
D
is

se
rt

at
io

n
sr

ei
h

e
Ph

ys
ik

 -
 B

an
d

 2
3

Jo
h

an
n

es
 K

ar
ch

Investigation of Hadron Matter

using Lattice QCD and Implementation

of Lattice QCD Applications on Hetero-

geneous Multicore Acceleration Processors

Frank Winter

23
a

9 783868 450828

ISBN 978-3-86845-082-8 Fr
an

k
W

in
te

r
ISBN 978-3-86845-082-8

Observables relevant for the understanding of the struc-
ture of baryons were determined by means of Monte Carlo
simulations of lattice Quantum Chromodynamics (QCD) us-
ing 2+1 dynamical quark flavours. Special emphasis was
placed on how these observables change when flavour
symmetry is broken in comparison to choosing equal mass-
es for the two light and the strange quark. The first two
moments of unpolarised, longitudinally, and transversely
polarised parton distribution functions were calculated for
the nucleon and hyperons.

Modern lattice QCD simulations require petaflop comput-
ing and beyond, a regime of computing power we just
reach today. Heterogeneous multicore computing is get-
ting increasingly important in high performance comput-
ing and allows for deploying multiple types of processing
elements within a single workflow. In this work new design
concepts were developed for an active library (QDP++) ex-
ploiting the compute power of a heterogeneous multicore
processor (IBM PowerXCell 8i processor). It was possible to
run a QDP++ based physics application (Chroma) on an
IBM BladeCenter QS22.

Frank Winter

Investigation of Hadron Matter
using Lattice QCD and Implementation
of Lattice QCD Applications on Hetero-
geneous Multicore Acceleration Processors

Herausgegeben vom Präsidium des Alumnivereins der Physikalischen Fakultät:
Klaus Richter, Andreas Schäfer, Werner Wegscheider, Dieter Weiss

Dissertationsreihe der Fakultät für Physik der Universität Regensburg,
Band 23

Investigation of Hadron Matter using Lattice QCD and
Implementation of Lattice QCD Applications on Heterogeneous
Multicore Acceleration Processors

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Physik der Universität Regensburg
vorgelegt von

Frank Winter

aus Mainz

2011

Die Arbeit wurde von Prof. Dr. A. Schäfer angeleitet.
Das Promotionsgesuch wurde am 21.01.2011 eingereicht.

Prüfungsausschuss:

 1. Gutachter: Prof. Dr. A. Schäfer
 2. Gutachter: Dr. D. Pleiter

Vorsitzender:

weiterer Prüfer:

Prof. Dr. R. Huber

Prof. Dr. T. Niehaus

Frank Winter

Investigation of Hadron Matter
using Lattice QCD and Implementation
of Lattice QCD Applications on Hetero-
geneous Multicore Acceleration Processors

Bibliografische Informationen der Deutschen Bibliothek.
Die Deutsche Bibliothek verzeichnet diese Publikation
in der Deutschen Nationalbibliografie. Detailierte bibliografische Daten
sind im Internet über http://dnb.ddb.de abrufbar.

1. Auflage 2011
© 2011 Universitätsverlag, Regensburg
Leibnizstraße 13, 93055 Regensburg

Konzeption: Thomas Geiger
Umschlagentwurf: Franz Stadler, Designcooperative Nittenau eG
Layout: Frank Winter
Druck: Docupoint, Magdeburg
ISBN: 978-3-86845-082-8

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlags ist es
nicht gestattet, dieses Buch oder Teile daraus auf fototechnischem oder
elektronischem Weg zu vervielfältigen.

Weitere Informationen zum Verlagsprogramm erhalten Sie unter:
www.univerlag-regensburg.de

Investigation of Hadron Matter using Lattice QCD

and

Implementation of Lattice QCD Applications on
Heterogeneous Multicore Acceleration Processors

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

(Dr. rer. nat.)

grubsnegeRtätisrevinUredkisyhPrüftätlukaFred

vorgelegt

von

Frank Winter

aus

Mainz

2011

Die Arbeit wurde von Prof. Dr. A. Schäfer angeleitet.
Das Promotionsgesuch wurde am 21.01.2011 eingereicht.

Prüfungsausschuss:

 1. Gutachter: Prof. Dr. A. Schäfer

 2. Gutachter: Dr. D. Pleiter

Vorsitzender:

weiterer Prüfer:

Prof. Dr. R. Huber

Prof. Dr. T. Niehaus

Contents

I Investigation of Hadron Matter using Lattice Methods 1

1 Introduction 3

2 Continuum QCD 9

3 Phenomenology 15

3.1 Pion Decay . 15

3.2 Beta Decay . 16

3.3 Baryon Matrix Element . 19

3.4 Deep Inelastic Scattering . 20

3.5 The Quark-Parton Model . 22

3.6 Generalised Parton Distributions . 23

3.7 Operator Product Expansion . 25

3.8 Moments of Parton Distribution Functions 26

3.9 Euclidean Operators . 27

3.10 Sum Rules . 28

4 QCD on the Lattice 31

4.1 Continuum Action . 31

4.2 Introduction of the Lattice . 32

vi CONTENTS

4.3 Wilson Gauge Action . 32

4.4 Naive Discretisation of Fermion Fields . 35

4.5 Nielsen and Ninomiya Theorem . 37

4.6 Wilson Fermion Action . 37

4.7 Discretisation Errors . 39

4.8 Integration with Monte Carlo Methods 40

4.8.1 Markov Chains . 41

4.9 Hadron Interpolator . 43

4.10 Momentum Projection . 45

4.11 Hadron Correlators . 45

4.12 Symanzik Improvement Program . 48

4.13 Propagator Calculation . 51

4.14 Quark and Gluonic Smearing . 54

4.15 Two-Point Correlation Functions . 55

4.16 Pion Decay Constant . 58

4.17 Three-Point Correlation Functions . 58

4.17.1 Matrix Elements . 60

5 Preparing the Simulations 63

5.1 The SLiNC Action . 63

5.2 Stout Link Smearing . 64

5.3 Tuning the Mass . 65

5.4 Extrapolating Flavour Singlet Quantities 65

5.5 Clover Fermions . 67

5.6 Lattice Spacing . 68

CONTENTS vii

6 Discussion of Errors 71

6.1 Statistical Errors . 71

6.2 Autocorrelation Times . 71

6.3 Binning . 73

6.4 Fitting and Error Determination . 73

6.5 Running of the average . 75

6.6 Discretisation Effects . 75

6.7 Finite Size Effects . 76

6.8 Chiral Effective Field Theory . 77

6.9 FSE Corrections for Pion Decay Constant 78

6.10 Disconnected Distributions . 79

7 Pion Decay Constant 81

8 n = 1 Moment of Polarised PDF 83

8.1 Nucleon . 85

8.2 Hyperons . 86

8.3 Ratios . 91

9 n = 2 Moment of Unpolarised PDF 95

9.1 Nucleon . 96

9.2 Hyperons . 98

9.3 Isospin-Symmetry Breaking . 100

10 n = 1 Moment of Tensor GPDs 107

10.1 Nucleon . 109

10.2 Hyperons . 112

viii CONTENTS

11 n = 2 Moment of Tensor GPDs 117

11.1 Nucleon . 118

11.2 Hyperons . 119

11.3 Ratios . 120

12 n = 2 Moment of Polarised PDF 125

12.1 Nucleon . 125

12.2 Hyperons . 126

12.3 Ratios . 128

13 Conclusion and Outlook 131

II Implementation of Lattice QCD Applications on Heteroge-

neous Multicore Acceleration Processors 135

14 Introduction 137

14.1 Lattice QCD and HPC . 137

14.2 Commodity Clusters . 138

14.3 Supercomputing . 141

14.4 Heterogeneous Multi-Core Processors . 142

14.5 HPC Challenges . 144

14.6 Application-Optimised HPC . 145

14.7 QPACE . 147

14.8 HPC Software Challenges . 147

14.9 SciDAC Software Hierarchy . 149

14.10QDP++ . 151

14.11QCD Applications on Accelerators . 151

CONTENTS ix

14.12New design concepts for QDP++ . 152

15 The IBM PowerXCell 8i Processor 155

15.1 Overview . 155

15.2 PowerPC Processor Element . 157

15.3 Synergistic Processor Element . 157

15.3.1 Synergistic Processor Unit . 157

15.4 Programming the SPU . 163

15.4.1 C-language intrinsics . 163

15.4.2 Double-Buffering . 163

15.4.3 Dual-Issue . 164

15.4.4 SPU Code Overlays . 164

15.4.5 Integer Multiplication . 166

15.4.6 Scalar Data Types . 167

16 QCD Data Parallel 169

16.1 Overview . 169

16.2 Lattice-Wide Data Types and Operations 170

16.3 C++ Templates . 172

16.3.1 Default Arguments for Template Parameters 173

16.3.2 Explicit Specialisation . 174

16.3.3 Partial Specialisation . 174

16.3.4 Dependent and Qualified Names 175

16.4 Expression Templates . 177

16.5 Object-Oriented C++ Vector Class . 184

16.6 Portable Expression Template Engine . 185

x CONTENTS

17 New Design Concepts for QDP++ 197

17.1 Overview . 197

17.2 QDP++ on IBM PowerXCell 8i Processor 198

17.3 Evaluate Pretty Function . 200

17.4 New Chroma Build Environment . 203

18 Implementation Details 205

18.1 Data access mode in QDP++ expressions 205

18.2 QDP++ Memory Allocator . 208

18.3 SPU Parallelisation . 210

18.4 Memory Transfer Latencies . 210

18.4.1 Double-Buffering . 211

18.4.2 Shared Input-Output Buffering 212

18.5 Data Alignment and Transfer Sizes . 214

18.6 SPU Code Overlays . 217

18.7 Single Instruction Multiple Data . 220

18.8 Loop-Unrolling . 222

18.8.1 Operations on Primitive Types . 222

18.8.2 The Evaluation Loop . 223

18.8.3 Primitive Type Assignment Operators 225

18.9 Inlining the Operation Functions . 225

19 Benchmark Results 227

19.1 Overview . 227

19.2 DMA Transfers . 229

19.3 Specialisations . 231

CONTENTS xi

19.4 Compiler Optimisations . 233

19.5 Evaluation Loop . 234

19.6 Chroma on Cell vs. Commodity CPU . 235

20 Conclusion and Outlook 237

Appendices 241

A Appendix 243

A.1 Fourier Transformation of Dirac Operator 243

A.2 Symmetry Transformation of Hadron Interpolators 244

B Measurement Data 245

B.1 Pion Decay Constant . 245

B.2 n = 1 Moment of Polarised PDF . 247

B.3 n = 2 Moment of Unpolarised PDF . 248

B.4 n = 1 Moment of Tensor GPD . 250

B.5 Ratio n = 1 Moment of Tensor GPD over fT 251

B.6 n = 2 Moment of Polarised PDF . 252

B.7 Ratios of Axial Charge . 253

B.8 n = 2 Moment of Tensor GPD . 255

C Fit Results 257

C.1 Pion Decay Constant . 257

C.2 n = 1 Moment of Polarised PDF . 258

C.3 n = 2 Moment of Unpolarised PDF . 259

C.4 n = 1 Moment of Tensor GPD . 260

C.5 Ratio n = 1 Moment of Tensor GPD over fT 261

xii CONTENTS

C.6 n = 2 Moment of Polarised PDF . 262

C.7 n = 2 Moment of Tensor GPD . 263

D Implementation Details 265

D.1 Operator Extension . 265

D.2 Arithmetical Operations with Complex Numbers 266

D.3 Assignment Operators . 268

D.4 Mailboxes . 269

D.4.1 SPE side . 269

D.4.2 PPE side . 270

E The GNU C++ Compiler 273

E.1 Inline Parameters . 273

F Benchmark Measurements 275

F.1 QDP++ Functions . 275

G SPU Timing Analysis 279

G.1 Matrix Assignment . 279

G.1.1 With Template Specialisation . 279

G.1.2 Without Template Specialisation 279

G.2 Matrix Multiplication . 286

G.2.1 With Template Specialisation . 286

G.2.2 Without Template Specialisation 291

Bibliography 295

Part I

Investigation of Hadron Matter using

Lattice Methods

Chapter 1

Introduction

In 1968 deep inelastic electron scattering experiments at the Stanford Linear Accelerator

Center (SLAC) discovered quarks as fundamental constituents in the nucleon and played

an essential role in establishing QCD as the theory of the strong interactions. Subsequent

efforts in understanding the structure of the proton in terms of quarks interacting through

the exchange of gluons has opened up a variety of experimental and theoretical studies

differing from those encountered in any other known systems.

The discovery of asymptotic freedom of non-Abelian gauge theories in 1973 led to the

development of Quantum Chromodynamics (QCD) [1, 2], the theory of the strong force

between quarks.

QCD is formulated in terms of quarks and gluons which is believed are the basic degrees of

freedom that make up hadronic matter. It has been very successful in predicting phenomena

involving large momentum transfers and at short distances. In this regime the coupling

constant is small and the path integral approach leads to an intuitive tool to carry out

perturbation theory. However, at the energy scale of the hadronic world, i.e. at scales ≈ 1

GeV where the coupling constant is of order unity perturbative methods fail. Thus, one

cannot calculate the masses of mesons and baryons from QCD with perturbative methods

even if one is given the coupling constant and the masses of the quarks.

In the low-energy regime Lattice QCD provides a non-perturbative tool for calculating the

hadronic spectrum and the matrix elements of any operator within hadronic states from

4 1. Introduction

first principles. To this date, Lattice QCD represents the only known and working approach

to quantitatively study the non-perturbative aspects of QCD from first principles.

In Lattice QCD the basic degrees of freedom, i.e. the fermionic and gluonic fields, are

formulated on a discrete Euclidean spacetime lattice and the path integral is carried out

numerically by Monte Carlo integration. It retains the fundamental character of QCD since

no new parameters or field variables are introduced in this discretisation. The lattice spacing

in a quantum field theory, serves as the ultraviolet regulator that must eventually be taken

to zero keeping physical quantities, like the renormalised couplings or mass spectrum, fixed.

The only tunable input parameters in these simulations are the gauge coupling constant

and the bare masses of the quarks for each of the Nf quark flavours. Within the context

of the standard model they have to be fixed in terms of an equal number of experimental

quantities. Typically, the Nf + 1 parameters of the theory, i.e. QCD coupling and quark

masses are matched to reproduce Nf + 1 hadron masses. Thereafter all predictions of

Lattice QCD (after extrapolation to the continuum) have to match experimental data if

QCD is the correct theory of the strong interaction, and in this sense Lattice QCD is a first

principles approach. Lattice QCD is believed to provide reliable results from simulations at

finite lattice spacing since the contributions from lattice artifacts are believed to be under

control.

The formulation of QCD on a discrete spacetime lattice acts as a non-perturbative regular-

isation scheme. At finite values of the lattice spacing, which provides an ultraviolet cutoff,

the infinities seen in perturbative QCD do not exist. Furthermore, renormalised physical

quantities have a finite, well behaved continuum limit, i.e. taking the lattice spacing to

zero.

Quantising QCD with the Feynman path-integral and formulating the theory on a Euclidean

spacetime lattice permits to simulate the theory on computers using methods analogous to

those used for Statistical Mechanics systems. These simulations allow for calculating cor-

relation functions of hadronic operators and matrix elements of suitable operators between

hadronic states in terms of the fundamental quark and gluon degrees of freedom.

In the past and still today, lattice simulations are subject to a number of limitations. The

simulations are extremely expensive, reaching the need for petaflop computing and beyond,

1. Introduction 5

a regime of computing power just reached today. Costs of dynamical fermion simulations

typically rise approximately with some power of the lattice extent and powers of the inverse

lattice spacing and the inverse light quark mass. Therefore, for a long time the sea quarks

were treated as infinitely heavy, i.e. the so-called quenched approximation, what was indeed

a crude approximation given that the up and down quarks have masses of only a few MeV.

Also due to the affinity to simulate even numbers of mass-degenerate dynamical quark

flavours in the past only the lightest quark doublet, the up and down quarks, were taken

into consideration. This saved the needs for computational resources to simulate heavier

quarks like the strange quark. Also the masses of the quarks as used in the simulations

have been unphysically large which reduces the overall computational cost.

Due to breakthroughs in algorithmic design and machine development, such as the use of

improved actions which reduce lattice artefacts, today, these simulations are performed in

increasingly physical conditions: Besides the up and down quarks, also the strange quark

and lately also the charm degree of freedom are included in simulations, the quarks masses

are chosen to be closer to their physical values, lattices sizes are set larger to reduce finite

size effects, and the lattice spacing is taken to be small such that a better controlled

continuum limit can be performed. The conditions are getting continuously more physical,

so studying the low-energy limit of QCD should agree increasingly well with experiment and

the predictions should get more trustworthy.

However, numerical simulations of Lattice QCD are based on a Monte Carlo integration

of the Euclidean path integral, consequently, the measurements have statistical errors in

addition to the systematic errors. Judgement of the quality of lattice calculations requires

to understand the origin of these errors.

When investigating the structure of hadrons with lattice methods one has to consider the

following requirements concerning the simulation parameters. First, the quark masses and

the lattice extent should be sufficiently large so that not only a reasonable fraction of

the hadron under investigation, but also other relevant degrees of freedom, in particular

the virtual pions, which are essential for the hadron structure, fit into the lattice volume.

Second, the lattice spacing should be small enough, i.e. the coupling large enough so that

the internal structure of the hadron can be resolved and discretisation effects are kept under

control.

6 1. Introduction

Many fundamental properties of the hadron structure are encoded by the parton distribution

functions (PDFs). They encode essential information about the distribution of momentum

and spin of quarks and gluons inside hadrons and have in general an interpretation as proba-

bility densities as a function of the momentum fraction carried by the particular constituent.

PDFs are universal, i.e. process independent, non-perturbative objects. They are defined in

terms of (forward or off-forward) hadron matrix elements of QCD quark and gluon operators.

These matrix elements can, in turn, be written in the form of QCD path integrals, which

makes them directly amenable to lattice methods.

Major facilities like CERN, DESY, JLAB, SLAC, and FNAL operate large scale hadron

experiments for the generation of data on the quark structure of matter. At large energy

scales lepton-hadron deeply inelastic scattering (DIS) processes give access in particular

to the structure of the hadron. In electron-proton DIS, the electron probes the structure

of the proton and provides access to the quark PDFs of the nucleon over a wide range

of momentum fraction. At high energies the electron not only probes the valence quarks

of the proton but also the QCD vacuum structure, and the “quark sea” consisting of all

possible flavours of quarks and anti-quarks and a high density of gluons. However, since

the experiments have limited kinematical coverage, the quark PDFs are only known in a

limited range of momentum fraction and in order to retrieve information for a larger range

of momentum fraction global PDF analyses are required.

It turns out that experimentally, a rather large number of different processes must be

studied in order to access the structure of hadrons in great detail in terms of PDFs. Further

challenges arise in studies of polarised distribution functions, which in general demand a

preparation of polarised beams and targets.

When calculating PDFs with Lattice QCD many of the above mentioned difficulties are

absent. Since Lattice simulations are carried out with the full Dirac structure of QCD

all polarisations of the hadron are accessible – no separate simulations are necessary for

different polarisations. Also the cost of Lattice QCD calculations is small compared to the

overall cost of experiments.

However, the lattice approach to hadron structure has also some disadvantages. The

full momentum-dependence of PDFs, cannot be studied directly on the lattice. These

1. Introduction 7

are defined via bi-local operators on the light-cone which cannot be studied with Lattice

QCD which is formulated in Euclidean space. One can, however, relate moments of PDFs

with lattice operators trough Mellin transformations. Only the lowest moments of the

distribution functions corresponding to matrix elements of local operators, can so far be

reliably computed. Calculation of higher moments suffer from increasingly bad statistics.

Also operator mixing tends to be an issue with higher moments. So far, calculations have

not been performed beyond the fourth moment of the distribution functions. Clearly, for a

reconstruction of the momentum-dependence of the PDFs this is not sufficient.

Introducing a hypercubic lattice breaks the continuum space symmetries. The continuous

symmetry group of the continuum theory, the Poincaré group, is reduced to a discrete

group, the hypercubic group. As a consequence, even the local lattice vector current is not

conserved and has to be renormalised. Lattice operators corresponding to higher moments

also require renormalisation, and special care has to be taken to properly account for possible

operator mixing, particularly with operators of lower dimensions.

This work investigates the baryon structure using gauge configurations generated with Nf =

2 + 1 dynamical flavours of O(a)-improved Wilson fermions and the Symanzik improved

gluon action. With the strange quark mass as an additional dynamical degree of freedom

in this work’s simulations the need is avoided for a partially quenched approximation when

investigating the properties of particles containing a strange quark, e.g. the hyperons.

In this work the quark masses are chosen by first finding the flavour SU(3) symmetric

point where the light (up and down) quarks and the strange degree of freedom are mass-

degenerate and then vary the individual quark masses while keeping the singlet quark mass

constant. Simulations are performed on lattice volumes of 243 × 48 with lattice spacing,

a = 0.078(3)fm.

This work focuses on the first (n = 1) and second (n = 2) moments of the nucleon and

hyperon (Σ+ and Ξ0) unpolarised, longitudinally and transversely polarised PDFs. These

include the baryon axial and tensor charges and quark momentum fractions.

The axial charge of the nucleon is important as it governs neutron β-decay and also provides

a quantitative measure of spontaneous chiral symmetry breaking. It is also related to the

first moment of the longitudinally polarised parton distribution functions, gA = ∆u −∆d .

8 1. Introduction

Theoretical and experimental studies are carried out since many years. The Particle Data

Group (PDG) world average is g N
A = 1.2694(28). Hence it is an important quantity to study

on the lattice, and since it is relatively clean to calculate (zero momentum, isovector), it

serves as a milestone for lattice simulations of nucleon structure.

While there has been much work on the (experimentally well-known) nucleon axial charge,

there have only been a handful of lattice investigations of the axial charge of the other octet

baryons, which are relatively poorly known experimentally. These constants are important

since at leading order of SU(3) heavy baryon chiral perturbation theory (ChPT), these

coupling constants are linear combinations of the universal coupling constants D and F ,

which enter the chiral expansion of every baryonic quantity.

Much of our knowledge about QCD and the structure of the nucleon has been derived from

deep inelastic scattering experiments where cross sections are determined by its structure

functions. Through the operator product expansion, the first moments of these structure

functions are directly related to the momentum fractions carried by the quarks and gluons

in the, e.g., nucleon, 〈x〉q,g . While the quark momentum fractions of the nucleon and pion

have received much attention for many years, there have to date been no investigations

of the flavour SU(3) symmetry breaking effects of the quark momentum fractions of the

hyperons. The obvious question that arises in this context is: ‘‘How is the momentum of

the hyperon distributed amongst its light and strange quark constituents?”

The isospin symmetry between the proton and the neutron originates from the SU(2)

symmetry between the up and down quarks, which are isospin doublets with isospin I = 1/2

and isospin three-components I3 = ±1/2, respectively. This symmetry states that the up

quark distribution in the proton is equal to the down quark distribution in the neutron. Since

this work’s simulations include varying the light and strange quark masses starting from the

flavour SU(3) symmetric point in this work it was possible to predict the degree of isospin

symmetry violation in the parton distribution functions of the nucleon by determining the

quark momentum fractions of the octet baryons.

Chapter 2

Continuum QCD

QCD is a non-Abelian gauge field theory with SU(3) as the gauge group. The fundamental

degrees of freedom are the quark and gluon fields. While the quark fields describe massive

spin 1
2

fermions which carry colour charge, the gluon fields describe the massless spin 1

gauge bosons mediating the colour force.

The dynamics of quarks and gluons are described by the QCD Lagrangian1

L = −1

4
F a
µνF µνa +

Nf∑
f =1

ψ
f
(iγµDµ −mf

0)ψf (2.1)

where ψ, ψ denote the Dirac 4-spinor quark fields with flavour index f , mf
0 are the bare quark

masses, and Nf denotes the number of quark flavours. The adjoint vector ψ(x) is defined

by ψ(x) = ψ†(x)γ0 where γ0 is the γ-matrix related to the time direction. To reflect the

Fermi-Dirac statistic the components of the fermion fields ψ, ψ are total anti-commuting

Grassman variables.

For convenience we have dropped in Eq. (2.1) the quark and gluon field dependence on

the position x = (x0, x1, x2, x3), spin and colour indices and assume matrix-vector notation.

The gauge covariant derivative is given as

Dµ = ∂µ − ig0Aµ (2.2)

1It is not quite the most general Lagrangian that can be written when demanding a theory with a local

SU(3) gauge invariance. A term ∝ ∗FF can also be added.

10 2. Continuum QCD

B Q I I3 S

u 1/3 2/3 1/2 +1/2 0

d 1/3 -1/3 1/2 -1/2 0

s 1/3 -1/3 0 0 -1

Table 2.1 – Quark quantum numbers of the light quarks with the baryon number B, the electric

charge Q, the isospin I , and the strangeness S .

where g0 is the gauge coupling constant, and the field strength tensor is defined in terms

of the gluon fields as

Fµν = ∂µAν − ∂νAµ − ig0[Aµ, Aν]. (2.3)

The field strength tensor and the gauge fields Aµ are elements of the Lie algebra of the

SU(Nc) group where Nc indicates the number of colours2. Usually the gauge fields are

expressed as

Aµ(x) =

N2
c−1∑

i=1

A(i)
µ (x)Ti (2.4)

where the A
(i)
µ (x) are real numbers and the Ti are the generators of the SU(Nc) group.

They are traceless, complex, and hermitian Nc × Nc matrices which obey

tr[Tj Tk] =
1

2
δj ,k (2.5)

[Tj , Tk] = ifjkl Tl (2.6)

with the complete anti-symmetric coefficients fjkl , the so-called structure constants of the

group. The Lagrangian in Eq. (2.1) is invariant under local gauge transformations of the

fermion and gauge fields

ψ(x)→ ψ′(x) = Ω(x)ψ(x)

ψ(x)→ ψ
′
(x) = ψ(x)Ω(x)†

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω(x)† + i(∂µΩ(x))Ω(x)†

(2.7)

with

Ω(x) = exp[−θi (x)Ti] ∈ SU(Nc) (2.8)

2QCD can be formulated with any number of colours, but nature uses Nc = 3.

2. Continuum QCD 11

(a) Meson octet plus singlet (b) Baryon octet

Figure 2.1 – Fundamental representation of the SU(3) group for combining a quark and anti-

quark pair (meson) and three quarks (baryon). Picture source: [3]

where the real numbers θi (x) can be chosen independently at every spacetime point.

The bare parameters of the theory are the gauge coupling constant g0 and the bare quark

masses mf
0.

Quarks come in six flavours: These are the u, d , s, c , b, and t quarks. The masses of the

u and d quarks are just a few MeV whereas the s quark has a mass of about 100 MeV -

these are the light quarks. The heavy quarks c , b, and t all have masses over 1 GeV. The

quantum numbers for the light quarks are given in Tab. 2.1.

At small energy scales, i.e. energies smaller than ≈ 1 GeV, quarks are confined into

hadrons. Baryons represent bound states of three quarks and mesons consist of a quark

and anti-quark pair.

Most matter that surrounds us (and also most matter created in accelerators) consists of

the lightest quarks. The masses of the light quarks are small compared to the scale of

the strong force. Consider for example the mass of the proton. Most of the contribution

(≈ 99%) comes from the kinetic and potential energy of the massless gluons and light quarks

confined in the proton. The light quarks are within a good approximation degenerate in

their mass. The QCD Lagrangian is (approximately) invariant under permutations of the

quark flavour indices, i.e. it exhibits a flavour SU(3) symmetry.

12 2. Continuum QCD

Figure 2.2 – Baryon decuplet. Picture source: [3]

The fundamental representation of the SU(3) group for combining a light quark and anti-

quark pair decouples into an octet and singlet:

3⊗ 3 = 8 ⊕ 1 (2.9)

Thus, the mesons are grouped into an octet and a singlet, see Fig. 2.1a. The mesons fall

onto lines of constant charge, the diagonal lines Q = −1, 0, +1 and constant strangeness,

the horizontal lines S = −1, 0, +1. The fundamental representation for baryons which

consist of three light quarks decouples into (J = 1/2) octets and (J = 3/2) decuplets

3⊗ 3⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. (2.10)

Fig. 2.1b (2.2) depicts the baryon octet (decuplet). Whereas the baryons of the octet fall

onto lines of constant charge, the diagonal lines Q = −1, 0, +1 and constant strangeness,

the horizontal lines S = 0,−1,−2 the baryons of the decuplet fall onto lines of constant

charge, the diagonal lines Q = −1, 0, +1, +2 and constant strangeness, the horizontal lines

S = 0,−1,−2,−3.

The non-Abelian term in the field strength tensor leads to gluon self-interactions. On the

one hand the gluons are the carriers of the force and on the other hand they are colour

charged particles, thus they interact with themselves.

The Lagrange description of QCD can be quantised by the path integral formulation. It is

convenient to define matrix elements in terms of the path integral formulation

〈0|Ω|0〉 =
1

Z

∫
D[A,ψ,ψ] Ω e−i

∫
d4x L (2.11)

2. Continuum QCD 13

(a) Quark-gluon vertex (b) 3-gluon vertex (c) 4-gluon vertex

Figure 2.3 – The fundamental vertices of QCD. Quarks are represented by solid lines and gauge

particle by wavy lines.

Figure 2.4 – Loop diagram leading to ultraviolet divergence.

with

Z =

∫
D[A,ψ,ψ] e−i

∫
d4x L (2.12)

where the operator Ω on the lhs acts on states of the Hilbert space and Ω on the rhs is a

functional of the quark and gluon fields. The integral in the exponent is carried out over 4

dimensions of Minkowski spacetime.

The path integral can be carried out in the regime of a sufficiently small strong coupling

constant

αs =
g 2

4π
� 1 (2.13)

by perturbative methods using the Feynman rules. In this expansion, at leading order only

tree-level diagrams composed out of the fundamental vertices of QCD are involved. Fig.

2.3 depicts the fundamental vertices.

In the perturbative expansion at orders beyond the tree-level, loop diagrams have to be

taken into account. Loop diagrams represent integrations over infinite internal momenta

and lead to ultraviolet (UV) divergences.

The UV divergences can be removed by regularisation, i.e. by introducing an ultraviolet

momentum cut-off ΛUV. The most convenient procedure is dimensional regularisation where

14 2. Continuum QCD

the integrals are carried out with a dimension slightly smaller than 4, i.e. with dimension

d = 4−2ε. To keep the action dimensionless an additional mass parameter µ is introduced

and the coupling constant is redefined to g = µεg0. Thus the coupling constant carries

a mass dimension. It is convenient to choose µ of the order of the characteristic energy

scale of the process of interest. The UV divergences are then absorbed by redefining the

bare constants of the theory, i.e. the coupling constant g0 and the bare quark masses mf
0.

This leads to the dependence of the gauge coupling constant g on the energy scale µ, the

so-called running of the coupling constant g(µ).

The renormalisation group equations enable us to calculate the renormalised coupling con-

stant to all orders of perturbation theory taking into account the most significant term at

each order. The Gell-Mann–Law or so-called β function encodes the dependence of the

coupling constant on the energy scale or distance:

β(αs) = −dαs(µ)

d lnµ2
(2.14)

For QED the β function is positive, thus the electric charge decreases at large distances

due to screening of the QED vacuum. For non-Abelian gauge theories, like QCD, this is

not the case. Gross et. al. showed that non-Abelian gauge theories are asymptotically free

(if the number of flavours Nf is not too large) [1, 2]. For these theories the β function is

negative, i.e. the coupling constant decreases for small distances or high energies. In the

case of QCD with SU(3) as the colour gauge group, the β function reads

β(αs) = −αs

(
b0
αs

4π
+ b1

(αs

4π

)2

+ ...

)
(2.15)

with

b0 =
11− 2 Nf

3

4π
> 0, for Nf ≤ 16. (2.16)

The β function of QCD is known to four-loop order [4]. Upon changing the scale, it can

be shown that the coupling constant obeys the differential equation

αs(µ2) =
1

b0 ln µ
ΛQCD

. (2.17)

This equation can be integrated with ΛQCD as the integration constant. The constant ΛQCD

sets the scale for all relevant dimensionful quantities.

Chapter 3

Phenomenology

A brief introduction to the phenomenology concerning this work is given while following in

parts the notation of [5].

3.1 Pion Decay

The pion decay constant fπ represents an important constant of nature since it sets the

scale of the chiral symmetry expansion and in addition determines the rate for the pion

semi-leptonic decays.

The scattering matrix element of pion decay, see Fig. 3.1,

π− → µ− + νµ (3.1)

involves a leptonic and a hadronic matrix element

Tfi = (−igW) cos θcuµ(~kµ)γλ(1− γ5)uν(~kν)× i

m2
W

〈0|Jλh (0)|π+(~p)〉 (3.2)

where we assume the mass of the W boson to be large compared to the momentum

transfer. The relation to the Fermi constant is GF/
√

2 = g 2
W /m2

W . We use the continuum

normalisation of the states

〈p′|p〉 = (2π)32Eδ3(~p′ − ~p). (3.3)

The hadronic part involves the weak current

Jµh = uγµ(1− γ5)d . (3.4)

16 3. Phenomenology

π−

d
ū

W−(q ≈ 0)

ν̄µ µ−

Figure 3.1 – Pion decay: The momentum transfer is taken to be small.

Since the pion is a pseudoscalar under parity the vector part vanishes and we find

〈0|uγµγ5d |π+(p)〉 = −fπpµ (3.5)

with fπ the pion decay constant.

The experimental value of the pion decay constant is [6]

fπ± = 130.7± 0.1± 0.36MeV. (3.6)

The first error comes from |Vud | and the second from matching energy scales.

3.2 Beta Decay

In beta decay a neutron disintegrates into a proton, electron and electron antineutrino, see

Fig. 3.2,

n→ p + e− + νe . (3.7)

This process is well described by the charged weak current model purely vector-axialvector

interaction [7, 8, 9]. Studying the rate at which this process occurs and the angular

correlations among the decay products provides insight into this basic semileptonic decay.

Neutron β decay is viewed as the conversion of a d quark into an u quark through the

emission of a virtual W− gauge boson:

d → u + e− + νe (3.8)

3.2. Beta Decay 17

n(p) p(p′)

W−(q ≈ 0)

ν̄e e−

Figure 3.2 – Neutron beta-decay. A neutron disintegrates into a proton. The momentum transfer

is taken to be small.

The mass difference between the neutron and proton is small, (mn −mp)c2 ≈ 1.293 MeV

[10], particularly in comparison with their masses which are of order 1 GeV. We assume the

momentum transfer q = p′ − p to be small.

With the assumption that neutron decay is point-like, there is no change in total orbital

angular momentum, and one can consider the selection rules for allowed transitions between

initial and final states:

Fermi Decays: A decay in which the change in spin and isospin is zero (|∆J | = 0 and

|∆I | = 0) and no parity change occurs is referred to as a Fermi decay. Fermi decays arise

from vector currents.

Gamow–Teller Decays: If the electron and antineutrino spins are aligned with total spin

1, the proton couples to three possible spin states determined by Pauli spin matrices. These

decays can change the spin and isospin by 0 or 1 (|∆J | ∈ {0, 1} and |∆I | ∈ {0, 1}, but with

Ji = 0 → Jf = 0 forbidden, i for initial and f for final) and are known as Gamow–Teller

decays. Gamow–Teller decays arise from axial-vector currents.

The beta decay is a mixed Fermi/Gamow-Teller decay.

The ratio at which Fermi and Gamow-Teller transitions occur is not precisely 3 : 1. There

is a small deviation that is a measure of the difference in the coupling strengths of the two

decays. The ratio is parametrised by a factor such that 3λ2 : 1, where λ is defined by

λ =
g N

A

g N
V

(3.9)

18 3. Phenomenology

with the nucleon axial charge g N
A and vector charge g N

V . Usually this ratio is determined

under the assumption of conserved vector currents (CVC), which implies gV = 1. The weak

vector current is assumed to be conserved with a universal coupling constant in an analogy

to the electro-magnetic vector current. This assumption is the CVC hypothesis. The value

of g N
A is determined experimentally to be 1.2695± 0.0029 [10].

The deviation of g N
A from 1, the axial charge of a point-like particle, can be attributed,

according to the Adler-Weisberger sum rule [11, 12], to the differences between the π+N

and π−N cross sections in pion-nucleon scattering. The value of g N
A is a sensitive probe of

the inner dynamics of the nucleon.

The matrix element for beta decay can be described in field theory, and with the assumption

that only vector and axial-vector currents are involved, one can construct a matrix element

describing neutron decay as a four-fermion interaction composed of hadronic and leptonic

matrix elements

Tfi = (−igW) cosc ue(~pµ)γµ(1− γ5)uνe (~pν)× i

m2
W

〈p(~p)|Jµh (0)|n(~p)〉. (3.10)

The leptonic portion of the matrix element can be calculated in a straightforward manner.

The hadronic part reads

Tfi ∝ 〈 p(p) | Jµh (0) | n(p) 〉 (3.11)

with the weak current Jµh (0) as defined in Eq. (3.4). We determine g N
A and g N

V through

〈p|uγµd |n〉 = g N
V upγµun (3.12)

〈p|uγµγ5d |n〉 = g N
A upγµγ5un (3.13)

where uB , uB are nucleon spinors with B = n, p. With current algebra we find, see proof

in App. A of [13],

〈p|uγµγ5d |n〉 = 〈p(p), s|A(u)
µ − A(d)

µ |p(p), s〉 (3.14)

= 2sµg N
A (3.15)

where we have made explicit the spin dependence in Eq. (3.15) and introduced the spin

vector sµ which satisfies s2 = −mp and with

A(q)
µ = qγµγ5q. (3.16)

Thus a measurement of g N
A is equivalent to the measurement of the non-singlet proton

matrix element.

3.3. Baryon Matrix Element 19

Transition a b

n→ p 1 1

Σ− → Σ0
√

2 0

Ξ− → Ξ0 −1 1

Table 3.1 – Clebsch-Gordan coefficients in nucleon and hyperon decays.

3.3 Baryon Matrix Element

According to Cabibbo Theory [14] the baryon matrix element for the decay

B1 → B2lν (3.17)

at finite momentum can be written as

〈B2|Jh
µ|B1〉 = C uB2(p2)

[
gV (q2)γµ + gA(q2)γµγ5 + ...

]
uB1(p1) (3.18)

where the ellipsis refers to terms proportional to the induced tensor and pseudoscalar form

factors which are not relevant for our current discussion. If we assume exact flavour SU(3)

symmetry, the vector and axial-vector form factors gV (q2) and gA(q2) can be written as

gV (q2) = aF1(q2) + bD1(q2) (3.19)

gA(q2) = aF2(q2) + bD2(q2) (3.20)

where the Fi (q2) and Di (q2) with i = 1, 2 are different functions of q2 for each of the two

form factors. The constants a and b are generalised Clebsch-Gordan coefficients whose

values are given in Tab. 3.1. This allows us to write the following relations between the

nucleon and hyperon axial charges [15, 16]

g N
A = F + D (3.21)

g Σ
A =
√

2F (3.22)

g Ξ
A = D − F (3.23)

where we defined F = F2(0) and D = D2(0).

20 3. Phenomenology

p

e(p)

γ/Z 0/W±

e(p′)/ν(p′)

X

Figure 3.3 – Schematic diagram of a neutral current (exchange boson γ or Z 0) and charged

current (exchange boson W±) deep inelastic electron-proton scattering process. Momentum

transfer is q = p′ − p.

3.4 Deep Inelastic Scattering

In Deep Inelastic Scattering (DIS) processes the internal structure of hadrons (particularly

the baryons, such as protons and neutrons) is probed with a leptonic, electrically charged

scattering particle, i.e. electrons, muons – also DIS processes with neutrinos as the structure

probing particle are carried out. It provided the first convincing evidence of the reality of

quarks.

In scattering processes, see Fig. 3.3,

lN → lX (3.24)

νN → µ−X (3.25)

the momentum transfer from the incoming lepton l (usually an electron) is large enough to

destroy the nucleon N (usually a proton). The final state X of this process can be anything.

The hadronic part of the scattering matrix element is found to be

Tfi ∝ 〈X |Jµ(q)|p〉 (3.26)

with the vector current

Jµ =
2

3
uγµu − 1

3
dγµd +

[
−1

3
sγµs

]
+ ... (3.27)

The scattering process of an incoming electron with momentum pe and an outgoing electron

with momentum p′e is described by the following kinematic variables:

• The momentum transfer

∆ = q = p′ − p, t = ∆2, (3.28)

3.4. Deep Inelastic Scattering 21

• the energy loss of the electron in laboratory frame

ν =
p · q
mN

= Ee − E ′e , (3.29)

• the inelasticity, i.e. the fractional energy loss of electron in laboratory frame

y =
ν

Ee
=

Ee − E ′e
Ee

, (3.30)

• the virtuality of the exchanged boson

Q2 = −q2, (3.31)

• and the Bjorken scaling variable

x =
Q2

2mNν
. (3.32)

The so-called forward limit refers to p′ = p.

For virtualities

Q2 > 1GeV2 (3.33)

the Compton wavelength of the exchanged boson is smaller than the dimension of the

proton and the exchanged boson is able to probe the internal structure of the proton. In

this energy regime if in addition the invariant mass of the hadronic final state

M2
X = (p + q)2 (3.34)

is much larger than the invariant mass of the proton, the process is called deep inelastic

scattering (DIS).

In case of a single boson exchange, the double-differential cross section for DIS electron-

proton scattering reads

d2σ

dΩdE ′e

∣∣∣∣
N lab frame

=
α2

mNQ4

E ′e
Ee

LµνW µν (3.35)

with the leptonic tensor

Lµν = k ′µkν + k ′νkµ − gµνk ′ · k + iεµνρσsρe qσ (3.36)

22 3. Phenomenology

where k and k ′ are the four-momenta of the incoming and the scattered electron, and εµνρσ

is the completely anti-symmetric tensor and gµν is the metric tensor in Minkowski space

and where we have neglected terms of order O(m2
e).

In case of summing over the final states X , i.e. considering inclusive DIS processes, the

hadronic tensor is given by

W µν =
1

4π

∫
d4x e−iq·x〈p| [Jµ(x), Jν(0)] |p〉 (3.37)

= W µν
S + iW µν

A (3.38)

where in the second line we have split the tensor into a symmetric and anti-symmetric

piece. With current conservation and using parity and time reversal invariance, the general

Lorentz decomposition of the symmetric piece of the tensor is given by

W µν
S =

(
−gµν +

qµqν

q2

)
F1(x , Q2) +

1

mNν

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
F2(x , Q2)

(3.39)

and the anti-symmetric piece is given by

W µν
A =

1

mNν
εµνρσqρsσg1(x , Q2)+

1

mNν
εµνρσqρ

(
sσ −

q · s
mNν

pν

)
g2(x , Q2)

(3.40)

with the unpolarised structure functions F1 and F2 and the polarised structure functions g1

and g2 depending on the Bjorken scaling variable x and the virtuality Q2. The quark-parton

model makes approximate predictions for the structure functions.

3.5 The Quark-Parton Model

A simple physical picture of DIS processes is provided by the quark-parton model where

at high energies the nucleon can be considered as a collection of free on-shell particles,

i.e. partons, each carrying a fraction ξ of the nucleon momentum [17, 18, 19, 20]. In this

picture qσ(ξ) and qσ(ξ) are the parton distributions and σ the possible spin projections.

Thus the momentum of a parton is given by

pξ = ξp. (3.41)

3.6. Generalised Parton Distributions 23

To avoid a variable invariant mass we work in the infinite momentum frame. We express

the structure functions as

F
(q)
1 =

e2
q

2
δ(ξ − x) (3.42)

F
(q)
2 = e2

qξδ(ξ − x) (3.43)

g
(q)
1 =

e2
q

2
σNσqδ(ξ − x) (3.44)

g
(q)
2 = 0 (3.45)

with eq the normalised charge of the parton. Multiplying our results with qσ(ξ) and inte-

grating over ξ gives

F1(x) =
∑

q

e2
q

2
(q(x) + q(x)) (3.46)

F2(x) =
∑

q

e2
qx (q(x) + q(x)) (3.47)

g1(x) =
∑

q

e2
q

2
(∆q(x) + ∆q(x)) (3.48)

g2(x) = 0 (3.49)

with

q(x) = q↑(x) + q↓(x) (3.50)

for the unpolarised case and

∆q(x) = q↑(x)− q↓(x) (3.51)

for the polarised case. Thus, in the parton model the structure functions depend only on x .

This is the so-called Bjorken-scaling and is direct evidence of a substructure of the nucleon.

Radiative QCD corrections allow also for a dependence on Q2. These scaling violations are

a direct test of QCD.

3.6 Generalised Parton Distributions

The parton densities one can extract from DIS processes encode the distribution of longi-

tudinal momentum and polarisation carried by quarks, antiquarks and gluons within a fast

24 3. Phenomenology

x + ξ x − ξ

p

γ∗(q)

p′

γ(q′)

Figure 3.4 – Handbag diagram. ξ denotes the longitudinal momentum transfer.

moving hadron. They have had a high impact on our physical picture of hadron structure.

Important pieces of information are missed out in these quantities, in particular how partons

are distributed in the plane transverse to the direction in which the hadron is moving, or

how important their orbital angular momentum is in making up the total spin of a nucleon.

It has become clear that appropriate exclusive scattering processes may provide such in-

formation, encoded in generalised parton distributions (GPDs) [21, 22, 23, 24]. Reviews

about GPDs are found in the literature [25, 26, 27].

The simple factorisation of dynamics into short- and long-distance parts is not only valid for

the forward Compton amplitude, but also for the more general case where there is a finite

momentum transfer to the target, provided at least one of the photon virtualities is large.

A particular case is where the final photon is on-shell, so that it can appear in a physical

state. To be more precise, one has to take the limit of large initial photon virtuality Q2,

and the invariant momentum transfer t = (p′ − p)2 remaining fixed. One then speaks of

deeply virtual Compton scattering (DVCS), as shown in Fig. 3.4, which can be accessed in

the exclusive process ep → eγp. The long-distance part, represented by the lower blob, is

called a generalised parton distribution.

The production of a real photon requires a finite transfer of longitudinal momentum, where

“longitudinal” refers to the direction of the initial proton momentum in a frame where

both p and p′ move fast, e.g. the centre of momentum frame of the γ∗p collision. Proton

and parton momenta now are no longer the same in the initial and final states. Therefore

a GPD no longer represents a squared amplitude (and thus a probability), but rather the

interference between amplitudes describing different quantum fluctuations of a nucleon.

3.7. Operator Product Expansion 25

3.7 Operator Product Expansion

For renormalisable quantum field theories the Operator Product Expansion (OPE) can be

carried out to all orders with perturbation theory. The coefficient functions appearing in

the OPE gain perturbative corrections which are constrained by the renormalisation group

Callan-Symanzik equations [28, 29, 30, 31, 32].

In order to obtain predictions for the structure functions in terms of parton distribution

functions (PDF) to leading order in the strong coupling, we apply the OPE method.

In general for a set of operators Oi (x) the OPE has the form [33, 34]

lim
x→0

Oi (x)Oj (0) =
∑

k

EijkOijk(0) (3.52)

where Eijk are the Wilson coefficients. We define the twist t of an operator as its dimension

minus spin. By dimensional analysis it becomes clear that the rhs of Eq. (3.52) is an

expansion in inverse powers of Q2, with expansion powers being given by t − 2. Listing all

operators with a certain twist gives terms of O((Q2)−(t−2)). The leading order terms are

of twist t = 2 and are given from the symmetrised, traceless parts of the quark bilinear

operators

Oµ1···µn
q = in−1qγµ1

←→
D µ2 · · ·←→D µn q (3.53)

Oµ1···µn

5q = in−1qγµ1γ5

←→
D µ2 · · ·←→D µn q (3.54)

where
←→
D = 1

2
(
−→
D −←−D) and the symmetrised, traceless part of an expression or operator

SO is defined as

SOµ1···µn = Oµ1···µn − tr (3.55)

where the trace terms are such that

ηµiµj
Oµ1···µi ···µj ···µn = 0. (3.56)

The OPE as carried out above is valid for forward γN Compton scattering within a small

region 1
x
≈ 1

Q
→ 0. This is not the physical region for DIS processes. However, analyticity

(in the 1
x

plane) and dispersion relations connect to the discontinuity region. Finally the

optical theorem relates the forward Compton scattering amplitude structure functions to

the DIS structure functions.

26 3. Phenomenology

Using the optical theorem to relate the inclusive γ∗p cross section to the imaginary part of

the forward Compton amplitude γ∗p → γ∗p.

We arrive for the unpolarised nucleon structure functions at

2

∫ 1

0

dxxn−1F1(x , Q2) =
∑

f

E
(f)
F1,nv (f)

n (µ) +O(1/Q2) (3.57)∫ 1

0

dxxn−2F2(x , Q2) =
∑

f

E
(f)
F2,nv (f)

n (µ) +O(1/Q2) (3.58)

where n is even and starts at 2, and f are the quark flavours and vn comes from the nucleon

matrix element

〈p, s|O{µ1···µn} − tr|p, s〉 = v (f)
n Su(p, s)γµ1pµ2 · · · pµn u(p, s) (3.59)

= 2v (f)
n [pµ2 · · · pµn − tr]. (3.60)

The moments in Eqs. (3.57) and (3.58) have parton interpretation, being powers of the

fraction of the nucleon momentum carried by the parton

v (q)
n (µ) = 〈xn−1〉(q)(µ) (3.61)

=

∫ 1

0

dxxn−1[q(x ,µ) + (−1)nq(x ,µ)] (3.62)

in some scheme S and at scale µ.

3.8 Moments of Parton Distribution Functions

We give a brief introduction to the calculation of moments of parton distribution functions

(PDFs) on the lattice. For more detailed discussions see [35, 36, 37, 38, 39].

In DIS processes one can measure the quark light-cone distributions in the nucleon. These

distributions characterise the key bound state properties of the nucleon. At the leading-twist

level, there are three types of quark distribution in the nucleon:

• Quark density distribution q(x)

• Quark helicity distribution ∆q(x)

• Quark transversity distribution δq(x)

3.9. Euclidean Operators 27

In QCD, all these parton distributions can be written as the matrix elements of bi-local

operators. For instance, the quark light-cone distribution operator is

O(x) =

∫
dλ

4π
e iλxψ(

−λn

2
)nPe−ig

∫ λ
−λ/2 dαn·A(αn)ψ(

λn

2
), (3.63)

where n is a unit vector along the light-cone and λ = p+x−. Expanding O(x) in local

operators via the OPE generates the tower of twist-two operators

Oµ1···µn
q = qγ{µ1 i

↔
Dµ2 · · · i

↔
Dµn}q (3.64)

whose matrix elements can be calculated in Lattice QCD. For the quark helicity distribution

∆q and the transversity distribution δq the towers of twist-two operators read

Oµ1···µn

5q = qγ5γ
{µ1 i

↔
Dµ2 · · · i

↔
Dµn}q (3.65)

Oσµ1···µn

Tq = qγ5σ
{µ1 i

↔
Dµ2 · · · i

↔
Dµn}q. (3.66)

The quark density distribution q(x) specifying the probability of finding a quark carrying a

fraction x of the nucleon’s momentum in the light cone frame is measured by the diagonal

nucleon matrix element

〈P |O(x)|P〉 = q(x) (3.67)

and the (n − 1)th moment of the quark distributions are specified by the diagonal matrix

elements

〈P |Oµ1···µn
q |P〉 ∝

∫
dxxn−1q(x) (3.68)

〈P |Oµ1···µn

5q |P〉 ∝
∫

dxxn−1∆q(x) (3.69)

〈P |Oσµ1···µn

Tq |P〉 ∝
∫

dxxn−1δq(x). (3.70)

3.9 Euclidean Operators

Minkowski M space has the signature (1,-1,-1,-1). Minkowski and Euclidean components

of a 4-vector are related by

ψ4 = iψ(M)0 = iψ
(M)
0 (3.71)

ψi = ψ(M)i = −ψ(M)
i . (3.72)

28 3. Phenomenology

γ 1 γ5 γ4 γi γ4γ5 γiγ5

ηγ +1 -1 +1 +i -1 -i

Table 3.2 – Shown are the values of the coefficient η for the possible combinations of γ-matrices.

Covariant derivatives are defined in Minkowski space as

D(M)µ = ∂(M)µ − igA(M)µ (3.73)

and are related to their Euclidean counterparts

Dµ =
∂

∂xµ
+ igAµ (3.74)

by

D4 = −iD(M)0 (3.75)

Di = −D(M)i . (3.76)

The general operator in Minkowski M space is defined as

O(M)µ1···µn
γ = inψγ(M)←→D (M)µ1 · · ·←→D (M)µnψ (3.77)

and is related to its Euclidean counterpart

Oγ
µ1···µn

= ψγ
←→
D µ1 · · ·←→D µnψ (3.78)

by

O(M)µ1···µn
γ = ηγ(−1)n4(−i)n123Oγ

µ1···µn
(3.79)

where n4 is the number of time-like indices and n123 is the number of spatial indices and

the value of the coefficient η is shown in Tab. 3.2.

3.10 Sum Rules

The momentum fraction 〈x〉 obeys the sum rule

1 =
∑

q

〈x〉q,µ2 + 〈x〉g ,µ2 (3.80)

3.10. Sum Rules 29

where the sum runs over all relevant quark flavours and 〈x〉g is the fraction of momentum

coming from gluons. In the large µ limit perturbative calculations yield

lim
µ→∞
〈x〉q,µ2 =

3

16 + 3Nf
(3.81)

lim
µ→∞
〈x〉g ,µ2 =

16

16 + 3Nf
. (3.82)

For Nf = 4 these limits are found to be limµ→∞〈x〉q,µ2 = 3/28 ≈ 10% and limµ→∞〈x〉g ,µ2 =

4/7 ≈ 60%. Thus the gluons play a substantial role.

The nucleon spin is exactly 1/2 due to rotational symmetry. It obeys the sum rule [40]

1

2
=

1

2

∑
q

〈1〉∆q,µ2 +
∑

q

Lq,µ2 + Jg ,µ2 (3.83)

which relates the nucleon spin to the contributions from quark helicity 〈1〉∆q and orbital

angular momentum Lq and a net contribution from the gluons Jg .

European Muon Collaboration (EMC) experiments revealed that very little of a proton’s

spin is carried by its quarks. This was a very curious and unexpected experimental result

and led to the “proton spin crisis” [41].

The asymptotic evolution of the total quark contribution Jq = 1
2

∑
q〈1〉∆q +

∑
q Lq and

the total gluon contribution Jg is given by

lim
µ→∞

Jq,µ2 =
1

2

3Nf

16 + 3Nf
(3.84)

lim
µ→∞

Jg ,µ2 =
16

16 + 3Nf
. (3.85)

Where again for Nf = 4 these limits were found to be limµ→∞ Jq = 2/7 ≈ 0.60× 1/2 and

limµ→∞ Jg = 3/14 ≈ 0.40× 1/2. Thus again the gluons are playing a substantial role.

Chapter 4

QCD on the Lattice

This brief introduction follows the notation of [42].

4.1 Continuum Action

In the path integral description of QCD the continuum action

SQCD
M [ψ,ψ, A] = −1

4

∫
d4x F µνFµν +

Nf∑
f =1

∫
d4x ψ

(f)(
iγµDµ −m

(f)
0

)
ψ(f) (4.1)

= SQCD
G + SQCD

F (4.2)

is divided into the gluonic term SQCD
G containing only the gluon fields and a fermionic part

SQCD
F containing the quark and the gluon fields.

As QCD is a relativistic theory it is most conveniently formulated in Minkowski space.

However, for a numerical treatment of the path integral it is advantageous to perform

the Wick rotation to Euclidean space, where x0 → ix4 where x4 is the time component.

This replaces the highly oscillating term exp[iSQCD
M] in the path integral by an exponentially

damping term exp[−SQCD
E], i.e. the Boltzmann factor. From now on we work in Euclidean

space and drop the subscript E in the action SQCD
E .

32 4. QCD on the Lattice

4.2 Introduction of the Lattice

We consider QCD in a four-dimensional (4D) hypercubic volume V = L3×T with the spatial

extent L and the temporal extent T . In order to evaluate the path integral numerically we

introduce a hypercubic 4D lattice x = (x1, x2, x3, x4) within this volume. Even though the

discretisation in the temporal dimension originates conceptually completely different than

for the spatial dimension, i.e. it comes from introducing finite time evolution steps, we

further assume the same lattice spacing a between the lattice points in all four dimensions.

We label the lattice points with four-dimensional vectors

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, 1, ... , N − 1; n4 = 0, 1, ... , NT − 1} (4.3)

with N = L/a and NT = T/a. Thus the total number of lattice sites is |Λ| = N3NT . This

allows us to reach each spacetime point in the lattice by writing

x = an. (4.4)

We replace the fermionic fields of the continuum by fermionic fields located at the lattice

points

ψ(x)→ ψ(n) (4.5)

ψ(x)→ ψ(n) (4.6)

with n ∈ Λ. We stress that our notation for the continuum and lattice version only differ

in the argument of the fermionic fields.

4.3 Wilson Gauge Action

To formulate the gluonic fields on the lattice we first define the parallel transporter in the

continuum

U(y1, y2) = P exp
[
ig0

y2∫
y1

dxµAµ(x)
]

(4.7)

4.3. Wilson Gauge Action 33

Uν

Uµ

Figure 4.1 – The hypercubic lattice: The links connecting two neighbouring lattice sites are

assigned the parallel transporters Uµ and Uν .

with the path ordering operator P . We define the gauge fields on the lattice with the help

of the parallel transporter

Uµ(n) = U(an, an + aµ̂) (4.8)

= exp[iaAµ(n)] (4.9)

with µ = 1, .., 4 and µ̂ the unit vector pointing in direction µ. The lattice version of the

gauge fields are no longer elements of the Lie algebra of the group SU(Nc) but are elements

of the group

Uµ(n) = exp

(
i

N2
c−1∑

i=1

A(i)
µ (n)Ti

)
(4.10)

and are located at the links connecting two neighbouring lattice points, see Fig. 4.1.

We further define the parallel transporter in the negative direction

U−µ(n) = Uµ(n − µ̂)†. (4.11)

Instead of the term parallel transporter in the following we will call them shortly gauge

fields.

As in the continuum the lattice version of the theory must be invariant under local gauge

transformations. On the lattice we implement the gauge transformation by choosing ele-

ments of the special unitary group in Nc dimension for each lattice site independently

Ω(n) ∈ SU(Nc). (4.12)

34 4. QCD on the Lattice

U†ν

Uν

Uµ U†µ

Figure 4.2 – The smallest closed loop on the hyper-cubic lattice is the plaquette which is traversed

in the picture clock-wise: Uµν(n) = Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)†.

The gauge fields Uµ(n) transform under local gauge transformations as

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n + µ̂)†

U−µ(n) → U ′−µ(n) = Ω(n)U−µ(n)Ω(n − µ̂)†.
(4.13)

With this definition it follows directly that the product along any closed loop on the lattice

is gauge invariant.

On the lattice the following gauge invariant objects can be constructed: First, so-called

strings, path-ordered products of links that either have a fermion on one end and an

antifermion at the other, or, in case of periodic boundary conditions, wind around the

lattice. If a string goes around the lattice in temporal direction it is called a Polyakov

line (or loop), otherwise it is a so-called Wilson line. The second class of gauge-invariant

objects consists of closed Wilson loops. Also we can use the total anti-symmetric epsilon

tensor εabc to construct anti-symmetric colour combinations for, e.g. the nucleon.

The smallest closed loops are the so-called plaquettes

Uµν(n) = Uµ(n)Uν(n + µ̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)

= Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)†.
(4.14)

Fig. 4.2 depicts a plaquette. Summing over all plaquettes, counting each plaquette just in

one orientation, yields

1

g 2

∑
n∈Λ

∑
µ<ν

[
1− 1

2

(
Uµν(n) + Uµν(n)†

)]
=

1

4
a4
∑
n∈Λ

∑
µ,ν

Fµν(n)Fµν(n) +O(a2) (4.15)

4.4. Naive Discretisation of Fermion Fields 35

where Fµν(n) is the discretised version of the field strength tensor

Fµν(n) =
1

a

(
Aν(n + µ̂)− Aν(n)

)
−
(
Aµ(n + ν̂)− Aµ(n)

)
+ ig0[Aµ(n), Aν(n)]

= Fµν(x) +O(a).

(4.16)

In the continuum limit a→ 0 we find the field strength tensor approaching the continuum

version

Fµν(n)
a→0−−→ Fµν(x). (4.17)

This allows us to take the trace of the left side of Eq. (4.15) as the discretised gauge

action. This action was first formulated in this form by Wilson [43].

For SU(Nc) the Wilson gauge action reads

SG [U] = β
∑
n∈Λ

∑
µ<ν

[
1− 1

N
Re trUµν(n)

]
(4.18)

with β = 2Nc/g 2
0 . The discretisation error of this gauge action is of order O(a2).

4.4 Naive Discretisation of Fermion Fields

In order to formulate a discretised version of the fermionic action on the lattice we need to

make sure that it is invariant under local gauge transformation, compare to Eqs. (4.13),

ψ(n)→ ψ′(n) = Ω(n)ψ(n)

ψ(n)→ ψ
′
(n) = ψ(n)Ω(n)†

(4.19)

where we have dropped the flavour index. The mass term of the continuum fermion action

is already invariant under this gauge transformation. It remains to change the partial

derivative into a gauge invariant form. We identify the term

ψ
′
(n)U ′µψ

′(n + µ̂) = ψ(n)Ω(n)†U ′µ(n)Ω(n + µ̂)ψ(n + µ̂) (4.20)

= ψ(n)Uµψ(n + µ̂) (4.21)

36 4. QCD on the Lattice

to be gauge invariant where we used Eqs. (4.13). We use this term to discretise the partial

derivative and arrive at the so-called naive discretisation of the fermion action

SF = a4
∑
n∈Λ

ψ(n)

(4∑
µ=1

γµ
Uµ(n)ψ(n + µ̂)− U−µ(n)ψ(n − µ̂)

2a
+ m0ψ(n)

)
(4.22)

= a4
∑

n,m∈Λ

ψ(n)Dnaiv(n|m)ψ(m) (4.23)

where the action is a functional of the fermion and gauge fields, i.e. SF = SF [ψ,ψ, U]. In

Eq. (4.23) we introduced the naive Dirac operator Dnaiv on the lattice

Dnaiv(n|m) =
1

2a

4∑
µ=1

(
γµUµ(n)δn+µ̂,m − γµU−µ(n)δn−µ̂,m

)
+ m0δn,m (4.24)

and assumed matrix-vector notation. The Dirac Operator D is often called the fermion

matrix M .

