalent ligands 

proved to be partial to full H2R agonists, up to two orders of magnitude more potent than 

monovalent acylguanidines and up to 4000 times more potent than histamine at the 

gpH2R (compounds with octanedioyl to decanedioyl spacers). These are the most potent 

histamine H2R agonists known to date. However, the results of this study, in particular the 

structure-activity relationships with respect to spacer length, do not support the 

hypothesis of simultaneous occupation of the recognition sites of neighboring protomers. 

The spacer optimum rather suggests that the remarkable increase in potency compared to 

monovalent H2R agonists is due to the interaction with an accessory (allosteric?) binding 

site at the same receptor molecule. Investigations on hH2R and gpH2R mutants, aiming at 

identifying molecular determinants of the putative accessory binding site, confirmed the 

key role of non-conserved Tyr-17 and Asp-271 in TM1 and TM7 in the gpH2R for 

species-selective H2R activation and suggested that the e2 loop does not participate in 

direct ligand - receptor interaction. In order to further elaborate structure-activity 

relationships with respect to the role and the interaction site of the spacer and the second 

set of pharmacophoric groups, it is necessary to synthesize and pharmacologically 

characterize additional compounds with different spacers, e.g. more bulky, rigid and/or 

hydrophilic spacers, and distinct pharmacophores as well as non H2R-specific moieties.  

 

4.5 Experimental section 

4.5.1 Chemistry 

4.5.1.1 General conditions 

See section 3.5.1.1 
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4.5.1.2 Preparation of the NG-Boc-protected building block 4.8 

(E)-Methyl 3-(1H-imidazol-4-yl)propenoate (4.1)27 

To a solution of urocanic acid (10 g, 72.4 mmol) and anhydrous Na2SO4 (1.5 g) in 100 ml 

MeOH/abs was added 6 ml of conc. H2SO4. After refluxing for 30 h, the solvent was 

removed under reduced pressure. The residue was dissolved in a small amount of water, 

neutralized with saturated NaHCO3/aq and extracted three times with EtOAc. After 

drying over MgSO4, the solvent was evaporated in vacuo to give 4.1 in 94 % yield (10.5 

g) as white solid. 1H-NMR (CD3OD) δ (ppm): 6.33 (s, 1H, Im-2-H), 6.18 (d, 3J = 15.9 

Hz, 1H, Im-4-CHCH), 2.37 (s, 3H, OCH3); EI-MS (70 eV) m/z (%): 152 (M+•, 50); 

C7H8N2O2 (152.15).  

Methyl 3-(1H-imidazol-4-yl)propanoate (4.2)56 

To a solution of 4.1 (9.9 g, 65.1 mmol) in 120 ml of MeOH was added 1.0 g of Pd/C (10 

%) at room temperature under stirring. The mixture was hydrogenated at 5 bar for 24 h. 

After completion of reaction (TLC control) the mixture was filtered through a Celite pad, 

which was rinsed with MeOH, and the solution was concentrated in vacuo to get 4.2 (10 

g, 100 %) as white solid. mp 107-109 °C; 1H-NMR (DMSO-d6) δ (ppm): 7.51 (s, 1H, Im-

2-H), 6.75 (s, 1H, Im-5-H), 3.59 (s, 3H, OCH3), 2.75 (t, 3J = 7.4 Hz, 2H, Im-4-CH2), 2.59 

(t, 3J = 7.3 Hz, 2H, Im-4-CH2CH2); EI-MS (70 eV) m/z (%): 154 (M+•, 35); C7H10N2O2 

(154.17). 

Methyl 3-(1-trityl-1 H-imidazol-4-yl)propanoate (4.3)57 

To a suspension of 4.2 (9.2 g, 48.3 mmol) and NEt3 (19 ml, 136 mmol) in 120 ml MeCN 

was added dropwise a solution of trityl chloride (15 g, 54 mmol) in 120 ml MeCN under 

external ice-cooling. After the addition was completed, the mixture was allowed to warm 

to room temperature and stirring was continued for 12 h. After removing the solvent 

under reduced pressure, the resulting solid was suspended in 300 ml H2O and stirred for 1 

h. The solid was filtrated and recrystallized from dry EtOH yielding 4.3 (15.1 g, 79 %) as 

white solid. mp 131 °C; 1H-NMR (CDCl3) δ (ppm): 8.07 (d, 4J = 1.6 Hz, 1H, Im-2-H),  

7.41-7.07 (m, 15H, CPh3), 6.77 (d, 4J = 1.5 Hz, 1H, Im-5-H), 3.62 (s, 3H, OCH3), 3.08 (t, 
3J = 7.0 Hz, 2H, Im-4-CH2), 2.87 (t, 3J = 7.0 Hz, 2H, Im-4-CH2CH2); EI-MS (70eV) m/z 

(%): 396 (M +•, 10); C26H24N2O2 (396.24). 

3-(1-Trityl-1 H-imidazol-4-yl)propan-1-ol (4.4)57 
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To a suspension of LiAlH4 (1.9 g, 50 mmol) in 75 ml freshly distilled THF and 25 ml 

Et2O/abs was added 4.3 (10.0 g, 25 mmol) in portions under argon atmosphere and 

cooling with ice. After the addition was completed, the mixture was allowed to warm to 

room temperature and refluxed for 2 h. The excess LiAlH 4 was decomposed by dropwise 

addition of 0.1 N NaOH. The solution was extracted several times with DCM, dried over 

Mg2SO4 and the solvent removed in vacuo. The residue was purified by flash 

chromatography (CHCl3/MeOH 95/5 v/v) to obtain 4.4 (6.9 g, 74 %) as white solid. mp 

138 °C; 1H-NMR (CDCl3) δ (ppm): 7.76 (d, 4J = 1.4 Hz, 1H, Im-2-H), 7.34-7.10 (m, 

15H, CPh3), 6.65 (d, 4J = 1.5 Hz, 1H, Im-5-H), 3.71 (t, 3J = 5.7 Hz, 2H, CH2OH), 2.80 (t, 
3J = 6.9 Hz, 2H, Im-4-CH2), 1.90 (m, 2H, Im-4-CH2CH2); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 369 (MH+, 60); C25H24N2O (368.24). 

3-(1-Trityl-1 H-imidazol-4-yl)propan-1-amine (4.6)29 

4.5 (3.6 g, 10 mmol), phthalimide (1.4 g, 10 mmol) and PPh3 (2.5 g, 10 mmol) were 

suspended in 100 ml THF/abs and cooled to 0 °C. DIAD (1 eq) was slowly added drop by 

drop. After complete addition of DIAD, the mixture was allowed to warm to room 

temperature and stirred for 24 h. The solvent was removed under reduced pressure and 

the crude product suspended in 60 ml EtOH. Then, hydrazine hydrate (2.4 ml, 5 mmol) 

was added and the mixture was refluxed for 1 h. After cooling to room temperature, the 

precipitate was filtered off and the solvent evaporated in vacuo. The residue was 

subjected to flash chromatography (CHCl3/MeOH/NEt3 95/4/1 v/v/v) to obtain 4.6 (2.1 g, 

58 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 7.32-7.12 (m, 16H, Im-2-H, CPh3), 6.52 

(d, 4J = 1.2 Hz, 1H, Im-5-H), 2.74 (t, 3J = 6.9 Hz, 2H, CH2NH2), 2.59 (t, 3J = 7.4 Hz, 2H, 

Im-4-CH2), 1.78 (m, 2H, Im-4-CH2CH2); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 

368 (MH+, 100); C25H25N3 (367.48). 

tert-Butyl amino(benzyloxycarbonyl(3-(1-trityl-1H-imidazol-4-yl)propyl)amino)-

methylenecarbamate (4.7)29 

The title compound was prepared according to literature and by analogy with the 

procedure described for 3.17 and 3.18 (cf. chapter 3).1 To a suspension of 4.6 (1 eq), 3.3 

(1 eq) and HgCl2 (2 eq) in DCM/abs was added NEt3 (3 eq) and stirred at ambient 

temperature for 48 h. Subsequently, EtOAc was added and the precipitate filtered over 

Celite. The crude product was purified by flash chromatography (PE/EtOAc 80/20 v/v) to 

give the Boc- and Cbz-protected guanidine 4.7 as colorless foam-like solid in almost 100 
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% yield. 1H-NMR (CDCl3) δ (ppm): 7.47 (d, 4J = 1.2 Hz, 1H, Im-2-H), 7.34-7.10 (m, 

20H, CPh3, Ar-H), 6.58 (s, 1H, Im-5-H), 5.11 (s, 2H, CH2Ar), 3.40 (m, 2H, CH2NH), 

2.60 (t, 3J = 7.6 Hz, 2H, Im-4-CH2), 1.87 (m, 2H, Im-4-CH2CH2), 1.45 (s, 9H, C(CH3)3); 

ES-MS (DCM/MeOH + NH4OAc) m/z (%): 644 (MH+, 100); C39H41N5O4 (643.77). 

tert-Butyl amino(3-(1-trityl-1 H-imidazol-4-yl)propylamino)methylenecarbamate 

(4.8)29 

The title compound was prepared from 4.7 (1.5 g, 2.33 mmol) by hydrogenation over 1 g 

Pd/C (10 %) in a mixture of 60 ml THF/MeOH (1:1) for 8 days at 8 bar (TLC control). 

After filtration over Celite and washing with MeOH, the solvent was removed in vacuo to 

yield 4.8 (1.05 g, 88 %) as colorless foam-like solid. 1H-NMR (CDCl3) δ (ppm): 7.34-

7.10 (m, 16H, Im-2-H, CPh3), 6.57 (s, 1H, Im-5-H), 3.41 (m, 2H, CH2NH), 2.56 (m, 2H, 

Im-4-CH2), 1.86 (m, 2H, Im-4-CH2CH2), 1.46 (s, 9H, C(CH3)3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 510 (MH+, 100); C31H35NO2 (509.64). 

4.5.1.3 Preparation of the NG-Boc-protected bivalent acylguanidines 

4.9a-4.19a and 4.24a 

General procedure for the synthesis of Boc-protected bivalent acylguanidines 4.9a-

4.19a 

DIEA (1 eq) was added to a solution of pertinent dicarboxylic acid (0.5 eq), EDAC (1 eq) 

and HOBt-monohydrate (1 eq) in DCM/abs under argon and stirred for 15 min. A 

solution of 3.17, 3.18 or 4.8 (1 eq) in DCM/abs was added and the mixture was stirred 

overnight at room temperature. The solvent was removed under reduced pressure, EtOAc 

and water were added to the residue, the organic phase was separated and the aqueous 

layer extracted two times with EtOAc. After drying over MgSO4, the organic solvent was 

removed in vacuo. The crude product was purified by flash chromatography (PE/EtOAc 

70/30-50/50 v/v) unless otherwise indicated. 

N1,N9-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-

methylthiazol-5-yl]propylamino}methylene)nonanediamide (4.9a) 

The title compound was prepared from azelaic acid (94 mg, 0.5 mmol), EDAC (190 mg, 

1 mmol),  HOBt-monohydrate (150 mg, 1 mmol), DIEA (0.17 ml, 1 mmol) in 5 ml 

DCM/abs and 3.17 (410 mg, 1 mmol) in 5 ml DCM/abs according to the general 

procedure yielding 4.9a (270 mg, 56 %) as yellow-brown oil. 1H-NMR (CDCl3) δ (ppm): 
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3.45 (m, 4H, CH2NH), 2.71 (t, 3J = 7.4 Hz, 4H, Thiaz-5-CH2), 2.31 (m, 4H, COCH2), 

2.20 (s, 6H, Thiaz-4-CH3), 1.88 (m, 4H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 

1.53 (s, 18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.35 (m, 6H, (CH2)3); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 980 (MH+, 100); C45H74N10O10S2 (979.3). 

N1,N8-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)aminothiazol-5-yl]-

propylamino}methylene)octanediamide (4.10a) 

The title compound was prepared from octanedioic acid (70 mg, 0.4 mmol), EDAC (153 

mg, 0.8 mmol), HOBt-monohydrate (123 mg, 0.8 mmol), DIEA (0.14 ml, 0.8 mmol) in 5 

ml DCM/abs and 3.18 (320 mg, 0.8 mmol) in 5 ml DCM/abs according to the general 

procedure yielding 4.10a (170 mg, 45 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 7.01 

(s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.14 Hz, 4H, CH2NH), 2.77 (t, 3J = 7.14 Hz, 4H, Thiaz-

5-CH2), 2.48 (t, 3J = 7.41 Hz, 4H, COCH2), 1.95 (m, 4H, Thiaz-5-CH2CH2), 1.67 (m, 4H, 

COCH2CH2), 1.52 (s, 18H, C(CH3)3), 1.47 (s, 18H, C(CH3)3), 1.39 (m, 4H, (CH2)2); ES-

MS (DCM/MeOH + NH4OAc) m/z (%): 937.5 (MH+, 100); C42H68N10O10S2 (936.46). 

N1,N10-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)aminothiazol-5-

yl]propylamino}methylene)decanediamide (4.11a) 

The title compound was prepared from decanedioic acid (50 mg, 0.25 mmol), EDAC (95 

mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.08 ml, 0.5 mmol) in 5 

ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 5 ml DCM/abs according to the general 

procedure yielding 4.11a (200 mg, 54 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 7.04 

(s, 2H, Thiaz-4-H), 3.48 (m, 4H, CH2NH), 2.79 (m, 4H, Thiaz-5-CH2), 2.34 (m, 4H, 

COCH2), 1.93 (m, 4H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.56 (s, 18H, 

C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.32 (m, 8H, (CH2)4); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 965.5 (MH+, 100); C44H72N10O10S2 (964.5). 

N1,N16-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)aminothiazol-5-

yl]propylamino}methylene)hexadecanediamide (4.12a) 

The title compound was prepared from hexadecanedioic acid (70 mg, 0.25 mmol), EDAC 

(95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.08 ml, 0.5 mmol) in 

5 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 4.12a (160 mg, 62 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 7.06 

(s, 2H, Thiaz-4-H), 3.48 (m, 4H, CH2NH), 2.81 (t, 3J = 7.14 Hz, 4H, Thiaz-5-CH2), 2.38 

(t, 3J = 6.9 Hz, 4H, COCH2), 1.93 (m, 4H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 
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1.57 (s, 18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.35-1.29 (m, 20H, (CH2)10); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 1049.7 (MH+, 100); C50H84N10O10S2 (1048.58). 

N1,N22-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)aminothiazol-5-

yl]propylamino}methylene)docosanediamide (4.13a) 

The title compound was prepared from docosanedioic acid (77 mg, 0.25 mmol), EDAC 

(95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.08 ml, 0.5 mmol) in 

5 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 5 ml DCM/abs according to the general 

procedure yielding 4.13a (230 mg, 80 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 7.06 

(s, 2H, Thiaz-4-H), 3.48 (m, 4H, CH2NH), 2.80 (m, 4H, Thiaz-5-CH2), 2.39 (t, 3J = 7.4 

Hz, 4H, COCH2), 1.93 (m, 4H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.57 (s, 

18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.35-1.24 (m, 32H, (CH2)16); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 1133.7 (MH+, 100); C56H96N10O10S2 (1132.68). 

N1,N6-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}hexanediamide (4.14a) 

The title compound was prepared from hexanedioic acid (60 mg, 0.4 mmol), EDAC (150 

mg, 0.8 mmol), HOBt-monohydrate (110 mg, 0.8 mmol), DIEA (0.14 ml, 0.8 mmol) in 5 

ml DCM/abs and 4.8 (420 mg, 0.8 mmol) in 3 ml DCM/abs according to the general 

procedure (flash chromatography CHCl3/MeOH 95/5 v/v) yielding 4.14a (150 mg, 42 %) 

as yellow oil. 1H-NMR (CDCl3) δ (ppm): 7.33-7.12 (m, 32H, Im-2-H, CPh3), 6.54 (m, 

2H, Im-5-H), 3.47 (m, 4H, CH2NH), 2.60 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.34 (m, 4H, 

COCH2), 1.90 (m, 4H, Im-4-CH2CH2), 1.63 (m, 4H, (CH2)2), 1.51 (s, 18H, C(CH3)3); 

ES-MS (DCM/MeOH + NH4OAc) m/z (%): 1129 (MH+, 100); C68H76N10O6 (1129.39). 

N1,N7-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}heptanediamide (4.15a) 

The title compound was prepared from heptanedioic acid (56 mg, 0.35 mmol), EDAC 

(135 mg, 0.7 mmol), HOBt-monohydrate (107 mg, 0.7 mmol), DIEA (0.12 ml, 0.7 mmol) 

in 5 ml DCM/abs and 4.8 (360 mg, 0.7 mmol) in 3 ml DCM/abs according to the general 

procedure (flash chromatography CHCl3/MeOH 95/5 v/v) yielding 4.15a (300 mg, 75 %) 

as yellow oil. 1H-NMR (CDCl3) δ (ppm): 7.36-7.16 (m, 32H, Im-2-H, CPh3), 6.36 (m, 

2H, Im-5-H), 3.38 (m, 4H, CH2NH), 2.83 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.49 (m, 4H, 

COCH2), 1.98 (m, 4H, Im-4-CH2CH2), 1.69 (m, 4H, (CH2)2), 1.50 (s, 18H, C(CH3)3), 

1.42 (m, 2H, CH2); C69H78N10O6 (1143.42). 
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N1,N8-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}octanediamide (4.16a) 

The title compound was prepared from octanedioic acid (70 mg, 0.4 mmol), EDAC (150 

mg, 0.8 mmol), HOBt-monohydrate (110 mg, 0.8 mmol), DIEA (0.14 ml, 0.8 mmol) in 5 

ml DCM/abs and 4.8 (420 mg, 0.8 mmol) in 5 ml DCM/abs according to the general 

procedure (flash chromatography CHCl3/MeOH 95/5 v/v) yielding 4.16a (170 mg, 36 %) 

as yellow-brown oil. 1H-NMR (CDCl3) δ (ppm): 7.35-7.17 (m, 32H, Im-2-H, CPh3), 6.52 

(m, 2H, Im-5-H), 3.46 (m, 4H, CH2NH), 2.61 (m, 4H, Im-4-CH2), 2.35 (m, 4H, COCH2), 

1.89 (m, 4H, Im-4-CH2CH2), 1.63 (m, 4H, COCH2CH2), 1.51 (s, 18H, C(CH3)3), 1.32 (m, 

4H, (CH2)2); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 1157 (MH+, 100); C70H80N10O6 

(1157.45). 

N1,N9-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}nonanediamide (4.17a) 

The title compound was prepared from nonanedioic acid (95 mg, 0.5 mmol), EDAC (190 

mg, 1.0 mmol), HOBt-monohydrate (155 mg, 1.0 mmol), DIEA (0.17 ml, 1.0 mmol) in 5 

ml DCM/abs and 4.8 (510 mg, 1.0 mmol) in 5 ml DCM/abs according to the general 

procedure (flash chromatography CHCl3/MeOH 95/5 v/v) yielding 4.17a (470 mg, 80 %) 

as yellow-brown oil. 1H-NMR (CDCl3) δ (ppm): 7.37-7.12 (m, 32H, Im-2-H, CPh3), 6.57 

(m, 2H, Im-5-H), 3.39 (m, 4H, CH2NH), 2.83 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.47 (m, 

4H, COCH2), 1.98 (m, 4H, Im-4-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.50 (s, 18H, 

C(CH3)3), 1.37 (m, 6H, (CH2)3); C71H82N10O6 (1171.47). 

N1,N16-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}hexadecanediamide (4.18a) 

The title compound was prepared from hexadecanedioic acid (90 mg, 0.33 mmol), EDAC 

(126 mg, 0.66 mmol), HOBt-monohydrate (100 mg, 0.66 mmol), DIEA (0.11 ml, 0.66 

mmol) in 5 ml DCM/abs and 4.8 (340 mg, 0.66 mmol) in 5 ml DCM/abs according to the 

general procedure (flash chromatography CHCl3/MeOH 95/5 v/v) yielding 4.18a (380 

mg, 88 %) as yellow oil. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 1270 (MH+, 100); 

C78H96N10O6 (1269.66). 

N1,N22-Bis{(tert-butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}docosanediamide (4.19a) 
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The title compound was prepared from docosanedioic acid (93 mg, 0.25 mmol), EDAC 

(95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.08 ml, 0.5 mmol) in 

5 ml DCM/abs and 4.8 (255 mg, 0.5 mmol) in 5 ml DCM/abs according to the general 

procedure (flash chromatography CHCl3/MeOH 98/2 v/v) yielding 4.19a (150 mg, 44 %) 

as yellow oil. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 1354.2 (MH+, 20), 677.4 

((M+2H)2+, 100); C84H108N10O6 (1353.82). 

N1,N10-Bis{amino[3-(1-trityl-1 H-1,2,4-triazol-5-yl)propylamino]-

methylene}decanediamide (4.24a) 

To a solution of CDI (195 mg, 1.2 mmol) in DMF (7 ml), decanedioic acid (100 mg, 0.5 

mmol) was added and the mixture was stirred under argon for 1 h. In a second flask, 

4.2328 (410 mg, 1 mmol) and NaH (60 % dispersion in oil) (80 mg, 2 mmol) in DMF (7 

ml) under argon was heated to 30-35 °C for 45 min and was then allowed to cool to room 

temperature. The two mixtures were combined and stirred for 5 h at ambient temperature. 

The solvent was removed in vacuo and the crude product was purified by flash 

chromatography (CHCl3/MeOH/NH3 95/3/2 v/v/v) to obtain 4.24a (300mg, 60 %) as pale 

white foam-like solid. 1H-NMR (CD3OD) δ (ppm): 8.01 (s, 2H, Triaz-3-H), 7.37-7.05 (m, 

30H, CPh3), 3.14 (t, 3J = 7.6 Hz, 4H, CH2NH), 2.88 (m, 4H, Triaz-5-CH2), 2.41 (t, 3J = 

7.5 Hz, 4H, COCH2), 1.96 (m, 4H, Triaz-5-CH2CH2), 1.63 (m, 4H, COCH2CH2), 1.29 

(m, 8H, (CH2)4). ES-MS (DCM/MeOH + NH4OAc) m/z (%): 987.7 (MH+, 10), 494.4 

((M+2H)2+, 100); C60H66N12O2 (987.25). 

4.5.1.4 Preparation of the deprotected acylguanidines 4.9-4.19 and 4.24 

General procedure 

To a solution of the protected acylguanidines 4.9a-4.19a and 4.24a in DCM/abs was 

added TFA (20 %) and stirred at ambient temperature until the protecting groups (Boc, 

Trt) were removed (3-5 h) (TLC control). Subsequently, the solvent was removed in 

vacuo and the residue was purified by preparative RP-HPLC. All compounds were 

obtained as trifluoroacetic acid salts. 

N1,N9-Bis{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}nonane-

diamide (4.9) 

The title compound was prepared from 4.9a (180 mg, 0.18 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 4.9 (100 mg, 54 %) as colorless 
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foam-like solid. 1H-NMR (CD3OD) δ (ppm): 3.35 (t, 3J = 7.1 Hz, 4H, CH2NH), 2.71 (t, 3J 

= 7.4 Hz, 4H, Thiaz-5-CH2), 2.47 (t, 3J = 7.7 Hz, 4H, COCH2), 2.18 (s, 6H, Thiaz-4-

CH3), 1.90 (m, 4H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.37 (m, 6H, (CH2)3); 
13C-NMR (CD3OD) δ (ppm): 177.38 (quat. C=O), 170.37 (quat. Thiaz-2-C), 157.13 

(quat. C=NH), 132.59 (quat. Thiaz-4-C), 118.44 (quat. Thiaz-5-C), 41.60 (-, CH2NH), 

37.74 (-, COCH2), 29.82 (-, Thiaz-5-CH2CH2), 25.40 (-, COCH2CH2), 23.62 (-, Thiaz-5-

CH2), 11.45 (+, Thiaz-4-CH3); HREIMS: m/z for ([C25H42N10O2S2 + H]+) calcd. 

579.3012, found 579.3010; prep. HPLC: MeCN/0.1% TFA/aq (20/80-50/50); anal. 

HPLC: k`= 2.08 (tR = 10.22 min, column A), purity = 92 %; C25H42N10O2S2 · 4TFA 

(1034.37). 

N1,N8-Bis{[3-(2-aminothiazol-5-yl)propylamino](amino)methylene}octanediamide 

(4.10) 

The title compound was prepared from 4.10a (170 mg, 0.18 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 4.10 (160 mg, 90 %) as brown oil. 
1H-NMR (CD3OD) δ (ppm): 7.01 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.1 Hz, 4H, CH2NH), 

2.77 (t, 3J = 7.1 Hz, 4H, Thiaz-5-CH2), 2.48 (t, 3J = 7.4 Hz, 4H, COCH2), 1.95 (m, 4H, 

Thiaz-5-CH2CH2), 1.67 (m, 4H, COCH2CH2), 1.39 (m, 4H, (CH2)2). 
13C-NMR (CD3OD) 

δ (ppm): 176.47 (quat. C=O), 172.43 (quat. Thiaz-2-C), 155.92 (quat. C=NH), 125.54 

(quat. Thiaz-5-C), 123.27 (+, Thiaz-4-C), 40.66 (-, CH2NH), 36.83 (-, COCH2), 28.80 (-, 

CH2), 28.74 (-, Thiaz-5-CH2-CH2), 24.40 (-, Thiaz-5-CH2), 24.08 (-, COCH2CH2). 

HRLSIMS: m/z for ([C22H36N10O2S2 + H]+) calcd. 537.2542, found 537.2546; prep. 

HPLC: MeCN/0.1% TFA/aq (10/90-50/50); anal. HPLC: k`= 1.61 (tR = 8.66 min, column 

A), purity = 95 %; C22H36N10O2S2 · 4TFA (992.33). 

N1,N10-Bis{[3-(2-aminothiazol-5-yl)propylamino](amino)methylene}decanediamide 

(4.11) 

The title compound was prepared from 4.11a (200 mg, 0.2 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 4.11 (100 mg, 49 %) as yellow-

brown oil. 1H-NMR (CD3OD) δ (ppm): 7.01 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.1 Hz, 4H, 

CH2NH), 2.77 (t, 3J = 7.1 Hz, 4H, Thiaz-5-CH2), 2.47 (t, 3J = 7.4 Hz, 4H, COCH2), 1.95 

(m, 4H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.35 (m, 8H, (CH2)4). 
13C-NMR 

(CD3OD) δ (ppm): 176.47 (quat. C=O), 172.43 (quat. Thiaz-2-C), 155.92 (quat. C=NH), 

125.55 (quat. Thiaz-5-C), 123.27 (+, Thiaz-4-C), 40.66 (-, CH2NH), 36.83 (-, COCH2), 
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30.43 (-, CH2), 28.80 (-, CH2), 28.74 (-, Thiaz-5-CH2-CH2), 24.41 (-, Thiaz-5-CH2), 24.08 

(-, COCH2CH2). HRLSIMS: m/z for ([C24H40N10O2S2 + H]+) calcd. 565.2855, found 

565.2855; prep. HPLC: MeCN/0.1% TFA/aq (10/90-50/50); anal. HPLC: k`= 2.13 (tR = 

10.37 min, column A), purity = 100 %; C24H40N10O2S2 · 4TFA (1020.36). 

N1,N16-Bis{[3-(2-aminothiazol-5-yl)propylamino](amino)methylene}hexadecane-

diamide (4.12) 

The title compound was prepared from 4.12a (150 mg, 0.14 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 4.12 (80 mg, 52 %) as brown oil. 
1H-NMR (CD3OD) δ (ppm): 7.01 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.1 Hz, 4H, CH2NH), 

2.77 (t, 3J = 7.41 Hz, 4H, Thiaz-5-CH2), 2.46 (t, 3J = 7.41 Hz, 4H, COCH2), 1.95 (m, 4H, 

Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.37 (m, 8H, (CH2)4), 1.29 (m, 12H, 

(CH2)6). 
13C-NMR (CD3OD) δ (ppm): 177.40 (quat. C=O), 171.81 (quat. Thiaz-2-C), 

155.34 (quat. C=NH), 126.36 (quat. Thiaz-5-C), 123.37 (+, Thiaz-4-C), 41.49 (-, 

CH2NH), 37.80 (-, COCH2), 30.82 (-, CH2), 30.77 (-, CH2), 30.64 (-, CH2), 30.43 (-, 

CH2), 30.06 (-, CH2), 29.51 (-, Thiaz-5-CH2-CH2), 25.49 (-, Thiaz-5-CH2), 24.89 (-, 

COCH2CH2). HRLSIMS: m/z for ([C30H52N10O2S2 + H]+) calcd. 649.3794, found 

649.3779; prep. HPLC: MeCN/0.1% TFA/aq (20/80-50/50); anal. HPLC: k`= 3.64(tR = 

15.40 min, column A), purity = 99 %; C30H52N10O2S2 · 4TFA (1104.45). 

N1,N22-Bis{[3-(2-aminothiazol-5-yl)propylamino](amino)methylene}docosane-

diamide (4.13) 

The title compound was prepared from 4.13a (230 mg, 0.19 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 4.13 (120 mg, 53 %) as colorless 

oil. 1H-NMR (CD3OD) δ (ppm): 7.01 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.1 Hz, 4H, 

CH2NH), 2.77 (t, 3J = 7.4 Hz, 4H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 4H, COCH2), 1.96 

(m, 4H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.37-1.26 (m, 32H, (CH2)16). 
13C-

NMR (CD3OD) δ (ppm): 177.42 (quat. C=O), 171.83 (quat. Thiaz-2-C), 155.35 (quat. 

C=NH), 126.35 (quat. Thiaz-5-C), 123.34 (+, Thiaz-4-C), 41.47 (-, CH2NH), 37.79 (-, 

COCH2), 30.84 (-, CH2), 30.76 (-, CH2), 30.62 (-, CH2), 30.42 (-, CH2), 30.05 (-, CH2), 

29.50 (-, Thiaz-5-CH2-CH2), 25.49 (-, Thiaz-5-CH2), 24.89 (-, COCH2CH2). HRLSIMS: 

m/z for ([C36H64N10O2S2 + H]+) calcd. 733.4733, found 733.4728; prep. HPLC: 

MeCN/0.1% TFA/aq (20/80-50/50); anal. HPLC: k`= 5.22 (tR = 20.63 min, column A), 

purity = 99 %; C36H64N10O2S2 · 4TFA (1188.55). 
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N1,N6-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}hexanediamide 

(4.14) 

The title compound was prepared from 4.14a (120 mg, 0.10 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.14 (20 mg, 22 %) as pale 

brown oil. 1H-NMR (CD3OD) δ (ppm): 8.80 (d, 4J = 1.1 Hz, 1H, Im-2-H), 7.36 (s, 2H, 

Im-5-H), 3.38 (t, 3J = 6.9 Hz, 4H, CH2NH), 2.84 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.53 (m, 

4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.72 (m, 4H, COCH2CH2); 
13C-NMR 

(CD3OD) δ (ppm): 177.35 (quat. C=O), 155.41 (quat. C=NH), 134.94 (+, Im-2-C), 134.32 

(quat. Im-4-C), 117.15 (+, Im-5-C), 41.54 (-, CH2NH), 37.24 (-, COCH2), 27.99 (-, Im-4-

CH2CH2), 24.53 (-, COCH2CH2), 22.58 (-, Im-4-CH2); HRLSIMS: m/z for ([C20H32N10O2 

+ H]+) calcd. 445.2788, found 445.2794; prep. HPLC: MeCN/0.1% TFA/aq (10/90-

35/65); anal. HPLC: k`= 0.92 (tR = 6.36 min, column B), purity = 96 %; C20H32N10O2 · 

4TFA (900.61). 

N1,N7-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}heptanediamide 

(4.15) 

The title compound was prepared from 4.15a (300 mg, 0.26 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.15 (178 mg, 75 %) as 

colorless foam-like solid. 1H-NMR (CD3OD) δ (ppm): 8.80 (s, 1H, Im-2-H), 7.36 (s, 2H, 

Im-5-H), 3.38 (t, 3J = 7.1 Hz, 4H, CH2NH), 2.83 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.49 (t, 
3J = 7.4 Hz, 4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.69 (m, 4H, COCH2CH2), 1.42 

(m, 2H, CH2); 
13C-NMR (CD3OD) δ (ppm): 177.24 (quat. C=O), 155.40 (quat. C=NH), 

134.97 (+, Im-2-C), 134.32 (quat. Im-4-C), 117.13 (+, Im-5-C), 41.54 (-, CH2NH), 37.46 

(-, COCH2), 29.20 (-, COCH2CH2CH2), 27.96 (-, Im-4-CH2CH2), 25.02 (-, COCH2CH2), 

22.55 (-, Im-4-CH2); HRLSIMS: m/z for ([C21H34N10O2 + H]+) calcd. 459.2944, found 

459.2955; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. HPLC: k`= 1.11 (tR = 

7.01 min, column A), purity = 90 %; C21H34N10O2 · 4TFA (914.64). 

