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Summary: Endothelin-1 (ET-1) is known to have strong vasoactive properties. Contradictory results 
have been reported with regard to its inotropic effects. 

This study examined the dose-dependent (500, 1000, 2500, 5000 and 10000 ng ET-1/kg vs. NaCI 
controls) hemodynamic and inotropic effects of ET-1 in 53 open-chest rats during and after a 7-min 
infusion. Besides measurements in the intact circulation the myocardial function was examined by 
isovolumic registrations independent of peripheral vascular effects. 

A transient ET-1 induced (500, 1000, 2500, 5000 ng ET-1/kg) decrease of the left ventricular systolic 
pressure (LVSP) and the mean aortic pressure (AoP . . . . .  ) was followed by a dose-related rise of these 
pressures ( L V S P : - 1 % , - 1 % ,  +8%,  +16% vs. preinfusion values; AoPmean:-11%, +9%,  +39%, 
+52 %). Heart rate (HR) was not influenced by ET-1. Due to the dose-dependent decrease of the 
stroke volume (SV) the cardiac output (CO) was reduced (CO: -8 %, ~ 3  %, -40 %, -50 %). After an 
initial vasodilatation ET-1 elevates the total peripheral resistance (TPR: -1%,  +49%, +139%, 
+215 %) dose-dependently. 10000 ng ET-1/kg was a lethal dose resulting in cardiac failure within 
minutes (low output). Since the maximum of the isovolumic LVSP (peak LVSP) and the corresponding 
dP/dtma x (peak dP/dtmax) were unchanged under ET-1, the isovolumic measurements do not indicate a 
positive inotropic effect of ET-1 in vivo in contrast to published results of in vitro experiments. 

It may be possible that a direct positive inotropic effect of ET-1 observed in in vitro studies is 
counterbalanced in vivo by an indirect negative inotropic effect due to the coronar-constrictive effect of 
ET-1. 
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Introduction 

Endothelin-1 is a 21-amino acid peptide that was originally purified from porcine 
aortic endothelial cells (38). Endothelin-1 is the most potent vasoconstrictor known to 
date. Its strong and sustained vasoconstrictive activity can be explained by the fact that 
endothelin-1 increases the intracellular Ca 2+ concentration in smooth muscle cells (34, 
35). The receptor-mediated endothelin-induced rise in cytosolic Ca 2+ is, on the one 
hand, the result of an enhanced influx of extracellular Ca 2+ through indirectly-activated 
calcium channels (34); on the other hand, endothelin-1 causes a phospholipase C- 
mediated release of intracellular Ca 2+ from the sarcoplasmatic reticulum (15) and an 
indirect activation of the Na+-Ca 2+ exchanger (33). 

Such an endothelin-induced increase of cytosolic Ca 2+ was also described in cardiac 
myocytes (10, 14). Indeed, in vitro experiments on cardiac tissues showed a positive 

* Parts of the results were presented at the 13th European Section Meeting of the International 
Society for Heart Research, Heidelberg, FRG, 1992 
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inotropic effect of endothelin-1 (12, 14, 17, 22, 26, 37), which can also be explained in 
part by an endothelin-induced sensitization of cardiac myofilaments to intracellular 
Ca 2+ due to stimulation of the sarcolemmal Na+-H + exchanger (22). However, the 
results with regard to myocm'dial effects have been controversial in isolated working 
hearts (2, 17) and in intact animals (19, 39), probably due to the vasoconstrictive action 
of endothelin-1 (which was overcome in some in vitro heart studies). 

The present study was initiated to investigate the dose-dependent hemodynamic and 
especially the inotropic effects of endothelin-1 in vivo in an open-chest animal model, 
which permits besides hemodynamic measurements in the intact circulation also the 
determination of myocardial effects independent of peripheral vascular effects by 
isovolumic measurements (11). 