We will now show that the naive discretisation of the fermion action leads to the so-called

fermion doubling problem. We calculate the Fourier transform of the Dirac operator on the

lattice for the free case (Uµ = 1) analytically. A detailed calculation can be found in the

App. A.1. The Fourier transformation reads

D̃naiv(p|q) = δp,q

(
m0 +

i

a

4∑
µ=1

γµ sin(pµa)

)
. (4.25)

In momentum space this operator is diagonal, which in turn leads to a straight-forward

calculation of its inverse by calculating the inverse of the bracket of the rhs of Eq. (4.25)

D̃naiv(p|q)(p)−1 =

m0 − ia−1
∑
µ

γµ sin(pµa)

m2
0 + a−2

∑
µ

sin(pµa)2
. (4.26)

The inverse of the Dirac operator in position space is proportional to this result, so we can

make statements on the poles of this operator. For massless fermions (m0 = 0) the naive

Dirac operator has poles at

p =(0, 0, 0, 0), (4.27)

(π/a, 0, 0, 0), ... , (π/a, π/a, π/a, π/a). (4.28)

The first pole describes the single fermion which is also described by the continuum operator.

The other 15 poles at the corners of the Brillouin zone lead to unwanted contributions.

This problem is known as the fermion doubling problem.

4.5. Nielsen and Ninomiya Theorem 37

4.5 Nielsen and Ninomiya Theorem

Nielsen and Ninomiya formulated the so-called no-go theorem [44, 45]. It states that for

every formulation of fermions on the lattice the following four conditions are not fulfilled

all at the same time:

Locality: The Dirac operator D(x) is local. Locality means that the coupling between

the fields vanishes exponentially exp(−µ|x |).

Continuum limit: The Fourier transform of the massless (m0 = 0) Dirac operator fulfills

D̃(p) = iγµpµ +O(ap2), i.e. we reach the right continuum limit.

No doublers: D̃(p) in the massless case is invertible, i.e. we have no doublers.

Chiral symmetry: D is γ5-hermitian, i.e. γ5D + Dγ5 = 0 – we have chiral symmetry.

To overcome the fermion doubling problem, Wilson suggested to introduce an additional

term, the so-called Wilson term to the fermionic action [46].

4.6 Wilson Fermion Action

We introduce an additional term, the Wilson term, to the Dirac operator in Fourier space,

see Eq. (4.25),

D̃W (p|q) = δp,q

(
m0 +

i

a

4∑
µ=1

γµ sin(pµa) +
r

a

4∑
µ=1

(
1− cos(pµa)

))
(4.29)

where r is the so-called Wilson parameter. In the following we will set r = 1. This term

vanishes for the physical pole p = (0, 0, 0, 0). For each of the other (unphysical) poles

contributing to the fermion doubling problem it provides an extra contribution 2/a for each

element equal to π/a. These contributions become in the continuum limit infinitely heavy

and decouple from the theory. In order to find the operator in position space we apply the

38 4. QCD on the Lattice

inverse Fourier transformation and we get the Wilson Dirac operator in position space

DW (n|m) =
(
m0 +

4

a

)
δn,m −

4∑
µ=1

(1− γµ)Uµ(n)δn+µ̂,m + (1 + γµ)U−µ(n)δn−µ̂,m

2a
. (4.30)

After rescaling the fermionic fields

ψ →
√

m0 + 4/aψ (4.31)

ψ →
√

m0 + 4/aψ (4.32)

we can rewrite this operator as

DW = 1− κH (4.33)

with the so-called hopping parameter, or Wilson quark mass parameter,

κ =
1

2(am0 + 4)
(4.34)

and the hopping matrix

H(n|m) =
4∑

µ=1

[
(1− γµ)Uµ(n)δn+µ̂,m + (1 + γµ)U−µ(n)δn−µ̂,m

]
. (4.35)

The inverse of the Dirac operator D−1 and its determinant det[D] are expanded in powers

of κ. For the quark propagator one can use the geometric series

D−1 = (1− κH)−1 =
∞∑

j=0

κj H j . (4.36)

The series converges for κ||H || < 1. The norm of the hopping term obeys ||H || ≤ 8 and

thus the series converges for κ < 1/8.

The mass of a Wilson quark is given by

am0 =
1

2κ
− 4 =

1

2κ
− 1

2κc
. (4.37)

It vanishes in the free case for κ = κc = 1/8. We define am0 = 1/2κ− 1/2κc also for the

interacting theory, so that κc becomes dependent on the lattice spacing a. As a consequence

the quark mass receives not only multiplicative but also additive renormalisation.

To determine κc one can use the chiral relation m2
π ∝ m0, calculate m2

π as a function of

1/2κ and extrapolate to zero and use Eq. (4.37). Another way is to calculate the quark

4.7. Discretisation Errors 39

mass using the PCAC relation based on the axial vector Ward identity as a function of 1/2κ

and again extrapolate to zero.

The quark mass is determined by the hopping expansion parameter κ. The larger κ the

smaller the quark mass. In terms of the Wilson quark mass parameter κ a decreasing quark

mass is equivalent to κ approaching κc , the critical value where the quark mass vanishes.

However, for a given set of simulation parameters (β,κ) the critical hopping parameter

κc is uniquely defined only as a statistical average over the whole gauge field ensemble,

while its value on individual configurations fluctuates. From this, a complication arises: If

the fluctuating value of κc gets close to κ, the quark matrix may become singular. This

problem becomes increasingly severe with decreasing quark mass, β and L.

Adding the Wilson term to the fermion action eliminates the fermion doublers, but it breaks

explicitly chiral symmetry of the action.

4.7 Discretisation Errors

Formulating the theory on the lattice introduces discretisation errors. To estimate these

errors we take the so-called naive continuum limit.

We expand the gauge fields in Eq. (4.8) for small a

Uµ(n) = 1 + iaAµ(n) +O(a2) (4.38)

U−µ(n) = 1− iaAµ(n − µ̂) +O(a2) (4.39)

and find the fermionic action in Eq. (4.22) splitting into a free part SF0 including the mass

term and an interaction part SFI

SF [ψ,ψ, U] = SF0[ψ,ψ] + SFI
[ψ,ψ, A] (4.40)

where the interaction term is

SFI
[ψ,ψ, A] = ia4

∑
n∈Λ

4∑
µ=1

ψ(n)γµ
1

2

(
Aµ(n)ψ(n + µ̂)− Aµ(n − µ̂)ψ(n − µ̂)

)
(4.41)

= ia4
∑
n∈Λ

4∑
µ=1

ψ(n)γµAµ(n)ψ(n) +O(a) (4.42)

where we used ψ(n± µ̂) = ψ(n) +O(a) and Aµ(n− µ̂) = Aµ(n) +O(a). Thus, the Wilson

action has discretisation errors of order O(a).

40 4. QCD on the Lattice

4.8 Integration with Monte Carlo Methods

The introduction of the lattice has reduced the dimensionality of the path integral to be

finite. But still, the integral is far too high dimensional to be carried out, even numerically,

exactly. It is convenient to treat the fermionic and gluonic parts separately.

With the action split into a fermionic and gluonic part, see Eq. (4.2), we write the matrix

element in the path integral formalism, compare to Eq. (2.11), as

〈O〉 =
1

Z

∫
D[ψ,ψ]D[U]eSF [ψ,ψ,U]−SG [U]O (4.43)

= 〈〈O〉F 〉G (4.44)

where O = O[ψ,ψ, U] is a combination of quark and gluon fields. We separated the

fermionic part

〈O〉F =
1

ZF [U]

∫
D[ψ,ψ]e−SF [ψ,ψ,U]O[ψ,ψ, U] (4.45)

with

ZF [U] =

∫
D[ψ,ψ]e−SF [ψ,ψ,U] (4.46)

from the gluonic part

〈B〉G =
1

ZG

∫
D[U]e−SG [U]ZF [U]B[U] (4.47)

with

ZG =

∫
D[U]e−SG [U]. (4.48)

The fermion part in Eq. (4.45) can be integrated exactly due to the Grassman nature of the

integration variables. The quark fields obey to the Fermi statistic and are represented by

total-anticommuting Grassman variables. In the denominator of Eq. (4.45), the Gaussian

integrals can be carried out exactly with the Matthews-Salam formula [47, 48]

ZF [U] =

∫
D[ψ,ψ] exp

[∑
n,m∈Λ

ψ(n)D(n|m)ψ(m)

]
. (4.49)

A possible minus sign in the exponent can be absorbed by a redefinition of the Dirac

operator D. We determine the partition function as the fermion determinant

ZF [U] = det(D). (4.50)

4.8. Integration with Monte Carlo Methods 41

We suppose now, that O involves a number of fermion fields

〈O〉F = 〈ψi1ψj1 ...ψinψjn〉F . (4.51)

To calculate the nominator of the expectation value we use Wick’s theorem to integrate

out the fermionic fields

〈ψi1ψj1 ...ψinψjn〉F =
1

ZF

∫
D[ψ,ψ]ψi1ψj1 ...ψinψjn e

∑
ψ(n)D(n|m)ψ(m) (4.52)

= (−1)n
∑

P(1,...,n)

sign(P)D−1
i1,jP1
· · ·D−1

in,jPn
. (4.53)

The sum in the first line runs over all n, m ∈ Λ and P(1, ... , n) is the set of all permutations

of the numbers from 1 to n. This procedure of integrating out the fermion fields is also

called carrying out the fermion contractions.

The gluon part of the integral is carried out by means of Monte Carlo methods. A set

of gauge configurations {Un |1 ≤ n ≤ Nconf} is generated where Nconf is the number of

gauge configurations and where each Un is sampled according to the probability distribution

density

dP(U) =
e−SG [U]D[U]∫
D[U]e−SG [u]

, (4.54)

the so-called Gibbs measure. Sampling the gauge configurations according to this measure

ensures that the individual contributions to the path integral are given a different importance

determined by the Boltzmann factor exp(−SG).

Given the gauge configurations Un sampled with the Gibbs measure, we can approximate

the path integral by

〈B〉G ≈
1

Nconf

Nconf∑
n=1

B[Un] (4.55)

where the sum converges quickly since the gauge configurations are sampled according to

the Boltzmann factor. Due to probability theory we approach the exact path integral value

in the limit Nconf →∞.

4.8.1 Markov Chains

In order to find the gauge configurations we start from an arbitrary configuration U0 and

construct a stochastic sequence Un of configurations that follow an equilibrium distribution

42 4. QCD on the Lattice

P(U). This is done with a so-called Markov process

U0 → U1 → U2 → (4.56)

The change of a field configuration is called an update or a Monte Carlo step. A Markov

process is characterised by a conditional transition probability

P(Un = U ′|Un−1 = U) = T (U ′|U) (4.57)

which determines the transition probability to go to configuration U ′ if starting from U .

The transition probability satisfies the following relations

0 ≤ T (U ′|U) ≤ 1 and
∑

U′

T (U ′|U) = 1. (4.58)

In equilibrium the probability for hopping out of a configuration should be same as hopping

into it. The corresponding balance equation reads

∑
U

T (U ′|U)P(U) =
∑

U

T (U |U ′)P(U ′). (4.59)

Although other solutions to this equation are known, most algorithms implement the so-

called detailed balance condition

T (U ′|U)P(U) = T (U |U ′)P(U ′), (4.60)

a sufficient but not necessary condition. The transition probability can be written as

T (U ′|U) = pc(U → U ′)pA(U → U ′) (4.61)

where pc is the probability to choose a candidate configuration U ′ and pA is the acceptance

rate.

For example for quenched QCD where one drops the fermion determinant (det D = 1)

we may use over-relaxation [49] to propose a new configuration and use the Metropolis

acceptance probability

pA = min(1, e−∆S) (4.62)

where ∆S denotes the difference of the action for the proposed configuration to the original

one.

4.9. Hadron Interpolator 43

State JPC Γ Particles

Scalar 0++ 1, γ4 f0,a0,K ∗0 ,...

Pseudoscalar 0−+ γ5, γ4γ5 π±, π0, η, K±, K 0, ...

Vector 1−− γi , γ4γi ρ±, ρ0, ω, K ∗, φ, ...

Axial vector 1++ γiγ5 a1, f1, ...

Tensor 1+− γiγj h1, b1, ...

Table 4.1 – Quantum numbers of the most commonly used meson interpolators according to

the general form 4.63.

Simulations that include the fermion determinant (dynamical QCD) typically use the Hybrid

Monte Carlo (HMC) algorithm [50]. In the standard HMC algorithm the Dirac operator

appears quadratically, thus only an even number of flavours can be simulated. This restric-

tion can be overcome in the case of a positive fermion determinant with the polynomial

[51, 52] or rational HMC [53, 54].

4.9 Hadron Interpolator

In order to calculate correlators and matrix elements the first step is the identification of

the correct hadron interpolators O, O such that they feature the same quantum numbers,

i.e. possess the same symmetries as the hadron states we are interested in. In particular we

have to ensure that our interpolators transform in the correct way under parity P , charge C
transformation and have correct total spin J . The symmetry transformations implemented

on the lattice are shown in App. A.2.

In the following we will use the symbol M for meson interpolators, and B for baryon

interpolators. The meson interpolators are most commonly used in the form

MΓ(n) = cf1f2ψ
(f1)

(n)Γψ(f2)(n) (4.63)

where Γ represents a combination of γ-matrices. Tab. 4.1 lists the quantum numbers and

the according combination of γ-matrices of typically used meson interpolators. It is common

practice to instead of using a flavour index f attached to the fermionic field denoted by

44 4. QCD on the Lattice

ψ(f), ψ
(f)

to use a different symbol for each of the flavours. Thus, the spinors u, u, d , d ,

s, s denote the quarks and anti-quarks of the three light flavours. The matrix c denotes

the corresponding flavour matrix.

We consider meson interpolators involving u and d quarks (and their anti-quarks) and set

cud = 1. For example, the pion interpolator of the iso-triplet π− is given by

M(n) = u(n)γ5d(n). (4.64)

It features the correct quantum numbers JPC = 0−+ which can be shown by applying the

charge and parity transformations and it has the correct spin number. The corresponding

interpolator for π+ is obtained by interchanging the quark flavours u ↔ d .

Baryons are composed out of three quarks. The proton p and the neutron n are the I3 =

±1/2 components of an isospin-doublet (I = 1/2). Their masses are almost degenerate,

i.e. mp = 938.27 MeV and mn = 939.57 MeV, stating that isospin is a good symmetry.

Considering the electric charges of the neutron and proton we find that the proton must be

a uud-state and the neutron a ddu-state. Due to nearly exact isospin-symmetry of these

two particles it is common practice to write down just one interpolator for both, i.e. the

baryon interpolator

B(n) = εabcu(n)a

(
u(n)T

b Cγ5d(n)c

)
(4.65)

B(n) = εabc

(
u(n)aCγ5d(n)T

b

)
u(n)c . (4.66)

The baryon interpolators have a free Dirac index, i.e. B = Bα and B = Bα. The term

in parentheses combines the u and the d quark into a so-called diquark making use of the

charge conjugation matrix C and γ5. The diquark contracts the Dirac indices and thus

represents an ordinary number in spin structure. The interpolator for the I3 = −1/2 case is

obtained by interchanging the constituents, i.e. u ↔ d . Since the diquark has the correct

isospin symmetry it remains to show that our interpolator transforms correctly under parity.

Under parity P our nucleon interpolator transforms like, see App. A.2,

BP(n, n4) = γ4B(−n, n4). (4.67)

As we will see later, the change of the spatial vector n into −n is irrelevant, because we

carry out a sum over all spatial components. Our interpolator couples to states with positive

4.10. Momentum Projection 45

and negative parity. Thus we need the parity projector

P± =
1

2
(1± γ4) (4.68)

to project to states with positive P = +1 or negative P = −1 parity

B±(n) =
1

2

(
B(n)± BP(n)

)
. (4.69)

4.10 Momentum Projection

In order to study hadronic correlation functions with finite initial and final momentum a mo-

mentum projection to the interpolators is implemented. The interpolators are represented

in momentum space by a Fourier transformation

Õ(p, nt) =
1√
|Λ3|

∑
n∈Λ3

O(n, nt)e−ian·p (4.70)

where Λ3 are the labels of lattice point in the spatial plane. The hadron interpolator O

stands for one of our previously defined meson or baryon interpolators M or B . If we prepare

in such a way the initial state and the final state with with momentum p and p′ we arrive

at the Euclidean hadron correlators

〈Õ(p′, nt), Õ(p, 0)〉 =
1√
|Λ3|

∑
n,m∈Λ3

e−ian·p′e−iam·p〈O(n, nt), O(m, 0)〉. (4.71)

We drop the tilde symbol in the following if the argument is of momentum type.

4.11 Hadron Correlators

In order to evaluate the hadron correlators we write down the correlation function in terms

of hadron interpolators and carry out the fermion contractions. For a meson of the form

46 4. QCD on the Lattice

u

d

(a) Connected diagram

u d

(b) Disconnected diagram

Figure 4.3 – The 2-point quark correlation function for a meson. The quark line connected term

(left) and the disconnected term (right).

as shown in Eq. (4.63) with momentum projection we find

CΓ1Γ2(p, t) =

〈
MΓ1(p, t)MΓ2(p, 0)

〉
(4.72)

= − 1√
|Λ3|

∑
n,m∈Λ3

f1,f2

|cf1f2|2e−iap·(n−m)

[
〈

tr
[
D−1

f2
(n, t|m, 0)γ4Γ†2γ4D−1

f1
(m, 0|n, t)Γ1

]〉
G

− δf1,f2

〈
tr
[
D−1

f (n, t|n, t)Γ1

]
tr
[
D−1

f (m, 0|m, 0)γ4Γ†2γ4

]〉
G

] (4.73)

where the trace runs over Dirac and colour indices. The first term is the quark line con-

nected term, while the second term represents the disconnected term, see Fig. 4.3. The

disconnected term is computationally expensive to calculate since it involves the evaluation

of the propagator at every point on the t plane. However, if we restrict ourselves to flavour

non-singlets particles, then the second term is not present.

The Green’s function or quark propagator is defined as

D−1(n, t|m, 0) = 〈ψ(n, t)ψ(m, 0)〉F . (4.74)

Since we are averaging over many gauge configurations, we can use translational invariance

to move every source from (n, 0) to (0, 0). For flavour non-singlet mesons with u and d

quarks we arrive at

CΓ1Γ2(p, t) = −
∑

n

e−iap·n〈[Γ1D−1
d (n, t|0)γ4Γ†2γ4

]ab

αβ

[(
γ5D−1

u (n, t|0)γ5

)∗]ab

αβ

〉
G

(4.75)

4.11. Hadron Correlators 47

u

u

d

Figure 4.4 – The 2-point quark correlation function for a baryon. Only quark line connected

terms are present.

where we now made explicit the colour and Dirac indices and where we made use of the

γ5-hermiticity of the Dirac operator in order to obtain the backward running propagator

γ5D−1γ5 = D−1†. (4.76)

A similar calculation for the correlation functions using our nucleon interpolators B± gives

CΓ(p, t) =
∑
αβ

Γβα

〈
Bα(p, t)Bβ(p, 0)

〉
(4.77)

=
∑

n

e−iap·nεabcεa′b′c ′×〈
tr

[
ΓD−1

u (n, t|0)aa′
]

tr

[
D̃−1

d (n, t|0)bb′D−1
u (n, t|0)cc ′

]
+ tr

[
ΓD−1

u (n, t|0)aa′D̃−1
d (n, t|0)bb′D−1

u (n, t|0)cc ′
]〉

G

(4.78)

where the trace runs over the Dirac index and we have defined

X̃ = (Cγ5Xγ5C)T (4.79)

with C the charge conjugation matrix.

This result states that for the nucleon correlation function only connected parts contribute,

see Fig. 4.4.

48 4. QCD on the Lattice

4.12 Symanzik Improvement Program

It was pointed out that when discretising the continuum gluonic and fermionic actions we

introduce discretisation errors. In the following we will introduce an additional term to the

Wilson fermion action in order to improve the discretisation errors from O(a) to O(a2).

Following [55, 56, 57, 58, 59] the discretised action can for small energies be written as an

effective action

Seff =

∫
d4x
(
L(0)(x) + aL(1)(x) + a2L(2)(x) + ...

)
. (4.80)

L(0) is the usual continuum QCD Lagrangian and L(k) are correction terms. Since we are

interested in O(a) improvement we limit ourself to terms of order L(1) and neglect all other

terms with higher orders of a. Compared to L(0) which is a dimension-4 operator, the L(1)

must be of dimension 5. The leading order correction term L(1) can be written as a linear

combination of these operators

L
(1)
1 (x) = ψ(x)σµνFµν(x)ψ(x) (4.81)

L
(1)
2 (x) = ψ(x)

−→
D µ(x)

−→
D µ(x)ψ(x) + ψ(x)

←−
D µ(x)

←−
D µ(x)ψ(x) (4.82)

L
(1)
3 (x) = m0 tr[Fµν(x)Fµν(x)] (4.83)

L
(1)
4 (x) = m0

(
ψ(x)γµ

−→
D µ(x)ψ(x)− ψ(x)γµ

←−
D µ(x)ψ(x)

)
(4.84)

L
(1)
5 (x) = m2

0ψ(x)ψ(x) (4.85)

with σµν = [γµ, γν]/2i and
−→
D (
←−
D) denoting the covariant derivative acting to the right

(left) side. The number of operators can be reduced by applying the field equation (γµDµ+

m0)ψ = 0 which results in the two relations

L
(1)
1 − L

(1)
2 + 2L

(1)
5 = 0 , L

(1)
4 + 2L

(1)
5 = 0. (4.86)

This reduces the number of operators and we are left with L
(1)
1 , L

(1)
3 , and L

(1)
5 . Two of

these, i.e. L
(1)
3 and L

(1)
5 are already linearly present in the action and thus can be absorbed

in a redefinition of the bare parameters m0 and g0. Thus it is sufficient to work with L
(1)
1

and we write the O(a) improved Wilson fermion action

S I
F = SW

F + cswa5
∑
n∈Λ

∑
µ<ν

ψ(n)
1

2
σµνFµν(n)ψ(n) (4.87)

4.12. Symanzik Improvement Program 49

Figure 4.5 – The clover term

with the Sheikholeslami-Wohlert coefficient csw and the lattice version of the field strength

tensor Fµν(n). A widely used version is

Fµν(n) =
−i

8a2
(Qµν(n)− Qνµ(n)) (4.88)

where Qµν(n) is the so-called clover term

Qµν(n) = Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n). (4.89)

It is the sum of the four plaquettes Uµν(n) around lattice point n in the µ − ν plane, see

Fig. 4.5 and compare to the field strength tensor in Eq. (4.16) used in the Wilson gauge

action.

The improvement of the lattice fermion action is sufficient to reduce discretisation errors

to O(a2) for on-shell quantities such as hadron masses. In order to achieve this level of

improvement also for matrix elements we need to improve the hadron interpolators as well.

We introduce the pseudoscalar density Pa

Pa(n) =
1

2
ψ(n)γ5τ

aψ(n), (4.90)

with τ a is one of the Pauli matrices acting in Nf = 2 flavour space. Further we introduce

the vector fields

Vµ(n) =
1

2
ψ(n)γµψ(n)

V a
µ (n) =

1

2
ψ(n)γµτ

aψ(n),
(4.91)

50 4. QCD on the Lattice

and axial vector fields

Aµ(n) =
1

2
ψ(n)γµγ5ψ(n)

Aa
µ(n) =

1

2
ψ(n)γµγ5τ

aψ(n).
(4.92)

The improvement of the isovector axial current Aa
µ and the pseudoscalar density Pa are

carried out by selecting suitable dimension-4 operators and absorbing linear dependent

operators in the renormalisation factors.

The renormalised and improved interpolators for the isovector axial current Aa
µ and the

pseudoscalar density Pa read

A(r)a
µ (n) = ZA(1 + bAam)

(
Aa
µ(n) + cAa∂̂µPa(n)

)
(4.93)

P (r)a(n) = ZP(1 + bPam)Pa(n) (4.94)

where bA and bP are real parameters and ∂̂µ denotes the symmetric difference operator

∂̂µf (n) =
f (n + µ̂)− f (n − µ̂)

2a
(4.95)

with the yet to be determined improvement coefficients bA and cA for the interpolators and

csw for the fermion action.

The next step is to find a suitable basis of possible irrelevant operators with the same

symmetry properties as our operators resulting from the operator product expansion after

Euclideanisation in Eq. (3.79). A possible way to find candidates for improved operators

[57] is to make general covariant transformations or rotations on the fermion fields [60],

ψ = ψ + a(εγµ
−→
D µ + ηmq)ψ +O(a2) (4.96)

ψ = ψ + a(−εγµ
−→
D + ηmq)ψ +O(a2) (4.97)

together with

χ
←−
D µψ + χ

−→
D µψ → ∂µ(χψ) +O(a2) (4.98)

where ∂µ can be taken to be the simple discretisation

(∂µf)(x) =
1

2
[f (x + aµ̂)− f (x − aµ̂)]. (4.99)

A suitable basis for the one-link operator

ODV
µν = ψγµ

←→
D νψ (4.100)

4.13. Propagator Calculation 51

is

O(impr)DV
µν = [1 + ac0mq]ψγµ

←→
D νψ + iac1ψσµλ

←→
D [ν

←→
D λ]ψ

− ac2ψ
←→
D {µ
←→
D ν}ψ

+
1

2
iac3∂λ

(
ψσµλ

←→
D νψ

) (4.101)

where we made use of the following abbreviations

a[µbν] = aµbν − aνbµ (4.102)

a{µbν} = aµbν + aνbµ. (4.103)

4.13 Propagator Calculation

Instead of calculating the full quark propagator D−1(n|m) which is a (N3×NT ×Nc × 4)2

matrix, we make use of translational invariance and restrict the calculation to just one

column. This represents the propagation from one lattice site n0 to all other lattice sites n.

D−1(n|n0) =
∑
m∈Λ

D−1(n|m)S
(n0)
0 (m) (4.104)

with the so-called point source

S
(n0)
0 (m) = δ(m − n0). (4.105)

In order to obtain the quark propagator the fermion matrix must be inverted 12 times for

each quark flavour – once for each combination of Dirac and colour indices. In order to

calculate the quark propagator one has to solve the linear system of equations

Dx = b (4.106)

where D is the Dirac operator, x is the quark propagator we want to find and b is our

prepared source.

Calculating the quark propagator is a numerically demanding procedure. Typically most of

the compute time is spent with calculating the quark propagators.

The Dirac operator D(n|m) is a large sparse matrix, i.e. it is a matrix with most elements

set to zero. Sparse linear systems of equations are traditionally solved by iterative methods.

The iterative methods applied are mostly preconditioned Krylov (sub)space solvers.

52 4. QCD on the Lattice

The idea behind Krylov space solvers is to generate a sequence of approximate solutions

xn, so that the corresponding residuals

rn = b − Dxn, n = 0, 1, 2, ... (4.107)

converge to the zero vector. Here, convergence means that after a finite number of steps

the true solution was approximated within a given accuracy. The residuals can also be

calculated recursively

rn = rn−1 − Drn−1. (4.108)

Given a non-singular matrix D and a non-zero vector r0, the n-th Krylov (sub)space

Kn(D, r0) generated by D from r0 is

Kn(D, r0) = span(r0, Dr0, D2r0, ... , Dnr0). (4.109)

The n-th residual lies in the n-th Krylov space

rn ∈ Kn(D, r0). (4.110)

Clearly K0 ⊆ K1 ⊆ K2 ⊆ ... and the dimension increases in each step by one until the

equal sign holds. There is a positive (integer) number ν = ν(r0, D) called the grade of r0

with respect to D such that

dimKn(D, r0) =

 n if n ≤ ν

ν if n > ν.
(4.111)

Thus Kν(D, r0) is the smallest D-invariant subspace that contains r0 and our true solution

x lies in

x ∈ x0 +Kν(D, r0). (4.112)

Krylov space methods for solving equations like Dx = b have the special feature that

the matrix D needs only be given as an operator: For any vector x one must be able to

compute Dx and so D may be given as a function or operator and must not be available in

full matrix representation. The operation Dx is commonly referred to as the matrix times

vector operation.

Krylov space solvers often converge very slowly. In practice, Krylov space solvers are

therefore nearly always applied with preconditioning.

4.13. Propagator Calculation 53

We will now introduce the so-called even-odd preconditioning [61]. The original equation

Dx = b is replaced by

V−1
1 DV−1

2︸ ︷︷ ︸
D′

V2x︸︷︷︸
x ′

= V−1
1 b︸ ︷︷ ︸
b′

(4.113)

where we have introduced the so-called preconditioning matrices V1 and V2. We then apply

the Krylov space solver to the preconditioned system of linear equations

D ′x ′ = b′. (4.114)

For the determination of the matrices V1 and V2 we split the Dirac operator D which

includes the clover term into two parts: One part which is diagonal in position space

and another part which connects two neighbouring lattice sites. The lattice sites can be

divided into even and odd sites, depending on whether adding together the coordinates

(n1, n2, n3, n4) results in an even or odd number. By labelling the lattice sites in such a way

that first all odd sites appear and then the even sites, the Dirac operator can be written as

D =

 X κDoe

κDeo X

 (4.115)

where X is diagonal in position space

X (n|m) =

[
1 +

iκcsw

2
σµνFµν

]
δn,m. (4.116)

Using

V1 =

 X 0

κDeo X

 , V2 =

X κDoe

0 X

 (4.117)

we find

D ′ =

X−1 0

0 X−1(1− κ2DeoX−1DoeX−1)

 . (4.118)

It is sufficient to first consider the even lattice sites and solve(
X − κ2DeoX−1Doe

)
xe = be − κDeoX−1b0. (4.119)

With the solution for the even sites xe the solution for the odd sites is given by

Xo = X−1(b0 − κDoexe). (4.120)

With even-odd preconditioning a matrix of half the original size must be inverted, but we

have to apply Doe as well as Deo .

54 4. QCD on the Lattice

The most important improvement factor in terms of computational cost is that the off-

diagonal elements are now suppressed by κ2 rather than κ.

Some typically used inverters in Lattice QCD simulations are the conjugate gradient (CG),

minimal residual (MR) or BiCGStab solvers [62, 63]. CG solvers can only be applied to

systems involving hermitian matrices. The Dirac operator D is not hermitian, but CG can

still be used by first multiplying D by γ5 and then applying the solver or by solving the

normal equation

D†Dx = D†x . (4.121)

CG while being reliable converges slower than MR or BiCGStab.

4.14 Quark and Gluonic Smearing

Each interpolator with the correct quantum numbers has an overlap not only with the

physical state but also with excited states. To get a clean and strong signal the overlap

with the ground state can be improved by going over to more physical wave functions

than for example point sources would lead to. We used point source when calculating the

quark propagator. As hadrons are not point objects this is not an ideal thing to do. To

achieve a good signal we would like to have a very good overlap with the meson (or baryon)

wavefunction. However as we do not know the hadron wavefunction this is not possible.

The amplitudes in the correlation functions might be very small when using point sources.

To help this situation we shall employ an improvement: We applying the smearing algorithm

Sn0 = MSn0
0 (4.122)

with

M =

NJ∑
n=0

κn
JHn

J (4.123)

and HJ being the spatial part of the Wilson term

HJ(n, m) =
3∑

j=1

(
Uj (n, nt)δ(n + ĵ , m) + Uj (n− ĵ , nt)†δ(n− ĵ , m)

)
. (4.124)

This smearing prescription is known as Jacobi smearing. It has two degrees of freedom,

i.e. the positive real parameter κJ which controls the coarseness of the iteration, and the

4.15. Two-Point Correlation Functions 55

number of smearing iterations NJ which increases the size of the smeared object roughly

like a random walk. Physically we wish to smear until our source occupies a reasonable

fraction of the size of the hadron. A suitable measure of the root mean square (rms) radius

is given by

rrms =

∑
n∈Λ3

|an|2|Sn0(n)|2∑
n∈Λ3

|Sn0(n)|2 . (4.125)

Typical values for the rms radius are in the range of 0.25fm ≤ rrms ≤ 0.45fm.

4.15 Two-Point Correlation Functions

The calculation of the correlation functions on the quark level was carried out in Sec. 4.11.

We now turn to the correlation functions using the Hamilton formalism which allows us to

extract matrix elements and energy levels.

The Euclidean correlation function of two operators O1 and O2 is defined as

〈O2(t)O1(0)〉T =
1

ZT
tr
[
e−(T−t)ĤÔ2e−tĤÔ1

]
(4.126)

with the normalisation factor

ZT = tr
[
e−T Ĥ

]
(4.127)

and Ĥ being the Hamiltonian of the system. The time t is the actual time distance of

interest and T is a formal maximal distance, which will eventually be taken to infinity.

Using the defining relation of the trace of an operator

tr[Ô] =
∑

n

〈n|Ô|n〉 (4.128)

with a natural choice of eigenstates |n〉 of Ĥ which satisfy the eigenvalue equation

Ĥ |n〉 = En|n〉 (4.129)

and inserting the unity operator as a complete set of states

1 =
∑

n

|n〉〈n| (4.130)

56 4. QCD on the Lattice

and expanding the exponential function in the denominator we arrive at the Euclidean

correlation function

〈O2(t)O1(0)〉T =

∑
m,n〈m|Ô2|n〉〈n|Ô1|m〉e−t∆En e−(T−t)∆Em

1 + e−T ∆E1 + e−T ∆E2 + ...
(4.131)

where we have factored out e−TE0 with E0 denoting the energy eigenvalue of the vacuum

|0〉 and introduced

∆En = En − E0. (4.132)

Thus all involved energies are energy differences to the vacuum energy and only these

differences can be measured in experiment. For convenience we now rename ∆En to En.

From this expression we see that matrix elements as well as the energy values of the system

are accessible and thus can be calculated. By fitting the amplitudes we can determine the

matrix elements and by fitting the exponentials we can determine the energy states of the

system.

Even though we might only be interested in the ground state energy of the system, our

measurements also include excited states. Assume we want to compute the energy levels

of a hadronic system with an operator that creates a proton from the vacuum Ôp(0)

and the operator Ô†p(t) annihilates the proton at a later time t. The states 〈p| with

quantum numbers corresponding to the proton have non-vanishing overlap with the proton

operator. But also excited states 〈p′| of the proton will have non-vanishing overlap. The

total contribution is

lim
T→∞
〈Op(t)O†p(0)〉T = |〈p|Ô†p|0〉|2e−tEp + |〈p′|Ô†p|0〉|2e−tEp′ + (4.133)

The energies of the excited states are larger than the energy of the ground state

Ep′ > Ep. (4.134)

Thus we can extract the ground state if we go to a sufficiently large time t where the exited

states get exponentially suppressed. In order to extract the matrix elements and energy

levels from the nominator the denominator of Eq. (4.131) should be roughly unity. To

accomplish this we choose the temporal extent of the lattice large in comparison to the

time t

0� t � T . (4.135)

4.15. Two-Point Correlation Functions 57

Due to the finite extent and the periodicity of the lattice the states are also propagating

in negative time direction, e.g. the anti-particle of the pions propagate in negative time

direction. In case of the nucleon it is its parity partner with a different mass that propagates

in negative time direction.

For the meson correlation function we find for the ground state

CΓ1Γ2(p, t) =
1

2Ep
〈0|M̂Γ2|M(p)〉〈M(p)|M̂Γ1|0〉

[
e−Ept + τΓ1τΓ2e−Ep(T−t)

]
(4.136)

= AΓ1Γ2

[
e−Ept + τΓ1τΓ2e−Ep(T−t)

]
(4.137)

where the τ factors determine how the meson operator behaves under time reversal, i.e.

whether the two-point function is symmetric or antisymmetric with respect to t → T − t,

and are given by γ4Γ†γ4 = τΓ. Possible values are τΓ1 , τΓ1 = ±1.

With the baryon interpolators in Eq. (4.65) and (4.66) we find for the baryon correlation

function

CΓ(p, t) =

√
Z Z

2Ep

∑
s

[
u(p, s)Γu(p, s)e−Ept + v(p, s)Γv(p, s)e−Ep(T−t)

]
+√

Z ′Z
′

2E ′p

∑
s

[
v ′(p, s)Γv ′(p, s)e−E ′pt + u′(p, s)Γu′(p, s)e−E ′p(T−t)

] (4.138)

where we defined the overlaps

〈0|Bα(0)|N(p, s)〉 =
√

Z uα(p, s) (4.139)

〈0|Bα(0)|N(p, s)〉 =
√

Z vα(p, s) (4.140)

and

〈N(p, s)|Bα(0)|0〉 =
√

Z vα(p, s) (4.141)

〈N(p, s)|Bα(0)|0〉 =
√

Z uα(p, s). (4.142)

The first term of Eq. (4.138) corresponds to the nucleon JP = 1
2

+
state with energy Ep.

The anti-particle of the nucleon has negative parity, P = −1, so the second term must

accord to an excited state, i.e. the anti-particle of which has positiv parity P = +1. The

lowest parity partner, i.e. JP = 1
2

−
, is nearly mass degenerate with the nucleon and so we

must keep this additional state with energy E ′p as well. To suppress the unwanted negative

58 4. QCD on the Lattice

parity states we choose the projection operator Γ for an unpolarised stationary nucleon as

Γu =

 1
2
(1 + γ4) for 0� t � T/2

1
2
(1− γ4) for T/2� t � T .

(4.143)

Using the sum rules over spinors we arrive at

C 1
2

(1+γ4)(p, t) =
√

Z Z

(
Ep + m

Ep

)
e−Ept , 0� t � T/2 (4.144)

and

C 1
2

(1−γ4)(p, t) = −
√

Z Z

(
Ep + m

Ep

)
e−Ep(T−t), T/2� t � T . (4.145)

4.16 Pion Decay Constant

The pion decay constant in Eq. (3.5) can be determined from two-point correlation func-

tions on the lattice. In Euclidean space at zero three-momentum we define

〈0|A(r)a
4 |π〉 = mπfπ (4.146)

with the renormalised and improved operator A
(r)a
µ (n) defined in Eq. (4.93). By computing

the correlation function C LS
A4P and C SS

PP , see Eq. (4.137), where we use the notation (S) for

a smeared operator and (L) for a local operator we find the matrix element of A4 to be

〈0|A(r)a
4 |π〉 = −

√
2mπC LS

A4P√
C SS

PP

× 2κ (4.147)

and for the matrix element of the improvement term we obtain from the correlation function

C LS
PP and C LS

A4P

〈0|a∂4P |π〉
〈0|A4|π〉

= sinh amπ
C LS

PP

C LS
A4P

. (4.148)

4.17 Three-Point Correlation Functions

Matrix elements can be calculated with the help of three-point functions. We restrict ourself

to baryon three-point functions

CΓ(t, τ , p, q, O) =
∑
αβ

Γβα〈Bα(t, p′)|O(τ , q)|Bβ(0, p)〉 (4.149)

4.17. Three-Point Correlation Functions 59

u

u

d

u

(a) Connected diagram

u

u

d
(b) Disconnected diagram

Figure 4.6 – The three-point correlation function for baryons.

with the momentum transfer

q = p′ − p. (4.150)

The operator O is given by

O(τ , q) =
∑
z∈Λ3

v ,w∈Λ

e iaq·zψ
a

γ(v)Oab
γδ (v , w , z, τ)ψb

δ (w) (4.151)

where we sum over the spatial plane z only, and the whole space v , w . After applying

Wick’s theorem, i.e. carrying out the quark contractions into quark propagators and a bit

of algebra [64] we are left with a quark line connected and a quark line disconnected term.

Here we consider the quark line connected term only. Fig. 4.6a depicts the connected term

of the baryon three-point function whereas Fig. 4.6b depicts the disconnected term. The

correlation function finally reads

Cψ
Γ (t, τ , p, q, O) = −V3

∑
y,v ,w

e iaq·y〈trDC [Σψ
Γ ((0|v), p, t)Oψ(v , w , y, τ)Sψ(w |0)]〉G (4.152)

where we introduced the short notation

S = D−1 (4.153)

with the sequential propagator

Σψ
Γ ((0|v), p, t) =

∑
x

Sψ
Γ ((x, t|0), p)Sψ((x, t)|v) (4.154)

with the part for the u quark

S
(u)a′a
Γ ((x |0), p) =e−iap·xεabcεa′b′c ′×[

S̃ (d)bb′(x |0)S (u)cc ′(x |0)Γ + trD [S̃ (d)bb′(x |0)S (u)cc ′(x |0)]Γ+

ΓS (u)bb′(x |0)S̃ (d)cc ′(x |0) + trD [ΓS (u)bb′(x |0)]S̃ (d)cc ′(x |0)]
] (4.155)

60 4. QCD on the Lattice

and for the d quark

S
(d)a′a
Γ ((x |0), p) =e−iap·xεabcεa′b′c ′×[

S̃ (u)bb′(x |0)Γ̃S̃ (u)cc ′(x |0) + trD [ΓS (u)bb′(x |0)S̃ (u)cc ′(x |0)]
] (4.156)

with the tilde operating in Dirac space

X̃ = (Cγ5Xγ5C)T . (4.157)

The sequential propagator can be computed by an additional inversion of the Dirac operator

D for each choice of the final momentum p∑
v∈V

D(v ′|v)γ5Σ
(ψ)
Γ

†
((0, v), p, t) = γ5S

(ψ)
Γ

†
((v ′, t|0), p)δv ′0,t . (4.158)

Calculating three point functions is a two step procedure: First, the calculation of the quark

propagator from point 0 to any point x . Then a second inversion is made with the source

given in Eq. (4.155) and (4.156) depending whether the inserted operator consists of u or

d quarks.

A change of the sink properties requires the computation of new sequential propagators,

and so simulating several final momenta, different field interpolators, or applying different

smearing procedures for the sink rapidly becomes rather expensive. The advantage of this

approach, however, is that it allows also for the insertion of different operators, and thus

the calculation of several matrix elements and also any momentum insertion – ideal for

moments of PDFs and form factors.

4.17.1 Matrix Elements

In order to extract the matrix elements one considers ratios of three-point to two-point

functions. At time τ we insert an operator O(τ) into the three-point baryon correlator and

insert at time τ a complete set of states. For a large enough separation distance only the

ground state of the baryons contribute

〈0|B̂(t, p′)O(τ)B̂(0, p)|0〉

=〈0|B(t, p′)|N(p′)〉e
−Ep′ (t−τ)

2Ep′
〈N(p′)|O(τ)|N(p)〉e

−Epτ

2Ep
〈N(p)|B(0, p)|0〉

=

√
Z (p′)Z (p)F (Γ,J)e−Ep′ (t−τ)e−Epτ

(4.159)

4.17. Three-Point Correlation Functions 61

where we used the overlaps defined in Eqs. (4.139) to (4.142) and with

〈N , p′, s′|O|N , p, s〉 = u(p′, s′)JO(q)u(p, s) (4.160)

we find

F (Γ,J) =
1

4
trDΓ

(
γ4 − i

p′ · γ
Ep′

+
m

Ep′

)
J
(
γ4 − i

p · γ
Ep

+
m

Ep

)
(4.161)

and for the two-point function we find

〈0|B(t, p)B(0, p)|0〉 = 〈0|B(t, p)|N(p)〉e
−Ept

2Ep
〈N(p)|B(0, p)|0〉 (4.162)

where we neglected the periodicity of the lattice. When taking the ratio the unknown

factors cancel

R(t, τ , p, q) =
CΓ(t, τ , p, q, O)

CΓu (t, p)
(4.163)

=
Ep

Ep + m
F (Γ,JO(0)), 0� τ � t � 1

2
T (4.164)

∝ 〈N |O|N〉. (4.165)

with the three-point correlation function CΓ(t, τ , p, q) as defined in Eq. (4.152). The

relation in Eq. (4.163) is only valid for zero momentum transfer q = 0. For the gamma

matrix in the unpolarised case we take Γu = P+ as defined in Eq. (4.68).

In order to determine the matrix element we seek for a region 0 � τ � t � 1
2
T where

the ratio is constant.

Chapter 5

Preparing the Simulations

5.1 The SLiNC Action

The QCDSF Collaboration carries out investigations of baryon structure using configurations

generated with Nf = 2 + 1 dynamical flavours of O(a)-improved Wilson fermions. With

the strange quark mass as an additional dynamical degree of freedom in the simulations

needs are avoided for a partially quenched approximation when investigating the properties

of particles containing a strange quark, e.g. the hyperons.

The fermion action elaborated is the Nf = 2+1 flavour Stout Link Non-perturbative Clover

(SLiNC) fermion action with non-perturbative O(a) improvement [65]

SF =
∑
n∈Λ

[
κ
∑
µ

(
q(n)(γµ − 1)Ũµ(n)q(n + µ̂)

− q(n)(γµ + 1)Ũ†µ(n − µ̂)q(n − µ̂)

)
+ q(n)q(n)− 1

2
κacsw

∑
µν

q(n)σµνFµν(n)q(n)

] (5.1)

with

σµν = [γµ, γν] (5.2)

and Fµν as defined in Eq. (4.88).

The Dirac kinetic term and Wilson mass term in Eq. (5.1) employ one level of stout smeared

links, so-called fat links, which we denote by Ũ and introduce below in Sec. 5.2. Smearing

helps at present lattice spacings by smoothing out fluctuations in the gauge fields slightly.

64 5. Preparing the Simulations

For the gluonic part of the action we utilise the Symanzik tree-level gluon action

SG =
6

g 2
0

[
c0

∑
plaquette

1

3
Re Tr(1− Uplaquette)+

c1

∑
rectangle

1

3
Re Tr(1− Urectangle)

] (5.3)

with

c0 = 20/12, c1 = −1/12, and β = 10/g 2
0 . (5.4)

The first sum is carried out over all plaquettes as introduced in Sec. 4.3. The second sum

runs over all rectangles. The rectangles are built in the same fashion as the plaquettes, but

extended to consist of the outline of two neighbouring plaquettes in the same plane.

The standard action as proposed by Wilson is obtained by setting c0 = 1 and c1 = 0.

However, to avoid a nearby first-order phase transition when using the standard Wilson

action, as pointed out in literature [66], we use the above mentioned values for c0 and c1.

5.2 Stout Link Smearing

A method of smearing link variables which is analytic, and hence differentiable, everywhere

in the finite complex plane can be defined as follows [67]. Let Cµ(n) denote the sum of the

perpendicular staples which have one end point located at lattice site n and the other at

the neighbouring site n + µ̂

Cµ(n) =
∑
ν 6=µ

(
Uν(n)Uµ(n + ν̂)U†ν(n + µ̂) + U†ν(n − ν̂)Uµ(n − ν̂)Uν(n − ν̂ + µ̂)

)
. (5.5)

The matrix

Qµ(n) =
i

2

(
Ω†µ(n)− Ωµ(n)

)
− i

2Nc
tr
(
Ω†µ(n)− Ωµ(n)

)
(5.6)

with

Ωµ(n) = CµU†µ(n), (5.7)

where no summation over µ is meant here, is hermitian and traceless. Thus the matrix

exp[iQµ(n)] is an element of the SU(Nc) group. The link variable after an applied smearing

step is defined as

U (k+1)
µ (n) = exp[iQµ(n)]Uk

µ(n) (5.8)

which is also an element of the gauge group.

5.3. Tuning the Mass 65

5.3 Tuning the Mass

Our simulations include Nf = 2 + 1 flavours of dynamical quarks. By 2 + 1 flavours

we mean here two mass degenerate up-down, m
(r)
l , light quarks and one strange, m

(r)
s ,

quark. Simulating at the physical masses m
(r)∗
l and m

(r)∗
s is computationally very difficult

(the superscript ∗ ((r)) denotes physical (renormalised) quantities). We simulate at larger

masses and extrapolate to the physical masses.

We shall now introduce our strategy for choosing the paths in the m
(r)
l -m

(r)
s plane for

carrying out the simulations and how we approach the physical point. A natural starting

point for these paths is the flavour SU(3) symmetric point m
(r)
l = m

(r)
s = m

(r)(0)
sym denoted

by the superscript 0.

We choose the path in the m
(r)
l -m

(r)
s plane such that the singlet quark mass is kept fixed

[68],

m(r) =
1

3
(2m

(r)
l + m(r)

s) = constant. (5.9)

Following this path both the kaon and η are lighter than their physical values along the

entire trajectory, i.e. they both approach their physical mass values from below. One hopes

that flavour SU(3) chiral perturbation theory works better since masses are kept small [68].

We extend our measurements beyond the symmetric point with heavy up-down quarks and

a lighter strange quark.

5.4 Extrapolating Flavour Singlet Quantities

A flavour singlet quantity XS (m
(r)
u , m

(r)
d , m

(r)
s) is an object that is invariant under quark

permutation symmetry between u, d , and s. Flavour singlet quantities are flat at a point

on the flavour SU(3) symmetric line and hence allow simpler extrapolations to the physical

point. This may be shown by considering small changes about a point on the flavour

symmetric line. Taylor expanding XS about a point on the symmetric line where flavour

66 5. Preparing the Simulations

0.00 0.05 0.10 0.15 0.20

m
π

2
/X

S

2

0.0

0.1

0.2

0.3

0.4
(2

m
K

2
−

m
π

2
)/
X

S

2

S = N

S = ∆

S = r

/20

Figure 5.1 – The SU(3) flavour symmetric line (y = x) is the dashed line. For convenience the

results for S = r have been divided by a factor of 20. The experimental points using the three

singlet quantities, XS , S = N, ∆, r , are shown as stars.

SU(3) holds gives

XS

(
m(r)(0) + δm

(r)
l , m(r)(0) + δm

(r)
l , m(r)(0) + δm(r)

s

)
= X

(0)
S sym+

∂XS

∂m
(r)
u

∣∣∣∣(0)

sym

δm
(r)
l +

∂XS

∂m
(r)
d

∣∣∣∣∣
(0)

sym

δm
(r)
l +

∂XS

∂m
(r)
s

∣∣∣∣(0)

sym

δm(r)
s +O((δm(r)

q)2).
(5.10)

But on the symmetric line we have

∂XS

∂m
(r)
u

∣∣∣∣
sym

=
∂XS

∂m
(r)
d

∣∣∣∣∣
sym

=
∂XS

∂m
(r)
s

∣∣∣∣
sym

, (5.11)

and on our chosen trajectory m(r) = constant,

2δm
(r)
l + δm(r)

s = 0, (5.12)

which together imply that

XS

(
m(r)(0) + δm

(r)
l , m(r)(0) + δm

(r)
l , m(r)(0) + δm(r)

s

)
= X

(0)
S sym +O((δm(r)

q)2). (5.13)

5.5. Clover Fermions 67

Thus, the effect at first order of changing the strange quark mass is cancelled by the change

in the light quark mass, so XS has a stationary point on the flavour SU(3) symmetric line.

This result can be verified by considering leading order (LO) together with next to leading

order (NLO) flavour SU(3) chiral perturbation theory ChPT [68].

For XS we take the centre of mass of the baryon octet or decuplet [10],

XN =
1

3
(mN + mΣ + mΞ) = 1.150 GeV (5.14)

X∆ =
1

3
(2m∆ + mΩ) = 1.379 GeV. (5.15)

In order to determine the starting point on the symmetric line, we relate the known physical

point to the initial point via

1
3
(2m2

K + m2
π)

X 2
S

∣∣∣∣∗ =
m2
π

X 2
S

∣∣∣∣(0)

sym

(5.16)

where we choose S = N , ∆ respectively. Simulations along the flavour symmetric line and

using Eq. (5.16) are sufficient to determine the initial point.

Fig. 5.1 shows the paths in the m
(r)
l -m

(r)
s plane for carrying out the simulations and how

we approach the physical point. The dashed flavour SU(3) symmetric line is the starting

point of the path towards the physical point.

5.5 Clover Fermions

The singlet (S) and non-singlet (NS) quark masses renormalise differently if the fermionic

action is not invariant under chiral symmetry. The here applied clover O(a) improved

Wilson fermion action does not exhibit chiral symmetry. For the renormalised quark mass

we find [69]

m(r)
q = Z NS

m (mq −m) + Z S
mm (5.17)

= Z NS
m (mq + αZ m) (5.18)

where q = l , s and

αZ =
Z S

m − Z NS
m

Z NS
m

. (5.19)

68 5. Preparing the Simulations

κl κs mπ[GeV] mK [GeV] N × NT mπL Nmeas

0.120830 0.121040 0.481 0.420 24x48 4.63 2500

0.120900 0.120900 0.443 0.443 24x48 4.28 4000

0.120950 0.120800 0.414 0.459 24x48 3.99 2500

0.121000 0.120700 0.377 0.473 24x48 3.63 2500

0.121040 0.120620 0.350 0.485 24x48 3.37 2500

Table 5.1 – Simulation parameters for Nf = 2 + 1 dynamical fermions with two mass-degenerate

light quarks and one strange quark. The simulation parameter β was chosen to β = 5.50 which

corresponds to a lattice spacing of a = 0.083(3)fm.

The bare quark mass was defined in Eq. 4.37 where κsym,c is defined by the vanishing of

the quark mass along the symmetric line. From LO ChPT we find

1

3

(
2(amK)2 + (amπ)2

)
∝ 2

9
(1 + αZ)am. (5.20)

With am = constant we find

κs =
1

3

κ
(0)
sym

− 2
κl

(5.21)

where κ
(0)
sym is the appropriate κ on the flavour SU(3) symmetric line. Tuning the mass is

not trivial and one might miss the physical point.

Now, given κl we can find the corresponding κs . After some experimentation we choose

the κl and κs as shown in Tab. 5.1. Note that it is possible to choose the κl and κs values

such that ml > ms . In this strange world, we expect to see an inversion of the particle

spectrum, with for example the nucleon being the heaviest octet particle.

5.6 Lattice Spacing

We determine the lattice spacing a utilising the relation

a = aXS/X exp
S (5.22)

where X exp
S is the experimental value and aXS is the quantity measured on the lattice. One

would hope that whatever scale is used, i.e. S ∈ {N , ∆, ρ, r0, π}, to get the same lattice

5.6. Lattice Spacing 69

8.268 8.270 8.272 8.274 8.276 8.278

1/κ
sym

(0)

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

a
 =

 a
X

s
/X

s
 [
fm

]

κ
sym

(0)
 = 0.12095

S = N

S = ∆

S = ρ

S = r [r
0
=0.467fm]

S = π

Figure 5.2 – Determining the lattice spacing a with the relation a = aXS/X
exp
S . The gluonic

quantity Xr = 0.467 fm is the QCDSF Nf = 2 result. From phenomenology one finds r0 = 0.5

fm.

spacing. Fig. 5.2 shows a determination of the lattice spacing a using some different XS

where only the largest available volumes were used. The data points should fall onto the

same curve, but there is some variation. This variation might come from finite size effects.

When using XN , i.e. the centre of mass of the baryon octet, this results at the symmetric

point κsymm = 0.12090 in a lattice spacing a = 0.083(3). But another XS would result in a

little different lattice spacing. Given the uncertainties one somehow has to make a choice

and we use a = 0.083(3) for the further analysis.

70 5. Preparing the Simulations

Chapter 6

Discussion of Errors

Numerical simulations of QCD include unavoidable statistical and systematic errors. In this

chapter we briefly introduce the different types of errors one is confronted with in Lattice

QCD simulations.

6.1 Statistical Errors

In Lattice QCD, observables are calculated by means of Monte Carlo integration. The

expectation value (central value) of an observable is calculated by taking the mean value

of the observable calculated over the whole set of gauge configurations in an ensemble.

We consider a sample of Nmeas measurements X1, X2, ..., XNmeas of a quantity X . The

expectation value (central value) is defined as

〈X 〉Nmeas =
1

Nmeas

Nmeas∑
i=1

Xi . (6.1)

If the configurations are statistically independent, we expect the statistical error of the full

ensemble to be proportional to 1/
√

Nmeas.

6.2 Autocorrelation Times

This section is included to be complete on the description of errors one faces in Lattice

QCD – we did not carry out a study of autocorrelation times.

72 6. Discussion of Errors

In Monte Carlo simulations the configurations are correlated. It is convenient to analyse

the autocorrelation in the observables one is interested in. This serves two purposes: First,

the exponential autocorrelation time is related to the length of the thermalisation phase of

the Markov chain, i.e. the time that the system needs to converge from its initial state to

equilibrium. In order to avoid systematic errors in the final results due to an initialisation

bias one should discard the data from the first measurements. Second, if we consider

an observable X , a run of length TMC (in Monte Carlo time measured in trajectories),

contains only TMC/2τX
int effectively independent data points with τint the so-called integrated

autocorrelation time.

A suitable estimator of the true autocorrelation function for a finite time-series Xt , t =

1, ... , TMC, is given by

C X (t) =
1

TMC − 1

TMC−t∑
s=1

(Xs − 〈X 〉L) (Xs+t − 〈X 〉R) , (6.2)

where the “left” and “right” mean-value estimators are defined as

〈X 〉L =
1

TMC − t

TMC−t∑
r=1

Xr (6.3)

〈X 〉R =
1

TMC − t

TMC−t∑
r=1

Xr+t (6.4)

with the normalised autocorrelation function

ρX (t) = C X (t)/C X (0) (6.5)

one can determine the exponential autocorrelation times τX
exp with a fit to

τX
exp =

t

− log |ρX (t)| t →∞. (6.6)

The integrated autocorrelation times can be measure with the help of Sokal’s windowing

procedure [70] and can be estimated with

τX
int =

1

2
+

Tcut∑
t=1

ρX (t) (6.7)

with the variable cut-off Tcut.

6.3. Binning 73

6.3 Binning

Using binning the integrated autocorrelation time can also be estimated via the variance

ratio. We bin the time series into Nbs ≤ N bins of Nb = N/Nbs measurements each. It is

convenient to choose the values of N and Nbs so that N is a multiple of Nbs . The binned

data are the averages

〈X 〉Nb
j =

1

Nb

jNb∑
i=1+(j−1)Nb

Xi , for j = 1, ... , Nbs . (6.8)

For Nb > τexp the autocorrelations are essentially reduced to those between nearest neigh-

bour bins and even these approach zero under further increase of the binsize.

6.4 Fitting and Error Determination

In order to determine hadronic observables we have to fit our models to the observed data.

Fitting is done by minimising a χ2 function, where χ2 is a measure of the deviation of the

data from the fit model fa1...aM ,t with a1 ... aM being the fit parameters to determine. Ideally

the measurement data follows a Gaussian distribution and is statistically independent. In

this case we expect χ2 to be roughly equal to the number of degrees of freedom, i.e.

χ2/dof = 1.

For each of the Nmeas configurations we calculate correlation functions yi ,t with the time

slice index t and the configuration index i . We calculate the mean values µt and the

standard deviation σt . One typically defines χ2 as follows

χ2
a1...aM

=
∑

t

(fa1...aM ,t − µt)2

σ2
t

. (6.9)

This definition does not take into account that the measurement data is correlated for

different t for the same i . Thus we expect to underestimate χ2. Introducing the covariance

matrix

ct,t′ =
1

N(N − 1)

N∑
i=1

(yi ,t − µt)(yi ,t′ − µt′) (6.10)

where we set N = Nmeas we arrive at the definition

χ2
a1...aM

=
∑
t,t′

(fa1...aM ,t − µt)(fa1...aM ,t′ − µt′)

ct,t′
. (6.11)

74 6. Discussion of Errors

If the data is uncorrelated, ct,t′ = σ2
t δt,t′ . Taking into account the covariance matrix is

generally more reliable to estimate χ2. However, small eigenvalues of this matrix can lead

to a not reliable determination of the inverse. Not only this changes the determination of

χ2 but it might lead to incorrect results for the fit parameters a1 ... aM . To prevent from

this we used singular value decomposition to calculate the inverse [71].

The aforementioned problem occurs when the number of configurations is small. How

many configurations are necessary depends on the observable, or, put differently from the

signal-to-noise ratio. We carried out the fits with the diagonal covariance matrix as well as

with the full covariance matrix. We take deviations of the two results as a measure for the

quality of our data. Due to the better stability of the results with the diagonal covariance

matrix, we only use these for further analysis.

Typically, the signal-to-noise ratio gets worse the farther away from the source we are

measuring. However, in the vicinity of the source we have to take into account excited

states. To determine the fit interval appropriately we systematically shortened the interval

until the fit parameters ai did not change anymore within statistical errors. Typically we

have chosen the fit interval to be symmetric.

Since the fit parameters ai were obtained using correlated data, the determination of the

error for these parameters via χ2 is unreliable. For the error determination we used the

bootstrap method [72]. The bootstrap method foresees to choose N normal-distributed,

integer-valued numbers from the interval 1, ... , N and to generate in this way a new en-

semble and to apply the fit procedure to the newly created ensemble. By repeating this

procedure we get a statistical distribution for the fit parameters ai . This allows the deter-

mination of the standard deviation for each of the parameters.

Typically, we generated 200 bootstrap ensembles. As the central value of a fit parameter

ai we give the fit result using the original ensemble. As the error of the fit parameter we

give the standard deviation obtained by the bootstrap method.

6.5. Running of the average 75

mπ = 0.481 GeV

N

g A
/2
κ

450040003500300025002000150010005000

5.6

5.4

5.2

5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

(a) At the Symmetric point.

mπ = 0.350 GeV

N

g A
/2
κ

25002000150010005000

4.8

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

2.6

(b) For the lightest pion mass.

Figure 6.1 – Running average plots. gA for the nucleon (u part).

6.5 Running of the average

Given our sample of Nmeas measurements X1, X2, ..., XNmeas of a quantity X we carry out

the determination of the central value and the error analysis taking into account only the

first N measurements where we repeat the analysis for various values of N ≤ Nmeas. This

gives us the opportunity to study the convergence behaviour of the quantity.

Fig. 6.1a (6.1b) shows the running average of the axial charge gA for the nucleon (u part)

at the symmetric point (lightest pion mass) as a function of the number of measurements

N . Early in Monte Carlo time the value fluctuates heavily indicating that N is not large

enough in order to determine the quantity reliably. Towards larger N the fluctuations stay

within statistical errors.

Fig. 6.2a (6.1b) shows a similar plot for the running average of the momentum fraction

〈x〉 for the nucleon (u part) at the symmetric point (lightest pion mass) as a function of

the number of measurements N . Again, fluctuations are getting smaller towards larger N .

6.6 Discretisation Effects

We now discuss the systematic errors involved in Lattice QCD. Discretisation effects due

to the finite lattice spacing was already discussed in Sec. 5.6.

76 6. Discussion of Errors

mπ = 0.481 GeV

N

m
N
〈x
〉 u

450040003500300025002000150010005000

0.84

0.82

0.80

0.78

0.76

0.74

0.72

0.70

0.68

(a) At the symmetric point.

mπ = 0.350 GeV

N

m
N
〈x
〉 u

25002000150010005000

-0.50

-0.55

-0.60

-0.65

-0.70

-0.75

-0.80

-0.85

-0.90

(b) For the lightest pion mass.