N1,N8-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}octanediamide 

(4.16) 

The title compound was prepared from 4.16a (150 mg, 0.13 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.16 (28 mg, 23 %) as pale 

brown oil. 1H-NMR (CD3OD) δ (ppm): 8.80 (s, 2H, Im-2-H), 7.36 (s, 2H, Im-5-H), 3.38 

(t, 3J = 6.9 Hz, 4H, CH2NH), 2.84 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.48 (t, 3J = 7.4 Hz, 
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4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.67 (m, 4H, COCH2CH2), 1.36 (m, 4H, 

(CH2)2); 
13C-NMR (CD3OD) δ (ppm): 177.35 (quat. C=O), 155.41 (quat. C=NH), 134.96 

(+, Im-2-C), 134.32 (quat. Im-4-C), 117.13 (+, Im-5-C), 41.54 (-, CH2NH), 37.64 (-, 

COCH2), 29.60 (-, COCH2CH2CH2), 27.97 (-, Im-4-CH2CH2), 25.22 (-, COCH2CH2), 

22.55 (-, Im-4-CH2); HRLSIMS: m/z for ([C22H36N10O2 + H]+) calcd. 473.3101, found 

473.3108; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. HPLC: k`= 1.35 (tR = 

7.81 min, column A), purity = 95 %; C22H36N10O2 · 4TFA (928.67). 

N1,N9-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}nonanediamide 

(4.17) 

The title compound was prepared from 4.17a (150 mg, 0.13 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.17 (10 mg, 10 %) as pale 

yellow oil. 1H-NMR (CD3OD) δ (ppm): 8.81 (s, 2H, Im-2-H), 7.37 (s, 2H, Im-5-H), 3.39 

(t, 3J = 7.2 Hz, 4H, CH2NH), 2.83 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.47 (t, 3J = 7.4 Hz, 

4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.37 (m, 4H, 

(CH2)3); 
13C-NMR (CD3OD) δ (ppm): 175.14 (quat. C=O), 155.40 (quat. C=NH), 134.97 

(+, Im-2-C), 134.33 (quat. Im-4-C), 117.13 (+, Im-5-C), 41.55 (-, CH2NH), 37.71 (-, 

COCH2), 29.81 (-, COCH2CH2CH2), 27.77 (-, Im-4-CH2CH2), 25.39 (-, COCH2CH2), 

22.56 (-, Im-4-CH2); HRLSIMS: m/z for ([C23H38N10O2 + H]+) calcd. 487.3257, found 

487.3246; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. HPLC: k`= 1.63 (tR = 

8.74 min, column A), purity = 90 %; C23H38N10O2 · 4TFA (942.69). 

N1,N16-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}hexadecane-

diamide (4.18) 

The title compound is was prepared from 4.18a (200 mg, 0.16 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.18 (50 mg, 30 %) as pale 

yellow oil. 1H-NMR (CD3OD) δ (ppm): 8.81 (d, 4J = 1.37 Hz, 2H, Im-2-H), 7.37 (s, 2H, 

Im-5-H), 3.38 (t, 3J = 6.861 Hz, 4H, CH2NH), 2.84 (t, 3J = 7.7 Hz, 4H, Im-4-CH2), 2.47 

(t, 3J = 7.4 Hz, 4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.65 (m, 4H, COCH2CH2), 

1.38–1.27 (m, 20H, (CH2)10); 
13C-NMR (CD3OD) δ (ppm): 177.43 (quat. C=O), 134.98 

(+, Im-2-C), 134.32 (quat. Im-4-C), 117.12 (+, Im-5-C), 41.56 (-, CH2NH), 37.79 (-, 

COCH2), 30.82 (-, CH2), 30.77 (-, CH2), 30.63 (-, CH2), 30.43 (-, COCH2CH2CH2CH2), 

30.06 (-, COCH2CH2CH2), 27.96 (-, Im-4-CH2CH2), 25.50 (-, COCH2CH2), 22.55 (-, Im-

4-CH2); HRLSIMS: m/z for ([C30H52N10O2 + H]+) calcd. 585.4353, found 585.4350; prep. 
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HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. HPLC: k`= 3.44 (tR = 14.75 min, 

column A), purity = 99 %; C30H52N10O2 · 4TFA (1040.88). 

N1,N22-Bis{[3-(1H-imidazol-4-yl)propylamino](amino)methylene}docosanediamide 

(4.19) 

The title compound is was prepared from 4.19a (150 mg, 0.12 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.19 (25 mg, 31 %) as yellow 

oil. 1H-NMR (CD3OD) δ (ppm): 8.82 (d, 4J = 1.10 Hz, 2H, Im-2-H), 7.37 (s, 2H, Im-5-

H), 3.39 (t, 3J = 6.861 Hz, 4H, CH2NH), 2.84 (t, 3J = 7.41 Hz, 4H, Im-4-CH2), 2.47 (t, 3J 

= 7.41 Hz, 4H, COCH2), 2.03 (m, 4H, Im-4-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.34–

1.26 (m, 32H, (CH2)16); 
13C-NMR (CD3OD, 400 MHz, HSQC, HMQC) δ (ppm): 177.32 

(quat. C=O), 135.00 (+, Im-2-C), 134.32 (quat. Im-4-C), 117.08 (+, Im-5-C), 41.60 (-, 

CH2NH), 37.79 (-, COCH2), 30.85 (-, CH2), 30.81 (-, CH2), 30.76 (-, CH2), 30.61 (-, 

CH2), 30.42 (-, COCH2CH2CH2CH2), 30.05 (-, COCH2CH2CH2), 27.93 (-, Im-4-

CH2CH2), 25.45 (-, COCH2CH2), 22.55 (-, Im-4-CH2); HRLSIMS: m/z for ([C36H64N10O2 

+ H]+) calcd. 669.5292, found 669.5291; prep. HPLC: MeCN/0.1% TFA/aq (10/90-

35/65); anal. HPLC: k`= 4.91 (tR = 19.61 min, column A), purity = 96 %; C36H64N10O2 · 

4TFA (1125.04). 

N1,N10-Bis{[3-(1H-1,2,4-triazol-5-yl)propylamino](amino)methylene}decanediamide 

(4.24) 

The title compound was prepared from 4.24a (300 mg, 0.31 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 4.24 (85 mg, 29 %) as pale 

yellow oil. 1H-NMR (CD3OD) δ (ppm): 8.54 (s, 2H, Triaz-3-H), 3.42 (t, 3J = 7.2 Hz, 4H, 

CH2NH), 2.94 (t, 3J = 7.4 Hz, 4H, Triaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 4H, COCH2), 2.11 

(m, 4H, Triaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.36 (m, 4H, (CH2)4); 
13C-NMR 

(CD3OD) δ (ppm): 177.22 (quat. C=O), 163.55 (quat. Triaz-5-C), 155.41 (quat. C=NH), 

138.37 (+, Triaz-3-C), 41.62 (-, CH2NH), 37.79 (-, COCH2), 30.19 (-, CH2), 29.96 (-, 

CH2), 26.90 (-, Triaz-5-CH2CH2), 25.41 (-, COCH2CH2), 24.11 (-, Triaz-5-CH2). 

HRLSIMS: m/z for ([C22H38N12O2 + H]+) calcd. 503.3319, found 503.3304; prep. HPLC: 

MeCN/0.1% TFA/aq (20/80-50/50); anal. HPLC: k`= 1.77 (tR = 7.41 min, column B), 

purity = 100 %; C22H38N12O2 · 4TFA (958.7). 
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4.5.1.5 Separation of the deprotected acylguanidines 4.20-4.22 

6-{[3-(1H-imidazol-4-yl)propylamino](amino)methyleneamino}-6-oxohexanoic acid 

(4.20) 

The title compound was separated as side-product during the purification of 4.14 by 

preparative HPLC. 4.20 (5 mg, 10 µmol) was obtained as white foam-like solid. 1H-NMR 

(CD3OD) δ (ppm): 8.78 (d, 4J = 1.1 Hz, 1H, Im-2-H), 7.36 (s, 1H, Im-5-H), 3.39 (t, 3J = 

6.9 Hz, 2H, CH2NH), 2.84 (t, 3J = 7.7 Hz, 2H, Im-4-CH2), 2.51 (t, 3J = 6.9, 2H, COCH2), 

2.33 (t, 3J = 6.9, 2H, CH2COOH), 2.03 (m, 2H, Im-4-CH2CH2), 1.67 (m, 4H, 

COCH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.02 (quat. C=O), 155.34 (quat. C=NH), 

135.04 (+, Im-2-C), 134.44 (quat. Im-4-C), 117.11 (+, Im-5-C), 41.62 (-, CH2NH), 37.37 

(-, COCH2), 34.47 (-, CH2COOH), 27.98 (-, Im-4-CH2CH2), 25.25 (-, COCH2CH2), 24.83 

(-, CH2CH2COOH), 22.63 (-, Im-4-CH2); HRLSIMS: m/z for ([C13H21N5O3 + H]+) calcd. 

296.1723, found 296.1731; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. 

HPLC: k`= 0.53 (tR = 4.09 min, column B), purity = 100 %; C13H21N5O3 · 2TFA (523.38). 

8-{[3-(1H-imidazol-4-yl)propylamino](amino)methyleneamino}-8-oxooctanoic 

acid(4.21)   

The title compound was separated as side-product during the purification of 4.16 by 

preparative HPLC. 4.21 (12 mg, 22 µmol) was obtained as white foam-like solid. 1H-

NMR (CD3OD) δ (ppm): 8.82 (d, 4J = 1.4 Hz, 1H, Im-2-H), 7.37 (s, 1H, Im-5-H), 3.39 (t, 
3J = 7.1 Hz, 2H, CH2NH), 2.84 (t, 3J = 7.7 Hz, 2H, Im-4-CH2), 2.48 (t, 3J = 7.4, 2H, 

COCH2), 2.29 (t, 3J = 7.1, 2H, CH2COOH), 2.03 (m, 2H, Im-4-CH2CH2), 1.64 (m, 4H, 

COCH2CH2), 1.38 (m, 4H, (CH2)2); 
13C-NMR (CD3OD) δ (ppm): 177.62 (quat. C=O), 

177.32 (quat. C=O), 149.12 (quat. C=NH), 135.01 (+, Im-2-C), 134.32 (quat. Im-4-C), 

117.13 (+, Im-5-C), 41.58 (-, CH2NH), 37.67 (-, COCH2), 34.81 (-, CH2COOH), 29.83 (-, 

CH2), 29.60 (-, CH2), 27.97 (-, Im-4-CH2CH2), 25.84 (-, COCH2CH2), 25.22 (-, 

CH2CH2COOH), 22.55 (-, Im-4-CH2); HRLSIMS: m/z for ([C15H25N5O3 + H]+) calcd. 

324.2036, found 324.2037; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. 

HPLC: k`= 1.42 (tR = 6.48 min, column B), purity = 91 %; C15H25N5O3 · 2TFA (551.43). 

22-{[3-(1H-imidazol-4-yl)propylamino](amino)methyleneamino}-22-oxodocosanoic 

acid (4.22) 

The title compound was separated as side-product during the purification of 4.19 by 

preparative HPLC. 4.22 (10 mg, 13 µmol) was obtained as white foam-like solid. 1H-
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NMR (CD3OD) δ (ppm): 8.80 (d, 4J = 1.1 Hz, 1H, Im-2-H), 7.36 (s, 1H, Im-5-H), 3.39 (t, 
3J = 7.1 Hz, 2H, CH2NH), 2.83 (t, 3J = 7.7 Hz, 2H, Im-4-CH2), 2.47 (t, 3J = 7.4, 2H, 

COCH2), 2.27 (t, 3J = 7.1, 2H, CH2COOH), 2.03 (m, 2H, Im-4-CH2CH2), 1.62 (m, 4H, 

COCH2CH2), 1.29 (m, 32H, (CH2)16); HRLSIMS: m/z for ([C29H53N5O3 + H]+) calcd. 

520.4223, found 520.4218; prep. HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. 

HPLC: k`= 4.39 (tR = 15.57 min, column B), purity = 97 %; C29H53N5O3 · 2TFA (747.8). 

4.5.2 Pharmacological methods 

4.5.2.1 Materials 

See section 3.5.2.1 

4.5.2.2 Determination of histamine receptor agonism and antagonism in 

GTPase and GTPγS binding assays  

Generation of recombinant baculoviruses, cell culture and membrane preparation 

Recombinant baculoviruses encoding human H1R, a fusion protein of the human H2R 

with GsαS, a fusion protein of the guinea pig H2R with GsαS, the human H3R, a fusion 

protein of the human H4R with RGS19 as well as four fusion proteins of mutant H2Rs 

with GsαS (hH2R-C17Y-A271D-GsαS, hH2R-C17Y-GsαS, hH2R-gpE2-GsαS, gpH2R-

hE2-GsαS) were prepared as described,30,32-33,58 using the BaculoGOLD transfection kit 

(BDPharmingen, San Diego, CA) according to the manufacturer’s instructions. 

Sf9 cells were cultured in 250 or 500 ml disposable Erlenmeyer flasks at 28 °C under 

rotation at 150 r.p.m in Insect-Xpress medium (Lonza, Velviers, Belgium) supplemented 

with 5 % (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 mg/ml gentamicin 

(Lonza, Walkersville, MD). Cells were maintained at a density of 0.5 – 6.0 x 106 cells/ml. 

After initial transfection, high-titer virus stocks were generated by two sequential virus 

amplifications. In the first amplification, cells were seeded at 2.0 x 106 cells/ml and 

infected with a 1:100 dilution of the supernatant from the initial transfection. Cells were 

cultured for 7 days, resulting in the lysis of the entire cell population. The supernatant 

fluid of this infection was harvested and stored under light protection at 4 °C. In a second 

amplification, cells were seeded at 3.0 x 106 cells/ml and infected with a 1:20 dilution of 

the supernatant fluid from the first amplification. Cells were cultured for 48 h, and the 
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supernatant fluid was harvested. After a 48 h culture period, the majority of cells showed 

signs of infections (e.g. altered morphology, viral inclusion bodies), whereas most of the 

cells were still intact. The supernatant from the second amplification was stored under 

light protection at 4 °C and used as routine virus stock for membrane preparations. For 

membrane preparation, cells were sedimented by centrifugation (1000 rpm, 5 min, rt) and 

suspended in fresh medium at 3.0 x 106 cells/ml. Cells were infected with 1:100 dilutions 

of high-titer baculovirus stocks encoding the various histamine receptors, histamine 

receptor fusion proteins, G-protein subunits and RGS proteins. Cells were cultured for 48 

h before membrane preparation. Sf9 membranes were prepared as described,59 using 1 

mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 10 µg/ml benzamidine and 10 µg/ml 

leupeptin as protease inhibitors. Membranes were suspended in binding buffer (12.5 mM 

MgCl2, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4) and stored at -80 °C until use. Protein 

concentrations were determined using the DC protein assay kit (Bio-Rad, München, 

Germany). 

Steady-state GTPase activity assay with Sf9 insect cell membranes expressing 

histamine H1-H4 receptors and H2R mutants 

Membranes were thawed, sedimented and resuspended in 10 mM Tris/HCl, pH 7.4. In the 

case of the H1R and H2R, Sf9 membranes expressing either H1R isoforms plus RGS4 or 

H2R-GsαS fusion proteins, respectively, were used.30,38 H3R-regulated GTP hydrolysis 

was determined with membranes co-expressing human H3R, mammalian Gαi2, Gβ1γ2 and 

RGS4. Human H4R activity was measured with membranes co-expressing an H4R-

RGS19 fusion protein with Gαi2 and Gβ1γ2. Activity on H2R mutants was measured with 

hH2R-C17Y-A271D-GsαS, hH2R-C17Y-GsαS, hH2R-gpE2-GsαS and gpH2R-hE2-GsαS 

fusion proteins, respectively.32-33 Assay tubes contained Sf9 membranes (10-20 µg of 

protein/tube), MgCl2 (H1R, H2R: 1.0 mM; H3R, H4R: 5.0 mM), 100 µM EDTA, 100 µM 

ATP, 100 nM GTP, 100 µM adenylyl imidodiphosphate, 5 mM creatine phosphate, 40 µg 

creatine kinase and 0.2 % (w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4, as 

well as ligands at various concentrations. In H4R assays, NaCl (final concentration of 100 

mM) was included. Reaction mixtures (80 µl) were incubated for 2 min at 25 °C before 

the addition of 20 µl [γ-32P]GTP (0.1 µCi/tube) or [γ-33P]GTP (0.05 µCi/tube). Reactions 

were run for 20 min at 25 °C and terminated by the addition of 900 µl of slurry consisting 

of 5% (w/v) activated charcoal suspended in 50 mM NaH2PO4, pH 2.0. Charcoal absorbs 

nucleotides but not Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 min at 
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room temperature at 13.000 g. 600 µl of the supernatant fluid were removed and 32Pi or 
33Pi was determined by Cerenkov or liquid scintillation counting, respectively. Enzyme 

activities were corrected for spontaneous degradation of [γ-32P]GTP or [γ-33P]GTP, 

respectively, determined in tubes containing all components described above, plus a high 

concentration of unlabeled GTP (1 mM) to prevent enzymatic hydrolysis of the labelled 

nucleotides  in the  presence of Sf9 membranes. Spontaneous [γ-32P]GTP or [γ-33P]GTP 

hydrolysis was <1 % of the total amount of radioactivity added. The experimental 

conditions chosen ensured that not more than 10 % of the total amount of added [γ-
32P]GTP and [γ-33P]GTP was converted to 32Pi and 33Pi, respectively. All experimental 

data were analyzed by non-linear regression with the Prism 5 program (GraphPad 

Software, San Diego, CA).  

[35S]GTPγS Binding Assay 

[35S]GTPγS Binding Assays60-61 were performed as previously described for the H2R
58,62 

using Sf9 insect cell membranes expressing the gpH2R-GsαS fusion protein. The 

respective membranes were thawed and sedimented by a 10 min centrifugation at 4 °C 

and 13,000g. Membranes were resuspended in binding buffer (12.5 mM MgCl2, 1 mM 

EDTA, and 75 mM Tris/HCl, pH 7.4). Each assay tube contained Sf9 membranes (15 - 30 

µg protein/tube), 1 µM GDP, 0.05% (w/v) bovine serum albumin, 0.2 nM [35S]GTPγS 

and the investigated ligands at various concentrations in binding buffer (total volume 250 

µl). Incubations were conducted for 90 min at 25 °C and shaking at 250 rpm. Bound 

[35S]GTPγS was separated from free [35S]GTPγS by filtration through GF/C filters, 

followed by three washes with 2 ml of binding buffer (4 °C) using a Brandel Harvester. 

Filter-bound radioactivity was determined after an equilibration phase of at least 12 h by 

liquid scintillation counting. The experimental conditions chosen ensured that no more 

than 10% of the total amount of [35S]GTPγS added was bound to filters. Non-specific 

binding was determined in the presence of 10 µM unlabeled GTPγS. 

4.5.2.3 Histamine H2 receptor assay on isolated guinea pig right atrium 

See section 3.5.2.3 
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Chapter 5 

Heterobivalent motifs and variations of the 

spacer in histamine H2 receptor agonists 

 

5.1 Introduction 

The term “bivalent ligand” describes molecules containing two sets of pharmacophoric 

entities linked through a spacer. Thereby, the two pharmacophoric moieties can be 

identical to form homobivalent compounds (twin compounds) or in case of heterobivalent 

compounds consist of two different recognition units.1-3 In the broader sense bivalent 

ligands can be divided in molecules containing two sets of pharmacophoric groups or a 

single pharmacophore connected to a non-pharmacophoric recognition unit.4-5 Over the 

past few decades, bivalent ligands have been developed for a variety of G-protein coupled 

receptors (GPCRs), including opioid,5-6 serotonin,7-9 dopamine,9 adrenergic10 and 

muscarinergic receptors.11-13 Previously considered as monomeric polypeptides, GPCRs 

have been shown to exist and function as dimers or oligomers,14-15 yet many of the most 

potent bivalent ligands have relatively short spacers, suggesting that the compounds 

interact with neighboring binding sites on a single receptor protomer.8,16-17   

Among the different tools offered to medicinal chemists to design potent and selective 

GPCR agonists and antagonists, the bivalent ligand approach has proven to be valuable to 

improve potency, selectivity and efficacy as well as the pharmacokinetic profile of 

compounds.18 Likewise, the application of the bivalent ligand approach to acylguanidine-

type histamine H2R agonists described in chapter 4 resulted in highly potent and selective 

histamine H2R agonists. After the successful preparation of symmetrical bivalent 

hetarylpropylguanidines with alkyl spacers of various lengths (6-27 Å), the present study 

was focused on the chemical nature of the spacer as well as on unsymmetrical bivalent 
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ligands bearing two different sets of pharmacophoric groups. Besides promising 

applications to improve the pharmacological profile of H2R agonists, bivalent ligands 

were synthesized as pharmacological tools with the hope of expanding our knowledge of 

the structure-activity relationships (SAR) of bivalent acylguanidine-type ligands and of 

the topology of the putative accessory binding site at histamine H2 receptors.  

 

Figure 5.1. Overview of the structural modifications of bivalent acylguanidine-type H2R agonists. R: H, 

CH3; R1: alkyl, arylalkyl, hetarylpropyl, aminoalkyl; R2: 2-amino-4-methylthiazolylpropyl, (piperidino)-

methylphenoxypropylamine; spacer: alkyl chains containing disulfide, ether, amide or phenylene groups, 

branched linkers. 

 

5.2 Chemistry 

The title compounds were preferentially synthesized according to the synthetic routes 

described in chapters 3 and 4. The synthetic strategies aimed at compounds of maximal 

purity on the low mg scale rather than at the optimization of yields and synthetic 

pathways.  

Synthesis of unsymmetrical bivalent ligands 

The synthesis of unsymmetrical bivalent acylguanidines with two different pharmaco-

phoric moieties (5.26-5.42) started with the preparation of 10-((tert-butoxycarbonyl-

amino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propylamino}amino-

methylene)-10-oxodecanoic acid (5.2). To reduce the formation of by-products, one 

carboxylic function of the dicarboxylic acid was capped with a benzyl group, and the 

resulting 10-benzyloxy-10-oxodecanoic acid (5.1) was coupled to the Boc-protected 3-(2-
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amino-4-methylthiazol-5-yl)propylguanidine building block 3.17. The hydrogenolysis of 

the benzyl ester group resulted in the key intermediate 5.2. 

Scheme 5.1. Synthesis of 10-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}aminomethylene)-10-oxodecanoic acid (5.2). Reagents and conditions: (i) 

BnOH (1 eq), DCC (1.2 eq), DMAP (cat.), THF/abs, 48 h, rt; (ii) EDAC (1 eq), HOBt (1 eq), DIEA (1 eq), 

DCM/abs, 16 h, rt; (iii) H2, Pd/C (10 %), MeOH, 1 h, rt. 

Guanidinylation of commercially available amines with the isothiourea derivative 3.3 in 

the presence of HgCl2, followed by the deprotection of the Cbz group by a reduction step, 

classically carried out by hydrogenation over Pd/C catalyst, afforded the mono Boc-

protected guanidine building blocks 5.14-5.24. In addition, the Boc-protected (3-

cyclohexylpropyl)guanidine 5.25 was prepared from the corresponding (3-

phenylpropyl)guanidine 5.14 by hydrogenation of the phenyl ring over Rh/Al2O3 catalyst 

in MeOH.19 

 
Compd. R1 R2 n Compd. R1 R2 n Compd. R1 R2 n 

5.3, 5.14 H Ph 2 5.7, 5.18 (R)-CH3 Ph 0 5.11, 5.22 H CH3 1 

5.4, 5.15 Ph Ph 2 5.8, 5.19 H 4-OMe-Ph 0 5.12, 5.23 CH3 CH3 1 

5.5, 5.16 H Ph 0 5.9, 5.20 H 3,4-OMe-Ph 0 5.13, 5.24 H NHBoc 2 

5.6, 5.17 (S)-CH3 Ph 0 5.10, 5.21 H H 0     

Scheme 5.2. General procedure for the preparation of Boc-protected guanidines 5.14-5.25. Reagents and 

conditions: (i) 3.3 (1 eq), HgCl2 (2 eq), NEt3 (3 eq), DCM/abs, 48 h, rt; (ii) H2, Pd/C (10 %), MeOH/THF 

(1:1), 8 bar, 3-5 d, rt; (iii) 5.14 (1 eq), H2, Rh/Al2O3 (cat.), MeOH, 7 bar, 4 d, rt.  

To obtain the designated unsymmetrical bivalent ligands 5.26-5.42, the Boc-protected 

guanidines 3.18, 4.8 and 5.14-5.25, the unprotected guanidines 4.2320 and 3-phenylbutan-

1-ylguanidine,21 and the tert-butyl 5-(3-aminopropyl)-4-methylthiazol-2-ylcarbamate 

3.13, respectively, were coupled to 5.2 by N-acylation using EDAC, HOBt and DIEA as 

standard coupling reagents to yield the protected compounds 5.26a-5.42a. Finally, 
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removal of the protecting groups under acidic conditions gave the unsymmetrical 

acylguanidines 5.26-5.42 (Scheme 5.3), which were purified by preparative RP-HPLC. In 

addition, the synthesis of the unsymmetrical compound 5.43, containing a docosanedioyl 

spacer was achieved by coupling 4.22 with 3.17 under similar conditions. 

 

Compd. R1 R2 n Compd. R1 R2 n 

5.26 H 2-aminothiazol-5-yl 2 5.34 (S)-CH3 Ph 0 

5.27 H imidazol-4-yl 2 5.35 (R)-CH3 Ph 0 

5.28 H 1,2,4-triazol-5-yl 2 5.36 H 4-OMe-Ph 0 

5.29 H Ph 2 5.37 H 3,4-OMe-Ph 0 

5.30 CH3 Ph 2 5.38 H H 0 

5.31 Ph Ph 2 5.39 H CH3 1 

5.32 H cHex 2 5.40 CH3 CH3 1 

5.33 H Ph 0 5.41 H NH2 2 

Scheme 5.3. General procedure for the preparation of unsymmetrical bivalent acylguanidines 5.26-5.43. 

Reagents and conditions: (i) for 5.26, 5.27 and 5.29-5.43: 3.13, 3.17, 3.18, 4.8, 3-phenylbutan-1-

ylguanidine21 or 5.14-5.25 (1 eq), EDAC (1 eq), HOBt (1 eq), DIEA (1 eq), DCM/abs, 16 h, rt; for 5.28: 

4.2320 (1 eq), CDI (1.2 eq), NaH (60 % dispersion in mineral oil) (2 eq), DMF, 5 h, rt; (ii) 20 % TFA, 

DCM/abs, 3-5 h, rt. 

Structural modifications of the spacer 

As depicted in Scheme 5.4, various structural moieties including ether, amide, phenylene 

and disulfide groups as well as N,N-bis(2-aminoethyl)ethane-1,2-diamine (branched 

linkers) were incorporated into the spacer. By analogy with the procedures applied to the 

preparation of homobivalent acylguanidines (see chapter 4), coupling of two equivalents 
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of Boc-protected aminothiazolylpropylguanidines 3.17 or 3.18 with one equivalent of the 

pertinent dicarboxylic acid, followed by deprotection, was feasible to synthesize a small 

library of symmetrical acylguanidine-type H2R agonists with spacers of various chemical 

compositions. Whereas most of the spacers were commercially available, long spacers 

were individually synthesized.22 

 

Compd. X na R Compd. X na R 

5.44 

 

4 CH3 5.47 

 

8 CH3 

5.45 

 

6 CH3 5.48 

 

10 CH3 

5.46 
 

3 CH3 

5.49 
(n=1) 

 

8 H 

5.50 
(n=3) 

12 H 

Compd. X na R 

5.51 

 

24 CH3 

5.52 
 

9 CH3 

5.53 
(n=2) 

 

13 CH3 

5.54 
(n=3) 

15 CH3 

Scheme 5.4. General procedure for the preparation of bivalent acylguanidines 5.44-5.54. Reagents and 

conditions: (i) for 5.44-5.52: pertinent dicarboxylic acid (1 eq), 3.17 or 3.18 (2 eq), EDAC (2 eq), HOBt (2 

eq), DIEA (2 eq), DCM/abs or DMF, 16 h, rt; for 5.53 and 5.54: pertinent dicarboxylic acid22 (1 eq), 3.17 (2 

eq), EDAC (2.1 eq), DMAP (cat.), DIEA (2.1 eq), DMF, 15 h, rt; (ii) 20 % TFA, DCM/abs, 3-5 h, rt. a n = 

number of atoms between the two carbonyl groups. 
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Compound 5.55, a prototypical ligand containing three 3-(2-amino-4-methylthiazol-5-yl)-

propylguanidine moieties was synthesized using three equivalents of the guanidine 

building block 3.17 and the coupling reagents, respectively, and one equivalent of 

benzene-1,3,5-tricarboxylic acid (Scheme 5.5). Finally, removal of the protecting groups 

under acidic conditions gave the “trivalent” compound, which was purified by preparative 

RP-HPLC.

Scheme 5.5. Synthesis of the trivalent acylguanidine 5.55. Reagents and conditions: (i) Benzene-1,3,5-

tricarboxylic acid (0.33 eq), EDAC (1 eq), HOBt (1 eq), DIEA (1 eq), DCM/abs, 24 h, rt; (ii) 20 % TFA, 

DCM/abs, 5 h, rt. 

Labeling of bivalent ligands 5.41 and 5.54 

The free amino groups in compounds 5.41 and 5.54 were propionylated by stirring with 

succinimidyl propionate for a few hours at room temperature affording the compounds 

5.56 and 5.57. These propionamides were prepared and pharmacologically investigated in 

“cold” form with respect to the optional synthesis of the corresponding bivalent 

radioligands. The radioactive form of the used succinimidyl ester is a standard reagent for 

tritium labeling at the last synthetic step. In addition, the fluorescent compound 5.58 was 

synthesized from 5.54 and the fluorescent pyrylium dye py-1 (for chemical structure see 

chapter 3, Scheme 3.5) by ring transformation within one hour at room temperature. 
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Scheme 5.6. Synthesis of compounds 5.56-5.58. Reactions and conditions: (i) 5.41 or 5.54 (1 eq), 

succinimidyl propionate (0.8 eq), NEt3 (3 eq), MeCN, 4-5 h, rt; (ii) 5.54 (2 eq), py-123 (1 eq), NEt3 (7.5 eq), 

MeCN, DMF, 1 h, rt. 

Synthesis of heterobivalent compounds by combination of H2R agonistic and 

antagonistic moieties  

3-[3-(Piperidin-1-ylmethyl)phenoxy]propan-1-amine 5.5924 was converted into the 

amides 5.60 and 5.61 by acylation with 5.1 and hexadecanedioic acid, respectively, using 

EDAC, HOBt and DIEA as coupling reagents. Removal of the benzyl protecting group 

(5.60) resulted in a by-product lacking the piperidino group. This cleavage product could 

not be separated until purification by flash chromatography after the next coupling step. 

According to Scheme 5.7, coupling of the dicarboxylic acid mono-amides 3.60 and 3.61 

with 3.17 and coupling of the recently synthesized squaramide derivative 5.6225 with 5.2 

yielded the Boc-protected hybrid molecules 5.63a-5.66a. The protecting groups were 

removed in a few hours by treating with TFA in DCM (TLC control) to obtain the 

heterobivalent acylguanidines 5.63-5.66, which were purified by preparative RP-HPLC. 
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Compd. n Compd. n X R Compd. n X R 

5.60 8 5.63 8 NH Piperidine 

5.66 8 

 

Piperidine 
5.61 14 5.64 14 NH Piperidine 

  5.65 8 NH H 

Scheme 5.7. General procedure for the preparation of bivalent acylguanidines 5.63-5.66. Reagents and 

conditions: (i) 5.1, hexadecanedioic acid or 3.17 (1 eq), EDAC (1 eq), HOBt (1 eq), DIEA (1 eq), 

DCM/abs, 16 h, rt; (ii) for 5.60: H2, Pd/C (10 %), MeOH, 3 h, rt; (iii) 5.6225 (1 eq), CDI (1.6 eq), 5.2 (1.5 

eq), THF/abs, DMF, 14 h, rt; (iv) 20 % TFA, DCM/abs, 3-5 h, rt. a  Compounds 5.59 and 5.62 were 

provided by Dr. D. Erdmann. For experimental data see Ref.25 

 

5.3 Pharmacological results and discussion 

All synthesized compounds were examined for H2R agonism in a membrane steady-state 

GTPase assay at human (h) and guinea pig (gp) H2R-GsαS fusion proteins expressed in 

Sf9 insect cells (Tables 5.1-5.3).26 With respect to information about the molecular 

determinants of different agonist potencies at human and guinea pig H2R orthologs, 

selected bivalent ligands were tested on H2R mutants, in which Cys-17 and Ala-271 in the 

hH2R were replaced by Tyr-17 and Asp-271 as in the gpH2R and four different amino 

acids in the e2 loop were reciprocally mutated (hH2R-C17Y-A271D-GsαS, hH2R-C17Y-

GsαS, hH2R-gpE2-GsαS, gpH2R-hE2-GsαS) (Table 5.4).26-28 Moreover, to verify the 

histamine receptor subtype selectivity, representative compounds were investigated in 

GTPase assays using recombinant human histamine H1, H3 and H4 receptors (Table 5.5). 
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5.3.1 Histamine H2 receptor agonism at human and guinea pig H2R 

fusion proteins in the GTPase assay 

Unsymmetrical bivalent ligands (Table 5.1) 

To elaborate the role and interaction site of the second pharmacophoric moiety, 

unsymmetrical compounds bearing two different acylguanidine moieties were 

investigated. Based on the highly potent N1,N10-bis{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (4.27), structural modifications were 

focused on the eastern part of the molecule. 