Methods 

The study was performed on 4-month-old normotensive male Wistar rats (n = 53; 
weight 399 _+ 6 g (mean + SEM)). After anesthesia with urethane 50 % (2.5 ml/kg body 
weight) intraperitoneally, a venous line for drug infusion was established through the 
right jugular vein. An ECG (lead II) was recorded to measure the heart rate (HR). A 
median sternotomy was performed under artificial ventilation with room air (Starling 
respirator, Braun, Melsungen, FRG). The heart and the great vessels were exposed 
and the pericardium was opened. A flexible plastic tube advanced through the left 
carotid artery to the aortic arch was connected to a fluid-filled (heparinized saline) 
pressm'e transducer (Statham P23 ID, Gould, Oxnard, CA, USA) to register the aortic 
blood pressure. To record the left ventricular pressure (LVP) a short fluid-filled 18- 
gauge metal cannula, positioned through the apex in the left ventricle, was connected to 
a fluid-filled pressure transducer (Senso Nor 840, Horten, Norway). This transducer 
was also connected to an amplifier (type 806, Siemens, Munich, FRG) for reading of 
the left ventricular end-diastolic pressure (LVEDP) and to a differentiator (type 868, 
Siemens) to calculate the first derivate of the LVP (dP/dt). An electromagnetic flow 
probe (ID 2 mm, BL 620 Flowmeter, Biotronix, Kensington, MD, USA) was fitted 
around the ascending aorta to register stroke volume (SV; except for coronary flow). 

ECG, the flow signal, the aortic pressures (AoP~, AOPd), the left ventricular systolic 
pressure (LVSP), LVEDP and dP/dtmax were recorded on a multichannel ink jet 
recorder (Mingograf 803, Siemens-Elema, Sweden). The mean aortic pressure 
(AoPm = (2 • AoPd + AoPs)/3), SV (planimetry of the phasic flow signal, mean of 
three consecutive beats), cardiac output (CO = SV x HR) and the total peripheral 
resistance (TPR = AoPm/CO) were then derived. Besides hemodynamic measurements 
in the intact circulation the myocardial function was examined by isovolumic measure- 
ments independently of circulatory changes by cross-clamping the ascending aorta until 
the maximum of the isovolumic LVSP (peak LVSP) was obtained. From the beat with 
the highest isovolumic LVSP, the peak dP/dtmax and peak LVEDP were determined. 
The peak LVSP and the corresponding peak dP/dtmax are indices of myocardial 
contractility independent of peripheral vascular effects. At the end of the experiments 
the pressure-volume relation of the left ventricle was measured as described previously 
in detail (11). Because the pressure-volume relation was not influenced by endothelin- 
1, the left ventricular end-diastolic volume (LVEDV) can be derived for a given 
LVEDP from the pressure-volume relation. 
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E n d o t h e l i n - 1  w a s  d i s s o l v e d  in  a f ina l  v o l u m e  o f  1 m l  a n d  i n f u s e d  in  7 m i n  w i t h  a 

p r e c i s i o n  p u m p  ( B r a u n ,  M e l s u n g e n ,  F R G ) .  T o  i n v e s t i g a t e  t h e  d o s e - d e p e n d e n t  e f f e c t s  

o f  e n d o t h e l i n - 1 ,  w e  a d m i n i s t e r e d  d o s e s  o f  500 n g / k g  (n  = 10),  1000 n g / k g  (n  = 9) ,  2500 

n g / k g  (n  = 10),  5000 n g / k g  (n  = 10) ,  a n d  10 000 n g / k g  (n  = 4) e n d o t h e l i n - 1 .  T h e  c o n t r o l  

g r o u p  (n  = 10) r e c e i v e d  l m l  0 . 9 %  NaC1 s o l u t i o n .  E n d o t h e l i n - 1  w a s  o b t a i n e d  f r o m  

S i g m a  ( S i g m a ,  St.  L o u i s ,  M O ,  U S A ) .  P r e i n f u s i o n  c o n t r o l  d a t a  o f  a u x o t o n i c  a n d  

i s o v o l u m i c  m e a s u r e m e n t s  w e r e  o b t a i n e d  a f t e r  a 15 -mi n  s t a b i l i z a t i o n  p e r i o d .  T h r e e  

m i n u t e s  a f t e r  t h e s e  m e a s u r e m e n t s  w e r e  m a d e  t h e  d r u g  i n f u s i o n  w a s  s t a r t e d .  A u x o t o n i c  

m e a s u r e m e n t s  w e r e  r e c o r d e d  e v e r y  m i n u t e  un t i l  t e r m i n a t i o n  o f  t h e  i n f u s i o n  a n d  5, 10 

Table 2. Hemodynamic measurements in the intact circulation and isovolumic registrations at termina- 
tion of infusion and at 5 and 15 min after infusion. 