Figure 6.2 – Running average plot. 〈x〉u for the nucleon (u part).

The tree-level Symanzik gauge action and Wilson Clover fermion action has discretisation

errors of order O(a2). To determine the discretisation errors one would need to simulate

with various values of β leaving all other parameters fixed, e.g. simulating at the same

quark masses for different lattice spacings a, i.e. different values of β, and then extrapolate

to the continuum limit a→ 0.

All quantities, i.e. masses, decay constants, etc. are subject to discretisation effects. Ali

Khan et al. studied the nucleon axial charge g N
A with Wilson Clover fermions with Nf = 2

dynamical flavours with various lattice sizes [73]. They observed that the “large volume”

results for nucleon axial charge g N
A obtained at the smallest quark masses for all studied β

values lie very close together indicating that discretisation effects are small for this quantity.

Also, recent work with Nf = 2 simulations found discretisation effects to be small for the

nucleon axial charge g N
A [74].

6.7 Finite Size Effects

In any numerical lattice simulation, the lattice volume is necessarily finite. In order to

control potential finite size effects (FSE) on measurable quantities such as masses or decay

constants one either has to ensure that they are negligible by making the lattice large

enough, or eliminate them by extrapolation to the infinite volume. In either case one has

to compare results from different lattice volumes, with all other parameters kept fixed.

6.8. Chiral Effective Field Theory 77

In a lattice simulation the physical box-size can be enlarged either by increasing the number

of spatial lattice sites at fixed lattice spacing a, or by increasing a for fixed N , NT . This,

however, also increases the associated discretisation errors.

In order to keep discretisation effects and FSE small the two requirements of sufficiently

large spatial extend La and small lattice spacing a read

a� 1/mπ � L. (6.12)

At this stage of discussion we used a single volume to calculate the moments of PDFs. A

check for finite size effects is a next step in the discussion. However, we show results for

the pion decay constant for two volumes.

6.8 Chiral Effective Field Theory

In order to remove discretisation effects one has to take the thermodynamic limit (L→∞),

and the continuum limit (a→ 0). The extrapolation to small (physical) quark masses, the

so-called chiral limit, then should yield reliable results. Chiral effective field theory (ChEFT)

can help to perform these extrapolations.

ChEFT describes low-energy QCD by means of an effective field theory based on pion,

nucleon, etc. degrees of freedom taking into account the constraints imposed by (spon-

taneously broken) chiral symmetry. If the volume is not too small, the finite size effects

originate from virtual pions propagating across lattice boundaries. The pion mass has to

be small to render ChPT valid. For mπL� 1 finite size effects are expected to be small.

There are several ways to treat baryons in ChEFT. Ali Khan et al., e.g., applied the (non-

relativistic) small scale expansion (SSE) [75], which uses explicit pion, nucleon and ∆(1232)

degrees of freedom and calculated the quark-mass dependence of gA on finite volumes [73].

Their results show a shift of the axial charge gA in small volumes towards lower values. This

behaviour was confirmed by their Nf = 2 dynamical flavour lattice simulation results [73].

Also ongoing efforts with Nf = 2 simulations confirm the dropping of gA in small volumes

[74].

78 6. Discussion of Errors

mπ = 450MeV
mπ = 350MeV
mπ = 250MeV

L [fm]

R
M

P

32.521.51

1

0.1

0.01

0.001

0.0001

(a) Pion mass mπ.

mπ = 450MeV
mπ = 350MeV
mπ = 250MeV

L [fm]

−
R

F
P

32.521.51

1

0.1

0.01

0.001

0.0001

(b) Pion decay constant fπ.

Figure 6.3 – Finite size effects according to the resummed Lüscher formula. Relative shift

calculated up to NNLO correction terms.

n 1 2 3 4 5 6 7 8 9 10

m(n) 6 12 8 6 24 24 0 12 30 24

n 11 12 13 14 15 16 17 18 19 20

m(n) 24 8 24 48 0 6 48 36 24 24

Table 6.1 – The multiplicities m(n) for n ≤ 20.

6.9 FSE Corrections for Pion Decay Constant

The Lüscher formula represents a convenient and powerful way to calculate corrections to

finite size effects for some observables, like e.g. masses [76]. It estimates finite volume

effects to subleading (in the chiral counting) order. The formula gives the finite volume

shift MP(L) − MP of a particle P in terms of the infinite volume πP forward scattering

amplitude. For this amplitude the ChPT expression at a certain loop order is used.

A resummed version of the Lüscher formulae for masses and decay constants appeared in

[77]. The asymptotic expression for the shift in the pion mass and pion decay constant

were given to 3-loop order.

To predict the shifts MP(L) − MP and FP(L) − FP in a lattice calculation with a known

box length L, and thus to correct the data for this systematic effect, we need an explicit

representation of the amplitudes FP(ν) and NP(ν), respectively. The resummed Lüscher

6.10. Disconnected Distributions 79

formula for the relative finite size shift of the pseudoscalar decay constant

RFP
=

FP(L)− FP

FP
(6.13)

= +
Mπ

16π2λPFP

∞∑
n=1

m(n)√
n

∫ ∞
−∞

dyNP(iy)e−
√

n(1+y2)λπ + O
(

e−ML
)

(6.14)

with M = Mπ(
√

3 + 1)/
√

2 and λP = mPL and the multiplicities m(n) as given in Tab.

6.1 predicts a negative shift in the pion decay constant for a finite lattice size compared to

the infinite volume value. Whereas the according formula for the pseudoscalar meson mass

RMP
=

MP(L)−MP

MP
(6.15)

= − Mπ

32π2λPMP

∞∑
n=1

m(n)√
n

∫ ∞
−∞

dyFP(iy)e−
√

n(1+y2)λπ + O
(

e−ML
)

(6.16)

predicts a positive shift.

Fig. 6.3b (6.3a) shows the relative shift for the pion mass (decay constant) where we

calculated the corrections until next-to-next-to-leading order (NNLO) and summed up to

n = 20.

6.10 Disconnected Distributions

Another possible contribution, which has not been incorporated in our lattice computations

performed up to now, comes from disconnected diagrams. We refer back to Fig. 4.3b

(4.6b) which depicts diagrammatically the disconnected contribution of the two (three)

point function.

80 6. Discussion of Errors

Chapter 7

Pion Decay Constant

This work determines the pion decay constant fπ using Eq. (4.146) and (4.147). Operator

improvement is not included, since neither a perturbative nor a non-perturbative determi-

nation of the operator improvement coefficient cA is available, see Eq. (4.93). However,

for Nf = 2 this coefficient is know to be small [78].

Fig. 7.1a shows this work’s results for the unrenormalised pion decay constant fπ/ZA.

Shown are the results for lattice sizes 243 × 48 and 323 × 64. The measurement data is

listed in Tab. B.1 and Tab. B.3 in the appendix.

For smaller pion masses, the data for the 323 × 64 lattice shows a significant shift towards

larger fπ compared to the 243 × 48 lattice. The direction of the shift is in accordance with

the predictions of the resummed Lüscher formula, see Sec. 6.9. In this work the finite size

effect corrections were calculated according to the resummed Lüscher formula, using the

unrenormalised pion decay constant until NNLO correction terms. The corrected quantities

are listed in Tab. B.2 (Tab. B.4) for the 243 × 48 (323 × 64) lattice and included in Fig.

7.1a.

The resummed Lüscher formula does not seem to explain the observed shift. Even though

the FSE corrections show a trend in the right directions, i.e. fπ gets shifted towards

larger values for the 243 × 48 lattice, the predictions of ChPT do not explain the large

discrepancies observed in this work’s lattice measurement. However, this work applies the

resummed Lüscher formula for relatively large pion masses where it is not sure if ChPT is

valid.

82 7. Pion Decay Constant

fπ(∞) 323 × 64
fπ(L) 32

3 × 64
fπ(∞) 243 × 48
fπ(L) 24

3 × 48

m2
π[GeV 2]

f π
/Z

A
[G

eV
]

0.250.200.150.100.050.00

0.170

0.165

0.160

0.155

0.150

0.145

0.140

(a) Comparison: Two lattices sizes.

fπ(L) 32
3 × 64

fπ(L) 24
3 × 48

m2
π[GeV 2]

f π
/Z

A
[G

eV
]

0.250.200.150.100.050.00

0.180

0.175

0.170

0.165

0.160

0.155

0.150

0.145

0.140

0.135

0.130

(b) Linear extrapolation to physical point.

Figure 7.1 – Unrenormalised pion decay constant fπ/ZA. Left panel: Diamonds (measured

quantity), triangles (with FSE corrections). Right panel: Extrapolation with filled symbols.

It is not obvious what is happening at the symmetric point. FSE should lower fπ for a

smaller volume. Instead a larger value is seen for a smaller volume, although the statistics

on the 323 × 64 lattice is still small so this may improve after more measurements.

Extrapolation formulae obtained from ChPT predict logarithmic behaviour, but with the

actual data this can not be fitted. The best that can be done at the moment is a linear

two-parameter fit to the physical pion mass

fπ(mπ) = a0 + a1m2
π. (7.1)

This work makes use of the measurement data of the 323 × 64 lattice to carry out the

two-parameter fit not taking into account the symmetric point. The fit results are detailed

in Tab. C.1 and depicted in Fig. 7.1b. One finds

fπ(mphys
π)/ZA = 0.1383(51). (7.2)

A comparison with the experimental value of fπ, see Eq. (3.6), allows to give an estimate

of the renormalisation constant

Z est
A ≈ 0.940(35). (7.3)

Chapter 8

n = 1 Moment of Polarised PDF

Form factors are fundamental hadronic observables that probe the structure of hadrons. A

new generation of experiments using polarised beams and targets are currently under way

at major facilities in order to measure the spin structure of the nucleon and at higher values

of the momentum transfer. The nucleon form factors connected to the axial vector current

are more difficult to measure and therefore less accurately known than the electromagnetic

form factors. The nucleon matrix element of the axial vector current is written in terms of

two Lorenz invariant form factors, the axial form factor and the induced pseudo-scalar form

factor depending on the momentum transfer squared. The nucleon axial charge, defined as

the axial vector current at zero momentum transfer which can be determined from β-decay,

is known to a high precision. The momentum transfer-dependence of the axial vector form

factor has been studied from neutrino scattering [79] and pion electro-production [80, 81]

processes.

The axial charge is defined as the axial vector form factor at zero four-momentum transfer,

g B
A = GA(0), which is obtained from the matrix element for the baryon, B , see Sec 3.2,

〈B(p′, s ′)|Au−d
µ |B(p, s)〉 = uB(p′, s ′)

[
γµγ5GA(q2) + γ5

qµ
2mN

GP(q2)

]
uB(p, s) , (8.1)

where q = p′ − p denotes the 4-momentum transfer and uB(p, s) is the spinor for the

baryon, B , with momentum p and spin vector s and GP is the induced pseudoscalar form

factor. The isovector axial current is defined as Au−d
µ = uγµγ5u − dγµγ5d where u and d

denote the up and down quark fields, respectively. We work in the limit of exact isospin

invariance, i.e. u and d quarks are assumed to be degenerate in mass. The states are

84 8. n = 1 Moment of Polarised PDF

〈1〉∆u

m2
π[GeV 2]

g
N A
/Z

A

0.250.200.150.100.050.00

1.000

0.980

0.960

0.940

0.920

0.900

0.880

0.860

0.840

0.820

0.800

(a) Contribution ∆u

〈1〉∆d

m2
π[GeV 2]

g
N A
/Z

A

0.250.200.150.100.050.00

-0.200

-0.220

-0.240

-0.260

-0.280

-0.300

-0.320

-0.340

(b) Contribution ∆d

〈1〉∆u−∆d

m2
π[GeV 2]

g
N A
/Z

A

0.250.200.150.100.050.00

1.300

1.250

1.200

1.150

1.100

1.050

(c) Contribution ∆u −∆d

〈1〉∆u+∆d

m2
π[GeV 2]

g
N A
/Z

A

0.250.200.150.100.050.00

0.750

0.700

0.650

0.600

0.550

0.500

(d) Contribution ∆u + ∆d

Figure 8.1 – First (n = 1) moment of polarised PDF 〈1〉N∆q. Data points with open symbols

were not included in the extrapolation.

normalised according to 〈p′, s ′|p, s〉 = (2π)32p0δ(p − p′)δss′ , we take s2 = −m2
B and mB

is the baryon mass. Thus the axial charge is given by the forward matrix element

〈B(p, s)|Au−d
µ |B(p, s)〉 = 2g B

A sµ. (8.2)

In parton model language, the forward matrix elements of the axial current are related

to the fraction of the spin of the baryon carried by the quarks. Denoting by 〈1〉B∆q the

contribution of the quark, q, to the spin of the baryon, B , we find

〈B(p, s)|qγµγ5q|B(p, s)〉 = 2〈1〉B∆qsµ. (8.3)

Thus for the nucleon we write g N
A = 〈1〉N∆u − 〈1〉N∆d .

8.1. Nucleon 85

8.1 Nucleon

Figs. 8.1a - 8.1d show the ∆u and ∆d contribution to the axial charge for the nucleon.

Since we do not have a nonperturbative determination of the renormalisation constant ZA

we show the unrenormalised quantities. Later in this section we will use ZA determined in the

previous section from fπ, however since as we discussed, there are some remaining systematic

uncertainties that need to be understood before we arrive at a reliable determination of fπ.

The individual contributions 〈1〉∆u and 〈1〉∆d , and the combined contributions 〈1〉∆u−∆d

and 〈1〉∆u+∆d are displayed separately. We give the measurement data for each of the

contributions and its error obtained by a bootstrap analysis in Tab. B.5.

At the smallest pion mass the ∆u contribution of the quantity is significantly smaller than for

the heavier pion masses. This is clearly seen in Fig. 8.1a. Finite size effects of the nucleon

axial charge have been seen in earlier work with Nf = 2 flavours of dynamical Wilson

Clover fermions, see Sec. 6.6. In earlier work with Nf = 2 flavours of dynamical O(a)

improved Wilson fermions [73] significant finite size effects were observed. FSE corrections

independent of Nf were calculated via ChPT. The extrapolation with FSE corrections via

ChPT carried out in their discussion results in g N
A = 1.15(12) with a fit to the lightest pion

masses. Also they find discretisation effects to be small. We argue that the smaller value

of our nucleon axial charge at the lightest pion masses is due to finite size effects and we

expect discretisation effects to be small.

With the current data we can not do better than a first approximation with a linear two-

parameter fit to extrapolate to the physical point

〈1〉BDeltaq = a0 + a1m2
π. (8.4)

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the upper part of Tab. C.2. For the nucleon we find:

〈1〉N∆u/ZA = 0.934(57)

〈1〉N∆d/ZA = -0.281(27)

〈1〉N∆u−∆d/ZA = 1.213(65)

〈1〉N∆u+∆d/ZA = 0.652(61)

86 8. n = 1 Moment of Polarised PDF

Baryon u-quark d-quark

N κl κl

Σ κl κs

Ξ κs κl

Table 8.1 – Matching of the hopping parameters for the light quark mass κl and the strange

quark mass κs to the flavours in the nucleon interpolators.

Since these are unrenormalised quantities we can not compare to experiment, but we can

use the estimate from Eq. (7.3) and thus give a rough estimate: g N
A = 1.141(75).

From experiment the nucleon axial charge g N
A is know very precisely from neutron beta

decay. A recent review [82] gives g N
A = 1.2750(9) and the PDG [10] world average is

g N
A = 1.2694(28). Thus we underestimate the nucleon axial charge g N

A .

Much effort was already put into the determination of g N
A with full QCD lattice simulations

[83, 84, 85, 86, 74, 87, 88, 89]. All groups consistently underestimate the experimental

value.

Reasons for this discrepancy are still not yet completely understood, although it is likely

to be a combination of finite size effects and chiral non-analytic behaviour close to the

physical point.

8.2 Hyperons

Since there is currently no experimental data for the axial charges of the other octect

baryons, and theoretical predictions are rather imprecise, Lattice QCD gives us the oppor-

tunity to make predictions for 〈1〉BDeltaq the other octect baryons, B = Σ+, Ξ0.

We reuse the proton interpolator, Eq. (4.65) and (4.66), for the Σ and Ξ. We map

the simulation parameters κl and κs , see Sec. 5.3, to the u and d quark of the proton

interpolator according to Tab. 8.1.

8.2. Hyperons 87

〈1〉∆u

m2
π[GeV 2]

g
Σ A
/Z

A

0.250.200.150.100.050.00

1.000

0.980

0.960

0.940

0.920

0.900

0.880

0.860

0.840

0.820

0.800

(a) Contribution ∆u

〈1〉∆d

m2
π[GeV 2]

g
Σ A
/Z

A

0.250.200.150.100.050.00

-0.240

-0.260

-0.280

-0.300

-0.320

-0.340

(b) Contribution ∆d

〈1〉∆u−∆d

m2
π[GeV 2]

g
Σ A
/Z

A

0.250.200.150.100.050.00

1.350

1.300

1.250

1.200

1.150

1.100

(c) Contribution ∆u −∆d

〈1〉∆u+∆d

m2
π[GeV 2]

g
Σ A
/Z

A

0.250.200.150.100.050.00

0.700

0.680

0.660

0.640

0.620

0.600

0.580

0.560

0.540

0.520

0.500

(d) Contribution ∆u + ∆d

Figure 8.2 – First (n = 1) moment of polarised PDF 〈1〉Σ∆q.

Fig. 8.2a - 8.2d (8.3a - 8.3d) show the unrenormalised axial charge for the Σ (Ξ). Again

we display the individual contributions in separate figures. The measurement data for the

individual contributions for the Σ (Ξ) is given in Tab. B.6 (B.7).

Like for the nucleon, the ∆u-part has dropped significantly for the lightest pion mass. This

might again be caused by finite size effects.

We carry out a first (linear) extrapolation to the physical point using Eq. 8.4. The fit results

and extrapolations to the physical point for each of the contributions are given separately

in the middle (lower) part of Tab. C.2 for the Σ (Ξ). For the Σ the axial charge of the

88 8. n = 1 Moment of Polarised PDF

〈1〉∆u

m2
π[GeV 2]

g
Ξ A
/Z

A

0.250.200.150.100.050.00

1.250

1.200

1.150

1.100

1.050

1.000

0.950

0.900

0.850

0.800

(a) Contribution ∆u

〈1〉∆d

m2
π[GeV 2]

g
Ξ A
/Z

A

0.250.200.150.100.050.00

-0.200

-0.220

-0.240

-0.260

-0.280

-0.300

-0.320

-0.340

(b) Contribution ∆d

〈1〉∆u−∆d

m2
π[GeV 2]

g
Ξ A
/Z

A

0.250.200.150.100.050.00

1.500

1.400

1.300

1.200

1.100

1.000

(c) Contribution ∆u −∆d

〈1〉∆u+∆d

m2
π[GeV 2]

g
Ξ A
/Z

A

0.250.200.150.100.050.00

1.000

0.900

0.800

0.700

0.600

0.500

(d) Contribution ∆u + ∆d

Figure 8.3 – First (n = 1) moment of polarised PDF 〈1〉Ξ∆q.

unpolarised quark distributions at the physical point are found to be:

〈1〉Σ∆u/ZA = 0.892(53)

〈1〉Σ∆d/ZA = -0.316(25)

〈1〉Σ∆u−∆d/ZA = 1.208(63)

〈1〉Σ∆u+∆d/ZA = 0.575(53)

Whereas for the Ξ we find:

〈1〉Ξ∆u/ZA = 1.119(47)

〈1〉Ξ∆d/ZA = -0.251(24)

〈1〉Ξ∆u−∆d/ZA = 1.369(57)

〈1〉Ξ∆u+∆d/ZA = 0.866(47)

In the context of hyperons the axial charges are also important to learn about the role

of flavour SU(3) symmetry breaking. In particular, in the case of conserved flavour SU(3)

8.2. Hyperons 89

(mπ/Xπ)
2

(g
N A
−
g
Σ A
+
g
Ξ A
)/
Z

A

1.41.210.80.60.40.20

0.10

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

(a) δSU(3) = (gN
A − gΣ

A + gΞ
A)/ZA

Experiment
Nf = 2

Nf = 2 + 1

m2
π[GeV 2]

g
N A
/f

π

0.250.200.150.100.050.00

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

(b) gN
A /fπ

Figure 8.4 – Left: SU(3) symmetry breaking term. Right: Nucleon axial charge over pion decay

constant.

symmetry the axial charges of the N , Σ, and Ξ ground states are connected by the following

simple relations, see Sec. 3.3:

g N
A = F + D (8.5)

g Σ
A = 2F (8.6)

g Ξ
A = F − D. (8.7)

These follow through SU(3) Clebsch-Gordan coefficients in the decomposition of the axial

form factor into the functions F and D relating to the baryon octet components in SU(3)

[90].

One way to test flavour SU(3) symmetry breaking in the axial couplings is to study the

quantity δSU(3), defined as

δSU(3) = g N
A − g Σ

A + g Ξ
A . (8.8)

Fig. 8.4a shows the unrenormalised quantity δSU(3)/ZA as a function of mπ/Xπ with the

flavour singlet quantity

X 2
π =

1

3
(2m2

K + m2
π). (8.9)

The measurement data is given in Tab. B.8. We see a very mild SU(3) symmetry breaking

towards lighter pion masses.

90 8. n = 1 Moment of Polarised PDF

We carried out a linear one-parameter fit anchored at the symmetric point. The fit results

are given in Tab. C.3. An extrapolation to the physical point gives

δSU(3)/ZA = 0.052(34)

which indicates a very small SU(3) symmetry breaking. This is the unrenormalised quantity;

if multiplied with our estimate Z est
A we obtain

δSU(3)/ZA × Z est
A = 0.049(32).

Three attempts have been carried out to determine the axial charges for the Σ and Ξ

using different theoretical approaches: Chiral perturbation theory [91], the large-Nc limit

[92, 93], and the quark model [94]. In the attempt using chiral perturbation theory the

one-loop corrections due to flavour SU(3) symmetry breaking were calculated. The axial

charge for the Σ and Ξ were predicted to 0.70 ≤ g Σ
A ≤ 1.10 and 0.18 ≤ −g Ξ

A ≤ 0.36.

Using the large-Nc approach the following ranges were predicted: 0.60 ≤ g Σ
A ≤ 0.72 and

0.26 ≤ −g Ξ
A ≤ 0.30. Both approaches give very loose bounds on the values of these

coupling constants.

An earlier lattice calculation also determined the hyperon axial charges [95]. They used

Nf = 2 + 1 dynamical flavours of (improved) staggered fermions (asqtad) [96, 97, 98] for

the sea quarks and domain-wall fermions (DWF) [99, 100, 101, 102] for the valence sector.

The pion mass was varied from roughly 750 MeV down to 350 MeV in a lattice box size of

2.6 fm. The axial coupling constant was expanded in terms of the flavour SU(3) breaking

parameter x = (m2
K −m2

π)/4π2f 2
π as follows

g N
A = Dsymm + F symm +

∑
n

C
(n)
N xn (8.10)

g Σ
A = 2F symm +

∑
n

C
(n)
Σ xn (8.11)

g Ξ
A = F symm − Dsymm +

∑
n

C
(n)
Ξ xn (8.12)

with the superscript symm denoting the quantity at the symmetric point, i.e. independent

of x and the lattice data was found to prefer the constraint

C
(1)
N − C

(1)
Σ + C

(1)
Ξ = 0. (8.13)

8.3. Ratios 91

With a combined fit for n = 1 the axial charges of the hyperons were determined to be

g Σ
A = 0.900(42) and g Ξ

A = −0.277(15). (Due to another definition of g Σ
A this numerical

value is different by a factor of 2 from the one quoted in the paper [95].) These results are

in accordance with our results.

A more recent lattice calculation [103] determined the hyperon axial charges to be g Σ
A =

0.970(30) and g Ξ
A = −0.299(14). (Due to another definition of g Σ

A (g Ξ
A) this numerical

value is different by a factor of
√

2 (by sign opposite) from the one quoted in the paper

[95].) Again, these results are in accordance with our results.

8.3 Ratios

Since we do not have the renormalisation constant yet we now consider ratios were this

constant cancels.

The first ratio we consider is the axial charge of the nucleon g N
A over the pion decay

constant fπ± . We plot this ratio in Fig. 8.4b. Since the renormalisation constants cancel

in the ratio, we are able to compare our results to the experimental value [10] (star) and

to Nf = 2 results [74]. Except for the lightest pion mass, which is possibly due to FSE, the

measurements show a trend towards the experimental value and agree very well with the

Nf = 2 results.

Next we make use of the SU(3) constants introduced in Eqs. (8.5)-(8.7) and consider the

following ratios:

g Σ
A

g N
A

=
2F

F + D
(8.14)

g Ξ
A

g N
A

=
F − D

F + D
(8.15)

and

g N
A − g Ξ

A

g Σ
A

=
D

F
(8.16)

g N
A + g Ξ

A

g Σ
A

= 1. (8.17)

We plot these ratios in Figs. 8.5a - 8.5d as a function of (mπ/Xπ)2. The measurement

data is given in Tab. B.22 - B.25.

92 8. n = 1 Moment of Polarised PDF

(mπ/Xπ)
2

g
Σ A
/g

N A

1.201.000.800.600.400.200.00

0.800

0.780

0.760

0.740

0.720

0.700

(a) gΣ
A /g

N
A

(mπ/Xπ)
2

g
Ξ A
/g

N A

1.201.000.800.600.400.200.00

-0.160

-0.180

-0.200

-0.220

-0.240

-0.260

(b) gΞ
A /g

N
A

(mπ/Xπ)
2

(g
N A
−
g
Ξ A
)/
g
Σ A

1.201.000.800.600.400.200.00

1.700

1.680

1.660

1.640

1.620

1.600

1.580

1.560

1.540

1.520

1.500

(c) (gN
A − gΞ

A)/gΣ
A

(mπ/Xπ)
2

(g
N A
+
g
Ξ A
)/
g
Σ A

1.201.000.800.600.400.200.00

1.100

1.050

1.000

0.950

(d) (gN
A + gΞ

A)/gΣ
A

Figure 8.5 – Ratios of axial charges.

We use a linear extrapolation to obtain preliminary predictions at the physical quark masses.

The fit results are displayed in Tab. C.4 and Tab. C.5. For the ratio (g N
A + g Ξ

A)/g Σ
A we use

a one-parameter fit with a fit function anchored at the symmetric point whereas for the

other ratios we use a two-parameter linear fit ansatz. We obtain for the combinations of D

and F at the physical point the following values:

g Σ
A

g N
A

=
2F

F + D
= 0.740(21) (8.18)

g Ξ
A

g N
A

=
F − D

F + D
= −0.208(24) (8.19)

8.3. Ratios 93

and

g N
A − g Ξ

A

g Σ
A

=
D

F
= 1.624(53) (8.20)

g N
A + g Ξ

A

g Σ
A

= 1.068(44) (8.21)

These preliminary results are in agreement with earlier lattice [95, 103] and quark model

[94] determinations.

From a fit to the experimental data taking model independent leading SU(3) breaking

contributions to the axial current matrix elements into account Savage and Walden [91]

found the following values: F = 0.47(7) and D = 0.79(10). Combining the central values

the following ratios are obtained: g Σ
A /g N

A = 0.75, g Ξ
A /g N

A = −0.25, and (g N
A − g Ξ

A)/g Σ
A =

1.68. Thus, our results are also in good accordance with their results.

Chapter 9

n = 2 Moment of Unpolarised PDF

The second (n = 2) moment of a baryon’s, B , unpolarised quark distribution function, q(x)

gives the total fraction of the baryon’s momentum carried by the quark, q, 〈x〉Bq . On the

lattice this work calculates moments of the quark distribution functions q(x)

〈xn−1〉Bq =

∫ 1

0

dx xn−1(qB(x) + (−1)nqB(x)) (9.1)

where x is the momentum fraction of the baryon B carried by the quarks by calculating the

matrix elements of local twist-2 operators

〈B(p)|
[
Oµ1...µn

q − tr
]
|B(p)〉 = 2〈xn−1〉Bq [pµ1...µn − tr], (9.2)

where

Oµ1...µn
q = in−1qγµ1

↔
D
µ2

· · ·
↔
D
µn

q. (9.3)

In order to calculate the quark momentum fractions this work considers only the second

moment, 〈x〉q, for which one uses the standard local operator

O〈x〉q = O44
q −

1

3

(
O11

q +O22
q +O33

q

)
(9.4)

where
↔
D = (

→
D −

←
D)/2 is the forward/backward covariant derivative.

This is not the only possible choice of lattice operator to calculate the momentum fractions.

The operator ψγi

←→
D4ψ might be used as well. However to extract the matrix element using

this operator requires a non-zero baryon momentum pi 6= 0. Lattice calculations with p 6= 0

are more noisy. This work’s lattice simulations were carried out at zero baryon momentum,

thus one extracts the matrix elements using Eq. (9.2).

96 9. n = 2 Moment of Unpolarised PDF

Collaboration 〈x〉u−d

ABMK 0.1646± 0.0027

BBG 0.1603± 0.0041

JR 0.1496± 0.0062

MSTW 0.1501± 0.0048

AMP06 0.1676± 0.0058

Table 9.1 – Phenomenological values for 〈x〉u−d at µ = 2 GeV for the nucleon.

The matrix element in Eq. (9.2) is obtained on the lattice by considering the ratio

R(t, τ ,~p) =
C3pt(t, τ ,~p)

C2pt(t,~p)
= −

E 2
~p + 1

3
~p 2

E~p
〈x〉 (9.5)

where C2pt and C3pt are lattice two and three-point functions, respectively, with total mo-

mentum ~p (in the simulation considered here only ~p = 0). The operator O〈x〉q from Eq. (9.4)

is inserted into the three-point function C3pt(t, τ ,~p) at time τ between the baryon source

located at time t = 0 and sink at time t.

The state-of-the-art results for the particular quantity of interest to us, 〈x〉u−d , are collected

in Tab. 9.1 [104, 105, 106, 107, 108, 109].

9.1 Nucleon

Figs. 9.1a - 9.1d show 〈x〉q for the nucleon. Since the renormalisation constant Z is not

available the unrenormalised quantities are shown. The individual contributions 〈x〉u and

〈x〉d , and the combined contributions 〈x〉u−d and 〈x〉u+d are displayed separately. This

work lists the measurement data for each of the contributions in Tab. B.9.

Again this work tries a first approximation with a linear two-parameter fit to the physical

point

〈x〉Bq /Z = a0 + a1m2
π. (9.6)

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the upper part of Tab. C.6. For the nucleon the momentum fractions

9.1. Nucleon 97

〈x〉u

(mπ/Xπ)
2

〈x
〉N

/Z

1.401.201.000.800.600.400.200.00

0.400

0.380

0.360

0.340

0.320

0.300

(a) Contribution u

〈x〉d

(mπ/Xπ)
2

〈x
〉N

/Z

1.401.201.000.800.600.400.200.00

0.180

0.170

0.160

0.150

0.140

0.130

0.120

(b) Contribution d

〈x〉u−d

(mπ/Xπ)
2

〈x
〉N

/Z

1.401.201.000.800.600.400.200.00

0.230

0.220

0.210

0.200

0.190

0.180

(c) Contribution u − d

〈x〉u+d

(mπ/Xπ)
2

〈x
〉N

/Z

1.401.201.000.800.600.400.200.00

0.540

0.520

0.500

0.480

0.460

(d) Contribution u + d

Figure 9.1 – Second (n = 2) moment of unpolarised PDF 〈x〉Nq .

of the unpolarised quark distribution at the physical point are found to be:

〈x〉Nu /Z = 0.359(14)

〈x〉Nd /Z = 0.1529(70)

〈x〉Nu−d/Z = 0.2059(97)

〈x〉Nu+d/Z = 0.512(20)

Although this work’s results only cover a small mass range, the general behaviour is similar to

that seen in other lattice simulations, i.e. very flat. When looking at the world lattice results

for the quark momentum fraction 〈x〉u−d [110, 111, 84, 83, 112] the most striking feature

that one observes is that, despite the community’s efforts to calculate with many actions,

several lattice spacings and volumes and a broad range of pion masses, the calculations

still overestimate the experimental measurement by at least 30% and maybe as much as a

factor of 2. The spread amongst the groups obviously suggests some systematic variations.

98 9. n = 2 Moment of Unpolarised PDF

〈x〉u

(mπ/Xπ)
2

〈x
〉Σ
/Z

1.401.201.000.800.600.400.200.00

0.380

0.370

0.360

0.350

0.340

0.330

0.320

0.310

0.300

(a) Contribution u

〈x〉d

(mπ/Xπ)
2

〈x
〉Σ
/Z

1.401.201.000.800.600.400.200.00

0.200

0.190

0.180

0.170

0.160

0.150

0.140

0.130

(b) Contribution d

〈x〉u−d

(mπ/Xπ)
2

〈x
〉Σ
/Z

1.401.201.000.800.600.400.200.00

0.240

0.220

0.200

0.180

0.160

0.140

0.120

0.100

(c) Contribution u − d

〈x〉u+d

(mπ/Xπ)
2

〈x
〉Σ
/Z

1.401.201.000.800.600.400.200.00

0.550

0.540

0.530

0.520

0.510

0.500

0.490

0.480

(d) Contribution u + d

Figure 9.2 – Second (n = 2) moment of unpolarised PDF 〈x〉Σq .

9.2 Hyperons

Figs. 9.2a - 9.2d (9.3a - 9.3d) show 〈x〉q for the Σ (Ξ). Again this work shows the

unrenormalised quantity and the individual contributions 〈x〉u and 〈x〉d , and the combined

contributions 〈x〉u−d and 〈x〉u+d are displayed separately. The measurement data for each

of the contributions is given in Tab. B.10 and B.11.

As in the previous section for the axial charges, the renormalisation constant for the momen-

tum fractions Z has not yet been determined. As a consequence in this work no quantitative

predictions for the quark momentum fractions of the hyperons is given.

A first (linear) extrapolation to the physical point is carried out using Eq. 9.6. The fit

results and extrapolations to the physical point for each of the contributions are given

9.2. Hyperons 99

〈x〉u

(mπ/Xπ)
2

〈x
〉Ξ
/Z

1.401.201.000.800.600.400.200.00

0.400

0.390

0.380

0.370

0.360

0.350

0.340

0.330

(a) Contribution u

〈x〉d

(mπ/Xπ)
2

〈x
〉Ξ
/Z

1.401.201.000.800.600.400.200.00

0.170

0.160

0.150

0.140

0.130

0.120

(b) Contribution d

〈x〉u−d

(mπ/Xπ)
2

〈x
〉Ξ
/Z

1.401.201.000.800.600.400.200.00

0.280

0.260

0.240

0.220

0.200

0.180

0.160

(c) Combined contribution u − d

〈x〉u+d

(mπ/Xπ)
2

〈x
〉Ξ
/Z

1.401.201.000.800.600.400.200.00

0.550

0.540

0.530

0.520

0.510

0.500

0.490

0.480

(d) Combined contribution u + d

Figure 9.3 – Second (n = 2) moment of unpolarised PDF 〈x〉Ξq .

separately in the middle (lower) part of Tab. C.6 for the Σ (Ξ). For the Σ:

〈x〉Σu /Z = 0.329(12)

〈x〉Σd /Z = 0.1844(64)

〈x〉Σu−d/Z = 0.1453(82)

〈x〉Σu+d/Z = 0.513(18)

For the Ξ:

〈x〉Ξu /Z = 0.382(10)

〈x〉Ξd /Z = 0.1343(55)

〈x〉Ξu−d/Z = 0.2471(70)

〈x〉Ξu+d/Z = 0.517(15)

This work studies the ratios of the momentum fractions of the unpolarised quark distribution

where the normalisation constant cancels.

100 9. n = 2 Moment of Unpolarised PDF

〈x〉Σu/〈x〉Nu

(mπ/Xπ)
2

〈x
〉Σ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(a) Contribution u

〈x〉Σd /〈x〉Nd

(mπ/Xπ)
2

〈x
〉Σ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.30

1.20

1.10

1.00

0.90

0.80

(b) Contribution d

〈x〉Σu−d/〈x〉Nu−d

(mπ/Xπ)
2

〈x
〉Σ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.20

1.10

1.00

0.90

0.80

0.70

0.60

(c) Contribution u − d

〈x〉Σu+d/〈x〉Nu+d

(mπ/Xπ)
2

〈x
〉Σ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

(d) Contribution u + d

Figure 9.4 – Ratio 〈x〉Σq /〈x〉Nq

Figs. 9.4a - 9.4d (9.5a - 9.5d) show the ratios 〈x〉Bq /〈x〉Nq with B = Σ (Ξ). The strange

quark in the Σ takes a larger fraction of the total momentum compared to the down quark

in the proton. Likewise do the strange quarks in the Ξ compared to the up quarks in the

proton. The total contribution for both hyperons are relatively flat.

9.3 Isospin-Symmetry Breaking

Isospin symmetry is related to the invariance of the QCD Hamiltonian under rotations about

the 2-axis in isospace, turning u quarks to d and protons to neutrons. Extensive studies in

nuclear systems have shown that it is an excellent symmetry [113], typically accurate to a

fraction of a percent (e.g. mn − mp ∼ 0.1%). There has been extensive theoretical work

on the effect of the u − d mass difference on parton distribution functions, where isospin

9.3. Isospin-Symmetry Breaking 101

〈x〉Ξu/〈x〉Nu

(mπ/Xπ)
2

〈x
〉Ξ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.20

1.15

1.10

1.05

1.00

0.95

0.90

(a) Contribution u

〈x〉Ξd /〈x〉Nd

(mπ/Xπ)
2

〈x
〉Ξ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

(b) Contribution d

〈x〉Ξu−d/〈x〉Nu−d

(mπ/Xπ)
2

〈x
〉Ξ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.40

1.30

1.20

1.10

1.00

0.90

0.80

(c) Contribution u − d

〈x〉Ξu+d/〈x〉Nu+d

(mπ/Xπ)
2

〈x
〉Ξ
/〈
x
〉N

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

(d) Contribution u + d

Figure 9.5 – Ratio 〈x〉Ξq /〈x〉Nq

symmetry implies [114, 115]:

up(x , Q2) = dn(x , Q2), dp(x , Q2) = un(x , Q2) . (9.7)

Within the MIT bag model, Sather [116] and Rodionov et al. [117] found that charge

symmetry violation (CSV) in the singly represented valence sector, δd(x) ≡ dp(x)−un(x),

could be as large as 5% in the intermediate to large range of Bjorken x . Furthermore, these

authors also found that δu(x) ≡ up(x) − dn(x) was similar in magnitude but of opposite

sign.

The isospin symmetry breaking arising from the u − d mass difference was deduced by

studying the second moments of the parton distribution functions. The sign and magni-

tude of the effect found in this work are consistent both with the estimates based on the

MIT bag model [118] and with the best fit global determination of Ref. [119]. However,

102 9. n = 2 Moment of Unpolarised PDF

−1.0 −0.5 0.0 0.5 1.0
((mK)

2 − (mπ)
2)/(Xπ)

2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
(〈x

〉Σ q
−
〈x
〉Ξ q′
)/
(〈x

〉p u
−
〈x
〉p d
)

〈x〉Σs − 〈x〉Ξu
〈x〉Σu − 〈x〉Ξs

Figure 9.6 – The difference between the doubly and singly represented quarks in the Σ and Ξ as

a function of the strange/light quark mass difference. δu and δd was deduced from the slopes of

these curves, respectively (c.f. Eqs. (9.18) and (9.19)).

the uncertainties in this work are considerably smaller than those derived from the global

analysis.

Because of valence quark normalisation, the first moments of δu−(x) and δd−(x) must

vanish. Hence the second moment (labeled δq−) is the first place where isospin symmetry

breaking can be visible in the valence quark distributions,

δu− =

∫ 1

0

dx x(up−(x)− dn−(x)) = 〈x〉pu− − 〈x〉nd− , (9.8)

δd− =

∫ 1

0

dx x(dp−(x)− un−(x)) = 〈x〉pd− − 〈x〉nu− . (9.9)

As detailed below, these isospin symmetry breaking momentum fractions are related to the

hyperon moments by

δu− ∼ 〈x〉Σu− − 〈x〉Ξs− (9.10)

δd− ∼ 〈x〉Σs− − 〈x〉Ξu− , (9.11)

in the limit where the strange and light quarks have almost equal mass.

9.3. Isospin-Symmetry Breaking 103

The operators used for determining the quark momentum fractions need to be renormalised,

preferably using a nonperturbative method such as RI′-MOM [120, 121, 122]. Here, only

ratios of matrix elements are required and hence these renormalisation factors cancel.

At this stage, is is pointed out that one caveat of the calculations is that the second (n = 2)

moment as calculated on the lattice is a C-even moment, while we actually require the C-

odd moments in Eqs. (9.8) and (9.9). Secondly, it is well known that lattice results for the

second moment of the iso-vector nucleon PDFs, 〈x〉u−d , do not agree well with experiment

(see e.g. [123]). Based on chiral perturbation theory it is expected that finite size effects

and chiral corrections are potentially large [124, 125, 126, 127], but this has so far not

been confirmed by lattice calculations. This discrepancy may also be due to a mismatch

of lattice nucleon matrix elements and perturbative Wilson coefficients. However, ratios

of moments of PDFs are considered, in which such effects cancel out. For example, one

finds 〈x〉pu/〈x〉pd ≈ 2.3 in good agreement with 〈x〉pu−/〈x〉
p
d− = 2.40(6) found in [105]. Is

seems encouraging that lattice results for the ratio 〈x〉(u−d)/〈x〉(∆u−∆d) agree well with

experiment [128].

Fig. 9.4a (9.5b) shows the ratio of the u(s)-quark momentum fraction of the Σ(Ξ) baryon

to the momentum fraction of the u in the proton. They are also given in Tab. B.12, as a

function of m2
π, normalised with the singlet quantity defined in Eq. 8.9. Here one sees the

strong effect of the decrease (increase) in the light (strange) quark momentum fractions as

one approaches the physical point. In particular, one sees that the heavier strange quark

in the Ξ0 carries a larger momentum fraction than the up quark in the proton. It was also

noticed that the up quark in the Σ+ has a smaller momentum fraction than the up quark

in the proton. This is a purely environmental effect since the only difference between these

two measurements is the mass of the spectator quark (s in Σ+, d in p). This implies that

the momentum fraction of the strange quark in the Σ should be larger than that of the

down quark in the proton, which is exactly what is seen in Fig. 9.4b and 9.5a.

To infer the level of isospin symmetry breaking relevant to the nucleon, one only needs to

consider small perturbations about the isospin symmetric point. For instance, one might

write

δu = mδ

(
−∂〈x〉

p
u

∂mu
+
∂〈x〉pu
∂md

)
+O(m2

δ) , (9.12)

104 9. n = 2 Moment of Unpolarised PDF

where mδ ≡ (md − mu), making use of isospin symmetry by equating ∂〈x〉nd/∂md =

∂〈x〉pu/∂mu and ∂〈x〉nd/∂mu = ∂〈x〉pu/∂md . A similar expression holds for δd .

Near the flavour SU(3) symmetric point, it should be noted that the up quark in the proton

is equivalent to an up quark in a Σ+ or a strange quark in a Ξ0, which are collectively

described as the “doubly-represented” quark [129].

The local derivatives required for δu can be obtained by varying the masses of the up

and down quarks independently. Within the present calculation, it should be noted that

the difference 〈x〉Ξs −〈x〉pu measures precisely the variation of the doubly-represented quark

matrix element with respect to the doubly-represented quark mass (while holding the singly-

represented quark mass fixed). Similar variations allow us to evaluate the other required

derivatives, where one writes

∂〈x〉pu
∂mu

' 〈x〉Ξ0

s − 〈x〉pu
ms −ml

,
∂〈x〉pu
∂md

' 〈x〉
Σ+

u − 〈x〉pu
ms −ml

, (9.13)

∂〈x〉pd
∂mu

' 〈x〉Ξ0

u − 〈x〉pd
ms −ml

,
∂〈x〉pd
∂md

' 〈x〉
Σ+

s − 〈x〉pd
ms −ml

. (9.14)

With these expressions and Eq. (9.12), one obtains the relevant combinations for this work’s

determination of isospin symmetry breaking in the nucleon

δu = mδ
〈x〉Σ+

u − 〈x〉Ξ
0

s

ms −ml
, δd = mδ

〈x〉Σ+

s − 〈x〉Ξ
0

u

ms −ml
. (9.15)

By invoking the Gell-Mann–Oakes–Renner relation and normalising to the total nucleon

isovector quark momentum fraction, one writes

δu

〈x〉pu−d

=
mδ

mq

(〈x〉Σ+

u − 〈x〉Ξ
0

s)/〈x〉pu−d

(m2
K −m2

π)/X 2
π

, (9.16)

δd

〈x〉pu−d

=
mδ

mq

(〈x〉Σ+

s − 〈x〉Ξ
0

u)/〈x〉pu−d

(m2
K −m2

π)/X 2
π

. (9.17)

Written in this way, the fractional isospin symmetry breaking terms are just the slopes of

the curves shown in Fig. 9.6 (evaluated at the symmetry point) multiplied by the ratio

mδ/mq. By fitting the slopes, one obtains

δu

〈x〉pu−d

=
mδ

mq
(−0.221± 0.054) (9.18)

δd

〈x〉pu−d

=
mδ

mq
(0.195± 0.025) (9.19)

9.3. Isospin-Symmetry Breaking 105

Chiral perturbation theory yields the quark mass ratio mδ/mq = 0.066(7) [130] and the

isovector momentum fraction is experimentally determined to be 〈x〉pu−d ' 0.158 at 4 GeV2.

Substituting these values into Eqs. (9.18) and (9.19) yields the first lattice QCD estimates

of the isospin symmetry breaking momentum fractions

δu = −0.0023(6), δd = 0.0020(3). (9.20)

The first observation this work makes is that these results are roughly equal in magnitude

and have opposite sign. These values are slightly larger than, but within errors in agreement

with, the phenomenological predictions of [117, 131], where within the MIT bag model

(at a scale Q2 ' 4 GeV2) they found δu− = −0.0014 and δd− = 0.0015. They are

also consistent with the best-fit values of the phenomenological analysis of MRST [119],

δu− = −δd− = −0.002+0.009
−0.006 (90% CL).

While this work’s result gives a very clear indication of the sign and magnitude of the isospin

symmetry breaking in these moments, the usual caveats are added: a precise quantitative

determination will require a detailed study of the finite-volume and discretisation effects as

well as a controlled chiral extrapolation. It is noted that “disconnected” insertions have not

yet been calculated, however since focus was laid on differences of baryons, these contribu-

tions should cancel. Lastly, is was estimated the isospin symmetry breaking associated only

with the u − d mass difference. It is important to also find a method to investigate the

isospin symmetry breaking induced by electromagnetic effects which is expected [119, 132]

to be of a similar size.

Chapter 10

n = 1 Moment of Tensor GPDs

Quark helicity flip GPDs are defined as a form factor decomposition of a non-forward nucleon

matrix element of a bi-local light cone quark operator involving the σµν-tensor. For the

quark part one defines [133]

〈p′, Λ′|
∫

dλ

4π
e iλxψ(−λn/2)iσµνψ(λn/2)|p, Λ〉

= U(p′, Λ′)

(
iσµνHT (x , ξ, t) +

γ[µ∆ν]

2m
ET (x , ξ, t)

+
P

[µ
∆ν]

m2
H̃T (x , ξ, t) +

γ[µP
ν]

m
ẼT (x , ξ, t)

)
U(p, Λ) (10.1)

with P = (P ′ + P)/2 and n is a light-like vector. Here we dropped for simplicity the

dependence on the resolution scale Q2 as well as the gauge links rendering the bi-local

operators gauge invariant. The first of these tensor GPDs, HT (x , ξ, t), is called gener-

alised transversity, because it reproduces the transversity distribution in the forward limit

HT (x , 0, 0) = δq(x) = h1(x). Integrating HT (x , ξ, t) over x gives the tensor form factor∫ 1

−1

dxHT (x , ξ, t)

∣∣∣∣
ξ=0

= gT (t) (10.2)

whose forward limit is known as the tensor charge, gT .

Typically lattice calculations of moments of GPDs do not take into account the computa-

tionally expensive quark-line disconnected contributions, see Sec. 4.17. Since the tensor

operators flip the quark helicity, these disconnected diagrams do not contribute in the con-

tinuum theory for vanishing quark masses. Therefore, we expect only small contributions

108 10. n = 1 Moment of Tensor GPDs

〈1〉δu

(mπ/Xπ)
2

g
N T
/Z

1.401.201.000.800.600.400.200.00

0.90

0.85

0.80

0.75

0.70

(a) Contribution δu

〈1〉δd

(mπ/Xπ)
2

g
N T
/Z

1.401.201.000.800.600.400.200.00

-0.16

-0.18

-0.20

-0.22

-0.24

(b) Contribution δd

〈1〉δu−δd

(mπ/Xπ)
2

g
N T
/Z

1.401.201.000.800.600.400.200.00

1.20

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(c) Contribution δu − δd

〈1〉δu+δd

(mπ/Xπ)
2

g
N T
/Z

1.401.201.000.800.600.400.200.00

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.56

0.54

0.52

0.50

(d) Contribution δu + δd

Figure 10.1 – First (n = 1) moment of transversity PDF 〈1〉Nδq.

for the disconnected graphs in our calculation. This expectation is supported by numerical

results with Lattice QCD [134].

On the lattice, it is not possible to deal directly with matrix elements of bi-local light-cone

operators. The lhs of Eq. (10.1) is transfered to Mellin space by integrating over x , i.e.∫ 1

−1
dxxn−1. For the nucleon matrix elements one gets the local tensor operators

Oµνµ1...µn−1

T (0) = ψ(0)iσµ{ν i
↔
Dµ1 ... i

↔
Dµn−1}ψ(0) (10.3)

which are in turn parameterised in terms of the tensor generalised form factors (GFFs)

ATni , BTni , ÃTni , B̃Tni . Here and in the following,
↔
D = 1/2(

→
D −

←
D) and {· · · } indicates

symmetrisation of indices and subtraction of traces. Parameterisation for arbitrary n can

be found in [135, 136].

10.1. Nucleon 109

For n = 1 we have

〈P ′, Λ′|ψ(0)iσµνψ(0)|P , Λ〉 =U(P ′, Λ′)

(
iσµνAT 10(t) +

P
[µ

∆ν]

m2
ÃT 10(t)

+
γ[µ∆ν]

2m
BT 10(t)

)
U(P , Λ) (10.4)

where we choose (µ, ν) = (3, 4). The inclusion of an additional term ∝ γ[µP
ν]

= γµP
ν −

γνP
µ

is forbidden by time reversal symmetry [133] and AT 10(t) is identified as the tensor

form factor gT (t) from Eq. (10.2).

On the lattice we extract the matrix elements from ratios of nucleon two- and three-point

correlation functions as given in Eq. (4.163). To extract 〈1〉δq we use

Rµν =
C 3ptµν
O

(
τ , P ′ = (m,~0), P = (m,~0)

)
C 2pt

(
τsnk, P = (m,~0)

) (10.5)

=
1

(2κl)(2κs)

m

4
〈1〉δq (10.6)

where µν represents the operator ψiσµνψ and C 2pt and C 3ptµν
O are lattice two and three-

point functions, respectively, with total momentum ~p (in our simulation we consider only

~p = 0). The operator OµνT from Eq. (10.3) is inserted into the three-point function C 3ptµν
O

at time τ between the baryon source located at time t = 0 and sink at time t.

10.1 Nucleon

Figs. 10.1a - 10.1d show the n = 1 moment of the transversity PDF. Since we do not

have the renormalisation constant Z we show the unrenormalised quantities. The individual

contributions 〈1〉δu and 〈1〉δd , and the combined contributions 〈1〉δu−δd and 〈1〉δu+δd are

displayed separately. We give the measurement data for each of the contributions in Tab.

B.13.

Again we try a first approximation with a linear two-parameter fit to the physical point

〈1〉Bδq/Z = a0 + a1m2
π. (10.7)

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the upper part of Tab. C.7. The forward moments at the physical point

110 10. n = 1 Moment of Tensor GPDs

B f theor
T δu δd δu − δd δu + δd

N 0.168(3) MeV [78] 1.03(12) -0.248(34) 1.28(14) 0.774(97)

Σ 0.168(3) MeV [78] 1.04(12) -0.275(33) 1.31(14) 0.774(95)

Ξ 0.168(3) MeV [78] 1.15(12) -0.255(33) 1.39(15) 0.912(98)

N 0.140(5) MeV [137] 0.86(10) -0.207(29) 1.06(13) 0.645(83)

Σ 0.140(5) MeV [137] 0.86(10) -0.229(29) 1.09(13) 0.645(82)

Ξ 0.140(5) MeV [137] 0.95(10) -0.212(29) 1.16(13) 0.760(85)

Table 10.1 – Estimate of the n = 1 moment of the tensor GPD g est
T = ZV gT

ZV fT
f theor
T for N, Σ, and

Ξ.

are found to be:

〈1〉Nδu/ZT = 0.797(35)

〈1〉Nδd/ZT = -0.195(15)

〈1〉Nδu−δd/ZT = 0.991(42)

〈1〉Nδu+δd/ZT = 0.604(35)

Since these are unrenormalised quantity we can not compare directly to experiment, neither

we can compare to other lattice results. Instead we take the ratio of the tensor charge

over the coupling constant of the vector meson to the tensor current. In this ratio the

renormalisation constant cancels and with previous lattice results we can give an estimate

of the tensor charge

g est
T =

ZT gT

ZT fT
f theor
T . (10.8)

We determine the coupling fT of the light vector mesons to the tensor current. The coupling

fT can only be determined theoretically. On the lattice we calculate

e(λ)i mV fT = 〈0|Tµν |V ,λ〉 (10.9)

with the tensor current

Tµν = ψf2
σµνψf1 . (10.10)

We note here that this coupling does not include the improvement terms.

10.1. Nucleon 111

〈1〉δu/fT

(mπ/Xπ)
2

g
N T
/f

T

1.401.201.000.800.600.400.200.00

7.00

6.50

6.00

5.50

5.00

4.50

(a) Contribution δu

〈1〉δd/fT

(mπ/Xπ)
2

g
N T
/f

T

1.401.201.000.800.600.400.200.00

-1.00

-1.20

-1.40

-1.60

-1.80

-2.00

(b) Contribution δd

〈1〉δu−δd/fT

(mπ/Xπ)
2

g
N T
/f

T

1.401.201.000.800.600.400.200.00

9.00

8.50

8.00

7.50

7.00

6.50

6.00

(c) Contribution δu − δd

〈1〉δu+δd/fT

(mπ/Xπ)
2

g
N T
/f

T

1.401.201.000.800.600.400.200.00

5.50

5.00

4.50

4.00

3.50

(d) Contribution δu + δd

Figure 10.2 – Ratio 〈1〉Nδq/fT . The renormalisation constant cancels. We use fT of the light

meson.

Figs. 10.2a - 10.2d show the ratio gT/fT for the nucleon. We use fT of the light meson.

The individual contributions δu and δd , and the combined contributions δu−δd and δu+δd

are displayed separately.

The measurement data for each of the contributions is given in Tab. B.16. The fit results

and extrapolations to the physical point for each of the contributions are given separately

in the upper part of Tab. C.8.

The QCDSF/UKQCD Collaboration used an Nf = 2 flavour, non-perturbatively O(a)

improved Wilson Clover action and determine the vector meson coupling constant to fT =

168(3) MeV [78]. The UKQCD/RBC Collaboration used the Iwasaki gauge action and

simulated Nf = 2 + 1 flavours of domain wall fermions and determine the ratio fT/fV and

together with the experimental value for fV they arrive at fT = 140(5) MeV [137]. Since

112 10. n = 1 Moment of Tensor GPDs

the results for both collaborations do not agree we use either of both values to derive an

estimate for gT .

Tab. 10.1 shows the estimates for gT for the nucleon using the above mentioned theoretical

determinations of fT .

Our results for Nf = 2 + 1 simulations are quite similar to earlier Nf = 2 results, i.e. gT is

flat as a function of m2
π [138, 74].

We now compare the nonsinglet combination δu − δd of gT and gA, because in the non-

relativistic limit one expects that both quantities agree. Our estimate for the nucleon axial

charge is gA = 1.141(75), see Sec 8.1. Comparing to our estimates for the nucleon tensor

charge as shown in Tab. 10.1 we find good agreement indicating that the quarks are not

very relativistic. This is not surprising since our simulations are carried out at rather large

quark masses. This result is supported by an earlier lattice calculation [138].

10.2 Hyperons

Figs. 10.3a - 10.3d (10.4a - 10.4d) show the unrenormalised tensor charge for the Σ (Ξ).

Again we display the individual contributions in separate figures. The measurement data

for the individual contributions for the Σ (Ξ) is given in Tab. B.14 (B.15).

We carry out a first (linear) extrapolation to the physical point using Eq. 10.7. The fit

results and extrapolations to the physical point for each of the contributions are given

separately in the middle (lower) part of Tab. C.7 for the Σ (Ξ).

For the Σ we find:

〈1〉Σδu/ZT = 0.802(31)

〈1〉Σδd/ZT = -0.215(13)

〈1〉Σδu−δd/ZT = 1.019(37)

〈1〉Σδu+δd/ZT = 0.582(29)

10.2. Hyperons 113

〈1〉δu

(mπ/Xπ)
2

g
Σ T
/Z

1.401.201.000.800.600.400.200.00

0.90

0.85

0.80

0.75

0.70

(a) Contribution δu

〈1〉δd

(mπ/Xπ)
2

g
Σ T
/Z

1.401.201.000.800.600.400.200.00

-0.16

-0.18

-0.20

-0.22

-0.24

(b) Contribution δd

〈1〉δu−δd

(mπ/Xπ)
2

g
Σ T
/Z

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

(c) Contribution δu − δd

〈1〉δu+δd

(mπ/Xπ)
2

g
Σ T
/Z

1.401.201.000.800.600.400.200.00

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.56

0.54

0.52

0.50

(d) Contribution δu + δd

Figure 10.3 – First (n = 1) moment of transversity PDF 〈1〉Σδq.

Whereas for the Ξ we find:

〈1〉Ξδu/ZT = 0.908(25)

〈1〉Ξδd/ZT = -0.186(11)

〈1〉Ξδu−δd/ZT = 1.091(30)

〈1〉Ξδu+δd/ZT = 0.723(25)

Figs. 10.5a - 10.5d (10.6a - 10.6d) show the ratio gT/fT for the Σ (Ξ). The individual

contributions δu and δd , and the combined contributions δu−δd and δu +δd are displayed

separately. The measurement data for each of the contributions is given in Tab. B.17 for

the Σ and in Tab. B.18 for the Ξ. The fit results and extrapolations to the physical point

for each of the contributions are given separately in the middle (lower) part of Tab. C.8 for

the Σ (Ξ).

114 10. n = 1 Moment of Tensor GPDs

〈1〉δu

(mπ/Xπ)
2

g
Ξ T
/Z

1.401.201.000.800.600.400.200.00

1.00

0.95

0.90

0.85

0.80

0.75

0.70

(a) Contribution δu

〈1〉δd

(mπ/Xπ)
2

g
Ξ T
/Z

1.401.201.000.800.600.400.200.00

-0.16

-0.18

-0.20

-0.22

-0.24

(b) Contribution δd

〈1〉δu−δd

(mπ/Xπ)
2

g
Ξ T
/Z

1.401.201.000.800.600.400.200.00

1.20

1.15

1.10

1.05

1.00

0.95

0.90

(c) Contribution δu − δd

〈1〉δu+δd

(mπ/Xπ)
2

g
Ξ T
/Z

1.401.201.000.800.600.400.200.00

0.80

0.75

0.70

0.65

0.60

0.55

0.50

(d) Contribution δu + δd

Figure 10.4 – First (n = 1) moment of transversity PDF 〈1〉Ξδq.

For these quantities nothing is known neither from experiment nor from theory. These are

the first predictions.

Tab. 10.1 shows the estimates for 〈1〉Bδq for B = Σ, Ξ.

Whereas the contributions coming from the light quarks in the hyperons do not differ much

from the according contributions in the nucleon, the strange quark contributions differ. The

non-singlet combination δu − δd is slightly increasing when considering the N , Σ, and Ξ.

10.2. Hyperons 115

〈1〉δu/fT

(mπ/Xπ)
2

g
Σ T
/f

T

1.401.201.000.800.600.400.200.00

7.00

6.50

6.00

5.50

5.00

4.50

(a) Contribution δu

〈1〉δd/fT

(mπ/Xπ)
2

g
Σ T
/f

T

1.401.201.000.800.600.400.200.00

-1.00

-1.20

-1.40

-1.60

-1.80

-2.00

(b) Contribution δd

〈1〉δu−δd/fT

(mπ/Xπ)
2

g
Σ T
/f

T

1.401.201.000.800.600.400.200.00

9.00

8.50

8.00

7.50

7.00

6.50

6.00

(c) Contribution δu − δd

〈1〉δu+δd/fT

(mπ/Xπ)
2

g
Σ T
/f

T

1.401.201.000.800.600.400.200.00

5.50

5.00

4.50

4.00

3.50

(d) Contribution δu + δd

Figure 10.5 – Ratio 〈1〉Σδq/fT . The renormalisation constant cancels. We use fT of the light

meson.

116 10. n = 1 Moment of Tensor GPDs

〈1〉δu/fT

(mπ/Xπ)
2

g
Ξ T
/f

T

1.401.201.000.800.600.400.200.00

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

(a) Contribution δu

〈1〉δd/fT

(mπ/Xπ)
2

g
Ξ T
/f

T

1.401.201.000.800.600.400.200.00

-1.00

-1.20

-1.40

-1.60

-1.80

-2.00

(b) Contribution δd

〈1〉δu−δd/fT

(mπ/Xπ)
2

g
Ξ T
/f

T

1.401.201.000.800.600.400.200.00

10.00

9.50

9.00

8.50

8.00

7.50

7.00

6.50

6.00

5.50

(c) Contribution δu − δd

〈1〉δu+δd/fT

(mπ/Xπ)
2

g
Ξ T
/f

T

1.401.201.000.800.600.400.200.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

(d) Contribution δu + δd

Figure 10.6 – Ratio 〈1〉Ξδq/fT for Ξ. The renormalisation constant cancels. We use fT of the

light meson.

Chapter 11

n = 2 Moment of Tensor GPDs

Carrying out a similar calculation as performed in Chap. 10 for n = 2 one finds

A[µν]S{νµ1}〈P ′, Λ′|ψ(0)iσµν i
↔
Dµ1ψ(0)|P , Λ〉 = A[µν]S{νµ1}U(P ′, Λ′)

×
(

iσµνP
µ1

AT 20(t) +
P

[µ
∆ν]

m2
P
µ1

ÃT 20(t)

+
γ[µ∆ν]

2m
P
µ1

BT 20(t) +
γ[µP

ν]

m
∆µ1B̃T 21(t)

)
U(P , Λ) (11.1)

up to trace terms, where A[µν] and S{µν} denote anti-symmetrisation and symmetrisation

of (µ, ν), respectively.