Except for compound 5.27, which showed full agonism at gpH2R-GsαS, all synthesized 

unsymmetrical bivalent “bis-acylguanidines” (5.26-5.41 and 5.56) proved to be moderate 

to potent partial agonists at hH2R-GsαS and gpH2R-GsαS fusion proteins. The most potent 

compounds of this series surpassed the potency of histamine about 170 and 2500 times at 

hH2R-GsαS and gpH2R-GsαS, respectively. In agreement with results obtained for 

symmetrical compounds (cf. chapter 4), the removal of one 4-methyl group at the 

aminothiazole ring (5.26 vs. 4.27) or the exchange of the 2-amino-4-methylthiazole by an 

imidazole ring (5.27 vs. 4.27) led to slightly decreased potencies, but increased efficacies 

at both receptors. Interestingly, the potencies of 5.26 and 5.27 at both receptors were 

always between the potencies of the symmetrical analogs (compare 5.26 with 4.11 and 

4.27, 5.27 with 4.27 and 4.31, Fig. 5.2). In contrast, the efficacies were close to the high 

efficacies of the corresponding “bis-imidazole” 4.31 and “bis-aminothiazole” 4.11, 

respectively (cf. Figure 5.2). This also holds for 5.28, the combination of a 2-amino-4-

methylthiazolylpropylguanidine with the weakly potent 1,2,4-triazolylpropylguanidine 

(compare 5.28 with 4.24 and 4.27). In conclusion, both heterocycles of the unsymmetrical 

compounds nearly additively contribute to potency, whereas efficacy seems to be 

determined by the “more efficacious moiety”. 
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Figure 5.2: Histamine H2 receptor agonism of the unsymmetrical bivalent ligand 5.26 compared to the 

symmetrical bivalent ligands 4.11 and 4.27 at membranes expressing hH2R-GsαS (A) and gpH2R-GsαS (B) 

and H2R agonism of the unsymmetrical bivalent ligand 5.27 compared to the symmetrical bivalent ligands 

4.27 and 4.31 at hH2R-GsαS (C) and gpH2R-GsαS (D). Data of representative experiments performed in 

duplicate, expressed as percentage change in GTPase activity relative to the maximum effect induced by 

histamine (100 µM). 

Replacing one hetaryl group of 4.27 with a phenyl ring (5.29) resulted in a drop of 

potency by one to almost two orders of magnitude, whereas efficacy was not affected. 

Whereas methyl substitution at γ-position of the side chain was well tolerated (5.29 vs. 

5.30), an additional phenyl ring, resulting in a space filling diphenylpropyl residue (5.31), 

further decreased the potency at both receptors. As a result of replacing phenyl with 

cyclohexyl (5.29 vs. 5.32), agonistic potency was further decreased by 3- and 14-fold at 

hH2R-GsαS and gpH2R-GsαS, respectively. Shortening the carbon chain between the 

guanidino group and the phenyl ring from three to one methylene groups (5.33) resulted 

in moderately increased potency. The methyl-branched analogs of 5.33 (5.34, 5.35) are 
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chiral compounds. Very recently, monovalent chiral NG-acylated hetarylpropylguanidines 

did not show significant stereoselectivity.29 This also holds for bivalent acylguanidines 

(3.34 vs. 3.35): only marginally higher potencies (eudismic ratio of about 2) resided in the 

(S)-enantiomer. Moreover, mono- (5.36) or di- (5.37) substitution of the phenyl ring with 

electron releasing methoxy groups had no significant effect on the agonistic potency. 

Interestingly, efficacies were not affected by these minor structural variations (compare 

5.29-5.37). Thus, in agreement with the results obtained for 5.26-5.28, both acylguanidine 

moieties of the unsymmetrical compounds contribute to potency, whereas efficacy seems 

to be determined by the more efficacious moiety. 

Replacement of one (het)arylalkylguanidine with small alkylguanidine moieties afforded 

rather potent H2R agonists with EC50 values in the low nanomolar range at both hH2R-

GsαS and gpH2R-GsαS. Herein, methyl- (5.38) and isobutyl- (5.40) were superior to the 

corresponding propylguanidine (5.39). The introduction of an additional primary amino 

group at the propyl chain led to slightly increased potencies and efficacies (5.39 vs. 5.41). 

Notably, the free amino group allowed for the attachment of radio labels. The conversion 

of the amine (5.41) to the propionamide 5.56 resulted in moderately (up to a factor of 2.7) 

decreased potencies at both receptors. However, the “cold” potential bivalent radioligand 

5.56 revealed EC50 values of 56 nM and 9.5 nM at hH2R-GsαS and gpH2R-GsαS, 

respectively. Presumably, the affinity of this compound is sufficiently high to use the 

corresponding “hot” form in investigations on the ligand-receptor stoichiometry 

compared to monomeric radioligands. 

Replacing the second basic acylguanidino group of 4.27 with a simple amide group 

caused a 7- and even 60-fold decrease in potency at hH2R-GsαS and gpH2R-GsαS, 

respectively (4.27 vs. 5.42), corroborating the importance of a basic centre at an 

appropriate distance to the pharmacophore to obtain highly potent bivalent H2R agonists. 

This is in accordance with the results obtained for monovalent aminothiazolylpropyl-

guanidines containing primary amino groups in the alkanoyl side chain (cf. chapter 3).  

Furthermore, in agreement with the results obtained for symmetrical compounds, linkage 

of a 3-(2-amino-4-methylthiazolyl)propylguanidine with an imidazolylpropylguanidine 

by a very flexible 20-membered carbon chain, a length predicted to be optimal to bridge 

two neighboring receptors, resulted in a drastic decrease in potency at the gpH2R-GsαS 

and a complete loss of agonistic activity at the hH2R-GsαS (compare 5.43 with 4.19 and 
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4.30). To some extent this may depend on an entropic cost caused by fixing the highly 

flexible molecule on the receptor surface, as the Gibbs free energy released upon ligand 

binding results from enthalpic and entropic contributions (∆G = ∆H–T∆S). However, 

these results argue against the occupation of two neighboring receptors. 

Table 5.1. Agonist potencies and efficacies of unsymmetrical acylguanidines and reference compounds at 

hH2R-GsαS and gpH2R-GsαS fusion proteins in the steady-state GTPase assay.a 

 

No. R 

hH2R-GsαS gpH2R-GsαS 
EC50 (hH2R-

GsαS) / EC50 

(gpH2R-

GsαS) 

pEC50 

± SEM 

Emax ± 

SEM 
Potrel 

pEC50 

± SEM 

Emax ± 

SEM 
Potrel 

His26 - 
5.90 

± 0.09 
1.00 1.0 

5.92 

± 0.09 
1.00 1.0 1.05 

4.11b - 
7.67  

± 0.07 

0.75  

± 0.03 
58.9 

8.30  

± 0.22 

0.94  

± 0.01 
239.9 4.27 

4.27 

 

8.11 

± 0.25 

0.53 

± 0.04 
162.2 

9.41 

± 0.15 

0.79 

± 0.07 
3,090 19.90 

4.31b - 
8.21  

± 0.07 

0.81  

± 0.02 
204.2 

8.94  

± 0.16 

0.98  

± 0.05 
1,047 5.36 

5.26 

 

7.86 

± 0.11 

0.75 

± 0.04 
91.2 

8.46 

± 0.30 

0.89 

± 0.04 
346.7 3.98 

5.27 
 

8.12 

± 0.04 

0.76 

± 0.05 
166.0 

9.29 

± 0.10 

1.01 

± 0.03 
2,344 14.79 

5.28 
 

7.40 

± 0.20 

0.50 

± 0.04 
31.6 

7.90 

± 0.08 

0.88 

± 0.05 
95.5 3.16 

5.29 
 

7.16 

± 0.20 

0.44 

± 0.05 
18.2 

7.69 

± 0.25 

0.76 

± 0.06 
58.9 3.39 

5.30 

 

7.19 

± 0.11 

0.44 

± 0.02 
19.5 

7.72 

± 0.03 

0.82 

± 0.06 
63.1 3.39 

5.31 

 

6.81 

± 0.11 

0.45 

± 0.11 
8.1 

7.32 

± 0.12 

0.77 

± 0.05 
25.1 3.24 
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Table 5.1. (continued)        

5.32 
 

6.72 

± 0.16 

0.32 

± 0.02 
6.6 

6.55 

± 0.01 

0.77 

± 0.00 
4.3 0.68 

5.33 
 

7.66 

± 0.06 

0.46 

± 0.03 
57.5 

8.05 

± 0.05 

0.79 

± 0.04 
134.9 2.45 

5.34 
 

7.68 

± 0.10 

0.45 

± 0.02 
60.3 

8.13 

± 0.26 

0.74 

± 0.07 
162.2 2.82 

5.35 

 

7.38 

± 0.06 

0.39 

± 0.02 
30.2 

7.77 

± 0.32 

0.76 

± 0.01 
70.8 2.45 

5.36 
 

7.56 

± 0.04 

0.45 

± 0.03 
45.7 

7.79 

± 0.08 

0.85 

± 0.02 
74.1 1.70 

5.37 
 

7.56 

± 0.11 

0.33 

± 0.01 
45.7 

7.92 

± 0.16 

0.71 

± 0.03 
100.0 2.29 

5.38  
7.91 

± 0.09 

0.62 

± 0.03 
102.3 

8.70 

± 0.05 

0.89 

± 0.04 
602.6 6.17 

5.39 
 

7.50 

± 0.04 

0.53 

± 0.02 
39.8 

8.03 

± 0.21 

0.86 

± 0.04 
128.8 3.39 

5.40 
 

7.96 

± 0.14 

0.51 

± 0.02 
114.8 

8.67 

± 0.02 

0.87 

± 0.11 
562.3 5.13 

5.41  
7.68 

± 0.11 

0.58 

± 0.03 
60.3 

8.15 

± 0.10 

0.94 

± 0.04 
169.8 2.95 

5.56 

 

7.25 

± 0.04 

0.68 

± 0.11 
22.4 

8.02 

± 0.01 

0.91 

± 0.01 
125.9 5.89 

5.42 - 
7.25 

± 0.21 

0.82 

± 0.07 
22.4 

7.62 

± 0.08 

0.96 

± 0.03 
50.1 2.34 

5.43c - (- - -)d 6.54 

± 0.04 

0.19 

± 0.07 
4.2 - 

a Steady-state GTPase activity in Sf9 membranes expressing hH2R-GsαS and gpH2R-GsαS was determined as 
described in Pharmacological methods. Reaction mixtures contained ligands at concentrations from 0.1 nM 
to 10 µM as appropriate to generate saturated concentration-response curves. Data were analyzed by 
nonlinear regression and were best fit to sigmoidal concentration-response curves. Typical basal GTPase 
activities ranged between ≈ 0.5 and 2.5 pmol.mg-1.min-1 and activities stimulated by histamine (100 µM) 
ranged between ≈ 2 and 13 pmol.mg-1.min-1. The efficacy (Emax) of histamine was determined by nonlinear 
regression and was set to 1.0. The Emax values of other agonists were referred to this value. Data shown are 
means ± SEM of 2-5 independent experiments performed in duplicate. The relative potency of histamine 
was set to 1.0, and the potencies of other agonists were referred to this value. b For chemical structure see 
chapter 4. c For chemical structure see Scheme 5.3. d No agonistic activity. 
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Structural modifications of the spacer (Table 5.2) 

The chemical structure of the spacer plays a critical role with respect to the spatial 

orientation of the pharmacophoric groups at the receptor of interest. In addition, the linker 

significantly contributes to lipophilicity and flexibility and affects the overall profile of 

bivalent ligands including drug-like properties and interactions with off-targets. It is not 

possible to draw up generally valid rules for the prediction of the best suited spacer. To 

date, most bivalent ligand approaches are based on the use of flexible linkers with well-

balanced hydrophilic and lipophilic properties.2,30-31 Consequently, after the investigation 

of homobivalent ligands with typically used hydrophobic methylenic linkers (cf. chapter 

4), we incorporated different functional groups such as disulfide, ether and amide, 

phenylene groups as well as branched linkers, to evaluate bivalent acylguanidines with 

increased hydrophilicity as well as conformationally more constrained compounds. 

With exception of compounds 5.49 and 5.50, which showed moderate potencies, all 

structural modifications of the spacer (5.44-5.54) considerably decreased the agonistic 

potency at hH2R-GsαS (pEC50 ≤ 6.8) and gpH2R-GsαS (pEC50 ≤ 7.7), respectively, 

compared to the analogs containing methylenic linkers. As expected,31 potencies and 

efficacies at the H2Rs dramatically decreased in case of the more constrained compounds 

5.44-5.47, emphasizing the importance of spacer flexibility. It should be taken into 

account that purely methylenic spacers possibly impair solubility and tend to enhance 

binding to membranes. Therefore, incorporation of hydrophilic groups seemed reasonable 

to significantly reduce the logD[7.4] values of the compounds (cf. Table 8.2). Interestingly, 

5.48-5.54 with inserted hydrophilic units showed decreased potencies, whereas efficacies 

were significantly increased at both receptors. Compounds 5.48, 5.49 and 5.52 were full 

agonists at the gpH2R-GsαS. Actually, in contrast to compounds with a 20-membered 

alkanediyl spacer (4.13, 4.19, 4.30, 5.43), which revealed antagonistic activities at the 

hH2R-GsαS, elongation of the hydrophilic spacer up to 24 atoms resulted in compounds 

with retained weak H2R agonistic activity (5.51: hH2R-GsαS, pEC50 = 6.20, Emax = 0.45). 

Notably, in bivalent ligands with inserted disulfide group, a 12-membered chain 

connecting the carbonyl groups (5.50) turned out to be superior to the (supposedly 

optimal) 8-membered chain (5.49). The corresponding monovalent analog 3.56 was about 

10-fold less potent, whereas the acetic acid thioester of 3.65 (3.55) was equipotent with 

5.50. 
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Table 5.2. Agonistic potencies and efficacies of bivalent aminothiazolylpropylguanidines 5.44-5.55 and 

reference compounds at hH2R-GsαS and gpH2R-GsαS fusion proteins in the steady-state GTPase assay.a 

 

No. X 

hH2R-GsαS gpH2R-GsαS EC50 

hH2R / 

EC50 

gpH2R 

pEC50 

± SEM 

Emax ± 

SEM 

Potrel 
pEC50 

± SEM 

Emax ± 

SEM 
Potrel 

His26 - 
5.90  

± 0.09 
1.00 1.0 

5.92  

± 0.09 
1.00 1.0 1.05 

4.25 (CH2)4 

7.24  

± 0.22 

0.68  

± 0.03 
21.9 

8.59  

± 0.30 

0.90 

± 0.05 
467.7 22.39 

4.27 (CH2)8 

8.11 

± 0.25 

0.53  

± 0.04 
162.2 

9.41  

± 0.15 

0.79  

± 0.07 
3090.3 19.90 

4.28 (CH2)10 

7.78  

± 0.17 

0.46  

± 0.04 
75.9 

8.57  

± 0.32 

0.66  

± 0.05 
446.7 6.17 

4.29 (CH2)14 

7.59  

± 0.22 

0.12  

± 0.02 
49.0 

7.46  

± 0.01 

0.51  

± 0.02 
102.3 0.78 

4.30 (CH2)20 (- - -)b 6.48  

± 0.37 

0.58  

± 0.02 
3.6 - 

5.44 

 

5.46  

± 0.17 

0.13  

± 0.01 
0.4 

6.08  

± 0.08 

0.73  

± 0.03 
1.5 4.17 

5.45 
 

6.62  

± 0.23 

0.79  

± 0.07 
5.3 

7.86  

± 0.06 

0.83  

± 0.17 
87.1 17.38 

5.46 
 

6.82  

± 0.01 

0.69  

± 0.11 
8.3 

7.22  

± 0.21 

0.47  

± 0.02 
12.0 2.51 

5.47 
 

6.78  

± 0.06 

0.16  

± 0.02 
7.6 

7.07  

± 0.12 

0.63  

± 0.03 
14.1 1.95 

5.48 

 

6.25  

± 0.18 

0.64  

± 0.04 
2.2 

6.55  

± 0.10 

1.05  

± 0.10 
4.3 2.00 

5.49 
 

7.13  

± 0.22 

0.73  

± 0.06 
17.0 

7.69  

± 0.04 

1.00  

± 0.02 
58.9 3.63 

5.50 
 

7.48  

± 0.06 

0.45  

± 0.08 
38.0 

7.95  

± 0.10 

0.70  

± 0.03 
107.2 2.95 
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Table 5.2. (continued)        

5.51 
 

6.17 

± 0.26 

0.45 

± 0.11 
1.9 

6.64 

± 0.24 

0.22 

± 0.02 
5.3 2.95 

5.52  
6.71  

± 0.19 

0.58  

± 0.11 
6.5 

6.91  

± 0.05 

1.03  

± 0.04 
9.8 1.58 

5.55 

 

5.88 0.07 1.0 6.02 0.09 1.3 1.38 

 

 n R        

5.53 2 NH2 
6.28  

± 0.07 

0.61  

± 0.01 
2.4 

7.27  

± 0.04 

0.76  

± 0.03 
22.4 9.77 

5.54 3 NH2 
6.48  

± 0.01 

0.59  

± 0.01 
3.8 

7.71  

± 0.01 

0.93  

± 0.01 
61.7 16.98 

5.57 3 

 

6.10  

± 0.10 

0.54  

± 0.02 
1.6 

7.15  

± 0.05 

0.86  

± 0.02 
17.0 11.22 

5.58 3 

 

6.75 0.21 7.1 6.93 0.65 10.2 1.51 

a Steady-state GTPase activity in Sf9 membranes expressing hH2R-GsαS and gpH2R-GsαS was determined as 
described in Pharmacological methods. Reaction mixtures contained ligands at concentrations from 0.1 nM 
to 10 µM as appropriate to generate saturated concentration-response curves. Data were analyzed by 
nonlinear regression and were best fit to sigmoidal concentration-response curves. Typical basal GTPase 
activities ranged between ≈ 0.5 and 2.5 pmol.mg-1.min-1, and activities stimulated by histamine (100 µM) 
ranged between ≈ 2 and 13 pmol.mg-1.min-1. The efficacy (Emax) of histamine was determined by nonlinear 
regression and was set to 1.0. The Emax values of other agonists were referred to this value. Data shown are 
means ± SEM of 1-6 independent experiments performed in duplicate. The relative potency of histamine 
was set to 1.0, and the potencies of other agonists were referred to this value. b No agonistic activity. 

Despite the weak H2R agonistic potency of 5.44-5.54, the successful preparation of 

bivalent ligands with branched linkers (5.53 and 5.54) is especially worth mentioning. 

The branched linkers allowed for the attachment of fluorescence and radio labels without 

affecting the pharmacophoric hetarylpropylguanidine moieties. However, the conversion 

of the basic amine in 5.54 to the non-basic propionamide group in 5.57 resulted in a 
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significant decrease in potency (pEC50 (hH2R-GsαS) = 6.48 → 6.10; pEC50 (gpH2R-GsαS) 

= 7.71 → 7.15), whereas efficacy was not affected. The positively charged fluorescent 

pyridinium compound 5.58 was slightly more potent than 5.54 at hH2R-GsαS (pEC50 = 

6.75), but considerably less potent at gpH2R-GsαS (pEC50 = 6.93), and efficacies were 

reduced at both receptors. 

Finally, the prototypical “trivalent” compound 5.55 with three aminothiazolyl-

propylguanidine portions and a constrained aromatic spacer was devoid of (noteworthy) 

agonistic activity at both hH2R-GsαS and gpH2R-GsαS, respectively. Thus, the 

introduction of an additional pharmacophoric moiety proved to be inappropriate to 

improve the H2R agonistic activity. 

Contribution of the second pharmacophoric moiety to H2R agonistic activity 

The structure-activity relationships of bivalent H2R agonistic acylguanidines are not 

compatible with the concept that such ligands are capable of “bridging” the orthosteric 

recognition sites of receptor dimers, as highest potency resided in compounds with 

insufficient spacer length. Figure 5.3 gives an overview of the agonistic potencies of the 

title compounds as determined in the GTPase assay. Most strikingly, the combination of 

two hetarylpropylguanidine pharmacophores with decanedioyl spacer resulted in the most 

potent H2R agonists known to date. 

Figure 5.3. H2R agonistic potency (GTPase assay) of bivalent acylguanidines: overview of structure-

activity relationships. a cf. twin compounds in chapter 4. 

To estimate the contribution of the second pharmacophore to H2R agonistic activity and 

to factor out the contribution of the spacer itself, the bivalent acylguanidine-type ligands 

should be compared with appropriate monovalent counterparts. Most monovalent 



Chapter 5 
____________________________________________________________________________________________________________ 

162 
 

compounds can only be considered an approximation to a monomeric analog as alkyl 

chains and various functional groups (carboxy, amine, amide, phenyl or cyclohexyl) may 

also confer to H2R activity. Actually, the choice of an appropriate monomeric counterpart 

is very tenuous. The pentanoylguanidine 3.20 corresponds to the bisected compound 4.27 

and therefore was considered the best possible monomeric counterpart of the highly 

potent bivalent H2R agonist 4.27. As determined in the GTPase assay, the twin compound 

4.27 was up to two orders of magnitude superior to its monovalent counterpart 3.20 

(hH2R-GsαS, pEC50, 8.11 → 7.06; gpH2R-GsαS, pEC50, 9.41 → 7.54). Moreover, 

comparison of the H2R agonistic potency of 4.27 with 5.38, 5.42, 3.20, 3.21 and 3.31 (cf. 

Figure 5.4) indicated that the contribution of the spacer to H2R agonistic activity is rather 

low and the second guanidine moiety is not merely an additional cationic head. Thus, 

both guanidino groups are involved in specific interactions with the H2R. These results 

are consistent with the presence of an accessory binding site at the H2R. Depending on the 

substitution pattern, the acylguanidine moiety seems to be a versatile structural motif to 

address an accessory recognition site at the H2R. Ionic interactions between the positively 

charged acylguanidine group and negatively charged amino acid residues are conceivable. 

This bears a formal resemblance to the message-address concept proposed by Schwyzer.32 

The hetarylpropylguanidine pharmacophore acts as the message component that is 

recognized by the receptor and the cationic address recognizes a unique subsite and 

provides additional binding affinity. 
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Figure 5.4. Histamine H2R agonism of 3.20, 

3.21, 3.31, 4.27, 5.38 and 5.42 in membranes 

expressing the gpH2R-GsαS. Data of 

representative experiments, expressed as 

percentage change in GTPase activity relative to 

the maximum effect induced by histamine (100 

µM). For exact chemical structures and pEC50 

values of 3.20, 3.21 and 3.31 see chapter 3. 

 



Heterobivalent motifs and variations of the spacer in H2R agonists 
____________________________________________________________________________________________________________ 

163 
 

Heterobivalent compounds with combined H2R agonistic and antagonistic moieties 

(Table 5.3) 

For most bivalent ligands interacting with two binding sites (orthosteric-orthosteric or 

orthosteric-accessory), co-activation via two agonistic pharmacophores is required for 

maximal effects.33-35 However, these findings are in contrast to several other reports in 

which maximal signaling results from the combination of agonistic with antagonistic or 

inverse agonistic pharmacophores.36-37 In this context, heterobivalent ligands with 

combined agonistic and antagonistic functionalities, i.e. agonistic/antagonistic hybrid 

molecules, were synthesized and investigated regarding their H2R activities. The hybrid 

molecules were constructed by combining the agonistic 3-(2-amino-4-methylthiazolyl)-

propylguanidine moiety with the core structure of piperidinomethylphenoxyalkylamine-

type antagonists (Figure 5.5).  

 

Figure 5.5. Design of H2R agonistic/antagonistic hybrid molecules. The agonistic building block derived 

from NG-acylated 3-(2-amino-4-methylthiazol-5-yl)propylguanidines; the antagonistic building block 

derived from roxatidine-related piperidinomethylphenoxypropylamine derivatives. 

The hybrid molecule 5.63 showed moderate partial agonism at hH2R-GsαS (pEC50 = 

7.32), but potent neutral antagonism at the gpH2R-GsαS (pKB = 7.91). As expected, 

removal of the basic piperidino group in the antagonistic roxatidine-related 

pharmacophore (5.65) resulted in a shift from antagonistic to agonistic activity at the 

gpH2R-GsαS, i.e. 5.65 was a weak agonist at both receptors. Notably, elongation of the 

spacer combining the agonistic and the antagonistic pharmacophores (n: 8 → 14, cf. 5.63 

vs. 5.64) resulted in the opposing biological responses. In contrast to 5.63, 5.64 is a 



Chapter 5 
____________________________________________________________________________________________________________ 

164 
 

neutral antagonist at the hH2R-GsαS (pKB = 6.49) and moderate partial agonist at the 

gpH2R-GsαS (pEC50 = 7.15). Moreover, the introduction of a squaramide group, which 

was recently found to increase both the H2R antagonistic activities and the preference for 

the H2R over the H3R,25 had no significant effect on the H2R mediated response (compare 

5.64 with 5.66).  

With respect to H2R agonistic potency, the hybrid approach combining H2R agonistic and 

H2R antagonistic moieties proved to be inappropriate. However, the discrepancies 

between the qualities of action depending of the H2R species orthologs give rise to 

speculations about different binding modes of these hybrid molecules at the gpH2R 

compared to the hH2R. 

Table 5.3. Agonistic and antagonistic effects of agonistic/antagonistic hybrid molecules at hH2R-GsαS and 

gpH2R-GsαS fusion proteins in the steady-state GTPase assay.a 

 

No. n X R 

hH2R-GsαS gpH2R-GsαS 

pEC50/(pK B) 

±SEM 

Emax 

±SEM 
Potrel 

pEC50/(pK B) 

±SEM 

Emax 

±SEM 
Potrel 

His    5.90 ± 0.09 1.00 1.0 5.92 ± 0.09 1.00 100 

5.63 8 NH 
 

7.32 ± 0.06 
0.60  

± 0.03 
26.3 (7.91 ± 0.02) - - 

5.64 14 NH 
 

(6.49 ± 0.19) - - 7.15 ± 0.05 
0.86  

± 0.02 
17.0 

5.65 8 NH H 6.82 ± 0.14 
0.57  

± 0.04 
8.3 7.05 ± 0.06 

0.81  

± 0.02 
13.5 

5.66 8 

  
(7.03 ± 0.10) - - 6.33 ± 0.07 

0.21  

± 0.03 
2.6 

a Steady-state GTPase activity in Sf9 membranes expressing hH2R-GsαS and gpH2R-GsαS was determined as 
described in Pharmacological methods. Reaction mixtures contained ligands at concentrations from 1 nM 
to 10 µM as appropriate to generate saturated concentration-response curves. For antagonism, reaction 
mixtures contained histamine (1 µM) and ligands at concentrations from 1nM to 100 µM. Data were 
analyzed by nonlinear regression and were best fit to sigmoidal concentration-response curves. Typical 
basal GTPase activities ranged between ≈ 0.5 and 2.5 pmol.mg-1.min-1 and activities stimulated by histamine 
(100 µM) ranged between ≈ 2 and 13 pmol.mg-1.min-1. The efficacy (Emax) of histamine was determined by 
nonlinear regression and was set to 1.0. The Emax values of other agonists were referred to this value. Data 
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shown are means ± SEM of 2-8 independent experiments performed in duplicate. The relative potency of 
histamine was set to 1.0, and the potencies of other agonists were referred to this value. IC50 values were 
converted to KB values using the Cheng-Prusoff equation.38 

Inhibition of the 5.26-stimulated GTP hydrolysis by famotidine 

According to the procedure described in chapter 4, the H2R-mediated effect of bivalent 

acylguanidine-type ligands was confirmed by the investigation of representative 

unsymmetrical bivalent ligands in the presence of the H2R antagonist famotidine. As an 

example, the inhibition of the 5.26-stimulated GTPase activity by the H2R antagonist is 

depicted in Figure 5.6. At both, hH2R-GsαS and gpH2R-GsαS, 5.26-stimulated GTP 

hydrolysis was inhibited in a concentration-dependent manner, confirming the measured 

GTPase activity to be stimulated via the H2R. Thus, direct G-protein activation can be 

clearly ruled out. The calculated KB values of famotidine (52 ± 22 nM and 65 ± 32 nM, 

Fig. 5.6) determined against 5.26 at hH2R-GsαS and gpH2R-GsαS respectively, are 

comparable to data obtained from GTPase assays using histamine as the H2R agonist 

(reported KB values, hH2R-GsαS: 48 ± 10 nM, gpH2R-GsαS: 38 ± 3 nM).39 
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Figure 5.6. Concentration-dependent inhibition 

of GTP hydrolysis by famotidine using 5.26 as 

agonist at concentrations of 10 nM and 1 nM at 

the hH2R-GsαS (solid line) and the gpH2R-GsαS 

fusion proteins (dashed line), respectively. Data 

points are means of a representative experiment 

performed in duplicate. IC50 values were 

converted to KB values using Cheng-Prusoff 

equation.38
 

5.3.2 Agonistic activity on histamine H2R mutants/chimera 

In agreement with previous studies,26,40-42 all newly synthesized bivalent acylguanidines 

(except 5.32 and 5.63) were significantly more potent and efficacious at the gpH2R 

relative to the hH2R, as revealed in GTPase assays (cf. Tables 5.1-5.3). As discussed in 

chapter 4, these differences may result from species-dependent interactions with both the 
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orthosteric and the putative accessory binding site. The latter is probably located in the 

extracellular domain, and amino acids in the e2 loop are possible candidates to interact 

with bivalent ligands. To study the role of particular amino acids and the e2 loop, selected 

bivalent ligands were tested on H2R mutants, in which Cys-17 and Ala-271 in the hH2R 

were replaced by Tyr-17 and Asp-271 as in the gpH2R and four different amino acids in 

the e2 loop were reciprocally mutated (hH2R-C17Y-A271D- GsαS, hH2R-C17Y- GsαS, 

hH2R-gpE2- GsαS, gpH2R-hE2- GsαS).
26-28 As summarized in Table 5.4, all investigated 

title compounds exhibited similar potencies and efficacies at mutant hH2R-gpE2-GsαS 

and gpH2R-hE2-GsαS compared to the corresponding wild-type hH2R-GsαS and gpH2R-

GsαS, respectively. Hence, these results do not indicate direct interactions of the mutated 

residues with the bivalent ligands. Furthermore, investigations of selected bivalent 

acylguanidines on human H2R mutants (Cys-17→Tyr-17, Ala-271→Asp-271) confirmed 

that the sensitivity of the double mutant against agonist stimulation is shifted to that of the 

gpH2R isoform. Thus, both Tyr-17 in TM1 and Asp-271 in TM7 or at least Asp-271 are 

key residues for highly potent and efficacious H2R activation. 

Table 5.4. Potencies and efficacies of bivalent acylguanidine-type H2R agonists at hH2R-gpE2-GsαS, 

gpH2R-hE2-GsαS, hH2R-C17Y-A271D-GsαS and hH2R-C17Y-GsαS expressed in Sf9 cell membranes.a 

Compd. 

hH2R-gpE2-

GsαS 

gpH2R-hE2-

GsαS 

hH2R-C17Y-

A271D-GsαS 

hH2R-C17Y-

GsαS 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

Emax 

± SEM 

pEC50 

± SEM 

HIS27-28 1.00 6.16 1.00 5.85 1.00 6.50 1.00 6.59 

AMT 27-28 
0.94 

± 0.05 

6.86 

± 0.06 

0.94 

± 0.06 

6.53 

± 0.09 

0.97 

± 0.01 

7.19 

± 0.02 

0.86 

± 0.19 

6.93 

± 0.04 

5.26 
0.70 

± 0.05 

8.05 

± 0.04 

0.91 

± 0.03 

8.35 

± 0.21 

0.79 

± 0.02 

8.71 

± 0.12 

0.59 

± 0.02 

7.87 

± 0.05 

5.27 
0.77 

± 0.05 

8.14 

± 0.03 

0.98 

± 0.06 

8.65 

± 0.07 

0.82 

± 0.03 

8.71 

± 0.02 

0.65 

± 0.08 

8.31 

± 0.31 

5.29 
0.56 

± 0.03 

7.03 

± 0.11 

0.96 

± 0.07 

7.45 

± 0.01 

0.67 

± 0.04 

7.39 

± 0.04 

0.23 

± 0.02 

7.08 

± 0.06 

5.47 
0.14 

± 0.05 

6.71 

± 0.12 

0.58 

± 0.05 

6.67 

± 0.07 
ndb 

0.13 

± 0.02 

6.38 

± 0.06 

a Steady state GTPase activity in Sf9 membranes expressing hH2R-gpE2-GsαS, gpH2R-hE2-GsαS, hH2R-
C17Y-A271D-GsαS and hH2R-C17Y-GsαS was determined as described in Pharmacological methods. 
Reaction mixtures contained ligands at concentrations from 1 nM to 10 µM as appropriate to generate 
saturated concentration-response curves. Data were analyzed by nonlinear regression and were best fit to 
sigmoidal concentration-response curves. Typical basal GTPase activities ranged between ≈ 0.5 and 1.5 
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pmol.mg-1.min-1 for hH2R-gpE2-GsαS and gpH2R-hE2-GsαS, ≈ 2.5 and 3.0 pmol.mg-1.min-1 for hH2R-C17Y-
A271D-GsαS and ≈ 0.70 and 1.25 pmol.mg-1.min-1 for hH2R-C17Y-GsαS, and activities stimulated by 
histamine (100 µM) ranged between ≈ 2.8 and 5.0 pmol.mg-1.min-1 for hH2R-gpE2-GsαS and gpH2R-hE2-
GsαS, ≈ 1.1 and 4.5 pmol.mg-1.min-1 for hH2R-C17Y-A271D-GsαS and ≈ 1.1 and 1.8 pmol.mg-1.min-1 for 
hH2R-C17Y-GsαS. The efficacy (Emax) of histamine was determined by nonlinear regression and was set to 
1.0. The Emax values of other agonists were referred to this value. Data shown are means ± SEM of one to 
two experiments performed in duplicate. b nd: not determined. 