Endothelin-1 

1 ml NaCI 500 ng/kg 1000 ng/kg 2500 ng/kg 5000 ng/kg 

LVSP 7'inf. 105.9 _+ 1.1 98.8 • 1.7" 99.3 _+ 2.1 107.8 • 3.0 116.0 • 2.0 # 
5'post. 101.0•  101.0+1.5 98.3_+4.8 98.4+3.5  105.1_+1.8 

15'post 98.6 + 2.3 98.0 • 1.8 105.1 + 3.6 106.0 + 2.1 110.3 _+ 4.0* 

LVEDP 7'inf. 112.8_+4.7 104.6_+4.4 89.9_+9.8 * 83.0_+5.5 # 87 .1•  # 
5'post" 100.7 • 8.1 103.7 -+ 5.2 79.6 • l l .6  76.8 + 5.4 72.9 -+ 6.8* 

15'post 92.4 -+ 5.4 I06.8 • 6.5 101.0 -+ 13.3 84.6 • 5.3 84.9 + 6.5 

AoPm 7'inf. 109.6 + 3.3 88.7 + 3.0* 108.7 _+ 5.7 139.2 • 6.0 e 152.0 -+ 8.5 # 
5'post" 104.3 _+ 3.8 105.1 • 4.5 115.2 _+ 10.3 118.1 • 5.8 130.6 _+ 7.4* 

15rpost. 97.3 • 3.7 101.2_+ 3.9 124.4 • 6.0* 142.2 _+ 3.3 ~ 164.8 • 13.0 ~ 

dP/dtmax 7tint -. 107.6 _+ 1.4 97.6 + 3.1 101.2 • 3.3 112.7 _+ 5.0 127.5 • 5.4 # 
5'post" 100.7•  102.7_+2.8 100.2+5.1 95.5_+3.8 106.1_+6.7 

15'post 97.1_+3.1 100.1_+2.9 106.1_+6.0 107.8•  115.9_+7.2" 

HR 7'inf. 100.8 _+ 1.6 97.4 _+ 2.2 99.8 -+ 1.2 100.6 _+ 3.8 104.5 • 3.1 
5tpost.  101.5_+1.7 97 .7•  99.1_+2.6 96.4-+4.3 104.6•  

15'post 98.8 • 2.8 95.6 _+ 2.4 101.8 • 3.6 95.9 _+ 4.6 95.6 _+ 2.9 

CO 7'inf. 121.5_+5.6 92.1-+4.0 # 77.0 • 4.8 # 60.2_+3.6 # 50.0 • 3.5 e 
5'post" 108.7+_2.7 89 .0+4.9  # 67.1-+5.6 e 40 .1+3.3  # 29.5 • 2.7 e 

15'post ' 91.7+-2.9 83.6-+3.9 81.3+-5.2 53.1 + 5.4 e 37.4_+3.7 # 

LVEDV 7'inf. 104.7+1.9 101.1•  94 .3•  92 .8+2.6  # 95.1_+2.1" 
5'post" 99.5 • 3.4 100.3 _+ 1.8 88.8 • 6.2 90.7 +_ 2.6 89.3 _+ 3.1 