On the lattice this work extracts the matrix elements from ratios of nucleon two- and three-

point correlation functions as given in Eqs. (4.163). To extract the forward matrix element

from which one can determine 〈x〉δq, this work uses

R2{34} =
C

3pt 2{34}
O

(
τ , P ′ = (m,~0), P = (m,~0)

)
C 2pt

(
τsnk, P = (m,~0)

) (11.2)

=
1

(2κl)(2κs)

m

4
〈x〉δq (11.3)

where 2{34} represents the operator ψσ2{3
↔
D4}ψ and the baryon is polarised in the z-

direction. 〈x〉δq is sometimes called h2.

118 11. n = 2 Moment of Tensor GPDs

〈x〉δu

(mπ/Xπ)
2

h
N 2
a
/Z

1.401.201.000.800.600.400.200.00

0.240

0.220

0.200

0.180

0.160

(a) Contribution δu

〈x〉δd

(mπ/Xπ)
2

h
N 2
a
/Z

1.401.201.000.800.600.400.200.00

-0.030

-0.035

-0.040

-0.045

-0.050

-0.055

-0.060

(b) Contribution δd

〈x〉δu−δd

(mπ/Xπ)
2

h
N 2
a
/Z

1.401.201.000.800.600.400.200.00

0.300

0.290

0.280

0.270

0.260

0.250

0.240

0.230

0.220

0.210

0.200

(c) Contribution δu − δd

〈x〉δu+δd

(mπ/Xπ)
2

h
N 2
a
/Z

1.401.201.000.800.600.400.200.00

0.200

0.190

0.180

0.170

0.160

0.150

(d) Contribution δu + δd

Figure 11.1 – Second (n = 2) moment of transversity PDF 〈x〉Nδq.

11.1 Nucleon

Figs. 11.1a - 11.1d show the n = 2 moment of nucleon helicity GPD. Since the renormali-

sation constant Zh2 is not available the unrenormalised quantities are shown. The individual

contributions 〈x〉δu and 〈x〉δd , and the combined contributions 〈x〉δu−δd and 〈x〉δu+δd are

displayed separately. This work gives the measurement data for each of the contributions

in Tab. B.27.

This work carries out a first approximation with a linear two-parameter fit to the physical

point

〈x〉Bδq/Z = a0 + a1m2
π. (11.4)

11.2. Hyperons 119

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the upper part of Tab. C.10. For the nucleon:

〈x〉Nδu/Z = 0.221(11)

〈x〉Nδd/Z = -0.0436(52)

〈x〉Nδu−δd/Z = 0.263(11)

〈x〉Nδu+δd/Z = 0.179(12)

To date there has only been one other calculation of this by the QCDSF/UKQCD Col-

laboration using Nf = 2 flavours of O(a)-improved Wilson fermions [139]. Although it is

possible to directly compare this work’s results to their result due to the missing renormal-

isation factors one can, however, observe the behaviour of the results as a function of m2
π

to be similar to their results. In this work little dependence of 〈x〉δq on the pion mass m2
π

is observed.

This work compares the ratio 〈x〉Nδu/〈x〉Nδd since here the renormalisation constant cancels. It

was obtained 〈x〉Nδu/〈x〉Nδd = 5.07(65) whereas the Nf = 2 results [139] yield 〈x〉Nδu/〈x〉Nδd =

5.15(23). Thus, this work’s results are in good agreement with their results.

11.2 Hyperons

Figs. 11.2a - 11.2d (11.3a - 11.3d) show the unrenormalised n = 2 moment of the transver-

sity distribution for the Σ (Ξ). Again this work displays the individual contributions in

separate figures. The measurement data for the individual contributions for the Σ (Ξ) is

given in Tab. B.28 (B.29).

A first (linear) extrapolation was carried out to the physical point using Eq. 11.4. The

fit results and extrapolations to the physical point for each of the contributions are given

separately in the middle (lower) part of Tab. C.10 for the Σ (Ξ). For the Σ it was found:

〈x〉Σδu/Z = 0.1949(88)

〈x〉Σδd/Z = -0.0450(43)

〈x〉Σδu−δd/Z = 0.2376(100)

〈x〉Σδu+δd/Z = 0.1479(95)

120 11. n = 2 Moment of Tensor GPDs

〈x〉δu

(mπ/Xπ)
2

h
Σ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.240

0.220

0.200

0.180

0.160

(a) Contribution δu

〈x〉δd

(mπ/Xπ)
2

h
Σ 2
a
/Z

1.401.201.000.800.600.400.200.00

-0.030

-0.035

-0.040

-0.045

-0.050

-0.055

-0.060

(b) Contribution δd

〈x〉δu−δd

(mπ/Xπ)
2

h
Σ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.300

0.290

0.280

0.270

0.260

0.250

0.240

0.230

0.220

0.210

0.200

(c) Contribution δu − δd

〈x〉δu+δd

(mπ/Xπ)
2

h
Σ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.180

0.170

0.160

0.150

0.140

0.130

0.120

(d) Contribution δu + δd

Figure 11.2 – Second (n = 2) moment of transversity PDF 〈x〉Σδq.

Whereas for the Ξ is was found:

〈x〉Ξδu/Z = 0.2186(71)

〈x〉Ξδd/Z = -0.0352(34)

〈x〉Ξδu−δd/Z = 0.2550(79)

〈x〉Ξδu+δd/Z = 0.1852(79)

Again the individual quark sectors of the octet baryons are compared. It was found that

the contribution from the up-quark in the Σ has a different slope to the up-quark in the N .

However the individual quark contributions in N and Ξ are very similar.

11.3 Ratios

Figs. 11.4a - 11.4d (11.5a - 11.5d) show the ratios 〈x〉Bδq/〈x〉Nδq with B = Σ (Ξ).

11.3. Ratios 121

〈x〉δu

(mπ/Xπ)
2

h
Ξ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.240

0.220

0.200

0.180

0.160

(a) Contribution δu

〈x〉δd

(mπ/Xπ)
2

h
Ξ 2
a
/Z

1.401.201.000.800.600.400.200.00

-0.030

-0.035

-0.040

-0.045

-0.050

-0.055

-0.060

(b) Contribution δd

〈x〉δu−δd

(mπ/Xπ)
2

h
Ξ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.300

0.290

0.280

0.270

0.260

0.250

0.240

0.230

0.220

0.210

0.200

(c) Contribution δu − δd

〈x〉δu+δd

(mπ/Xπ)
2

h
Ξ 2
a
/Z

1.401.201.000.800.600.400.200.00

0.200

0.190

0.180

0.170

0.160

0.150

0.140

0.130

0.120

(d) Contribution δu + δd

Figure 11.3 – Second (n = 2) moment of transversity PDF 〈x〉Ξδq.

In particular interest is that unlike the unpolarised results presented in Sec. 9.1 and 9.2

there appears to be a difference in the total quark contribution 〈x〉δu+δd between the proton

and Σ as seen in Fig. 11.4d.

122 11. n = 2 Moment of Tensor GPDs

〈x〉Σδu/〈x〉Nδu

(mπ/Xπ)
2

h
Σ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(a) Contribution δu

〈x〉Σδd/〈x〉Nδd

(mπ/Xπ)
2

h
Σ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.30

1.20

1.10

1.00

0.90

0.80

(b) Contribution δd

〈x〉Σδu−δd/〈x〉Nδu−δd

(mπ/Xπ)
2

h
Σ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(c) Contribution δu − δd

〈x〉Σδu+δd/〈x〉Nδu+δd

(mπ/Xπ)
2

h
Σ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.20

1.10

1.00

0.90

0.80

0.70

(d) Contribution δd + δd

Figure 11.4 – Ratio 〈x〉Σδq/〈x〉Nq

11.3. Ratios 123

〈x〉Ξδu/〈x〉Nδu

(mπ/Xπ)
2

h
Ξ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

(a) Contribution δu

〈x〉Ξδd/〈x〉Nδd

(mπ/Xπ)
2

h
Ξ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.20

1.10

1.00

0.90

0.80

0.70

0.60

(b) Contribution δd

〈x〉Ξδu−δd/〈x〉Nδu−δd

(mπ/Xπ)
2

h
Ξ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(c) Contribution δu − δd

〈x〉Ξδu+δd/〈x〉Nδu+δd

(mπ/Xπ)
2

h
Ξ 2
a
/h

N 2
a

1.401.201.000.800.600.400.200.00

1.20

1.15

1.10

1.05

1.00

0.95

0.90

(d) Contribution δd + δd

Figure 11.5 – Ratio 〈x〉Ξδq/〈x〉Nq

Chapter 12

n = 2 Moment of Polarised PDF

12.1 Nucleon

Figs. 12.1a - 12.1d show the results for the n = 2 moment of the polarised PDF of the

nucleon. Since the renormalisation constant Z is not available the unrenormalised quantities

are shown. The individual contributions 〈x〉∆u and 〈x〉∆d , and the combined contributions

〈x〉∆u−∆d and 〈x〉∆u+∆d are displayed separately. This work gives the measurement data

for each of the contributions and its error obtained by a bootstrap analysis in Tab. B.19.

The n = 2 moment of polarised PDF is sometimes called a1.

A first approximation with a linear two-parameter fit to the physical point is given

〈x〉B∆q/Z = a0 + a1m2
π. (12.1)

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the upper part of Table C.9. For the nucleon it was found:

〈x〉N∆u/Z = 0.371(20)

〈x〉N∆d/Z = -0.083(12)

〈x〉N∆u−∆d/Z = 0.451(23)

〈x〉N∆u+∆d/Z = 0.287(24)

To date there has only been one other calculation of this by the QCDSF/UKQCD Collab-

oration using Nf = 2 O(a)-improved Wilson fermions [139]. This work’s results cannot

126 12. n = 2 Moment of Polarised PDF

〈x〉∆u

(mπ/Xπ)
2

a
N 1
/Z

1.401.201.000.800.600.400.200.00

0.42

0.41

0.40

0.39

0.38

0.37

0.36

0.35

0.34

0.33

0.32

(a) Contribution ∆u

〈x〉∆d

(mπ/Xπ)
2

a
N 1
/Z

1.401.201.000.800.600.400.200.00

-0.06

-0.07

-0.08

-0.09

-0.10

-0.11

(b) Contribution ∆d

〈x〉∆u−∆d

(mπ/Xπ)
2

a
N 1
/Z

1.401.201.000.800.600.400.200.00

0.50

0.49

0.48

0.47

0.46

0.45

0.44

0.43

0.42

0.41

0.40

(c) Combined contribution ∆u −∆d

〈x〉∆u+∆d

(mπ/Xπ)
2

a
N 1
/Z

1.401.201.000.800.600.400.200.00

0.34

0.32

0.30

0.28

0.26

0.24

0.22

0.20

(d) Combined contribution ∆u + ∆d

Figure 12.1 – Second (n = 2) moment of polarised PDF 〈x〉N∆q.

directly be compared due to the missing renormalisation factors. However the behaviour

of this work’s results as a function of m2
π is similar to their results. Little dependence of

〈x〉∆q is seen on the pion mass m2
π.

12.2 Hyperons

Figs. 12.2a - 12.2d (12.3a - 12.3d) show the unrenormalised polarised momentum frac-

tions for the Σ (Ξ). The individual contributions are displayed in separate figures. The

measurement data for the individual contributions for the Σ (Ξ) is given in Tab. B.20

(B.21).

12.2. Hyperons 127

〈x〉∆u

(mπ/Xπ)
2

a
Σ 1
/Z

1.401.201.000.800.600.400.200.00

0.40

0.38

0.36

0.34

0.32

0.30

(a) Contribution ∆u

〈x〉∆d

(mπ/Xπ)
2

a
Σ 1
/Z

1.401.201.000.800.600.400.200.00

-0.04

-0.06

-0.08

-0.10

-0.12

-0.14

(b) Contribution ∆d

〈x〉∆u−∆d

(mπ/Xπ)
2

a
Σ 1
/Z

1.401.201.000.800.600.400.200.00

0.48

0.47

0.46

0.45

0.44

0.43

0.42

0.41

0.40

(c) Contribution ∆u −∆d

〈x〉∆u+∆d

(mπ/Xπ)
2

a
Σ 1
/Z

1.401.201.000.800.600.400.200.00

0.34

0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18

0.16

(d) Contribution ∆u + ∆d

Figure 12.2 – Second (n = 2) moment of polarised PDF 〈x〉Σ∆q.

This work carried out a first (linear) extrapolation to the physical point using Eq. 12.1.

The fit results and extrapolations to the physical point for each of the contributions are

given separately in the middle (lower) part of Tab. C.9 for the Σ (Ξ). For the Σ it was

found:

〈x〉Σ∆u/Z = 0.332(18)

〈x〉Σ∆d/Z = -0.1126(95)

〈x〉Σ∆u−∆d/Z = 0.439(20)

〈x〉Σ∆u+∆d/Z = 0.218(20)

128 12. n = 2 Moment of Polarised PDF

〈x〉∆u

(mπ/Xπ)
2

a
Ξ 1
/Z

1.401.201.000.800.600.400.200.00

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

(a) Contribution ∆u

〈x〉∆d

(mπ/Xπ)
2

a
Ξ 1
/Z

1.401.201.000.800.600.400.200.00

-0.06

-0.06

-0.07

-0.07

-0.08

-0.08

-0.09

-0.10

-0.10

(b) Contribution ∆d

〈x〉∆u−∆d

(mπ/Xπ)
2

a
Ξ 1
/Z

1.401.201.000.800.600.400.200.00

0.54

0.52

0.50

0.48

0.46

0.44

0.42

0.40

(c) Contribution ∆u −∆d

〈x〉∆u+∆d

(mπ/Xπ)
2

a
Ξ 1
/Z

1.401.201.000.800.600.400.200.00

0.40

0.35

0.30

0.25

0.20

(d) Contribution ∆u + ∆d

Figure 12.3 – Second (n = 2) moment of polarised PDF 〈x〉Ξ∆q.

Whereas for the Ξ it was found:

〈x〉Ξ∆u/Z = 0.422(15)

〈x〉Ξ∆d/Z = -0.0728(71)

〈x〉Ξ∆u−∆d/Z = 0.497(17)

〈x〉Ξ∆u+∆d/Z = 0.351(17)

Thus a similar result was found to the unpolarised results in Chap. 9. That is, 〈x〉Σ∆u

decreases while 〈x〉Σ∆s increases (in magnitude) as one moves towards the physical point,

and similarly for 〈x〉Ξ∆u and 〈x〉Ξ∆s .

12.3 Ratios

Figs. 12.4a - 12.4d (12.5a - 12.5d) show the ratios 〈x〉B∆q/〈x〉N∆q with B = Σ (Ξ).

12.3. Ratios 129

〈x〉Σ∆u/〈x〉N∆u

(mπ/Xπ)
2

a
Σ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(a) Contribution ∆u

〈x〉Σ∆d/〈x〉N∆d

(mπ/Xπ)
2

a
Σ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.60

1.40

1.20

1.00

0.80

0.60

(b) Contribution ∆d

〈x〉Σ∆u−∆d/〈x〉N∆u−∆d

(mπ/Xπ)
2

a
Σ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.04

1.02

1.00

0.98

0.96

0.94

0.92

0.90

(c) Contribution ∆u −∆d

〈x〉Σ∆u+∆d/〈x〉N∆u+∆d

(mπ/Xπ)
2

a
Σ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.20

1.10

1.00

0.90

0.80

0.70

0.60

(d) Contribution ∆u + ∆d

Figure 12.4 – Ratio 〈x〉Σ∆q/〈x〉N∆q

The ratios highlight the difference between the individual quark sectors that was discussed

above, i.e. the momentum fraction of longitudinally polarised up-quarks in a longitudinally

polarised Σ is smaller than that in the proton. And similarly, the momentum fraction of

the longitudinally polarised strange-quark in a longitudinally polarised Σ is larger than that

of the down-quark in the proton.

Interestingly, however, is that Fig. 12.4d shows us that the total polarised quark contribution

in the Σ is smaller than the corresponding contributions in the nucleon. Fig. 12.5d shows a

similar trend for the Ξ but opposite in sign, i.e. larger than the corresponding contributions

in the nucleon, but the effect is smaller.

130 12. n = 2 Moment of Polarised PDF

〈x〉Ξ∆u/〈x〉N∆u

(mπ/Xπ)
2

a
Ξ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.30

1.25

1.20

1.15

1.10

1.05

1.00

0.95

0.90

(a) Contribution ∆u

〈x〉Ξ∆d/〈x〉N∆d

(mπ/Xπ)
2

a
Ξ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.60

(b) Contribution ∆d

〈x〉Ξ∆u−∆d/〈x〉N∆u−∆d

(mπ/Xπ)
2

a
Ξ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.20

1.15

1.10

1.05

1.00

0.95

0.90

(c) Contribution ∆u −∆d

〈x〉Ξ∆u+∆d/〈x〉N∆u+∆d

(mπ/Xπ)
2

a
Ξ 1
/a

N 1

1.401.201.000.800.600.400.200.00

1.40

1.30

1.20

1.10

1.00

0.90

0.80

(d) Contribution ∆u + ∆d

Figure 12.5 – Ratio 〈x〉Ξ∆q/〈x〉N∆q

Chapter 13

Conclusion and Outlook

Baryon structure functions were investigated by means of Monte Carlo simulations of Lat-

tice QCD with Nf = 2+1 dynamical quark flavours. The first two moments of unpolarised,

longitudinally, and transversely polarised PDFs were calculated for the nucleon and hyper-

ons which include an additional degree of freedom, the strange quark, which makes them

amenable to studies with Nf = 2 + 1 flavours.

The QCDSF Collaboration carries out investigations of baryon structure using configurations

generated with Nf = 2 + 1 dynamical flavours of O(a)-improved Wilson fermions. The

fermion action elaborated is the Nf = 2 + 1 flavour Stout Link Non-perturbative Clover

(SLiNC) fermion action with non-perturbative O(a) improvement whereas the Symanzik

tree-level action serves as the gluonic part. With the strange quark mass as an additional

dynamical degree of freedom in the simulations needs are avoided for a partially quenched

approximation when investigating the properties of particles containing a strange quark.

In this work the moments of PDFs were computed from forward baryon matrix elements

of the flavour-nonsinglet twist-2 operators with up to one derivative at zero momentum

transfer. The required bare matrix elements are extracted from ratios of bare three-point

over two-point functions. In general there are quark-line disconnected contributions, which

are computationally expensive to evaluate. Since our simulations exhibit exact isospin

invariance, for certain flavour combinations the disconnected contributions cancel, e.g. for

the baryon axial charge.

132 13. Conclusion and Outlook

Additionally the operators must be improved and renormalised. At the moment operator

improvement is not included, since neither a perturbative nor a non-perturbative deter-

mination of the operator improvement coefficients are available. However, the effect of

operator improvement is expected to be small. An obvious feature that is currently lacking

is a determination of the renormalisation constants for the local operators considered here.

These calculations are now underway and will allow to make more quantitative predictions

in the near future. For comparison with phenomenology the author is currently limited to

look at ratios where the renormalisation constants cancel.

The Lattice QCD suite Chroma supports calculating baryonic and mesonic three-point and

two-point correlation functions. In order to calculate higher moments of PDFs in this work

the corresponding derivative operators were implemented.

In this work the three-point and two-point correlation functions were calculated utilising

the QCDSF Nf = 2 + 1 flavour SLiNC configurations. The numerical calculations have

been performed on the Nehalem Cluster (JuRoPa) at NIC (Jülich, Germany), and the SGI

ICE 8200 at HLRN (Berlin-Hannover, Germany).

In this work the pion decay constant and tensor decay constant were calculated in order to

circumvent the need for renormalisation constants and to be able to give estimates for the

baryon axial charge and the tensor charge.

The nucleon axial charge (unrenormalised) was determined and using an estimate for the

renormalisation constant from the pion decay constant it was possible to compare the

quantity to experiment and results from other studies. In this work the experimental value

was underestimated. This is in accordance with what other collaborations are seeing.

Reasons for this discrepancy are still not yet completely understood, although it is likely to

be a combination of finite size effects and chiral non-analytic behaviour close to the physical

point. Our results for the hyperon axial charges agree well with earlier lattice results and

show a hint of flavour SU(3)-symmetry breaking effects.

Since the tensor operators flip the quark helicity, the disconnected diagrams do not con-

tribute in the continuum theory for vanishing quark masses. Therefore, only small contribu-

tions for the disconnected graphs are expected. The baryon tensor charge (unrenormalised)

was determined and again applying an estimate for the renormalisation obtained from the-

133

oretical predictions of the tensor decay constant it was possible to give an estimate of

the quantity. Also, the nucleon tensor charge showed little quark mass dependence. This

observation was also made by earlier calculations. For the tensor charge of the hyperons

nothing is known neither from experiment nor from theory; this work gave the first predic-

tions on these quantities. Whereas the contributions coming from the light quarks in the

hyperons do not differ much from the according contributions in the nucleon, the strange

quark contributions differ. The non-singlet combination δu− δd is slightly increasing when

considering the N , Σ, and Ξ.

In this work the quark momentum fractions for the unpolarised distribution functions were

calculated. Ratios of the quark momentum fractions for different baryons were studied.

The quark momentum fractions of the octet hyperons show strong flavour SU(3)-symmetry

breaking effects, with the heavier strange quark contributing a larger fraction to the total

baryon momentum than the light quarks. By examining the flavour SU(3)-breaking effects

in these momentum fractions, it was possible to extract the first QCD determination of

the size and sign of isospin-symmetry violations in the parton distribution functions in the

nucleon, δu and δd . These results are roughly equal in magnitude and have opposite sign.

They are are in excellent agreement with earlier phenomenological calculations.

To date there exists only one other calculation of the n = 2 moment of the transversally

polarised quark distribution function. Although at the moment it is not possible to directly

compare this work’s results due to missing renormalisation factors, it was possible, however,

to observe the behaviour of the results as a function of the pion mass to be similar to

their results – little quark mass dependence was seen. Comparing the ratio of individual

contributions 〈x〉Nδu/〈x〉Nδd to their result is possible since here the renormalisation constant

cancels. In this work this ratio was found to be in good agreement with their results.

For the n = 2 moment of the longitudinally polarised quark distribution function in this

work a similar result was found as for the unpolarised case. The light quark distribution

in the Σ decreases while the strange quark distribution increases (in magnitude) as one

moves towards the physical point, and similarly for the light and strange quark distribution

in the Ξ. Interestingly this work unveiled that the total polarised quark contribution in the

Σ is smaller than the corresponding contributions in the nucleon. A similar trend for the

134 13. Conclusion and Outlook

Ξ is observed but opposite in sign; it is larger than the corresponding contributions in the

nucleon.

At this stage of discussion of moments of PDFs a single lattice volume was used and a

check for finite size effects (FSE) is the next step in these simulations. In earlier work

moments of PDFs were found to be (partly) very sensitive to finite size effects, e.g. the

baryon axial charge. Future investigations with simulations incorporating larger lattice sizes

which will allow for dedicated FSE studies.

In the near future Nf = 2 + 1 flavour simulations closer to the physical point we be

undertaken. This gives the opportunity to carry out extrapolations to the physical point in

a controlled way with ChPT.

Part II

Implementation of Lattice QCD

Applications on Heterogeneous

Multicore Acceleration Processors

Chapter 14

Introduction

14.1 Lattice QCD and HPC

Quantum Chromodynamics (QCD), the theory of the strong force acting between quarks

and gluons, is a non-Abelian gauge theory with SU(3) as the gauge group. The gluons, the

gauge bosons of the theory, not only interact with the quarks but also with themselves. At

high energies, analytic calculations can be performed with perturbative tools reaching high

accuracy. However, for low-energy systems, such as baryons, the quark-gluon interaction

and the gluon self-interaction are very strong. In this regime the coupling constant grows

larger rendering perturbative tools unusable.

To study QCD at low energies, i.e. the study of hadron masses, structures of nucleons,

decays of particles, one has to rely on non-perturbative methods, i.e. numerical techniques.

The Feynman path integral is formulated on a discretised space and time with a four-

dimensional (4D) Cartesian lattice and evaluated numerically by Monte Carlo integration.

This lattice, gives the study of QCD with this technique its name, Lattice QCD. When the

lattice spacing a is made sufficiently small, QCD simulations could in principle yield precise

answers for a wide variety of physical phenomena.

An essential ingredient to the evaluation of the Feynman path integral is the quark prop-

agator, which is mainly the inverse of the Dirac operator, the fermion matrix. The Dirac

operator is a huge sparse matrix of dimensionality of the order of number of lattice points

138 14. Introduction

in the lattice. Typically the inversion of this large sparse matrix dominates the overall

computation time of Lattice QCD simulations.

In order to generate an ensemble of gauge configurations the fermion matrix has to be

inverted several times. The cost of generating a decent sized ensemble of gauge configu-

rations for Nf = 2 flavour dynamical Wilson quarks is roughly [140]

k

[
20MeV

m

]cm
[

L

3fm

]cL
[

0.1fm

a

]ca

tera-flops × years (14.1)

with the renormalised quark mass m at a scale of 2 GeV in the MS-scheme. Typical values

for the exponents in this formula are cm = 1− 2, cL = 4− 5, and ca = 4− 6. These values

have a large uncertainty. The prefactor k is typically O(1) for Wilson fermions.

In the past, as a result of insufficiently available computational power Lattice QCD simula-

tions were only feasible at unphysically large pion masses, coarse and small lattices. Today,

with the availability of powerful parallel computer system simulations near the physical point

with ever finer and larger lattices are possible.

Reaching the physical point where the value of the pion mass reaches its physical value is

very difficult even with today’s machines – petascale computers are required. Lattice QCD

has received much attention as a “grand challenge” problem in scientific computing.

The Lattice QCD community has a long tradition not only in building cluster systems out of

commodity hardware components specific for their needs but also in designing and building

their own application-optimised HPC machines. With only nearest-neighbour communica-

tion patterns in a typical formulation of the Dirac operator it is an attractive target for

application specific computing. Custom microprocessors and application-specific network

processors were developed and employed in highly-scalable Lattice QCD machines. Among

those, the apeNEXT and QCDOC machines [141, 142] and the latest application-optimised

HPC machine, QPACE [143], a new type of massively parallel computer.

14.2 Commodity Clusters

A cluster is a parallel computer system comprising an integrated collection of independent

nodes each of which is a system in its own right capable of independent operation and

14.2. Commodity Clusters 139

derived from products developed and marketed for other stand-alone purposes. Moreover,

a commodity cluster is a cluster in which the network as well as the compute nodes are

commercial products available in the market.

Today, clusters typically comprise two levels of parallelism: Parallelism within a node (intra-

node parallelism) and parallelism across nodes (inter-node parallelism). Intra-node paral-

lelism typically uses a shared memory model within a node: One (or more) multi-core

processors usually configured as Symmetric Multi-Processing (SMP) processors. Inter-node

parallelism involves all off-node communication to neighbouring or distant nodes utilising

the node card’s network components.

Commodity clusters have provided an exceptional opportunity in performance to cost, flex-

ibility in configuration and expansion, rapid tracking of technology advances, direct use

of a wide range of available and often open source software, portability between clusters,

and a wide array of choices of component types and characteristics. In addition, commod-

ity clusters have provided scaling between the very small (a few nodes) to the very large

(approaching O(105) processors). Over the last decade not only the evolution of micropro-

cessors developed and marketed for stand-alone purposes showed a reliably increased clock

speed but also the network components available in the market of procurement showed

substantially improved performance. This directly reflected in the aggregate performance

of commodity clusters. Upgrading a commodity clusters and utilising the software at hand

without the need for modifying it resulted in a doubling of the performance every two years.

This was the time of when message passing started to be the successful approach for inter-

node communications. Libraries that implemented the Message Passing Interface (MPI)

were the most prominent ones [144]. However, in 2004, when clock speeds began to stall

the problems of commodity computing became more salient, especially the memory wall

or divergence problem. Commodity clusters with node architectures featuring single-core

microprocessors were not delivering any more the previously seen performance increase.

Now in its 40th year, Moore’s Law, that predicts a doubling of the number of transis-

tors in a single microprocessor every 18 month, is still going strong. But unfortunately,

ever-increasing transistor density no longer delivers comparable improvements in applica-

tion performance. Adding transistors also adds wire delays and speed-to-memory issues.

More aggressive single-core designs also inevitably lead to greater complexity and heat. Fi-

140 14. Introduction

nally, scalar processors themselves have a fundamental limitation: a design based on serial

execution, which makes it extremely difficult to extract more Instruction-Level Parallelism

(ILP) from application codes.

The memory wall or von Neumann bottleneck represents the divergence of the number of

processor clock cycles needed for carrying out an arithmetic operation to the clock cycles

needed to transfer the operands off-chip, i.e. to DRAM, to an SMP configured neighbouring

processor or off-node. In some recent system designs, i.e. the Cell Broadband Engine, the

bandwidth from an off-chip memory device to the register file located close to the floating

point units is limited to 1 byte per processor clock cycle. On the other hand the peak

floating point performance of the core is 8 floating point operations (single precision) per

clock cycle. There is clear evidence that in near future processor architectures this ratio

will further diverge, e.g. for Graphic Processors Units (GPUs).

CPU vendors started to provide more of their key product on the same die. Before 2004 data

from the Top 500 list [145], a ranking of supercomputers by their compute power, shows

that flop performance improved at a factor of 1.8 per year, with 1.4 from a faster clock and

wider floating point units, i.e. AMD’s in 1999 introduced 3DNow! and Intel’s in 2000 in-

troduced Streaming SIMD Extensions (SSE), and 1.3 from simply having a bigger machine.

Plotting machine size against time shows a clear inflection point around 2004 after which

machines have mainly improved performance and kept on trend by using more cores for pro-

cessing. Computer companies are increasing on-chip parallelism to improve performance –

the traditional doubling of clock speeds every 2 years is being replaced by a doubling of

cores or other parallelism mechanisms. A broader transition to multicore started with Intel’s

release of its first dual-core Xeon in 2005. For many applications (especially those requiring

heavy floating-point operations), multi-core processing provided performance gains coping

with the traditional doubling in the performance every 18 month. This opened up the

field of multi-threaded programming models and launched the development of concurrent

programming libraries like OpenMP, POSIX Threads, and GNU Portable Threads [146].

Modern system designs have already dismissed the conventional balance of bytes per flops

of 1:1. Instead, new architectures comprise between one order of magnitude more Floating-

Point Units (FPU) than ever existed before. An entirely different set of balance requirements

drives today’s and future’s architectures based on bandwidth, overhead time, and latency

14.3. Supercomputing 141

tolerance. If no change in structure and evolution is undertaken in the future flops are free

and memory accesses dominate the overall cost.

While in the short term, Moore’s law is expected to apply unabated and commodity components

will dominate system designs, eventually, Moore’s law will flat line due to atomic and quantum

effects and conventional components will provide low efficiency such that little gain will be achieved

for larger systems.

14.3 Supercomputing

Supercomputers have played an important role for decades in advancing the state-of-the-art

in high performance computing and communications. Innovations in communications hard-

ware, network protocols, and network operating systems often arise from supercomputing

research and development projects. Furthermore, supercomputers are systems capable of

solving certain types of important scientific and engineering problems, known as “grand

challenge” problems.

Companies developing supercomputers, like IBM or Cray, utilise node architectures either

featuring custom or mainstream commercial multi-core microprocessors typically accompa-

nied with low latency, highly-scalable interconnects which might be supported by network

co-processors.

IBM’s Blue Gene series, currently in its 3rd technology iteration, is being developed with

the approach to building large scale supercomputers taking a large number of relatively

simple processing cores and to connect these via a proprietary highly-scalable, low latency

network. This has the advantage of creating a high aggregate memory bandwidth (as

each processor is directly connected to its own memory) whilst maintaining low power

consumption because of the relatively low clock frequency. The next-generation prototype

of IBM’s Blue Gene series, Blue Gene/Q, has topped the latest iteration (Nov. 2010) of

the Green 500 list [147], a ranking of supercomputers by their compute power efficiency. In

2011/12 Lawrence Livermore National Laboratory will deploy a 20 peta-flops Blue Gene/Q

Sequoia system.

142 14. Introduction

Cray’s XT supercomputers is a series of massively parallel supercomputer. The Jaguar

system at DOE/SC/Oak Ridge National Laboratory is a Cray XT5 installation employing a

massive array of six-core AMD Opterons with a peak performance of 2.3 peta-flops. They

are interconnected with Cray’s proprietary connection network with high bandwidth and low

latency.

14.4 Heterogeneous Multi-Core Processors

Heterogeneous computing is the strategy of deploying multiple types of processing elements

within a single workflow, and allowing each to perform the tasks to which it is best suited.

This model can employ the specialised processors to accelerate operations by orders of

magnitude faster than what scalar processors can achieve, while expanding the applicability

of conventional microprocessor architectures. Because many HPC applications include both

code that could benefit from acceleration and code that is better suited for conventional

processing, no one type of processor is best for all computations. Heterogeneous processing

allows for the right processor type for each operation within a given application.

Traditionally, there have been two primary barriers to widespread adoption of heterogeneous

architectures: the programming complexity required to distribute workloads across multiple

processors and the additional effort required if those processors are of different types.

The most prominent examples of heterogeneous efforts in HPC include the IBM PowerXCell

8i processor and the rapidly growing Graphic Processing Units (GPU) and GPGPU com-

puting community supported by NVIDIA and AMD. Intel recently announced its massively

multi-core chip, Many Integrated Core (MIC), architecture and disclosed it to act as a

multi-core accelerator for the system’s CPU. Thus the whole system (CPU and MIC) can

be considered a heterogeneous platform.

Application Programming Interfaces (API) based on the Programming language C, such

as CUDA released by NVIDIA, have opened up GPU/GPGPU computing to a much wider

audience [148]. AMD offers a similar Software Development Kit (SDK) + API for their

ATI-based GPUs, which is called FireStream SDK. Typically these SDKs and APIs are

14.4. Heterogeneous Multi-Core Processors 143

bound to the company’s GPGPUs. There are efforts to standardise parallel programming

of heterogeneous systems, e.g. OpenCL [149].

The PowerXCell 8i processor, an enhanced version of the Cell processor used in the Playsta-

tion 3, comprises 1 general purpose core and 8 accelerator cores. The general purpose core,

the PowerPC Processing Element (PPE), is a standard PowerPC core that can, e.g. be

used for running the operating system Linux. The PPE is usually used as the application

controller which distributes the payload of computation to the 8 accelerator cores, the

Synergistic Processing Elements (SPE).

Each SPE comprises it own 16 byte wide Single Instruction Multiple Data (SIMD) FPU,

supporting a Fused Multiply-Add (FMA) operation. The accelerator core features a so-called

Local Store (LS), a 256 kilo-bytes on-chip memory from which up to one 16 byte-wide word

can be loaded or stored to or from the register file per clock cycle. The register file is 128

entry, 16 byte wide and is thus exceptionally large.

The FPUs on the PowerXCell 8i processor perform up to 8 double-precision FMA operation

on a SIMD vector per clock cycle, resulting in a peak performance of 102 double-precision

giga-flops at a core clock speed of 3.2 GHz.

The processing elements as well as the memory interface controller are interconnected via

the Element Interconnect Bus (EIB) featuring a very high bandwidth. Memory transfers

between an SPE’s LS and any other processing element or main memory is carried out

by means of asynchronous Direct Memory Access (DMA) transfers – SPE computation

executes in parallel to memory transfers.

While being impressive in absolute numbers for application developers the high floating-

point performance of the Cell processor is difficult to exploit to a satisfactory fraction.

This is due to various reasons. The Cell processor comprises two levels of parallelism –

FPUs operating on SIMD vectors and the multi-core parallelism. Typically, application

development for parallel system is considered laborious. Also, the memory hierarchy of the

Cell processor is non-trivial and the LS size is very limited when considering typical scientific

code bases.

144 14. Introduction

14.5 HPC Challenges

Based on the current rate of performance improvement an exa-scale (1018) system, i.e.

a system with an aggregate peak performance of 1 exa-flops, would be expected to be

available around 2018. Today, FPUs consume a very small fraction of the area in modern

chip designs and a much smaller fraction of the power consumption. On modern systems, a

double-precision FMA operation consumes roughly 100 pJ (pico Joule) [150]. By contrast,

reading a double precision operand from DRAM costs around 2000 pJ per operand – where a

FMA requires 3 operands to be read. If one extrapolates the improvement in technology with

the current rate this ratio gets even worse, i.e. in 2018 the FMA operation would consume

10 pJ and reading an operand would cost 1000 pJ. Taken 10 pJ per FMA operation as a

basis a system which is capable to perform 1 exa-FMA operations per second consumes

10 mega-watt. This only includes the energy needed for carrying out the floating-point

operations. Accounting also for the energy needed for reading the operands from DRAM

one quickly sums up to the power a nuclear plant provides. The primary design constraints

for future HPC systems is power consumption.

When seeking for the biggest energy consumers in microprocessors it becomes quickly

apparent that it is the moving of data itself. There are mainly two types of data movement:

On-chip and off-chip communications. While on-chip communications involve data transfers

inside the chip, like traffic between the cache hierarchy and the register file or the register file

and floating point pipelines, off-chip communications include transfers that go across chip

boundaries and access, e.g. the main memory and also include internode communications

like MPI transfers.

One possibility to increase locality of data flow is introducing multi-level cache hierarchies to

microprocessors. This replaces parts of the off-chip communications with on-chip transfers

to close cache levels and reduces the overall power consumption. Another possibility is to

group together computation and memory hierarchy in the microprocessor into functional

clusters or hierarchies of these to further exploit locality of data accesses. This trend is

already applied in the system design of GPUs, where several cores are grouped together

into functional units.

14.6. Application-Optimised HPC 145

Automatically managed caches, i.e. cache-coherent models, involve a substantial adminis-

trative logic and thus are expensive in terms of power consumption. These caches virtualise

the data location of on-chip and off-chip memory, and are therefore invisible to current

programming models. However, the cost of moving data off-chip is substantial, thus vir-

tualising the data location in this manner wastes energy and might substantially reduce

performance. One strategy to reduce off-chip communication is to employ more explicit

software management of memory, i.e. explicit managed caches. As a result applications and

algorithms will need to change and include more code for managing these newly introduced

memories. In particular, they will need to manage locality to achieve high performance.

The Cell processor is an example for a microprocessor featuring explicitly managed caches.

The LS of the accelerator cores are subject to explicit memory management. It is due to

the application designer to ensure data and code availability in LS when required.

The cache-coherent model and SMP are likely to not form part of the HPC path. Instead

explicitly managed caches, System-on-a-Chip, SMP on a Chip, and Processor in Memory

will become important elements that bring the memory closer to the logic or vice versa.

Programming language designers must consider how to enable expression of data locality

without the cache-coherent model.

14.6 Application-Optimised HPC

An application-optimised HPC machine is a computer cluster of highly replicated basic

components typically with custom designed network components. The machine features

hardware characteristics especially well suited for specific types of applications or domains

of problems.

The nature of Lattice QCD implies that the minimal design parameters for an ideal Lattice

QCD machine can be more restrictive compared with those of general-purpose parallel

machines: Typically, the implementation of the Dirac operator involves nearest-neighbour

communication patterns only. This makes computers with a torus network connecting the

processing nodes an obvious choice. Typically the only common non-nearest-neighbour

communications are broadcast and global reduction operations. Both communication and

146 14. Introduction

memory access patterns are deterministic and amenable to both software and hardware

prefetching.

These key simplifications to hardware requirements led to the development of a number of

specialised machines, application-optimised HPC systems, in the last decades.

The earliest Lattice QCD machines featured a two-dimensional periodic mesh for the in-

ternode connection. They were designed and built at Columbia University in the 1980s.

The memory on each node was mapped into the address space of the four neighbouring

nodes, a method that has also been employed over the generations of the (initially Italian)

Array Processor Experiment (APE) machines [151].

Machines of hundreds of nodes were built and achieved good performance through process-

ing nodes made up of a microprocessor and an external FPU. The largest installation was

deployed in 1989 which featured a maximum peak performance of 16 giga-flops in double

precision.

A later development was the QCDSP (QCD on digital Signal Processors) machine. The

semantics for accessing the data of a neighbouring node has been decoupled from the CPU

[142]. DMA engines and an asynchronous message-passing library were used to give a

simple but efficient overlapping of communication and computation with complete hiding

of the internode communication latency. Also the QCDSP system received an increased

dimensionality of the processor grid from 2 to 4. Each processor node featured increased

compute power. One compute node of the QCDSP system comprised a Digital Signal

Processor (DSP). The additional component of the QCDSP processing node is a custom

Application-Specific Integrated Circuit (ASIC), designed by the Columbia Lattice QCD

group, supplying the DSP with single-cycle access to DRAM. The internode network fea-

tured a low latency for memory-to-memory transfers for neighbouring nodes. The largest

installation was set up in 1998 with a peak performance of 600 giga-flops in double precision.

The QCDOC system represented an obvious path for improvement by employing compo-

nents reflecting much greater transistor density and higher clock speeds [141] – the IBM

System-on-a-Chip (SoC) technology. The QCDOC ASIC combines all of the features of the

QCDSP node, in addition to many more, on a single chip, and it provides 20 times the per-

formance at about twice the cost. The processor grid was extended to be 6D. The largest

14.7. QPACE 147

and latest installation was deployed in 2005 and featured 10 tera-flops peak performance

in double precision.

14.7 QPACE

QPACE (QCD PArallel computer based on CEll processors) is a novel parallel computer

which has been developed to be primarily used for Lattice QCD simulations [143]. The

compute power is provided by the IBM PowerXCell 8i processor. The PowerXCell 8i pro-

cessor supersedes the Cell processor with support for high-performance double precision

operations, IEEE-compliant rounding, and a DDR2 memory interface. The QPACE nodes

are interconnected by a custom, application optimised 3D torus network implemented on

a Field Programmable Gate Array (FPGA). To achieve the very high packaging density of

26 tera-flops per rack a new water cooling concept has been developed and successfully

realised. There are two installations of 4 QPACE racks each deployed in 2010 and which

provide an aggregate peak performance of 208 tera-flops in double precision.

The network processor of a QPACE node features low-latency and high-bandwidth connects

to its 6 nearest neighbours within a 3D torus. A main feature of the torus network is the

ability to send and receive messages directly from the SPE of one node to an SPE of a

neighbouring node without support from the PPE and without copying the data to main

memory.

It remains a difficult task to exploit the high peak performance of this machine. Application

developers are not only confronted with the programming challenges found for the Cell

processor, but for QPACE another level of parallelism is introduced – the inter-node connect.

14.8 HPC Software Challenges

Scientific productivity on recently emerging peta-scale and future exa-scale systems is widely

attributed to the system balance in terms of processor, memory, network capabilities and

the software stack. Next generations of these systems are likely to be composed with node

architecture with 16 or more cores on single or multiple sockets, deeper memory hierarchies

148 14. Introduction

and a complex interconnection network infrastructure. Hence, the development of scalable

applications on these systems most likely requires application and library developers to

account for hierarchical programming models of memory, computation and network activity.

Even the current generations of the Cray XT and IBM Blue Gene series offer several multi-

core processors per node card, multiple levels of unified and shared caches and a regular

communication topology along with support for distributed computing (MPI) and hybrid

(MPI and SMP) programming models. As a result, it has become extremely challenging to

sustain performance efficiencies on these systems.

Typically in application development in the scientific domain where application performance,

portability, and production of maintainable code bases are primary objectives, a general

purpose language with object-oriented features like C++ is one of the first choices. C++

provides many benefits for HPC application development including: register near data

structures, code inlining facilities, and meta-programming methods.

However, tradition C++ libraries, typically collections of compiled subroutines, quickly reach

their limitations in applicability in the HPC domain as long as high-performance code is

required. Compiled subroutines represent static program code and do not feature dynamic

code generation that meta-programming methods can offer.

Active libraries, mostly enabled by meta-programming methods, on the other hand have

proven to provide domain-specific abstractions and the know-how needed to optimise them

[152]. They combine the benefits of built-in language abstractions, i.e. convenient syntax

and efficient code, with those of library-level abstractions.

The Portable Expression Template Engine (PETE) pioneered the use of expression template

techniques for parallel physics computations [153, 154]. It achieves an exceptional level of

abstraction without sacrificing performance.

QCD Data Parallel (QDP++) builds on top of PETE and extends its concept by providing

domain-specific abstractions suited for quantum field theory. The Chroma package, a suite

for Lattice QCD calculations, in turn builds on top QDP++ and achieves high portability

and efficiency on desktop workstations, commodity clusters, and several supercomputers

and application-optimised HPC systems [155].

14.9. SciDAC Software Hierarchy 149

Figure 14.1 – Software components of the SciDAC software hierarchy involved in Chroma.

However, the level of abstractions reached by those active libraries to date are most likely

not sufficient for future machines. Especially heterogeneous multi-core processors with two-

(or more) level memory hierarchies are not supported by such high-level active libraries like

QDP++. Library developers are required to also account for the different memory models

found in these processors.

14.9 SciDAC Software Hierarchy

The U.S. Lattice community started a project through the U.S. SciDAC (Scientific Discovery

through Advanced Computing) initiative to standardise a set of software components in

order to allow the effective exploitation of computing resources for Lattice QCD [156].

Fig. 14.1 depicts the software components of the SciDAC software hierarchy involved in

Chroma. The main software components this works targets at are the Chroma application

suite and all involved software components: QDP++, QMP, and QMT which will be briefly

introduced.

Level 1 – QCD Message Passing (QMP), QCD Multithreading (QMT) QMP

provides a message passing API for Lattice QCD calculations similar to MPI. QMP was

designed to take advantage of the specialised communication hardware of the supported

150 14. Introduction

architectures. QMT was introduced to cope with the upcoming SMP processors. These

are homogeneous multi-core processors, i.e. all cores are of the same type, and the load

and store instructions target, possibly through a hierarchy of cache levels, at the main

memory. On clusters of these processors a performance gain can be achieved if using QMP

for inter-node communication, i.e. the off-node communication, and QMT for intra-node

communication, i.e. communication within one processor [157].

Level 2 – QCD Data Parallel (QDP++) QDP++ provides lattice-wide data types

and operations for applications in quantum field theory. It is the key software package in

the Chroma suite and for now its description is postponed to a later, separate section.

Level 3 – Special optimised software This level provides interfaces to optimised and

machine-dependent functions. Two different types of level 3 optimisation functions are

differentiated: Level 3a and 3b. Whereas level 3a implementations access the data objects

through QDP++ data types, level 3b implementations rely on a specific data layout and ac-

cess the raw data directly. Level 3a implementations lead in general to more portable codes

whereas level 3b implementations offer greater freedom on carrying out more aggressive

optimisations.

At level 2 and 3 optimised kernels are found which were generated by the BAGEL assembler

generator [158].

Application Level – Chroma At this level the application Chroma and the Chroma

library are implemented – no machine dependent code is found at this level. Applica-

tion developers concentrate on implementing the algorithmic structure of the program and

make use of the lattice wide data types and operators offered by QDP++ and Level 3

implementations.

Chroma is a collection of Lattice QCD applications that was originally developed to serve the

needs of the LHPC and UKQCD Collaborations. The Chroma package itself and all other

SciDAC software components are open source software and can be modified freely. Chroma

has now a large user base around the world which partly contributed new functionality and

or extended existing ones. It includes spectroscopy, decay constant, nucleon form factor and

14.10. QDP++ 151

structure function moment calculations. The code contains chiral fermion actions, Wilson,

Domain Wall and Overlap fermion operators and numerous inverters.

14.10 QDP++

QDP++ is a major component of the USQCD/SciDAC software stack. It provides a

data-parallel programming environment suitable for essentially any kind of Lattice QCD

application.

The interface provides a level of abstraction such that high-level user code can be run

unchanged on a single processor node or a collection of nodes with parallel communications.

Architectural dependencies are hidden below the interface.

As the double-plus in it’s name suggests it is implemented in C++ – to distinguish it from

an independent C-implementation, QDP-C.

Traditional overloading of C++ arithmetic operators typically involves creating and copying

of temporaries of the instantiated type. However, in order to achieve a high performance

movement or replication of data must be minimised, especially when lattice wide data

objects are involved.

The expression templates technique can be used to evaluate vector and matrix expressions

in a single pass without temporaries, i.e. with a higher performance [159]. PETE is an

extensible implementation of the expression template technique [153]. QDP++ makes use

of PETE and thus takes advantage of the intuitive form of constructing expressions by

using overloaded arithmetic operators and on the other hand avoids the creation of lattice

temporaries.

14.11 QCD Applications on Accelerators

According to Amdahl’s Law the overall speedup of a computer program including a fraction

P (in term of execution time) that was sped up by a factor S is

Stotal =
1

(1− P) + P
S

. (14.2)

152 14. Introduction

Consider the following example: An unoptimised computer program’s execution time is T .

One might be able to optimised the program parts which make up, say P = 50%, of the

execution time. The optimised program parts gain a speedup factor of S = 2, i.e. they

execute with twice of the performance. Thus, the overall speedup factor is Stotal = 4/3 and

the new program execution time is Tnew = T/Stotal.

This law also predicts the maximum speedup factor given a fixed portion of the program that

is subject to optimisation. For example, consider the optimisation achievable by parallelisa-

tion. If one is able to parallelise the program perfectly, i.e. it executes after parallelisation

with negligible execution time, so that the speed-up factor grows over all finite bounds

S →∞, then in the above example the overall speedup factor is limited to Stotal = 2.

On the Cell processor, the execution time of program parts executed on the accelerators

compared to when executed on the general purpose core can be substantially smaller. It

is difficult to make general estimates for the speedup factor, but SCell might be in the

range O(10) to even O(1000). Thus the fraction in the denominator in (14.2) can become

negligible and the overall speedup factor depends only on P .

Lattice QCD programs typically spend the majority of the execution time in the inverter.

Let us assume a realistic value of P = 80%. Normally the inverter gets optimised for the

target hardware. Thus the maximal overall speedup factor would be around Stotal = 5.

On the Cell processor the program parts not implemented for execution on the accelerators

execute with such a poor performance, that even with the speedup factor applied the

performance is still not acceptable. As a result, to achieve a high overall performance on

the Cell processor a large fraction of the involved program parts needs to be ported to the

accelerators, the SPEs.

14.12 New design concepts for QDP++

In this work new design concepts were developed on how to implement an active C++

library like QDP++ on accelerator type of processors like the IBM PowerXCell 8i processor.

Not only is a proof-of-concept provided, but it was possible to run a QDP++ based physics

application (Chroma) with reasonable performance on the IBM PowerXCell 8i Processor.

14.12. New design concepts for QDP++ 153

Developing these design concepts significantly extents beyond usual code porting activities.

This work pursues a new strategy leveraging PETE.

The expression template technique, on which PETE is based on, is implemented by means

of meta-programming methods and as such by definition resolved during translation. Only

after resolving the expression templates the functions are available in an assembled form

that one can address for building for the SPEs.

At run-time of the main application the involved PETE expressions are written into a

database. This work includes a code-generator which processes the database and generates

program code fractions for the accelerator core. The newly generated code fractions rely

on the functionality of QDP++. In order to account for the hardware characteristics of the

accelerator this work provides an optimised version of QDP++ for this processor type. All

involved PETE expressions are available as compiled functions, optimised for the accelerator.

This work proposes to compile all such functions and to bundle them into a library and to

link the main application against it. In this way all program parts of the main application

involving PETE expressions execute on the accelerators.

A brief outline follows of the modifications and optimisations carried out in order to achieve

an implementation of QDP++ suitable for the accelerator cores – in case of the Cell

processor, the SPEs:

Support for the SIMD organisation was added. A change in the data organisation ensured

that complex numbers always fit into one processor register. To reduce memory bandwidth

requirements additional attributes were introduced to QDP++ data types which describe

the data object’s access pattern. The standard QDP++ memory allocator was replaced by

a pool memory based implementation. This ensures a high-performance management of the

SPE’s LS. A major modification was adding support for accessing main memory via DMA

transfers. In this way the SPEs access main memory with asynchronous DMA transfers

which execute in parallel to SPE computation. With multi-buffering algorithms memory

latencies and transfer overheads could be (partially) hidden by computation. Parallelisation

on several SPEs was achieved by assigning each SPE to a disjoint subset of the problem,

i.e. each SPE operates on a different part of the data vector. In order to find the optimal

problem size and alignment settings for each SPE compile-time calculations were carried

154 14. Introduction

out. Also, to cope with the limited size of the SPE’s LS for code and data this work

employes SPE code overlay techniques.

IBM has discontinued the development of the Cell processor. Other accelerator-based

architectures are getting more important targets in the HPC market. The design concepts

developed in this work are not bound to specific microprocessor. It is retargetable and

similar challenges are likely to be encountered when targeting to other accelerator based

architectures, like e.g. GPUs.

Chapter 15

The IBM PowerXCell 8i Processor

15.1 Overview

The IBM PowerXCell 8i Processor is the enhanced version of the Cell Broadband Engine

(Cell/B.E.) Processor. Both are collectively called Cell Broadband Engine Architecture

(CBEA) Processors. The CBEA was developed jointly by Sony, Toshiba, and IBM and

extends the 64 bit PowerPC Architecture. The Cell processor is the first implementation of

a multiprocessor family conforming to the CBEA. The IBM PowerXCell 8i Processor which

also conforms to the CBEA provides a Double Data Rate 2 (DDR2) memory interface

and improved double-precision floating-point performance and additional double-precision

instructions. In the following when speaking of the Cell processor the enhanced version is

meant since this is our target hardware.

Although the Cell processor is initially intended for applications in multimedia consumer-

electronics devices, the CBEA has been designed to enable fundamental advances in proces-

sor performance. Especially applications in scientific fields take advantage of the IBM Pow-

erXCell 8i Processor with its outstanding floating-point performance.

Both CBEA processors have 9-cores: One PowerPC Processor Element (PPE) and eight

Synergistic Processing Elements (SPEs). The two types of cores differ substantially in

architecture and functionality thus they are heterogeneous multi-core processors.

156 15. The IBM PowerXCell 8i Processor

Figure 15.1 – Cell Broadband Engine Architecture. The Element Interconnect Bus (EIB) connects

the Synergistic Processor Elements (SPEs) and the PowerPC Processor Elements (PPE) and the

Memory Interface Controller (MIC) and Input/Output Interfaces (IOIF) via the Cell Broadband

Engine Interface (BEI). Picture source: [160]

The first type of core, the PPE, is the general purpose core and complies with the 64

bit PowerPC Architecture and is able to run 32 bit and 64 bit operating systems and

applications.

The second type of core, the SPE, is the accelerator core and is optimised for running

compute-intensive Single-Instruction, Multiple-Data (SIMD) applications. Each SPE has

its own execution units, floating-point pipelines, and local memory for instructions and

data. One CBEA Processor comprises 8 SPEs.

The original machine design foresees the general purpose core, the PPE, to run the top-level,

or control thread of an application whereas the accelerator cores, the SPEs, are considered

to provide the floating-point performance for the application.

Fig. 15.1 shows a high-level block diagram of the CBEA Processor hardware. The PowerPC

Processor Element and the eight Synergistic Processing Element are interconnected and

connected to the on-chip memory and I/O controllers by the Element Interconnect Bus

(EIB).

15.2. PowerPC Processor Element 157

15.2 PowerPC Processor Element

The PPE is the processor element in CBEA processors running the operating system and

acting as the controller for the SPEs. It has a 64 bit Reduced Instruction Set Computing

(RISC) processor that implements the PowerPC architecture. It executes two hardware

threads and features SIMD vector multimedia extensions. The GNU C++ Compiler for the

PPE supports C/C++ intrinsics for SIMD vector multimedia extensions. Besides running

the operating system and managing SPE threads, its intention is control processing and

managing system resources. The PPE consists of two main units, the PowerPC Processor

Unit (PPU) and the PowerPC Processor Storage Subsystem (PPSS). It features 32 kilo-

bytes level-1 instruction and data caches and a 512 kilo-bytes level-2 unified (instruction

and data) cache.

15.3 Synergistic Processor Element

The Synergistic Processor Element (SPE) is a RISC processor with 128 bit SIMD organi-

sation and execute a 32 bit instruction set. It is especially well suited for applications with

high floating point performance requirements. The aggregate floating point performance

of the SPEs in one CBEA Processor is more than 100 giga-flops in double precision.

The SPE consists of two main units, the Synergistic Processor Unit (SPU) and the Memory

Flow Controller (MFC) (see below). Fig. 15.2 shows a block diagram of the SPE.

15.3.1 Synergistic Processor Unit

The Synergistic Processor Unit (SPU) comprises the 256 kilo-bytes Local Storage (LS)

which holds the program code and data. The register file of the SPU contains 128 registers

each 128 bit wide. All SPU load and store instructions move data directly (no cache level

involved) between the register file and the LS.

The SPU features four execution units, a Direct Memory Access (DMA) interface, and a

channel interface for communicating with its MFC, the PPE, other SPEs and other devices.

158 15. The IBM PowerXCell 8i Processor

Figure 15.2 – Block diagram of the Synergistic Processor Element (SPE). The SPE consists of

the Synergistic Processor Unit (SPU) which includes the Local Storage (LS) and the Memory

Flow Controller (MFC) containing the DMA Controller. Picture source: [160]

Table 15.1 – LS-access arbitration priority (in descending order) and transfer sizes.

access type bandwidth/cycle max. occupancy

DMA-access 128 bytes 1/8

DMA-List-access 128 bytes 1/4

SPU load and store 16 bytes 1

SPU instruction prefetch 128 bytes 1

The SPU accesses the Main Storage (MS) by requesting DMA transfers from its MFC.

The DMA controller executes the DMA transfers in parallel to SPU program execution, it

executes so-called asynchronous DMA transfers.

The SPU supports dual-issue of instructions on its two execution pipelines. The pipelines

are referred to as the even and the odd pipeline. The SPU can issue and complete up to two

instructions per cycle, one on each of the two execution pipelines. Whether an instruction

goes to the odd or even pipeline depends on the instruction type.

15.3. Synergistic Processor Element 159

Local Storage

The Local Storage (LS) a is 256 kilo-bytes memory located in the SPE. It holds all in-

structions and data used by the SPU program and is protected with Error-Correcting Code

(ECC) code.

A single local memory port is shared by several SPU elements, i.e. the instruction fetch

mechanism, the processor’s memory instructions, and the DMA transfer mechanism. Ex-

actly one read or write operation in one clock cycle can be performed. Competition to LS

from multiple sources is solved by arbitration.

Tab. 15.1 details the arbitration priorities. DMA transfers always have highest priority but

their maximal impact on LS is limited. These operations occupy, at most, one of every

eight cycles (one of sixteen for DMA reads, and one of sixteen for DMA writes) to the

LS. Thus, the impact of DMA reads and writes on LS availability for loads, stores, and

instruction fetches is small.

SPU instruction execution flow is most efficient either with no branches or with correctly

predicted branches. A branch instruction might disrupt the sequential flow. Correctly

predicted branches execute in one cycle, but a not correctly predicted branch results a

penalty of 18 to 19 clock cycles, depending on the address of the branch target. Thus

mispredicted branches can seriously degrade program performance. Branch instructions

also restrict a compiler’s ability to optimally schedule instructions by creating a barrier on

instruction reordering. The Synergistic Processor Unit Instruction Set include branch hints

to predict in advance the destination of a nearby branch.

Floating-Point Support

Single (double) precision floating-point operations are performed in a 4 (2) vector SIMD

fashion. The data formats for floating-point operations are those defined by the Institute

of Electrical and Electronics Engineers (IEEE) Standard 754, but the results calculated by

single-precision instructions deviate from this standard. This deviation in single precision

must be taken into account by application programmers, e.g. when carrying out large sums.

160 15. The IBM PowerXCell 8i Processor

The Cell processor is capable of performing two double-precision floating-point operations

per cycle with a 9-clock-cycle latency. The SPU instruction set provides a fused multiply-

add operation which results in 4 double-precision floating-point operations per SPU per

clock cycle peak performance.

Memory Flow Controller

The MFC provides the SPE’s interface between LS and MS and other SPE’s LS and system

devices. It contains a DMA controller which executes data transfers between LS and the

destination or source storage area.

Software on the SPE, the PPE, and other SPEs and devices use MFC commands to initi-

ate DMA transfers, query DMA status, perform MFC synchronisation and interprocessor-

communication via mailboxes and signal-notification. The MFC commands implementing

DMA transfers between the LS and MS are called DMA commands. The MFC maintains

two separate command queues, an SPU command queue for commands from the MFC’s

associated SPU, and a proxy command queue for commands from the PPE and other SPEs

and devices.

The MFC supports out-of-order execution of DMA commands. This enables the MFC to

reorder execution of DMA commands to achieve a higher aggregate bandwidth.

Tag-Group Identifiers DMA commands are tagged with one of 32 tag-group identifiers.

This enables the program to determine the status of issued DMA commands. A synchroni-

sation command can be issued to the MFC to wait for the completion of queued commands

in a tag-group.

Fence and Barrier Option Control over the execution order of DMA commands within

a tag-group can be taken by programs with the fence or barrier option. A fenced DMA

command is not executed until all previously issued DMA commands within the same tag-

group have been performed. DMA commands issued after the fenced DMA command might

be executed before the fenced DMA command. A DMA command with the barrier option

15.3. Synergistic Processor Element 161

and all the DMA commands issued after the barrier command are not executed until all

previously issued commands in the same tag group have been performed.

Inbound and Outbound Transfer The terms inbound and outbound for DMA transfers

are defined from the SPU point of view. An inbound transfer is a DMA transfer from main

storage to the local storage. An outbound transfer is a DMA transfer from local storage

to main storage.

Direct Memory Access Controller

The MFC’s Direct Memory Access Controller (DMAC) implements the DMA transfers.

Programs running on the associated SPU, the PPE, or another SPE or device, enqueue

DMA commands to the DMAC command queue. SPU computation continues after issuing

a DMA transfer command to the queue. This queue takes up to 16 DMA commands, which

are eligible by the DMAC for execution. The DMAC executes DMA commands from the

queue autonomously, even in parallel, which allows up to 16 DMA transfers being executed

in parallel.

DMA List Transfers

A whole set of DMA transfers can be issued to the MFC at once via a DMA list transfer

command. The list elements are stored sequentially in LS and are passed to the MFC

through a pointer to the first list element together with its size and a DMA list command.

The list specifies a sequence of DMA transfers between a single area of LS and possibly

discontinuous areas in main storage. DMA list commands can only be issued by programs

running on the associated SPE, but the PPE or other devices (including other SPEs) can

create and store the lists in an SPE’s LS. DMA lists can be used to implement scatter-gather

functions between main storage and the LS.