 

5.3.3 Receptor selectivity 

To verify the histamine receptor selectivity profile (human H2R vs. H1R, H3R, H4R) 

representative compounds were investigated in GTPase assays on recombinant human H1, 

H3 and H4 receptors for agonism and antagonism, respectively (Table 5.5). In accordance 

with the results of chapters 3 and 4, all investigated NG-acylated aminothiazolylpropyl-

guanidine-type H2R agonists proved to be devoid of agonistic and antagonistic activities 

or to have only negligible effects on histamine receptors other than the H2R. By contrast, 

compound 5.27, which comprises one imidazolylpropylguanidine moiety, showed also 

significant activities at the other histamine receptor subtypes. In particular, 5.27 turned 

out to be a highly potent hH3R and hH4R partial agonist with EC50 values in the low 

nanomolar range. 

Table 5.5. Histamine receptor subtype selectivity of selected bivalent ligands. Agonistic, antagonistic and 

inverse agonistic effects at hH1R + RGS4, hH2R-GsαS, hH3R + Gαi2 + Gβ1γ2 + RGS4 and hH4R-GAIP + 

Gαi2 + Gβ1γ2 expressed in Sf9 cell membranes.a 

 

Compd. 

hH1R hH2R hH3R hH4R 

(pK B) 
pEC50 

(pK B) 

Emax 
pEC50 

(pK B) 
Emax

 
pEC50 

(pK B) 
Emax 

5.26 (< 6.00) 
7.86 

± 0.11 

0.75 

± 0.04 
(< 5.00) - (< 5.00) - 

5.27 
(6.27  

± 0.19) 

8.12 

± 0.04 

0.76 

± 0.05 

8.54  

± 0.02 

0.68  

± 0.06 

8.07  

± 0.09 

0.52  

± 0.03 

5.29 (< 6.00) 
7.16 

± 0.20 

0.44 

± 0.05 
(< 6.00) - (< 6.00) - 

5.31 
(6.11  

± 0.03) 

6.81 

± 0.11 

0.45 

± 0.11 
< 6.00 

– 0.87  

± 0.12 
< 6.00 – 0.66 

5.33 
(6.18  

± 0.01) 

7.66 

± 0.06 

0.46 

± 0.03 
(< 6.00) - (< 6.00) - 

5.39 (< 6.00) 
7.50 

± 0.04 

0.53 

± 0.02 
< 6.00 

– 0.50  

± 0.05 
< 6.00 

– 0.49  

± 0.07 
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Table 5.5. (continued)       

5.41 
(6.07  

± 0.03) 

7.68 

± 0.11 

0.58 

± 0.03 
(< 6.00) - (< 6.00) - 

5.42 (< 6.00) 
7.25 

± 0.21 

0.82 

± 0.07 
(< 6.00) - (< 6.00) - 

5.45 (< 6.00) 
6.62 

± 0.23 

0.79 

± 0.07 
< 5.00 – 0.25 < 5.00 – 0.65 

5.46 (< 6.00) 
6.82 

± 0.01 

0.69 

± 0.11 
(< 5.00) - (< 5.00) - 

5.49 (< 6.00) 
7.13 

± 0.22 

0.73 

± 0.06 
(< 5.00) - (< 6.00) - 

5.63 (< 6.00) 
7.32 ± 

0.06 

0.60 

± 0.03 
< 6.00 – 0.41 < 6.00 – 0.39 

5.66 (< 6.00) 
(7.03 ± 

0.10) 
- < 6.00 – 0.31 (< 6.00) - 

a Steady state GTPase activity in Sf9 membranes expressing hH1R+RGS4, hH2R-GsαS, 
hH3R+Gαi2+Gβ1γ2+RGS4 and hH4R-GAIP+Gαi2+Gβ1γ2 was determined as described in Pharmacological 
methods. Reaction mixtures contained ligands at concentrations from 1 nM to 1 mM as appropriate to 
generate saturated concentration-response curves. For antagonism, reaction mixtures contained histamine 
(hH1R: 1 µM; hH3R, hH4R: 100 nM) and ligands at concentrations from 1 nM to 1 mM. Data were analyzed 
by nonlinear regression and were best fitted to sigmoidal concentration-response curves. Typical basal 
GTPase activities ranged between ≈ 1.5 and 2.5 pmol.mg-1.min-1 and activities stimulated by histamine (10 
µM) ranged between ≈ 3.5 and 4.5 pmol.mg-1.min-1. Data shown are mean values of one to four experiments 
performed in duplicate. Efficacy (Emax) relative to the maximal response of histamine = 1.00. Negative 
values refer to inverse agonistic effects. IC50 values were converted to KB values using Cheng-Prusoff 
equation.38 

 

5.4 Summary 

After successful application of the bivalent ligand approach to acylguanidine-type 

ligands, the present study was focused on the chemical nature of the spacer as well as on 

unsymmetrical bivalent ligands bearing two different sets of pharmacophoric groups. The 

novel H2R agonists are promising pharmacological tools for more detailed investigations 

of the H2R. In agreement with the results of chapter 4, the combination of two 

hetarylpropylguanidine moieties with decanedioyl spacer resulted in the most potent H2R 

agonists. Replacing the second hetarylpropylguanidine moiety with simple alkyl 

guanidine groups afforded high H2R agonistic activities (EC50 values in the low 

nanomolar range), whereas all other variations in this part of the molecule led to 

drastically decreased potencies. A further decrease in potency resulted from the 
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elimination of the second guanidino group, corroborating the importance of a basic centre 

at an appropriate distance to the pharmacophore to obtain highly potent bivalent H2R 

agonists. These results are consistent with the concept of interaction with the orthosteric 

and an accessory binding site of one H2R protomer, i. e. the accessory binding site can 

accommodate the second acylguanidine portion. Thus, depending on the substitution 

pattern, the acylguanidine moiety seems to be a versatile structural motif to address an 

accessory recognition site at the H2R. To explore the topology of this putative site in more 

detail, further investigations on H2R mutants are necessary. Moreover, structural 

modifications of the spacer (insertion of disulfide, amide, ether as well as rigid phenylene 

groups) led to drastically decreased potencies, and the combination of an agonistic 3-(2-

amino-4-methylthiazol-5-yl)propylguanidine moiety with antagonistic piperidino-

methylphenoxypropylamines proved to be inappropriate with respect to H2R agonistic 

activities. Actually, the agonistic/antagonistic hybrid molecules showed different qualities 

of action at hH2R compared to gpH2R. It can be speculated if these results indicate a 

different binding mode for the gpH2R compared to the hH2R. In summary, this study 

substantiates the results obtained with H2R agonistic twin compounds, suggesting that the 

increase in potency is due to interaction with an accessory binding site at the same 

receptor protomer rather than to simultaneous interaction with the orthosteric binding 

pockets of a hypothetical receptor dimer. 

 

5.5 Experimental section 

5.5.1 Chemistry 

5.5.1.1 General conditions 

See section 3.5.1.1.  

The optical rotation (α) was measured on a Perkin-Elmer Polarimeter 241 (Waltham, 

USA). H2O/MeCN (1:1) was used as solvent and the polarimeter was thermostated at 20 

°C. [α]λ = α/c·l; in this equation l is the path length in decimeters and c is the 

concentration in g/ml for a sample at 20°C and the wavelength λ = 589 nm. The sign of 

rotation (+ or –) is always given. 
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5.5.1.2 Preparation of the Boc-protected building block 5.2 

10-Benzyloxy-10-oxodecanoic acid (5.1)43  

Phenylmethanol (0.25 ml, 2.5 mmol) was added dropwise to a cooled suspension of 

decanedioic acid (0.5 g, 2.5 mmol) and DMAP (cat.) in 3 ml THF/abs. A solution of DCC 

(0.61 g, 3.0 mmol) in 3 ml THF/abs was added dropwise to this mixture and stirred for 72 

hours at ambient temperature. Subsequently, 1,1-dicyclohexylurea was filtered off and the 

solvent removed under reduced pressure. The crude product was subjected to flash 

chromatography (PE/EtOAc 90/10 v/v) to obtain 5.1 (0.34 g, 47 %) as colorless 

semisolid. 1H-NMR (CDCl3) δ (ppm): 10.88 (s, 1H, COOH), 7.34 (m, 5H, Ar-H), 5.11 (s, 

2H, CH2-Ar), 2.34 (m, 4H, COCH2), 1.61 (m, 4H, COCH2CH2), 1.29 (s, 8H, (CH2)4); 
13C-NMR (CDCl3) δ (ppm): 179.80 (quat. COOH), 173.72 (quat. C=O), 136.12 (quat. Ar-

C), 128.55 (+, Ar-CH), 128.18 (+, Ar-CH), 66.11 (-, CH2-Ar), 34.30 (-, CH2COOH), 

34.04 (-, COCH2), 29.02 (-, CH2), 28.96 (-, CH2), 24.90 (-, COCH2CH2), 24.64 (-, 

CH2CH2COOH); EI-MS (70 eV) m/z (%): 292 (M+•, 30); C17H24O4 (292.37). 

10-((tert-Butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}aminomethylene)-10-oxodecanoic acid (5.2) 

DIEA (0.09 ml, 0.5 mmol) was added to a solution of 5.1 (150 mg, 0.5 mmol), EDAC (95 

mg, 0.5 mmol) and HOBt-monohydrate (80 mg, 0.5 mmol) in  3 ml DCM/abs under 

argon and stirred for 15 min. A solution of 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs 

was added and the mixture stirred overnight at room temperature. The solvent was 

removed under reduced pressure, EtOAc and water were added to the residue, the organic 

phase was separated and the aqueous layer extracted two times with EtOAc. After drying 

over MgSO4, the organic solvent was removed in vacuo. The crude benzyl-protected 

compound was purified by flash chromatography (PE/EtOAc 70/30-50/50 v/v) yielding a 

pale yellow oil, which was immediately dissolved in 10 ml MeOH and hydrogenated over 

Pd/C catalyst for 1 h at room temperature. After filtration over Celite, the solvent was 

removed under reduced pressure to obtain 5.2 (210 mg, 70 %) as colorless foam-like 

solid. 1H-NMR (CDCl3) δ (ppm): 3.47 (m, 2H, CH2NH), 2.70 (t, 3J = 7.1 Hz, 2H, Thiaz-

5-CH2), 2.33 (m, 4H, CH2COOH, COCH2), 2.16 (s, 3H, Thiaz-4-CH3), 1.88 (m, 2H, 

Thiaz-5-CH2CH2), 1.64 (m, 4H, COCH2CH2, CH2CH2COOH), 1.53 (s, 9H, C(CH3)3), 

1.49 (s, 9H, C(CH3)3), 1.33 (s, 8H, (CH2)4); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 

598 (MH+, 100); C28H47N5O7S (597.77). 
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5.5.1.3 Preparation of the Boc- and Cbz-protected guanidine building 

blocks 5.3-5.1344-45 

General procedure 

NEt3 (3 eq) was added to a suspension of the pertinent commercially available amine (1 

eq), 3.3 (1 eq) and HgCl2 (2 eq) in DCM/abs and stirred at ambient temperature for 48 h. 

Subsequently, EtOAc was added and the precipitate filtered over Celite. The crude 

products were purified by flash chromatography (PE/EtOAc 80/20 v/v) unless otherwise 

indicated to give the Boc- and Cbz-protected guanidines 5.3-5.13.  

tert-Butyl (benzyloxycarbonylamino)(3-phenylpropylamino)methylenecarbamate 

(5.3) 

The title compound was prepared from 3-phenylpropylamine (0.27 g, 0.28 ml, 2.0 mmol), 

3.3 (0.65 g, 2.0 mmol), HgCl2 (1.09 g, 4.0 mmol) and NEt3 (0.61 g, 0.84 ml, 6.0 mmol) in 

10 ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 5.3 (0.69 

g, 84 %) as colorless oil. CI-MS (NH3) m/z (%): 412.3 (MH+, 100); C23H29N3O4 (411.5). 

tert-Butyl (benzyloxycarbonylamino)(3,3-diphenylpropylamino)methylene-

carbamate (5.4) 

The title compound was prepared from 3,3-diphenylpropylamine (0.21 g, 1.0 mmol), 3.3 

(0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 

ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 5.4 (0.43 g, 

88 %) as colorless oil. 1H-NMR (CD3OD) δ (ppm): 7.41-7.08 (m, 15H, Ar-H), 5.07 (s, 

2H, CH2-Ar), 3.98 (t, 3J = 7.68 Hz, 1H, (Ar)2CHCH2), 3.37 (t, 3J = 7.14 Hz, 2H, 

CH2NH), 2.33 (m, 2H, CHCH2), 1.51 (s, 9H, (CH3)3); ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 488.1 (MH+, 100); C29H33N3O4 (487.59). 

tert-Butyl (benzyloxycarbonylamino)(benzylamino)methylenecarbamate (5.5) 

The title compound was prepared from benzylamine (0.11 g, 1.0 mmol), 3.3 (0.32 g, 1.0 

mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 ml DCM/abs 

and 10 ml EtOAc according to the general procedure yielding 5.5 (0.40 g, 100 %) as 

white foam-like solid. 1H-NMR (CD3OD) δ (ppm): 7.45-7.28 (m, 10H, Ar-H), 5.16 (s, 

2H, CH2-Ar), 4.63 (d, 3J = 5.65 Hz, 2H, CH2NH), 1.47 (s, 9H, (CH3)3); CI-MS (NH3) 

m/z (%): 384.2 (MH+, 100); C21H25N3O4 (383.44). 
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(S)-tert-Butyl (benzyloxycarbonylamino)(1-phenylethylamino)methylenecarbamate 

(5.6) 

The title compound was prepared from (S)-1-phenylethylamine (0.18 g, 0.19 ml, 1.5 

mmol), 3.3 (0.49 g, 1.5 mmol), HgCl2 (0.81 g, 3.0 mmol) and NEt3 (0.46 g, 0.65 ml, 4.5 

mmol) in 10 ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 

5.6 (0.59 g, 99 %) as yellow oil. 1H-NMR (CD3OD) δ (ppm): 7.41-7.29 (m, 10H, Ar-H), 

5.4 (q, 3J = 6.9 Hz, 1H, Ar-CH), 5.13 (s, 2H, Ar-CH2), 1.53 (d, 3J = 6.9 Hz, 3H, CHCH3), 

1.48 (s, 9H, (CH3)3); CI-MS (NH3) m/z (%): 398.2 (MH+, 100); C22H27N3O4 (397.20). 

(R)-tert-Butyl (benzyloxycarbonylamino)(1-phenylethylamino)methylenecarbamate 

(5.7) 

The title compound was prepared from (R)-1-phenylethylamine (0.18 g, 0.19 ml, 1.5 

mmol), 3.3 (0.49 g, 1.5 mmol), HgCl2 (0.81 g, 3.0 mmol) and NEt3 (0.46 g, 0.65 ml, 4.5 

mmol) in 10 ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 

5.7 (0.63 g, 100 %) as colorless oil. CI-MS (NH3) m/z (%): 398.3 (MH+, 100); 

C22H27N3O4 (397.20). 

tert-Butyl (benzyloxycarbonylamino)(4-methoxybenzylamino)methylenecarbamate 

(5.8) 

The title compound was prepared from 4-methoxybenzylamine (0.20 g, 1.0 mmol), 3.3 

(0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 

ml DCM/abs and 10 ml EtOAc according to the general procedure. Purification by flash 

chromatography (gradient: 0-4 min: PE/EtOAc 100/0, 8-16 min: 90/10, 20-23 min: 60/40) 

yielded 5.8 (0.28 g, 67 %) as colorless oil. 1H-NMR (CD3OD) δ (ppm): 7.40-7.28 (m, 5H, 

Ar-H), 7.24 (d, 3J = 8.5 Hz, 2H, Ar-H), 6.89 (d, 3J = 8.5 Hz, 2H, Ar-H), 5.12 (s, 2H, 

CH2-Ar), 4.49 (s, 2H, CH2NH), 3.77 (s, 3H, OCH3), 1.50 (s, 9H, (CH3)3); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 414.1 (MH+, 100); C22H27N3O5 (413.47). 

tert-Butyl (benzyloxycarbonylamino)(3,4-dimethoxybenzylamino)methylene-

carbamate (5.9) 

The title compound was prepared from 3,4-dimethoxybenzylamine (0.17 g, 1.0 mmol), 

3.3 (0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 

8 ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 5.9 (0.38 g, 

86 %) as yellow oil. CI-MS (NH3) m/z (%): 443.3 (MH+, 100); C23H29N3O6 (443.49). 
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tert-Butyl (benzyloxycarbonylamino)(methylamino)methylenecarbamate (5.10) 

The title compound was prepared from methylamine (0.5 ml 2M in THF, 1.0 mmol), 3.3 

(0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 

ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 5.10 (0.21 g, 

68 %) as colorless oil. 1H-NMR (CD3OD) δ (ppm): 7.33 (m, 5H, Ar-H), 5.11 (s, 2H, 

CH2-Ar), 2.90 (s, 3H, NHCH3), 1.51 (s, 9H, (CH3)3); ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 308 (MH+, 100); C15H21N3O4 (307.35). 

tert-Butyl (benzyloxycarbonylamino)(propylamino)methylenecarbamate (5.11) 

The title compound was prepared from propylamine (0.06 g, 0.08 ml, 1.0 mmol), 3.3 

(0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 

ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 5.11 (0.28 g, 

83 %) as colorless oil. 1H-NMR (CD3OD) δ (ppm): 7.32 (m, 5H, Ar-H), 5.11 (s, 2H, 

CH2-Ar), 3.33 (m, 2H, CH2NH), 1.58 (m, 2H, CH2CH3), 1.52 (s, 9H, (CH3)3), 0.94 (m, 

3H, CH2CH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 336 (MH+, 100); C17H25N3O4 

(335.4). 

tert-Butyl (benzyloxycarbonylamino)(isobutylamino)methylenecarbamate (5.12) 

The title compound was prepared from isobutylamine (0.07 g, 1.0 mmol), 3.3 (0.32 g, 1.0 

mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 mmol) in 8 ml DCM/abs 

and 10 ml EtOAc according to the general procedure yielding 5.12 (0.30 g, 86 %) as 

colorless oil. 1H-NMR (CD3OD) δ (ppm): 7.34 (m, 5H, Ar-H), 5.11 (s, 2H, CH2-Ar), 2.21 

(d, 3J = 6.9 Hz, 2H, NHCH2CH(CH3)2), 1.85 (m, 1H, CH(CH3)2), 1.53 (s, 9H, (CH3)3), 

0.94 (m, 6H, CH(CH3)2); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 350.1 (MH+, 100); 

C18H27N3O4 (349.42). 

tert-Butyl (benzyloxycarbonylamino)(tert-butyl-3-aminopropylcarbamate)methyl-

enecarbamate (5.13) 

The title compound was prepared from tert-butyl 3-aminopropylcarbamate (0.17 g, 1.0 

mmol), 3.3 (0.32 g, 1.0 mmol), HgCl2 (0.54 g, 2.0 mmol) and NEt3 (0.30 g, 0.41 ml, 3.0 

mmol) in 8 ml DCM/abs and 10 ml EtOAc according to the general procedure yielding 

5.13 (0.40 g, 89 %) as yellow oil. 1H-NMR (DMSO-d6) δ (ppm): 8.48 (m, 1H, NH), 7.42-

7.29 (m, 5H, Ar-H), 6.84 (m, 1H, NH), 5.03 (s, 2H, CH2-Ar), 3.30 (m, 2H, CH2NH), 2.92 

(m, 2H, CH2NHBoc), 1.58 (m, 2H, CH2CH2NH), 1.48 (s, 9H, (CH3)3), 1.36 (s, 9H, 
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(CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 451.1 (MH+, 100); C22H34N4O6 

(450.53). 

5.5.1.4 Preparation of the NG-Boc-protected guanidine building blocks 

5.14–5.2541,46 

General procedure for the synthesis of Boc-protected guanidine building blocks 

5.14-5.24 

The title compounds were prepared from the corresponding Boc- and Cbz-protected 

guanidines 5.3-5.13 by hydrogenation over Pd/C (10 %) in a mixture of THF/MeOH (1:1) 

for 3-5 days at 8 bar (TLC control). After filtration over Celite and washing with MeOH, 

the solvent was removed in vacuo to give the pertinent NG-Boc-protected guanidine 

building blocks 5.14-5.24. 

tert-Butyl amino(3-phenylpropylamino)methylenecarbamate (5.14)47 

The title compound was prepared from 5.3 (0.69 g, 1.7 mmol) and 0.5 g of Pd/C (10 %) 

in a mixture of 120 ml THF/MeOH (1:1) according to the general procedure yielding 5.14 

(0.47 g, 100 %) as colorless foam-like solid. 1H-NMR (CDCl3) δ (ppm): 7.32-7.14 (m, 

5H, Ar-H), 3.29 (m, 2H, CH2NH), 2.70 (m, 2H, CH2-Ar), 1.95 (m, 2H, ArCH2CH2), 1.54 

(s, 9H, (CH3)3); CI-MS (NH3) m/z (%): 278.2 (MH+, 100); C15H23N3O2 (277.36). 

tert-Butyl amino(3,3-diphenylpropylamino)methylenecarbamate (5.15) 

The title compound was prepared from 5.4 (0.43 g, 0.9 mmol) and 0.45 g of Pd/C (10 %) 

in a mixture of 140 ml THF/MeOH (1:1) according to the general procedure yielding 5.15 

(0.28 g, 88 %) as colorless foam-like solid. 1H-NMR (CDCl3) δ (ppm): 7.31-7.11 (m, 

10H, Ar-H), 4.03 (t, 3J = 7.7 Hz, 1H, (Ar)2CHCH2), 3.10 (t, 3J = 7.41 Hz, 2H, CH2NH), 

2.31 (m, 2H, CHCH2), 1.44 (s, 9H, (CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 

354 (MH+, 100); C21H27N3O2 (353.46). 

tert-Butyl amino(benzylamino)methylenecarbamate (5.16)47 

The title compound was prepared from 5.5 (0.4 g, 1.0 mmol) and 0.4 g of Pd/C (10 %) in 

a mixture of 100 ml THF/MeOH (1:1) according to the general procedure yielding 5.16 

(0.21 g, 84 %) as white solid. mp = 127-129 °C; 1H-NMR (CDCl3) δ (ppm): 7.4-7.31 (m, 

5H, Ar-H), 4.51 (m, 2H, CH2NH), 1.47 (s, 9H, (CH3)3); CI-MS (NH3) m/z (%): 250.1 

(MH+, 100); C13H19N3O2 (249.31). 
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(S)-tert-Butyl amino(1-phenylethylamino)methylenecarbamate (5.17) 

The title compound was prepared from 5.6 (0.59 g, 1.5 mmol) and 0.6 g of Pd/C (10 %) 

in a mixture of 120 ml THF/MeOH (1:1) according to the general procedure yielding 5.17 

(0.36 g, 92 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.35 (m, 5H, Ar-H), 5.04 (q, 3J 

= 7.41 Hz, 1H, Ar-CH), 1.59 (d, 3J = 7.41 Hz, 3H, CHCH3), 1.47 (s, 9H, (CH3)3); CI-MS 

(NH3) m/z (%): 264.2 (MH+, 100); C14H21N3O2 (263.34). 

(R)-tert-Butyl amino(1-phenylethylamino)methylenecarbamate (5.18)47 

The title compound was prepared from 5.7 (0.6 g, 1.5 mmol) and 0.6 g of Pd/C (10 %) in 

a mixture of 120 ml THF/MeOH (1:1) according to the general procedure yielding 5.18 

(0.37 g, 94 %) as colorless solid. mp = 115-117 °C; 1H-NMR (CDCl3) δ (ppm): 7.35 (m, 

5H, Ar-H), 5.04 (q, 3J = 7.41 Hz, 1H, Ar-CH), 1.59 (d, 3J = 7.41 Hz, 3H, CHCH3), 1.47 

(s, 9H, (CH3)3); CI-MS (NH3) m/z (%): 264.2 (MH+, 100); C14H21N3O2 (263.34). 

tert-Butyl amino(4-methoxybenzylamino)methylenecarbamate (5.19)47 

The title compound was prepared from 5.8 (0.27 g, 0.65 mmol) and 0.27 g of Pd/C (10 %) 

in a mixture of 140 ml THF/MeOH (1:1) according to the general procedure yielding 5.19 

(0.15 g, 80 %) as colorless oil. 1H-NMR (CDCl3) δ (ppm): 7.23 (d, 3J = 8.51 Hz, 2H, Ar-

H), 6.90 (d, 3J = 8.51 Hz, 2H, Ar-H), 4.31 (s, 2H, CH2NH), 3.77 (s, 3H, OCH3), 1.44 (s, 

9H, (CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 280.1 (MH+, 100); C14H21N3O3 

(279.33). 

tert-Butyl amino(3,4-dimethoxybenzylamino)methylenecarbamate (5.20) 

The title compound was prepared from 5.9 (0.38 g, 0.86 mmol) and 0.4 g of Pd/C (10 %) 

in a mixture of 80 ml THF/MeOH (1:1) according to the general procedure yielding 5.20 

(0.25 g, 94 %) as white foam-like solid. 1H-NMR (CDCl3) δ (ppm): 7.26 (s, 1H, Ar-H), 

6.99-6.68 (m, 2H, Ar-H), 4.53 (s, 2H, Ar-CH2), 3.88 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 

1.48 (s, 9H, (CH3)3); CI-MS (NH3) m/z (%): 310.1 (MH+, 100); C15H23N3O4 (309.69). 

tert-Butyl amino(methylamino)methylenecarbamate (5.21)47 

The title compound was prepared from 5.10 (0.21 g, 0.7 mmol) and 0.22 g of Pd/C (10 %) 

in a mixture of 80 ml THF/MeOH (1:1) according to the general procedure yielding 5.21 

(0.12 g, 100 %) as white foam-like solid. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 174 

(MH+, 100), 347.1 (2MH+, 40); C7H15N3O2 (173.21). 
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tert-Butyl amino(propylamino)methylenecarbamate (5.22)47 

The title compound was prepared from 5.11 (0.27 g, 0.81 mmol) and 0.27 g of Pd/C (10 

%) in a mixture of 80 ml THF/MeOH (1:1) according to the general procedure yielding 

5.22 (0.16 g, 100 %) as white foam-like solid. 1H-NMR (CDCl3) δ (ppm): 3.12 (t, 3J = 7.1 

Hz, 2H, CH2NH), 1.57 (m, 2H, CH2CH3), 1.44 (s, 9H, (CH3)3), 0.96 (t, 3J = 7.4 Hz, 3H, 

CH2CH3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 202 (MH+, 100); C9H19N3O2 

(201.27). 

tert-Butyl amino(isobutylamino)methylenecarbamate (5.23) 

The title compound was prepared from 5.12 (0.30 g, 0.86 mmol) and 0.30 g of Pd/C (10 

%) in a mixture of 140 ml THF/MeOH (1:1) according to the general procedure yielding 

5.23 (0.17 g, 92 %) as yellow oil. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 216.2 

(MH+, 100), 257.2 (MH++MeCN, 80); C10H21N3O2 (215.29). 

tert-Butyl amino[(tert-butoxycarbonyl)aminopropylamino]methylenecarbamate 

(5.24) 

The title compound was prepared from 5.13 (0.36 g, 0.8 mmol) and 0.36 g of Pd/C (10 %) 

in a mixture of 80 ml THF/MeOH (1:1) according to the general procedure yielding 5.24 

(0.25 g, 100 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 3.19 (t, 3J = 6.9 Hz, 2H, 

CH2NHBoc), 3.09 (t, 3J = 6.6 Hz, 2H, CH2NH), 1.68 (m, 2H, CH2CH2NH), 1.44 (s, 9H, 

(CH3)3), 1.43 (s, 9H, (CH3)3); ES-MS (DCM/MeOH + NH4OAc) m/z (%): 317 (MH+, 

100); C14H28N4O4 (316.4). 

tert-Butyl amino(3-cyclohexylamino)methylenecarbamate (5.25)  

To a solution of 5.14 (0.14 g, 0.5 mmol) in 30 ml MeOH was added a catalytic amount of 

Rh/Al2O3 and hydrogenated at 7 bar for 4 days. The catalyst was removed by filtration 

over Celite and washed with MeOH. The solvent was removed under reduced pressure to 

yield 5.25 (0.09 g, 64 %) without further purification as colorless oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 284.1 (MH+, 80), 184.1 (MH+-Boc, 100); 

C15H29N3O2 (283.41). 

5.5.1.5 Preparation of the piperidinomethylphenoxypropylamine 

building blocks 5.60 and 5.61 

10-Oxo-10-{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino}decanoic acid (5.60) 
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DIEA (0.09 ml, 0.5 mmol) was added to a solution of 5.1 (150 mg, 0.5 mmol), EDAC (95 

mg, 0.5 mmol) and HOBt-monohydrate (80 mg, 0.5 mmol) in 3 ml DCM/abs and stirred 

for 15 min. A solution of 3-[3-(piperidin-1-ylmethyl)phenoxy]propan-1-amine 5.5925 

(125 mg, 0.5 mmol) in 2 ml DCM/abs was added and the mixture stirred overnight at 

room temperature. The solvent was removed under reduced pressure. Thereafter, EtOAc 

and water were added to the residue, the organic phase was separated and the aqueous 

layer extracted two times with EtOAc. After drying over MgSO4, the organic solvent was 

removed under reduced pressure. Purification by flash chromatography (gradient: 0-2 

min: PE/EtOAc 100/0, 3-15 min: 75/25, 16-23 min: 50/50, 24-33 min: 20/80) yielded the 

benzyl-protected 5.60 (120 mg, 46 %) as yellow oil. The intermediate was immediately 

dissolved in 6 ml MeOH and hydrogenated with Pd/C (60 mg) for 3 h at room 

temperature. After filtration over Celite, the solvent was evaporated under reduced 

pressure to obtain 5.60 (80 mg, 37 % overall) as colorless oil. 1H-NMR (CD3OD) δ 

(ppm): 7.29 (t, 3J = 7.9 Hz, 1H, Ar-5-H), 7.11-6.95 (m, 2H, Ar-2-H, Ar-4-H), 6.70 (m, 

1H, Ar-6-H), 4.03 (t, 3J = 6.1 Hz, 2H, OCH2CH2), 3.92 (s, 2H, Pip-N-CH2), 3.37 (t, 3J = 

7.2 Hz, 2H, CH2NH), 2.86 (m, 4H, Pip-CH2), 2.17 (m, 4H, COCH2), 1.95 (m, 2H, 

OCH2CH2), 1.74 (m, 4H, Pip-CH2), 1.58 (m, 6H, COCH2CH2, Pip-4-CH2), 1.29 (m, 8H, 

(CH2)4); EI-MS (70 eV) m/z (%): 433.2 (MH+, 100); C25H40N2O4 (432.6). 