15'post" 96.3_+2.4 101.6-+2.1 98.6_+5.1 93.8_+2.5 93 .5•  

peak LVSP 5'post" 98.7 -+ 1.3 94.6 • 1.7 96.5 _+ 3.5 104.1 _+ 2.1 104.0 • 2.2 
15'post 96.8 • 1.6 93.0 _+ 3.2 94.2 + 3.9 100.2 • 1.8 100.0 • 1.9 

peak dP/dtmax 5'po~t. 98.4 _+ 2.6 93.4 -+ 2.4 94.0 • 5.3 97.5 _+ 2.5 111.6 -+ 5.4 
15'post 96.1 _+ 1.5 93.1 • 2.7 89.9 _+ 4.9 93.2 • 2.6 98.7 + 3.3 

n 10 10 9 10 i0 

LVSP, left ventricular systolic pressure; LVEDP,  left ventricular end-diastolic pressure; AoPm, mean 
aortic pressure; dP/dtmax; HR,  heart rate; CO, cardiac output; LVEDV,  left ventricutar end-diastolic 
volume; peak LVSP and peak dP/dtmax, data derived from isovolumic maximum beat; 7'inf. , at 
termination of infusion; 5'po~t. and 15'post., 5 and 15 min after infusion. 
Values are means • SEM in percentage of preinfusion values. * = p < 0.05, e = p < 0.01. 
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and 15 min postinfusion. At  terminat ion of infusion and 5 and 15 min postinfusion 
isovolumic measurements  were carried out. At  the end of the hemodynamic measure- 
ments,  blood samples were drawn from the aorta for determinat ion of plasma endothe- 
lin-1 levels with a radioimmunoassay (Endothel in- l ,2  (high sensitivity) [125I]assay 
system, Amersham Internat ional  plc, Amersham,  UK).  

All data are means -+ SEM. Hemodynamic data were normalized to the individual 
preinfusion control data (100%; absolute preinfusion control data see Table 1). 
Normalized data from the endothelin-1 infusion groups were compared with those of 
the control group by analysis of variance followed by a Dunne t t  test (6); p < 0.05 was 
accepted as significant. 

R e s u l t s  

The four animals which received 10000 ng ET-i /kg  died a short time after infusion: 
three animals developed low output failure, the other one died due to ventricular 
fibrillation. 

Auxo ton ic  measurements  in the intact circulation 

The results of the hemodynamic measurements in the intact circulation are shown in 
Table 2. During the endothelin-infusion the left ventricular systolic pressure transiently 
decreases (2nd minute  of infusion: NaCI: 101.8_+0.5% vs. 500 ng ET-1/kg: 
97.3 _+ 1.5 % ; 1000 ng ET-1/kg: 95.9 + 2 .1% ; 2500 ng ET-1/kg: 93.9 _+ 2.3 %, p < 0.05; 

180 
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- "~,- . ~ 2500ng ET-1/kg 
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t i . . . .  NaCl 
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d . . . .  ' 1'0 . . . .  1 '5  . . . .  2'0 ' ' ' 

t i m e  t r a i n ]  

Fig, 1. Effects of different doses of endothelin-I on the diastolic aortic pressure in the intact circulation. 
1 ml NaC1 (n = 10); endothelin-l: 500 ng/kg (closed circles, n = 10), 1000 n~kg (closed triangles, n = 9), 
2500 ng/kg (closed diamonds, n = 10), 5000 ng/kg (closed inverted triangles, n = 10); means +_ SEM in 
percentage of preinfusion values; * = p < 0.01. 
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Fig. 2. Effects of different doses of endothelin-1 on the ejection fraction in the intact circulation. 1 ml 
NaCI (n = 10); endothelin-l :  500 ng/kg (closed circles, n = 10), 1000 ng/kg (closed triangles, n = 9), 2500 
ng/kg (closed diamonds, n =  10), 5000 ng/kg (closed inverted triangles, n = 10); means_+ SEM in 
percentage of preinfusion values; * = p < 0.05, ** = p < 0.01. 