SPU Decrementer

The SPU features a 32 bit decrementer which counts down at a fixed ratio to the processor

clock. An SPU decrementer is accessed through two channels: The SPU Write Decrementer

162 15. The IBM PowerXCell 8i Processor

Channel and the SPU Read Decrementer Channel. The SPU decrementer can be used to

measure the execution time of an SPU program. In this work the decrementer speed was

measured on a IBM PowerXCell 8i Processor on a QS22 Cell Blade to be 1/120 counts per

clock cycle.

SPU Channels

The SPU communicates with its MFC and with all other processor elements (PPE or other

SPUs) and devices through its SPU channels. Channels are unidirectional interfaces for

sending and receiving variable-size (up to 32 bit) messages, and for sending commands

(such as DMA transfer commands) to the SPE’s associated MFC. SPE software accesses

channels with special channel-read and channel-write instructions. These instructions are

used to initiate MFC commands, query DMA and SPU status, send mailbox and signal-

notification messages, and access auxiliary resources such as the SPE’s decrementer.

SPU Mailboxes

SPU Mailboxes are facilities to send and receive short (up to 32 bit) messages from an to

other processor elements, i.e. other SPUs, the PPE or other devices.

There are two different SPU mailboxes implemented with MFC channels.

• SPU Read Inbound Mailbox (SPU receives a message)

• SPU Write Outbound Mailbox (SPU sends a message)

These mailbox services send and receive 32 bit messages. The PPE also has access to these

mailboxes by reading and writing to MFC memory mapped IO registers, see App. D.4 for

a more detailed description.

15.4. Programming the SPU 163

allocate B

for all vector sites do

initiate DMA transfer B

wait DMA transfer B

calculate B

end for

Algorithm 1 – Sequential processing of a vector object residing in main memory. No overlap of

DMA transfers and computation takes place.

15.4 Programming the SPU

15.4.1 C-language intrinsics

The SPU instruction set provides C-language intrinsics to allow for access to certain SPU

functionality. The code for the intrinsic is usually inserted inline, avoiding the overhead of a

function call. Using intrinsic results often in code with a higher performance than using the

equivalent inline assembly. This it due to the optimiser’s built-in knowledge of how intrinsics

behave, so some optimisations are available that are not available when inline assembly is

used. Also, the optimiser can expand the intrinsic differently, align buffers differently, or

make other adjustments depending on the context and arguments of the call.

For example to access the fused multiply-add the SPU instruction set provides the C-

language intrinsics spu madd() which can be used in the following way:

v e c t o r d o u b l e a , b , c , d ;

d = spu madd (a , b , c)

which multiplies a and b and adds c to the result and stores it into d. Using this intrinsic

translates directly into the corresponding machine instruction.

15.4.2 Double-Buffering

To hide memory latencies and DMA transfer overheads double-buffering techniques can be

used. Let us consider an algorithm that sequentially performs computation on all elements

of a vector. Alg. 1 allocates one buffer B in LS and then iterates over the whole vector by

164 15. The IBM PowerXCell 8i Processor

first transferring a part of it and then carrying out the calculation. This sequence has no

overlap between data transfer and computation, i.e. either the DMA transfer is carried out

or the calculation.

The performance can be improved by allocating two LS buffers, B0 and B1, and overlapping

computation and DMA transfers. This technique is known as double-buffering, see Sec.

18.4.1.

15.4.3 Dual-Issue

In order to achieve a high dual-issue rate the compiler chooses adequate instructions – if

possible – reorders them in an appropriate way. Thereby it is limited to code sequences

between branches and is limited by data dependencies.

Unrolling loops and thus interleaving computation with control structures typically enlarges

code portions between branches and thus gives the compiler more freedom in reordering

instructions. Typically this helps to improve the dual-issue rate.

15.4.4 SPU Code Overlays

The CBEA development tools offer code overlay techniques to overcome physical limitations

of the LS.

Code overlays are program segments which are stored in main storage and are loaded into

the SPU’s LS on demand. When the SPU program branches to code which currently not

resides in LS but in an overlay segment in MS, then this segment is copied into the LS

and thereafter the branch is executed. This transfer overwrites possibly another overlay

segment which is not required by the program at this time.

When using code overlays the LS is divided into a root segment, which is loaded during

the whole execution time of the program, and one or more overlay regions, where overlay

segments are loaded when needed. Any given overlay segment will always be loaded into

the same region. A region may contain more than one overlay segment, but a segment

will never cross its region’s boundary. A segment is the smallest unit which can be loaded

15.4. Programming the SPU 165

Figure 15.3 – The overlay structure of an SPU program. The root segment 0 which contains

program parts that are frequently used is located in overlay region 0 and loaded at any time. Less

frequently used functions, here numbered with index n, are grouped into overlay segments (Seg.

1 to 3) and placed into the same overlay region. They are loaded into LS at demand.

as a logical entity during execution. Segments can contain any set of program sections,

uninitialised or initialised data.

The code overlay technique is completely implemented in the SPU linker. The linker

can map two or more code segments to the same physical address in LS. It generates

small fractions of code, so-called call-stubs and generates associated tables for overlay

management. At execution time when a call is made from an executing segment to another

segment that is not loaded into local storage, the code overlay manager residing in the root

segment transfers the code from main storage into local storage and issues the branch to

the function’s start.

Branch instructions in the original code that branch to code located in overlay segments

are replaced by branches to the call-stubs. The overlay manager then determines from the

tables whether the function’s code needs to be loaded.

To convert an existing SPU program to an program that uses code overlays a linker script

must be created which specifies which segments of the program is subject to overlays. Lst.

15.1 shows an example of such a linker script. The linker prepares the required segments

so that they are loadable on demand and also adds the call-stubs to the code.

166 15. The IBM PowerXCell 8i Processor

Listing 15.1 – Example of a linker script for an SPU program with code overlays. Two overlay

regions are defined each of which contains two segments

OVERLAY {
. segment1 { . / s c . o (. t e x t)}
. segment4 { . / sg . o (. t e x t)}
}
OVERLAY {

. segment2 { . / sd . o (. t e x t) . / s e . o (. t e x t)}

. segment3 { . / s f . o (. t e x t)}
}

The code overlay technique uses inbound DMA transfers. As a result, when using data

buffers in overlay segments one must consider the scope of the data. Data in an overlay

segment might get overwritten when exiting the function and returning to it at a later time.

To avoid this situation all data sections can be kept in the root segment which is never

used as a overlay region. If the data size is too large to be stored in the root segment, then

sections for transient data may be included in overlay regions. In this case the call-graph

of the program must be analysed and the overlay structure created in such a way that

branching does not lead to overwriting necessary data.

Program parts which are frequently used should be placed into the root segment whereas

less frequently used program parts are typically placed into overlay segments. Fig. 15.3

displays an example of an overlay structure using four overlay segments and two overlay

regions.

The size of an segment is the sum of its code and data sections. The size of an overlay

region is the size of its largest segment. The memory requirement for the whole program

can be calculated by summing the sizes of all overlay regions and adding extra storage

requirements for management code and tables.

15.4.5 Integer Multiplication

On the SPU 32 bit integer multiplication is achieved with 4 16 bit integer multiplication.

If the algorithm does not require 32 bit integers it is recommended to use 16 bit integers

to avoiding 32 bit integer multiplies.

15.4. Programming the SPU 167

15.4.6 Scalar Data Types

Load and store instructions of data types smaller than a SIMD vector, e.g. scalar types,

require additional rotate instructions and have long latencies. For program parts that are

executed frequently it is recommended to avoid the usage of scalar types. Instead it is

recommended to use a whole SIMD vector even if just a scalar type is needed. This seems

to be a waste of local storage. But scalar types require the compiler to generate additional

bit shuffle operations for every load and store that is performed.

Chapter 16

QCD Data Parallel

16.1 Overview

QDP++ provides a data-parallel programming environment suitable for essentially any kind

of lattice QCD application and is the basis for a suite of LQCD applications called Chroma

[155]. The interface provides a level of abstraction such that high-level user code can be run

unchanged on a single processor node or a collection of nodes with parallel communications.

Architectural dependencies are hidden below the interface.

The core functionality of QDP++ is provided by the Portable Expression Template Engine

(PETE) [153] which in turn is an extensible implementation of the C++ expression template

technique.

Function and class templates together with function and operator overloading offer the

possibility to represent expressions as C++ types. This technique is commonly referred

to as Expression Templates and was first introduced by Todd Veldhuizen [159] and David

Vandevoorde.

Expression templates offer the possibility to pass expressions as function arguments. The

compiler inlines the expression into the function body. Typically, this results in faster and

more convenient code than C-style callback functions.

170 16. QCD Data Parallel

Expression templates can also be used to evaluate vector expressions in a single loop with-

out instantiating temporaries of the whole vector class which typically results in a higher

performance. PETE is an extensible implementation of the expression template technique.

This work gives a comprehensive introduction to expression templates and employs a vector

class making use of this technique.

This chapter is organised as follows. Sec. 16.2 briefly introduces the QDP++ lattice-wide

data types and operations. Sec. 16.3 introduces the necessary C++ language elements

which are essential for expression templates. Sec. 16.4 details on the fundamental concepts

of expression templates. Sec. 16.5 shows the traditional approach to a C++ vector class.

Sec. 16.6 applies the expression template technique to the vector class and shows how it

is used in modern Lattice QCD application libraries like QDP++.

16.2 Lattice-Wide Data Types and Operations

QDP++ models the tensor product structure of Lattice QCD objects through a series of

nested templates. The indices of lattice fermion fields might (but don’t have to) follow the

following structure:

Site⊗ Dirac⊗ Color⊗ Complex (16.1)

In QDP++ one models this type by the following (nested) C++ templated type:

OLa tt i ce< PSpinVector< PColorVector< RComplex < Rea l >, Nc >, Ns > >

where Real is the type of the complex components, defined as either float or double and

Nc and Ns are the numbers of spin and colour components defined before compile-time of

QDP++. QDP++ operations iterate through the data type structure from the outer to

inner most level. The outer most level, i.e. the lattice site index, is evaluated by PETE.

Then the inner levels are traversed from the Dirac index down to the complex index. Most

commonly used data types are predefined and type aliases are provided, e.g.:

t y p e d e f OScalar< PSca lar< PSca lar< RSca lar<REAL> > > > Rea l ;

t y p e d e f OLatt i ce< PSca lar< PSca lar< RSca lar<REAL> > > > L a t t i c e R e a l ;

t y p e d e f OLatt i ce< PSpinMatr ix< PColorMatr ix< RComplex<REAL>, Nc>, Ns> >

L a t t i c e P r o p a g a t o r ;

16.2. Lattice-Wide Data Types and Operations 171

t y p e d e f OLatt i ce< PSpinVector< PColorVector< RComplex<REAL>, Nc>, Ns> >

L a t t i c e F e r m i o n ;

QDP++ provides lattice-wide expressions with overloaded C++ arithmetic operators. The

expression

ψ0 = κψ1 + ψ2 (16.2)

with the fermion fields ψ0, ψ1, and ψ2 and the real number κ is implemented making use

of the lattice wide data types and operations offered by QDP++ as

L a t t i c e F e r m i o n p s i 0 , p s i 1 , p s i 2 ;

Rea l kappa ;

p s i 0 = kappa ∗ p s i 1 + p s i 2 ;

Since the formulae maintain their original form when implemented with QDP++ this offers

a very intuitive way of generating the expressions to the application developer.

Traditional overloading of C++ arithmetic operators typically involves creating and copying

of temporaries of the instantiated lattice types. The expression psi1 + psi2 triggers the

execution of operator+ which creates a temporary vector, and loops over the vector index

to add the elements of the two vectors psi1 and psi2 and to store each element in the

temporary vector. However, in order to achieve a high performance software the movement

or replication of data must be minimised, especially when lattice wide data objects are

involved.

The Expression Templates (ET) technique uses C++ recursively defined templates for

transforming C++ statements or expressions into other statements with the same effect

but possibly with a higher performance [159]. It is a C++ technique for passing expressions

as function arguments. The expressions are in turn inlined into the function’s body, which

enables the possibility to implement vector operations, like e.g. the execution of operator+

on vector types while avoiding temporaries of vector objects. This avoids allocation of

vector instances and can result in code with a higher performance. However, at the level

of the vector element a temporary instance is still created, leaving the level of optimisation

achieved of the final software to some extent to the compiler’s ability to detecting these

temporaries and eliminating them.

172 16. QCD Data Parallel

The Portable Expression Template Engine (PETE) is an extensible implementation of the

expression template technique [153]. It is part of the Parallel Object-Oriented Methods and

Applications (POOMA) collection of templated C++ classes [154].

16.3 C++ Templates

In computer science, polymorphism is a programming language feature that allows different

data types to be handled using a uniform interface. The concept of parametric polymor-

phism applies to both, data types and functions. A function that evaluates to or is being

applied to values of different types is known as a polymorphic function. A data type that

is of a generalised type is called a polymorphic data type.

The C++ programming language defines templates as the mechanism for parametrising a

class or a function with a type or a list of types. This allows for generic programming, a

style of computer programming in which algorithms are written in terms of arbitrary types,

i.e. to separate the implementation of algorithms from data types.

The following example demonstrates a definition of a class with a template parameter.

t e m p l a t e < typename T, i n t N >

c l a s s PVector

{
p u b l i c :

PVector () {}

p r i v a t e :

T F [N] ;

} ;

v o i d f o o (){
PVector< d o u b l e , 3 > vec0 ;

PVector< PVector< d o u b l e , 4 > , 3 > vec1 ;

}

A class template PVector is defined that represents a primitive vector class which stores

an array of N elements of an arbitrary type T .

Template parameters are either typename template parameters or non-type template pa-

rameters. The above given class template is parametrised with a typename parameter

16.3. C++ Templates 173

(typename T) and a non-type parameter (int N). And the instance vec0 is a vector of 3

built-in types double.

The class template instantiation requires all template parameters to be specified or deter-

minable by the compiler.

Since a template instantiation of a class template is a fully qualified type, it can be used,

even recursively, as a template typename parameter as demonstrated in case for the instance

vec1.

16.3.1 Default Arguments for Template Parameters

Template parameters may have default arguments. The compiler applies the default values

to all template parameters for which no specification was found, i.e. default arguments

have to lowest priority of all template parameter specifications. The set of default template

arguments accumulates over all declarations of a given template. The following example

demonstrates this:

t e m p l a t e < c l a s s T=double , i n t N=3 > c l a s s PVector ;

v o i d f o o (){
PVector<> d3 ;

PVector<f l o a t > f 3 ;

}

The type of d3 is PVector〈double,3〉, type of f3 is PVector〈float,3〉.

The scope of a template parameter starts from the point of its declaration to the end of its

template definition. This implies the possible usage of the name of a template parameter

in other template parameter declarations and their default arguments. See the following

example:

template<typename T> c l a s s A ;

template<typename T, typename U = A<T> > c l a s s B ;

In the second line the parameter T is in scope when defining a default value for parameter

U.

174 16. QCD Data Parallel

16.3.2 Explicit Specialisation

Instantiating a template with a given set of template arguments causes the compiler to

generate a new class definition based on those template arguments. This behaviour can be

overridden. For a given set of template arguments the specification of the function or class

template can be given explicitly.

template<>

c l a s s PVector<i n t ,3>

{
// s p e c i a l i m p l e m e n t a t i o n

} ;

The template〈〉 prefix indicates that the following template declaration takes no template

parameters. The declaration name is the name of a previously declared template. Note

that it is possible to forward-declare an explicit specialisation thus the declaration body is

optional, at least until the specialisation is referenced.

16.3.3 Partial Specialisation

A partial specialisation is a generalisation of explicit specialisations. An explicit special-

isation only has a template argument list. A partial specialisation has both a template

argument list and a template parameter list. The compiler uses the partial specialisation

if its template argument list matches a subset of the template arguments of a template

instantiation. The compiler will then generate a new definition from the partial specialisa-

tion with the rest of the unmatched template arguments of the template instantiation. To

continue the above example:

template< typename T >

c l a s s PVector<T,3>

{
} ;

The GNU C++ Compiler allows for partial specialisation either of class templates or function

templates.

16.3. C++ Templates 175

16.3.4 Dependent and Qualified Names

Template meta-programming requires to distinguish between dependent/non-dependent

and qualified/unqualified names and qualifiers.

Dependent and non-dependent names

In the C++ language a name (including qualifiers) gets the quality of being dependent if

the name depends on a template parameter, i.e. a (possibly not yet) fully qualified C++

type.

When using typedef statements, this quality is passed unchanged to the newly defined

type. The following example illustrates this:

t e m p l a t e <typename T>

c l a s s A {
i n t i ;

v e c t o r<i n t> v i ;

v e c t o r<i n t > : : i t e r a t o r v i t r ;

T t ;

v e c t o r<T> v t ;

t y p e d e f typename v e c t o r<T> : : i t e r a t o r v i t e r ;

} ;

The first 3 class members have non-dependent names whereas the last 3 have dependent

names.

Qualified and Unqualified Names

In the C++ language a name gets the quality of being qualified if the name is preceded with

a scope qualifiers. This also includes dependent scope qualifiers. The following example

illustrates this:

u s i n g namespace s t d ;

template< typename T >

v o i d bar (T t)

{
i n t i ;

176 16. QCD Data Parallel

t y p e d e f typename T : : t y p e l o c a l ;

cout << s t d : : e n d l ;

}

The names i and cout are unqualified names whereas type and endl are qualified names.

In this example local is a qualified dependent name.

The typename keyword

Two usages of the typename keyword exists: As a name qualifier and as a template

parameter.

As a name qualifier the typename keyword specifies a name to be treated as a type. Its

use is mandatory when followed by a qualified dependent name.

template<typename T>

2 c l a s s A

{
4 t y p e d e f T : : x y ;

T : : x z ;

6 t y p e d e f c h a r C ;

A : : C d ;

8 } ;

The statements in line 4, 5 and 7 are ill-formed and generate a compiler error. In line

4, the name T::x is a qualified dependent name, it must be preceded with the keyword

typename. In line 5, the use of the name T::x is ambiguous; it might refer to a class

member or a type. In line 7, again the name A::C is a qualified dependent name, it must

be preceded with the keyword typename. Here the corrected version:

template<typename T>

c l a s s A

{
t y p e d e f typename T : : x y ;

typename T : : x z ;

t y p e d e f c h a r C ;

typename A : : C d ;

} ;

16.4. Expression Templates 177

The second usage of the keyword typename occurs when specifying a template param-

eter. The keyword typename is synonymic to the keyword class in template parameter

declarations. These two statements are identical:

template< c l a s s T > c l a s s A ;

template< typename T > c l a s s A ;

16.4 Expression Templates

Function and class templates together with function and operator overloading offer the

possibility to represent expressions as C++ types. This technique is commonly referred

to as Expression Templates and was first introduced by Todd Veldhuizen [159] and David

Vandevoorde.

Expression templates offer the possibility to pass expressions as function arguments. The

compiler inlines the expression into the function body. Typically, this results in faster and

more convenient code than C-style callback functions.

This work presents the fundamental concept of expression templates with the help of de-

veloping a basic example. A function which carries out numerical integration is developed.

The function takes the algebraic expression and the integration boundaries as its arguments.

In C, this problem is usually solved passing pointers to a callback function containing the

expression. The following example demonstrates this:

d o u b l e i n t e g r a t e (d o u b l e (∗ f u n c) (d o u b l e) , d o u b l e xmin , d o u b l e ymax)

{
// code

}

d o u b l e myfunc (d o u b l e x)

{
r e t u r n (x /(1.+ x)) ;

}

i n t e g r a t e (myfunc , 0 . , 1 0 .) ;

The problem with callback functions is that repeated calls generate a lot of overhead,

especially if the expression which the function evaluates is short. The compiler is not able

178 16. QCD Data Parallel

to inline the function (to eliminate the function call) since it is referred to via a pointer,

i.e. dereferenced at run time.

The technique of expression templates allows expressions to be passed to functions as an

argument and inlined into the function body. The following listing demonstrates the final

usage of the function with expression templates.

V a r i a b l e x ;

d o u b l e r e s u l t = i n t e g r a t e ((1 . − x) / (1 . + x) , 0 . , 1 0 .) ;

The function integrate is defined as a function template and the compiler produces a

function instance which contains the according expression inlined into the function’s body.

Therefore the expression must be parsed at compile time, and stored as nested template

arguments of an C++ type representing the expression.

A C++ type is required that represents an expression and that provides a public access

function to evaluate the expression for a specific value. Certainly the expression can hold

a number of different types. In the integration example at least three different types are

required: A type representing the variable, a type representing a constant, and some type

of compound object like addition or division.

At first sight the concept of polymorphism of the C++ language looks like a good candidate

to meet the requirements. Defining a class for the expression with a virtual class mem-

ber function to evaluate the expression and deriving classes for a variable, constants and

compound objects. But, whenever a class declares virtual functions or is derived directly or

indirectly from a class which declares virtual functions, the compiler adds an extra hidden

member variable which points to the virtual table (so called vtable).

The virtual table of a class is an array of pointers to the virtual functions. The entries in

the virtual table are updated at run time to correspond to the according function address

determined by the run time type information (RTTI) system – runtime binding take place.

Again the function call overhead would have to be paid and the net profit over the C

function call-back implementation is zero.

To obtain code with a high performance the more appropriate approach to polymorphism

is to use template instantiation. Let us look at the following classes:

16.4. Expression Templates 179

s t r u c t Foo1 {
v o i d bar () {

// i m p l e m e n t a t i o n

}
} ;

s t r u c t Foo2 {
v o i d bar () {

// i m p l e m e n t a t i o n

}
} ;

The class Foo1 and Foo2 do have common interfaces but do not have a common base

class. On can wrap these classes using a class template that has the same public interface

(or parts of it):

template<typename F>

s t r u c t BaseFoo {
c o n s t F& f ;

BaseFoo (F& f) : f (f) {}

v o i d bar () {
f . bar () ;

}
} ;

This definition ensures that the class template BaseFoo can only be instantiated for classes

which have the bar() method in their public interface. The C++ syntax allows to define

the data member f of a constant reference type since it is initialised during construction.

This form of polymorphism does not require any virtual tables and is thus called (template

driven) static polymorphism.

The second form of static polymorphism is shown in the next example:

template< typename T , typename C >

c l a s s Base

{
p u b l i c :

i n l i n e c o n s t T& elem () c o n s t

{
r e t u r n s t a t i c c a s t <c o n s t C∗>(t h i s)−>elem () ;

}
} ;

180 16. QCD Data Parallel

template< typename T >

c l a s s D e r i v e d : p u b l i c Base< T , Der ived< T > >

{
i n l i n e c o n s t T& elem () c o n s t

{
r e t u r n F ;

}
p r i v a t e :

T F ;

} ;

The derived class is given as a template parameter to the base class. The member function

of the derived class is accessed through a static cast〈〉 operation of the this pointer of

the base to a pointer to the derived class.

static cast can perform conversions between pointers to related classes, not only from the

derived class to its base, but also from a base class to its derived. This ensures that at

least the classes are compatible if the proper object is converted, but no safety check is

performed during runtime to check if the object being converted is in fact a full object of

the destination type. Therefore, one has to ensure that the conversion is safe. On the other

hand, the overhead of the type-safety checks of dynamic cast is avoided.

This technique allows for inline function calls since it avoids function pointers and lookups

in the virtual table. Static polymorphism will be applied later when developing a C++ class

library for a vector classes which uses expression templates.

Template driven static polymorphism is used to define a class template that encapsulates

an expression. Calling operator() starts evaluation of the expression. Its implementation

calls the corresponding operator of the interfaced class.

template<typename E>

s t r u c t Expr {
Expr (E e) : e (e) {}
d o u b l e o p e r a t o r () (d o u b l e d) {

r e t u r n e (d) ;

}
E e ;

} ;

16.4. Expression Templates 181

The class template is parametrised by one typename template parameter E which in this

example represents either a variable, constant or some type of compound expression type.

The former ones are implemented as follows:

s t r u c t Constant {
Constant (d o u b l e d) : d (d) { }
Constant (i n t d) : d (d) { }
d o u b l e o p e r a t o r () (d o u b l e) {

r e t u r n d ;

}

d o u b l e d ;

} ;

s t r u c t V a r i a b l e {
d o u b l e o p e r a t o r () (d o u b l e d) {

r e t u r n d ;

}
} ;

Note that the class template Constant contains a not explicit constructor resulting in an

implicit conversion rule which is exactly what is wanted here to have the compiler transform

the expression into the C++ type.

The compound type should represent a binary operation, for example an addition, and

implement the same public access operator like the interface class Expr. It furthermore

should be constructable from any two objects of the templated type Expr and another

templated type representing the operation and is therefore a class template:

template<typename E1 , typename E2 , typename Op>

s t r u c t B i n a r y E x p r {
B i n a r y E x p r (Expr<E1> l , Expr<E2> r) : l (l) , r (r) {
}

d o u b l e o p e r a t o r () (d o u b l e d) {
r e t u r n Op : : a p p l y (l (d) , r (d)) ;

}

Expr<E1> l ;

Expr<E2> r ;

} ;

182 16. QCD Data Parallel

+

∗

1.2 x

∗

x y

Figure 16.1 – Tree representation of the expression 1.2∗x +x ∗y . Where x and y denote vectors

and the numerical constant is a scalar. The inner nodes (circles) of the tree represent binary

expressions. The leaf nodes (blocks) represent the data objects.

The class template BinaryExpr is parametrised with three typename template parameters.

The first two parameters represent the two constituents of the binary expression. They can

be of type BinaryExpr, i.e. recursive expressions are supported and thus the expression is

referred to as an expression tree.

More generally spoken the template parameter E1 and E2 represent either leafs or nodes

of the expression tree. Fig. 16.1 shows a graphical representation of an expression tree.

The third parameter represents the actual operation for this binary expression. An instance

of it will never be created. As a consequence the member function to be called from

BinaryExpr has to be declared static. Since the operator() cannot be declared static, an

apply() member function is used instead.

s t r u c t Add {
s t a t i c d o u b l e a p p l y (d o u b l e l , d o u b l e r) {

r e t u r n l+r ;

}
} ;

Taking a closer look at the algebraic expression that should be represented by the expression

type

i n t main ()

{
V a r i a b l e x ;

e v a l u a t e ((1 . 0 − x) / (1 . 0 + x) , 0 . 0 , 1 0 . 0) ;

16.4. Expression Templates 183

r e t u r n 0 ;

}

one sees that operator overloading for BinaryExpr is required. The involved operators are

overloaded as follows:

template<typename E1 , typename E2>

Expr<BinaryExpr<Expr<E1>, Expr<E2>, Add> >

o p e r a t o r+ (E1 e1 , E2 e2)

{
t y p e d e f B inaryExpr<Expr<E1>, Expr<E2>, Add> ExprType ;

r e t u r n Expr<ExprType>(ExprType (Expr<E1>(e1) , Expr<E2>(e2))) ;

}

template<typename E1>

Expr<BinaryExpr<Expr<E1>, Expr<Constant >, Add> >

o p e r a t o r+ (E1 e1 , d o u b l e d)

{
t y p e d e f B inaryExpr<Expr<E1>, Expr<Constant >, Add> ExprType ;

r e t u r n Expr<ExprType>(ExprType (Expr<E1>(e1) ,

Expr<Constant>(Constant (d)))) ;

}

The operator returns an instance of type Expr parametrised with the template typename

parameter BinaryExpr. Which is in turn parametrised with Expr〈E1〉, Expr〈E2〉 and Add.

The former two encapsulate the expressions involved in the operation and the latter gives

the type of the operation.

The operator must return a constructed object of the return type which is in this case

BinaryExpr〈Expr〈E1〉, Expr〈E2〉, Add〉 aliased by a typedef statement to ExprType.

An instance of the type ExprType is constructed with instances of Expr〈E1〉 and Expr〈E2〉
constructed with the instances e1 and e2.

It is mandatory to overload this operator with all combinations of Expr〈Constant〉 and

template〈typename E〉 Expr〈E〉 occurring in the expression. Since the returned object

is of type Expr another BinaryExpr can be recursively instantiated with it.

This closes the introduction on expression templates and leads to applying this technique

to a vector class.

184 16. QCD Data Parallel

16.5 Object-Oriented C++ Vector Class

First the traditional implementation of C++ vector classes is recalled. Typically a vector

class is implemented the following way using the object-oriented language part of C++:

t e m p l a t e < typename T >

c l a s s V e c t o r

{
p u b l i c :

V e c t o r () ;

V e c t o r (i n t s i z e) ;

V e c t o r (c o n s t V e c t o r & v) ;

v i r t u a l ˜ V e c t o r () ;

V e c t o r o p e r a t o r+=(c o n s t V e c t o r & r i g h t) ;

V e c t o r o p e r a t o r ∗=(c o n s t V e c t o r & r i g h t) ;

V e c t o r & o p e r a t o r =(c o n s t V e c t o r & r i g h t) ;

i n l i n e T& elem (i n t i) ;

i n l i n e c o n s t T& elem (i n t i) c o n s t ;

i n l i n e c o n s t i n t& s i z e () c o n s t ;

p r o t e c t e d :

i n t s i z e ;

T ∗ F ;

} ;

This defines the vector class with dynamical memory allocation. The global arithmetic

operators are overloaded to provide for a intuitive API. The global operator+ is overloaded

in the following way:

template<c l a s s T>

Vector<T> o p e r a t o r +(Vector<T> & l h s , Vector<T> & r h s)

{
Vector<T> tmp (l h s . s i z e) ;

// l o o p o v e r v e c t o r i n d e x and add element−w i s e

r e t u r n tmp ;

}

Now one is able to use the vector class like:

i n t main ()

16.6. Portable Expression Template Engine 185

{
c o n s t i n t s z = 1 0 0 0 ;

Vector<double> d (s z) , v1 (s z) , v2 (s z) ;

d = v1 + v2 ;

}

Unfortunately this naive approach leads not to optimal performance: The expression v1+v2

triggers execution of operator+ which creates a temporary vector, and loops over the

vector index to add the elements of the two vectors v1 and v2 and to store each element in

the temporary vector. Finally, the call to the assignment operator executes a second loop.

Thus, this simple statement is equivalent to:

Vector<double> temp 1 ;

f o r (i n t i = 0 ; i < s z ; ++i)

temp 1 . elem (i) = v1 . elem (i) + v2 . elem (i)) ;

f o r (i n t i = 0 ; i < s z ; ++i)

d . elem (i) = temp 1 . elem (i)) ;

Clearly, if this program was written in C instead of C++, the two loops can be combined,

and the temporary vector eliminated:

Vector<double> d (s z) , v1 (s z) , v2 (s z) ;

f o r (i n t i = 0 ; i < s z ; ++i)

d . elem (i) = v1 . elem (i) + v2 . elem (i) ;

However, this implementation dismisses the possibility to use C++ classes and global op-

erators. This is a substantial disadvantage in large software projects.

16.6 Portable Expression Template Engine

Since the traditional approach to a vector class in C++ does not lead to optimal perfor-

mance, this work shows now how to extend the vector class using the expression templates

technique. The final class should feature:

• during evaluation no creation of temporary vector objects necessary,

• single loop evaluation,

186 16. QCD Data Parallel

• different leafs types, e.g. scalars, vectors.

First, the class definition will be introduced that stores the vector data and interfaces

access member functions. Since the library should operate with both vectors and scalars

polymorphism is required to handle both in a uniform way. Here static polymorphism is

used and the base class is introduced later. For convenience only the class definition for

the vector type is given explicitly – the implementation of the class that represents scalar

types follows in a similar manner.

template<c l a s s T>

c l a s s O L a t t i c e : p u b l i c QDPType<T, OL att i ce<T> >

{
p u b l i c :

O L a t t i c e (i n t s i z e) : s i z e (s i z e) { F = new T[s i z e] ; }
˜ O L a t t i c e () { d e l e t e [] F ; }

p u b l i c :

i n l i n e T& elem (i n t i) { r e t u r n F [i] ; }
i n l i n e c o n s t T& elem (i n t i) c o n s t { r e t u r n F [i] ; }

i n l i n e c o n s t i n t& s i z e () c o n s t { r e t u r n s i z e ; } ;

p r i v a t e :

T ∗F ;

i n t s i z e ;

} ;

This implementation follows closely the one in QDP++.

The class template OLattice is parametrised by one typename template parameter which

represents the type of objects to be stored. The constructor takes one integral argument

giving the number of elements in the vector. Heap memory is reserved during construction

of an OLattice instance and is deleted when the instance goes out of scope.

The member function elem(int i) returns a modifiable reference to the i-th element of

the vector thus providing the access interface to the vector. In order to give the compiler

more freedom to carry out optimisations one overloads the member function elem(int i)

returning a constant reference type. Since C++ does not allow overloading on the return

type, the overloaded function is declared const.

The base class is defined as

16.6. Portable Expression Template Engine 187

template< typename T , typename C >

c l a s s QDPType

{
p u b l i c :

c o n s t T& elem (i n t i) c o n s t

{ r e t u r n s t a t i c c a s t <c o n s t C∗>(t h i s)−>elem (i) ; }
T& elem (i n t i)

{ r e t u r n s t a t i c c a s t <c o n s t C∗>(t h i s)−>elem (i) ; }

c o n s t T& elem () c o n s t { r e t u r n s t a t i c c a s t <c o n s t C∗>(t h i s)−>elem () ; }
T& elem () { r e t u r n s t a t i c c a s t <c o n s t C∗>(t h i s)−>elem () ; }

} ;

The class template QDPType is parametrised by two typename template parameters. The

first parameter represents the type of objects to be stored, i.e. the same type as used in the

definition of OLattice. The second parameter is the container type itself which enables

static polymorphism.

Notice, that QDPType implements calls to access functions that might not be implemented

in the derived class. The access function for the scalar type elem() has no counterpart in

OLattice. Since static cast turns off type checking at compile time one must make sure

when using the class to call the correct access function.

Similar to the previous section a class template is required that represents the binary oper-

ation:

template<c l a s s Op , c l a s s L e f t , c l a s s Right>

c l a s s BinaryNode

{
p u b l i c :

i n l i n e

BinaryNode (c o n s t L e f t &l , c o n s t R i g h t &r) : l e f t m (l) , r i g h t m (r)

{}

i n l i n e

c o n s t Op &

o p e r a t i o n () c o n s t { r e t u r n op m ; }

i n l i n e

typename DeReference<L e f t > : : R e t u r n t

l e f t () c o n s t { r e t u r n DeReference<L e f t > : : a p p l y (l e f t m) ; }

188 16. QCD Data Parallel

i n l i n e

typename DeReference<Right > : : R e t u r n t

r i g h t () c o n s t { r e t u r n DeReference<Right > : : a p p l y (r i g h t m) ; }

p r i v a t e :

Op op m ;

L e f t l e f t m ;

R i g h t r i g h t m ;

} ;

The class template BinaryNode is parametrised by three typename template parameters.

The first determines the operation. On construction it is not necessary to pass an instance

of the class representing the operation since the operation is not templated and can be

constructed by the default constructor at construction time of BinaryNode. The instance

of the operation is accessible through the member function operation() which returns

a reference to the instance. The other two typename template parameters represent the

subexpressions of the binary operation. They can be accessed via the member functions

left() and right() which return dereferenced types of the objects.

These class templates Reference and DeReference wrap types in a reference type and a

dereferenced type. There is no essential need for these wrappers to be present – just for

the sake of clarity writing Reference〈A〉 is preferred to writing A&.

template<c l a s s T>

s t r u c t R e f e r e n c e

{
t y p e d e f T Type t ;

i n l i n e

R e f e r e n c e (c o n s t T &r e f e r e n c e)

: r e f e r e n c e m (r e f e r e n c e)

{ }

i n l i n e

c o n s t T &r e f e r e n c e () c o n s t

{
r e t u r n r e f e r e n c e m ;

}

c o n s t T &r e f e r e n c e m ;

} ;

16.6. Portable Expression Template Engine 189

template<c l a s s T>

s t r u c t DeRefe rence

{
t y p e d e f c o n s t T& R e t u r n t ;

s t a t i c i n l i n e R e t u r n t a p p l y (c o n s t T &a) { r e t u r n a ; }
} ;

In order to have the compiler create a type BinaryNode out of the addition of two QDP-

Type the operator+ must be overloaded. It takes two instances of type QDPType as

its arguments and returns an instance of type BinaryNode parametrised with the addition

operation type OpAdd.

template<c l a s s T1 , c l a s s C1 , c l a s s T2 , c l a s s C2>

i n l i n e typename MakeReturn<

BinaryNode<

OpAdd ,

typename C r e a t e L e a f<QDPType<T1 , C1> > : : L e a f t ,

typename C r e a t e L e a f<QDPType<T2 , C2> > : : L e a f t

>,

typename B in a ry R et u rn<C1 , C2 , OpAdd> : : Type t

> : : E x p r e s s i o n t

o p e r a t o r +(c o n s t QDPType<T1 , C1> & l , c o n s t QDPType<T2 , C2> & r)

{
t y p e d e f BinaryNode<

OpAdd ,

typename C r e a t e L e a f<QDPType<T1 , C1> > : : L e a f t ,

typename C r e a t e L e a f<QDPType<T2 , C2> > : : L e a f t

> T r e e t ;

t y p e d e f typename B in a ry R et u rn<C1 , C2 , OpAdd> : : Type t C o n t a i n e r t ;

r e t u r n MakeReturn<

T r e e t , C o n t a i n e r t

> : : make (T r e e t (

C r e a t e L e a f<QDPType<T1 , C1> > : : make (l) ,

C r e a t e L e a f<QDPType<T2 , C2> > : : make (r)

)

) ;

}

This function template is parametrised with four typename template parameters in order

to parametrise the two QDPType arguments involved in the operation. The return type is

basically of type BinaryNode parametrised with the operation type OpAdd and the two

subexpressions. Here additional wrappers are involved: CreateLeaf〈T〉::Leaf t returns a

190 16. QCD Data Parallel

reference to the type T and MakeReturn〈T,C〉::Expression t is a wrapper which returns

QDPExpr〈T,C〉, a type that represents an expression:

template<c l a s s T>

s t r u c t C r e a t e L e a f

{
} ;

t emplate<c l a s s T, c l a s s C>

s t r u c t C r e a t e L e a f<QDPType<T, C> >

{
t y p e d e f QDPType<T, C> I n p t ;

t y p e d e f R e f e r e n c e<I n p t> L e a f t ;

i n l i n e s t a t i c

L e a f t make (c o n s t I n p t &a) { r e t u r n L e a f t (a) ; }
} ;

t emplate<c l a s s T, c l a s s C>

s t r u c t MakeReturn

{
t y p e d e f QDPExpr<T, C> E x p r e s s i o n t ;

i n l i n e s t a t i c E x p r e s s i o n t make (c o n s t T &a) { r e t u r n E x p r e s s i o n t (a) ; }
} ;

The container type C passed as a template argument to MakeReturn〈T,C〉 is evaluated

at compile-time by a so-called trait-class template BinaryReturn〈C1,C2,OpAdd〉.

A trait class template provides a way of associating information with a compile-time entity,

i.e. a type, integral constant, or address. A key feature of trait class templates is that

they are non-intrusive. They allow for associating information with arbitrary types, without

intrusion to the type including built-in types. Typically, traits are specified for a particular

type by (partially) specialising the traits template.

In the case of an addition of two types of QDPType〈T,C〉 with the same container type a

specialisation of BinaryReturn〈T1,T2,Op〉 is not necessary since the default implemen-

tation already returns the correct type.

template<c l a s s T1 , c l a s s T2 , c l a s s Op>

s t r u c t B i n a r y R e t u r n

{
t y p e d e f typename Promote<T1 , T2> : : Type t Type t ;

} ;

16.6. Portable Expression Template Engine 191

In BinaryReturn another trait class, i.e. Promote〈T1,T2〉 is used which in its default

implementation just defines a typedef of T1 to Type t. This secondary trait class is

necessary in order to promote an operation where a float and a double are involved to the

one with the higher precision.

The object returned from the overloaded operator is required to be a constructed instance

of the return type. In order to construct the object of type QDPExpr the trait class

MakeReturn interfaces the member function make which just calls the constructor of

QDPExpr. The instance of QDPExpr does not offer much functionality. It just stores an

expression upon construction and interfaces a public member function expression() and a

type interface Expression t to access its type and instance.

template<c l a s s T, c l a s s C>

c l a s s QDPExpr

{
p u b l i c :

t y p e d e f T E x p r e s s i o n t ;

QDPExpr (c o n s t T& e x p r) : expr m (e x p r) { }
c o n s t E x p r e s s i o n t& e x p r e s s i o n () c o n s t { r e t u r n expr m ; }

p r i v a t e :

T expr m ;

} ;

The last class template required is the operation OpAdd itself. It makes use of the pre-

vious defined trait class BinaryReturn to be generically usable in the vector class even if

OLattice was instantiated with different types.

s t r u c t OpAdd

{
template<c l a s s T1 , c l a s s T2>

i n l i n e typename B i na r yR e tu r n<T1 , T2 , OpAdd > : : Type t

o p e r a t o r () (c o n s t T1 &a , c o n s t T2 &b) c o n s t

{
r e t u r n (a + b) ;

}
} ;

One is safe now to use operator() since only constructed instances of OpAdd will be used.

Now the C++ compiler will create a type QDPExpr upon finding an algebraic expression

involving instances of type OLattice. The class template OLattice does not provide an

192 16. QCD Data Parallel

overloaded assignment operator yet. The one automatically generated by the compiler is

not suitable since instances of OLattice are not of Plain Old Data (POD) types. A POD

type is a C++ type that has an equivalent in C, and that uses the same rules as C uses

for initialisation, copying, layout, and addressing. Compiler generated operators only work

on the POD part of classes, which is not enough since here dynamical memory allocation

is used which needs special care.

Evaluating the Expression

To evaluate the expression an evaluate function template is required. Instances of evalu-

ate are called from the assignment operator of OLattice in order to provide a convenient

API. The compiler should trigger evaluation upon translating, e.g.

O L a t t i c e a (1 0 0 0) , b (1 0 0 0) , c (1 0 0 0) ;

c = a + b ;

In order to avoid calls from every leaf type one carries out the call to evaluate from the

base class and instead call from the derived class the member function assign of the base

class:

template<c l a s s T>

c l a s s O L a t t i c e : p u b l i c QDPType<T, OL att i ce<T> >

{
// . . .

template<c l a s s T1 , c l a s s C1>

i n l i n e

O L a t t i c e& o p e r a t o r =(c o n s t QDPExpr<T1 , C1>& r h s)

{
r e t u r n t h i s−>a s s i g n (r h s) ;

}
// . . .

}

And one extends the base class:

template<c l a s s T, c l a s s C>

c l a s s QDPType

{
// . . .

template<c l a s s T1 , c l a s s C1>

16.6. Portable Expression Template Engine 193

i n l i n e

C& a s s i g n (c o n s t QDPExpr<T1 , C1>& r h s)

{
C∗ me = s t a t i c c a s t <C∗>(t h i s) ;

e v a l u a t e (∗me , OpAssign () , r h s) ;

r e t u r n ∗me ;

}
// . . .

The assignment operator of the class OLattice takes an instance of QDPExpr and calls

the assign member function of the base class. The evaluate function is called to actually

execute the assignment.

template< c l a s s T, c l a s s T1 , c l a s s Op , c l a s s RHS >

v o i d e v a l u a t e (OLa tt i ce<T>& dest ,

c o n s t Op& op ,

c o n s t QDPExpr<RHS, OLat t i ce<T1> >& r h s)

{
f o r (i n t i =0; i < d e s t . s i z e () ; ++i)

{
op (d e s t . e lem (i) , f o r E a c h (rhs , E v a l L e a f 1 (i) , OpCombine ())) ;

}
}

The function template evaluate is parametrised with the destination type, the operator and

the expression to evaluate. The function body loops through all vector elements and calls

the operators operator() with the destination element and the return object of forEach.

The last argument passed to forEach is an instance of a type that determines how to

combine the expression at the tree nodes. In order to combine the children of a node

according to the operator which is stored in the node the evaluate function passes an

instance of OpCombine.

Calling the templated function forEach triggers evaluation. The type QDPExpr was

constructed recursively by wrapping types around types. It is a struct which contains other

structs and so on, i.e. a nested struct. Now, one has to unwrap this struct in the same

recursive manner as it was wrapped before. Unwrapping of QDPExpr is started by calling

an instance of the function template forEach.

template<c l a s s Expr , c l a s s FTag , c l a s s CTag>

i n l i n e typename ForEach<Expr , FTag , CTag> : : Type t

194 16. QCD Data Parallel

f o r E a c h (c o n s t Expr &e , c o n s t FTag &f , c o n s t CTag &c)

{
r e t u r n ForEach<Expr , FTag , CTag> : : a p p l y (e , f , c) ;

}

The class template ForEach is parametrised with 3 typename parameters with the following

meaning:

• Expr is of type QDPExpr and represents the part of the expression yet to traverse

• FTag is the functor tag which is a type that specifies which function to call at the

leafs of the expression

• CTag is the already introduced combine tag

The default implementation of ForEach, i.e. the ones used at the leafs of the expression

tree reads:

template<c l a s s Expr , c l a s s FTag , c l a s s CTag>

s t r u c t ForEach

{
t y p e d e f typename L e a f F u n c t o r<Expr , FTag> : : Type t Type t ;

i n l i n e s t a t i c

Type t a p p l y (c o n s t Expr &expr , c o n s t FTag &f , c o n s t CTag &)

{
r e t u r n L e a f F u n c t o r<Expr , FTag> : : a p p l y (expr , f) ;

}
} ;

The class template ForEach is used for two purposes:

• return type construction and

• return value evaluation

The type interface ForEach::Type t constructs the return type by retrieving the return

types from the children and combining them using the type interface of the trait class

Combine::Type d. The member function ForEach::apply evaluates the return value

by retrieving the return values from the children and combining them using the member

function of the trait class Combine::combine.

16.6. Portable Expression Template Engine 195

The class template ForEach is specialised for every different type occurring in the nested

struct. As an example its specialisation is given for BinaryOperation:

template<c l a s s Op , c l a s s A, c l a s s B, c l a s s FTag , c l a s s CTag>

s t r u c t ForEach<BinaryNode<Op , A, B>, FTag , CTag >

{
t y p e d e f typename ForEach<A, FTag , CTag> : : Type t TypeA t ;

t y p e d e f typename ForEach<B, FTag , CTag> : : Type t TypeB t ;

t y p e d e f typename Combine2<TypeA t , TypeB t , Op , CTag> : : Type t Type t ;

i n l i n e s t a t i c

Type t a p p l y (c o n s t BinaryNode<Op , A, B> &expr , c o n s t FTag &f ,

c o n s t CTag &c)

{
r e t u r n Combine2<TypeA t , TypeB t , Op , CTag> : :

combine (ForEach<A, FTag , CTag> : : a p p l y (e x p r . l e f t () , f , c) ,

ForEach<B, FTag , CTag> : : a p p l y (e x p r . r i g h t () , f , c) ,

e x p r . o p e r a t i o n () , c) ;

}
} ;

The class template ForEach is specialised by a templated BinaryNode〈Op, A, B〉 which

gives access to the children A and B and the operator Op of this type BinaryNode. For

type construction of ForEach::Type t the compiler retrieves (recursively) the type inter-

faces of the class template ForEach this time with the child A and B as the expression type.

The type is then determined by the type interface of the trait class Combine2::Type t.

In a similar manner the return value is recursively evaluated. Here the member function

ForEach::apply is called passing the child types as template arguments. The return value

is then evaluated by the member function of the trait class Combine2::combine t.

The evaluate function passes an instance of EvalLeaf1 as the functor tag to the forEach

function.

s t r u c t E v a l L e a f 1

{
i n t i1 m ;

i n l i n e E v a l L e a f 1 (i n t i 1) : i1 m (i 1) { }
i n l i n e i n t v a l 1 () c o n s t { r e t u r n i1 m ; }

} ;

The constructor of the EvalLeaf instance takes the element number of the vector to be

returned.

196 16. QCD Data Parallel

The class template LeafFunctor is parametrised with two typename parameters. The first

specifies the type of the leaf, which in the here considered example is the type OLattice.

The second specifies the leaf tag or functor tag as introduced earlier. This class template

must be specialised with every type occurring at the leafs of the expression tree.

template<c l a s s LeafType , c l a s s LeafTag>

s t r u c t L e a f F u n c t o r {} ;

t emplate<c l a s s T, c l a s s C>

s t r u c t L e a f F u n c t o r<QDPType<T, C>, E v a l L e a f 1>

{
t y p e d e f R e f e r e n c e<T> Type t ;

i n l i n e s t a t i c Type t a p p l y (c o n s t QDPType<T, C> &a , c o n s t E v a l L e a f 1 &f)

{
r e t u r n Type t (a . elem (f . v a l 1 ())) ;

}
} ;

Now the compiler is able to inline expressions involving instances of OLattice and to

evaluate them with just one loop. Statements like

{
OLa tt i ce<double> l 0 , l1 , l 2 ;

l 0 = l 1 + l 2 ;

}

are evaluated in an efficient way.

The here given implementation is not the best possible implementation. Some design

choices had been made to demonstrate the concepts in a more pedagogical way. No safety

checks on memory handling are implemented, no alignment requirements are taken into

account.

Chapter 17

New Design Concepts for QDP++

17.1 Overview

This work introduces new design concepts on how to implement an active C++ library

like QDP++ on accelerator type of processors like the IBM PowerXCell 8i processor. This

significantly extents beyond usual code porting activities – this work leverages the Portable

Expression Template Engine (PETE).

The expression template technique, on which PETE is based on, is implemented by means

of meta-programming methods and as such by definition resolved during compile-time. Only

after resolving the expression templates the functions are available in an assembled form

that one can address for building for the accelerator core.

The evaluation of PETE expressions triggers execution of the evaluate function. This

functions iterates over the lattice wide data type and evaluates the result object of vector

or scalar type, see Sec. 16.6. The evaluate function is implemented as a function tem-

plate which is instantiated for each PETE expression the compiler finds in the application

code. The purpose of the new design concepts is to execute the evaluate function on the

accelerator cores rather than on the general purpose core.

The most general and clean way of an implementation that addresses template instanti-

ations (here the evaluate function) is to modify the compiler at this stage. A compiler

modification generates C++ code fragments for each resolved evaluate function. Then,

198 17. New Design Concepts for QDP++

Figure 17.1 – A Chroma build for the PPE is possible with the standard build setup. The Chroma

library and Chroma application are compiled on top of QDP++ using the PPU C++ compiler.

The object code is then linked using the PPU linker. The resulting executable makes use only of

the PPE.

the compiler for the accelerator core generates the executable functions out of these code

fragments.

Changing the C++ compiler is an elaborate task and one first asks for a solution that avoids

this step. Luckily, there is such a solution that does not require modifying the compiler.

This solution is by no means less general, i.e. it addresses all PETE expressions, but at the

same time is a lot more easier to implement.

This work proposes to write at run-time of the main application the involved PETE expres-

sions into a database. Then a code-generator reads the database and generates program

code fractions for the accelerator cores. The newly generated code fractions rely on the

functionality of QDP++. In order to account for the hardware characteristics of the ac-

celerator this work provides an optimised version of QDP++ for this processor type. In

this way all involved PETE expressions are available as compiled functions, optimised for

the accelerator. This work proposes to pack all such functions into a library and link the

main application against it. Thus all program parts of the main application involving PETE

expressions execute on the accelerators.

17.2 QDP++ on IBM PowerXCell 8i Processor

QDP++ is an active library which offers large parts of its functionality at compile-time.

Chroma builds on top of QDP++ and derives from QDP++’s portability and efficiency.

17.2. QDP++ on IBM PowerXCell 8i Processor 199

Figure 17.2 – New build process components enabling a Chroma build for the Cell processor.

QDP++ for the PPE generates SPU meta-code which is interpreted by the SPU code generator

which generates an SPU version of the code. QDP++ for SPU is a light-weight implementation

of QDP++.

Targeting a build of Chroma for the PPE is possible, but results in an executable that runs

exclusively on the PPE. It does not make any usage of the SPUs floating-point pipelines

nor its DMA engines resulting in a poor performance.

On the other hand, targeting a build of Chroma for the SPU is impossible. Considering the

huge code base (O(106) lines of C++ code) and taking a look at the SPU’s limited local

storage (LS) it becomes quickly apparent that the LS is just too small – not mentioning

the SIMD organisation and the absence of input and output routines.

The only practical way is to target a Chroma build for the PPE and to extract the evaluate

functions used in Chroma and build them separately for the SPU. In this way the PPE

remains the application controller and the accelerators execute the compute-intensive parts.

Fig. 17.1 depicts the standard procedure for building Chroma, here targeting for the PPE.

The Chroma application and library is compiled on top of QDP++ using the PPU C++

compiler. The object code is then linked with the PPU linker. This results in an executable

which makes use of the PPE only.

200 17. New Design Concepts for QDP++

17.3 Evaluate Pretty Function

The pretty-function is a C-style string variable available at run-time containing the function’s

name, return type and arguments. If the function is templated, the pretty-function contains

the fully resolved templatised function type and arguments. It is accessed via the compiler’s

built-in variable PRETTY FUNCTION .

This work modifies QDP++ in such a way that the evaluate function streams out its

pretty-function into a database. For convenience only the program part is shown involving

the PRETTY FUNCTION :

template<c l a s s T, c l a s s T1 , c l a s s Op , c l a s s RHS>

v o i d e v a l u a t e (OL att i ce<T>& dest , c o n s t Op& op ,

c o n s t QDPExpr<RHS, O Latt i c e<T1> >& rhs ,

c o n s t Subset& s)

{
// . .

some stream << s t r i n g (PRETTY FUNCTION) << "\n" ;

//

}

During execution of the main application on the PPE this results in populating a meta-code

database containing a description of all evaluate functions called.

For example, a lattice wide function for multiplying two SU(3) colour matrices M ′ and M ′′

and storing the result in M

Mi ,j = (M ′ ×M ′′)i ,j , {i , 1, 3}, {j , 1, 3} (17.1)

is implemented like this using QDP++

{
L a t t i c e C o l o r M a t r i x c0 , c1 , c2 ;

c0 = c1 ∗ c2 ;

}

At compile-time the evaluate function gets instantiated and the pretty-function for this

particular QDP++ functions reads

17.3. Evaluate Pretty Function 201

v o i d e v a l u a t e (OLa tt i ce<T1>&, c o n s t Op&,

c o n s t QDPExpr<RHS, OLat t i ce<T2> >&, c o n s t Subset &)

[w i t h T1 = PSca lar<PColorMatr ix<RComplex<double >, 3> >,

T2 = PSca lar<PColorMatr ix<RComplex<double >, 3> >,

Op = OpAssign ,

RHS = BinaryNode<OpMult ip ly ,

OLa tt i ce<PSca lar<PColorMatr ix<RComplex<double >, 3> > > >,

OLa tt i ce<PSca lar<PColorMatr ix<RComplex<double >, 3> > > > >]

As one can see the templatised function is given in a completely instantiated form.

After execution a whole bunch of such pretty-functions are stored in the database which

are referred to as the SPU meta-code. In this way the set of functions to be built is limited

to a minimum. The modified version of QDP++ is in the following referred to as QDP++

for PPE.

This work implements the SPU code-generator which reads the SPU meta-code and gener-

ates SPU C++ functions for each of the pretty-functions. This step is quite straight-forward

and the program is not printed here.

Since the SPU’s LS is very limited in size compile-time calculations are carried out in order

to balance out data size versus code size, e.g. by means of adjusting the memory size

available to the memory allocator and carrying out loop-unrolling.

Even the set of QDP++ functions was already limited to a minimum, the remaining set

most likely still does not fit into the SPU’s LS. Typically a build of Chroma involves roughly

100 different QDP++ functions. In this work it was found that the SPU’s LS is capable to

hold 3-6 of these functions depending on their size.

As a consequence this work makes use of code overlays, see Sec. 15.4.4. A subset of the

function set are placed into overlay segments which get loaded on demand at run-time by

the overlay manager. The main function which calls out to the individual functions resides

in the root segment along with the memory allocator and the memory pool. The SPU

code-generator produces the final SPU program with the QDP++ functions placed into

these overlay regions. Then the code-generator produces a linker script that directs the SPU

linker to link the final SPU accordingly. This work implemented the SPU code-generator

in the Perl Programming Language [161].

202 17. New Design Concepts for QDP++

Figure 17.3 – The new build process of Chroma for the Cell processor: Following the horizontal

chain of step from left to right matches the original build procedure on the PPE. The meta-code

is processed by the code-generator and the SPU program is compiled on top of QDP++ for SPU.

Finally the Chroma object code is linked again – this time also against the SPU program.

In order to achieve a good performance on the SPU a modified version of QDP++ for the

SPU is provided. It takes advantage of the architecture of this processor with all input and

output routines removed and support for SIMD organisation added. A major modification

was adding support for accessing main memory via DMA transfers. The implementation

details of this modified version of QDP++ are given in a later chapter. The set of SPU

functions is then compiled with the SPU C++ compiler on top of QDP++ for the SPU.

Finally all compiled SPU functions are bundled into the SPU library.

Fig. 17.2 depicts the overview of the modified and new components of the build process.

Additionally a database is added to the SPU library that describes which QDP++ functions

are available in the library.

17.4. New Chroma Build Environment 203

17.4 New Chroma Build Environment

Building Chroma for the Cell processor follows a two-step compilation process.

Firstly Chroma is build following the original build procedure. The only change compared

to the original build procedure is the replacement of the original QDP++ with the modified

QDP++ for the PPE. This results in an application for the PPE, first without support for

the accelerators. During execution the SPU meta-code is generated, describing the set of

QDP++ functions used.

Secondly the SPU code-generator processes the SPU meta-code and produces SPU program

fractions. Compilation of the SPU program fractions on top of the modified version of

QDP++ for the SPU results in a set of SPU functions. This set of SPU functions are

bundled into the SPU library. Finally the Chroma object code is linked again – this time

also against the SPU library. Fig. 17.3 visualises the new build procedure.

Note that it is not necessary to recompile the Chroma library or Chroma application again.

Only the linking step has to be carried out again. This saves development time since

compiling Chroma is a time consuming step.

The resulting executable of Chroma is targeted for the Cell processor which executes all

available QDP++ functions on the SPUs. The main control thread of the application

remains on the PPE. Whenever a QDP++ function is called, the PPE queries the database

of the SPU program for availability of the specific QDP++ function in the SPU program.

If the function is available, the PPE indicates the SPU to execute that function and the

PPE remains idle until the SPU has finished the calculation and the PPE continues the

program execution.

If the function is not available as an SPU version the PPE executes the PPE implementation.

Optionally further SPU meta-code for this function can be generated. In that way the

missing function can be build afterwards and made available for future runs – the set of

QDP++ functions that execute on the SPUs gets more and more complete.

Chapter 18

Implementation Details

18.1 Data access mode in QDP++ expressions

Typically in Lattice QCD applications the data objects get rather large. Consider for example

the size of a vector that stores a quark propagator: N3 × NT × 42 × 32 × [precision], e.g.,

on a lattice 483 × 96 in double precision this is roughly 12 giga-bytes. These data objects

are too large to be kept in SPU’s LS – even if the software was built for QPACE, i.e. after

the parallelisation step. In order to avoid the physical limitation in size of the LS the data

objects, i.e. the instances of our vectors class, are stored in MS.

In a QDP++ expression each data object (or leaf object) is either accessed read-only, read-

write, or write-only. A typical expression, here taken from the Jacobi smearing routine of

the Chroma code base, is

ψ(n) = ψ0(n) + κψsmear (18.1)

the QDP++ analog implementation is

v o i d smear (L a t t i c e F e r m i o n & p s i)

{
Rea l kappa ;

L a t t i c e F e r m i o n p s i s m e a r , p s i 0 ;

p s i = p s i 0 + kappa ∗ p s i s m e a r ;

}

where a LatticeFermion is a data structure for a spin-colour-vector located at every lattice

site. In this work concerning the data access modes of the data objects the following was

206 18. Implementation Details

found: The three instances psi 0, psi smear and kappa are accessed read-only. The

instance psi is accessed write-only.

This work introduces the following nomenclature concerning QDP++ functions: A QDP++

functions consists of a QDP++ expression EQDP++, an operator O, and a destination vector

vdest. Thus the QDP++ function can be written in the general form:

O(vdest , EQDP++). (18.2)

If the operator O is of the form operator=, operator+=, or operator*= one might

write:

vdest = EQDP++ (18.3)

where the assignment operator is to be replaced by the corresponding operator. In the

above example the destination vector was set to vdest = ψ, the QDP++ expression to

EQDP++ = ψ0(n) + κψsmear, and the operator to O =operator=.

The type of the operator O determines the data access mode to the destination vector vdest:

The operator= requires write-only access to the destination object. The operator+=

or pokeSpinVector() requires read-write data access. The pokeSpinVector() operation

allows to partly modify an object of spin-vector type, i.e. to update a particular element

while keeping the rest of the vector invariant. The operator+= requires first to read the

vector, then to modify it, and lastly to store it back again.

In QDP++ operators are represented by classes. The majority of operators, e.g. opera-

tor=, operator+=, or calculation of traces of matrices, do not require additional data

members in the associated class. However, the pokeSpinVector() operator requires an

additional data member. It stores an integer which determines the spin component to keep

fixed. This information is only available at run-time. Thus a concept is needed that enables

operators to send information to the SPUs.

To interfere as little as possible with the existing QDP++ design a base class BaseOp

is introduced. It is virtual and exposes access functions which associate the data access

mode to the operator and provides means to send (PPU) and receive (SPU) data. Default

implementations for these access functions are provided that suit the majority of operators

in order to alter only a few operator definitions. The SPU implementation of the base class

is given as follows:

18.1. Data access mode in QDP++ expressions 207

s t r u c t BaseOp

{
v i r t u a l v o i d r e c v I n f o () { }
v i r t u a l b o o l getReadAccessMode () c o n s t { r e t u r n f a l s e ; }
v i r t u a l ˜BaseOp () { }

} ;

The member function recvInfo() triggers on the SPU receiving of data from the counterpart

operator on the PPU. The default implementation does nothing since most of the operators

do not have data members. The member function getReadAccessMode() exposes the

data access type of the operator. Since every operator needs at least write access, this

function determines whether the operator requires additional read-access. The default

implementation states no read access.

The implementation of sending and receiving the data members is only executed once

per QDP++ expression and must therefore not feature the highest performance possible.

SPU mailboxes were found to be an adequate solution since they transfer integer numbers

between processor elements and most of the data members to transmit are integer valued.

The implementation details and an example of such operators are detailed in App. D.1.

The data access mode of the leafs in QDP++ expressions are considered as read-only.

This introduces a limitation.