16-Oxo-16-{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino}hexadecanoic acid 

(5.61) 

To a solution of hexadecanedioic acid (0.4 g, 1.4 mmol), EDAC (0.27 g, 1.4 mmol) and 

HOBt-monohydrate (0.22 g, 1.4 mmol) in 3 ml DCM/abs was added DIEA (0.25 ml, 1.4 

mmol) and stirred for 10 min. To this mixture a solution of 3-[3-(piperidin-1-ylmethyl)-

phenoxy]propan-1-amine 5.5925 (0.35 g, 1.4 mmol) in 3 ml DCM/abs was added and 

stirred overnight at room temperature. The solvent was removed under reduced pressure, 

EtOAc and water were added to the residue, the organic phase was separated and the 

aqueous layer extracted three times with EtOAc. After drying over MgSO4, the organic 

solvent was evaporated. Purification by flash chromatography (PE/EtOAc 70/30-50/50 

v/v) yielded 5.61 (0.50 g, 69 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 7.28 (m, 1H, 

Ar-5-H), 6.98 (m, 3H, Ar-H), 4.02 (t, 3J = 6.9 Hz, 2H, OCH2CH2), 3.89 (s, 2H, Pip-N-

CH2), 3.35 (m, 2H, CH2NH), 2.89 (m, 4H, Pip-CH2), 2.18 (m, 4H, COCH2), 1.97 (m, 2H, 

OCH2CH2), 1.75 (m, 4H, Pip-CH2), 1.58 (m, 6H, COCH2CH2, Pip-4-CH2), 1.28 (m, 20H, 

(CH2)10); EI-MS (70 eV) m/z (%): 517.3 (MH+, 100); C31H52N2O4 (516.76). 
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5.5.1.6 Preparation of the NG-Boc-protected bivalent acylguanidines 

5.26a-5.43a and 5.63a-5.66a 

General procedure for the synthesis of Boc-protected bivalent acylguanidines 5.26a, 

5.27a, and 5.29a-5.42a 

DIEA (1 eq) was added to a solution of 5.2 (1 eq), EDAC (1 eq) and HOBt-monohydrate 

(1 eq) in DCM/abs and stirred for 15 min. A solution of pertinent guanidine building 

block 3.18, 4.8, 5.14-5.25 or the Boc-protected 2-amino-4-methylthiazol-5-ylpropylamine 

3.13 (1 eq) in DCM/abs was added and the pertinent mixture stirred overnight at room 

temperature. The solvent was removed under reduced pressure. EtOAc and water were 

added to the residue, the organic phase was separated and the aqueous layer extracted two 

times with EtOAc. After drying over MgSO4, the organic solvent was removed under 

reduced pressure. The crude product was purified by flash chromatography (PE/EtOAc 

70/30-50/50 v/v) unless otherwise indicated. 

N1-((tert-Butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)-N10-((tert-butoxycarbonylamino){3-[2-(tert-

butoxycarbonylamino)thiazol-5-yl]propylamino}methylene)decanediamide (5.26a) 

The title compound was prepared from 5.2 (135 mg, 0.23 mmol), EDAC (44 mg, 0.23 

mmol), HOBt-monohydrate (35 mg, 0.23 mmol), DIEA (0.04 ml, 0.23 mmol) in 3 ml 

DCM/abs and 3.18 (92 mg, 0.23 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.26a (120 mg, 57 %) as a brown oil. 1H-NMR (CDCl3) δ (ppm): 7.05 

(s, 1H, Thiaz-4-H), 3.47 (m, 4H, CH2NH), 2.75 (m, 4H, Thiaz-5-CH2), 2.34 (m, 4H, 

COCH2), 2.21 (s, 3H, Thiaz-4-CH3), 1.91 (m, 4H, Thiaz-5-CH2CH2), 1.65 (m, 4H, 

COCH2CH2), 1.54 (s, 18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.32 (m, 8H, (CH2)4); ES-

MS (DCM/MeOH + NH4OAc) m/z (%): 979.6 (MH+, 100); C45H74N10O10S2 (978.50). 

N1-{(tert-Butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}-N10-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)decanediamide (5.27a) 

The title compound was prepared from 5.2 (179 mg, 0.3 mmol), EDAC (57 mg, 0.3 

mmol), HOBt-monohydrate (46 mg, 0.3 mmol), DIEA (0.05 ml, 0.3 mmol) in 3 ml 

DCM/abs and 4.8 (120 mg, 0.3 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.27a (70 mg, 24 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 8.82 (s, 
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1H, Im-2-H), 7.37-7.22 (m, 16H, Im-5-H, CPh3), 3.38 (m, 4H, CH2NH), 2.84 (t, 3J = 7.7 

Hz, 2H, Im-4-CH2), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.47 (m, 4H, COCH2), 2.18 

(s, 3H, Thiaz-4-CH3), 2.03 (m, 2H, Im-4-CH2CH2), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.66 

(m, 4H, COCH2CH2), 1.52 (s, 18H, C(CH3)3), 1.35 (m, 8H, (CH2)4); ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 989.7 (MH+, 100); C54H72N10O6S (988.54). 

N1-{(tert-Butoxycarbonylamino)(3-phenylpropylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.29a) 

The title compound was prepared from 5.2 (179 mg, 0.3 mmol), EDAC (57 mg, 0.3 

mmol), HOBt-monohydrate (46 mg, 0.3 mmol), DIEA (0.05 ml, 0.3 mmol) in 3 ml 

DCM/abs and 5.14 (83 mg, 0.3 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.29a (125 mg, 51 %) as brown oil. ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 857 (MH+, 100); C43H68N8O8S (856.33). 

N1-{(tert-Butoxycarbonylamino)(3-phenylbutylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.30a) 

The title compound was prepared from 5.2 (100 mg, 0.17 mmol), EDAC (33 mg, 0.17 

mmol), HOBt-monohydrate (26 mg, 0.17 mmol), DIEA (0.03 ml, 0.173 mmol) in 4 ml 

DCM/abs and 1-(3-phenylbutyl)guanidine21 (33 mg, 0.17 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 5.30a (100 mg, 76 %) as yellow oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 771.5 (MH+, 100); C39H62N8O6S (771.03). 

N1-{(tert-Butoxycarbonylamino)(3,3-diphenylpropylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.31a) 

The title compound was prepared from 5.2 (120 mg, 0.2 mmol), EDAC (40 mg, 0.2 

mmol), HOBt-monohydrate (32 mg, 0.2 mmol), DIEA (0.04 ml, 0.2 mmol) in 3 ml 

DCM/abs and 5.15 (78 mg, 0.2 mmol) in 4 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 5-

20 min: 80/20, 30-33 min: 50/50) yielded 5.31a (50 mg, 23 %) as white foam-like solid. 
1H-NMR (CDCl3) δ (ppm): 7.30-7.15 (m, 10H, Ar-H), 3.98 (m, 1H, CH(Ar)2), 3.44 (m, 

2H, CH2NH), 3.38 (m, 2H, CH2NH), 2.70 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.36 (m, 

4H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.99-1.79 (m, 4H, Thiaz-5-CH2CH2, 
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CH2CH(Ar)2), 1.64 (m, 4H, COCH2CH2), 1.53 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 

1.49 (s, 9H, C(CH3)3), 1.35 (m, 8H, (CH2)4); EI-MS (70 eV) m/z (%): 467.3 ((M+2H)2+, 

100), 933.6 (MH+, 10); C49H72N8O8S (933.21). 

N1-{(tert-Butoxycarbonylamino)(3-cyclohexylpropylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.32a) 

The title compound was prepared from 5.2 (150 mg, 0.25 mmol), EDAC (48 mg, 0.25 

mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (0.04 ml, 0.25 mmol) in 3 ml 

DCM/abs and 5.25 (71 mg, 0.25 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 5.32a (40 mg, 19 %) as yellow oil. ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 863.6 (MH+, 100); C43H74N8O8S (863.16). 

N1-{(tert-Butoxycarbonylamino)(benzylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.33a) 

The title compound was prepared from 5.2 (150 mg, 0.25 mmol), EDAC (48 mg, 0.25 

mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (0.04 ml, 0.25 mmol) in 3 ml 

DCM/abs and 5.16 (70 mg, 0.25 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 5.33a (90 mg, 45 %) as brown oil. 1H-NMR (CD3OD) δ (ppm): 7.32 

(m, 5H, Ar-H), 4.57 (s, 2H, Ar-CH2), 3.39 (t, 3J = 6.9 Hz, 2H, CH2NH), 2.73 (t, 3J = 7.4 

Hz, 2H, Thiaz-5-CH2), 2.49-2.26 (m, 4H, COCH2), 2.15 (s, 3H, Thiaz-4-CH3), 1.87 (m, 

2H, Thiaz-5-CH2CH2), 1.67 (m, 4H, COCH2CH2), 1.50 (m, 27H, C(CH3)3), 1.36 (m, 8H, 

(CH2)4); EI-MS (70 eV) m/z (%): 829 (MH+, 100); C41H64N8O8S (828.46). 

(S)-N1-{(tert-Butoxycarbonylamino)(1-phenylethylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.34a) 

The title compound was prepared from 5.2 (170 mg, 0.28 mmol), EDAC (54 mg, 0.28 

mmol), HOBt-monohydrate (43 mg, 0.28 mmol), DIEA (0.05 ml, 0.28 mmol) in 4 ml 

DCM/abs and 5.17 (74 mg, 0.28 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 5.35a (120 mg, 49 %) as brown oil. EI-MS (70 eV) m/z (%): 843 

(MH+, 100); C42H66N8O8S (842.32). 
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(R)-N1-{(tert-Butoxycarbonylamino)(1-phenylethylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.35a) 

The title compound was prepared from 5.2 (170 mg, 0.28 mmol), EDAC (54 mg, 0.28 

mmol), HOBt-monohydrate (43 mg, 0.28 mmol), DIEA (0.05 ml, 0.28 mmol) in 3 ml 

DCM/abs and 5.18 (74 mg, 0.28 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 5.34a (110 mg, 47 %) as brown oil. EI-MS (70 eV) m/z (%): 843.5 

(MH+, 100); C42H66N8O8S (842.32). 

N1-{(tert-Butoxycarbonylamino)(4-methoxybenzylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.36a) 

The title compound was prepared from 5.2 (113 mg, 0.19 mmol), EDAC (37 mg, 0.19 

mmol), HOBt-monohydrate (29 mg, 0.19 mmol), DIEA (0.03 ml, 0.19 mmol) in 3 ml 

DCM/abs and 5.19 (53 mg, 0.19 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 5-

20 min: 80/20, 25-30 min: 50/50) yielded 5.36a (38 mg, 23 %) as colorless oil. EI-MS (70 

eV) m/z (%): 430.2 ((M+2H)2+, 100), 859.6 (MH+, 15); C42H66N8O9S (859.09). 

N1-{(tert-Butoxycarbonylamino)(3,4-dimethoxybenzylamino)methylene}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]-

propylamino}methylene)decanediamide (5.37a) 

The title compound was prepared from 5.2 (150 mg, 0.25 mmol), EDAC (48 mg, 0.25 

mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (0.04 ml, 0.25 mmol) in 3 ml 

DCM/abs and 5.20 (77 mg, 0.25 mmol) in 3 ml DCM/abs according to the general 

procedure yielding 5.37a (70 mg, 31 %) as yellow oil. ES-MS (DCM/MeOH + NH4OAc) 

m/z (%): 889.5 (MH+, 100); C43H68N8O10S (889.11). 

N1-{(tert-Butoxycarbonylamino)(methylamino)methylene}-N10-((tert-butoxy-

carbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propyl-

amino}methylene)decanediamide (5.38a) 

The title compound was prepared from 5.2 (150 mg, 0.25 mmol), EDAC (48 mg, 0.25 

mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (0.04 ml, 0.25 mmol) in 3 ml 

DCM/abs and 5.21 (43 mg, 0.25 mmol) in 4 ml DCM/abs according to the general 

procedure yielding 5.38a (120 mg, 64 %) as colorless foam-like solid. 1H-NMR (CDCl3) 
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δ (ppm): 3.47 (m, 2H, CH2NH), 2.97 (d, 3J = 4.7 Hz, 3H, NHCH3), 2.70 (m, 2H, Thiaz-5-

CH2), 2.40 (m, 4H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 

1.65 (m, 4H, COCH2CH2), 1.53 (s, 9H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.35 (m, 8H, 

(CH2)4); EI-MS (70 eV) m/z (%): 377.2 ((M+2H)2+, 100), 753.6 (MH+, 25); C35H60N8O8S 

(752.96). 

N1-{(tert-Butoxycarbonylamino)(propylamino)methylene}-N10-((tert-butoxy-

carbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propyl-

amino}methylene)decanediamide (5.39a) 

The title compound was prepared from 5.2 (160 mg, 0.27 mmol), EDAC (52 mg, 0.27 

mmol), HOBt-monohydrate (41 mg, 0.27 mmol), DIEA (0.05 ml, 0.27 mmol) in 6 ml 

DCM/abs and 5.23 (54 mg, 0.27 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 4-

20 min: 80/20) yielded 5.39a (60 mg, 29 %) as yellow oil. 1H-NMR (CD3OD) δ(ppm): 

3.40 (t, 3J = 7.1 Hz, 2H, CH2NH), 3.32 (m, 2H, CH2NH), 2.74 (t, 3J = 7.4 Hz, 2H, Thiaz-

5-CH2), 2.42 (t, 3J = 7.4 Hz, 2H, COCH2), 2.28 (m, 2H, COCH2), 2.16 (s, 3H, Thiaz-4-

CH3), 1.87 (m, 2H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.58 (m, 2H, 

NHCH2CH2), 1.52 (s, 9H, C(CH3)3), 1.49 (s, 9H, C(CH3)3), 1.47 (s, 9H, C(CH3)3), 1.35 

(m, 8H, (CH2)4), 0.95 (t, 3J = 7.86 Hz, 3H, CH2CH3); EI-MS (70 eV) m/z (%): 782 (MH+, 

100); C37H64N8O8S (781.02). 

N1-{(tert-Butoxycarbonylamino)(isobutylamino)methylene}-N10-((tert-butoxy-

carbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propyl-

amino}methylene)decanediamide (5.40a) 

The title compound was prepared from 5.2 (150 mg, 0.25 mmol), EDAC (48 mg, 0.25 

mmol), HOBt-monohydrate (38 mg, 0.25 mmol), DIEA (0.04 ml, 0.25 mmol) in 3 ml 

DCM/abs and 5.22 (54 mg, 0.25 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.40a (120 mg, 60 %) as yellow oil. 1H-NMR (CDCl3) δ (ppm): 3.47 

(m, 2H, CH2NH), 3.26 (m, 2H, CH2NH), 2.71 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.40 (m, 

4H, COCH2), 2.25 (s, 3H, Thiaz-4-CH3), 1.99-1.79 (m, 3H, Thiaz-5-CH2CH2, 

CH(CH3)2), 1.66 (m, 4H, COCH2CH2), 1.53 (s, 9H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 

1.33 (m, 8H, (CH2)4), 0.96 (d, 3J = 6.7 Hz, 6H, CH(CH3)2); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 398.4 ((M+2H)2+, 100), 795.7 (MH+, 30); C38H66N8O8S (795.04). 
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N1-{(tert-Butoxycarbonylamino)[(tert-butoxycarbonylaminopropyl)amino]-

methylene}-N10-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)decanediamide (5.41a) 

The title compound was prepared from 5.2 (210 mg, 0.35 mmol), EDAC (67 mg, 0.35 

mmol), HOBt-monohydrate (54 mg, 0.35 mmol), DIEA (0.06 ml, 0.35 mmol) in 3 ml 

DCM/abs and 5.24 (100 mg, 0.35 mmol) in 2 ml DCM/abs according to the general 

procedure. Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 4-

25 min: 80/20) yielded 5.41a (110 mg, 35 %) as yellow-brown oil. 1H-NMR (CDCl3) δ 

(ppm): 3.41 (m, 4H, CH2NH), 3.09 (t, 3J = 6.5 Hz, 2H, CH2NHBoc), 2.74 (t, 3J = 7.3 Hz, 

2H, Thiaz-5-CH2), 2.42 (t, 3J = 7.3 Hz, 4H, COCH2), 2.15 (s, 3H, Thiaz-4-CH3), 1.87 (m, 

4H, Thiaz-5-CH2CH2, CH2CH2NHBoc), 1.68 (m, 4H, COCH2CH2), 152-1.43 (m, 36H, 

(CH3)3), 1.37 (m, 8H, (CH2)4); EI-MS (70 eV) m/z (%): 897 (MH+, 100); C42H73N9O10S 

(896.15). 

N1-{3-[2-(tert-Butoxycarbonylamino)-4-methylthiazol-5-yl]propyl}-N10-((tert-

butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-

yl]propylamino}methylene)decanediamide (5.42a) 

The title compound was prepared from 5.2 (66 mg, 0.11 mmol), EDAC (23 mg, 0.11 

mmol), HOBt-monohydrate (17 mg, 0.11 mmol), DIEA (0.03 ml, 0.11 mmol) in 3 ml 

DCM/abs and 3.13 (30 mg, 0.11 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.42a (15 mg, 16 %) as colorless oil. EI-MS (70 eV) m/z (%): 426.3 

((M+2H)2+, 100), 851.6 (MH+, 15); C40H66N8O8S2 (851.13). 

N1-{(tert-Butoxycarbonylamino)[3-(1-trityl-1 H-1,2,4-triazol-5-yl)propylamino]-

methylene}-N10-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)decanediamide (5.28a) To a solution of 

CDI (0.13 g, 0.8 mmol) in 10 ml DMF under argon was added 5.2 (0.4 g, 0.67 mmol) and 

the mixture was stirred for 1 h. In a second flask, 4.23 (0.28 g, 0.67 mmol) and NaH (60 

% dispersion in mineral oil) (0.05 g, 1.34 mmol) in 7 ml DMF under argon was heated to 

30-35 °C for 45 min and was then allowed to cool to room temperature. The two mixtures 

were combined and stirred for 5 h at ambient temperature. Subsequently, water was added 

and extracted three times with EtOAc. The organic phase was dried over MgSO4 and 

evaporated in vacuo. The crude product was purified by flash chromatography 
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(CHCl3/MeOH/NH3 95/3/2 v/v/v) yielding 5.28a (0.5 g, 75 %) as brown oil. EI-MS (70 

eV) m/z (%): 495.9 ((M+2H)2+, 100), 990.5 (MH+, 20); C53H71N11O6S (990.27). 

General procedure for the synthesis of Boc-protected acylguanidines 5.43a, 5.63a 

and 5.64a 

DIEA (1 eq) was added to a solution of pertinent carboxylic acid (1 eq), EDAC (1 eq) and 

HOBt-monohydrate (1 eq) in DCM/abs and stirred for 15 min. A solution of 3.17 (1 eq) 

in DCM/abs was added and the mixture stirred overnight at room temperature. The 

solvent was removed under reduced pressure. EtOAc and water were added to the 

residue, the organic phase was separated and the aqueous layer extracted three times with 

EtOAc. After drying over MgSO4, the organic solvent was removed under reduced 

pressure. The crude product was purified by flash chromatography (PE/EtOAc 70/30-

50/50 v/v) unless otherwise indicated. 

N1-{(tert-Butoxycarbonylamino)[3-(1-trityl-1 H-imidazol-4-yl)propylamino]-

methylene}-N22-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)docosanediamide(5.43a) 

5.43a was prepared from 4.22 (20 mg, 0.04 mmol), EDAC (8 mg, 0.04 mmol), HOBt-

monohydrate (6 mg, 0.04 mmol), DIEA (0.07 ml, 0.04 mmol) in 3 ml DCM/abs and 3.17 

(16 mg, 0.04 mmol) in 2 ml DCM/abs according to the general procedure without 

purification yielding 5.43a (20 mg, 61 %) as sticky yellow oil. EI-MS (70 eV) m/z (%): 

408.3 ((M+2H)2+, 100), 815.6 (MH+, 70); C42H74N10O4S (815.17). 

N1-{3-[3-(Piperidin-1-ylmethyl)phenoxy]propyl}- N10-((tert-butoxycarbonylamino){3-

[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propylamino}methylene)-

decanediamide (5.63a) 

5.63a was prepared from 5.60 (80 mg, 0.19 mmol), EDAC (36 mg, 0.19 mmol), HOBt-

monohydrate (29 mg, 0.19 mmol), DIEA (0.03 ml, 0.19 mmol) in 3 ml DCM/abs and 

3.17 (79 mg, 0.19 mmol) in 2 ml DCM/abs according to the general procedure. 

Purification by flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 3-12 min: 

80/20, 14-22 min: 60/40, 25-40 min: 30/70) yielded 5.63a (20 mg, 13 %) as pale yellow 

oil. EI-MS (70 eV) m/z (%): 414.8 ((M+2H)2+, 100), 825.6 (MH+, 15); C43H69N7O7S 

(828.12). 
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N1-{3-[3-(Piperidin-1-ylmethyl)phenoxy]propyl}- N16-((tert-butoxycarbonylamino){3-

[2-(tert-butoxycarbonylamino)-4-methylthiazol-5-yl]propylamino}methylene)hexa-

decanediamide (5.64a) 

5.64a was prepared from 5.61 (100 mg, 0.2 mmol), EDAC (40 mg, 0.2 mmol), HOBt-

monohydrate (30 mg, 0.2 mmol), DIEA (0.04 ml, 0.2 mmol) in 4 ml DCM/abs and 3.17 

(83 mg, 0.2 mmol) in 2 ml DCM/abs according to the general procedure. Purification by 

flash chromatography (gradient: 0-2 min: PE/EtOAc 100/0, 5-20 min: 80/20, 25-40 min: 

50/50) yielded 5.64a (40 mg, 22 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 7.23 (m, 

1H, Ar-H), 6.91 (m, 3H, Ar-H), 4.16 (s, 2H, Pip-N-CH2-Ar), 4.10 (m, 2H, OCH2CH2), 

3.46 (m, 6H, CH2NH, Pip-CH2), 2.81 (m, 2H, Pip-CH2), 2.70 (t, 3J = 7.5 Hz, 2H, Thiaz-

5-CH2), 2.39 (t, 3J = 7.5 Hz, 2H, COCH2), 2.22 (m, 2H, NHCOCH2), 2.18 (s, 3H, Thiaz-

4-CH3), 2.03-1.82 (m, 4 H, Thiaz-5-CH2CH2, OCH2CH2), 1.61 (m, 10H, Pip-CH2, Pip-4-

CH2, COCH2CH2), 1.52 (s, 9H, C(CH3)3), 1.50 (s, 9H, C(CH3)3), 1.25 (m, 20H, (CH2)10); 

EI-MS (70 eV) m/z (%): 456.9 ((M+2H)2+, 100), 912.6 (MH+, 20); C49H81N7O7S 

(912.28). 

N1-{3-(m-Tolyloxy)propyl}- N10-((tert-butoxycarbonylamino){3-[2-(tert-butoxy-

carbonylamino)-4-methylthiazol-5-yl]propylamino}methylene)decanediamide 

(5.65a) 

5.65a was separated during the purification of 5.63a by flash chromatography (PE/EtOAc 

70/30-50/50 v/v). Yellow oil (20 mg). 1H-NMR (CDCl3) δ (ppm): 7.17 (t, 3J = 7.7 Hz, 

1H, Ar-H), 6.92 (m, 3H, Ar-H), 4.03 (t, 3J = 5.8 Hz, 2H, OCH2CH2), 3.46 (m, 4H, 

CH2NH), 2.70 (t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.38 (t, 3J = 7.5 Hz, 2H, COCH2), 2.33 

(s, 3H, Ar-CH3), 2.18 (s, 3H, Thiaz-4-CH3), 2.14 (m, 2H, NHCOCH2), 2.04-1.82 (m, 4H, 

Thiaz-5-CH2CH2, OCH2CH2), 1.60 (m, 4H, COCH2CH2), 1.52 (s, 9H, C(CH3)3), 1.50 (s, 

9H, C(CH3)3), 1.31 (m, 8H, (CH2)4); EI-MS (70 eV) m/z (%): 373.1 ((M+2H)2+, 100), 

745.5 (MH+, 30); C38H60N6O7S (744.98). 

N1-{6-[3,4-Dioxo-2-(3-(3-(piperidin-1-ylmethyl)phenoxy)propylamino)cyclobut-1-

enylamino]hexyl}-N10-((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl-

amino)-4-methylthiazol-5-yl]propylamino}methylene)decanediamide (5.66a) 

CDI (10 mg, 60 µmol) and 5.2 (32 mg, 54 µmol) were dissolved in 2 ml THF/abs and 

stirred at room temperature until the formation of carbon dioxide ceased. 3-(6-amino-

hexylamino)-4-(3-(3-(piperidin-1-ylmethyl)phenoxy)propylamino)cyclobut-3-ene-1,2-
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dione 5.6225 (16 mg, 36 µmol) dissolved in 2 ml of THF/DMF (1/1) was added, and the 

solution was stirred overnight at room temperature. The solvent was evaporated and 5 ml 

water was added. The solution was extracted with CHCl3 and dried over MgSO4. The 

product was evaporated in vacuo yielding 5.66a (25 mg, 67 %) as yellow oil. EI-MS (70 

eV) m/z (%): 511.8 ((M+2H)2+, 100), 1022.8 (MH+, 10); C53H83N9O9S (1022.35). 

5.5.1.7 Preparation of the NG-Boc-protected bivalent acylguanidines 

5.44a-5.54a 

General procedure for the synthesis of Boc-protected bivalent acylguanidines 5.44a-

5.51a 

To a solution of pertinent dicarboxylic acid (1 eq), EDAC (2 eq) and HOBt-monohydrate 

(2 eq) in DCM/abs was added DIEA (2 eq) under argon and stirred for 15 min. To this 

mixture a solution of 3.17 or 3.18 (2 eq) in DCM/abs was added and stirred overnight at 

room temperature. The solvent was removed under reduced pressure, EtOAc and water 

were added to the residue, the organic phase was separated and the aqueous layer 

extracted two times with EtOAc. After drying over MgSO4, the organic solvent was 

removed in vacuo. The crude product was purified by flash chromatography (PE/EtOAc 

70/30-50/50 v/v) unless otherwise indicated. 

N1,N4-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-methyl-

thiazol-5-yl]propylamino}methylene)benzene-1,4-dicarboxamide (5.44a) 

The title compound was prepared from terephthalic acid (42 mg, 0.25 mmol), EDAC (95 

mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 ml, 0.5 mmol) in 3 

ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the general 

procedure yielding 5.44a (120 mg, 51 %) as brown oil. 1H-NMR (CDCl3) δ (ppm): 8.15-

7.75 (m, 4H, Ar-H), 3.65 (m, 4H, CH2NH), 2.76 (m, 4H, Thiaz-5-CH2), 2.20 (s, 6H, 

Thiaz-4-CH3), 2.0 (m, 4H, Thiaz-5-CH2CH2), 1.52 (s, 18H, C(CH3)3), 1.47 (s, 18H, 

C(CH3)3); EI-MS (70 eV) m/z (%): 957 (MH+, 100); C44H64N10O10S2 (957.17). 

(1,4-Phenylene)bis(N-[(tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-

4-methylthiazol-5-yl]propylamino}methylene]acetamide) (5.45a) 

The title compound was prepared from (1,4-phenylene)diacetic acid (49 mg, 0.25 mmol), 

EDAC (95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 ml, 0.5 

mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs according to the 
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general procedure yielding 5.45a (150 mg, 61 %) as sticky white oil. 1H-NMR (CDCl3) δ 

(ppm): 7.33-7.10 (m, 4H, Ar-H), 3.57 (m, 4H, COCH2), 3.32 (m, 4H, CH2NH), 2.70 (m, 

4H, Thiaz-5-CH2), 2.18 (s, 6H, Thiaz-4-CH3), 1.86 (m, 4H, Thiaz-5-CH2CH2), 1.52 (s, 

9H, (CH3)3), 1.49 (s, 9H, (CH3)3), 1.47 (s, 9H, (CH3)3), 1.44 (s, 9H, (CH3)3); EI-MS (70 

eV) m/z (%): 493.4 ((M+2H)2+, 100), 985.7 (MH+, 15); C46H68N10O10S2 (985.22). 

N1,N3-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-

methylthiazol-5-yl]propylamino}methylene)cyclopentane-1,3-dicarboxamide (5.46a) 

The title compound was prepared from cyclopentane-1,3-dicarboxylic acid (40 mg, 0.25 

mmol), EDAC (95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 

ml, 0.5 mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 3 ml DCM/abs 

according to the general procedure yielding 5.46a (200 mg, 84 %) as yellow oil. 1H-NMR 

(CDCl3) δ (ppm): 3.49 (m, 4H, CH2NH), 2.90-2.55 (m, 6H, Thiaz-5-CH2, cPent-H), 2.27 

(m, 2H, cPent-H), 2.21 (s, 6H, Thiaz-4-CH3), 2.03-1.84 (m, 8H, cPent-H, Thiaz-5-

CH2CH2), 1.52 (s, 18H, C(CH3)3), 1.49 (s, 18H, C(CH3)3); EI-MS (70 eV) m/z (%): 

475.2 ((M+2H)2+, 100), 949.6 (MH+, 10); C43H68N10O10S2 (949.19). 

N4,N4'-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-

methylthiazol-5-yl]propylamino}methylene)biphenyl-4,4'-dicarboxamide (5.47a) 

The title compound was prepared from biphenyl-4,4´-dicarboxylic acid (61 mg, 0.25 

mmol), EDAC (95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 

ml, 0.5 mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 5.47a (160 mg, 62 %) as white foam-like 

solid. 1H-NMR (CDCl3) δ (ppm): 7.90 (s, 2H, Ar-H), 7.87 (s, 2H, Ar-H), 7.65 (s, 2H, Ar-

H), 7.62 (s, 2H, Ar-H), 3.67 (m, 4H, CH2NH), 2.77 (m, 4H, Thiaz-5-CH2), 2.30 (s, 6H, 

Thiaz-4-CH3), 2.0 (m, 4H, Thiaz-5-CH2CH2), 1.52 (s, 18H, C(CH3)3), 1.40 (s, 18H, 

C(CH3)3); EI-MS (70 eV) m/z (%): 1033 (MH+, 100); C50H68N10O10S2 (1033.27). 

N1,N1'-(Ethane-1,2-diyl)bis(N4-(tert-butoxycarbonylamino){3-[2-(tert-butoxy-

carbonyl)amino-4-methylthiazol-5-yl]propylamino}methylene)succinamide (5.48a) 

The title compound was prepared from 4,4'-[ethane-1,2-diylbis(azanediyl)]bis(4-

oxobutanoic acid) (130 mg, 0.25 mmol), EDAC (95 mg, 0.5 mmol), HOBt-monohydrate 

(77 mg, 0.5 mmol), DIEA (0.09 ml, 0.5 mmol) in 3 ml DCM/abs and 3.17 (207 mg, 0.5 

mmol) in 2 ml DCM/abs according to the general procedure yielding 5.48a (170 mg, 65 
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%) as brown oil. ES-MS (DCM/MeOH + NH4OAc) m/z (%): 1051.7 (MH+, 25); 

C46H74N12O12S2 (1051.28). 

N1,N10-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)-5,6-dithiadecanediamide (5.49a) 

The title compound was prepared from 5,6-dithiadecanedioicacid (60 mg, 0.25 mmol), 

EDAC (95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 ml, 0.5 

mmol) in 3 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs according to the 

general procedure yielding 5.49a (190 mg, 76 %) as yellow oil. 1H-NMR (CDCl3) δ 

(ppm): 7.07 (s, 2H, Thiaz-4-H), 3.51 (m, 4H, CH2NH), 2.88-2.65 (m, 8H, Thiaz-5-CH2, 

SCH2), 2.57 (m, 4H, COCH2), 2.23 (m, 4H, COCH2CH2),1.96 (m, 4H, Thiaz-5-

CH2CH2), 1.56 (s, 18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3); ES-MS (DCM/MeOH + 

NH4OAc) m/z (%): 501.2 ((M+2H)2+, 100), 1001.3 (MH+, 10); C42H68N10O10S4 

(1001.31). 

N1,N14-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-

methylthiazol-5-yl]propylamino}methylene)-7,8-dithiatetradecanediamide (5.50a) 

The title compound was prepared from 7,8-dithiatetradecanedioic acid (74 mg, 0.25 

mmol), EDAC (95 mg, 0.5 mmol), HOBt-monohydrate (77 mg, 0.5 mmol), DIEA (0.09 

ml, 0.5 mmol) in 5 ml DCM/abs and 3.18 (200 mg, 0.5 mmol) in 2 ml DCM/abs 

according to the general procedure yielding 5.50a (110 mg, 44 %) as brown oil. ES-MS 

(DCM/MeOH + NH4OAc) m/z (%): 529.3 ((M+2H)2+, 100), 1057.5 (MH+, 25); 

C46H76N10O10S4 (1057.42). 

N1,N26-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methyl-

thiazol-5-yl]propylamino}methylene)-8,19-dioxo-12,15-dioxa-9,18-diazahexacosane-

diamide (5.51a) 

The title compound was prepared from 8,19-dioxo-12,15-dioxa-9,18-diazahexacosane-

1,26-dioic acid22 (25 mg, 0.05 mmol), EDAC (19 mg, 0.1 mmol), HOBt-monohydrate (15 

mg, 0.1 mmol), DIEA (0.02 ml, 0.1 mmol) in 3 ml DCM/abs and 3.17 (41 mg, 0.1 mmol) 

in 2 ml DCM/abs according to the general procedure yielding 5.51a (15 mg, 24 %) as 

sticky white oil. EI-MS (70 eV) m/z (%): 418 ((M+3H)3+, 100), 626.5 ((M+2H)2+, 30), 

1251.5 (MH+, 5); C58H98N12O14S2 (1251.6). 
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N1,N11-Bis((tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonyl)amino-4-

methylthiazol-5-yl]propylamino}methylene)-3,6,9-trioxaundecanediamide  (5.52a) 

The title compound was prepared with minor modification of the general procedure. 