In C/C++ the assignment operators (also plus-assignment, etc.) return r-values. They can

be used safely in further expression construction. Consider the following example:

{
L a t t i c e F e r m i o n f0 , f1 , f 2 ;

f 0 = (f 1 += f 2) ;

}

Here f1 is altered and then f0 is altered. The implementation described here does not

support using r-values emerging from any assignment operator on the right side of any

assignment operator. At this stage a compromise had to be made in order to allow the

code to execute with a higher performance. This limitation leads to a significant reduction

of data that needs to be transferred between MS an LS. The vectors appearing on the right

hand side of the operator only have to be transferred from MS to LS and do not have to

be transferred back again and thus resulting in a higher performance.

208 18. Implementation Details

Also the introduced limitation can be overcome by sequential execution of the involved

commands:

{
L a t t i c e F e r m i o n f0 , f1 , f 2 ;

f 1 += f 2 ;

f 0 = f 1 ;

}

The so far examined parts of Chroma do not make use of such constructions. Future

changes to the Chroma code base might include these type of constructions and care must

be taken to detect them.

18.2 QDP++ Memory Allocator

The performance of memory accesses for a given machine architecture can depend heavily

on memory alignment and location. To get control over memory alignment and where

memory is reserved QDP++ implements its own memory allocators. The QDP++ default

memory allocator uses the operator new to reserve memory regions in the heap. In order to

satisfy alignment constraints, for a particular request a memory region is reserved in heap

that is slightly larger than the requested memory size and returns an aligned pointer within

this region. This is the implementation found in the original QDP++ code.

The GNU C++ Compiler implements the operator new as a thin layer around the C heap

allocation functions which are usually optimised for infrequent allocation of large memory

blocks. This approach works well for the lattice objects which are typically large objects

and are allocated infrequently.

However, on the SPU this approach is not optimal for two reasons.

First, the GNU C++ SPU Compiler implementation of the operator new is not in a

mature state with respect to satisfying alignment requests and using the operator delete

for releasing the reserved memory region.

Second, the LS of the SPU is very limited in size and shortages in memory are very likely

to occur. For large programs the usage of code overlay techniques is necessary. Here, code

18.2. QDP++ Memory Allocator 209

QDP++ type T size(Tsingle) size(Tdouble)

LatticeBool bool 1 1

LatticeInteger int 4 4

LatticeReal real number 4 8

LatticeComplex complex number 8 16

LatticeColorMatrix colour matrix 72 144

LatticePropagator spin-colour matrix 1152 2304

Table 18.1 – Commonly used QDP++ lattice types with the primitive type T (the type of the

lattice site or link) and its size in single and double precision in units of bytes.

segments in overlay regions should be as large as possible and at the same time if use is

made of dynamical memory allocation enough space must be left available on the heap.

With dynamical allocation the memory shortages can only be detected at run-time which

makes the development process tedious. In this sense using the stack is advantageous since

memory shortages can be detected at link-time. However, not all shortages can be detected

by the linker since it is not able to predict precisely the stack usage.

For these reasons in this work the usage of dynamical heap allocation is avoided and

instead implemented a custom stack pool-based memory allocator. A common approach

to custom stack pool-based memory allocator is to allocate a large block of memory (the

memory pool) in stack space, possibly at the startup of the program. The custom allocator

serves individual allocation requests by returning an aligned pointer that refers to a memory

address in the memory pool. Additionally it maintains a book-keeping index of memory

pool usage. In this way memory alignment requirements are under control. Deallocation of

memory is carried out by updating the book-keeping index.

With memory pool-based allocators allocation of memory is mainly carried out by updating

an array and incrementing a counter. This is faster than using the standard implementation

which uses the C heap allocation functions.

The memory pool size P is a software configuration parameter. Reasonable values vary

in the range from around 20 kilo-bytes to some 64 kilo-bytes constraining accordingly the

maximum size of an overlay region and with this the maximum size of a function.

210 18. Implementation Details

18.3 SPU Parallelisation

The processing of different vector elements is typically independent from each other. As a

consequence this work can take advantage by trivially parallelising the problem to several

SPUs, i.e. each SPU is assigned to a different part of the data vector. Let the number of

elements in the vector be Nv and the number of SPUs be NSPU (the maximum number of

SPUs for one IBM PowerXCell 8i Processor processor is NSPU = 8). Then the number of

elements to be processed per SPU is

Nsv =
Nv

NSPU
. (18.4)

The data vectors are then divided into equally sized parts

v = (v0, v1, ... , vNsv−1︸ ︷︷ ︸
w0

, vNsv , ... , v2Nsv−1︸ ︷︷ ︸
w1

, ... , vNv−Nsv , ... , vNv−2, vNv−1︸ ︷︷ ︸
wNSPU−1

) (18.5)

where the vectors wi are assigned to SPU number i .

18.4 Memory Transfer Latencies

The SPU uses asynchronous DMA transfers to move data between MS and the LS. This

offers the possibility to hide memory latencies and transfer overhead by moving data in

parallel with SPU computation. In order to achieve this at least two buffers are needed.

One serving as destination or source for the DMA transfers and another one for computation,

i.e. for double-buffering.

Evaluation of QDP++ expressions are especially well suited for this double buffering tech-

nique since the calculations for each lattice site are typically independent. High saturation

of the memory bandwidth between MS and LS can only be achieved by issuing the DMA

transfers on 128 bytes boundaries. That is, the source and destination addresses and

transfer sizes are multiples of 128 bytes.

The minority of the involved lattice site types meet the requirement of being a multiple of

128 bytes in size. Tab. 18.1 lists some of the commonly used QDP++ lattice types among

their primitive types and their sizes in single and double precision. As a consequence the

18.4. Memory Transfer Latencies 211

Figure 18.1 – Double-buffering: Two buffers B0 and B1 are used to overlap DMA transfers and

SPU computation. Picture source: [160]

lattice sites of a vector v are grouped together into transfer sets such that – if LS size

permits – the size of the set is a multiple of 128 bytes.

w = (v0, v1, v2, v3︸ ︷︷ ︸
×Ns

, v4, v5, v6, v7︸ ︷︷ ︸
×Ns

, ... , vNsv−4, vNsv−3, vNsv−2, vNsv−1︸ ︷︷ ︸
×Ns

) (18.6)

If the LS size is not sufficient these sets are chosen such that at least the sets meet the

alignment requirements for DMA transfers, i.e. being a multiple of 16 bytes in size.

Once the set is transferred into LS via a DMA transfer it is being processed. If the transfer

set is larger than 16 kilo-byte (which is the largest possible DMA transfer supported by the

Cell B.E.) then a DMA list transfer is issued.

In order to transfer the data from MS to LS, for each data object in the QDP++ expression

EQDP++ double-buffering is used. The destination vector v0 is accessed either write-only or

read-write and the data is transferred either using a double-buffering for write-only access

or shared input-output buffering for read-write access.

18.4.1 Double-Buffering

Two buffers B0 and B1 equal in size are required for double-buffering. These are allocated

using the custom memory allocator at start-up of the function. Additionally two tag-group

identifiers T0 and T1 are needed. Tag-group T0 is applied to all transfers involving B0 and

tag-group T1 is applied to all transfers involving B1.

212 18. Implementation Details

allocate B0

allocate B1

i ← 0

i ′ ← 1

initiate DMA transfer B1

for all vector sites do

if not last vector site then

initiate DMA transfer Bi

end if

wait DMA transfer Bi ′

calculate Bi ′

swap(i ,i ′)

end for

Algorithm 2 – Double-buffering: Computation and DMA transfers execute in parallel.

Alg. 2 and detail the double-buffering technique. The program allocates the buffers and

starts the first DMA transfer, then enters the loop. The loop starts the next DMA transfer

and waits for the first one to complete. When the first DMA transfer has completed, the

code executes the calculation function. The program then toggles the buffer index and

loops again to start the next DMA transfer. The process repeats until all the vector sites

have been transferred and processed, see Fig. 18.1.

18.4.2 Shared Input-Output Buffering

If processing requires both transferring of the data from MS to LS and transferring it back

after computation, then shared input-output buffering is used. As for double-buffering,

again two buffers B0 and B1 of equal size are required. And again two tag-group identifiers

T0 and T1 are needed. Tag-group T0 is applied to all transfers involving B0 and tag-group

T1 is applied to all transfers involving B1.

In contrast to double buffering an ordering dependency is introduced when sharing buffers

for both input and output. Previous outbound transfers need to complete before subsequent

incoming transfers can be initiated on the same buffer. In order to ensure this, the inbound

18.4. Memory Transfer Latencies 213

allocate B0

allocate B1

i ← 0

i ′ ← 1

initiate inbound DMA transfer B1

for all vector sites do

if not first vector site then

initiate outbound DMA transfer Bi

end if

if not last vector site then

initiate fenced inbound DMA transfer Bi

end if

wait DMA transfer Bi ′

calculate Bi ′

swap(i ,i ′)

end for

initiate outbound DMA transfer Bi

wait DMA transfer Bi

Algorithm 3 – Shared Input-Output-Buffering. Includes both transferring of the data from MS

to LS and back.

DMA transfers will be issued with the fence option. The fence attribute causes DMA

commands to be locally ordered with respect to all previously issued commands within the

same tag-group.

Alg. 3 details the shared input-output-buffering technique. First, the buffers are allocated

using the custom allocator and the first inbound DMA transfer is issued. When entering the

loop for the first time the second inbound DMA transfer is initiated. During the first loop

iteration the fence option has no effect. The program then waits for the previous transfer to

complete and calculation is started. The indices are swapped and program execution enters

the loop again. From the second iteration on, the output DMA transfer is initiated for

every loop iteration. To ensure local ordering of the subsequent inbound transfer in respect

214 18. Implementation Details

to the previously issued outbound transfer the inbound transfer is issued with the fence

option. The program then waits again on the previous inbound transfer to complete and

calculation is started. This processing repeats until all the vector sites have been transferred

and processed. A last outbound transfer is initiated to store the last transfer set to MS.

18.5 Data Alignment and Transfer Sizes

Next, the size of the transfer set is determined. The size of the transfer set should be

chosen reasonably taking into account the available memory space and the sizes of the

involved primitive types.

For example, an expression involving a primitive data type of 1 byte in size (like bool)

should be ideally grouped together with 128 elements. A data type that occupies just one

byte per lattice site is, e.g. the LatticeBool, which stores one boolean variable at each

lattice point. In general, a data type that is preceded with Lattice provides storage for the

corresponding data type for each lattice point.

Consider the following example:

{
2 L a t t i c e B o o l b ;

L a t t i c e I n t e g e r i0 , i1 , i 2 ;

4 L a t t i c e C o l o r M a t r i x c0 , c1 , c2 ;

6 i 0 = b ? i 1 : i 2 ;

c0 = b ? c1 : c2 ;

8 }

Line 6 shows an example which typically makes no problems: All involved objects are roughly

of the same small size. The size of a primitive of a LatticeInteger (LatticeBool) is 4 (1)

byte. It is possible to group Ns = 128 elements together so the DMA transfers execute

with a high performance.

Line 7 shows an example which is a bit more tricky: A small primitive type (LatticeBool) is

accompanied by larger primitive types, i.e. LatticeColorMatrix. The size of the primitive

type of a LatticeColorMatrix is 144 bytes in double precision, see Tab. 18.1. Since

double buffers are needed for each object it depends on the poolsize P whether a group of

18.5. Data Alignment and Transfer Sizes 215

Ns = 128 elements is possible or not. Here, one would require Ns = 128 in order to get

multiples of 128 bytes for the bool type. Since Ns is the same for all objects involved, it

remains to be checked whether this choice still suits the memory requirements when taking

into account all involved objects. Since the ColorMatrix appears 3 times (c0, c1, and

c2), for Ns = 128 one requires roughly 3× 144× 2× Ns = 110 kilo-bytes. It depends on

the poolsize P whether this choice of Ns is suitable. If the poolsize is not sufficient, then

one might reduce the number of elements in the group to Ns = 16.

The best choice of the number of elements Ns in the transfer set depends on

• the poolsize P

• the sizes of the primitive type involved in the QDP++ expression and the destination

vector.

The memory pool is required to hold double-buffers for the transfer set assigned to the

result vector and additional double-buffers for each of the constituents occurring in the

QDP++ expression.

These buffers Bn
i were introduced previously, see Sec. 18.4.1 but now carry a new index n

which indicates the number of the vector in MS.

Alg. 4 shows pseudo code of a general QDP++ function call on the PPE. First, the involved

data objects are defined. Then an expression is constructed with storing the data objects

at the expression leafs. Then the call to the operator is issued.

The vectors vn reside in MS, where v0 is the destination vector. Evaluation of site v0(i)

requires access to sites vn(i) ∀ 1 ≤ n ≤ N . The vectors vn are divided into equally sized,

non-overlapping, continuous subsets, i.e. the transfer sets containing NS elements, see Eq.

(18.6).

Alg. 5 determines the number of elements NS . This algorithm introduces a new parameter

BDMA
min which specifies the (desired) minimum DMA transfer size. The for-loop and the

nested while-loop determine the number of elements NS taking into account the parameter

BDMA
min . At the same time it accounts for the total size of all double-buffers that need to

be allocated. Then the algorithm verifies whether all buffers fit in the memory pool. If the

216 18. Implementation Details

L(T0) v0

L(T1) v1

L(T2) v2

...

L(TN) vN

O op

op(v0, EQDP++(v1, v2, ... , vN))

Algorithm 4 – General form of a QDP++ function call. The operator O is carried out for

the expression EQDP++ containing N leafs (v1 ... vN), where v0 is the destination vector. The

instances vi are of lattice type L(Ti) with the primitive type Ti .

memory pool is not sufficiently large the value of NS is adjusted accordingly, leading to a

smaller DMA transfer size than originally requested.

The poolsize P is known before compile-time. But the sizes of the primitive types are known

only at compile-time. Execution of Alg. 5 is deferred until compile-time. It is implemented

using the Boost Meta-Programming Library (MPL) [162].

The number of elements Ns determines the size of the buffers Bn
i

size(Bn
i) = Ns × size(Tn) , i ∈ {0, 1}. (18.7)

The following shows an example:

{
L a t t i c e P r o p a g a t o r g0 , g1 , g2 ;

L a t t i c e C o l o r M a t r i x u ;

g0 −= g1 + u ∗ g2 ;

}

The size of an instance of the primitive data type of the vector type LatticePropagator is

2304 bytes in double precision, see Tab. 18.1. Parameter settings of BDMA
min = 2048 bytes

and P = 132 kilo-bytes results in NS = 8. In this example the poolsize P is sufficiently

large to hold buffers that are all a multiple of 128 bytes in size.

BDMA
min is a software configuration parameter. It is a candidate for self-tuning approaches

like in ATLAS [163] or FFTW3 [164].

18.6. SPU Code Overlays 217

NS ← 0

t ← 0

for n = 0 to N do

t ← t + 2× size(Tn)

c ← 1

while c × size(Tn) mod DMAmin 6= 0 do

c ← c × 2

end while

NS ← max(NS , c)

end for

while t × NS > P do

NS ← NS/2

end while

Algorithm 5 – Determining the number of elements NS of the transfer set. Since size(Tn) is

only known at compile-time this algorithm is executed at compile-time using Boost MPL.

18.6 SPU Code Overlays

Applications like Chroma make use of hundreds of different QDP++ functions each of

which results in a different SPU function. The sum of the code sizes of all SPU functions

plus data most likely exceed the LS size.

The physical limitation on code size for the SPU can be overcome by using code overlays

included in the IBM Cell development tools.

The SPU program executes a service loops that waits for commands from the PPE. The

arriving command from the PPE indicates a particular SPU function to be executed and the

service loop branches to that particular function. After the function has completed SPU

execution continues in the service loop waiting for the next command.

Programs with such call graph structures are well suited for implementation with code

overlays. The service loop remains in the root segment, while the worker functions remain

in code segments placed in overlay regions.

218 18. Implementation Details

Listing 18.1 – Linker script example for the auto overlay manager. Linker symbols for the same

functions (pr1027.o) are placed into different overlay segments.

SECTIONS

{
OVERLAY :

{
. o v l y 2 {
{

.

: pr1026 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 6 v)

: pr1026 . o (. t e x t . ZN3QDP8evaluate IL i64ENS 11PSpinVector INS 12PColor

VectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8OpAssignENS 9

UnaryNodeINS 10OpIdent i tyENS 9ReferenceINS 7QDPTypeIS6 NS

8OLatticeIS6 EEEEEEEEEEvRNSC IT0 EERKT2 RKNS 7QDPExprIT3

NSC IT1 EEEERKNS 6SubsetE)

: pr1027 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 7 v)

}
. o v l y 3 {

: pr1027 . o (. t e x t . ZN3QDP8evaluate IL i128ENS 11PSpinVector INS 12PColor

VectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8OpAssignENS 10

BinaryNodeINS 13OpAdjMult ip lyENS 9UnaryNodeINS 10OpIdent i

tyENS 9Reference INS 7QDPTypeINS 7PSca lar INS 12PColorMatr ix

IS4 Li3EEEEENS 8OLatticeISH EEEEEEEENSA INS 21FnSpinProjec

tDir0PlusENSC INSD INS1 IS5 Li4EEENSI ISO EEEEEEEEEEEEvRNS

I IT0 EERKT2 RKNS 7QDPExprIT3 NSI IT1 EEEERKNS 6SubsetE)

: pr1028 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 8 v)

: pr1028 . o (. t e x t . ZN3QDP8evaluate IL i64ENS 11PSpinVector INS 12PColor

VectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8OpAssignENS 9

UnaryNode INS 22FnSp inPro jectDi r1MinusENS 9Refe rence INS 7

QDPTypeINS1 IS5 Li4EEENS 8OLatticeISC EEEEEEEEEEvRNSD IT0

EERKT2 RKNS 7QDPExprIT3 NSD IT1 EEEERKNS 6SubsetE)

.

}
}
}
INSERT AFTER . t e x t ;

18.6. SPU Code Overlays 219

Listing 18.2 – Post processed linker script. Linker symbols for function pr1027.o are placed into

the same (newly created) overlay segment.

. o v l y 2 {
{

.

: pr1026 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 6 v)

: pr1026 . o (. t e x t . ZN3QDP8evaluate IL i64ENS 11PSpinVector INS 12

PColorVectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8

OpAss ignENS 9UnaryNodeINS 10OpIdent i tyENS 9Reference INS 7

QDPTypeIS6 NS 8OLatticeIS6 EEEEEEEEEEvRNSC IT0 EERKT2

RKNS 7QDPExprIT3 NSC IT1 EEEERKNS 6SubsetE)

}
. o v l y 3 {

: pr1028 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 8 v)

: pr1028 . o (. t e x t . ZN3QDP8evaluate IL i64ENS 11PSpinVector INS 12

PColorVectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8

OpAss ignENS 9UnaryNodeINS 22FnSpinProjectDir1MinusENS 9

Reference INS 7QDPTypeINS1 IS5 Li4EEENS 8OLatt ice ISC

EEEEEEEEEEvRNSD IT0 EERKT2 RKNS 7QDPExprIT3 NSD IT1

EEEERKNS 6SubsetE)

.

}
.

. o v l y 1 5 {
: pr1027 . o (. t e x t . Z 1 3 f u n c t i o n 1 0 2 7 v)

: pr1027 . o (. t e x t . ZN3QDP8evaluate IL i128ENS 11PSpinVector INS 12

PColorVectorINS 8RComplexIdEELi3EEELi2EEES6 NS 8

OpAssignENS 10BinaryNodeINS 13OpAdjMult ip lyENS 9

UnaryNodeINS 10OpIdent ityENS 9ReferenceINS 7QDPType

INS 7PSca la r INS 12PColorMatr ix IS4 L i3EEEEENS 8

OLatt ice ISH EEEEEEEENSA INS 21FnSpinProjectDir0Plus

ENSC INSD INS1 IS5 Li4EEENSI ISO EEEEEEEEEEEEvRNSI

IT0 EERKT2 RKNS 7QDPExprIT3 NSI IT1 EEEERKNS 6SubsetE)

}

220 18. Implementation Details

Since memory allocation occurs in each of the worker functions, the memory allocator and

the memory pool remain in the root segment.

Fig. 15.3 depicts an overview of the SPU program call graph and overlay structure.

The amount of functions that can be placed into the same overlay segment is mainly

determined by the memory poolsize. To take advantage of automatic grouping of several

worker functions into the same overlay segment the auto overlay manager, see Sec. 15.4.4,

is used. This gives a first, coarse placement of the individual functions.

Some larger functions are split by the compiler into several smaller ones. The auto overlay

manager might not be able to place these functions into the same overlay segment, see an

original linker script in Lst. 18.1. Using this script results in a not optimal performance

since overlay segments have to be switched during function execution.

A post processing tool was developed that alters these linker scripts. The tool examines the

script for linker symbols that are split across multiple overlay segments. If such segment

crossing symbols are found they are moved into a newly created overlay segment, see the

post processed linker script in Lst. 18.2.

After post-processing the linker is invoked again. This ensures that all linker symbols of

one SPU function remain in the same overlay segment.

18.7 Single Instruction Multiple Data

The SPU features SIMD floating point pipelines. The peak performance is reached issuing a

fused multiply-add instruction per machine cycle. This results in 4 floating point operations

in double precision per SPU.

Computations in a real-world application can hardly be broken down into instructions made

up exclusively of multiply-add operations. The peak performance will rarely be reached and

serves more as a reference point for benchmark measurements.

The sustained performance is defined as the ratio of the measured performance over the

peak performance.

18.7. Single Instruction Multiple Data 221

However, application programs should saturate the floating point pipelines as much as

possible to obtain a high sustained performance.

In order to achieve this, the program data primitives must be broken down into smaller

data fractions in such a way that the basic operations can be performed taking advantage

of the SIMD floating point pipelines.

QDP++ data types are constructed in a nested manner. It therefore offers the possibility

to manually override the generic construction of types at any level of type construction by

means of class template specialisations.

A convenient choice is to specialise at the level of complex numbers. In double precision

these fit exactly into one SPU processor register.

template<>

c l a s s RComplex<REAL64>

{
p u b l i c :

RComplex () {}
˜RComplex () {}

p r i v a t e :

v e c t o r d o u b l e F ;

} ;

The explicit class template specialisation defines the QDP++ type for a complex number

in double precision on the SPU. Making this specialisation explicit gives it priority over all

other template definitions the compiler can find for this class.

To access the real and imaginary part of the complex numbers the class provides the member

access functions:

T& RComplex<T> : : r e a l () ;

T& RComplex<T> : : imag () ;

Arithmetic operations (e.g. complex multiplication, etc.) make use of these member

functions. In this way, the generic implementations of the arithmetic operations result in

many bit shuffle operations, since this allows scalar usage of vector types.

To avoid unnecessary bit shuffle operations basic operations on complex numbers are spe-

cialised. App. D.2 details an example of the implementation of arithmetic operations with

complex numbers.

222 18. Implementation Details

18.8 Loop-Unrolling

Our implementation foresees unrolling of many loops of QDP++. Loop-unrolling can lead

to a significant performance improvement in SPU programs. Since then computational and

controlling instructions occur in larger sequence between branch instructions the compiler

has more freedom to reorder instructions, e.g. in order to achieve a good dual-issue rate or

hiding floating point pipeline latencies.

18.8.1 Operations on Primitive Types

The generic implementation of operations on QDP++ primitive types, like matrix-vector

multiplication or matrix-matrix addition involve loops over vector lengths or matrix dimen-

sions. The loop count is known at compile-time.

Generic operations on primitive types can be divided into two disjoint sets:

1. Operations containing loops that the compiler can possibly unroll

2. Operations containing loops that the compiler is not able to unroll under no circum-

stances

For example, the generic implementation of operator+ for two matrices belongs to the

first set.

template<typename T, i n t N>

Matr ix<T, N>

i n l i n e o p e r a t o r+ (Matr ix<T, N>& l , Matr ix<T, N>& r)

{
typename Matr ix<T, N> r e t ;

f o r (i n t i =0; i < N; ++i)

f o r (i n t j =0; j < N; ++j)

r e t . e lem (i , j) = l . e lem (i , j) + r . elem (i , j) ;

r e t u r n d ;

} ;

The loop count is known at compile-time, and every loop iteration is independent from

each other. The loop-unrolling facility of the compiler is able to unroll the loops under the

assumption that instruction inlining constraints would still be met.

18.8. Loop-Unrolling 223

An example for an operation belonging to the second set is the operator* for two matrices.

template<typename T, i n t N>

Matr ix<T, N>

i n l i n e o p e r a t o r ∗ (Matr ix<T, N>& l , Vector<T, N>& r)

{
typename Matr ix<T, N> r e t ;

f o r (i n t i =0; i < N; ++i)

{
r e t . e lem (i) = l . e lem (i , 0) ∗ r . e lem (0) ;

f o r (i n t j =1; j < N; ++j)

r e t . e lem (i) += l . elem (i , j) ∗ r . e lem (j) ;

}

r e t u r n d ;

} ;

Even though the loop count is known at compile-time, the compiler is not able to unroll

this loop. The loop iterations are not independent from each other.

The compiler does not know that repeated application of the operator+= equals to one

application of operator= with an expression of a sequence of operator+ on the right hand

side. There is no syntax element in C++ that assigns semantic properties to operators.

18.8.2 The Evaluation Loop

Evaluation of the destination vector involves a loop over the elements of the transfer set,

i.e. the evaluation loop:

for i = 0 to NS − 1 do

op(v0(i), f (v1(i), v2(i), ... , vN(i)))

end for

If the body of the evaluation loop is short unrolling the evaluation loop can result in

performance gains. The loop count Ns is determined at compile-time making it in principle

possible to unroll the loop. However, unrolling this loops entirely quickly results in very

large code. Due to inlining constraints the compiler often decides to not unroll this loop.

One can either

224 18. Implementation Details

Require: NS mod NL = 0

d ← 0

while d < NS do

for i = 0 to NL − 1 do

op(v0(i + d), f (v1(i + d), v2(i + d), ... , vN(i + d)))

end for

d ← d + NL

end while

Algorithm 6 – Forced Loop-Unrolling of the evaluation loop, partly implemented with Boost

MPL. The while-loop is a run-time loop, and the for-loop is a compile-time loop. d represents

the number of already processed vector elements.

• use the compiler’s loop-unroll option and trust the compiler’s heuristics to advanta-

geously unroll the loop, or

• force the loop-unrolling by meta-programming techniques, or

• determine optimal settings using autotuning techniques.

To carry out a benchmark analysis in a systematic way so that the impact of unrolling this

loop can be studied in detail, control must be taken of unrolling this loop.

To force the compiler to unroll the evaluation loop the Boost Meta-Programming Library

is used.

Alg. 6 shows the loop-unrolling as implemented by us. In order to get fine-control over the

loop-unrolling process a new parameter NL is introduced. The parameter NL specifies the

number of loop iterations to unroll.

The while-loop is a run-time loop and the for-loop is a compile-time loop. Book-keeping

of the already processed elements in the internal variable d was introduced to avoid 32 bit

integer multiplication in the SPU and to replace it with repeated summation.

18.9. Inlining the Operation Functions 225

18.8.3 Primitive Type Assignment Operators

The assignment operators in the class template definitions for the QDP++ primitive types

are not defined by default. This is safe since the primitive types are POD types. The

compiler generated assignment operators work properly for POD types. Even though the

check for self-assignment could be saved for performance issues.

The C++ compiler decides on basis of the POD size of a class either to

• generate a copy loop, or

• issue a call-out to the memcpy function of the Standard C Library

to copy the POD portion of the class to assign.

The default threshold for the GNU C++ Compiler is 8 kilo-bytes. The compiler generated

assignment operator calls memcpy if the POD part of the class is equal or larger than this

threshold.

When using code overlays and working with compiler generated assignment operators one

must take care of placing the instance of memcpy in the root overlay region. Also one

has to take into account that every branch involves an additional function stub to be called

in the overlay manager resulting in a call overhead. Lastly branches in the program flow

introduce at least one not correctly predicted branch resulting in a massive performance

drop.

In summary it is best to avoid compiler generated assignment operators and to implement

them explicitly. Refer to App. D.3 which details on our implementation.

18.9 Inlining the Operation Functions

By declaring a function inline, the C++ compiler is directed to make calls to that function

faster. One way the compiler can achieve this is to integrate that function’s code into the

code of its callers. This makes execution faster by eliminating the function-call overhead.

In addition, if any of the actual argument values are constant, their known values may

permit simplifications at compile time such that not all of the inline function’s code needs

226 18. Implementation Details

to be included. The effect on code size is less predictable. Object code may be larger or

smaller with function inlining, depending on the sizes of the functions to inline and from

where and how many times they are called.

The compiler’s tree inliner is controlled by the inline option arguments given at compiler

invocation time.

In QDP++ most of the operations are implemented as inline functions. If all inlining con-

straints are met the compiler does not create a separate function, but inserts the function’s

body into the caller’s body, i.e. inlines the function.

When evaluating QDP++ expressions several operations are involved in a nested manner.

For example a matrix times vector operation includes multiple multiplications and additions

of complex numbers. Multiplication of complex numbers in turn involve multiplications and

additions of real numbers. This process quickly results in a large number of instructions.

On most machine architectures, so on the SPU, it is advantageous to inline all those oper-

ations into the caller’s functions body. But the default values of the tree inliner parameters

are too restrictive to allow this. The compiler fails to inline the majority of the functions

which were defined inline.

App. E.1 lists the GNU C++ SPU Compiler inline options used to inline most of the

functions into the evaluation loop.

Some function calls can not be inlined. These are for example the multiplication of a

spin matrix with gamma matrices. The number stating which gamma matrix to use for

the multiplication is only known at run-time. In QDP++ the multiplication with gamma

matrices is implemented with function pointers which can under no circumstances be inlined.

Each multiplication with a specific set of gamma matrices remains as a separate function.

When working with code overlays one has to place functions which carry out multiplications

with gamma matrices into the same overlay region as the function calling out to them.

Chapter 19

Benchmark Results

19.1 Overview

A set of QDP++ functions were used for benchmark measurements. Calls to these functions

emerged during the execution of Chroma, especially during

• propagator calculation, i.e. inversion with the conjugate gradient method,

• calculation of the hadronic spectrum, and

• source and sink smearing routines.

These calculations require roughly 60 different QDP++ functions fn to be called. Refer

to Tab. F.1 which shows a list of the QDP++ functions. The explicit mathematical form

of the individual functions can not easily be recovered. The only source of information is

the meta-code of the functions. In the meta-code the individual functions are defined in a

recursive templated manner which is not easy to read for humans. However, it is possible

to extract the original form by hand which was carried out for individual functions as shown

below to study their behaviour. Extracting the mathematical form in an automated manner

is not implemented.

The execution time of a function includes the time needed for transferring the data and for

computing. Since the mathematical form of the function is not accessible in a systematic

manner in this work the number of floating-point operations necessary for a QDP++

228 19. Benchmark Results

P = 64kb
P = 32kb
P = 20kb

n

D
M
A

b
an

d
w
id
th

sa
tu
ra
ti
on

1060105510501045104010351030102510201015101010051000

100

80

60

40

20

0

Figure 19.1 – Memory bandwidth saturation for all investigated QDP++ functions fn. Different

benchmark measurements are shown for different values of the poolsize P. Only DMA transfers

are carried out, SPU computation is switched off in this benchmark test.

function is not determined. As a consequence the time required to transfer the data is

taken as a point of reference for benchmark measurements.

In order to carry out the benchmarks, for each function fn the amount of data B(n) to be

transferred was determined. This refers to the total amount of data and includes data that

must be transferred from MS to LS and vice versa. Furthermore the execution time texe(n)

for each function was measured. The sustained bandwidth saturation

SDMA(n) =
B(n)

texe(n)
β−1

peak (19.1)

was determined for each function where βpeak is the maximum bandwidth achievable with

the Cell Broadband Engine and is limited to λpeak = 8 bytes per cycle.

The best overall performance of the software was found for QDP++ specialisations turned

on and with adjusted compiler options concerning optimisations. In order to be able to

study the impact of both features, the benchmark measurements were performed by either

turning off QDP++ specialisations or by applying the default compiler options. This work

always compares the achieved performance to the maximum performance achieved by both

features applied.

19.2. DMA Transfers 229

The benchmark measurements are organised as follows: To be able to study to what

extend SPU computation is hidden by DMA transfers, the first benchmark concentrates on

processing with computation switched off. Next the impact of the QDP++ specialisations

on the performance is studied. Then the effect of using compiler optimisation facilities is

examined. Last benchmark measurement focuses on unrolling the evaluation loop.

All benchmark measurements are carried out on a QS22 Cell Blade at Jülich Supercomput-

ing Centre (JSC). One blade comprises 2 IBM PowerXCell 8i Processors. The Non-Uniform

Memory Access (NUMA) memory model is used throughout. With NUMA controlled ex-

ecution, a Linux process can be tied to a specific processor. Addressable memory to the

process can be assigned to a specific physical memory domain. That is, the processor

can access its local memory rather than accessing, memory local to another processor or

memory shared between processors. The benchmark measurements were carried out using

1 IBM PowerXCell 8i Processor with 8 SPUs.

19.2 DMA Transfers

The first benchmark measurements are carried out with computation switched off. Included

is only transferring the read-only data from MS to LS and storing back the result vector.

The measurement is carried out for different sizes P of the memory pool. Here the values

20, 32, and 64 kilo-bytes are chosen. The stack based memory pool resides in the root

overlay region, which in turn limits the maximum size of the individual functions. A value

larger than 64 kilo-bytes was not possible, since the size of the largest function plus the

memory pool plus code in the root segment would then exceed the LS size.

Fig. 19.1 depicts the benchmark results for this measurements. Most of the functions

show a good saturation of around 80% of the DMA bandwidth. Variation of the memory

poolsize does not have a large impact on the overall DMA bandwidth saturation. This is

due to the fact that mostly the DMA memory alignment constraints for obtaining good

DMA bandwidth saturation are met by grouping together several lattice sites for processing.

Some isolated functions show a sudden drop in the memory bandwidth saturation. Like

for example for n = 1022 or n = 1037 and n = 1054, 1055 DMA bandwidth saturation of

230 19. Benchmark Results

with specialization
no specialization

n

re
la
ti
ve

D
M
A

b
an

d
w
id
th

sa
tu
ra
ti
on

1060105510501045104010351030102510201015101010051000

1

0.8

0.6

0.4

0.2

0

Figure 19.2 – Impact of QDP++ specialisations in comparison to generic implementations.

less than 40% is measured. For these functions only a few bytes per lattice site have to be

transferred.

For example, function n = 1055 implements

{
L a t t i c e B o o l b ;

L a t t i c e I n t e g e r i ;

i n t i0 , i 1 ;

b = i & i 0 > i 1 ;

}

and requires 5 bytes to be transferred. This is 1 byte for the destination site, and 4 bytes for

the right hand side of the expression. DMA bandwidth saturation would be reached when

only spending 5 cycles at one lattice site. Taking into account the management overhead for

issuing DMA transfer commands, traversing (possibly recursively) the expression tree and

switching DMA buffer indices, the total amount of clock cycles is larger than the minimum

number required taking only into account the number of bytes to be transferred.

This overhead is present for all functions but significantly carries weight only for those

functions with a small amount of bytes to be transferred.

19.3. Specialisations 231

n QDP++ function index range

1006 Mi ,j = M ′i ,j {i , 1, 3}{j , 1, 3}
1007 Mi ,j = (M ′ ×M ′′)i ,j {i , 1, 3}{j , 1, 3}

Table 19.1 – Example of two QDP++ functions.

19.3 Specialisations

The next benchmark measurement switches on SPU computation. The whole processing

is carried out, DMA transfers and computation. This benchmark focuses on the impact of

QDP++ specialisations.

Fig. 19.2 depicts the benchmark results for this measurements. The curves shown represent

the relative bandwidth saturation

S rel
DMA(n) =

SDMA(n)

Sno comp
DMA (n)

(19.2)

with Sno comp
DMA (n) from the previous benchmark measurement with computation switched

off, i.e. for measurement with poolsize P = 64 kilo-bytes. Significant performance im-

provements are observed when including the specialisations of the QDP++ primitive types

and operations.

Tab. 19.1 shows two of the measured functions which are discussed in more detail in the

following.

Discussion of function f1006: This function assigns a vector of colour matrices to another

vector of colour matrices, see Tab. 19.1. SPU computation is perfectly hidden by DMA

transfers when QDP++ specialisations are included – DMA saturation is as large as with

computation switched off. When QDP++ specialisations is not included the generic assign-

ment routine gets called. This routine involves a nested loop over the matrix dimensions and

gets not unrolled by the compiler due to inlining constraints. This results in a performance

drop to around 40%.

An SPU Timing analysis was carried out for function f1006. The output of the SPU Timing

Tool for the program part relevant for the assignment of the colour matrix is given in App.

G.1.1 with template specialisation and in App. G.1.2 without specialisation. Whereas the

232 19. Benchmark Results

assignment in the former case is carried out within less than 20 machine cycles the program

part generated from the generic C++ code requires more than 400 machine cycles to do

the same job. The reason for the inefficient code the compiler produces out of the generic

code is that when it assigns element-wise the matrix it has to resolve the next template

level, i.e. the complex numbers. The real and imaginary parts get assigned separately, i.e.

sub quad-words get assigned. This results in many load, shuffle, and store operations. On

the other hand the program version with template specialisation takes advantage out of

assigning a whole complex number with just one load and store operation.

Function n = 1007 represents the multiplication of two colour matrices and assigning

the result to the destination vector. SPU computation is not completely hidden by DMA

transfers – even with included QDP++ specialisations. The nested loops involved in colour

matrix multiplication were unrolled in the specialisations. Optimisations beyond the level

of loop unrolling are not carried out. This results in a better performance (around 65%)

than the generic operation results in (around 20%).

The SPU Timing analysis for function f1007 is given in App. G.2.1 with template specialisa-

tion and in App. G.2.2 without specialisation. The former case does not contain any loop

and executes in roughly 300 machine cycles. The necessary 27 complex multiplications are

executed sequentially where each time the optimised function for complex multiplication

was inlined.

The generic C++ code involves 3 nested loops to carry out the matrix multiplication. As

seen in the assembler code the compiler was able to unroll the inner-most loop leaving the

2 out-most loops unrolled. The inner-most loop body contains 3 complex multiplications

and 2 complex additions. For better visibility the rotate operations are emphasised, most

of which result from accessing the real and imaginary parts in complex multiplication, i.e.

by accessing sub-quad words. The inner-most loop body executes in roughly 70 machine

cycles. In order to multiply the two colour matrices the inner loop body is executed 9 times.

19.4. Compiler Optimisations 233

adjusted values
default values

n

re
la
ti
ve

D
M
A

b
an

d
w
id
th

sa
tu
ra
ti
on

1060105510501045104010351030102510201015101010051000

1

0.8

0.6

0.4

0.2

0

Figure 19.3 – Impact of GNU C++ SPU Compiler optimisation options, i.e. tree inliner and

compiler loop-unrolling controlled by adjusted compiler options in comparison to default values.

19.4 Compiler Optimisations

The SPU GNU C++ Compiler was used to build the SPU executables. The next benchmark

measurement concentrates on the optimisations the compiler is able to carry out. This

includes the tree inliner and the loop-unrolling facilities. Here, the QDP++ specialisations

are included.

The compiler options for controlling the inlining facility are adjusted in such a way that one

instance of the body of the evaluation loop is completely inlined. This does not mean that

all loops in the generic implementation of the operations are unrolled as well.

The compiler options used here are given in App. E.1.

Fig. 19.3 depicts the benchmark results for this measurements. Again, the relative DMA

bandwidth saturation is shown normalised by the benchmark results for switched off com-

putation.

For most functions a significant performance improvement is observed when using the

adjusted options for the tree inliner.

For example n = 1014 represents the following operation

234 19. Benchmark Results

compiler’s decision
NL = 2
NL = 4

n

re
la
ti
ve

D
M
A

b
an

d
w
id
th

sa
tu
ra
ti
on

1060105510501045104010351030102510201015101010051000

1

0.8

0.6

0.4

0.2

0

Figure 19.4 – Forced evaluation loop unroll with NL = 2 and NL = 4 in comparison to compiler’s

decision.

n QDP++ function index range

1014 MSC
i ,j ,k,l + = {i , 1, 3}{j , 1, 3}{k , 1, 4}{l , 1, 4}

(M ′C ×M ′′SC + M ′′′SC)i ,j ,k,l

The superscripts C and SC stand for colour and spin-colour respectively. A substantial per-

formance gain is recognised from around 7% with the default values for the compiler options

to around 60% DMA saturation with optimised values applied. If inlining is constrained too

restrictively the compiler fails to inline functions like for example the complex multiplication

and issues branches to it instead. These branches come with an overhead. And naturally

loop branches are at least once not correctly predicted, i.e. when the last operation in a

loop is carried out, thus resulting in a performance penalty. The compiler “predicts” the

loop iteration count to be larger than one.

19.5 Evaluation Loop

Next a benchmark measurement was carried out to be able to study the impact of unrolling

the evaluation. Taking into account the limited LS size, the unrolling is done partially

controlled by the parameter NL, see Alg. 6 on page 224.

19.6. Chroma on Cell vs. Commodity CPU 235

ex
ec
u
ti
on

ti
m
e
[s
]

PowerXCell 8
SPU

s

X
eon

4
threads

X
eon

1
thread

250

200

150

100

50

0

Figure 19.5 – Comparison of the execution time for calculating the hadronic spectrum for a

commodity CPU and the IBM PowerXCell 8i Processor.

Alg. 6 is applied for the evaluation loop with loop unrolling parameter NL = 2 and NL = 4.

Fig. 19.4 depicts the benchmark results for this measurements. Again, the relative DMA

bandwidth saturation is shown normalised by the benchmark results for switched off com-

putation.

No significant performance gains or losses are detected when unrolling the evaluation. It

seems to be safe to leave the decision whether to unroll the evaluation loop to the compiler

and to only force it to inline all functions into the evaluation loop’s body.

19.6 Chroma on Cell vs. Commodity CPU

This work compares the performance of a Chroma build with the implementation of QDP++

for the IBM PowerXCell 8i Processor with a build for a commodity processor. The systems

under considerations were an IBM PowerXCell 8i Processor on a Blade Center QS22 using

8 SPUs and an Intel Xeon Processor 5130 (4M Cache, 2.00 GHz, 1333 MHz FSB) with

2 cores and 2 hardware threads. The build for the commodity CPU utilises the SciDAC

component for multi-threading, QMT, to make use of all possible 4 threads. In order to

236 19. Benchmark Results

System execution time [s]

IBM PowerXCell 8i Processor 142.4

Intel Xeon (no QMT) 230.8

Intel Xeon (with QMT) 83.5

Table 19.2 – Comparison of the execution time for calculating the hadronic spectrum for a

commodity CPU and the IBM PowerXCell 8i Processor.

detect the impact of utilising multi-threading this work measures the execution time when

not making use of the QMT library. The hadronic spectrum was calculated (mesonic and

baryonic two-point functions) for the same gauge configuration, i.e. a 163 × 32 lattice,

on both systems and measured the total execution, i.e. only the Chroma measurement for

calculation of the hadronic spectrum was taken into account. The builds for both systems

were configured to use double precision floating point numbers.

Fig. 19.5 and Tab. 19.2 show the execution time for the three setups. When using all

available hardware threads the Intel Xeon outperforms the IBM PowerXCell 8i Processor

nearly by a factor of 2 even when all SPUs are active.

Chapter 20

Conclusion and Outlook

In this work new design concept were successfully developed on how to implement an

active C++ library like QDP++ on a accelerator type of processors like the IBM PowerX-

Cell 8i processor. A proof-of-concept has been provided. Furthermore it was possible to

run a QDP++ based physics application (Chroma) with reasonable performance on the

IBM PowerXCell 8i Processor.

This work significantly extents beyond usual code porting activities: A new strategy was

pursued leveraging the Portable Expression Template Engine (PETE).

The new design concepts include to write out at run-time of the main application the

involved PETE expressions into a database. Furthermore it includes a code-generator which

processes the database and generates program code fractions for the accelerator core. The

newly generated code fractions rely on the functionality of QDP++. In order to meet

the hardware characteristics of the accelerator this work provides an optimised version of

QDP++ for this processor type. All involved PETE expressions are available as compiled

functions, optimised for the accelerator.

As a last step this work proposes to bundle all functions into a library and link the main

application against it. In this way all program parts of the main application involving PETE

expressions execute on the accelerators.

238 20. Conclusion and Outlook

This work briefly outlined the modifications and optimisations carried out in order to achieve

a version of QDP++ suitable for the accelerator cores – in case of the Cell processor, the

SPEs.

Support for the SIMD organisation was added. A change in the data organisation ensured

that complex numbers always fit into one processor register. To reduce memory bandwidth

requirements additional attributes were introduced to QDP++ data types which describe

the data object’s access pattern. The standard QDP++ memory allocator was replaced

by a stack memory based implementation. A major modification was adding support for

accessing main memory via DMA transfers. In this way the SPEs access main memory with

asynchronous DMA transfers which execute in parallel to SPE computation. With multi-

buffering algorithms memory latencies and transfer overheads could be (partially) hidden

by computation. Parallelisation on several SPEs was achieved by assigning each SPE to a

disjoint part of the problem, i.e. each SPE operates on a different part of the data vector.

In order to find the optimal problem size and alignment settings for each SPE compile-time

calculations were carried out. To cope with the limited size of the LS SPE code overlay

techniques were employed.

The employed optimisation techniques lead to SPE code with a reasonable performance.

Clearly, more aggressive optimisation techniques can be applied. Providing further special

implementations not only at the level of complex numbers but, e.g. for colour SU(3) matrix

operations, would increase the performance of individual operations even more.

On the other hand roughly half of the QDP++ functions considered for benchmarking

already execute with a good saturation of the available memory bandwidth. Further im-

provement in terms of number of floating-point operations would not necessarily result in

an improved overall performance.

Since information on the used QDP++ functions is not fully available at compile-time, a

first build and execution of the main application is required – first without support for the

accelerator cores. The build process can be improved if some parts of it move into the

compiler. This eliminate the need for the first build and consequently it is not necessary

to execute the application prior to production use. On the other hand this gives rise to

other problems: First, all QDP++ functions found in the code base of the main application

239

are built – in case of Chroma this is an enormous set. Building an SPE version for all

of them results in an enormous SPE binary. Even with code overlays for each reachable

function a small function stub calling out to the function is needed. The sum of all these

stubs plus data regions most likely exceeds the SPE’s LS and one has to leverage other

code overlay techniques to overcome this problem. Second, the build time of the main

application increases substantially.

This work applied the new design concepts and implemented a version of QDP++ for the

IBM PowerXCell 8i Processor. The performance of a physics application (Chroma) was

compared on the Cell processor with the performance of Chroma built with the original

QDP++ on a commodity processor. The systems under considerations were an IBM Pow-

erXCell 8i Processor on a Blade Center QS22 using 8 SPEs and an Intel Xeon Processor

with 2 cores and 2 hardware threads. In this work the hadronic spectrum (mesonic and

baryonic two-point functions) was calculated for a given gauge configuration, i.e. a 163×32

lattice, on both systems and the total execution was measured. A reasonable execution

time was measured on the IBM PowerXCell 8i Processor in comparison to the commodity

processor.

In order to achieve a good performance on the QPACE computer (Sec. 14.7) accelerated

code is necessary in all compute-intensive parts of the code (Sec. 14.11). This work

demonstrated that a good performance of code parts usually not subject to optimisation

can be achieved. A hand-tuned optimised compute kernels for the QPACE computer exists,

e.g. an inverter with excellent performance [165].

However, in order to aim for Chroma on QPACE the development of design concepts

is required that extents beyond the usual porting activities, i.e. providing hand-tuned

optimised compute kernels. The developed design concepts are good candidates to provide

the necessary software idioms for a complete Chroma build on QPACE. For certain compute-

tasks, e.g. the inversion of the fermion matrix, hand-tuned optimised compute kernels are

still required. The QDP++ API allows for a seamless integration of these kernels.

The development of the Cell processor has stopped. Other accelerator-based architectures

are getting more important targets in the HPC market. These include the GPGPUs and

Intel’s recently announced Many Integrated Core (MIC) Chips, and AMD’s Fusion. A GPU-

240 20. Conclusion and Outlook

based system is current holding the first position in the latest iteration (Nov. 2010) of the

Top 500 list [145].

The design concept developed in this work is not bound to specific microprocessor. It is

retargetable and similar challenges are likely to be encountered when targeting to other

accelerator based architectures.

Appendices

Appendix A

Appendix

A.1 Fourier Transformation of Dirac Operator

For the following calculation we set L = LT and use periodic boundary conditions. First we

calculate the Fourier transform of the naive Dirac operator in momentum space

D̃naiv(p|q) =
1

|Λ|
∑

n,m∈Λ

e−ip·naDnaiv(n|m)e iq·ma (A.1)

=
1

|Λ|
∑
n∈Λ

e−i(p−q)·na

(4∑
µ=1

γµ
e+iqµa − e−iqµa

2a
+ m0

)
(A.2)

= δpq

(
m0 +

i

a

4∑
µ=1

γµ sin(pµa)

)
. (A.3)

Thus the Dirac operator is diagonal in momentum space, which in turn leads to a straight-

forward calculation of its inverse:

D̃(p)−1 =

m − ia−1
∑
µ

γµ sin(pµa)

m2 + a−2
∑
µ

sin(pµa)2
. (A.4)

244 A. Appendix

A.2 Symmetry Transformation of Hadron Interpolators

On the lattice the parity transformation P is implemented as

ψ(n, n4)
P−→ γ4ψ(−n, n4) (A.5)

ψ(n, n4)
P−→ ψ(−n, n4)γ4 (A.6)

Ui (n, n4)
P−→ Ui (−n− î , n4)† (A.7)

U4(n, n4)
P−→ U4(−n, n4). (A.8)

Whereas the implementation of the charge conjugation transformation C which transforms

a particle into its anti-particle follows

ψ(n)
C−→ C−1ψ(n)T (A.9)

ψ(n)
C−→ −ψ(n)T C (A.10)

Uµ(n)
C−→
(
Uµ(n)†

)T
(A.11)

with the superscript T denoting the transpose and with the charge conjugation matrix C

acting only on the Dirac spin indices and is defined to obey the relation

CγµC−1 = −γT
µ (A.12)

The explicit form of C depends on the representation of the γ-matrices used.

Under parity P our nucleon interpolator transforms like

BP(n, n4) = εabcγ4u(−n, n4)a

(
u(−n, n4)T

b γ
T
4 Cγ5γ4d(−n, n4)c

)
(A.13)

= εabcγ4u(−n, n4)a

(
u(−n, n4)T

b Cγ5d(−n, n4)c

)
(A.14)

= γ4B(−n, n4) (A.15)

where we used γT
µ C = −Cγµ.

Appendix B

Measurement Data

B.1 Pion Decay Constant

The following tables list the measurement data. If the table is split into an upper and lower

part by a horizontal line, the data in the lower part was not used for fitting.

Table B.1 – Pion decay constant fπ for lattice size 243 × 48.

m2
π[GeV 2] fπ[GeV]

0.233 0.16562(97)

0.199 0.16520(75)

0.172 0.1557(12)

0.143 0.1517(13)

0.123 0.1462(13)

Table B.2 – FSE corrected pion decay constant fπ for lattice size 243 × 48.

m2
π[GeV 2] fπ[GeV]

0.233 0.16605(97)

0.198 0.16580(75)

0.172 0.1565(12)

0.142 0.1530(13)

0.122 0.1479(13)

246 B. Measurement Data

Table B.3 – Pion decay constant fπ for lattice size 323 × 64.

m2
π[GeV 2] fπ[GeV]

0.112 0.1551(14)

0.082 0.1498(16)

0.064 0.1463(25)

0.196 0.1621(34)

Table B.4 – FSE corrected pion decay constant fπ for lattice size 323 × 64.

m2
π[GeV 2] fπ[GeV]

0.112 0.1555(14)

0.081 0.1504(16)

0.064 0.1474(25)

0.196 0.1622(34)

B.2. n = 1 Moment of Polarised PDF 247

B.2 n = 1 Moment of Polarised PDF

Table B.5 – 〈1〉∆q for N

m2
π[GeV 2] u d u − d u + d

0.233 0.909(14) -0.2670(53) 1.176(16) 0.642(14)

0.199 0.9110(100) -0.2775(60) 1.189(12) 0.633(12)

0.172 0.910(21) -0.256(10) 1.166(23) 0.655(23)

0.143 0.925(25) -0.279(13) 1.204(28) 0.645(28)

0.123 0.854(24) -0.274(17) 1.128(33) 0.580(26)

Table B.6 – 〈1〉∆q for Σ

m2
π[GeV 2] u d u − d u + d

0.233 0.921(16) -0.2575(87) 1.179(20) 0.664(17)

0.199 0.9110(100) -0.2775(60) 1.189(12) 0.633(12)

0.172 0.910(18) -0.2646(86) 1.175(21) 0.645(19)

0.143 0.910(20) -0.2883(88) 1.199(24) 0.622(20)

0.123 0.857(18) -0.2900(98) 1.147(23) 0.567(18)

Table B.7 – 〈1〉∆q for N

m2
π[GeV 2] u d u − d u + d

0.233 0.866(19) -0.2734(96) 1.140(22) 0.593(21)

0.199 0.9110(100) -0.2775(60) 1.189(12) 0.633(12)

0.172 0.932(16) -0.2567(75) 1.189(19) 0.675(17)

0.143 0.975(15) -0.2708(77) 1.246(19) 0.705(14)

0.123 0.951(16) -0.2581(71) 1.209(20) 0.693(15)

248 B. Measurement Data

Table B.8 – δSU(3) = gN
A − gΣ

A + gΞ
A

(mπ/Xπ)2 δSU(3)

1.188 -0.018(12)

0.863 -0.000(13)

0.726 0.023(17)

0.621 0.013(22)

0.998 0.000(00)

B.3 n = 2 Moment of Unpolarised PDF

Table B.9 – 〈x〉q for N

m2
π[GeV 2] u d u − d u + d

0.233 0.3535(49) 0.1543(23) 0.1992(30) 0.5077(70)

0.199 0.3531(31) 0.1505(17) 0.2026(22) 0.5036(44)

0.172 0.3519(73) 0.1524(32) 0.1995(50) 0.5043(100)

0.143 0.3602(77) 0.1559(39) 0.2043(52) 0.516(11)

0.123 0.3543(84) 0.1533(44) 0.2010(62) 0.508(12)

Table B.10 – 〈x〉q for Σ

m2
π[GeV 2] u d u − d u + d

0.233 0.3624(60) 0.1483(34) 0.2141(42) 0.5107(88)

0.199 0.3531(31) 0.1505(17) 0.2026(22) 0.5036(44)

0.172 0.3482(63) 0.1575(29) 0.1906(41) 0.5057(89)

0.143 0.3487(53) 0.1649(25) 0.1838(37) 0.5136(75)

0.123 0.3418(67) 0.1656(35) 0.1762(42) 0.5073(98)

B.3. n = 2 Moment of Unpolarised PDF 249

Table B.11 – 〈x〉q for Ξ

m2
π[GeV 2] u d u − d u + d

0.233 0.3512(64) 0.1610(30) 0.1902(43) 0.5122(90)

0.199 0.3531(31) 0.1505(17) 0.2026(22) 0.5036(44)

0.172 0.3552(54) 0.1502(26) 0.2050(36) 0.5054(76)

0.143 0.3666(50) 0.1487(28) 0.2179(34) 0.5153(74)

0.123 0.3666(46) 0.1444(26) 0.2222(31) 0.5110(67)

Table B.12 – Pion and kaon masses on 243 × 48 lattices with lattice spacing, a = 0.083(3)fm

[68], where the error on the lattice spacing has been included in the errors for mπ and mK . The

last four columns contain our results for ratios of the hyperon quark momentum fractions.

mπ [MeV] mK [MeV] 〈x〉Σu /〈x〉pu 〈x〉Σs /〈x〉pd 〈x〉Ξs /〈x〉pu 〈x〉Ξu /〈x〉pd
460(17) 401(15) 1.0263(51) 0.960(12) 0.993(23) 1.044(28)

423(15) 423(15) 1.0 1.0 1.0 1.0

395(14) 438(16) 0.9888(44) 1.0344(70) 1.010(25) 0.985(24)

360(13) 451(16) 0.9670(83) 1.059(14) 1.019(26) 0.953(29)

334(12) 463(17) 0.9631(94) 1.082(18) 1.037(29) 0.940(30)

250 B. Measurement Data

B.4 n = 1 Moment of Tensor GPD

Table B.13 – 〈1〉δq for N

(mπ/Xπ)2 u d u − d u + d

1.188 0.832(12) -0.2015(39) 1.034(14) 0.631(11)

0.998 0.8306(78) -0.2098(42) 1.0404(81) 0.6208(96)

0.863 0.819(17) -0.1963(70) 1.015(19) 0.622(17)

0.726 0.840(19) -0.1996(93) 1.040(22) 0.640(20)

0.621 0.788(22) -0.191(11) 0.980(27) 0.597(22)

Table B.14 – 〈1〉δq for Σ

(mπ/Xπ)2 u d u − d u + d

1.188 0.834(14) -0.1984(55) 1.032(16) 0.635(13)

0.998 0.8306(78) -0.2098(42) 1.0404(81) 0.6208(96)

0.863 0.818(15) -0.1991(59) 1.017(17) 0.619(15)

0.726 0.841(15) -0.2072(62) 1.048(17) 0.633(15)

0.621 0.800(17) -0.2108(73) 1.010(21) 0.589(15)

Table B.15 – 〈1〉δq for Ξ

(mπ/Xπ)2 u d u − d u + d

1.188 0.816(15) -0.2012(66) 1.017(18) 0.614(16)

0.998 0.8306(78) -0.2098(42) 1.0404(81) 0.6208(96)

0.863 0.832(13) -0.1963(52) 1.028(15) 0.635(13)

0.726 0.874(13) -0.1985(54) 1.073(15) 0.676(12)

0.621 0.859(11) -0.1946(49) 1.054(14) 0.665(11)

B.5. Ratio n = 1 Moment of Tensor GPD over fT 251

B.5 Ratio n = 1 Moment of Tensor GPD over fT

Table B.16 – 〈1〉δq/fT for N

(mπ/Xπ)2 u d u − d u + d

1.188 5.79(17) -1.402(46) 7.19(21) 4.39(14)

0.998 5.45(11) -1.376(38) 6.82(14) 4.071(99)

0.863 5.94(25) -1.423(73) 7.36(30) 4.51(21)

0.726 6.21(32) -1.477(97) 7.69(39) 4.74(27)

0.621 5.24(25) -1.270(90) 6.50(31) 3.97(21)

Table B.17 – 〈1〉δq/fT for Σ

(mπ/Xπ)2 u d u − d u + d

1.188 5.80(18) -1.380(53) 7.18(22) 4.42(15)

0.998 5.45(11) -1.376(38) 6.82(14) 4.071(99)

0.863 5.93(24) -1.444(68) 7.38(30) 4.49(20)

0.726 6.22(31) -1.532(85) 7.75(38) 4.68(25)

0.621 5.31(24) -1.400(73) 6.71(30) 3.91(18)

Table B.18 – 〈1〉δq/fT for Ξ

(mπ/Xπ)2 u d u − d u + d

1.188 5.67(18) -1.399(59) 7.07(22) 4.27(16)

0.998 5.45(11) -1.376(38) 6.82(14) 4.071(99)

0.863 6.03(24) -1.424(65) 7.45(30) 4.61(19)

0.726 6.47(32) -1.468(79) 7.94(39) 5.00(25)

0.621 5.71(23) -1.293(60) 7.00(29) 4.41(19)

252 B. Measurement Data

B.6 n = 2 Moment of Polarised PDF

Table B.19 – 〈x〉∆q for N

(mπ/Xπ)2 u d u − d u + d

1.188 0.3706(64) -0.0786(30) 0.4492(72) 0.2921(69)

0.998 0.3664(57) -0.0841(36) 0.4505(65) 0.2823(70)

0.863 0.358(11) -0.0794(51) 0.437(13) 0.278(11)

0.726 0.382(11) -0.0801(70) 0.462(13) 0.302(13)

0.621 0.366(13) -0.0782(85) 0.445(14) 0.288(17)

Table B.20 – 〈x〉∆q for Σ

(mπ/Xπ)2 u d u − d u + d

1.188 0.3843(82) -0.0714(41) 0.4564(90) 0.3135(94)

0.998 0.3664(57) -0.0841(36) 0.4505(65) 0.2823(70)

0.863 0.3553(95) -0.0842(40) 0.439(11) 0.2706(93)

0.726 0.3642(77) -0.0873(50) 0.4506(98) 0.2761(86)

0.621 0.3516(96) -0.0974(50) 0.448(10) 0.253(11)

Table B.21 – 〈x〉∆q for Ξ

(mπ/Xπ)2 u d u − d u + d

1.188 0.3642(92) -0.0795(49) 0.443(10) 0.284(11)

0.998 0.3664(57) -0.0841(36) 0.4505(65) 0.2823(70)

0.863 0.3703(85) -0.0807(31) 0.4514(95) 0.2901(87)

0.726 0.3977(70) -0.0792(38) 0.4779(83) 0.3194(76)

0.621 0.3900(66) -0.0766(26) 0.4680(74) 0.3147(68)

B.7. Ratios of Axial Charge 253

B.7 Ratios of Axial Charge

Table B.22 – Measurement data for gΣ
A /g

N
A for lattice size 243 × 48.

(mπ/Xπ)2 g Σ
A /g N

A

1.188 0.7832(56)

0.998 0.7665(44)

0.863 0.7802(70)

0.726 0.7561(96)

0.621 0.760(13)

Table B.23 – Measurement data for gΞ
A /g

N
A for lattice size 243 × 48.

(mπ/Xπ)2 g Ξ
A /g N

A

1.188 -0.2325(88)

0.998 -0.2335(44)

0.863 -0.2202(80)

0.726 -0.2249(84)

0.621 -0.2288(92)

Table B.24 – Measurement data for (gN
A − gΞ

A)/gΣ
A for lattice size 243 × 48.

(mπ/Xπ)2 (g N
A − g Ξ

A)/g Σ
A

1.188 1.574(17)

0.998 1.609(15)

0.863 1.564(16)

0.726 1.620(22)

0.621 1.617(24)

254 B. Measurement Data

Table B.25 – Measurement data for (gN
A + gΞ

A)/gΣ
A for lattice size 243 × 48.

(mπ/Xπ)2 (g N
A + g Ξ

A)/g Σ
A

1.188 0.980(13)

0.863 1.000(15)

0.726 1.025(18)

0.621 1.015(26)

0.998 1.000(00)

Table B.26 – Measurement data for gN
A /fπ for lattice size 243 × 48.

m2
π[GeV 2] g N

A /fπ

0.233 7.04(10)

0.199 7.252(75)

0.172 7.45(16)

0.143 7.92(19)

0.123 7.63(24)

B.8. n = 2 Moment of Tensor GPD 255

B.8 n = 2 Moment of Tensor GPD

Table B.27 – 〈x〉δq for N

(mπ/Xπ)2 u d u − d u + d

1.188 0.2013(33) -0.0405(12) 0.2419(35) 0.1608(35)

0.998 0.2062(27) -0.0446(15) 0.2508(29) 0.1616(33)

0.863 0.2097(50) -0.0388(26) 0.2485(59) 0.1708(54)

0.726 0.2087(57) -0.0397(33) 0.2484(56) 0.1690(75)

0.621 0.2118(73) -0.0437(38) 0.2555(82) 0.1681(81)

Table B.28 – 〈x〉δq for Σ

(mπ/Xπ)2 u d u − d u + d

1.188 0.2068(41) -0.0403(22) 0.2475(46) 0.1669(46)

0.998 0.2062(27) -0.0446(15) 0.2508(29) 0.1616(33)

0.863 0.2058(43) -0.0394(18) 0.2449(50) 0.1661(43)

0.726 0.2014(43) -0.0414(22) 0.2422(45) 0.1595(51)

0.621 0.1998(46) -0.0455(21) 0.2447(55) 0.1536(46)

Table B.29 – 〈x〉δq for Ξ

(mπ/Xπ)2 u d u − d u + d

1.188 0.1991(51) -0.0433(24) 0.2421(53) 0.1555(59)

0.998 0.2062(27) -0.0446(15) 0.2508(29) 0.1616(33)

0.863 0.2079(35) -0.0389(17) 0.2470(40) 0.1693(38)

0.726 0.2119(33) -0.0379(16) 0.2504(38) 0.1745(35)

0.621 0.2096(29) -0.0406(13) 0.2510(33) 0.1697(31)

Appendix C

Fit Results

C.1 Pion Decay Constant

Table C.1 – Fit result for the pion decay constant with the fit ansatz fπ = a0 + a1m
2
π. The fit

is based on data shown in Table B.3. The extrapolated quantity and resulting estimate for the

renormalisation constant are shown in the last two columns.

a0 a1 χ2/dof quality fπ(mphys
π

2
)/ZA Z est

A

0.1350(50) 0.179(52) 0.01 0.90 0.1383(51) 0.940(35)

258 C. Fit Results

C.2 n = 1 Moment of Polarised PDF

Table C.2 – Fit results for 〈1〉B∆q with the fit ansatz: 〈1〉∆q = a0 + a1m
2
π. The extrapolation to

the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈1〉∆q/ZA

N ∆u 0.936(57) -0.12(28) 0.13 0.88 0.934(57)

N ∆d -0.282(27) 0.06(13) 4.14 0.02 -0.281(27)

N ∆u −∆d 1.216(65) -0.16(32) 1.22 0.30 1.213(65)

N ∆u + ∆d 0.653(60) -0.06(30) 0.74 0.48 0.652(61)

Σ ∆u 0.890(52) 0.12(27) 0.14 0.87 0.892(53)

Σ ∆d -0.321(25) 0.25(13) 3.93 0.02 -0.316(25)

Σ ∆u −∆d 1.210(63) -0.12(32) 0.62 0.54 1.208(63)

Σ ∆u + ∆d 0.568(53) 0.37(27) 1.25 0.29 0.575(53)

Ξ ∆u 1.140(46) -1.17(25) 0.29 0.75 1.119(47)

Ξ ∆d -0.249(24) -0.11(13) 4.00 0.02 -0.251(24)

Ξ ∆u −∆d 1.387(57) -1.04(30) 1.70 0.18 1.369(57)

Ξ ∆u + ∆d 0.889(46) -1.28(25) 0.19 0.83 0.866(47)

Table C.3 – Fit result for SU(3) symmetry breaking term using the fit ansatz: δSU(3) =

a0(mπ/Xπ − 1) The extrapolation to the physical point is given in the last column.

Ratio a0 χ2/dof quality value

(g N
A − g Σ

A + g Ξ
A)/ZA -0.062(33) 1.13 0.33 0.052(34)

Table C.4 – Fit result for ratios of baryon axial charge using the fit ansatz: R = a0 +a1(mπ/Xπ)

with R one of the ratios given in the first column. The extrapolation to the physical point is given

in the last column.

Ratio a0 a1 χ2/dof quality value

g Σ
A /g N

A 0.733(21) 0.040(21) 5.99 0.00 0.740(21)

g Ξ
A /g N

A -0.203(24) -0.028(24) 1.32 0.27 -0.208(24)

(g N
A − g Ξ

A)/g Σ
A 1.631(53) -0.044(54) 6.52 0.00 1.624(53)

C.3. n = 2 Moment of Unpolarised PDF 259

Table C.5 – Fit result for the ratio (gN
A + gΞ

A)/gΣ
A with fit ansatz R = a0(mπ/Xπ − 1) + 1. The

extrapolation to the physical point is given in the last column.

Ratio a0 χ2/dof quality value

(g N
A + g Ξ

A)/g Σ
A -0.082(44) 0.79 0.45 1.068(44)

C.3 n = 2 Moment of Unpolarised PDF

Table C.6 – Fit results for 〈x〉Bq with the fit ansatz: 〈x〉Bq = a0 + a1m
2
π. The extrapolation to

the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈x〉q/Zv2b

N u 0.360(14) -0.006(14) 0.64 0.59 0.359(14)

N d 0.1530(69) -0.0006(69) 2.77 0.04 0.1529(70)

N u − d 0.2069(95) -0.0055(95) 0.97 0.41 0.2059(97)

N u + d 0.513(20) -0.007(20) 1.11 0.34 0.512(20)

Σ u 0.324(12) 0.030(13) 0.69 0.56 0.329(12)

Σ d 0.1909(63) -0.0389(68) 2.83 0.04 0.1844(64)

Σ u − d 0.1338(80) 0.0682(87) 0.40 0.76 0.1453(82)

Σ u + d 0.514(17) -0.008(19) 1.38 0.25 0.513(18)

Ξ u 0.388(10) -0.034(11) 1.26 0.29 0.382(10)

Ξ d 0.1305(54) 0.0223(59) 4.11 0.01 0.1343(55)

Ξ u − d 0.2564(69) -0.0550(77) 1.67 0.17 0.2471(70)

Ξ u + d 0.519(15) -0.013(16) 1.90 0.13 0.517(15)

260 C. Fit Results

C.4 n = 1 Moment of Tensor GPD

Table C.7 – Fit results for 〈1〉Bδq with the fit ansatz: 〈1〉δq = a0 + a1m
2
π. The extrapolation to

the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈1〉δq/Z

N u 0.790(35) 0.038(35) 2.94 0.03 0.797(35)

N d -0.193(15) -0.010(15) 4.47 0.00 -0.195(15)

N u − d 0.982(41) 0.053(41) 4.05 0.01 0.991(42)

N u + d 0.600(35) 0.025(35) 2.05 0.10 0.604(35)

Σ u 0.796(30) 0.034(32) 3.11 0.03 0.802(31)

Σ d -0.217(13) 0.013(14) 3.56 0.01 -0.215(13)

Σ u − d 1.015(37) 0.021(38) 3.09 0.03 1.019(37)

Σ u + d 0.573(29) 0.051(31) 3.71 0.01 0.582(29)

Ξ u 0.923(25) -0.093(28) 3.24 0.02 0.908(25)

Ξ d -0.182(11) -0.022(12) 3.93 0.01 -0.186(11)

Ξ u − d 1.102(29) -0.066(32) 3.46 0.02 1.091(30)

Ξ u + d 0.743(24) -0.116(28) 3.51 0.01 0.723(25)

C.5. Ratio n = 1 Moment of Tensor GPD over fT 261

C.5 Ratio n = 1 Moment of Tensor GPD over fT

Table C.8 – Fit results for 〈1〉Bδq/fT with the fit ansatz: 〈1〉δq/fT = a0+a1m
2
π. The extrapolation

to the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈1〉δq/fT

N u 6.20(69) -0.55(67) 7.51 0.00 6.11(70)

N d -1.49(20) 0.09(19) 0.89 0.41 -1.48(20)

N u − d 7.70(84) -0.66(82) 6.17 0.00 7.59(85)

N u + d 4.68(56) -0.41(55) 8.60 0.00 4.61(57)

Σ u 6.28(68) -0.63(68) 7.70 0.00 6.17(69)

Σ d -1.68(19) 0.28(19) 1.24 0.29 -1.64(20)

Σ u − d 7.92(84) -0.88(83) 6.46 0.00 7.77(85)

Σ u + d 4.68(55) -0.41(55) 8.61 0.00 4.61(56)

Ξ u 7.06(69) -1.41(69) 8.18 0.00 6.82(70)

Ξ d -1.54(19) 0.14(20) 0.74 0.47 -1.52(20)

Ξ u − d 8.55(85) -1.50(84) 6.59 0.00 8.29(86)

Ξ u + d 5.66(57) -1.40(57) 9.51 0.00 5.43(58)

262 C. Fit Results

C.6 n = 2 Moment of Polarised PDF

Table C.9 – Fit results for 〈x〉B∆q with the fit ansatz: 〈x〉∆q = a0 + a1m
2
π. The extrapolation to

the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈x〉∆q/Z

N u 0.371(20) -0.002(20) 2.76 0.04 0.371(20)

N d -0.083(11) 0.003(11) 1.47 0.22 -0.083(12)

N u − d 0.451(23) -0.001(23) 1.95 0.12 0.451(23)

N u + d 0.286(23) 0.001(23) 2.92 0.03 0.287(24)

Σ u 0.324(17) 0.046(19) 2.43 0.06 0.332(18)

Σ d -0.1191(93) 0.0386(100) 2.09 0.10 -0.1126(95)

Σ u − d 0.437(20) 0.014(21) 1.05 0.37 0.439(20)

Σ u + d 0.203(20) 0.086(21) 3.82 0.01 0.218(20)

Ξ u 0.433(15) -0.063(17) 4.35 0.00 0.422(15)

Ξ d -0.0710(69) -0.0105(83) 1.36 0.25 -0.0728(71)

Ξ u − d 0.507(17) -0.055(19) 2.91 0.03 0.497(17)

Ξ u + d 0.364(16) -0.076(19) 4.56 0.00 0.351(17)

C.7. n = 2 Moment of Tensor GPD 263

C.7 n = 2 Moment of Tensor GPD

Table C.10 – Fit results for 〈x〉Bδq with the fit ansatz: 〈x〉δq = a0 + a1m
2
π. The extrapolation to

the physical point is given in the last column.

B q a0 a1 χ2/dof quality 〈x〉δq/Z

N u 0.224(11) -0.019(11) 0.33 0.80 0.221(11)

N d -0.0440(52) 0.0021(49) 6.42 0.00 -0.0436(52)

N u − d 0.266(11) -0.018(11) 2.34 0.07 0.263(11)

N u + d 0.182(12) -0.018(12) 1.29 0.28 0.179(12)

Σ u 0.1927(87) 0.0130(93) 0.40 0.75 0.1949(88)

Σ d -0.0456(42) 0.0034(46) 7.68 0.00 -0.0450(43)

Σ u − d 0.2355(98) 0.013(10) 1.77 0.15 0.2376(100)

Σ u + d 0.1448(94) 0.019(10) 2.16 0.09 0.1479(95)

Ξ u 0.2213(70) -0.0159(81) 1.34 0.26 0.2186(71)

Ξ d -0.0337(33) -0.0088(39) 7.33 0.00 -0.0352(34)

Ξ u − d 0.2564(78) -0.0083(89) 1.92 0.12 0.2550(79)

Ξ u + d 0.1898(77) -0.0269(91) 3.55 0.01 0.1852(79)

Appendix D

Implementation Details

D.1 Operator Extension

PPU implementation

// PPU

s t r u c t BaseOp

{
v i r t u a l v o i d s e n d I n f o () c o n s t { }
v i r t u a l b o o l getReadAccessMode () c o n s t { r e t u r n f a l s e ; }
v i r t u a l ˜BaseOp (){}

} ;

s t r u c t FnPokeSpinVector : p u b l i c BaseOp

{
// . . .

FnPokeSpinVector (i n t row) : row (row) {}

b o o l getReadAccessMode () c o n s t

{
r e t u r n t r u e ;

}

v o i d s e n d I n f o () c o n s t

{
f o r (u n s i g n e d i n t spu = 0 ; spu < getNSPU () ; ++spu)

{
s p u M a i l b o x w r i t e u i n t (spu , row) ;

}
}

266 D. Implementation Details

p r i v a t e :

i n t row ;

} ;

SPU implementation

// SPU

s t r u c t BaseOp

{
v i r t u a l v o i d r e c v I n f o () { }
v i r t u a l b o o l getReadAccessMode () c o n s t { r e t u r n f a l s e ; }
v i r t u a l ˜BaseOp () { }

} ;

s t r u c t FnPokeSpinVector : p u b l i c BaseOp

{
// . . .

FnPokeSpinVector (i n t row) : row (row) {}

b o o l getReadAccessMode ()

{
r e t u r n t r u e ;

}

v o i d r e c v I n f o ()

{
row = s p u r e a d c h (SPU RdInMbox) ;

}

p r i v a t e :

i n t row ;

} ;

D.2 Arithmetical Operations with Complex Numbers

Complex multiplication. (analog: adjoint-multiply, multiply-adjoint)

template<>

i n l i n e B i n ar y Re t ur n<RComplex<REAL64>,

RComplex<REAL64>, OpMult ip ly > : : Type t

o p e r a t o r ∗(c o n s t RComplex<REAL64>& l , c o n s t RComplex<REAL64>& r)

{
t y p e d e f B i na r yR e tu r n<RComplex<REAL64>,

RComplex<REAL64>, OpMult ip ly > : : Type t R e t t ;

D.2. Arithmetical Operations with Complex Numbers 267

t y p e d e f v e c t o r d o u b l e T ;

c o n s t v e c t o r u n s i g n e d c h a r swap =

{ 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

c o n s t v e c t o r u n s i g n e d c h a r a l t e r =

{ 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 ,

0x18 , 0x19 , 0x1A , 0x1B , 0x1C , 0x1D , 0x1E , 0x1F } ;

T c = spu mul (l . F , r . F) ;

c = s p u s u b (c , s p u s h u f f l e (c , c , swap)) ;

T d = spu mul (r . F , s p u s h u f f l e (l . F , l . F , swap)) ;

d = spu add (d , s p u s h u f f l e (d , d , swap)) ;

r e t u r n R e t t (s p u s h u f f l e (c , d , a l t e r)) ;

}

Inner Product

template<>

i n l i n e B in a ry Re t u rn<RComplex<REAL64>,

RComplex<REAL64>, F n L o c a l I n n e r P r o d u c t > : : Type t

l o c a l I n n e r P r o d u c t (c o n s t RComplex<REAL64>& l ,

c o n s t RComplex<REAL64>& r)

{
t y p e d e f B i na r yR e tu r n<RComplex<REAL64>,

RComplex<REAL64>,

F n L o c a l I n n e r P r o d u c t > : : Type t R e t t ;

t y p e d e f v e c t o r d o u b l e T ;

c o n s t v e c t o r u n s i g n e d c h a r swap =

{ 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

c o n s t v e c t o r u n s i g n e d c h a r a l t e r =

{ 0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 ,

0x18 , 0x19 , 0x1A , 0x1B , 0x1C , 0x1D , 0x1E , 0x1F } ;

T c = spu mul (l . F , r . F) ;

c = spu add (c , s p u s h u f f l e (c , c , swap)) ;

T d = spu mul (r . F , s p u s h u f f l e (l . F , l . F , swap)) ;

d = s p u s u b (d , s p u s h u f f l e (d , d , swap)) ;

r e t u r n R e t t (s p u s h u f f l e (c , d , a l t e r)) ;

}

Times I (analog: times -I, complex conjugate)

template<>

i n l i n e UnaryReturn<RComplex<REAL64>, FnTimesI > : : Type t

t i m e s I (c o n s t RComplex<REAL64>& s1)

{

268 D. Implementation Details

t y p e d e f UnaryReturn<RComplex<REAL64>, FnTimesI > : : Type t R e t t ;

c o n s t v e c t o r u n s i g n e d c h a r swap =

{ 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

c o n s t v e c t o r d o u b l e h e l p = { −1.0 , 1 . 0 } ;

R e t t d (spu mul (s p u s h u f f l e (s1 . F , s1 . F , swap) , h e l p)) ;

r e t u r n d ;

}

Addition, Subtraction analog

template<>

i n l i n e B i n ar y Re t ur n<RComplex<REAL64>,

RComplex<REAL64>, OpAdd> : : Type t

o p e r a t o r +(c o n s t RComplex<REAL64>& l , c o n s t RComplex<REAL64>& r)

{
t y p e d e f B i na r yR e tu r n<RComplex<REAL64>,

RComplex<REAL64>, OpAdd> : : Type t R e t t ;

r e t u r n R e t t (spu add (l . F , r . F)) ;

}

D.3 Assignment Operators

Assignment Operators

t e m p l a t e <c l a s s T, template<c l a s s , i n t> c l a s s C>

c l a s s PMatrix<T, 3 , C>

{
// . . .

t y p e d e f C<T,3> CC ;

template<c l a s s T1>

i n l i n e

CC& o p e r a t o r =(c o n s t C<T1,3>& r h s)

{
elem (0 , 0) = r h s . e lem (0 , 0) ;

e lem (0 , 1) = r h s . e lem (0 , 1) ;

e lem (0 , 2) = r h s . e lem (0 , 2) ;

e lem (1 , 0) = r h s . e lem (1 , 0) ;

e lem (1 , 1) = r h s . e lem (1 , 1) ;

e lem (1 , 2) = r h s . e lem (1 , 2) ;

e lem (2 , 0) = r h s . e lem (2 , 0) ;

e lem (2 , 1) = r h s . e lem (2 , 1) ;

e lem (2 , 2) = r h s . e lem (2 , 2) ;

D.4. Mailboxes 269

r e t u r n s t a t i c c a s t <CC&>(∗ t h i s) ;

}
} ;

D.4 Mailboxes

There are two different SPU mailboxes implemented with MFC channels.

• SPU Read Inbound Mailbox (SPU receives a message)

• SPU Write Outbound Mailbox (SPU sends a message)

These services are available at the SPE and the PPE. However, usage of the mailboxes

differ if used from the SPE or from the PPE.

D.4.1 SPE side

The SPU Read Inbound Mailbox is used by reading the SPU Read Inbound Mailbox Channel.

If the SPU Read Inbound Mailbox Channel has a message, the value read from the mailbox

channel is the oldest message written to the mailbox. If the SPU Read Inbound Mailbox

has no message and SPU software reads from the channel, the SPU will stall on the read.

The SPU remains stalled until the PPE or other devices write a message to the mailbox by

writing to the MMIO address of the mailbox.

{
u n s i g n e d i n t msg ;

msg = s p u r e a d c h (SPU RdInMbox) ;

}

The SPU Write Outbound Mailbox is used by writing to the SPU Write Outbound Mailbox

Channel. This write-channel instruction will return immediately if there is sufficient space

in the SPU write outbound mailbox queue to hold the message value. If there is insufficient

space, the write-channel instruction will stall the SPU until the PPE or any other device

reads from this mailbox.

270 D. Implementation Details

{
u n s i g n e d i n t msg ;

s p u w r i t e c h (SPU WrOutMbox , msg) ;

}

D.4.2 PPE side

Using mailboxes on the PPE is a bit more involved. The PPE cannot use directly SPU

MFC channels, so it has to read and write to MMIO mapped MFC registers instead. These

accesses are non-blocking. In order to avoid unwanted overwriting of data and reading of

not yet available data PPE software queries MMIO mapped status registers of the SPU’s

MFC.

Before PPE software can read data from one of the SPU Write Outbound Mailboxes, it

must first read the Mailbox Status Register to determine that unread data is present in

the SPU Write Outbound Mailbox. If no data is available PPE software waits until data is

available.

u n s i g n e d i n t s p u M a i l b o x r e a d u i n t (i n t spu)

{
do {
} w h i l e (((ps [spu]−>SPU Mbox Stat) & 0 x000000FF) == 0) ;

r e t u r n ps [spu]−>SPU Out Mbox ;

}

Where ps is the problem state of the SPU, which is mapped at SPU initialisation time.

Mapping the problem state is part of the standard procedure of SPU initialisation supported

by the libspe2.

Using the SPU Read Inbound Mailbox from the PPE follows similar pattern. Since on the

PPE writing to a full SPU Read Inbound Mailbox will not stall, PPE software first has to

verify that the mailbox is not full. The fields of the SPU Mailbox Status Register can be

queried in order to check for a full mailbox.

v o i d s p u M a i l b o x w r i t e u i n t (i n t spu , u n s i g n e d i n t msg)

{
u n s i g n e d i n t mb status , s l o t s ;

do {
m b s t a t u s = ps [spu]−>SPU Mbox Stat ;

s l o t s = (m b s t a t u s & 0 x0000FF00) >> 8 ;

D.4. Mailboxes 271

} w h i l e (s l o t s == 0) ;

ps [spu]−>SPU In Mbox = msg ;

}

Appendix E

The GNU C++ Compiler

E.1 Inline Parameters

Several parameters control the tree inliner used in GNU C++ Compiler. Given is an extract

from the GNU C++ Compiler inline option description, the default values and the values

used in order to enable the tree inliner to inline all functions into the evaluate loop.

The version number of the GNU C++ Compiler used here is 4.3.2.

max-inline-insns-single

This number sets the maximum number of instructions (counted in internal represen-

tation of GNU C++ Compiler) in a single function that the tree inliner will consider

for inlining. This only affects functions declared inline and methods implemented in

a class declaration (C++). The default value is 450.

Value used 6000.

large-function-insns

The limit specifying really large functions. For functions larger than this limit after

inlining inlining is constrained by –param large-function-growth. This parameter

is useful primarily to avoid extreme compilation time caused by non-linear algorithms

used by the backend. The default value is 2700.

Value used 40000.

274 E. The GNU C++ Compiler

large-unit-insns

The limit specifying large translation unit. Growth caused by inlining of units larger

than this limit is limited by –param inline-unit-growth. For small units this might

be too tight (consider unit consisting of function A that is inline and B that just

calls A three time. If B is small relative to A, the growth of unit is 300% and yet

such inlining is very sane. For very large units consisting of small inlineable functions

however the overall unit growth limit is needed to avoid exponential explosion of code

size. Thus for smaller units, the size is increased to –param large-unit-insns before

applying –param inline-unit-growth. The default is 10000

Value used 40000.

large-stack-frame

The limit specifying large stack frames. While inlining the algorithm is trying to avoid

that the stack frame grows beyond this limit. Default value is 256 bytes.

Value used 1024.

large-stack-frame-growth

Specifies maximal growth of large stack frames caused by inlining in percents. The

default value is 1000 which limits large stack frame growth to 11 times the original

size.

Value used 10000.

Appendix F

Benchmark Measurements

F.1 QDP++ Functions

Table F.1 – SPU functions used for benchmark measurements. NS number of elements in one

transfer set, T0 destination type, Ti leaf types in QDP++ expression EQDP++.

n NS size(T0) size(Ti)

1000 4 2304 2304

1001 4 16 2304 2304

1002 4 2304 2304

1003 32 192 192 192

1004 128 72 72

1005 64 144 72

1006 64 144 144

1007 64 144 144 144

1008 4 2304 2304

1009 512 8 4

1010 256 8 8

1011 256 16 8 8

1012 4 2304 144 2304

1013 2 2304 144 2304 2304

1014 2 2304 144 2304 2304

276 F. Benchmark Measurements

1015 4 2304 2304 2304

1016 4 2304 2304 2304

1017 2 16 2304 2304 2304 2304

1018 128 16 16

1019 4 16 2304 2304

1020 4 16 2304 2304

1021 4 16 2304 2304

1022 512 4 4

1023 64 192 48

1024 8 144 2304

1025 64 48 192

1026 64 144 48

1027 8 2304 144

1028 4 2304 2304

1029 2 2304 144 2304 2304

1030 128 144 4

1031 64 144 144 144

1032 64 144 144 144

1033 64 144 144

1034 64 144 144

1035 64 144 144

1036 64 144 144

1037 256 8 8

1038 128 48 144

1039 64 96 192

1040 64 96 96

1041 64 96 144 192

1042 64 96 192

1043 64 96 144 192

1044 64 96 192

1045 64 96 144 192

F.1. QDP++ Functions 277

1046 64 96 192

1047 64 96 144 192

1048 16 192 144 96 96 144 96 96 144 96 96 144 96 96

1049 32 192 192 192

1050 32 192 192

1051 32 192 192

1052 32 192 192

1053 32 192 192

1054 512 4 4

1055 2048 1 4

1056 128 16 16 16

1057 128 16 16

1058 512 8 4

1059 32 192 192

1060 32 192 192 192

1061 64 144 144 144

1062 32 192 144 192

Appendix G

SPU Timing Analysis

G.1 Matrix Assignment

G.1.1 With Template Specialisation

The program version with template specialisation assigns a whole complex number with

one load and store operation.

1 1 01 6789 s t q x $7 , $21 , $9

1 012 789 l q d $75 , 9 1 2 ($sp)

3 1 −−−345678 −− s t q d $75 , 1 6 ($79)

1 456789 l q d $2 , 9 2 8 ($sp)

5 1 −−−−−012345 s t q d $2 , 3 2 ($79)

1 123456 l q d $3 , 9 4 4 ($sp)

7 1 −−−−−789012 s t q d $3 , 4 8 ($79)

1 890123 l q d $12 , 9 6 0 ($sp)

9 1 −−−−−456789 s t q d $12 , 6 4 ($79)

1 567890 l q d $6 , 9 7 6 ($sp)

11 1 −−−−−123456 s t q d $6 , 8 0 ($79)

1 234567 l q d $5 , 9 9 2 ($sp)

13 1 −−−−−890123 s t q d $5 , 9 6 ($79)

1 901234 l q d $80 , 1 0 0 8 ($sp)

15 1 0 −−−−−56789 s t q d $80 , 1 1 2 ($79)

1 01 6789 l q d $78 , 1 0 2 4 ($sp)

17 1 −−234567 −−− s t q d $78 , 1 2 8 ($79)

G.1.2 Without Template Specialisation

The SPU C++ Compiler produces inefficient code out of the generic assignment function.

When the compiler assigns the matrix element-wise it has to resolve the next template

level, i.e. the complex numbers. The real and imaginary parts get assigned separately

280 G. SPU Timing Analysis

which results in many load, shuffle, and store operations. The shuffle and rotate operations

are emphasised.

1 1 0 l n o p

0 12 i l $51 , 8 9 6

3 1 234567 l q d $82 , 1 1 0 4 ($sp)

0 34 a $83 , $51 , $sp

5 1 4 l n o p

L53 :

7 0 56 a i $13 , $83 , 1 3

1 678901 l q d $45 , 0 ($83)

9 0 78 a $44 , $83 , $111

1 890123 l q d $47 , 0 ($82)

11 0 90 a $6 , $83 , $112

1 0123 cbd $15 , 0 ($82)

13 0 12 a i $51 , $44 , 1 3

1 2345 cbx $18 , $82 , $111

15 0 34 a i $58 , $6 , 1 3

1 4567 cbx $20 , $82 , $112

17 0 56 a $8 , $83 , $96

1 6789 cbx $71 , $82 , $96

19 0 7 nop 127

1 8901 r o t q b y $46 , $45 , $13

21 0 90 a i $68 , $8 , 1 3

1 0123 cbx $28 , $82 , $86

23 0 12 a $17 , $83 , $86

1 2345 cbx $30 , $82 , $95

25 0 34 a $49 , $83 , $113

1 4567 cbx $31 , $82 , $113

27 0 5 nop 127

1 6789 s h u f b $41 , $46 , $47 , $15

29 0 78 a i $24 , $17 , 1 3

1 8901 cbx $34 , $82 , $114

31 0 90 a i $9 , $49 , 1 3

1 0123 cbx $39 , $82 , $115

33 0 12 a $50 , $83 , $114

1 2345 cbx $40 , $82 , $85

35 1 345678 s t q d $41 , 0 ($82)

1 456789 l q x $19 , $83 , $111

37 0 5 nop 127

1 01 6789 l q x $21 , $82 , $111

39 0 78 a i $37 , $50 , 1 3

1 01 89 cbx $42 , $82 , $116

41 0 0 9 a $16 , $83 , $115

1 0123 cbx $43 , $82 , $117

43 0 12 a $52 , $83 , $85

1 2345 cbx $44 , $82 , $118

45 0 34 a i $36 , $16 , 1 3

1 4567 cbx $45 , $82 , $119

47 0 5 nop 127

1 6789 r o t q b y $53 , $19 , $51

49 0 78 a i $11 , $52 , 1 3

1 8901 cbx $46 , $82 , $120

51 0 90 a $54 , $83 , $116

1 0123 cbx $47 , $82 , $121

53 0 12 a $55 , $83 , $117

1 2345 cbx $49 , $82 , $122

55 0 3 nop 127

1 4567 s h u f b $22 , $53 , $21 , $18

57 0 56 a i $4 , $54 , 1 3

1 6789 cbd $50 , 0 ($82)

59 0 78 a i $14 , $55 , 1 3

1 8901 cbx $51 , $82 , $123

61 0 90 a $56 , $83 , $118

G.1. Matrix Assignment 281

1 0123 cbx $52 , $82 , $124

63 1 123456 s t q x $22 , $82 , $111

1 234567 l q x $59 , $83 , $112

65 0 3 nop 127

1 456789 l q x $62 , $82 , $112

67 0 56 a i $12 , $56 , 1 3

1 6789 cbx $53 , $82 , $125

69 0 78 a $57 , $83 , $119

1 8901 cbx $54 , $82 , $126

71 0 90 a $60 , $83 , $120

1 0123 cbx $55 , $82 , $127

73 0 12 a i $13 , $57 , 1 3

1 2345 cbx $56 , $82 , $81

75 0 3 nop 127

1 4567 r o t q b y $61 , $59 , $58

77 0 56 a i $15 , $60 , 1 3

1 6789 cbd $57 , 7 ($82)

79 0 78 a $63 , $83 , $121

1 8901 cbx $58 , $82 , $97

81 0 90 a $64 , $83 , $122

1 0123 cbx $59 , $82 , $109

83 0 1 nop 127

1 2345 s h u f b $65 , $61 , $62 , $20

85 0 34 a i $6 , $63 , 1 3

1 4567 cbx $60 , $82 , $110

87 0 56 a i $17 , $64 , 1 3

1 6789 cbx $61 , $82 , $99

89 0 78 a i $41 , $83 , 1 3

1 01 89 cbx $62 , $82 , $100

91 1 01234 9 s t q x $65 , $82 , $112

1 012345 l q x $69 , $83 , $96

93 0 1 nop 127

1 234567 l q x $73 , $82 , $96

95 0 34 a $66 , $83 , $123

1 4567 cbx $63 , $82 , $101

97 0 56 a $67 , $83 , $124

1 6789 cbx $64 , $82 , $102

99 0 78 a i $16 , $66 , 1 3

1 8901 cbx $65 , $82 , $103

101 0 90 o r i $66 , $50 , 0

1 0123 r o t q b y $72 , $69 , $68

103 0 12 a i $19 , $67 , 1 3

1 2345 cbx $67 , $82 , $104

105 0 34 a $70 , $83 , $125

1 4567 cbx $68 , $82 , $105

107 0 56 a $48 , $83 , $102

1 6789 cbx $69 , $82 , $106

109 0 7 nop 127

1 8901 s h u f b $75 , $72 , $73 , $71

111 0 90 a i $18 , $70 , 1 3

1 0123 cbx $70 , $82 , $98

113 0 12 a $74 , $83 , $126

1 2345 cbx $71 , $82 , $107

115 0 34 a $76 , $83 , $127

1 4567 cbx $72 , $82 , $108

117 1 567890 s t q x $75 , $82 , $96

1 678901 l q x $78 , $83 , $86

119 1 789012 l q x $29 , $82 , $86

1 890123 s t q d $30 , 1 3 9 2 ($sp)

121 0 90 a i $21 , $74 , 1 3

1 0123 cbx $73 , $82 , $87

123 0 12 a i $8 , $76 , 1 3

1 2345 cbx $74 , $82 , $88

125 0 34 a $77 , $83 , $81

1 4567 cbx $75 , $82 , $89

282 G. SPU Timing Analysis

127 0 5 nop 127

1 6789 r o t q b y $2 , $78 , $24

129 0 78 a i $22 , $77 , 1 3

1 8901 cbx $76 , $82 , $90

131 0 90 a i $79 , $83 , 2 3

1 0123 cbx $77 , $82 , $91

133 0 12 a $80 , $83 , $97

1 2345 cbx $78 , $82 , $92

135 0 3 nop 127

1 4567 s h u f b $38 , $2 , $29 , $28

137 0 56 a i $20 , $79 , 1 3

1 6789 cbx $79 , $82 , $93

139 0 78 a i $24 , $80 , 1 3

1 01 89 cbx $80 , $82 , $94

141 0 0 9 a $5 , $83 , $109

1 012345 s t q x $38 , $82 , $86

143 1 123456 l q x $35 , $83 , $113

1 234567 l q x $32 , $82 , $113

145 0 34 a i $5 , $5 , 1 3

0 45 a $23 , $83 , $110

147 0 56 a $25 , $83 , $99

0d 67 a i $23 , $23 , 1 3

149 1d −7890 r o t q b y $3 , $35 , $9

0 89 a i $9 , $48 , 1 3

151 0 90 o r i $48 , $41 , 0

0d 01 a i $25 , $25 , 1 3

153 1d −1234 s h u f b $33 , $3 , $32 , $31

0 23 a $26 , $83 , $100

155 0 34 a $27 , $83 , $101

0d 45 a i $26 , $26 , 1 3

157 1d −567890 s t q x $33 , $82 , $113

1 678901 l q x $2 , $83 , $114

159 1 789012 l q x $35 , $82 , $114

0 89 a i $27 , $27 , 1 3

161 0 90 a $28 , $83 , $103

0 01 a $29 , $83 , $104

163 0 12 a i $28 , $28 , 1 3

1 2345 r o t q b y $38 , $2 , $37

165 0 34 a i $29 , $29 , 1 3

0 45 a $30 , $83 , $105

167 0 56 a $7 , $83 , $106

1 6789 s h u f b $3 , $38 , $35 , $34

169 0 78 a i $30 , $30 , 1 3

0 89 a i $7 , $7 , 1 3

171 0 90 a $31 , $83 , $98

1 012345 s t q x $3 , $82 , $114

173 1 123456 l q x $37 , $83 , $115

1 234567 l q x $38 , $82 , $115

175 0 34 a i $31 , $31 , 1 3

0 45 a $32 , $83 , $107

177 0 56 a $33 , $83 , $108

0d 67 a i $32 , $32 , 1 3

179 1d −7890 r o t q b y $2 , $37 , $36

0 89 a i $33 , $33 , 1 3

181 0 90 a $34 , $83 , $87

0d 01 a $10 , $83 , $88

183 1d −1234 s h u f b $3 , $2 , $38 , $39

0 23 a i $34 , $34 , 1 3

185 0 34 a i $10 , $10 , 1 3

0d 45 a $35 , $83 , $89

187 1d 0 −56789 s t q x $3 , $82 , $115

1 01 6789 l q x $39 , $83 , $85

189 1 012 789 l q x $3 , $82 , $85

0 89 a i $35 , $35 , 1 3

191 0 0 9 a $36 , $83 , $90

G.1. Matrix Assignment 283

0 01 a $37 , $83 , $91

193 0 12 a i $36 , $36 , 1 3

1 2345 r o t q b y $2 , $39 , $11

195 0 34 a i $37 , $37 , 1 3

0 45 a $38 , $83 , $92

197 0 56 a $11 , $83 , $93

1 6789 s h u f b $3 , $2 , $3 , $40

199 0 78 a i $38 , $38 , 1 3

0 89 a i $11 , $11 , 1 3

201 0 90 a $39 , $83 , $94

1 012345 s t q x $3 , $82 , $85

203 1 123456 l q x $2 , $83 , $116

1 234567 l q x $3 , $82 , $116

205 0 34 a i $39 , $39 , 1 3

0 45 a $40 , $83 , $95

207 0 −67 a i $40 , $40 , 1 3

1 7890 r o t q b y $2 , $2 , $4

209 1 −−−1234 s h u f b $4 , $2 , $3 , $42

1 −−−567890 s t q x $4 , $82 , $116

211 1 678901 l q x $2 , $83 , $117

1 789012 l q x $42 , $82 , $117

213 1 −−−−2345 r o t q b y $3 , $2 , $14

1 −−−6789 s h u f b $4 , $3 , $42 , $43

215 1 −−−012345 s t q x $4 , $82 , $117

1 123456 l q x $2 , $83 , $118

217 1 234567 l q x $14 , $82 , $118

1 0 −−−−789 r o t q b y $3 , $2 , $12

219 1 −1234 −− s h u f b $42 , $3 , $14 , $44

1 −−−567890 s t q x $42 , $82 , $118

221 1 678901 l q x $44 , $83 , $119

1 789012 l q x $12 , $82 , $119

223 1 −−−−2345 r o t q b y $43 , $44 , $13

1 −−−6789 s h u f b $13 , $43 , $12 , $45

225 1 −−−012345 s t q x $13 , $82 , $119

1 123456 l q x $4 , $83 , $120

227 1 234567 l q x $3 , $82 , $120

1 −−−−7890 r o t q b y $2 , $4 , $15

229 1 −−−1234 s h u f b $14 , $2 , $3 , $46

1 −−−567890 s t q x $14 , $82 , $120

231 1 678901 l q x $46 , $83 , $121

1 789012 l q x $45 , $82 , $121

233 1 −−−−2345 r o t q b y $42 , $46 , $6

1 −−−6789 s h u f b $44 , $42 , $45 , $47

235 1 012345 −−− s t q x $44 , $82 , $121

1 123456 l q x $43 , $83 , $122

237 1 234567 l q x $13 , $82 , $122

1 −−−−7890 r o t q b y $12 , $43 , $17

239 1 −−−1234 s h u f b $17 , $12 , $13 , $49

1 −−−567890 s t q x $17 , $82 , $122

241 1 678901 l q d $4 , 1 6 ($83)

1 789012 l q d $3 , 1 6 ($82)

243 1 −−−−2345 r o t q b y $15 , $4 , $41

1 −−−6789 s h u f b $6 , $15 , $3 , $50

245 1 −−−012345 s t q d $6 , 1 6 ($82)

1 123456 l q x $2 , $83 , $123

247 1 234567 l q x $50 , $82 , $123

1 −−−−7890 r o t q b y $14 , $2 , $16

249 1 −−−1234 s h u f b $49 , $14 , $50 , $51

0d 23 i l $50 , 2 3

251 1d 0 −−−56789 s t q x $49 , $82 , $123

1 01 6789 l q x $47 , $83 , $124

253 1 012 789 l q x $42 , $82 , $124

1 −−2345 −− r o t q b y $46 , $47 , $19

255 1 −−−6789 s h u f b $45 , $46 , $42 , $52

1 −−−012345 s t q x $45 , $82 , $124

284 G. SPU Timing Analysis

257 1 123456 l q x $44 , $83 , $125

1 234567890123456 h b r r . L192 , . L53

259 1 345678 l q x $43 , $82 , $125

1 −−−7890 r o t q b y $41 , $44 , $18

261 1 −−−1234 s h u f b $12 , $41 , $43 , $53

1 −−−567890 s t q x $12 , $82 , $125

263 1 678901 l q x $13 , $83 , $126

1 789012 l q x $18 , $82 , $126

265 1 −−−−2345 r o t q b y $19 , $13 , $21

1 −−−6789 s h u f b $17 , $19 , $18 , $54

267 0 78 i l $54 , 2 3

1 −−012345 s t q x $17 , $82 , $126

269 1 123456 l q x $4 , $83 , $127

1 234567 l q x $3 , $82 , $127

271 1 0 −−−−789 r o t q b y $15 , $4 , $8

1 −1234 −− s h u f b $6 , $15 , $3 , $55

273 1 −−−567890 s t q x $6 , $82 , $127

1 678901 l q x $2 , $83 , $81

275 1 789012 l q x $14 , $82 , $81

1 −−−−2345 r o t q b y $16 , $2 , $22

277 1 −−−6789 s h u f b $55 , $16 , $14 , $56

1 −−−012345 s t q x $55 , $82 , $81

279 1 123456 l q x $53 , $83 , $54

1 234567 l q x $51 , $82 , $54

281 1 −−−−7890 r o t q b y $52 , $53 , $20

1 −−−1234 s h u f b $49 , $52 , $51 , $57

283 1 −−−567890 s t q x $49 , $82 , $50

1 678901 l q x $47 , $83 , $97

285 1 789012 l q x $42 , $82 , $97

1 −−−−2345 r o t q b y $46 , $47 , $24

287 1 −−−6789 s h u f b $45 , $46 , $42 , $58

1 012345 −−− s t q x $45 , $82 , $97

289 1 123456 l q x $44 , $83 , $109

1 234567 l q x $43 , $82 , $109

291 1 −−−−7890 r o t q b y $41 , $44 , $5

1 −−−1234 s h u f b $24 , $41 , $43 , $59

293 1 −−−567890 s t q x $24 , $82 , $109

1 678901 l q x $22 , $83 , $110

295 1 789012 l q x $8 , $82 , $110

1 −−−−2345 r o t q b y $21 , $22 , $23

297 1 −−−6789 s h u f b $12 , $21 , $8 , $60

1 −−−012345 s t q x $12 , $82 , $110

299 1 123456 l q x $13 , $83 , $99

1 234567 l q x $19 , $82 , $99

301 1 −−−−7890 r o t q b y $20 , $13 , $25

1 −−−1234 s h u f b $18 , $20 , $19 , $61

303 1 0 −−−56789 s t q x $18 , $82 , $99

1 01 6789 l q x $17 , $83 , $100

305 1 012 789 l q x $15 , $82 , $100

1 −−2345 −− r o t q b y $4 , $17 , $26

307 1 −−−6789 s h u f b $3 , $4 , $15 , $62

1 −−−012345 s t q x $3 , $82 , $100

309 1 123456 l q x $6 , $83 , $101

1 234567 l q x $5 , $82 , $101

311 1 −−−−7890 r o t q b y $2 , $6 , $27

1 −−−1234 s h u f b $16 , $2 , $5 , $63

313 1 −−−567890 s t q x $16 , $82 , $101

1 678901 l q x $63 , $83 , $102

315 1 789012 l q x $61 , $82 , $102

1 −−−−2345 r o t q b y $62 , $63 , $9

317 1 −−−6789 s h u f b $60 , $62 , $61 , $64

1 −−−012345 s t q x $60 , $82 , $102

319 1 123456 l q x $59 , $83 , $103

1 234567 l q x $14 , $82 , $103

321 1 0 −−−−789 r o t q b y $58 , $59 , $28

G.1. Matrix Assignment 285

1 −1234 −− s h u f b $57 , $58 , $14 , $65

323 1 −−−567890 s t q x $57 , $82 , $103

1 678901 l q d $56 , 3 2 ($83)

325 1 789012 l q d $54 , 3 2 ($82)

1 −−−−2345 r o t q b y $55 , $56 , $48

327 1 −−−6789 s h u f b $53 , $55 , $54 , $66

1 −−−012345 s t q d $53 , 3 2 ($82)

329 1 123456 l q x $52 , $83 , $104

1 234567 l q x $50 , $82 , $104

331 1 −−−−7890 r o t q b y $51 , $52 , $29

1 −−−1234 s h u f b $49 , $51 , $50 , $67

333 1 −−−567890 s t q x $49 , $82 , $104

1 678901 l q x $48 , $83 , $105

335 1 789012 l q x $46 , $82 , $105

1 −−−−2345 r o t q b y $47 , $48 , $30

337 1 −−−6789 s h u f b $42 , $47 , $46 , $68

1 012345 −−− s t q x $42 , $82 , $105

339 1 123456 l q x $45 , $83 , $106

1 234567 l q x $41 , $82 , $106

341 1 −−−−7890 r o t q b y $44 , $45 , $7

1 −−−1234 s h u f b $43 , $44 , $41 , $69

343 1 −−−567890 s t q x $43 , $82 , $106

1 678901 l q x $30 , $83 , $98

345 1 789012 l q x $27 , $82 , $98

1 −−−−2345 r o t q b y $29 , $30 , $31

347 1 −−−6789 s h u f b $28 , $29 , $27 , $70

1 −−−012345 s t q x $28 , $82 , $98

349 1 123456 l q x $26 , $83 , $107

1 234567 l q x $24 , $82 , $107

351 1 −−−−7890 r o t q b y $25 , $26 , $32

1 −−−1234 s h u f b $23 , $25 , $24 , $71

353 1 0 −−−56789 s t q x $23 , $82 , $107

1 01 6789 l q x $7 , $83 , $108

355 1 012 789 l q x $21 , $82 , $108

1 −−2345 −− r o t q b y $22 , $7 , $33

357 1 −−−6789 s h u f b $8 , $22 , $21 , $72

1 −−−012345 s t q x $8 , $82 , $108

359 1 123456 l q x $12 , $83 , $87

1 234567 l q x $20 , $82 , $87

361 1 −−−−7890 r o t q b y $13 , $12 , $34

1 −−−1234 s h u f b $19 , $13 , $20 , $73

363 1 −−−567890 s t q x $19 , $82 , $87

1 678901 l q x $18 , $83 , $88

365 1 789012 l q x $4 , $82 , $88

1 −−−−2345 r o t q b y $17 , $18 , $10

367 1 −−−6789 s h u f b $15 , $17 , $4 , $74

1 −−−012345 s t q x $15 , $82 , $88

369 1 123456 l q x $3 , $83 , $89

1 234567 l q x $9 , $82 , $89

371 1 0 −−−−789 r o t q b y $6 , $3 , $35

1 −1234 −− s h u f b $10 , $6 , $9 , $75

373 1 −−−567890 s t q x $10 , $82 , $89

1 678901 l q x $2 , $83 , $90

375 1 789012 l q x $16 , $82 , $90

1 −−−−2345 r o t q b y $5 , $2 , $36

377 1 −−−6789 s h u f b $74 , $5 , $16 , $76

1 −−−012345 s t q x $74 , $82 , $90

379 1 123456 l q x $73 , $83 , $91

1 234567 l q x $71 , $82 , $91

381 1 −−−−7890 r o t q b y $72 , $73 , $37

1 −−−1234 s h u f b $70 , $72 , $71 , $77

383 1 −−−567890 s t q x $70 , $82 , $91

1 678901 l q x $69 , $83 , $92

385 1 789012 l q x $67 , $82 , $92

1 −−−−2345 r o t q b y $68 , $69 , $38

286 G. SPU Timing Analysis

387 1 −−−6789 s h u f b $66 , $68 , $67 , $78

1 012345 −−− s t q x $66 , $82 , $92

389 1 123456 l q x $65 , $83 , $93

1 234567 l q x $63 , $82 , $93

391 1 −−−−7890 r o t q b y $64 , $65 , $11

1 −−−1234 s h u f b $62 , $64 , $63 , $79

393 1 −−−567890 s t q x $62 , $82 , $93

1 678901 l q x $61 , $83 , $94

395 1 789012 l q x $59 , $82 , $94

1 −−−−2345 r o t q b y $60 , $61 , $39

397 1 −−−6789 s h u f b $58 , $60 , $59 , $80

1 −−−012345 s t q x $58 , $82 , $94

399 0 1 nop 127

1 234567 l q x $57 , $83 , $95

401 0 34 a i $83 , $83 , 4 8

1 456789 l q x $54 , $82 , $95

403 1 567890 l q d $56 , 1 3 9 2 ($sp)

1 678901 l q d $14 , 1 6 1 6 ($sp)

405 1 −8901 r o t q b y $55 , $57 , $40

0D −−−23 ceq $52 , $83 , $14

407 1D 2345 s h u f b $53 , $55 , $54 , $56

1 01 −−−6789 s t q x $53 , $82 , $95

409 0 78 a i $82 , $82 , 4 8

L192 :

411 1 01 89 b r z $52 , . L53

1 01234567890123 9 h b r r . L191 , . L54

G.2 Matrix Multiplication

G.2.1 With Template Specialisation

The program part for the multiplication of two colour matrices with template specialisation

does not contain any loop. It contains 27 complex multiplications each of which involves

shuffle operations. Optimisations beyond the level of loop unrolling are not carried out.

This program part executes in roughly 300 machine cycles.

1 345678 l q x $21 , $15 , $23

2 1 456789 l q d $75 , 1 6 ($17)

1 567890 l q x $10 , $13 , $23

4 1 678901 l q d $18 , 4 8 ($14)

1 789012 l q d $7 , 3 2 ($17)

6 1 890123 l q d $4 , 9 6 ($14)

1 9012 s h u f b $2 , $21 , $21 , $24

8 1 0123 s h u f b $16 , $75 , $75 , $24

0 123456789 dfm $76 , $21 , $10

10 0 234567890 dfm $3 , $75 , $18

0 345678901 dfm $19 , $10 , $2

12 0 456789012 dfm $6 , $18 , $16

0D 567890123 dfm $78 , $7 , $4

14 1D 5678 s h u f b $74 , $7 , $7 , $24

1 −−−−0123 s h u f b $8 , $76 , $76 , $24

16 1 1234 s h u f b $83 , $3 , $3 , $24

0D 0 23456789 dfm $20 , $4 , $74

18 1D 2345 s h u f b $80 , $19 , $19 , $24

G.2. Matrix Multiplication 287

0 012 −456789 d f s $75 , $76 , $8

20 0 0123 56789 d f s $16 , $3 , $83

1 6789 s h u f b $11 , $6 , $6 , $24

22 0 012345 789 d f a $5 , $19 , $80

1 01 89 s h u f b $79 , $78 , $78 , $24

24 1 −1234 − s h u f b $9 , $20 , $20 , $24

0 234567890 d f a $10 , $6 , $11

26 0 345678901 d f s $2 , $78 , $79

0d −567890123 d f a $18 , $20 , $9

28 1d −6789 s h u f b $74 , $75 , $5 , $25

1 −−−−1234 s h u f b $7 , $16 , $10 , $25

30 1 −−4567 s h u f b $8 , $2 , $18 , $25

0 567890123 d f a $21 , $74 , $7

32 0 −−−−−−−−456789012 d f a $74 , $21 , $8

1 −−−−−−−−345678 s t q d $74 , 1 1 6 8 ($sp)

34 1 456789 l q x $76 , $15 , $23

1 567890 l q d $83 , 1 6 ($17)

36 1 678901 l q d $19 , 1 6 ($14)

1 789012 l q d $6 , 6 4 ($14)

38 1 890123 l q d $11 , 3 2 ($17)

1 901234 l q d $4 , 1 1 2 ($14)

40 1 0123 s h u f b $80 , $76 , $76 , $24

1 1234 s h u f b $79 , $83 , $83 , $24

42 0 0 23456789 dfm $20 , $76 , $19

0 01 3456789 dfm $3 , $83 , $6

44 0 012 456789 dfm $5 , $19 , $80

0 0123 56789 dfm $18 , $6 , $79

46 0 01234 6789 dfm $2 , $11 , $4

1 0 789 s h u f b $78 , $11 , $11 , $24

48 1 −1234 −− s h u f b $9 , $20 , $20 , $24

1 2345 s h u f b $75 , $3 , $3 , $24

50 0 345678901 dfm $76 , $4 , $78

1 4567 s h u f b $10 , $5 , $5 , $24

52 0 567890123 d f s $80 , $20 , $9

0D 678901234 d f s $79 , $3 , $75

54 1D 6789 s h u f b $16 , $18 , $18 , $24

0D −890123456 d f a $83 , $5 , $10

56 1D 8901 s h u f b $7 , $2 , $2 , $24

1 −−−2345 s h u f b $8 , $76 , $76 , $24

58 0 345678901 d f a $19 , $18 , $16

0 456789012 d f s $78 , $2 , $7

60 0 −678901234 d f a $11 , $76 , $8

1 7890 s h u f b $75 , $80 , $83 , $25

62 1 −−−−2345 s h u f b $9 , $79 , $19 , $25

1 −−5678 s h u f b $10 , $78 , $11 , $25

64 0 678901234 d f a $20 , $75 , $9

0d −−−−−−−−567890123 d f a $75 , $20 , $10

66 1d −−−−−−−−−456789 s t q d $75 , 1 1 8 4 ($sp)

1 0 56789 l q x $4 , $15 , $23

68 1 01 6789 l q d $5 , 1 6 ($17)

1 012 789 l q d $6 , 3 2 ($14)

70 1 0123 89 l q d $76 , 8 0 ($14)

1 01234 9 l q d $83 , 3 2 ($17)

72 1 012345 l q d $80 , 1 2 8 ($14)

1 1234 s h u f b $16 , $4 , $4 , $24

74 1 2345 s h u f b $18 , $5 , $5 , $24

0 345678901 dfm $19 , $4 , $6

76 0 456789012 dfm $3 , $5 , $76

0 567890123 dfm $79 , $6 , $16

78 0 678901234 dfm $78 , $76 , $18

0D 789012345 dfm $15 , $83 , $80

80 1D 7890 s h u f b $7 , $83 , $83 , $24

1 −−−−2345 s h u f b $8 , $19 , $19 , $24

82 1 3456 s h u f b $2 , $3 , $3 , $24

0D 456789012 dfm $4 , $80 , $7

288 G. SPU Timing Analysis

84 1D 4567 s h u f b $12 , $79 , $79 , $24

0 −678901234 d f s $16 , $19 , $8

86 0 789012345 d f s $18 , $3 , $2

1 8901 s h u f b $11 , $78 , $78 , $24

88 0 901234567 d f a $5 , $79 , $12

1 0123 s h u f b $9 , $15 , $15 , $24

90 1 −−3456 s h u f b $10 , $4 , $4 , $24

0 456789012 d f a $6 , $78 , $11

92 0 567890123 d f s $83 , $15 , $9

0d −789012345 d f a $76 , $4 , $10

94 1d −8901 s h u f b $80 , $16 , $5 , $25

1 −−−−3456 s h u f b $7 , $18 , $6 , $25

96 1 −−6789 s h u f b $8 , $83 , $76 , $25

0 789012345 d f a $19 , $80 , $7

98 0 01234 −−−−−−−−6789 d f a $80 , $19 , $8

1 −−−−−567890 −−− s t q d $80 , 1 2 0 0 ($sp)

100 1 678901 l q d $2 , 4 8 ($17)

1 789012 l q d $3 , 6 4 ($17)

102 1 890123 l q x $79 , $13 , $23

1 901234 l q d $15 , 4 8 ($14)

104 1 012345 l q d $16 , 8 0 ($17)

1 123456 l q d $4 , 9 6 ($14)

106 1 2345 s h u f b $12 , $2 , $2 , $24

1 3456 s h u f b $78 , $3 , $3 , $24

108 0 456789012 dfm $18 , $2 , $79

0 567890123 dfm $76 , $3 , $15

110 0 678901234 dfm $5 , $79 , $12

0 789012345 dfm $6 , $15 , $78

112 0 890123456 dfm $2 , $16 , $4

1 9012 s h u f b $9 , $16 , $16 , $24

114 1 −−−3456 s h u f b $10 , $18 , $18 , $24

1 4567 s h u f b $11 , $76 , $76 , $24

116 0 567890123 dfm $79 , $4 , $9

1 6789 s h u f b $83 , $5 , $5 , $24

118 0 789012345 d f s $15 , $18 , $10

0D 890123456 d f s $3 , $76 , $11

120 1D 8901 s h u f b $7 , $6 , $6 , $24

0D −012345678 d f a $78 , $5 , $83

122 1D 0123 s h u f b $8 , $2 , $2 , $24

1 −−−4567 s h u f b $12 , $79 , $79 , $24

124 0 567890123 d f a $16 , $6 , $7

0 678901234 d f s $10 , $2 , $8

126 0 −890123456 d f a $9 , $79 , $12

1 9012 s h u f b $76 , $15 , $78 , $25

128 1 −−−−4567 s h u f b $11 , $3 , $16 , $25

1 0 −−789 s h u f b $83 , $10 , $9 , $25

130 0 0123456 89 d f a $18 , $76 , $11

0d −−−−−−−789012345 − d f a $76 , $18 , $83

132 1d −−−−−−−−−678901 s t q d $76 , 1 2 1 6 ($sp)

1 789012 l q d $6 , 4 8 ($17)

134 1 890123 l q d $7 , 6 4 ($17)

1 901234 l q d $5 , 1 6 ($14)

136 1 012345 l q d $4 , 6 4 ($14)

1 123456 l q d $12 , 8 0 ($17)

138 1 234567 l q d $78 , 1 1 2 ($14)

1 3456 s h u f b $2 , $6 , $6 , $24

140 1 4567 s h u f b $8 , $7 , $7 , $24

0 567890123 dfm $16 , $6 , $5

142 0 678901234 dfm $3 , $7 , $4

0 789012345 dfm $11 , $5 , $2

144 0 890123456 dfm $6 , $4 , $8

0D 901234567 dfm $2 , $12 , $78

146 1D 9012 s h u f b $79 , $12 , $12 , $24

1 −−−−4567 s h u f b $15 , $16 , $16 , $24

148 1 5678 s h u f b $9 , $3 , $3 , $24

G.2. Matrix Multiplication 289

0D 678901234 dfm $4 , $78 , $79

150 1D 6789 s h u f b $10 , $11 , $11 , $24

0 −890123456 d f s $12 , $16 , $15

152 0 901234567 d f s $78 , $3 , $9

1 0123 s h u f b $83 , $6 , $6 , $24

154 0 123456789 d f a $5 , $11 , $10

1 2345 s h u f b $7 , $2 , $2 , $24

156 1 −−5678 s h u f b $8 , $4 , $4 , $24

0 01234 6789 d f a $79 , $6 , $83

158 0 012345 789 d f s $9 , $2 , $7

0d 01234567 −9 d f a $15 , $4 , $8

160 1d 0123 − s h u f b $10 , $12 , $5 , $25

1 −−−−5678 s h u f b $3 , $78 , $79 , $25

162 1 −−8901 s h u f b $11 , $9 , $15 , $25

0 901234567 d f a $16 , $10 , $3

164 0 −−−−−−−−890123456 d f a $16 , $16 , $11

1 −−−−−−−−789012 s t q d $16 , 1 2 3 2 ($sp)

166 1 890123 l q d $83 , 4 8 ($17)

1 901234 l q d $6 , 6 4 ($17)

168 1 012345 l q d $5 , 3 2 ($14)

1 123456 l q d $7 , 8 0 ($14)

170 1 234567 l q d $4 , 8 0 ($17)

1 345678 l q d $79 , 1 2 8 ($14)

172 1 4567 s h u f b $2 , $83 , $83 , $24

1 5678 s h u f b $8 , $6 , $6 , $24

174 0 678901234 dfm $15 , $83 , $5

0 789012345 dfm $3 , $6 , $7

176 0 890123456 dfm $11 , $5 , $2

0 901234567 dfm $6 , $7 , $8

178 0 012345678 dfm $2 , $4 , $79

1 1234 s h u f b $12 , $4 , $4 , $24

180 1 0123456 23456789 h b r r . L195 , . L103

1 −−5678 s h u f b $78 , $15 , $15 , $24

182 1 6789 s h u f b $9 , $3 , $3 , $24

0D 012345 789 dfm $4 , $79 , $12

184 1D 0 789 s h u f b $10 , $11 , $11 , $24

0 01234567 −9 d f s $12 , $15 , $78

186 0 012345678 d f s $78 , $3 , $9

1 1234 s h u f b $83 , $6 , $6 , $24

188 0 234567890 d f a $5 , $11 , $10

1 3456 s h u f b $7 , $2 , $2 , $24

190 1 −−6789 s h u f b $8 , $4 , $4 , $24

0 789012345 d f a $79 , $6 , $83

192 0 890123456 d f s $9 , $2 , $7

0d −012345678 d f a $11 , $4 , $8

194 1d −1234 s h u f b $83 , $12 , $5 , $25

1 −−−−6789 s h u f b $3 , $78 , $79 , $25

196 1 −−9012 s h u f b $10 , $9 , $11 , $25

0 012345678 d f a $15 , $83 , $3

198 0 −−−−−−−−901234567 d f a $83 , $15 , $10

1 −−−−−−−−890123 s t q d $83 , 1 2 4 8 ($sp)

200 1 901234 l q d $12 , 9 6 ($17)

1 012345 l q d $6 , 1 1 2 ($17)

202 1 123456 l q x $5 , $13 , $23

1 234567 l q d $7 , 4 8 ($14)

204 1 345678 l q d $79 , 1 2 8 ($17)

1 456789 l q d $4 , 9 6 ($14)

206 1 5678 s h u f b $2 , $12 , $12 , $24

1 6789 s h u f b $8 , $6 , $6 , $24

208 0 012345 789 dfm $11 , $12 , $5

0 0123456 89 dfm $3 , $6 , $7

210 0 01234567 9 dfm $12 , $5 , $2

0 012345678 dfm $6 , $7 , $8

212 0 123456789 dfm $2 , $79 , $4

1 2345 s h u f b $78 , $79 , $79 , $24

290 G. SPU Timing Analysis

214 1 −−−6789 s h u f b $13 , $11 , $11 , $24

1 7890 s h u f b $9 , $3 , $3 , $24

216 0 890123456 dfm $79 , $4 , $78

1 9012 s h u f b $10 , $12 , $12 , $24

218 0 012345678 d f s $78 , $11 , $13

0D 123456789 d f s $13 , $3 , $9

220 1D 1234 s h u f b $9 , $6 , $6 , $24

0D −345678901 d f a $5 , $12 , $10

222 1D 3456 s h u f b $7 , $2 , $2 , $24

1 −−−7890 s h u f b $8 , $79 , $79 , $24

224 0 890123456 d f a $6 , $6 , $9

0 901234567 d f s $12 , $2 , $7

226 0 −123456789 d f a $4 , $79 , $8

1 2345 s h u f b $79 , $78 , $5 , $25

228 1 −−−−7890 s h u f b $9 , $13 , $6 , $25

1 −−0123 s h u f b $10 , $12 , $4 , $25

230 0 123456789 d f a $11 , $79 , $9

0d −−−−−−−−012345678 d f a $79 , $11 , $10

232 1d 01234 −−−−−−−−−9 s t q d $79 , 1 2 6 4 ($sp)

1 012345 l q d $3 , 9 6 ($17)

234 1 123456 l q d $5 , 1 1 2 ($17)

1 234567 l q d $78 , 1 6 ($14)

236 1 345678 l q d $6 , 6 4 ($14)

1 456789 l q d $13 , 1 2 8 ($17)

238 1 567890 l q d $4 , 1 1 2 ($14)

1 6789 s h u f b $2 , $3 , $3 , $24

240 1 7890 s h u f b $7 , $5 , $5 , $24

0 890123456 dfm $9 , $3 , $78

242 0 901234567 dfm $3 , $5 , $6

0 012345678 dfm $5 , $78 , $2

244 0 123456789 dfm $78 , $6 , $7

0D 234567890 dfm $2 , $13 , $4

246 1D 2345 s h u f b $12 , $13 , $13 , $24

1 −−−−7890 s h u f b $8 , $9 , $9 , $24

248 1 8901 s h u f b $10 , $3 , $3 , $24

0d 901234567 dfm $4 , $4 , $12

250 1d −0123 s h u f b $13 , $78 , $78 , $24

0 123456789 d f s $9 , $9 , $8

252 0 234567890 d f s $3 , $3 , $10

1 3456 s h u f b $7 , $5 , $5 , $24

254 0 456789012 d f a $6 , $78 , $13

1 5678 s h u f b $12 , $2 , $2 , $24

256 1 −−8901 s h u f b $8 , $4 , $4 , $24

0 901234567 d f a $5 , $5 , $7

258 0 012345678 d f s $10 , $2 , $12

0d −234567890 d f a $7 , $4 , $8

260 1d −3456 s h u f b $13 , $3 , $6 , $25

1 −−−−8901 s h u f b $78 , $9 , $5 , $25

262 1 −−1234 s h u f b $12 , $10 , $7 , $25

0 0 23456789 d f a $9 , $78 , $13

264 0 −123456789 −−−−−−− d f a $78 , $9 , $12

1 −−−−−−−−012345 s t q d $78 , 1 2 8 0 ($sp)

266 1 123456 l q d $2 , 9 6 ($17)

1 234567 l q d $4 , 1 1 2 ($17)

268 1 345678 l q d $6 , 3 2 ($14)

1 456789 l q d $7 , 8 0 ($14)

270 1 567890 l q d $5 , 1 2 8 ($14)

1 678901 l q d $8 , 1 2 8 ($17)

272 1 7890 s h u f b $3 , $2 , $2 , $24

1 8901 s h u f b $14 , $4 , $4 , $24

274 0 901234567 dfm $17 , $2 , $6

0 012345678 dfm $4 , $4 , $7

276 0 123456789 dfm $6 , $6 , $3

0 234567890 dfm $7 , $7 , $14

278 0 345678901 dfm $3 , $8 , $5

G.2. Matrix Multiplication 291

1 4567 s h u f b $10 , $8 , $8 , $24

280 1 −−−8901 s h u f b $13 , $17 , $17 , $24

1 9012 s h u f b $12 , $4 , $4 , $24

282 0 012345678 dfm $5 , $5 , $10

1 1234 s h u f b $14 , $6 , $6 , $24

284 0 234567890 d f s $2 , $17 , $13

0D 345678901 d f s $17 , $4 , $12

286 1D 3456 s h u f b $8 , $7 , $7 , $24

0D −567890123 d f a $12 , $6 , $14

288 1D 5678 s h u f b $10 , $3 , $3 , $24

1 −−−9012 s h u f b $13 , $5 , $5 , $24

290 0 012345678 d f a $7 , $7 , $8

0 123456789 d f s $3 , $3 , $10

292 0 01 −3456789 d f a $5 , $5 , $13

1 4567 s h u f b $2 , $2 , $12 , $25

294 1 012 −−−−9 s h u f b $4 , $17 , $7 , $25

1 −−2345 s h u f b $14 , $3 , $5 , $25

296 0 345678901 d f a $6 , $2 , $4

0d −−−−−−−−234567890 d f a $17 , $6 , $14

298 1d −−−−−−−−−123456 s t q d $17 , 1 2 9 6 ($sp)

G.2.2 Without Template Specialisation

Without template specialisation the C++ compiler produces 2 nested loops to carry out the

matrix multiplication. The inner-most loop body contains roughly 70 machine cycles. In

order to realise the complex multiplication the real and imaginary parts need to be accessed,

i.e. sub-quad word access is necessary. This results in rotate and shuffle operations. In

order to multiply the two colour matrices the inner loop body is executed 9 times. For better

visibility we emphasised the rotate operations, most of which (not the first two appearing

in the code) result from accessing the real and imaginary parts in complex multiplication.