3,6,9-Trioxaundecanedioic acid (28 mg, 0.13 mmol, 1 eq), EDAC (60 mg, 0.32 mmol, 2.5 

eq), HOBt-monohydrate (49 mg, 0.32 mmol, 2.5 eq) and DIEA (0.09 ml, 0.5 mmol, 4 eq) 

were dissolved in 3 ml DMF under argon and stirred for 15 min. 3.17 (207 mg, 0.5 mmol) 

in 2 ml DMF was added and the mixture was allowed to stir overnight at room 

temperature. After removing of the solvent under reduced pressure, the crude product was 

dissolved in DCM/abs and extracted with Na2CO3 and brine. The organic phase was dried 

over MgSO4 and the solvent was removed in vacuo to give 5.52a (80 mg, 60 %) as brown 

oil, which was used without further purification. ES-MS (DCM/MeOH + NH4OAc) m/z 

(%): 507.3 ((M+2H)2+, 100), 1013.7 (MH+, 35); C44H72N10O13S2 (1013.23). 

General procedure for the synthesis of Boc-protected bivalent acylguanidines 5.53a 

and 5.54a 

To a solution of pertinent dicarboxylic acid (1 eq), EDAC (2.1 eq) and DMAP (cat.) in 

DCM/abs/DMF (2/1) was added DIEA (2.1 eq) under argon and stirred for 15 min. To 

this mixture a solution of 3.17 (2 eq) in DCM/abs was added and stirred overnight at 

room temperature. The solvent was removed under reduced pressure and MeCN/(10 %) 

TFA (4/1) was added. Subsequently, the product was purified using preparative RP-

HPLC. 

N1,N15-Bis((tert-Butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methyl-

thiazol-5-yl]propylamino}methylene)-8-[2-(tert-butoxycarbonylamino)ethyl]-4,12-

dioxo-5,8,11-triazapentadecanediamide (5.53a) 

The title compound was prepared from 8-[2-(tert-butoxycarbonylamino)ethyl]-4,12-

dioxo-5,8,11-triazapentadecanedioic acid22 (57 mg, 0.13 mmol), EDAC (52 mg, 0.27 

mmol), DMAP (cat.), DIEA (0.05 ml, 0.27 mmol) in 3 ml DCM/abs/DMF (2/1) and 3.17 

(105 mg, 0.26 mmol) in 2 ml DCM/abs according to the general procedure yielding 5.53a 

(16 mg, 10 %) as colorless foam-like solid. EI-MS (70 eV) m/z (%): 619.2 ((M+2H)2+, 

100), 1237.6 (MH+, 10); C55H92N14O14S2 (1237.53). 

N1,N15-Bis((tert-Butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-methyl-

thiazol-5-yl]propylamino}methylene)-9-[2-(tert-butoxycarbonylamino)ethyl]-5,13-

dioxo-6,9,12-triazapentadecanediamide (5.54a) 
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The title compound was prepared from 9-[2-(tert-butoxycarbonylamino)ethyl]-5,13-

dioxo-6,9,12-triazaheptadecanedioic acid22 (34 mg, 0.07 mmol), EDAC (29 mg, 0.15 

mmol), DMAP (cat.), DIEA (0.03 ml, 0.15 mmol) in 2 ml DCM/abs/DMF (2/1) and 3.17 

(60 mg, 0.14 mmol) in 1 ml DCM/abs according to the general procedure yielding 5.54a 

(30 mg, 34 %) as colorless foam-like solid. 1H-NMR (CD3OD) δ (ppm): 3.42 (m, 4H, 

CONHCH2), 3.34 (m, 4H, CH2NH), 3.24 (m, 4H, NHCH2CH2NH2), 3.07 (m, 4H, 

CONHCH2CH2), 2.70 (t, 3J = 7.4 Hz, 4H, Thiaz-5-CH2), 2.53 (t, 3J = 6.8 Hz, 4H, 

COCH2), 2.31 (t, 3J = 7.1 Hz, 4H, NHCOCH2), 2.16 (s, 9H, Thiaz-4-CH3), 1.92 (m, 8H, 

Thiaz-5-CH2CH2, COCH2CH2), 1.52 (s, 18H, C(CH3)3), 1.49 (s, 18H, C(CH3)3), 1.47 (s, 

9H, C(CH3)3); EI-MS (70 eV) m/z (%): 633.3 ((M+2H)2+, 100), 1265.6 (MH+, 20); 

C57H96N14O14S2 (1265.59). 

5.5.1.8 Preparation of the NG-Boc-protected trivalent acylguanidine 

5.55a 

N1,N3,N5-Tris(( tert-butoxycarbonylamino){3-[2-(tert-butoxycarbonylamino)-4-

methylthiazol-5-yl]propylamino}methylene)benzene-1,3,5-tricarboxamide (5.55a) 

To a solution of benzene-1,3,5-tricarboxylic acid (42 mg, 0.2 mmol), EDAC (125 mg, 

0.66 mmol) and HOBt-monohydrate (100 mg, 0.66 mmol) in 3 ml DMF was added DIEA 

(0.11 ml, 0.66 mmol) and stirred for 15 min. To this mixture a solution of 3.17 (247 mg, 

0.6 mmol) in 3 ml DCM/abs was added and stirred overnight at room temperature. The 

solvent was removed under reduced pressure. The crude product was purified by flash 

chromatography (PE/EtOAc 70/30-60/40 v/v) to give 5.55a (110 mg, 40 %) as pale 

yellow oil. 1H-NMR (CD3OD) δ (ppm): 8.65 (m, 3H, Ar-H),  3.69 (m, 6H, CH2NH), 2.80 

(m, 6H, Thiaz-5-CH2), 2.22 (s, 9H, Thiaz-4-CH3), 2.00 (m, 6H, Thiaz-5-CH2CH2), 1.51 

(s, 27H, C(CH3)3), 1.49 (s, 27H, C(CH3)3); EI-MS (70 eV) m/z (%): 466.4 ((M+3H)3+, 

100), 1396.9 (MH+, 20); C63H93N15O15S3 (1396.7). 

5.5.1.9 Preparation of the deprotected acylguanidines 5.26-5.55 and 

5.63-5.66 

General procedure 

TFA (20 %) was added to a solution of the protected acylguanidines 5.26a-5.55a and 

5.63a-5.66a in DCM/abs and the mixture was stirred at ambient temperature until the 

protecting groups were removed (3-5 h) (TLC control). Subsequently, the solvent was 
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removed and the residue was purified by preparative RP-HPLC. All compounds were 

obtained as trifluoroacetic acid salts. 

N1-{[3-(2-Amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-N10-{[3-(2-

aminothiazol-5-yl)propylamino](amino)methylene}decanediamide (5.26) 

The title compound was prepared from 5.26a (110 mg, 0.11 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 5.26 as colorless foam-like 

solid (30 mg, 26 %). 1H-NMR (CD3OD) δ (ppm): 7.01 (s, 1H, Thiaz-4-H), 3.37 (m, 4H, 

CH2NH), 2.74 (m, 4H, Thiaz-5-CH2), 2.46 (t, 3J = 7.41 Hz, 4H, COCH2), 2.18 (s, 3H, 

Thiaz-4-CH3), 1.93 (m, 4H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.35 (m, 8H, 

(CH2)4); 
13C-NMR (CD3OD) δ (ppm): 177.41 (quat. C=O), 171.82 (quat. Thiaz-2-C), 

155.29 (quat. C=NH), 126.36 (quat. Thiaz-5-C), 123.37 (+, Thiaz-4-C), 118.44 (quat. 

Thiaz-5-C), 41.47 (-, CH2NH), 37.76 (-, COCH2), 30.20 (-, CH2), 29.97 (-, Thiaz-5-

CH2CH2), 25.45 (-, COCH2CH2), 24.89 (-, Thiaz-5-CH2), 11.45 (+, Thiaz-4-CH3); 

HRLSIMS: m/z for ([C25H42N10O2S2 + H]+) calcd. 579.3012, found 579.3006; prep. 

HPLC: MeCN/0.1% TFA/aq (10/90-35/65); anal. HPLC: k`= 1.96 (tR = 9.82 min, column 

A), purity = 95 %; C25H42N10O2S2 · 4TFA (1034.88). 

N1-{[3-(1H-Imidazol-4-yl)propylamino](amino)methylene}-N10-{[3-(2-amino-4-

methylthiazol-5-yl)propylamino](amino)methylene}decanediamide (5.27) 

The title compound was prepared from 5.27a in 5 ml DCM/abs and 1 ml TFA according 

to the general procedure yielding 5.27 as colorless oil (70 mg, 24 %). 1H-NMR (CD3OD) 

δ (ppm): 8.82 (s, 1H, Im-2-H), 7.37 (s, 1H, Im-5-H), 3.38 (m, 4H, CH2NH), 2.84 (t, 3J = 

7.7 Hz, 2H, Im-4-CH2), 2.71 (t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.47 (m, 4H, COCH2), 

2.18 (s, 3H, Thiaz-4-CH3), 2.03 (m, 2H, Im-4-CH2CH2), 1.90 (m, 2H, Thiaz-5-CH2CH2), 

1.66 (m, 4H, COCH2CH2), 1.35 (m, 8H, (CH2)4); 
13C-NMR (CD3OD , 400 MHz, HSQC, 

HMBC) δ (ppm): 177.37 (quat. C=O), 155.64 (quat. C=NH), 134.96 (quat. Thiaz-C-4), 

118.46 (quat. Thiaz-C-5), 117.09 (+, Im-5-CH), 41.56 (-, CH2NH), 37.76 (-, COCH2), 

30.13 (-, CH2), 29.96 (-, Thiaz-5-CH2CH2), 28.10 (-, Im-4-CH2CH2), 25.41 (COCH2CH2), 

23.60 (-, Thiaz-5-CH2), 22.54 (-, Im-4-CH2),  11.41 (+, Thiaz-4-CH3); HRLSIMS: m/z for 

([C25H42N10O2S + H]+) calcd. 547.3291, found 547.3299; prep. HPLC: MeCN/0.1% 

TFA/aq (20/80-50/50); anal. HPLC: k`= 1.87 (tR = 9.51 min, column A), purity = 94 %; 

C25H42N10O2S · 4TFA (1002.32). 
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N1-{[3-(1H-1,2,4-Triazol-5-yl)propylamino](amino)methylene}-N10-{[3-(2-amino-4-

methylthiazol-5-yl)propylamino](amino)methylene}decanediamide (5.28) 

The title compound was prepared from 5.28a (150 mg, 0.15 mmol) in 10 ml DCM/abs 

and 2 ml TFA according to the general procedure yielding 5.28 as brown oil (20 mg, 13 

%). 1H-NMR (CD3OD) δ (ppm): 8.50 (s, 1H, Triaz-5-H), 3.40 (m, 4H, CH2NH), 2.94 (t, 
3J = 7.4 Hz, 2H, Triaz-3-CH2), 2.74 (m, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.41 Hz, 4H, 

COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 2.11 (m, 2H, Triaz-3-CH2CH2), 1.93 (m, 2H, Thiaz-

5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.36 (m, 8H, (CH2)4); HRLSIMS: m/z for 

([C24H41N11O2S + H]+) calcd. 548.3244, found 548.3246; prep. HPLC: MeCN/0.1% 

TFA/aq (10/90-50/50); anal. HPLC: k`= 2.02 (tR = 8.07 min, column B), purity = 98 %; 

C24H41N11O2S · 4TFA (1003.8). 

N1-{[3-Phenylpropylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (5.29) 

The title compound was prepared from 5.29a (130 mg, 0.15 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.29 as colorless oil (40 mg, 48 %). 
1H-NMR (CD3OD) δ (ppm): 7.35-7.15 (m, 5H, Ar-H), 3.29 (m, 4H, CH2NH), 2.71 (m, 

4H, Thiaz-5-CH2, Ar-CH2), 2.45 (m, 4H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.92 (m, 

2H, Thiaz-5-CH2CH2), 1.90 (m, 2H, Ar-CH2CH2), 1.67 (m, 4H, COCH2CH2), 1.35 (m, 

8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 172.36 (quat. C=O), 129.65 (+, Ar-CH), 

129.43 (+, Ar-CH), 45.61 (-, Ar-CH2), 41.60 (-, CH2NH), 37.73 (-, COCH2), 30.36 (-, 

(CH2)2), 29.95 (-, Thiaz-5-CH2CH2), 23.64 (-, Thiaz-5-CH2), 11.54 (+, Thiaz-4-CH3); 

HRLSIMS: m/z for ([C28H44N8O2S + H]+) calcd. 557.3386, found 557.3380; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.26 (tR = 14.13 min, column A), 

purity = 96 %; C28H44N8O2S · 3TFA (898.83). 

N1-{[3-Phenylbutylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (5.30) 

The title compound was prepared from 5.30a (100 mg, 0.13 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.30 as colorless oil (20 mg, 27 %). 
1H-NMR (CD3OD) δ (ppm): 7.25 (m, 5H, Ar-H), 3.34 (m, 2H, CH2NH), 3.17 (t, 3J = 6.6 

Hz, 2H, CH2NH), 2.71 (m, 2H, Thiaz-5-CH2), 2.43 (m, 4H, COCH2), 2.27 (m, 1H, 

CHCH3), 2.18 (s, 3H, Thiaz-4-CH3), 1.93 (m, 4H, Thiaz-5-CH2CH2, NHCH2CH2), 1.66 

(m, 4H, COCH2CH2), 1.35 (m, 8H, (CH2)4), 1.29 (d, 3J = 6.9 Hz, 3H, CHCH3); 
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HRLSIMS: m/z for ([C29H46N8O2S + H]+) calcd. 571.3537, found 571.3537; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.02 (tR = 10.74 min, column B), 

purity = 96 %; C29H46N8O2S · 3TFA (912.85). 

N1-{[3,3-Diphenylpropylamino](amino)methylene}-N10-{[3-(2-amino-4-methyl-

thiazol-5-yl)propylamino](amino)methylene}decanediamide (5.31) 

The title compound was prepared from 5.31a (44 mg, 0.05 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.31 as brown oil (30 mg, 62 %). 1H-

NMR (CD3OD) δ (ppm): 7.27 (m, 8H, Ar-H), 7.17 (m, 2H, Ar-H), 4.05 (t, 3J = 7.9 Hz, 

1H, CH(Ar)2), 3.34 (t, 3J = 5.7 Hz, 2H, CH2NH), 3.24 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.70 

(t, 3J = 7.5 Hz, 2H, Thiaz-5-CH2), 2.44 (m, 4H, COCH2), 2.16 (s, 3H, Thiaz-4-CH3), 

1.97-1.80 (m, 4H, Thiaz-5-CH2CH2, CH2CH(Ar)2), 1.64 (m, 4H, COCH2CH2), 1.34 (m, 

8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 177.44 (quat. C=O), 177.26 (quat. Thiaz-2-C), 

155.35 (quat. C=NH), 145.19 (quat. Ar-C), 132.65 (quat. Thiaz-4-C), 129.77 (+, Ar-CH), 

128.82 (+, Ar-CH), 127.65 (+, Ar-CH), 118.41 (quat. Thiaz-5-C), 44.04 (+, CH(Ar)2), 

41.58 (-, CH2NH), 41.40 (-, CH2NH), 37.76 (-, COCH2), 34.55 (-, CH2CH(Ar)2), 30.17 (-, 

(CH2)2), 29.94 (-, (CH2)2), 29.71 (-, Thiaz-5-CH2CH2), 25.45 (-, COCH2CH2), 23.62 (-, 

Thiaz-5-CH2), 11.45 (+, Thiaz-4-CH3); HRLSIMS: m/z for ([C34H48N8O2S + H]+) calcd. 

633.3699, found 633.3710; prep HPLC: MeCN/0.1 % TFA/aq (25/75-60/40); anal. 

HPLC: k`= 3.82 (tR = 12.91 min, column B), purity = 98 %; C34H48N8O2S · 3TFA 

(974.92). 

N1-{[3-Cyclohexylpropylamino](amino)methylene}-N10-{[3-(2-amino-4-methyl-

thiazol-5-yl)propylamino](amino)methylene}decanediamide (5.32) 

The title compound was prepared from 5.32a (40 mg, 0.05 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.30 as colorless oil (10 mg, 35 %). 
1H-NMR (CD3OD) δ (ppm): 3.32 (m, 4H, CH2NH), 2.70 (m, 2H, Thiaz-5-CH2), 2.43 (m, 

4H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.78-1.57 (m, 

11H, COCH2CH2, cHex-CH2CH2, cHex-H), 1.45-1.04 (m, 16H, cHex-CH2, cHex-H, 

(CH2)4); HRLSIMS: m/z for ([C28H50N8O2S + H]+) calcd. 563.3850, found 563.3841; 

prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 5.29 (tR = 14.15 min, 

column B), purity = 96 %; 

N1-{[Benzylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-yl)propyl-

amino](amino)methylene}decanediamide (5.33) 



Chapter 5 
____________________________________________________________________________________________________________ 

194 
 

The title compound was prepared from 5.33a (90 mg, 0.1 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.33 as colorless oil (40 mg, 76 %). 
1H-NMR (CD3OD) δ (ppm): 7.45-7.30 (m, 5H, Ar-H), 4.54 (s, 2H, Ar-CH2), 3.29 (m, 2H, 

CH2NH), 2.71 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.47 (m, 4H, COCH2), 2.18 (s, 3H, 

Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.66 (m, 4H, COCH2CH2), 1.35 (m, 8H, 

(CH2)4); 
13C-NMR (CD3OD) δ (ppm): 177.43 (quat. C=O), 169.28 (quat. Thiaz-2-C), 

136.96 (quat. Ar-C), 132.92 (quat. Thiaz-4-C), 130.13 (+, Ar-CH), 129.99 (+, Ar-CH), 

129.40 (+, Ar-CH) 128.42 (+, Ar-CH), 118.52 (quat. Thiaz-5-C), 45.97 (-, Ar-CH2), 

41.60 (-, CH2NH), 37.85 (-, COCH2), 30.16 (-, CH2), 29.95 (-, Thiaz-5-CH2CH2), 25.37  

(-, COCH2CH2), 23.64 (-, Thiaz-5-CH2), 11.47 (+, Thiaz-4-CH3); HRLSIMS: m/z for 

([C26H40N8O2S + H]+) calcd. 529.3073, found 529.3059; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 2.82 (tR = 12.67 min, column A), purity = 88 %; 

C26H40N8O2S · 3TFA (870.77). 

(S)-N1-{[1-Phenylethylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-

5-yl)propylamino](amino)methylene}decanediamide (5.34) 

The title compound was prepared from 5.34a (110 mg, 0.13 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.34 as brown oil (50 mg, 70 %). 
1H-NMR (CD3OD) δ (ppm): 7.41-7.3 (m, 5H, Ar-H), 3.35 (t, 3J = 7.14 Hz, 2H, CH2NH), 

3.31 (m, 1H, Ar-CH), 2.71 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.46 (m, 4H, COCH2), 2.18 

(s, 3H, Thiaz-4-CH3), 1.91 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.59 

(d, 3J = 6.9 Hz, 3H, CHCH3), 1.35 (m, 8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 177.55 

(quat. C=O), 166.75 (quat. Thiaz-2-C), 141.10 (quat. Ar-C-1), 132.87 (quat. Thiaz-4-C), 

130.19 (+, Ar-CH), 129.36 (+, Ar-CH), 126.89 (+, Ar-CH), 118.46 (quat. Thiaz-5-C), 

52.92 (+, Ar-CH), 37.87 (-, CH2NH), 37.77 (-, COCH2), 30.18 (-, CH2), 29.96 (-, Thiaz-

5-CH2CH2), 25.36 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 22.98 (+, ArCHCH3), 11.47 

(+, Thiaz-4-CH3); HREIMS: m/z for ([C27H42N8O2S + H]+) calcd. 543.3230, found 

543.3223; [α]20
D –11.02° (MeCN/H2O (9:1)); prep HPLC: MeCN/0.1 % TFA/aq (20/80-

50/50); anal. HPLC: k`= 3.01 (tR = 13.29 min, column A), purity = 98 %; C27H42N8O2S · 

3TFA (884.8). 

(R)-N1-{[1-Phenylethylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-

5-yl)propylamino](amino)methylene}decanediamide (5.35) 
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The title compound was prepared from 5.35a (120 mg, 0.14 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.35 as brown oil (60 mg, 79 %). 
1H-NMR (CD3OD) δ (ppm): 7.41-7.30 (m, 5H, Ar-H), 3.35 (t, 3J = 7.14 Hz, 2H, 

CH2NH), 3.31 (m, 1H, Ar-CH), 2.71 (t, 3J = 7.7 Hz, 2H, Thiaz-5-CH2), 2.46 (m, 4H, 

COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.91 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, 

COCH2CH2), 1.59 (d, 3J = 6.9 Hz, 3H, CHCH3), 1.35 (m, 8H, (CH2)4); 
13C-NMR 

(CD3OD) δ (ppm): 177.55 (quat. C=O), 166.75 (quat. Thiaz-2-C), 141.10 (quat. Ar-C-1), 

132.87 (quat. Thiaz-4-C), 130.19 (+, Ar-CH), 129.36 (+, Ar-CH), 126.89 (+, Ar-CH), 

118.46 (quat. Thiaz-5-C), 52.92 (+, Ar-CH), 37.87 (-, CH2NH), 37.77 (-, COCH2), 30.18 

(-, CH2), 29.96 (-, Thiaz-5-CH2CH2), 25.36 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 

22.98 (+, ArCHCH3), 11.47 (+, Thiaz-4-CH3); HREIMS: m/z for ([C27H42N8O2S + H]+) 

calcd. 543.3230, found 543.3224; [α]20
D +12.89° (MeCN/H2O (9:1)); prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 3.01 (tR = 13.31 min, column A), 

purity = 93 %; C27H42N8O2S · 3TFA (884.8). 

N1-{[4-Methoxylbenzylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-

5-yl)propylamino](amino)methylene}decanediamide (5.36) 

The title compound was prepared from 5.36a (36 mg, 0.04 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.36 as a colorless oil (10 mg, 28 %). 
1H-NMR (CD3OD) δ (ppm): 7.28 (d, 3J = 8.7 Hz, 2H, Ar-H), 6.94 (m, 2H, Ar-H), 4.45 (s, 

2H, NHCH2Ar), 3.79 (s, 3H, Ar-OCH3), 3.35 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.71 (t, 3J = 

7.6 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 4H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 

1.90 (m, 2H, Thiaz-5-CH2CH2), 1.64 (m, 4H, COCH2CH2), 1.34 (m, 8H, (CH2)4); 
13C-

NMR (CD3OD) δ (ppm): 177.41 (quat. C=O), 161.31 (quat. Ar-C), 132.66 (quat. Thiaz-4-

C), 130.03 (+, Ar-CH), 118.44 (quat. Thiaz-5-C), 115.47 (+, Ar-CH), 55.80 (+, OCH3), 

45.62 (-, NHCH2Ar), 41.61 (-, CH2NH), 37.84 (-, COCH2), 30.19 (-, Thiaz-5-CH2CH2), 

29.95 (-, (CH2)4), 25.36 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 11.47 (+, Thiaz-4-CH3); 

HREIMS: m/z for ([C27H42N8O3S + H]+) calcd. 559.3179, found 559.3165; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.81 (tR = 10.19 min, column B), 

purity = 97 %; C27H42N8O3S · 3TFA (900.8).  

N1-{[3,4-Dimethoxybenzylamino](amino)methylene}-N10-{[3-(2-amino-4-methyl-

thiazol-5-yl)propylamino](amino)methylene}decanediamide (5.37) 
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The title compound was prepared from 5.37a (70 mg, 0.08 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.37 as a colorless oil (15 mg, 32 %). 
1H-NMR (CD3OD) δ (ppm): 6.95 (m, 3H, Ar-H), 4.45 (s, 2H, NHCH2Ar), 3.83 (s, 6H, 

OCH3), 3.35 (m, 2H, CH2NH), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.14 

Hz, 4H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 

4H, COCH2CH2), 1.35 (m, 8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 177.27 (quat. 

C=O), 168.22 (quat. Thiaz-2-C), 156.63 (quat. C=NH), 132.50 (quat. Thiaz-4-C), 118.45 

(quat. Thiaz-5-C), 41.61 (-, CH2NH), 37.85 (-, COCH2), 30.18 (-, CH2), 29.73 (-, CH2), 

29.95 (-, Thiaz-5-CH2-CH2), 25,38 (-, COCH2), 23.63 (-, Thiaz-5-CH2), 11.47 (+, Thiaz-

5-CH3); HREIMS: m/z for ([C28H44N8O4S + H]+) calcd. 589.3279, found 589.3274; prep 

HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.76 (tR = 10.06 min, 

column B), purity = 97 %; C28H44N8O4S · 3TFA (930.83). 

N1-{[Methylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-yl)-

propylamino](amino)methylene}decanediamide (5.38) 

The title compound was prepared from 5.38a (65 mg, 0.09 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.38 as brown oil (10 mg, 16 %). 1H-

NMR (CD3OD) δ (ppm): 3.35 (t, 3J = 7.14 Hz, 2H, CH2NH), 2.95 (s, 3H, NHCH3), 2.71 

(t, 3J = 7.41 Hz, 2H, Thiaz-5-CH2), 2.46 (m, 4H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 

1.90 (m, 2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.35 (m, 8H, (CH2)4); 
13C-

NMR (CD3OD) δ (ppm): 177.40 (quat. C=O), 163.60 (quat. Thiaz-2-C), 157.43 (quat. 

C=NH), 132.65 (quat. Thiaz-4-C), 118.45 (quat. Thiaz-5-C), 41.61 (-, CH2NH), 37.76 (-, 

COCH2), 30.19 (-, Thiaz-5-CH2CH2), 29.97 (-, (CH2)4), 28.32 (+, NHCH3), 25.44 (-, 

COCH2CH2), 23.62 (-, Thiaz-5-CH2), 11.46 (+, Thiaz-4-CH3); HREIMS: m/z for 

([C20H36N8O2S + H]+) calcd. 453.2760, found 453.2758; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 1.84 (tR = 7.59 min, column B), purity = 99 %; 

C20H36N8O2S · 3TFA (794.68). 

N1-{[Propylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (5.39) 

The title compound was prepared from 5.39a (50 mg, 0.06 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.39 as yellow oil (30 mg, 60 %). 
1H-NMR (CD3OD) δ (ppm): 3.35 (t, 3J = 6.9 Hz, 2H, CH2NH), 3.25 (t, 3J = 7.3 Hz, 2H, 

CH2NH), 2.71 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 4H, COCH2), 2.17 
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(s, 3H, Thiaz-4-CH3), 1.90 (m, 2H, Thiaz-5-CH2CH2), 1.67 (m, 6H, COCH2CH2, 

CH2CH3), 1.32 (m, 8H, (CH2)4), 0.99 (t, 3J = 7.4 Hz, 3H, CH2CH3); 
13C-NMR (CD3OD) 

δ (ppm): 177.46 (quat. C=O), 170.39 (quat. Thiaz-2-C), 155.31 (quat. C=NH), 132.60 

(quat. Thiaz-4-C), 118.40 (quat. Thiaz-5-C), 44.16 (-, CH2NH), 41.58 (-, CH2NH), 37.78 

(-, COCH2), 30.15 (-, Thiaz-5-CH2CH2), 29.93 (-, (CH2)4), 25.43 (-, COCH2CH2), 23.62 

(-, Thiaz-5-CH2), 22.52 (-, CH2CH3), 11.45 (+, Thiaz-4-CH3), 11.33 (+, CH2CH3); 

HREIMS: m/z for ([C22H40N8O2S]+) calcd. 480.2995, found 480.2996; prep HPLC: 

MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.30 (tR = 8.83 min, column B), 

purity = 98 %; C22H40N8O2S · 3TFA (822.82). 

N1-{[Isobutylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-yl)-

propylamino](amino)methylene}decanediamide (5.40) 

The title compound was prepared from 5.40a (100 mg, 0.16 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.40 as brown oil (55 mg, 41 %). 
1H-NMR (CD3OD) δ (ppm): 3.39 (t, 3J = 7.1 Hz, 2H, CH2NH), 3.14 (d, 3J = 7.1 Hz, 2H, 

NHCH2), 2.71 (t, 3J = 7.4 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 4H, COCH2), 2.18 

(s, 3H, Thiaz-4-CH3), 2.00-1.85 (m, 3H, Thiaz-5-CH2CH2, CH(CH3)2), 1.66 (m, 4H, 

COCH2CH2), 1.35 (m, 8H, (CH2)4), 1.00 (d, 3J = 6.9 Hz, 6H, CH(CH3)2); 
13C-NMR 

(CD3OD) δ (ppm): 177.36 (quat. C=O), 156.84 (quat. C=NH), 132.57 (quat. Thiaz-4-C), 

118.46 (quat. Thiaz-5-C), 43.00 (-, CH2NH), 41.61 (-, CH2NH), 37.83 (-, COCH2), 30.22 

(-, Thiaz-5-CH2CH2), 29.98 (-, (CH2)4), 28.83 (+, CH(CH3)2), 25.44 (-, COCH2CH2), 

23.61 (-, Thiaz-5-CH2), 20.07 (+, CH(CH3)2), 11.48 (+, Thiaz-4-CH3); HREIMS: m/z for 

([C23H42N8O2S + H]+) calcd. 495.3230, found 495.3215; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 2.61 (tR = 9.66 min, column B), purity = 99 %; 

C23H42N8O2S · 3TFA (836.76). 

N1-{[3-Aminopropylamino](amino)methylene}-N10-{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (5.41) 

The title compound was prepared from 5.41a (100 mg, 0.11 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.41 as sticky yellow oil (30 mg, 

55 %). 1H-NMR (CD3OD) δ (ppm): 3.42 (t, 3J = 6.9 Hz, 2H, CH2NH), 3.35 (t, 3J = 6.9 

Hz, 2H, CH2NH), 3.02 (m, 2H, CH2NH2), 2.71 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.47 (t, 
3J = 7.3 Hz, 4H, COCH2), 2.18 (s, 3H, Thiaz-4-CH3), 2.06-1.84 (m, 4H, Thiaz-5-

CH2CH2, CH2CH2NH2), 1.65 (m, 4H, COCH2CH2), 1.34 (m, 8H, (CH2)4); 
13C-NMR 
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(CD3OD) δ (ppm): 177.43 (quat. C=O), 163.14 (quat. Thiaz-2-C), 155.38 (quat. C=NH), 

132.60 (quat. Thiaz-4-C), 118.40 (quat. Thiaz-5-C), 41.57 (-, CH2NH), 39.50 (-, 

CH2NH2), 38.01 (-, CH2NH), 37.75 (-, COCH2), 30.16 (-, Thiaz-5-CH2CH2), 29.93 (-, 

(CH2)4), 27.17 (-, CH2CH2NH2), 25.43 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 11.44 (+, 

Thiaz-4-CH3); HREIMS: m/z for ([C22H41N9O2S + H]+) calcd. 496.3182, found 496.3177; 

prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 1.49 (tR = 6.66 min, 

column B), purity = 98 %; C22H41N9O2S · 4TFA (951.77). 

N1-{3-(2-Amino-4-methylthiazol-5-yl)propyl}-N10-{[3-(2-amino-4-methylthiazol-5-

yl)propylamino](amino)methylene}decanediamide (5.42) 

The title compound was prepared from 5.42a (15 mg, 0.02 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.42 as brown oil (10 mg, 91 %). 1H-

NMR (CD3OD) δ (ppm): 3.35 (m, 2H, CH2NH), 3.20 (m, 2H, CH2NHCO), 2.71 (t, 3J = 

7.68 Hz, 2H, Thiaz-5-CH2), 2.62 (t, 3J = 7.68 Hz, 2H, Thiaz-5-CH2), 2.46 (m, 2H, 

COCH2), 2.18 (m, 2H, COCH2), 2.15 (s, 3H, Thiaz-4-CH3), 2.14 (s, 3H, Thiaz-4-CH3), 

1.89 (m, 2H, Thiaz-5-CH2CH2), 1.74 (m, 2H, Thiaz-5-CH2CH2), 1.69-1.57 (m, 4H, 

COCH2CH2), 1.34 (m, 8H, (CH2)4); HRLSIMS: m/z for ([C25H42N8O2S2 + H]+) calcd. 

551.2950, found 551.2947; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. 

HPLC: k`= 1.90 (tR = 7.76 min, column B), purity = 96 %; C25H42N8O2S2 · 3TFA 

(892.84). 

N1-{[3-(1H-Imidazol-4-yl)propylamino](amino)methylene}-N22-{[3-(2-amino-4-

methylthiazol-5-yl)propylamino](amino)methylene}docosanediamide (5.43) 

The title compound was prepared from 5.43a (10 mg, 0.01 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.43 as white foam-like soid (4 mg, 

56 %). 1H-NMR (CD3OD) δ (ppm): 8.80 (s, 1H, Im-2-H), 7.36 (s, 1H, Im-5-H), 3.38 (m, 

4H, CH2NH), 2.83 (m, 2H, Im-4-CH2), 2.71 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J 

= 7.1 Hz, 4H, COCH2), 2.17 (s, 3H, Thiaz-4-CH3), 2.03 (m, 2H, Im-4-CH2CH2), 1.90 (m, 

2H, Thiaz-5-CH2CH2), 1.65 (m, 4H, COCH2CH2), 1.32 (m, 8H, COCH2(CH2)2), 1.28 (m, 

24H, (CH2)12); HRLSIMS: m/z for ([C37H66N10O2S + H]+) calcd. 715.5169, found 

715.5186; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 4.69 (tR = 

15.23 min, column B), purity = 100 %; C37H66N10O2S · 4TFA (1171.13). 