1 0 34 a $13 , $81 , $34

1 456789 l q x $16 , $81 , $34

3 0 56 o r i $21 , $83 , 0

0 67 i l $22 , 0

5 0 7 nop 127

1 −−0123 r o t q b y $8 , $16 , $13

7 0 −−−45 a $7 , $8 , $34

1 0 56789 l q x $28 , $8 , $34

9 0 6 nop 127

1 −1234 −−− r o t q b y $27 , $28 , $7

11 0 −−−56 a $19 , $27 , $33

L63 :

13 1 678901234567890 h b r r . L214 , . L64

0 7890 s h l i $23 , $22 , 4

15 0 89 o r i $18 , $26 , 0

0 90 a i $25 , $19 , 8

17 0 01 a i $24 , $19 , 2 4

0 12 a $28 , $37 , $23

19 0 23 a i $23 , $19 , 4 0

0 34 a i $17 , $28 , 8

21 1 4 l n o p

L64 :

23 0 56 a i $12 , $18 , 8

292 G. SPU Timing Analysis

1 678901 l q d $9 , 0 ($18)

25 0 78 a i $28 , $17 ,−8

1 890123 l q d $13 , 0 ($25)

27 0 90 a i $11 , $18 , 5 6

1 012345 l q d $16 , 0 ($12)

29 1 123456 l q d $14 , 0 ($19)

1 234567 l q d $30 , 0 ($17)

31 1 3456 cdd $31 , 0 ($17)

1 4567 r o t q b y $5 , $9 , $18

33 1 5678 r o t q b y $27 , $13 , $25

1 6789 r o t q b y $2 , $16 , $12

35 0 7 nop 127

1 8901 r o t q b y $15 , $14 , $19

37 0 90 o r i $14 , $31 , 0

1 0123 cdd $10 , 0 ($28)

39 0 123456789 dfm $9 , $5 , $27

0 234567890 dfm $7 , $27 , $2

41 0 34 o r i $27 , $31 , 0

0 45 o r i $13 , $10 , 0

43 0 56 o r i $16 , $10 , 0

0 67 a i $12 , $18 , 1 0 4

45 0 789012345 dfma $9 , $15 , $2

0d 890123456 dfms $7 , $15 , $5

47 1d −−−−−−−−6789 s h u f b $29 , $9 , $30 , $31

1 012345 −−− s t q d $29 , 0 ($17)

49 1 123456 l q d $8 , 0 ($28)

1 −−−−−7890 s h u f b $2 , $7 , $8 , $10

51 1 −−−123456 s t q d $2 , 0 ($28)

1 234567 l q d $6 , 0 ($11)

53 1 345678 l q d $3 , 0 ($24)

1 456789 l q d $4 , 4 8 ($18)

55 1 567890 l q d $5 , 1 6 ($19)

1 −−8901 r o t q b y $30 , $6 , $11

57 1 9012 r o t q b y $15 , $3 , $24

1 0123 r o t q b y $31 , $4 , $18

59 1 1234 r o t q b y $29 , $5 , $19

0 −345678901 dfm $10 , $15 , $30

61 0 456789012 dfm $3 , $31 , $15

0 567890123 dfms $10 , $29 , $31

63 0 678901234 dfma $3 , $29 , $30

0 −−−−−−−456789012 d f a $7 , $7 , $10

65 0 567890123 d f a $9 , $9 , $3

1 −−−−−−−3456 s h u f b $4 , $7 , $2 , $13

67 1 012 −−−789 s t q d $4 , 0 ($28)

1 0123 89 l q d $11 , 0 ($17)

69 1 −−−−4567 − s h u f b $2 , $9 , $11 , $14

1 −−−890123 s t q d $2 , 0 ($17)

71 1 901234 l q d $6 , 0 ($12)

1 012345 l q d $5 , 0 ($23)

73 1 123456 l q d $15 , 9 6 ($18)

1 234567 l q d $31 , 3 2 ($19)

75 1 345678 l q d $11 , 0 ($28)

1 −5678 r o t q b y $10 , $6 , $12

77 1 6789 r o t q b y $30 , $5 , $23

1 7890 r o t q b y $29 , $15 , $18

79 0 89 a i $18 , $18 , 1 6

1 9012 r o t q b y $13 , $31 , $19

81 0 012345678 dfm $8 , $30 , $10

0 123456789 dfm $3 , $29 , $30

83 0 −345678901 dfms $8 , $13 , $29

0 456789012 dfma $3 , $13 , $10

85 0 −−−−−−−234567890 d f a $4 , $7 , $8

0d 345678901 d f a $2 , $9 , $3

87 1d −−−−−−−−1234 s h u f b $14 , $4 , $11 , $16

1 0 −−−56789 s t q d $14 , 0 ($28)

G.2. Matrix Multiplication 293

89 1 01 6789 l q d $5 , 0 ($17)

1 −−2345 −−− s h u f b $12 , $2 , $5 , $27

91 1 −−−678901 s t q d $12 , 0 ($17)

0 78 a i $17 , $17 , 1 6

93 0 −90 ceq $6 , $21 , $17

L214 :

95 1 −1234 b r z $6 , . L64

0 23 a i $22 , $22 , 3

97 0 34 a i $19 , $19 , 4 8

0 45 c e q i $17 , $22 , 9

99 0d 56 a i $21 , $21 , 4 8

1d −6789 b r z $17 , . L63

Bibliography

[1] D. J. Gross, F. Wilczek, Asymptotically Free Gauge Theories. I, Phys. Rev. D 8 (10)

(1973) 3633–3652. doi:10.1103/PhysRevD.8.3633.

[2] D. J. Gross, F. Wilczek, Asymptotically free gauge theories. II, Phys. Rev. D 9 (4)

(1974) 980–993. doi:10.1103/PhysRevD.9.980.

[3] Accessed 12/2010 [link].

URL http://en.wikipedia.org/wiki/Quark_model

[4] T. van Ritbergen, J. A. M. Vermaseren, S. A. Larin, The Four-Loop Beta Function

in Quantum Chromodynamics, Phys. Lett. B400 (1997) 379–384. arXiv:hep-ph/

9701390, doi:10.1016/S0370-2693(97)00370-5.

[5] R. Horsley, Habilitation Schrift, Berlin 2001: The Hadronic Structure of Matter – a

lattice approach.

[6] W.-M. e. a. Yao, Review of Particle Physics, Journal of Physics G: Nuclear and

Particle Physics 33 (1) (2006) 1.

[7] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22 (4) (1961)

579 – 588. doi:10.1016/0029-5582(61)90469-2.

[8] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (21) (1967) 1264–1266.

doi:10.1103/PhysRevLett.19.1264.

[9] A. Salam, Nobel Lecture, 1968.

[10] C. Amsler, et al., Review of Particle Physics, Phys. Lett. B667 (2008) 1. doi:

10.1016/j.physletb.2008.07.018.

http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.9.980
http://en.wikipedia.org/wiki/Quark_model
http://en.wikipedia.org/wiki/Quark_model
http://arxiv.org/abs/hep-ph/9701390
http://arxiv.org/abs/hep-ph/9701390
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018

296 BIBLIOGRAPHY

[11] S. L. Adler, Calculation of the Axial-Vector Coupling Constant Renormalization in

β-decay, Phys. Rev. Lett. 14 (25) (1965) 1051–1055. doi:10.1103/PhysRevLett.

14.1051.

[12] W. I. Weisberger, Renormalization of the Weak Axial-Vector Coupling Constant,

Phys. Rev. Lett. 14 (25) (1965) 1047–1051. doi:10.1103/PhysRevLett.14.1047.

[13] S. Sasaki, K. Orginos, S. Ohta, T. Blum, Nucleon axial charge from quenched lattice

QCD with domain wall fermions, Phys. Rev. D68 (2003) 054509. arXiv:hep-lat/

0306007, doi:10.1103/PhysRevD.68.054509.

[14] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (12) (1963)

531–533. doi:10.1103/PhysRevLett.10.531.

[15] K. Dannbom, L. Y. Glozman, C. Helminen, D. O. Riska, Baryon magnetic moments

and axial coupling constants with relativistic and exchange current effects, Nucl. Phys.

A616 (1997) 555–574. arXiv:hep-ph/9610384, doi:10.1016/S0375-9474(97)

81119-0.

[16] J. M. Gaillard, G. Sauvage, Hyperon Beta Decays, Ann. Rev. Nucl. Part. Sci. 34

(1984) 351–402.

[17] R. P. Feynman, Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. 23 (24)

(1969) 1415–1417. doi:10.1103/PhysRevLett.23.1415.

[18] M. Gell-Mann, Symmetries of Baryons and Mesons, Phys. Rev. 125 (3) (1962) 1067–

1084. doi:10.1103/PhysRev.125.1067.

[19] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking (CERN-

TH-412) (1964) 80 p.

[20] A. V. Manohar, An introduction to spin dependent deep inelastic scatteringarXiv:

hep-ph/9204208.

[21] D. Mueller, D. Robaschik, B. Geyer, F. M. Dittes, J. Horejsi, Wave functions, evolu-

tion equations and evolution kernels from light-ray operators of QCD, Fortschr. Phys.

42 (1994) 101. arXiv:hep-ph/9812448.

http://dx.doi.org/10.1103/PhysRevLett.14.1051
http://dx.doi.org/10.1103/PhysRevLett.14.1051
http://dx.doi.org/10.1103/PhysRevLett.14.1047
http://arxiv.org/abs/hep-lat/0306007
http://arxiv.org/abs/hep-lat/0306007
http://dx.doi.org/10.1103/PhysRevD.68.054509
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://arxiv.org/abs/hep-ph/9610384
http://dx.doi.org/10.1016/S0375-9474(97)81119-0
http://dx.doi.org/10.1016/S0375-9474(97)81119-0
http://dx.doi.org/10.1103/PhysRevLett.23.1415
http://dx.doi.org/10.1103/PhysRev.125.1067
http://arxiv.org/abs/hep-ph/9204208
http://arxiv.org/abs/hep-ph/9204208
http://arxiv.org/abs/hep-ph/9812448

BIBLIOGRAPHY 297

[22] A. V. Radyushkin, Nonforward Parton Distributions, Phys. Rev. D56 (1997) 5524–

5557. arXiv:hep-ph/9704207, doi:10.1103/PhysRevD.56.5524.

[23] X.-D. Ji, Deeply-virtual Compton scattering, Phys. Rev. D55 (1997) 7114–7125.

arXiv:hep-ph/9609381, doi:10.1103/PhysRevD.55.7114.

[24] M. Diehl, Generalized Parton Distributions, Phys. Rept. 388 (2003) 41–277. arXiv:

hep-ph/0307382, doi:10.1016/j.physrep.2003.08.002.

[25] X.-D. Ji, Off-forward Parton Distributions, J. Phys. G24 (1998) 1181–1205. arXiv:

hep-ph/9807358, doi:10.1088/0954-3899/24/7/002.

[26] A. V. Radyushkin, Generalized Parton Distributions arXiv:hep-ph/0101225.

[27] K. Goeke, M. V. Polyakov, M. Vanderhaeghen, Hard Exclusive Reactions and the

Structure of Hadrons, Prog. Part. Nucl. Phys. 47 (2001) 401–515. arXiv:hep-ph/

0106012, doi:10.1016/S0146-6410(01)00158-2.

[28] L. Kadanoff, Operator Algebra and the Determination of Critical Indices, Phys. Rev.

Letters 23 (1969) 1430.

[29] F. David, On the Ambiguity of Composite Operators, I.R. renormalons and the Status

of the Operator Product Expansion, Nucl. Phys. B 234 (1984) 237.

[30] V. A. Novikov, M. Shifman, A. Vainshtein, V. Zakharov, K. Wilson, Operator Product

Expansion: Can It Fail ? , Nucl. Phys. B 249 (1985) 445.

[31] B. E. White, Factorisation in deeply virtual Compton scattering: Local OPE formalism

and structure functions, J. Phys. G28 (2002) 203–222. arXiv:hep-ph/0102121,

doi:10.1088/0954-3899/28/2/302.

[32] C. G. Callan, Broken Scale Invariance in Scalar Field Theory, Phys. Rev. D 2 (8)

(1970) 1541–1547. doi:10.1103/PhysRevD.2.1541.

[33] K. Wilson, Non-Lagrangian Models of Current Algebra, Phys. Rev. 179 (1969) 1499.

[34] K. Wilson, Renormalization Group and Strong Interactions, Phys. Rev. D3 (1971)

1818.

http://arxiv.org/abs/hep-ph/9704207
http://dx.doi.org/10.1103/PhysRevD.56.5524
http://arxiv.org/abs/hep-ph/9609381
http://dx.doi.org/10.1103/PhysRevD.55.7114
http://arxiv.org/abs/hep-ph/0307382
http://arxiv.org/abs/hep-ph/0307382
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://arxiv.org/abs/hep-ph/9807358
http://arxiv.org/abs/hep-ph/9807358
http://dx.doi.org/10.1088/0954-3899/24/7/002
http://arxiv.org/abs/hep-ph/0101225
http://arxiv.org/abs/hep-ph/0106012
http://arxiv.org/abs/hep-ph/0106012
http://dx.doi.org/10.1016/S0146-6410(01)00158-2
http://arxiv.org/abs/hep-ph/0102121
http://dx.doi.org/10.1088/0954-3899/28/2/302
http://dx.doi.org/10.1103/PhysRevD.2.1541

298 BIBLIOGRAPHY

[35] J. W. Negele, et al., Insight into nucleon structure from lattice calculations of

moments of parton and generalized parton distributions, Nucl. Phys. Proc. Suppl.

128 (2004) 170–178. arXiv:hep-lat/0404005, doi:10.1016/S0920-5632(03)

02474-5.

[36] LHPC Collaboration, Transverse structure of nucleon parton distributions from lattice

QCD, Phys. Rev. Lett. 93 (2004) 112001. arXiv:hep-lat/0312014, doi:10.

1103/PhysRevLett.93.112001.

[37] Detmold, W. and Melnitchouk, W. and Thomas, A. W., Moments of isovector quark

distributions from lattice qcd, Phys. Rev. D 66 (5) (2002) 054501. doi:10.1103/

PhysRevD.66.054501.

[38] P. Hägler, J. W. Negele, D. B. Renner, W. Schroers, T. Lippert, K. Schilling, Mo-

ments of nucleon generalized parton distributions in lattice QCD, Phys. Rev. D 68 (3)

(2003) 034505. doi:10.1103/PhysRevD.68.034505.

[39] W. Detmold, W. Melnitchouk, J. W. Negele, D. B. Renner, A. W. Thomas, Chiral

Extrapolation of Lattice Moments of Proton Quark Distributions, Phys. Rev. Lett.

87 (17) (2001) 172001. doi:10.1103/PhysRevLett.87.172001.

[40] X.-D. Ji, Off-forward parton distributions, J. Phys. G24 (1998) 1181–1205. arXiv:

hep-ph/9807358, doi:10.1088/0954-3899/24/7/002.

[41] E. Leader, M. Anselmino, A crisis in the parton model: Where, oh where is the

proton’s spin ? , Zeitschrift für Physik C Particles and Fields 41 (1988) 239–246.

doi:10.1007/BF01566922.

[42] C. Gattringer, C. B. Lang, Quantum chromodynamics on the lattice: an introductory

presentation, Lecture Notes in Physics, Springer, Berlin, 2010.

[43] K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (8) (1974) 2445–2459.

doi:10.1103/PhysRevD.10.2445.

[44] H. B. Nielsen, M. Ninomiya, Absence of Neutrinos on a Lattice : (I). Proof by

Homotopy Theory , Nuclear Physics B 185 (1) (1981) 20 – 40. doi:10.1016/

0550-3213(81)90361-8.

http://arxiv.org/abs/hep-lat/0404005
http://dx.doi.org/10.1016/S0920-5632(03)02474-5
http://dx.doi.org/10.1016/S0920-5632(03)02474-5
http://arxiv.org/abs/hep-lat/0312014
http://dx.doi.org/10.1103/PhysRevLett.93.112001
http://dx.doi.org/10.1103/PhysRevLett.93.112001
http://dx.doi.org/10.1103/PhysRevD.66.054501
http://dx.doi.org/10.1103/PhysRevD.66.054501
http://dx.doi.org/10.1103/PhysRevD.68.034505
http://dx.doi.org/10.1103/PhysRevLett.87.172001
http://arxiv.org/abs/hep-ph/9807358
http://arxiv.org/abs/hep-ph/9807358
http://dx.doi.org/10.1088/0954-3899/24/7/002
http://dx.doi.org/10.1007/BF01566922
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8

BIBLIOGRAPHY 299

[45] H. B. Nielsen, M. Ninomiya, Absence of Neutrinos on a Lattice : (II). Intuitive

Topological Proof , Nuclear Physics B 193 (1) (1981) 173 – 194. doi:10.1016/

0550-3213(81)90524-1.

[46] K. G. Wilson, Quarks and strings on a lattice, New Phenomena in Subnuclear Physics.

Part A. Proceedings of the First Half of the 1975 International School of Subnuclear

Physics, Erice, Sicily, July 11 - August 1, 1975, ed. A. Zichichi, Plenum Press, New

York CLNS-321 (1977) p. 69.

[47] T. Matthews, A. Salam, Nuovo Cim. 12 (1954) 563.

[48] T. Matthews, A. Salam, Nuovo Cim. 2 (1955) 120.

[49] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys. Rev. D 36 (2) (1987)

515–519. doi:10.1103/PhysRevD.36.515.

[50] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Hybrid Monte Carlo, Physics

Letters B 195 (2) (1987) 216 – 222. doi:10.1016/0370-2693(87)91197-X.

[51] T. Takaishi, P. de Forcrand, Simulation of Nf = 3 QCD by Hybrid Monte Carlo,

Nuclear Physics B - Proceedings Supplements 94 (1-3) (2001) 818 – 822. doi:

10.1016/S0920-5632(01)01013-1.

[52] S. Aoki, R. Burkhalter, M. Fukugita, S. Hashimoto, K.-I. Ishikawa, N. Ishizuka,

Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, M. Okawa, T. Onogi, S. Tomi-

naga, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshié, Polynomial hybrid Monte Carlo

algorithm for lattice QCD with an odd number of flavors, Phys. Rev. D 65 (9) (2002)

094507. doi:10.1103/PhysRevD.65.094507.

[53] I. Horvath, A. D. Kennedy, S. Sint, A new exact method for dynamical fermion

computations with non-local actions, Nuclear Physics B - Proceedings Supplements

73 (1-3) (1999) 834 – 836. doi:10.1016/S0920-5632(99)85217-7.

[54] M. A. Clark, A. D. Kennedy, Accelerating Dynamical-Fermion Computations Using

the Rational Hybrid Monte Carlo Algorithm with Multiple Pseudofermion Fields, Phys.

Rev. Lett. 98 (5) (2007) 051601. doi:10.1103/PhysRevLett.98.051601.

http://dx.doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/10.1103/PhysRevD.36.515
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/S0920-5632(01)01013-1
http://dx.doi.org/10.1016/S0920-5632(01)01013-1
http://dx.doi.org/10.1103/PhysRevD.65.094507
http://dx.doi.org/10.1016/S0920-5632(99)85217-7
http://dx.doi.org/10.1103/PhysRevLett.98.051601

300 BIBLIOGRAPHY

[55] K. Symanzik, Continuum limit and improved action in lattice theories. 2. O(N) non-

linear sigma model in perturbation theory, Nucl. Phys B 226 (1983) 205.

[56] K. Symanzik, Continuum limit and improved action in lattice theories. 1. principles

and φ4 theory , Nucl. Phys B 226 (1983) 187.

[57] S. B., W. R., Improved continuum limit lattice action for QCD with Wilson fermions,

Nucl. Phys. B 259 (1985) 572.

[58] M. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and O(a) improvement

in lattice QCD , Nucl. Phys. B 478 (1996) 365.

[59] M. Lüscher, Probing the Standard Model of Particle Interactions , Proceedings of

the Les Houches Summer School, edited by R. Gupta, A. Morel, E. DeRafael, and F.

David Elsevier (1999) Amsterdam.

[60] G. Heatlie, C. T. Sachrajda, G. Martinelli, C. Pittori, G. C. Rossi, The improvement

of hadronic matrix elements in lattice QCD, Nuclear Physics B 352 (1) (1991) 266

– 288. doi:10.1016/0550-3213(91)90137-M.

[61] T. A. Degrand, P. Rossi, Conditioning techniques for dynamical fermions, Computer

Physics Communications 60 (2) (1990) 211 – 214. doi:10.1016/0010-4655(90)

90006-M.

[62] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, H. V. der Vorst, Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, PA, 1994.

[63] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes: The Art of

Scientific Computing, New York: Cambridge University Press, 2007.

[64] W. Wilcox, T. Draper, K.-F. Liu, Chiral Limit of Nucleon Lattice Electromagnetic

Form Factors, Phys.Rev.D 46 (1992) 1109–1122. arXiv:hep-lat/9205015.

[65] N. Cundy, et al., Non-perturbative improvement of stout-smeared three flavour

clover fermions, Phys.Rev. D79 (2009) 094507. arXiv:0901.3302, doi:10.1103/

PhysRevD.79.094507.

http://dx.doi.org/10.1016/0550-3213(91)90137-M
http://dx.doi.org/10.1016/0010-4655(90)90006-M
http://dx.doi.org/10.1016/0010-4655(90)90006-M
http://arxiv.org/abs/hep-lat/9205015
http://arxiv.org/abs/0901.3302
http://dx.doi.org/10.1103/PhysRevD.79.094507
http://dx.doi.org/10.1103/PhysRevD.79.094507

BIBLIOGRAPHY 301

[66] S. Aoki, et al., Bulk first-order phase transition in three-flavor lattice QCD with

P(a)-improved Wilson fermion action at zero temperature, Phys. Rev. D72 (2005)

054510. arXiv:hep-lat/0409016, doi:10.1103/PhysRevD.72.054510.

[67] C. Morningstar, M. J. Peardon, Analytic smearing of SU(3) link variables in lattice

QCD , Phys. Rev. D69 (2004) 054501. arXiv:hep-lat/0311018, doi:10.1103/

PhysRevD.69.054501.

[68] W. Bietenholz, et al., Tuning the strange quark mass in lattice simulations, Phys.Lett.

B690 (2010) 436–441. arXiv:1003.1114, doi:10.1016/j.physletb.2010.05.

067.

[69] M. Göckeler, et al., Determination of light and strange quark masses from full lattice

QCD, Phys. Lett. B639 (2006) 307–311. arXiv:hep-ph/0409312, doi:10.1016/

j.physletb.2006.06.036.

[70] A. D. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New

Algorithms, 1996.

[71] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes

in C: The Art of Scientific Computing. Second Edition (1992).

[72] B. Efron, The jackknife, the bootstrap and other resampling plans (1994).

[73] A. Ali Khan, et al., Axial coupling constant of the nucleon for two flavours of

dynamical quarks in finite and infinite volume, Phys.Rev. D74 (2006) 094508.

arXiv:hep-lat/0603028, doi:10.1103/PhysRevD.74.094508.

[74] D. Pleiter, et al., Lattice 2010, PoS (2010) 153.

[75] T. R. Hemmert, B. R. Holstein, J. Kambor, Chiral Lagrangians and Delta(1232)

interactions: Formalism, J. Phys. G24 (1998) 1831–1859. arXiv:hep-ph/9712496,

doi:10.1088/0954-3899/24/10/003.

[76] M. Lüscher, Commun. Math. Phys. 104 (1986) 177.

http://arxiv.org/abs/hep-lat/0409016
http://dx.doi.org/10.1103/PhysRevD.72.054510
http://arxiv.org/abs/hep-lat/0311018
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://arxiv.org/abs/1003.1114
http://dx.doi.org/10.1016/j.physletb.2010.05.067
http://dx.doi.org/10.1016/j.physletb.2010.05.067
http://arxiv.org/abs/hep-ph/0409312
http://dx.doi.org/10.1016/j.physletb.2006.06.036
http://dx.doi.org/10.1016/j.physletb.2006.06.036
http://arxiv.org/abs/hep-lat/0603028
http://dx.doi.org/10.1103/PhysRevD.74.094508
http://arxiv.org/abs/hep-ph/9712496
http://dx.doi.org/10.1088/0954-3899/24/10/003

302 BIBLIOGRAPHY

[77] G. Colangelo, S. Durr, C. Haefeli, Finite volume effects for meson masses and decay

constants, Nucl. Phys. B721 (2005) 136–174. arXiv:hep-lat/0503014, doi:10.

1016/j.nuclphysb.2005.05.015.

[78] M. Göckeler, et al., Meson decay constants from N(f) = 2 clover fermions, PoS

LAT2005 (2006) 063. arXiv:hep-lat/0509196.

[79] L. A. Ahrens, et al., Measurement of Neutrino - Proton and anti-neutrino - Proton

Elastic Scattering, Phys. Rev. D35 (1987) 785. doi:10.1103/PhysRevD.35.785.

[80] V. Bernard, N. Kaiser, U.-G. Meissner, Chiral dynamics in nucleons and nuclei,

Int. J. Mod. Phys. E4 (1995) 193–346. arXiv:hep-ph/9501384, doi:10.1142/

S0218301395000092.

[81] S. Choi, et al., Axial and pseudoscalar nucleon form-factors from low- energy

pion electroproduction, Phys. Rev. Lett. 71 (1993) 3927–3930. doi:10.1103/

PhysRevLett.71.3927.

[82] H. Abele, The neutron. Its properties and basic interactions, Prog. Part. Nucl. Phys.

60 (2008) 1–81. doi:10.1016/j.ppnp.2007.05.002.

[83] Y. Aoki, et al., Lattice QCD with two dynamical flavors of domain wall fermions, Phys.

Rev. D72 (2005) 114505. arXiv:hep-lat/0411006, doi:10.1103/PhysRevD.72.

114505.

[84] H.-W. Lin, T. Blum, S. Ohta, S. Sasaki, T. Yamazaki, Nucleon structure with two

flavors of dynamical domain-wall fermions , Phys. Rev. D78 (2008) 014505. arXiv:

0802.0863, doi:10.1103/PhysRevD.78.014505.

[85] T. Yamazaki, et al., Nucleon form factors with 2+1 flavor dynamical domain-

wall fermions, Phys. Rev. D79 (2009) 114505. arXiv:0904.2039, doi:10.1103/

PhysRevD.79.114505.

[86] C. Gattringer, et al., Hadron Spectroscopy with Dynamical Chirally Improved

Fermions, Phys. Rev. D79 (2009) 054501. arXiv:0812.1681, doi:10.1103/

PhysRevD.79.054501.

http://arxiv.org/abs/hep-lat/0503014
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://arxiv.org/abs/hep-lat/0509196
http://dx.doi.org/10.1103/PhysRevD.35.785
http://arxiv.org/abs/hep-ph/9501384
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1142/S0218301395000092
http://dx.doi.org/10.1103/PhysRevLett.71.3927
http://dx.doi.org/10.1103/PhysRevLett.71.3927
http://dx.doi.org/10.1016/j.ppnp.2007.05.002
http://arxiv.org/abs/hep-lat/0411006
http://dx.doi.org/10.1103/PhysRevD.72.114505
http://dx.doi.org/10.1103/PhysRevD.72.114505
http://arxiv.org/abs/0802.0863
http://arxiv.org/abs/0802.0863
http://dx.doi.org/10.1103/PhysRevD.78.014505
http://arxiv.org/abs/0904.2039
http://dx.doi.org/10.1103/PhysRevD.79.114505
http://dx.doi.org/10.1103/PhysRevD.79.114505
http://arxiv.org/abs/0812.1681
http://dx.doi.org/10.1103/PhysRevD.79.054501
http://dx.doi.org/10.1103/PhysRevD.79.054501

BIBLIOGRAPHY 303

[87] C. Alexandrou, et al., Axial Nucleon form factors from lattice QCD arXiv:1012.

0857.

[88] J. D. Bratt, et al., Nucleon structure from mixed action calculations using 2+1 flavors

of asqtad sea and domain wall valence fermions, Phys. Rev. D82 (2010) 094502.

arXiv:1001.3620, doi:10.1103/PhysRevD.82.094502.

[89] C. Alexandrou, Hadron Structure and Form Factors, PoS LATTICE2010 (2010) 001.

arXiv:1011.3660.

[90] J. J. de Swart, The Octet model and its Clebsch-Gordan coefficients, Rev. Mod.

Phys. 35 (1963) 916–939. doi:10.1103/RevModPhys.35.916.

[91] M. J. Savage, J. Walden, SU(3) breaking in neutral current axial matrix elements

and the spin-content of the nucleon, Phys. Rev. D55 (1997) 5376–5384. arXiv:

hep-ph/9611210, doi:10.1103/PhysRevD.55.5376.

[92] J. Dai, R. F. Dashen, E. E. Jenkins, A. V. Manohar, Flavor Symmetry Breaking

in the 1/N Expansion, Phys. Rev. D53 (1996) 273–282. arXiv:hep-ph/9506273,

doi:10.1103/PhysRevD.53.273.

[93] R. Flores-Mendieta, E. E. Jenkins, A. V. Manohar, SU(3) symmetry breaking in

hyperon semileptonic decays, Phys. Rev. D58 (1998) 094028. arXiv:hep-ph/

9805416, doi:10.1103/PhysRevD.58.094028.

[94] K.-S. Choi, W. Plessas, R. Wagenbrunn, Axial charges of octet and decuplet baryons,

Phys.Rev. D82 (2010) 014007. arXiv:1005.0337, doi:10.1103/PhysRevD.82.

014007.

[95] H.-W. Lin, K. Orginos, First Calculation of Hyperon Axial Couplings from Lat-

tice QCD , Phys.Rev. D79 (2009) 034507. arXiv:0712.1214, doi:10.1103/

PhysRevD.79.034507.

[96] K. Orginos, D. Toussaint, Testing improved actions for dynamical Kogut-Susskind

quarks, Phys. Rev. D59 (1999) 014501. arXiv:hep-lat/9805009, doi:10.1103/

PhysRevD.59.014501.

http://arxiv.org/abs/1012.0857
http://arxiv.org/abs/1012.0857
http://arxiv.org/abs/1001.3620
http://dx.doi.org/10.1103/PhysRevD.82.094502
http://arxiv.org/abs/1011.3660
http://dx.doi.org/10.1103/RevModPhys.35.916
http://arxiv.org/abs/hep-ph/9611210
http://arxiv.org/abs/hep-ph/9611210
http://dx.doi.org/10.1103/PhysRevD.55.5376
http://arxiv.org/abs/hep-ph/9506273
http://dx.doi.org/10.1103/PhysRevD.53.273
http://arxiv.org/abs/hep-ph/9805416
http://arxiv.org/abs/hep-ph/9805416
http://dx.doi.org/10.1103/PhysRevD.58.094028
http://arxiv.org/abs/1005.0337
http://dx.doi.org/10.1103/PhysRevD.82.014007
http://dx.doi.org/10.1103/PhysRevD.82.014007
http://arxiv.org/abs/0712.1214
http://dx.doi.org/10.1103/PhysRevD.79.034507
http://dx.doi.org/10.1103/PhysRevD.79.034507
http://arxiv.org/abs/hep-lat/9805009
http://dx.doi.org/10.1103/PhysRevD.59.014501
http://dx.doi.org/10.1103/PhysRevD.59.014501

304 BIBLIOGRAPHY

[97] J. B. Kogut, L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theo-

ries , Phys. Rev. D11 (1975) 395. doi:10.1103/PhysRevD.11.395.

[98] K. Orginos, D. Toussaint, R. L. Sugar, Variants of fattening and flavor symmetry

restoration, Phys. Rev. D60 (1999) 054503. arXiv:hep-lat/9903032, doi:10.

1103/PhysRevD.60.054503.

[99] D. B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett.

B288 (1992) 342–347. arXiv:hep-lat/9206013, doi:10.1016/0370-2693(92)

91112-M.

[100] D. B. Kaplan, Chiral fermions on the lattice, Nucl. Phys. Proc. Suppl. 30 (1993)

597–600. doi:10.1016/0920-5632(93)90282-B.

[101] Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B406 (1993) 90–106.

arXiv:hep-lat/9303005, doi:10.1016/0550-3213(93)90162-I.

[102] V. Furman, Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions,

Nucl. Phys. B439 (1995) 54–78. arXiv:hep-lat/9405004, doi:10.1016/

0550-3213(95)00031-M.

[103] G. Erkol, M. Oka, T. T. Takahashi, Axial Charges of Octet Baryons in Two-flavor

Lattice QCD, Phys.Lett. B686 (2010) 36–40. arXiv:0911.2447, doi:10.1016/j.

physletb.2010.02.016.

[104] S. Alekhin, J. Blümlein, S. Klein, S. Moch, The 3-, 4-, and 5-flavor NNLO Parton

from Deep-Inelastic- Scattering Data and at Hadron Colliders, Phys. Rev. D81 (2010)

014032. arXiv:0908.2766, doi:10.1103/PhysRevD.81.014032.

[105] J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of deep inelastic

world data at O(α3
S), Nucl. Phys. B774 (2007) 182–207. arXiv:hep-ph/0607200,

doi:10.1016/j.nuclphysb.2007.03.035.

[106] P. Jimenez-Delgado, E. Reya, Dynamical NNLO parton distributions, Phys. Rev. D79

(2009) 074023. arXiv:0810.4274, doi:10.1103/PhysRevD.79.074023.

http://dx.doi.org/10.1103/PhysRevD.11.395
http://arxiv.org/abs/hep-lat/9903032
http://dx.doi.org/10.1103/PhysRevD.60.054503
http://dx.doi.org/10.1103/PhysRevD.60.054503
http://arxiv.org/abs/hep-lat/9206013
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0920-5632(93)90282-B
http://arxiv.org/abs/hep-lat/9303005
http://dx.doi.org/10.1016/0550-3213(93)90162-I
http://arxiv.org/abs/hep-lat/9405004
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://arxiv.org/abs/0911.2447
http://dx.doi.org/10.1016/j.physletb.2010.02.016
http://dx.doi.org/10.1016/j.physletb.2010.02.016
http://arxiv.org/abs/0908.2766
http://dx.doi.org/10.1103/PhysRevD.81.014032
http://arxiv.org/abs/hep-ph/0607200
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.035
http://arxiv.org/abs/0810.4274
http://dx.doi.org/10.1103/PhysRevD.79.074023

BIBLIOGRAPHY 305

[107] J. Blümlein, H. Böttcher, A. Guffanti, Non-singlet QCD analysis of the structure

function F2 in 3-loops, Nucl. Phys. Proc. Suppl. 135 (2004) 152–155. arXiv:

hep-ph/0407089, doi:10.1016/j.nuclphysbps.2004.09.059.

[108] A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt, Uncertainties on αS in global

PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C64

(2009) 653–680. arXiv:0905.3531, doi:10.1140/epjc/s10052-009-1164-2.

[109] S. Alekhin, K. Melnikov, F. Petriello, Fixed target Drell-Yan data and NNLO QCD

fits of parton distribution functions, Phys. Rev. D74 (2006) 054033. arXiv:hep-ph/

0606237, doi:10.1103/PhysRevD.74.054033.

[110] C. Allton, et al., 2+1 flavor domain wall QCD on a (2 fm)3 lattice: light meson

spectroscopy with Ls = 16, Phys. Rev. D76 (2007) 014504. arXiv:hep-lat/

0701013, doi:10.1103/PhysRevD.76.014504.

[111] C. Allton, et al., Physical Results from 2+1 Flavor Domain Wall QCD and SU(2)

Chiral Perturbation Theory, Phys. Rev. D78 (2008) 114509. arXiv:0804.0473,

doi:10.1103/PhysRevD.78.114509.

[112] P. Hägler, et al., Nucleon Generalized Parton Distributions from Full Lattice QCD,

Phys. Rev. D77 (2008) 094502. arXiv:0705.4295, doi:10.1103/PhysRevD.77.

094502.

[113] G. A. Miller, A. K. Opper, E. J. Stephenson, Charge symmetry breaking and QCD,

Ann. Rev. Nucl. Part. Sci. 56 (2006) 253–292. arXiv:nucl-ex/0602021, doi:

10.1146/annurev.nucl.56.080805.140446.

[114] J. T. Londergan, J. C. Peng, A. W. Thomas, Charge Symmetry at the Partonic

Level, Rev. Mod. Phys. 82 (2010) 2009–2052. arXiv:0907.2352, doi:10.1103/

RevModPhys.82.2009.

[115] J. T. Londergan, A. W. Thomas, The validity of charge symmetry for parton dis-

tributions, Prog. Part. Nucl. Phys. 41 (1998) 49–124. arXiv:hep-ph/9806510,

doi:10.1016/S0146-6410(98)00055-6.

http://arxiv.org/abs/hep-ph/0407089
http://arxiv.org/abs/hep-ph/0407089
http://dx.doi.org/10.1016/j.nuclphysbps.2004.09.059
http://arxiv.org/abs/0905.3531
http://dx.doi.org/10.1140/epjc/s10052-009-1164-2
http://arxiv.org/abs/hep-ph/0606237
http://arxiv.org/abs/hep-ph/0606237
http://dx.doi.org/10.1103/PhysRevD.74.054033
http://arxiv.org/abs/hep-lat/0701013
http://arxiv.org/abs/hep-lat/0701013
http://dx.doi.org/10.1103/PhysRevD.76.014504
http://arxiv.org/abs/0804.0473
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://arxiv.org/abs/0705.4295
http://dx.doi.org/10.1103/PhysRevD.77.094502
http://dx.doi.org/10.1103/PhysRevD.77.094502
http://arxiv.org/abs/nucl-ex/0602021
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140446
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140446
http://arxiv.org/abs/0907.2352
http://dx.doi.org/10.1103/RevModPhys.82.2009
http://dx.doi.org/10.1103/RevModPhys.82.2009
http://arxiv.org/abs/hep-ph/9806510
http://dx.doi.org/10.1016/S0146-6410(98)00055-6

306 BIBLIOGRAPHY

[116] E. Sather, Isospin violating quark distributions in the nucleon, Phys. Lett. B274

(1992) 433–438. doi:10.1016/0370-2693(92)92011-5.

[117] E. N. Rodionov, A. W. Thomas, J. T. Londergan, Charge asymmetry of par-

ton distributions, Mod. Phys. Lett. A9 (1994) 1799–1806. doi:10.1142/

S0217732394001659.

[118] J. T. Londergan, A. W. Thomas, Charge symmetry violation corrections to determi-

nation of the Weinberg angle in neutrino reactions, Phys. Rev. D67 (2003) 111901.

arXiv:hep-ph/0303155, doi:10.1103/PhysRevD.67.111901.

[119] A. D. Martin, R. G. Roberts, W. J. Stirling, R. S. Thorne, Uncertainties of predictions

from parton distributions. I: Theoretical errors, Eur. Phys. J. C35 (2004) 325–348.

arXiv:hep-ph/0308087.

[120] G. Martinelli, et al., A General method for nonperturbative renormalization of lattice

operators, Nucl. Phys. B445 (1995) 81–108. arXiv:hep-lat/9411010, doi:10.

1016/0550-3213(95)00126-D.

[121] M. Göckeler, et al., Nonperturbative renormalisation of composite operators in lattice

QCD , Nucl. Phys. B544 (1999) 699–733. arXiv:hep-lat/9807044, doi:10.

1016/S0550-3213(99)00036-X.

[122] M. Göckeler, et al., Renormalisation of composite operators in lattice QCD: pertur-

bative versus nonperturbative arXiv:1010.1360.

[123] P. Hägler, Hadron structure from lattice quantum chromodynamics, Phys.Rept. 490

(2010) 49–175. arXiv:0912.5483, doi:10.1016/j.physrep.2009.12.008.

[124] W. Detmold, et al., Chiral extrapolation of lattice moments of proton quark dis-

tributions, Phys. Rev. Lett. 87 (2001) 172001. arXiv:hep-lat/0103006, doi:

10.1103/PhysRevLett.87.172001.

[125] W. Detmold, W. Melnitchouk, A. W. Thomas, Extraction of parton distributions from

lattice QCD, Mod. Phys. Lett. A18 (2003) 2681–2698. arXiv:hep-lat/0310003,

doi:10.1142/S0217732304015725.

http://dx.doi.org/10.1016/0370-2693(92)92011-5
http://dx.doi.org/10.1142/S0217732394001659
http://dx.doi.org/10.1142/S0217732394001659
http://arxiv.org/abs/hep-ph/0303155
http://dx.doi.org/10.1103/PhysRevD.67.111901
http://arxiv.org/abs/hep-ph/0308087
http://arxiv.org/abs/hep-lat/9411010
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://arxiv.org/abs/hep-lat/9807044
http://dx.doi.org/10.1016/S0550-3213(99)00036-X
http://dx.doi.org/10.1016/S0550-3213(99)00036-X
http://arxiv.org/abs/1010.1360
http://arxiv.org/abs/0912.5483
http://dx.doi.org/10.1016/j.physrep.2009.12.008
http://arxiv.org/abs/hep-lat/0103006
http://dx.doi.org/10.1103/PhysRevLett.87.172001
http://dx.doi.org/10.1103/PhysRevLett.87.172001
http://arxiv.org/abs/hep-lat/0310003
http://dx.doi.org/10.1142/S0217732304015725

BIBLIOGRAPHY 307

[126] W. Detmold, C. J. D. Lin, Twist-two matrix elements at finite and infinite vol-

ume, Phys. Rev. D71 (2005) 054510. arXiv:hep-lat/0501007, doi:10.1103/

PhysRevD.71.054510.

[127] M. Dorati, T. A. Gail, T. R. Hemmert, Chiral Perturbation Theory and the first mo-

ments of the Generalized Parton Distriputions in a Nucleon, Nucl. Phys. A798 (2008)

96–131. arXiv:nucl-th/0703073, doi:10.1016/j.nuclphysa.2007.10.012.

[128] Y. Aoki, et al., Nucleon isovector structure functions in (2+1)-flavor QCD with

domain wall fermions, Phys.Rev. D82 (2010) 014501. arXiv:1003.3387, doi:

10.1103/PhysRevD.82.014501.

[129] D. B. Leinweber, QCD Equalities for Baryon Current Matrix Elements, Phys. Rev. D53

(1996) 5115–5124. arXiv:hep-ph/9512319, doi:10.1103/PhysRevD.53.5115.

[130] H. Leutwyler, The ratios of the light quark masses, Phys. Lett. B378 (1996) 313–318.

arXiv:hep-ph/9602366, doi:10.1016/0370-2693(96)00386-3.

[131] J. T. Londergan, A. W. Thomas, Charge Symmetry Violating contributions to

neutrino reactions, Phys. Lett. B558 (2003) 132–140. arXiv:hep-ph/0301147,

doi:10.1016/S0370-2693(03)00267-3.

[132] M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited, Eur.Phys.J. C5

(1998) 461–470. arXiv:hep-ph/9806404, doi:10.1007/s100520050289.

[133] M. Diehl, Generalized Parton Distributions with helicity flip, Eur. Phys. J. C19 (2001)

485–492. arXiv:hep-ph/0101335, doi:10.1007/s100520100635.

[134] S. Aoki, M. Doui, T. Hatsuda, Y. Kuramashi, Tensor charge of the nucleon in lattice

QCD, Phys. Rev. D56 (1997) 433–436. arXiv:hep-lat/9608115, doi:10.1103/

PhysRevD.56.433.

[135] P. Hägler, Form factor decomposition of generalized parton distributions at leading

twist, Phys. Lett. B594 (2004) 164–170. arXiv:hep-ph/0404138, doi:10.1016/

j.physletb.2004.05.014.

http://arxiv.org/abs/hep-lat/0501007
http://dx.doi.org/10.1103/PhysRevD.71.054510
http://dx.doi.org/10.1103/PhysRevD.71.054510
http://arxiv.org/abs/nucl-th/0703073
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.012
http://arxiv.org/abs/1003.3387
http://dx.doi.org/10.1103/PhysRevD.82.014501
http://dx.doi.org/10.1103/PhysRevD.82.014501
http://arxiv.org/abs/hep-ph/9512319
http://dx.doi.org/10.1103/PhysRevD.53.5115
http://arxiv.org/abs/hep-ph/9602366
http://dx.doi.org/10.1016/0370-2693(96)00386-3
http://arxiv.org/abs/hep-ph/0301147
http://dx.doi.org/10.1016/S0370-2693(03)00267-3
http://arxiv.org/abs/hep-ph/9806404
http://dx.doi.org/10.1007/s100520050289
http://arxiv.org/abs/hep-ph/0101335
http://dx.doi.org/10.1007/s100520100635
http://arxiv.org/abs/hep-lat/9608115
http://dx.doi.org/10.1103/PhysRevD.56.433
http://dx.doi.org/10.1103/PhysRevD.56.433
http://arxiv.org/abs/hep-ph/0404138
http://dx.doi.org/10.1016/j.physletb.2004.05.014
http://dx.doi.org/10.1016/j.physletb.2004.05.014

308 BIBLIOGRAPHY

[136] Z. Chen, X.-d. Ji, Counting and tensorial properties of twist-two helicity-flip nucleon

form factors, Phys. Rev. D71 (2005) 016003. arXiv:hep-ph/0404276, doi:10.

1103/PhysRevD.71.016003.

[137] M. A. Donnellan, et al., Lattice Results for Vector Meson Couplings and Parton

Distribution Amplitudes, PoS LAT2007 (2007) 369. arXiv:0710.0869.

[138] A. A. Khan, et al., Axial and tensor charge of the nucleon with dynamical fermions,

Nucl. Phys. Proc. Suppl. 140 (2005) 408–410. arXiv:hep-lat/0409161, doi:

10.1016/j.nuclphysbps.2004.11.320.

[139] M. Göckeler, et al., Quark helicity flip generalized parton distributions from two-

flavor lattice QCD, Phys. Lett. B627 (2005) 113–123. arXiv:hep-lat/0507001,

doi:10.1016/j.physletb.2005.09.002.

[140] K. Jansen, Lattice 2008, PoS (2008) 010.

[141] F. Belletti, S. F. Schifano, R. Tripiccione, F. Bodin, P. Boucaud, J. Micheli, O. Pene,

N. Cabibbo, S. de Luca, A. Lonardo, D. Rossetti, P. Vicini, M. Lukyanov, L. Morin,

N. Paschedag, H. Simma, V. Morenas, D. Pleiter, F. Rapuano, Computing for LQCD:

apeNEXT , Computing in Science and Engineering 8 (1) (2006) 18–29.

[142] P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen, C. Cristian, Z. Dong,

A. Gara, B. Joó, C. Jung, C. Kim, L. A. Levkova, X. Liao, G. Liu, R. D. Mawhinney,

S. Ohta, K. Petrov, T. Wettig, A. Yamaguchi, Overview of the QCDSP and QCDOC

computers, IBM J. Res. Dev. 49 (2) (2005) 351–365. doi:10.1147/rd.492.0351.

[143] H. Baier, et al., QPACE – a QCD parallel computer based on Cell processors arXiv:

0911.2174.

[144] Accessed 12/2010 [link].

URL http://www.mcs.anl.gov/research/projects/mpi/

[145] Accessed 12/2010 [link].

URL http://www.top500.org

[146] Accessed 12/2010 [link].

URL http://www.openmp.org

http://arxiv.org/abs/hep-ph/0404276
http://dx.doi.org/10.1103/PhysRevD.71.016003
http://dx.doi.org/10.1103/PhysRevD.71.016003
http://arxiv.org/abs/0710.0869
http://arxiv.org/abs/hep-lat/0409161
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.320
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.320
http://arxiv.org/abs/hep-lat/0507001
http://dx.doi.org/10.1016/j.physletb.2005.09.002
http://dx.doi.org/10.1147/rd.492.0351
http://arxiv.org/abs/0911.2174
http://arxiv.org/abs/0911.2174
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.top500.org
http://www.top500.org
http://www.openmp.org
http://www.openmp.org

BIBLIOGRAPHY 309

[147] Accessed 12/2010 [link].

URL http://www.green500.org

[148] Accessed 12/2010 [link].

URL http://www.nvidia.com/cuda

[149] Accessed 12/2010 [link].

URL http://www.khronos.org/opencl/

[150] R. Schreiber, et al., Node Architecture and Power Group Report, Exascale Technology

Roadmap Meeting, 2009.

[151] R. Tripiccione, Dedicated computers for LGT , Nuclear Physics B - Proceedings

Supplements 17 (1990) 137 – 145. doi:DOI:10.1016/0920-5632(90)90227-L.

[152] T. L. Veldhuizen, D. Gannon, Active Libraries: Rethinking the roles of compilers and

libraries , ArXiv Mathematics e-prints arXiv:math/9810022.

[153] S. Haney, J. Crotinger, S. Karmesin, S. Smith, Easy expression templates using PETE,

the portable expression template engine, Technical Report LA-UR-99 (1999) 777.

[154] Accessed 12/2010 [link].

URL http://acts.nersc.gov/pooma/

[155] R. G. Edwards, B. Joó, The Chroma software system for lattice QCD,

Nucl.Phys.Proc.Suppl. 140 (2005) 832. arXiv:hep-lat/0409003, doi:10.1016/

j.nuclphysbps.2004.11.254.

[156] Accessed 12/2010 [link].

URL http://www.lqcd.org/scidac/

[157] J. Chen, W. Watson, W. Mao, Multi-Threading Performance on Commodity Multi-

core Processors, in: Proceedings of 9th International Conference on High Performance

Computing in Asia Pacific Region, 2007.

[158] P. A. Boyle, The BAGEL assembler generation library , Comp. Phys. Comm. 180

(2009) 2739.

http://www.green500.org
http://www.green500.org
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://dx.doi.org/DOI: 10.1016/0920-5632(90)90227-L
http://arxiv.org/abs/math/9810022
http://acts.nersc.gov/pooma/
http://acts.nersc.gov/pooma/
http://arxiv.org/abs/hep-lat/0409003
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://www.lqcd.org/scidac/
http://www.lqcd.org/scidac/

310 BIBLIOGRAPHY

[159] T. Veldhuizen, Expression Templates , C++ Report 7, 1995.

[160] IBM, Cell BE Programming Handbook Including PowerXCell 8i, Version 1.11, 5. Dec.

2008.

[161] Accessed 12/2010 [link].

URL http://www.perl.org/

[162] Accessed 12/2010 [link].

URL http://www.boost.org/

[163] R. C. Whaley, A. Petitet, J. Dongarra, Automated Empirical Optimization of Software

and the ATLAS project, Parallel Computing 2001, 27(1-2):3-35.

[164] M. Frigo, S. G. Johnson, The Design and Implementation of FFTW3 doi:10.1.1.

136.7045.

[165] A. Nobile, Lattice 2010, PoS (2010) 86.

http://www.perl.org/
http://www.perl.org/
http://www.boost.org/
http://www.boost.org/
http://dx.doi.org/10.1.1.136.7045
http://dx.doi.org/10.1.1.136.7045

Acknowledgements

It is an honour for me to dedicate my acknowledgements to individuals, groups, and insti-

tutions who supported me in writing this thesis.

Primarily I would like to show my gratitude to Prof. D. Pleiter who advised my research

work during the last 3 years. His exceptional expertise in the realm of high energy physics,

computer science, and supercomputer design is a great source of inspiration.

This work has been supported in part by the Deutsche Forschungsgemeinschaft (DFG)

Sonderforschungsbereich (SFB) - TR55 “Hadron Physics from Lattice QCD” and I would

like to show my gratitude to Prof. A. Schäfer who is the head of the DFG SFB TR55

and the host of this thesis. His inspiring personality and endless care for the whole team

provides an excellent and enjoyable working environment.

My affiliation within the DFG SFB TR55 was project area C: “Development and deploy-

ment of the QPACE parallel supercomputer”. The whole development team consisting of

physicists and engineers of the Universities of Regensburg, Wuppertal, Ferrara and Milano

Bicocca, of DESY Zeuthen and Forschungszentrum Jülich as well as of IBM Böblingen, La

Gaude and Rochester deserve sincere respect for the accomplished achievements. I enjoyed

working in the project very much and it is a pleasure to thank the whole team. Special

thanks go to D. Pleiter for sharing his profound knowledge on parallel computers and IBM

developerWorks for helpful discussions.

Additional support was provided by the HPC Europa2 Transnational Access Programme,

a pan-European research infrastructure on high performance computing, funded by the

European Commission DG Research in the Seventh Framework Programme. HPC Europa2

provided support for 2 research visits (with an aggregate duration of 3 months) to the EPCC,

a leading European centre of expertise in advanced research, technology transfer and the

provision of supercomputer services to academia and business located at the University of

Edinburgh. While there I worked in the Particle Physics Theory (PPT) group with local

experts on the investigation of hadron structure and Lattice QCD. I was finding the working

environment within in the PPT group to be exceptional and gratefully thank Dr. R. Horsley

and Dr. J. M. Zanotti for a fruitful collaboration and unique time.

As a member of the QCDSF Collaboration I would like to thank my collaborators working

on hadron structure. Particularly I am again grateful to D. Pleiter, R. Horsley and J. M.

Zanotti who were very committed in introducing me to the investigation of hadron structure

and never kept me waiting for an advice.

Additionally I would like to send my thanks to Dr. R. Edwards and Dr. B. Joó for helpful

discussions on QDP++ during the National Science Foundation (NSF)-Numerical Algo-

rithms and Intelligent Software (NAIS) Workshop 2009 – the interface between algorithms

and machines – in Edinburgh.

My place of work was first (24 months) located at the John von Neumann Institute for

Computing (NIC) at the Deutsches Elektronensynchrotron (DESY) Zeuthen site and later

(12 months) at the particle physics group at the University of Regensburg. I am grateful

to the NIC DESY team for providing an exceptional good computing environment and to

the particle physics group for the aforementioned enjoyable working environment.

The numerical calculations have been performed on the apeNEXT at NIC/DESY (Zeuthen,

Germany), the IBM BlueGeneL at EPCC (Edinburgh, UK), the BlueGeneP (JuGene) and

the Nehalem Cluster (JuRoPa) at NIC (Jülich, Germany), and the SGI ICE 8200 at HLRN

(Berlin-Hannover, Germany), on HECToR at the EPCC as well as on the IBM/Cell QS-

Cluster JUICEnext at NIC. I thank all institutions.

The following publications result from this work:

• F. Winter et al.: “Baryon Axial Charges and Momentum Fractions with Nf = 2 + 1

Dynamical Fermions”, PoS (Lattice 2010) 163.

• R. Horsley et al.: “Flavour Symmetry Breaking and Tuning the Strange Quark Mass

for Nf = 2 + 1 Quark Flavours”, arXiv:1012.4371.

• H. Baier et al.: “QPACE – a QCD Parallel Computer Based on Cell Processors”, PoS

(Lattice 2009) 001.

• G. Goldrian et al.: “QPACE: Quantum Chromodynamics Parallel Computing on the

Cell Broadband Engine”, Computing in Science & Engineering (CiSE), November/De-

cember 2008 (vol. 10 no. 6) pp. 46-54.

• F. Winter et al.: “QCD Data Parallel for Multicore Acceleration and Semi-Leptonic

Octet Hyperon Decays”, HPC-Europa2 Annual Book, 2009.

• F. Winter et al.: “Chroma/QDP++ on IBM PowerXCell 8i Processor”, HPC-Europa2

Annual Book, 2010.

• R. Horsley et al.: “Isospin Symmetry Breaking in Parton Distribution Functions from

Lattice QCD”, in preparation.

• F. Winter et al.: “New Design Concepts for an Implementation of QDP++ on Het-

erogeneous Multicore Acceleration Processors”, in preparation.

Abstract

Observables relevant for the understanding of the structure of baryons were determined

by means of Monte Carlo simulations of Lattice Quantum Chromodynamics (QCD) using

2+1 dynamical quark flavours. Especial emphasis was placed on how these observables

change when flavour symmetry is broken in comparison to choosing equal masses for the

two light and the strange quark. The first two moments of unpolarised, longitudinally,

and transversely polarised parton distribution functions were calculated for the nucleon and

hyperons. The latter are baryons which comprise a strange quark.

Lattice QCD simulations tend to be extremely expensive, reaching the need for petaflop

computing and beyond, a regime of computing power we just reach today. Heterogeneous

multicore computing is getting increasingly important in high performance scientific com-

puting. The strategy of deploying multiple types of processing elements within a single

workflow, and allowing each to perform the tasks to which it is best suited is likely to be

part of the roadmap to exascale. In this work new design concepts were developed for an

active library (QDP++) harnessing the compute power of a heterogeneous multicore pro-

cessor (IBM PowerXCell 8i processor). Not only a proof-of-concept is given furthermore it

was possible to run a QDP++ based physics application (Chroma) on an IBM BladeCenter

QS22.

Zusammenfassung

Die für das Verständnis der Struktur von Baryonen relevanten Observablen wurden mittels

Monte-Carlo-Simulationen bestimmt, wobei 2+1 dynamische Quarks verwendet wurden.

Dabei wurde insbesondere untersucht, wie sich diese Observablen ändern, wenn die Flavour-

Symmetrie gestört wird im Vergleich zum Fall, wo die Massen der beiden leichten Quarks

sowie des schweren Quarks gleich gewählt werden. Es wurden die ersten beiden Momente

der unpolarisierten, longitudinal sowie transversal polarisierten Parton Distributionsfunktio-

nen von Nukleonen und Hyperonen berechnet. Letztere sind Baryonen mit Strangequark

Inhalt.

Gitter QCD Simulationen neigen dazu, extrem teuer zu sein. Dabei reicht die benötigte

Rechenleistung bis in den Peta-Flop Bereich und darüber hinaus – ein Leistungsbereich der

erst jetzt erschlossen wird. Heterogenes Mehrkernrechnen wird zunehmend bedeutsamer

im wissenschaftlichen Umfeld des Hoch- und Höchstleistungsrechnens. Die Strategie, ver-

schiedene Typen von Rechenelementen in einen einzigen Arbeitsfluss zu integrieren bei

gleichzeitiger optimaler Zuordnung der einzelnen Arbeitsschritte zu Rechenelementen wird

sicherlich Teil des erfolgreichen Wegs zu Exascale sein. In dieser Arbeit wurden neue De-

signelemente für aktive Bibliotheken (QDP++) unter Ausnutzung der Rechenleistung het-

erogener Mehrkern-Prozessoren (IBM PowerXCell 8i Prozessor) entwickelt. Nicht nur wurde

eine Machbarkeitsstudie unternommen, vielmehr war es möglich eine Physik-Anwendung

(Chroma) mit vernünftiger Performance auf einem IBM BladeCenter QS22 auszuführen.