N1,N4-Bis{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-

benzene-1,4-dicarboxamide (5.44) 
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The title compound was prepared from 5.44a (120 mg, 0.13 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.44 as yellow oil (40 mg, 57 %). 
1H-NMR (CD3OD) δ (ppm): 7.16 (m, 4H, Ar-H), 3.46 (t, 3J = 7.1 Hz, 4H, CH2NH), 2.76 

(t, 3J = 7.7 Hz, 4H, Thiaz-5-CH2), 2.20 (s, 6H, Thiaz-4-CH3), 1.97 (m, 4H, Thiaz-5-

CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.47 (quat. C=O), 132.65 (quat. Thiaz-4-C), 

131.20 (quat. Ar-C), 129.95 (quat. Ar-C), 118.43 (quat. Thiaz-5-C), 41.98 (-, CH2NH), 

29.78 (-, Thiaz-5-CH2CH2), 23.64 (-, Thiaz-5-CH2), 11.48 (+, Thiaz-4-CH3); HRLSIMS: 

m/z for ([C24H32N10O2S2 + H]+) calcd. 557.2229, found 557.2225; prep HPLC: MeCN/0.1 

% TFA/aq (20/80-50/50); anal. HPLC: k`= 1.48 (tR = 8.23 min, column A), purity = 85 

%; C24H32N10O2S2 · 4TFA (1012.79). 

(1,4-Phenylene)bis(N-{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)-

methylene}acetamide)  (5.45) 

The title compound was prepared from 5.45a (100 mg, 0.1 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.45 as white foam-like solid (25 mg, 

43 %). 1H-NMR (CD3OD) δ (ppm): 7.31 (s, 4H, Ar-H), 3.79 (s, 4H, COCH2), 3.34 (t, 3J 

= 6.86 Hz, 4H, CH2NH), 2.71 (t, 3J = 7.41 Hz, 4H, Thiaz-5-CH2), 2.16 (s, 6H, Thiaz-4-

CH3), 1.89 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 180.18 (quat. C=O), 

175.11 (quat. Thiaz-2-C), 155.38 (quat. C=NH), 133.74 (quat. Ar-C), 132.63 (quat. 

Thiaz-4-C), 131.01 (+, Ar-CH), 118.42 (quat. Thiaz-5-C), 43.95 (-, COCH2), 41.66 (-, 

CH2NH), 29.67 (-, Thiaz-5-CH2CH2), 23.61 (-, Thiaz-5-CH2), 11.46 (+, Thiaz-4-CH3); 

HRLSIMS: m/z for ([C26H36N10O2S2 + H]+) calcd. 585.2542, found 585.2558; prep 

HPLC: MeCN/0.1 % TFA/aq (10/90-40/60); anal. HPLC: k`= 1.28 (tR = 6.09 min, 

column B), purity = 94 %; C26H36N10O2S2 · 4TFA (1040.84). 

N1,N3-Bis{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-

cyclopentane-1,3-dicarboxamide (5.46) 

The title compound was prepared from 5.46a (180 mg, 0.19 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.46 as brown oil (60 mg, 58 %). 
1H-NMR (CD3OD) δ (ppm): 3.35 (t, 3J = 6.9 Hz, 4H, CH2NH), 3.04 (m, 2H, cPent-H), 

2.72 (t, 3J = 7.6 Hz, 4H, Thiaz-5-CH2), 2.26 (m, 2H, cPent-H), 2.18 (s, 6H, Thiaz-4-

CH3), 2.02 (m, 4H, cPent-H), 1.91 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ 

(ppm): 170.37 (quat. C=O), 132.54 (quat. Thiaz-4-C), 118.52 (quat. Thiaz-5-C), 47.16 (-, 

COCH2), 41.68 (-, CH2NH), 37.00 (-, cPent-2-C), 30.53 (-, cPent-C), 29.69 (-, Thiaz-5-
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CH2CH2), 23.65 (-, Thiaz-5-CH2), 11.45 (+, Thiaz-4-CH3); HREIMS: m/z for 

([C23H36N10O2S2 + H]+) calcd. 549.2537, found 549.2540; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-50/50); anal. HPLC: k`= 1.03 (tR = 5.43 min, column B), purity = 94 %; 

C23H36N10O2S2 · 4TFA (1004.81). 

N4,N4'-Bis{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-

biphenyl-4,4'-dicarboxamide (5.47) 

The title compound was prepared from 5.47a (150 mg, 0.15 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.47 as brown oil (52 mg, 55 %). 
1H-NMR (CD3OD) δ (ppm): 8.14 (d, 3J = 8.5 Hz, 4H, Ar-H), 7.93 (d, 3J = 8.5 Hz, 4H, 

Ar-H) 3.46 (t, 3J = 7.1 Hz, 4H, CH2NH), 2.77 (t, 3J = 7.7 Hz, 4H, Thiaz-5-CH2), 2.20 (s, 

6H, Thiaz-4-CH3), 1.97 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 177.67 

(quat. C=O), 132.65 (quat. Thiaz-4-C), 130.22 (quat. Ar-C), 129.93 (quat. Ar-C), 118.40 

(quat. Thiaz-5-C), 41.95 (-, CH2NH), 29.95 (-, Thiaz-5-CH2CH2), 23.70 (-, Thiaz-5-CH2), 

11.48 (+, Thiaz-4-CH3); HRLSIMS: m/z for ([C30H36N10O2S2 + H]+) calcd. 633.2542, 

found 633.2554; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 1.98 

(tR = 9.88 min, column A), purity = 90 %; C24H32N10O2S2 · 4TFA (1088.88). 

N1,N1'-(Ethane-1,2-diyl)bis{N4-[3-(2-amino-4-methylthiazol-5-yl)propyl-

amino](amino)methylene}succinamide (5.48) 

The title compound was prepared from 5.48a (100 mg, 0.1 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.48 as brown oil (25 mg, 38 %). 1H-

NMR (CD3OD) δ (ppm): 3.36 (m, 4H, CH2NH), 3.21 (t, 3J = 7.0 Hz, 4H, CONHCH2), 

2.78-2.34 (m, 12H, Thiaz-5-CH2, COCH2), 2.17 (s, 6H, Thiaz-4-CH3), 1.87 (m, 4H, 

Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 170.34 (quat. C=O), 158.81 (quat. 

C=NH), 132.48 (quat. Thiaz-4-C), 118.51 (quat. Thiaz-5-C), 41.60 (-, CH2NH), 41.36 (-, 

COCH2), 30.52 (CONHCH2) 29.11 (-, Thiaz-5-CH2CH2), 23.45 (-, Thiaz-5-CH2), 11.41 

(+, Thiaz-4-CH3); HRLSIMS: m/z for ([C26H42N12O4S2 + H]+) calcd. 651.2966, found 

651.2966; prep HPLC: MeCN/0.1 % TFA/aq (10/90-30/70); anal. HPLC: k`= 1.51 (tR = 

6.73 min, column B), purity = 98 %; C26H42N12O4S2 · 4TFA (1106.9). 

N1,N10-Bis({3-[2-amino-4-methylthiazol-5-yl]propylamino}(amino)methylene)-5,6-

dithiadecanediamide (5.49)  

The title compound was prepared from 5.49a (190 mg, 0.19 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.49 as yellow oil (60 mg, 53 %). 
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1H-NMR (CD3OD) δ (ppm): 7.01 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.1 Hz, 4H, CH2NH), 

2.76 (m, 8H, Thiaz-5-CH2, SCH2), 2.62 (t, 3J = 7.41 Hz, 4H, COCH2), 2.05 (m, 4H, 

COCH2CH2), 1.95 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 176.64 

(quat. C=O), 171.84 (quat. Thiaz-2-C), 155.26 (quat. C=NH), 126.35 (quat. Thiaz-5-C), 

123.30 (+, Thiaz-4-C), 41.49 (-, CH2NH), 37.98 (-, COCH2), 35.99 (-, SCH2), 29.49 (-, 

Thiaz-5-CH2-CH2), 24.87 (-, Thiaz-5-CH2), 24.52 (-, COCH2CH2); HRLSIMS: m/z for 

([C22H36N10O2S4 + H]+) calcd. 601.1984, found 601.1972; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 1.56 (tR = 6.85 min, column B), purity = 97 %; 

C22H36N10O2S4 · 4TFA (1056.93). 

N1,N14-Bis({3-[2-amino-4-methylthiazol-5-yl]propylamino}(amino)methylene)-7,8-

dithiatetradecanediamide (5.50)  

The title compound was prepared from 5.50a (100 mg, 0.1 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.50 as yellow oil (41 mg, 62 %). 
1H-NMR (CD3OD) δ (ppm): 7.00 (s, 2H, Thiaz-4-H), 3.37 (t, 3J = 7.0 Hz, 4H, CH2NH), 

2.76 (t, 3J = 7.5 Hz, 4H, Thiaz-5-CH2), 2.69 (t, 3J = 7.0 Hz, 4H, SCH2), 2.49 (t, 3J = 7.3 

Hz, 4H, COCH2), 1.95 (m, 4H, Thiaz-5-CH2CH2), 1.69 (m, 8H, SCH2CH2, COCH2CH2), 

1.46 (m, 4H, CH2); 
13C-NMR (CD3OD) δ (ppm): 177.23 (quat. C=O), 171.80 (quat. 

Thiaz-2-C), 155.32 (quat. C=NH), 126.36 (quat. Thiaz-5-C), 123.51 (+, Thiaz-4-C), 41.49 

(-, CH2NH), 39.24 (-, SCH2), 37.98 (-, COCH2), 29.77 (-, SCH2CH2), 29.52 (-, Thiaz-5-

CH2-CH2), 28.68 (-, SCH2CH2CH2), 24.99 (-, COCH2CH2), 24.89 (-, Thiaz-5-CH2); 

HRLSIMS: m/z for ([C26H44N10O2S4 + H]+) calcd. 657.2604, found 657.2599; prep 

HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.43 (tR = 9.18 min, 

column B), purity = 98 %; C26H44N10O2S4 · 4TFA (1113.03). 

N1,N1'-((Ethane-1,2-diyldioxy)bis[ethane-2,1-diyl])bis-N8-{[3-(2-amino-4-

methylthiazol-5-yl)propylamino](amino)methylene}octanediamide (5.51) 

The title compound was prepared from 5.51a (15 mg, 0.01 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.51 as yellow oil (5 mg, 57 %). 1H-

NMR (CD3OD) δ (ppm): 3.61 (m, 4H, NHCH2CH2), 3.53 (t, 3J = 5.5 Hz, 4H, OCH2), 

3.34 (m, 8H, CH2NH, CONHCH2), 2.71 (m, 4H, Thiaz-5-CH2), 2.47 (t, 3J = 7.3 Hz, 4H, 

COCH2), 2.21 (m, 4H, NHCOCH2), 2.18 (s, 6H, Thiaz-4-CH3), 1.88 (m, 4H, Thiaz-5-

CH2CH2), 1.63 (m, 8H, COCH2CH2), 1.37 (m, 8H, (CH2)2); EI-MS (70 eV) m/z (%): 

298.1 ((M+3H)3+, 100), 426.1 ((M+2H)2+, 50), 851.7 (MH+, 10); HRLSIMS: m/z for 
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([C38H66N12O6S2 + H]+) calcd. 851.4742, found 851.4740; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-35/65); anal. HPLC: k`= 2.47 (tR = 9.30 min, column B), purity = 97 %; 

C38H66N12O6S2 · 4TFA (1307.22). 

N1,N11-Bis{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-3,6,9-

trioxaundecanediamide (5.52) 

The title compound was prepared from 5.52a (80 mg, 0.08 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.52 as colorless oil (25 mg, 51 %). 
1H-NMR (CD3OD) δ (ppm): 4.25 (s, 2H, COCH2), 4.15 (s, 2H, COCH2), 3.74 (m, 8H, 

OCH2), 3.38 (t, 3J = 6.9 Hz, 2H, CH2NH), 3.21 (t, 3J = 7.0 Hz, 2H, CH2NH), 2.69 (m, 

4H, Thiaz-5-CH2), 2.17 (s, 6H, Thiaz-4-CH3), 1.85 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR 

(CD3OD) δ (ppm): 174.02 (quat. C=O), 132.48 (quat. Thiaz-4-C), 118.51 (quat. Thiaz-5-

C), 72.21 (-, COCH2), 71.24 (-, OCH2), 41.76 (-, CH2NH), 41.36 (-, CH2NH), 30.52 (-, 

Thiaz-5-CH2-CH2), 29.78 (-, Thiaz-5-CH2-CH2), 23.56 (-, Thiaz-5-CH2), 23.45 (-, Thiaz-

5-CH2), 11.47 (+, Thiaz-4-CH3), 11.41 (+, Thiaz-4-CH3); HRLSIMS: m/z for 

([C24H40N10O5S2 + H]+) calcd. 613.2697, found 613.2698; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-30/70); anal. HPLC: k`= 0.77 (tR = 4.73 min, column B), purity = 90 %; 

C24H40N10O5S2 · 4TFA (1068.85). 

N1,N15-Bis({3-[2-amino-4-methylthiazol-5-yl]propylamino}(amino)methylene)-8-[2-

aminoethyl]-4,12-dioxo-5,8,11-triazapentadecanediamide (5.53) 

The title compound was prepared from 5.53a (26 mg, 0.02 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.53 as sticky yellow oil (11 mg, 75 

%). 1H-NMR (CD3OD) δ (ppm): 3.41 (m, 4H, CONHCH2), 3.35 (t, 3J = 6.8 Hz, 4H, 

CH2NH), 3.20 (m, 4H, NCH2CH2NH2), 3.02 (m, 4H, CONHCH2CH2), 2.78 (m, 4H, 

Thiaz-5-CH2), 2.71 (t, 3J = 7.6 Hz, 4H, COCH2), 2.60 (t, 3J = 6.2 Hz, 4H, NHCOCH2), 

2.18 (s, 6H, Thiaz-4-CH3), 1.90 (m, 4H, Thiaz-5-CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 

176.51 (quat. C=O), 170.36 (quat. Thiaz-2-C), 159.85 (quat. C=NH), 132.59 (quat. Thiaz-

4-C), 118.43 (quat. Thiaz-5-C), 55.87 (-, NCH2), 41.60 (-, CH2NH), 37.86 (-, CH2NH2), 

37.66 (-, CONHCH2), 32.76 (-, NHCOCH2), 30.21 (-, COCH2), 29.75 (-, Thiaz-5-

CH2CH2), 23.61 (-, Thiaz-5-CH2), 11.46 (+, Thiaz-4-CH3); HRLSIMS: m/z for 

([C30H52N14O4S2 + H]+) calcd. 737.3810, found 737.3814; prep HPLC: MeCN/0.1 % 

TFA/aq (10/90-40/60); anal. HPLC: k`= 0.29 (tR = 3.46 min, column B), purity = 97 %; 

C30H52N14O4S2 · 4TFA (1193.04). 
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N1,N17-Bis({3-[2-amino-4-methylthiazol-5-yl]propylamino}(amino)methylene)-9-[2-

aminoethyl]-5,13-dioxo-6,9,12-triazaheptadecanediamide (5.54) 

The title compound was prepared from 5.54a (30 mg, 0.02 mmol) in 5 ml DCM/abs and 1 

ml TFA according to the general procedure yielding 5.54 as sticky yellow oil (17 mg, 70 

%). 1H-NMR (CD3OD) δ (ppm): 3.41 (m, 4H, CONHCH2), 3.34 (m, 4H, CH2NH), 3.21 

(m, 4H, NCH2CH2NH2), 3.04 (m, 4H, CONHCH2CH2), 2.70 (t, 3J = 7.4 Hz, 4H, Thiaz-5-

CH2), 2.53 (t, 3J = 6.9 Hz, 4H, COCH2), 2.31 (t, 3J = 7.0 Hz, 4H, NHCOCH2), 2.17 (s, 

6H, Thiaz-4-CH3), 1.91 (m, 8H, Thiaz-5-CH2CH2, COCH2CH2); 
13C-NMR (CD3OD) δ 

(ppm): 176.76 (quat. C=O), 176.46 (quat. C=O), 170.37 (quat. Thiaz-2-C), 155.32 (quat. 

C=NH), 132.60 (quat. Thiaz-4-C), 118.43 (quat. Thiaz-5-C), 55.92 (-, NCH2), 41.61 (-, 

CH2NH), 37.60 (-, CH2NH2), 36.79 (-, CONHCH2), 35.50 (-, COCH2), 29.72 (-, Thiaz-5-

CH2CH2), 23.63 (-, Thiaz-5-CH2), 21.18 (-, COCH2CH2), 11.46 (+, Thiaz-4-CH3); 

HRLSIMS: m/z for ([C32H56N14O4S2 + H]+) calcd. 765.4129, found 765.4116; prep 

HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 0.57 (tR = 4.21 min, 

column B), purity = 100 %; C32H56N14O4S2 · 4TFA (1221.09). 

N1,N3,N5-Tris{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-

benzene-1,3,5-tricarboxamide (5.55) 

The title compound was prepared from 5.55a (100 mg, 0.07 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.55 as colorless oil (35 mg, 60 %). 
1H-NMR (CD3OD) δ (ppm): 8.87 (s, 3H, Ar-H), 3.46 (t, 3J = 6.9 Hz, 6H, CH2NH), 2.76 

(t, 3J = 7.4 Hz, 6H, Thiaz-5-CH2), 2.19 (s, 9H, Thiaz-4-CH3), 1.97 (m, 6H, Thiaz-5-

CH2CH2); 
13C-NMR (CD3OD) δ (ppm): 170.39 (quat. C=O), 168.04 (quat. Thiaz-2-C), 

155.69 (quat. C=NH), 134.77 (quat. Ar-C), 133.93 (+, Ar-CH), 132,65 (quat. Thiaz-4-C), 

118,38 (quat. Thiaz-5-C), 41.96 (-, CH2NH), 29.73 (-, Thiaz-5-CH2CH2), 23.62 (-, Thiaz-

5-CH2), 11.47 (+, Thiaz-4-CH3); HRLSIMS: m/z for ([C33H45N15O3S3 + H]+) calcd. 

796.3070, found 796.3060; prep HPLC: MeCN/0.1 % TFA/aq (10/90-50/50); anal. 

HPLC: k`= 1.24 (tR = 6.00 min, column B), purity = 94 %; C33H45N15O3S3 · 6TFA 

(1480.12). 

N1-{3-[3-(Piperidin-1-ylmethyl)phenoxy]propyl}- N10-{[3-(2-amino-4-methylthiazol-

5-yl)propylamino](amino)methylene}decanediamide (5.63) 

The title compound was prepared from 5.63a (20 mg, 0.024 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.63 as colorless oil (15 mg, 93 %). 
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1H-NMR (CD3OD) δ (ppm): 7.38 (t, 3J =7.8 Hz, 1H, Ar-H), 7.06 (m, 2H, Ar-H), 7.03 (m, 

1H, Ar-H), 4.23 (s, 2H, Pip-N-CH2-Ar), 4.04 (t, 3J = 6.1 Hz, 2H, OCH2CH2), 3.43 (m, 

2H, Pip-CH2), 3.35 (t, 3J =6.9 Hz, 4H, CH2NH), 2.95 (m, 2H, Pip-CH2), 2.71 (t, 3J = 7.6 

Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 2H, COCH2), 2.17 (m, 5H, Thiaz-4-CH3, 

NHCOCH2), 1.96 (m, 4H, Thiaz-5-CH2CH2, OCH2CH2), 1.80 (m, 4H, Pip-CH2), 1.57 

(m, 6H, COCH2CH2, Pip-4-CH2), 1.31 (m, 8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 

177.45 (quat. C=O), 176.46 (quat. C=O), 170.23 (quat. Thiaz-2-C), 161.02 (quat. Ar-C), 

155.37 (quat. C=NH), 132.60 (quat. Thiaz-4-C), 131.78 (quat. Ar-C), 131.50 (+, Ar-CH), 

124.36 (+, Ar-CH), 118.42 (quat. Thiaz-5-C), 118.38 (+, Ar-CH), 117.14 (+, Ar-CH), 

66.78 (-, CH2-OAr), 61.71 (+, Pip-N-CH2), 54.05 (+, Pip-2-CH2, Pip-6-CH2), 41.58 (-, 

CH2NH), 37.76 (-, CONHCH2), 37.38 (-, COCH2), 37.15 (-, COCH2), 30.26 (-, (CH2)2), 

29.97 (-, (CH2)2), 29.72 (-, Thiaz-5-CH2CH2), 27.04 (-, CH2CH2O), 25.46 (-, 

COCH2CH2), 24.10 (-, Pip-3-CH2, Pip-5-CH2), 23.62 (-, Thiaz-5-CH2), 22.76 (-, Pip-4-

CH2), 11.45 (+, Thiaz-4-CH3); HREIMS: m/z for ([C33H53N7O3S]+•) calcd. 627.3931, 

found 627.3933; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. HPLC: k`= 2.39 

(tR = 9.08 min, column B), purity = 99 %; C33H53N7O3S · 3TFA (969.94). 

N1-{3-[3-(Piperidin-1-ylmethyl)phenoxy]propyl}- N16-{[3-(2-amino-4-methylthiazol-

5-yl)propylamino](amino)methylene}hexadecanediamide (5.64) 

The title compound was prepared from 5.64a (40 mg, 0.044 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.64 as white foam-like solid (15 

mg, 48 %). 1H-NMR (CD3OD) δ (ppm): 7.38 (t, 3J =7.8 Hz, 1H, Ar-H), 7.06 (m, 2H, Ar-

H), 7.03 (m, 1H, Ar-H), 4.23 (s, 2H, Pip-N-CH2-Ar), 4.04 (t, 3J = 6.1 Hz, 2H, 

OCH2CH2), 3.43 (m, 2H, Pip-CH2), 3.35 (m, 4H, CH2NH), 2.94 (t, 3J = 12.5 Hz, 2H, Pip-

CH2), 2.71 (t, 3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.46 (t, 3J = 7.4 Hz, 2H, COCH2), 2.17 (m, 

5H, Thiaz-4-CH3, NHCOCH2), 2.03-1.69 (m, 10 H, Thiaz-5-CH2CH2, OCH2CH2, Pip-

CH2), 1.59 (m, 4H, COCH2CH2), 1.28 (m, 20H, (CH2)10); 
13C-NMR (CD3OD) δ (ppm): 

177.45 (quat. C=O), 176.49 (quat. C=O), 170.38 (quat. Thiaz-2-C), 161.03 (quat. Ar-C), 

132.62 (quat. Thiaz-4-C), 131.76 (quat. Ar-C), 131.51 (+, Ar-CH), 124.35 (+, Ar-CH), 

118.44 (quat. Thiaz-5-C), 118.44 (+, Ar-CH), 117.12 (+, Ar-CH), 66.80 (-, CH2-OAr), 

61.71 (+, Pip-N-CH2), 54.06 (+, Pip-2-CH2, Pip-6-CH2), 41.60 (-, CH2NH), 37.79 (-, 

CONHCH2), 37.38 (-, COCH2), 37.19 (-, COCH2), 30.79 (-, CH2), 30.68 (-, CH2), 30.50 

(-, CH2), 30.40 (-, CH2), 30.31 (-, CH2), 30.04 (-, CH2), 29.72 (-, Thiaz-5-CH2CH2), 27.11 

(-, CH2CH2O), 25.51 (-, COCH2CH2), 24.11 (-, Pip-3-CH2, Pip-5-CH2), 23.62 (-, Thiaz-5-
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CH2), 22.75 (-, Pip-4-CH2), 11.46 (+, Thiaz-4-CH3); HRLSIMS: m/z for ([C39H65N7O3S + 

H]+) calcd. 712.4948, found 712.4944; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); 

anal. HPLC: k`= 3.96 (tR = 13.27 min, column B), purity = 100 %; C39H65N7O3S · 3TFA 

(1054.1). 

N1-{3-(m-Tolyloxy)propyl}- N10-{[3-(2-amino-4-methylthiazol-5-yl)propyl-

amino](amino)methylene}decanediamide (5.65) 

The title compound was prepared from 5.65a (20 mg, 0.027 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.65 as colorless oil (11 mg, 75 %). 
1H-NMR (CD3OD) δ (ppm): 7.11 (t, 3J =8.0 Hz, 1H, Ar-H), 6.71 (m, 2H, Ar-H), 6.67 (m, 

1H, Ar-H), 3.97 (t, 3J = 6.2 Hz, 2H, OCH2CH2), 3.35 (m, 4H, CH2NH), 2.71 (t, 3J = 7.6 

Hz, 2H, Thiaz-5-CH2), 2.45 (t, 3J = 7.4 Hz, 2H, COCH2), 2.28 (s, 3H, Ar-CH3), 2.11 (m, 

5H, Thiaz-4-CH3, NHCOCH2), 1.92 (m, 4H, Thiaz-5-CH2CH2, OCH2CH2), 1.61 (m, 4H, 

COCH2CH2), 1.31 (m, 8H, (CH2)4); 
13C-NMR (CD3OD) δ (ppm): 176.39 (quat. C=O),  

160.18 (quat. Ar-C), 132.66 (quat. Thiaz-4-C), 122.53 (+, Ar-CH), 118.45 (quat. Thiaz-5-

C), 116.28 (+, Ar-CH), 112.49 (+, Ar-CH), 66.43 (-, CH2-OAr), 41.64 (-, CH2NH), 37.77 

(-, CONHCH2), 37.54 (-, COCH2), 37.13 (-, COCH2), 30.18 (-, Thiaz-5-CH2CH2), 29.93 

(-, (CH2)4), 27.01 (-,  CH2CH2O), 25.40 (-, COCH2CH2), 23.62 (-, Thiaz-5-CH2), 21.61 

(+, Ar-CH3), 11.48 (+, Thiaz-4-CH3); HREIMS: m/z for ([C28H44N6O3S]+•) calcd. 

544.3196, found 544.3181; prep HPLC: MeCN/0.1 % TFA/aq (20/80-50/50); anal. 

HPLC: k`= 3.88 (tR = 13.06 min, column B), purity = 99 %; C28H44N6O3S · 2TFA 

(772.79). 

N1-(6-[3,4-Dioxo-2-{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino}cyclobut-1-

enylamino]hexyl)-N10-{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)-

methylene}decanediamide (5.66) 

The title compound was prepared from 5.66a (25 mg, 0.024 mmol) in 5 ml DCM/abs and 

1 ml TFA according to the general procedure yielding 5.66 as brown oil (10 mg, 50 %). 

EI-MS (70 eV) m/z (%): 411.9 ((M+2H)2+, 100), 822.7 (MH+, 10); HRLSIMS: m/z for 

([C43H67N9O5S + H]+) calcd. 822.5059, found 822.5052; prep HPLC: MeCN/0.1 % 

TFA/aq (20/80-50/50); anal. HPLC: k`= 2.66 (tR = 9.79 min, column B), purity = 96 %; 

C43H67N9O5S · 3TFA (1164.17). 
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5.5.1.10 Preparation of the bivalent acylguanidines 5.56-5.58 

General procedure for the synthesis of propionylated bivalent acylguanidines 5.56 

and 5.57 

NEt3 (4 or 5 eq) was added to a solution of 5.41 or 5.54 (1 eq) in MeCN. Subsequently, a 

solution of NHS-propionate (0.8 eq) was added and stirred for 16 h at room temperature. 

The solvent was evaporated and the product purified by preparative RP-HPLC. 

N1-{[3-(2-Amino-4-methylthiazol-5-yl)propylamino](amino)methylene}-N10-{[3-

propionamidopropylamino](amino)methylene}decanediamide (5.56)  

The title compound was prepared from 5.41 (5.6 mg, 5.9 µmol) in 1.5 ml MeCN, NEt3 

(3.3 µl, 23.6 µmol) and NHS-propionate (0.8 mg, 4.7 µmol) in 0.5 ml MeCN according to 

the general procedure yielding 5.56 (2.8 mg, 86 %) as yellow oil. 1H-NMR (CD3OD) δ 

(ppm): 3.46 (m, 2H, CH2NH), 3.36 (m, 2H, CH2NH), 3.21 (m, 2H, CH2NHCO), 2.71 (t, 
3J = 7.6 Hz, 2H, Thiaz-5-CH2), 2.47 (t, 3J = 7.4 Hz, 4H, COCH2), 2.21 (m, 2H, CH2CH3), 

2.18 (s, 3H, Thiaz-4-CH3), 2.04-1.74 (m, 4H, Thiaz-5-CH2CH2, CH2CH2NH), 1.66 (m, 

4H, COCH2CH2), 1.35 (m, 8H, (CH2)4), 1.12 (t, 3J = 7.6 Hz, 3H, CH2CH3); HREIMS: 

m/z for ([C25H45N9O3S + H]+) calcd. 552.3439, found 552.3438; prep HPLC: MeCN/0.1 

% TFA/aq (10/90-40/60); anal. HPLC: k`= 2.01 (tR = 8.05 min, column B), purity = 84 

%; C25H45N9O3S · 3TFA (893.81). 

N1,N17-Bis({3-[2-amino-4-methylthiazol-5-yl]propylamino}(amino)methylene)-9-[2-

propionylaminoethyl]-5,13-dioxo-6,9,12-triazaheptadecanediamide (5.57) 

The title compound was prepared from 5.54 (8.5 mg, 6.4 µmol) in 0.8 ml MeCN, NEt3 

(4.5 µl, 32.5 µmol) and NHS-propionate (0.9 mg, 5.1 µmol) in 0.5 ml MeCN according to 

the general procedure yielding 5.57 (4.4 mg, 68 %) as brown oil. 1H-NMR (CD3OD) δ 

(ppm): 3.54 (m, 4H, CONHCH2), 3.39 (m, 4H, CH2NH), 3.23 (m, 4H, NHCH2CH2NH2), 

3.07 (m, 4H, CONHCH2CH2), 2.71 (t, 3J = 7.4 Hz, 4H, Thiaz-5-CH2), 2.54 (m, 4H, 

COCH2), 2.34 (t, 3J = 7.3 Hz, 4H, NHCOCH2), 2.26 (m, 2H, COCH2CH3), 2.18 (s, 6H, 

Thiaz-4-CH3), 1.92 (m, 8H, Thiaz-5-CH2CH2, COCH2CH2), 1.11 (t, 3J = 7.4 Hz, 3H, 

CH2CH3); HREIMS: m/z for ([C35H60N14O2S2 + H]+) calcd. 821.4385, found 821.4391; 

prep HPLC: MeCN/0.1 % TFA/aq (15/85-40/60); anal. HPLC: k`= 0.85 (tR = 4.96 min, 

column B), purity = 81 %; C35H60N14O2S2 · 4TFA (1277.15). 
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{13-Amino-3-[2-(5-{[3-(2-amino-4-methylthiazol-5-yl)propylamino](amino)-

methylene}amino-5-oxopentanamido)ethyl]-17-(2-amino-4-methylthiazol-5-yl)-7,11-

dioxo-3,6,12,14-tetraazaheptadec-12-enyl}-4-{(E)-2-(1,2,3,5,6,7-hexahydropyrido-

[3,2,1-ij]quinolin-9-yl)vinyl}-2,6-dimethylpyridini um trifluoroacetate (5.58) 

NEt3 (2.7 µl, 19.6 µmol) was added to a solution of 5.54 (5.2 mg, 3.9 µmol) in 800 µl 

MeCN. Subsequently, a solution of py-123 ((E)-4-[2-(1,2,3,5,6,7-hexahydropyrido[3,2,1-

ij]quinolin-9-yl)ethenyl]-2,6-dimethylpyrylium tetrafluoroborate, 0.6 mg, 1.6 µmol) in 50 

µl DMF and 150 µl MeCN was added. After 1-2 min the color changed from blue to red. 

The reaction was stopped by addition of 10 % TFA/aq (30 µl) after an incubation period 

of 1 h at room temperature. The product was purified by preparative RP-HPLC 

(MeCN/0.1 % TFA/aq (30/70-70/30)) yielding 5.58 as red oil (1.1 mg, 69 %). EI-MS (70 

eV) m/z (%): 526.8 ((M++H)2+, 70), 1052.8 (M+, 10); anal. HPLC: k`= 1.81 (tR = 7.52 

min, column B), purity = 95 %; C53H78N15O4S2 · 5TFA (1623.51). 

5.5.2 Pharmacological methods 

5.5.2.1 Materials 

See section 3.5.2.1 

5.5.2.2 Determination of histamine receptor agonism and antagonism in 

GTPase assays 

See section 4.5.2.2 
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Chapter 6 

Bioanalytical and toxicological investigations 

of representative acylguanidine-type 

histamine H2R agonists  

 

6.1 Introduction 

As a prerequisite for the application of acylguanidine-type H2R agonists as pharma-

cological tools in cell based in vitro studies or in future in vivo experiments, selected 

compounds were investigated regarding their drug-like properties and toxic effects. 

Monovalent and bivalent acylguanidine-type H2R agonists presented in this work (cf. 

chapters 3-5) are of cationic amphiphilic nature due to their polar basic pharmacophoric 

groups (hetarylpropylguanidines) and their lipophilic fragments (spacer, alkyl and aryl 

residues, respectively). Given that amphiphilic substances such as surfactants are known 

to have a potential to interact with biological membranes, eventually resulting in 

membrane disruption and solubilization,1 representative compounds were investigated 

with respect to their ability to induce the rupture of erythrocytes (hemolysis). In addition 

to the pharmacokinetic properties of compounds, many diverse mechanisms, like the 

formation of active metabolic intermediates or the interaction with off-targets, can impede 

the normal function of the cell and trigger cell death. Thus, selected compounds were 

investigated with respect to potential cytotoxic effects. In addition, the extent of plasma 

protein binding was studied. Tables 6.1 and 6.2 give an overview of selected monovalent 

and bivalent acylguanidine-type H2R agonists. 
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Table 6.1. Structures of investigated monovalent aminothiazolylpropylguanidines. 

 

Compd. R1 R Compd. R1 R 

3.25 CH3 
 

3.77 CH3 

 

3.30 CH3 
 

3.78 CH3 
 

3.31 CH3 
 

3.80 H 
 

3.70 CH3 
 

3.82 H 

 

3.74 CH3 
 

   

a Compounds 3.70, 3.74, 3.77, 3.78, 3.80 and 3.82 were provided by Dr. A. Kraus.2 

 

Table 6.2. Structures of investigated bivalent hetarylpropylguanidines.  

 

Compd. n R Compd. n R 

4.10 6 2-aminothiazol-5-yl 4.30a 20 2-amino-4-methylthiazol-5-yl 

4.18 14 imidazol-4-yl Compd. R1 X 

4.19 20 imidazol-4-yl 5.45 CH3 CH2-Ph-CH2 

4.27a 8 2-amino-4-methylthiazol-5-yl 5.49 H (CH2)3-S-S-(CH2)3 
a Compounds 4.27 and 4.30 were provided by Dr. A. Kraus.2 
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6.2 Results and discussion 

6.2.1 Hemolytic properties of selected acylguanidine-type H2R agonists 

The red blood cell is a very commonly used model for studies of amphiphilic drugs. It is 

well known that interaction of amphiphilic substances with the erythrocyte membrane can 

lead to hemolysis by inducing osmotic pressure followed by cell swelling or by partial 

solubilization of membrane lipids and proteins, e.g. by formation of mixed micelles.4 

Hemolysis means the abnormal breakdown of red blood cells, which leads to the release 

of hemoglobin from erythrocytes. Due to the characteristic absorption maximum of 

hemoglobin at 580 nm, the hemolytic effect of the investigated title compounds was 

determined spectrophotometrically. In Figure 6.1 the percentage of hemolysis induced by 

the investigated compounds (3.25, 3.30, 3.31, 3.64, 3.77, 3.78, 3.80, 4.10, 4.18, 4.19, 

4.27, 4.30, 5.29, 5.45 and 5.49) is shown compared to the reference compound digitonin, 

which is known to induce strong hemolysis.3  

    A            100 µM                   B               30 µM                  C              10 µM         

  

Figure 6.1. Percentage of hemolysis induced by selected NG-acylated hetarylpropylguanidines at 100 µM 

(A), 30 µM (B) and 10 µM (C) compared to the reference compound digitonin. 

The hemolytic activity of bivalent acylguanidine-type H2R agonists was strongly 

dependent on the spacer length. While moderate (20-40 %) to severe (70-100 %) 

hemolysis had been observed in the concentration range of 10-100 µM for compounds 

with long lipophilic alkanediyl spacers (4.18, 4.19 and 4.30, cf. Table 6.2 for structures, n 

0 50 100

3.25
3.30
3.31
3.64
3.77
3.78
3.80
4.10
4.18
4.19
4.27
4.30
5.29
5.45
5.49

% hemolysis
0 50 100

3.25
3.30
3.31
3.64
3.77
3.78
3.80
4.10
4.18
4.19
4.27
4.30
5.29
5.45
5.49

% hemolysis

0 50 100

3.25
3.30
3.31
3.64
3.77
3.78
3.80
4.10
4.18
4.19
4.27
4.30
5.29
5.45
5.49

% hemolysis



Chapter 6 
____________________________________________________________________________________________________________ 

216 
 

≥ 14), the shorter bivalent ligands were essentially devoid of hemolytic activity. 

Concerning monovalent ligands, severe hemolysis was induced by 3.77 and 3.78 at a 

concentration of 100 µM. All other monovalent compounds revealed only minor 

hemolytic activity. Notably, 3.77 and 3.78 had a cyclohexyl residue in common. Highly 

lipophilic moieties, especially cyclohexyl and long lipophilic polymethylene linkers, give 

a critical amphiphilic character, resulting in severe cell-damaging effects of such 

substances. By contrast, compounds bearing less lipophilic residues had a decreased or 

negligible tendency for solubilization of cell membranes. With exception of bivalent 

ligands comprising a 20-membered carbon spacer (4.19 and 4.30), the hemolytic effect of 

all investigated compounds was essentially marginal (< 7 %) at concentrations as low as 

30 µM. Probably, the used concentrations of these compounds were below the critical 

micellar concentration to effectively damage the erythrocyte membrane. Compounds 

having less “tenside-like” character were found to be devoid of hemolytic activity up to 

concentrations as high as 100 µM. In conclusion, with respect to cellular in vitro 

investigations or in vivo experiments, concentrations higher than 30 µM of amphiphilic 

NG-acylated hetarylpropylguanidines, especially those bearing highly lipophilic residues, 

should be avoided.  

6.2.2 Cytotoxicity of selected acylguanidine-type H2R agonists in the 

crystal violet based chemosensitivity assay 

The cytotoxic properties of selected acylguanidine-type H2R agonists (3.25, 3.30, 3.80, 

4.10, 4.19, 4.27, 4.30, 5.29 and 5.49) were studied in a kinetic crystal violet based 

chemosensitivity assay over a period of approximately 200 h using proliferating human 

HT-29 colon carcinoma cells.5 Cisplatin was taken as reference compound. Figure 6.2 

shows the cytotoxic effects as plots of corrected T/C values versus time of incubation. 

In accordance to the results from the hemolysis studies, the cytotoxic effect of bivalent 

ligands was strongly dependent on the spacer length. Only compounds 4.19 and 4.30, 

comprising long lipophilic polymethylene spacers, showed strong cytotoxic effects. For 

all other investigated bivalent acylguanidines cell proliferation was not affected up to a 

concentration of 30 µM. Concerning monovalent acylguanidines, all three tested 

compounds showed more or less distinct cytotoxicity in the concentration range of 10-30 

µM. These observations differed from the results of the hemolysis studies, in which 3.25, 
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3.30 and 3.80 produced only marginal cell

approximately 200 h cytocidal effects (T/C

methylthiazol-5-yl)propylguanidines with phenyl
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effect, T/Ccorr > 0 %). Compared 
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produced only marginal cell-damaging effects.

approximately 200 h cytocidal effects (T/Ccorr < 0 %) were detected for 

propylguanidines with phenylalkanoyl (3.25, Figure 6.2

residues (3.30, Figure 6.2 B), respectively, 

3.80 (Figure 6.2 C), recovered after initial damage (cytotoxic 

Compared to the investigated monovalent acylguanidines

-3.9), bivalent compounds 4.27, 5.29 and 5.49

lipophilicity (log D[7.4] = 2.1-3.7) showed significantly reduced cytotoxic effects. 
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damaging effects. Notably, after 

were detected for 3-(2-amino-4-

Figure 6.2 A) and 
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5.29 (H) and 5.49 (I ). Following concentrations were used: 3 µM (■), 10 µM (▲) and 30 µM (●). Cisplatin 

(J) was used as positive control at following concentrations: 0.3 µM (□), 1 µM (∆) and 3 µM (○). 

6.2.3 Investigations on plasma protein binding  

The efficiency of drugs is affected by the degree to which they bind within blood plasma. 

Serum albumin is the most abundant protein in mammalian plasma. To investigate the 

protein binding of selected acylguanidines (3.25, 3.70, 3.74, 3.78, 3.80, 3.82, 4.18, 4.19, 

4.27, 4.30, 5.29 and 5.45) an HPLC method was applied using bovine serum albumin 

(BSA) as protein component. After incubation for 1 h and filtration with a cutoff of 10 

kDa to remove serum albumin, samples before filtration, samples from supernatant and 

samples from filtrate were analyzed. Examples of HPLC-traces are depicted in Figure 6.3. 

In the control experiments (without BSA), 

the investigated compounds were able to 

pass the membrane to an average extent of 

85 % (cf. Figure 6.3 F). This value was 

considered in the calculation of the protein 

binding (Table 6.3). With exception of 

3.70 (63 %), 3.80 (79 %) and 3.82 (87 %), 

all investigated mono- and bivalent compounds were nearly completely bound to serum 

albumin (90-99 %). Notably, 3.80 and 3.82, which are lacking the 4-methyl group at the 

aminothiazole ring, and 3.70, which has an additional hydroxyl group at the phenyl ring, 

are the compounds with lowest lipophilicity (log D[7.4] = 1.7-2.7) among the investigated 

H2R agonists. In summary, the synthesized compounds revealed a high degree of plasma 

protein binding. This must be taken into account, when acylguanidines are investigated in 

vivo. 

 

 Table 6.3. Percentage of protein binding for 

representative acylguanidines. 

 Compd. PPB[%] Compd. PPB[%] 
 3.25 90 4.18 98 
 3.70 63 4.19 98 
 3.74 90 4.27 91 
 3.78 97 4.30 95 
 3.80 79 5.29 98 
 3.82 87 5.45 99 
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Figure 6.3. HPLC traces of samples containing 3.25 (A), 3.70 (B), 3.80 (C), 4.27 (D) and 5.29 (E) in 

presence of bovine serum albumin taken a) before filtration, b) from the supernatant and c) from the filtrate. 

In control experiments (without BSA) the compounds were able to pass the membrane to an average extent 

of 85 %, as shown for 3.80 as an example (F). 

 

6.3 Summary 

To characterize acylguanidine-type H2R agonists with respect to their use in cell based in 

vitro studies or future in vivo experiments, selected compounds were investigated 
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regarding their hemolytic and cytotoxic properties as well as their potential to bind to 

plasma proteins. Among all investigated compounds, strong hemolytic effects were only 

induced by compounds with most distinct amphiphilic properties due to highly lipophilic 

structural moieties, such as cyclohexyl residues or long polymethylene spacers in case of 

monovalent and bivalent ligands, respectively. All other compounds were found to induce 

only minor hemolytic effects up to concentrations as high as 100 µM. Obviously, the 

increase in lipophilicity and in overall amphiphilicity led to enhanced damage of the 

erythrocyte membrane, presumably through the formation of mixed micelles. In 

accordance to the results from the hemolysis studies, the cytotoxic effects of bivalent 

ligands were strongly dependent on the spacer length. Only compounds 4.19 and 4.30, 

comprising the longest lipophilic polymethylene spacers, showed strong cytotoxic effects. 

Concerning monovalent ligands, the results from the crystal violet based chemosensitivity 

assay and from hemolysis studies differed: all tested compounds showed distinct 

cytotoxic or cytocidal effects at a concentration of 30 µM, regardless of negligible 

hemolytic activities. Adverse effects probably resulted from intracellular toxic effects of 

compounds. In so far, the predictive value of the hemolysis assay is limited, regardless of 

the tenside-like character of the considered compounds. However, interactions with cell 

membranes (e.g. hemolytic effect) also reflect physicochemical properties, which might 

play a role in cellular uptake and binding to various off-targets. Furthermore, the 

investigated compounds revealed a high degree of plasma protein binding. In summary, 

these results must be taken into account with respect to the application of acylguanidine-

type H2R agonists as pharmacological tools to perform in vivo or cell based in vitro 

studies. The drug-like properties of these H2R agonists should be further improved. 

 

6.4 Experimental section 

6.4.1 Determination of hemolytic properties of acylguanidine-type H2R 

agonists using human erythrocytes 

Isotonic saline (2 ml) was added to fresh citrated human blood (1 ml) and the suspension 

was centrifuged at 4 °C (70 g, 15 min). After removal of the supernatant plasma and the 

leukocyte-layer, the erythrocytes were re-suspended in isotonic saline (1 ml) and 

centrifuged again (2000 g, 10 min, 4 °C). The supernatant was discarded, the washing 
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procedure was repeated twice and the erythrocytes were stored on ice before used on the 

same day. Stock solutions (1.5 mM and 5 mM) of the test compounds, dissolved in 70 % 

EtOH, were prepared. 500 µl of freshly prepared erythrocytes were diluted with 9.5 ml of 

isotonic saline. Subsequently, aliquots of 50 µl were filled into each well of a microtiter 

plate (Greiner, Frickenhausen, Germany) and 1 µl of respective test compound stock 

solutions was added to obtain the final concentration of the test compounds (30 µM and 

100 µM). For the negative control (0 % hemolysis) 1 µL of 70 % EtOH was added, and to 

achieve 100 % hemolysis 1 µl of digitonin solution (2 %, w/v) was used as reference. 

Each sample was prepared in duplicate. After careful mixing, the microtiter plate was 

incubated for 1 h at 37 °C and vortexed every 20 min. Thereafter, the plate was 

centrifuged at 2000 g for 3 min. 30 µl of each well were transferred to a new microtiter 

plate and 100 µl of isotonic saline were added into each well. The absorbance was 

measured at 580 nm (λhemoglobin, max) and at 485 nm (λhemoglobin, min) using a GENios Pro 

microplate reader (Tecan Deutschland GmbH, Crailsheim, Germany). The hemolytic 

activity (percentage) was calculated according to 

% Hemolysis � �A��� ��A��� �� � A��� �� �� %�
A��� �� �� %�� �A��� �� ���� %�

A��� �� ���� %� � A��� �� �� %�
A��� �� �� %�� · 100�  

where A580 nm and A485 nm are the measured absorbances of the sample at 580 nm and 485 

nm, respectively, A580 nm (0 %) and A485 nm (0 %) are the measured absorbances of the control 

at 580 nm and 485 nm, respectively, and A580 nm (100 %) and A485 nm (100 %) are the measured 

absorbances of the reference containing digitonin at 580 nm and 485 nm, respectively. 

6.4.2 Crystal violet based chemosensitivity assay using proliferating 

human HT-29 colon carcinoma cells 

The assay was performed as previously described.5 Accordingly, tumor cells were seeded 

into flat-bottomed 96-well plates (Greiner, Frickenhausen, Germany) at a density of 

approximately 15 cells per microscopic field (magnification: 320-fold). After 2 to 3 days 

of incubation (37 °C, 5 % CO2), the culture medium was removed by suction and 

replaced by fresh medium containing the test compounds at various concentrations. Cells 

treated with medium containing the respective solvent used for the test compounds served 

as control. After various incubation periods the cells were fixed with 1 % 

glutardialdehyde solution in PBS and stored at 4 °C. At the end of the experiment all 
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plates were stained with crystal violet (Serva, Heidelberg, Germany) simultaneously. 

Subsequently, excess dye was removed with water and cell-bound crystal violet was re-

dissolved with 70 % EtOH. The absorbance was measured at 580 nm using a GENios Pro 

microplate reader (Tecan Deutschland GmbH, Crailsheim, Germany). The effects of the 

test compounds on the proliferating cells were presented as corrected T/C values 

according to 

T/C���� (%) � �T � C��
�C � C�� · 100 

where T = mean absorbance of treated cells, C = mean absorbance of controls, C0 = mean 

absorbance at the time when test compounds were added (t = 0). 

6.4.3 Determination of protein binding using HPLC 

Freshly prepared stock solutions of the test compounds (15 µl, 10 mM) were added to a 

solution of BSA (485 µl, 600 µM) and the mixtures were incubated for 1 h at 37 °C. 400 

µl of the incubation mixture were filtered using Nanosep centrifugal filter devices (10K 

Omega, 10000 MWCO, Pall Life Science, New York, USA). After filtration of 

approximately half of the solution (13000 g, 1-3 min), 100 µl samples of the filtrate, the 

supernatant and the unfiltered sample were taken and diluted with 200 µl of ice-cold 

MeCN. The solutions were stored in the refrigerator for 30 min to complete 

deproteinization and centrifuged at 4 °C (13000 g, 5 min). 200 µl of the supernatant were 

transferred into new vials and the solvent removed under reduced pressure. The residues 

were dissolved in 300 µl of MeCN/TFA (0.05 % aq) (10/90) and used for HPLC analysis 

immediately. As a control, BSA was replaced by phosphate buffer (pH 7.4) and the same 

procedure was repeated. 

Analytical HPLC was performed on a system from Thermo Separation Products equipped 

with an SN400 controller, P4000 pump, an AS3000 autosampler, and a Spectra Focus 

UV/Vis detector. Stationary phase was a Nucleodur-C18HTec (250 x 4.0, 5µM) column 

(Macherey-Nagel, Düren, Germany) thermostated at 30°C. As mobile phase, gradients of 

MeCN/TFA (0.05 % aq) were used (flow rate = 0.75 ml·min-1). Gradient mode: 0 min: 

MeCN/TFA (0.05% aq) 10:90, 20 min: 60:40, 21 min: 95:5, -29 min: 95:5. Absorbance 

was detected at 210 nm. The percentage of plasma protein binding (PPB) was calculated 

according to 
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PPB (%) � 100 �  1.15 $ A%&'(�)(*A+�%&'(*�*, · 100 

where Afiltrate is the peak area under the curve of the filtrate sample, Aunfiltered is the peak 

area under the curve of the sample before filtration and factor 1.15 represents the mean 

impermeability of the centrifugal filter devices determined for control samples without 

BSA. 
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Chapter 7 

Summary 

 

Potent and selective histamine H2 receptor (H2R) agonists, including brain-penetrating 

compounds, are required as pharmacological tools to evaluate the (patho)physiological 

role of H2Rs. Moreover, H2R agonists might be of therapeutic value as drugs, for 

example, in the treatment of acute myelogenous leukemia.  

Previously, acylguanidine-type H2R agonists with reduced basicity were synthesized in 

our laboratory, resulting in improved bioavailability and CNS penetration compared to 

the corresponding guanidines. Based on the preceding work, this thesis aimed at the 

design, the synthesis and the pharmacological characterization of novel NG-acylated 

hetarylpropylguanidines to elaborate the structure-activity relationships (SAR) in more 

detail. A central aspect of this project was the development of bivalent acylguanidine-

type H2R agonists. 

The prepared compounds were investigated for H2R agonism in GTPase and [35S]GTPγS 

binding assays at guinea pig (gp) and human (h) H2R-GsαS fusion proteins including 

various H2R mutants, at the isolated gp right atrium (in cooperation with Prof. Elz, 

University of Regensburg), and, with respect to H2R selectivity, in GTPase assays for 

activity on recombinant human H1, H3 and H4 receptors. In addition, representative 

compounds were investigated regarding their hemolytic and cytotoxic properties as well 

as their potential to bind to plasma proteins. 

NG-Acylated 3-(2-aminothiazol-5-yl)propylguanidines proved to be H2R partial to full 

agonists. Within this series, highest potencies resided in compounds having a two- or 

three-membered carbon chain between carbonyl group and phenyl or cyclohexyl ring, 

respectively. Notably, the introduction of a free amino group at an appropriate distance to 

the pharmacophoric moiety was beneficial with respect to H2R agonistic potency. In 
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contrast to their imidazole analogs, the aminothiazoles were highly selective for the H2R 

vs. other HR subtypes. Thus, this study substantiates previous results, confirming that the 

2-aminothiazole and the imidazole moiety are bioisosteric groups at the H2R but not at the 

H3R and H4R. Moreover, in contrast to amthamine, the 4-methyl group at the thiazole 

ring did not significantly contribute to the H2R agonism of NG-acylated 3-(2-amino-4-

methylthiazol-5-yl)propylguanidines. 

Bivalent H2R agonists were synthesized by connecting the guanidine groups of two 

molecules by NG-acylation with dicarboxylic acids of different structure and length 

(spacer lengths ≈ 6 – 27 Å). The bivalent ligands proved to be up to two orders of 

magnitude more potent than monovalent acylguanidines and up to 4000 times more 

potent than histamine at the gpH2R (compounds with octanedioyl to decanedioyl spacers). 

These are the most potent histamine H2R agonists known to date. However, due to 

insufficient spacer lengths of the most active compounds, the tremendous gain in potency 

compared to monovalent analogs cannot be explained by simultaneous occupation of the 

orthosteric recognition sites of a H2R dimer. The high potency rather results from 

interaction with an accessory (allosteric?) binding site at the same receptor protomer.  

Replacing the second hetarylpropylguanidine moiety with simple alkyl guanidine groups 

afforded rather high H2R agonistic activities (EC50 values in the low nanomolar range), 

whereas all other variations in this part of the molecule led to drastically decreased 

potencies. A further decrease in potency resulted from the elimination of the second 

guanidino group, corroborating the importance of a basic centre at an appropriate distance 

to the pharmacophore to obtain highly potent bivalent H2R agonists. These results are 

consistent with the concept of interaction with the orthosteric and an accessory binding 

site of one H2R protomer, i. e. the accessory binding site can accommodate the second 

acylguanidine portion.  

All investigated compounds were significantly more potent and efficacious at the gpH2R 

relative to the hH2R. These differences might help to verify the suggested model of 

bivalent ligand - receptor interactions via identification of species-dependent molecular 

determinants of the orthosteric and the accessory binding site in hH2R and gpH2R, 

respectively. Investigations on gpH2R and hH2R mutants/chimera confirmed the key role 

of non-conserved Tyr-17 and Asp-271 in TM1 and TM7 in the gpH2R for species-

selective H2R activation and suggested that the e2 loop does not participate in direct 
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ligand - receptor interaction. To explore the topology of this putative accessory binding 

site in more detail, further studies on H2R mutants are necessary. 

In conclusion, bioisosteric and bivalent approaches applied in this thesis led to highly 

potent and selective pharmacological tools for more detailed investigations of the H2R. 

However, in view of cell based in vitro investigations or future in vivo experiments, the 

drug-like properties of these H2R agonists should be further improved. 

 

 



 



Chapter 8 

Appendix 

 

8.1 HPLC purity data 

Cmpd. tR (min) k´ 
purity 

(%) 
Cmpd. tR (min) k´ 

purity 

(%) 

3.19a 4.62 0.73 99.0 4.12b 15.40 3.64 99.0 

3.20a 7.91 2.96 96.4 4.13b 20.63 5.22 99.1 

3.21a 13.54 4.06 96.2 4.14b 6.36 0.92 95.6 

3.22b 9.95 2.00 97.7 4.15b 7.01 1.11 89.7 

3.23b 10.79 2.25 99.7 4.16b 7.81 1.35 95.0 

3.24b 11.23 2.39 98.6 4.17b 8.74 1.63 90.2 

3.25b 12.83 2.87 99.5 4.18b 14.75 3.44 99.3 

3.26b 14.06 3.24 99.4 4.19b 19.61 4.91 95.9 

3.27b 15.21 3.58 95.0 4.20a 4.09 0.53 100 

3.28b 14.81 3.46 100 4.21a 6.48 1.42 90.9 

3.29b 11.34 2.24 97.9 4.22a 15.57 4.39 96.9 

3.30b 12.77 2.85 97.7 4.24a 7.41 1.77 100 

3.31a 7.89 1.94 96.1 5.26b 9.82 1.96 95.3 

3.32a 4.31 0.61 100 5.27b 9.51 1.87 94.2 

3.33a 7.34 1.74 100 5.28a 8.07 2.02 97.69 

3.34a 13.29 3.97 99.6 5.29b 14.13 3.26 96.3 

3.35a 23.53 7.80 92.6 5.30a 10.74 3.02 96.0 

3.36a 9.60 2.95 98.9 5.31a 12.91 3.82 97.7 

3.37a 11.44 3.28 99.5 5.32a 14.15 4.29 96.4 

3.38a 13.31 3.97 100 5.33b 12.67 2.82 88.31 

3.39a 9.98 2.73 99.5 5.34b 13.29 3.01 98.2 

3.40a 10.89 3.07 99.5 5.35b 13.31 3.01 93.3 

3.41a 11.09 3.14 99.4 5.36a 10.19 2.81 96.9 

3.42a 6.80 1.54 100 5.37a 10.06 2.76 97.1 

3.43a 5.46 1.04 96.7 5.38a 7.59 1.84 98.6 
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3.44a 10.96 3.10 99.4 5.39a 8.82 2.30 97.8 

3.45a 11.09 3.15 99.5 5.40a 9.66 2.61 98.7 

3.46a 10.99 3.11 99.7 5.41a 6.66 1.49 88.4 

3.47a 10.13 2.79 99.5 5.42a 7.76 1.90 96.1 

3.48a 11.60 3.34 99.1 5.43a 15.22 4.69 99.6 

3.49a 12.46 3.66 100 5.44b 8.23 1.48 85.0 

3.50a 15.48 4.77 99.1 5.45a 6.09 1.28 94.3 

3.51a 13.78 4.15 99.0 5.46a 5.43 1.03 93.9 

3.52a 14.63 4.47 99.8 5.47b 9.88 1.98 90.4 

3.53a 3.42 0.28 97.9 5.48a 6.73 1.51 97.8 

3.54a 7.56 1.83 100 5.49a 6.85 1.56 97.3 

3.55a 8.49 2.17 96.8 5.50a 9.18 2.43 98.2 

3.56a 9.30 2.48 98.5 5.51a 9.30 2.47 96.6 

3.57a 12.02 3.49 99.2 5.52a 4.73 0.77 90.0 

3.58a 15.15 4.66 97.4 5.53a 3.46 0.29 96.7 

3.59a 11.21 3.19 98.20 5.54a 4.21 0.57 99.8 

3.60a 15.84 4.92 95.8 5.55a 6.00 1.24 94.0 

3.61a 8.43 2.15 96.5 5.56a 8.05 2.01 84.4 

3.62a 5.84 1.18 84.8 5.57a 4.96 0.85 90.7 

3.63a 8.90 2.33 100 5.58a 7.52 1.81 95.4 

3.64a 3.41 0.27 94.8 5.63a 9.08 2.39 99.2 

3.65a 3.40 0.27 100 5.64a 13.27 3.96 100 

4.9b 10.22 2.08 92.2 5.65a 13.06 3.88 98.7 

4.10b 8.66 1.61 94.6 5.66a 9.79 2.66 95.7 

4.11b 10.37 2.13 100     
a TSP-system, gradient mode: MeCN/TFA (0.05% aq): 0 min: 10:90, 20 min: 60:40, 21 min: 95:5, -29 min: 
95:5, flow rate = 0.75 mL min-1, t0 = 2.675 min; k`= (tR–t0)/t0. 

b TSP-system, gradient mode: MeCN/TFA 
(0.05% aq): 0 min: 10:90, 20 min: 60:40, 23 min: 95:5, -33 min: 95:5, flow rate = 0.7 mL min-1, t0 = 3.318 
min, k`= (tR–t0)/t0. 

 

8.2 Log D values at pH = 7.4 

Cmpd. log D[7.4]
a Cmpd. log D[7.4]

a Cmpd. log D[7.4]
a Cmpd. log D[7.4]

a 

3.19 1.94 3.51 3.61 3.83 2.58 5.32 4.47 

3.20 2.95 3.52 4.12 3.84 3.10 5.33 2.70 

3.21 4.99 3.53 -2.95 3.85 3.61 5.34 3.82 

3.22 2.55 3.54 -0.23 4.9 2.75 5.35 3.82 

3.23 2.57 3.55 1.50 4.10 -1.10 5.36 3.21 

3.24 3.13 3.56 1.43 4.11 -0.01 5.37 2.99 
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3.25 3.66 3.57 3.83 4.12 2.96 5.38 0.86 

3.26 4.19 3.58 0.94 4.13 6.01 5.39 1.87 

3.27 4.72 3.59 4.60 4.14 -0.41 5.40 2.29 

3.28 4.26 3.60 2.07 4.15 -0.02 5.41 -0.72 

3.29 3.67 3.61 0.83 4.16 0.49 5.42 3.45 

3.30 3.91 3.62 1.29 4.17 1.00 5.43 9.42 

3.31 1.45 3.63 1.87 4.18 4.56 5.44 3.56 

3.32 0.27 3.64 -1.26 4.19 7.62 5.45 2.13 

3.33 1.28 3.65 -2.94 4.20 -2.96 5.46 1.68 

3.34 3.32 3.66 3.73 4.21 -2.12 5.47 4.82 

3.35 8.41 3.67 4.24 4.22 5.01 5.48 -0.30 

3.36 2.23 3.68 3.95 4.24 -0.83 5.49 0.06 

3.37 2.76 3.69 4.16 4.25 1.45 5.50 1.35 

3.38 3.23 3.70 2.72 4.26 2.25 5.51 2.07 

3.39 2.05 3.71 0.01 4.27 3.25 5.52 1.40 

3.40 2.56 3.72 4.26 4.28 4,27 5.53 -3.93 

3.41 2.48 3.73 4.31 4.29 6.31 5.54 -3.80 

3.42 1.04 3.74 4.15 4.30 9.36 5.55 6.10 

3.43 -1.67 3.75 4.77 4.31 1.52 5.56 1.26 

3.44 2.59 3.76 5.28 4.32 -1.31 5.57 -1.88 

3.45 2.64 3.77 5.28 5.26 1.57 5.58 -0.42 

3.46 2.48 3.78 5.28 5.27 1.42 5.63 3.25 

3.47 2.23 3.79 5.79 5.28 1.20 5.64 6.31 

3.48 2.74 3.80 1.70 5.29 3.69 5.65 4.94 

3.49 3.0 3.81 1.81 5.30 4.05 5.66 3.86 

3.50 4.47 3.82 2.32 5.31 7.03   
a Distribution coefficient at pH = 7.4, calculated with ACD/ChemSketch 12.0, Toronto, Canada. 

 

8.3 Short lectures and poster presentations 

“Synthesis and structure-activity relationships of bivalent acylguanidine-type histamine 

H2 receptor agonists”, short lecture in occasion of the 40th EHRS Meeting, Sochi, Russia, 

May 11 – 15, 2011, Abstract published in: Inflamm. Res. (2011). 

Birnkammer T., Kraus A., Bernhardt G., Dove S., Elz S., Seifert R., Buschauer A., 

“Structure-activity relationships of bivalent acylguanidine-type histamine H2 receptor 
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agonists”, 5th Summer School Medicinal Chemistry, University of Regensburg, 

September 13 – 15, 2010. 

“Application of the bivalent ligand approach to acylguanidines resulted in highly potent 

and selective histamine H2 receptor agonists”, short lecture in occasion of the 39th EHRS 

Meeting, University of Durham (England), July 13 – 17, 2010, Abstract published in: 

Inflamm. Res. (2010) 59 (Suppl 4): S305-S359. 

“Bivalent Acylguanidines are Histamine H2R Superagonists”, short lecture in occasion of 

the Christmas Colloquium of the Department of Organic Chemistry, University of 

Regensburg, December 16, 2009. 

“Application of the bivalent ligand approach to acylguanidines: a route to histamine H2 

receptor superagonists”, short lecture in occasion of the annual meeting “Internationale 

Doktorandentagung” of the German Pharmaceutical Society (DPhG), Pichlarn (Austria), 

November 19, 2009. 

Birnkammer T., Kraus A., Bernhardt G., Dove S., Elz S., Seifert R., Buschauer A., 

“Bivalent acylguanidine-type ligands are highly potent and selective histamine H2 

receptor agonists”, Annual meeting of the German Pharmaceutical Society (DPhG), 

University of Jena, September 29 – October 01, 2009. 

Elz S., Igel P., Geyer R., Kraus A., Kunze M., Birnkammer T., Buschauer A., 

“Cimetidine: a veteran H2-receptor antagonist for the characterisation of novel potent 

acylguanidine-type H2-receptor agonists”, Annual meeting of the German Pharmaceutical 

Society (DPhG), University of Jena, September 29 – October 01, 2009. 

Lopuch M., Birnkammer T., Bernhardt G., Seifert R., Buschauer A., “Histamine H2 

receptor binding of potent mono- and bivalent acylguanidine-type agonists”, Annual 

meeting of the German Pharmaceutical Society (DPhG), University of Jena, September 

29 – October 01, 2009. 

Birnkammer T., Kraus A., Bernhardt G., Dove S., Elz S., Seifert R., Buschauer A., 

“Toward bivalent acylguanidine-type ligands: highly potent and highly selective 

histamine H2 receptor agonists”, 38th EHRS Meeting, University of Fulda, May 13 – 16, 

2009. 
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Chemistry, University of Regensburg, September 29 – October 01, 2008. 

Birnkammer T., Kraus A., Preuss H., Bernhardt G., Dove S., Elz S., Seifert R., Buschauer 

A., “Bivalent acylguanidine-type ligands as potent and selective histamine H2 receptor 

agonists”, Abstract published in: Drugs of the Future 33 (Suppl. A), 127, 20th 

International Symposium on Medicinal Chemistry, Vienna, August 31 – September 04, 

2008. 

Birnkammer T., Kraus A., Preuss H., Bernhardt G., Dove S., Elz S., Seifert R., Buschauer 

A., “Bivalent NG-acylated hetarylpropylguanidines as potent and selective histamine H2 

receptor agonists”, Annual Meeting “Frontiers in Medicinal Chemistry“, University of 
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