5000  n g  E T - l / k g :  90 .2  _+ 3 .4  % ,  p < 0 .01 ) .  T h e n  t h e  l e f t  v e n t r i c u l a r  sys to l i c  p r e s s u r e  
r i ses  d o s e - d e p e n d e n t l y .  A t  t h e  e n d  o f  i n f u s i o n  t h e  L V S P  is st i l l  s l i gh t ly  b u t  s i g n i f i c a n t l y  
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Fig 3, Effects of different doses of endothelin-1 on the total peripheral resistance in the intact 
circulation. 1 ml NaCI (n = 10); endothel in-l :  500 ng/kg (closed circles, n = 10)~ 1000 ng/kg (closed 
triangles, n = 9), 2500 ng/kg (closed diamonds, n = 10), 5000 ng/kg (closed inverted triangles, n = 10); 
means +_ SEM in percentage of preinfusion values; * = p < 0.05, ** = p < 0.01. 
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Fig. 4. Peak isovolumic left ventricular systolic pressure (peak LVSP) and the corresponding peak 
isovolumic dP/dtmax (peak dP/dtmax) at the end of infusion: means + SEM in percentage of preinfusion 
values. 

init ial  fall and  the  fol lowing dose-re la ted  increase  ~s more  p r o n o u n c e d  for the m e a n  and  
the diastolic aortic pressure,  reflect ing the  per iphera l  vascular  effects of endothel in-1 .  
The  fall of  the diastolic aortic pressure  at the beg inn ing  of infus ion  is even  significant  in 
the higher  doses (Fig. 1). The  decrease  is fol lowed by a rise, which is earl ier  and  more  
p r o n o u n c e d  in higher  doses of endothe l in-1 .  This increase  persists unt i l  the end  of the 
exper iments ,  dP/dtmax shows the same changes as the pressures.  

The  hear t  rate is no t  in f luenced  by endothe l in-1 .  As a result  of  the dose -dependen t  
decrease of the  s t roke vo lume  (end  of infusion:  NaCI:  119.9 _+ 5.8 % vs. 500 ng ET-1/  
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Fig. 5. Venous plasma levels of endothelin-1 at the end of the experiments. 1 ml NaC1 (n = 4); 
endothelin-I : 500 ng/kg (n = 4), 1000 ng/kg (n = 8}, 2500 ng/kg (n = 10), 5000 ng/kg (n - 10), 10 000 ng/ 
kg (n = 4) ; means + SEM. 
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kg: 94.6 _+ 3.6 % ; 1000 ng ET-1/kg: 77.1 _+ 4.9 % ; 2500 ng ET-1/kg: 59.6 + 2.0 % ; 5000 
ng ET-1/kg: 48.0 + 3.2 % ; all p < 0.01), the cardiac output is reduced significantly in all 
endothelin-1 groups until 15 min after infusion. The ejection fraction is significantly 
lowered in all endothelin-1 groups (Fig. 2), and the left ventricular end-diastolic 
pressure and the corresponding end-diastolic volume are slightly reduced (Table 2). 

After an initial vasodilatation (maximum in the 2nd min of infusion) endothelin-1 
markedly elevates the calculated total peripheral resistance (Fig. 3). 

Isovolumic measurements  

The dose-related effects of endothelin-1 on the isovolumic registrations at the end of 
infusion are shown in Fig. 4. The peak of the isovolumic left ventricular systolic 
pressure is not changed under increasing doses of endothelin-1. The little increase of 
the peak isovolumic dP/dtmax in the 1000- and 5000 ng ET-1/kg-group is also not 
significant. Five and 15 rain later these two indices of myocardial contractility are also 
not altered by endothelin-1 (Table 2). 

Plasma endothelin-i levels 

The venous plasma levels of endothelin-1 at the end of the experiments are illustrated 
in Fig. 5. There is a dose-related increase of the plasma endothelin-1 levels (data after 
l0 000 ng ET-t/kg were obtained directly after the heart has stopped beating in these 
animals). 

Discussion 

Endothelin-1 has a potent, dose-dependent contractile effect on vascular smooth 
muscle (34). Conflicting results are published about the inotropic effects of endothelin- 
1. In vitro experiments showed a positive inotropic effect of endothelin-1 in animal (12, 
14, 17, 22, 26, 37) and human (26) cardiac tissues. Atrial muscle is more sensitive than 
ventricular muscle (26). But these experiments avoided changes of the myocardial 
perfusion. Experiments in isolated hearts could not detect a positive inotropic effect of 
endothelin-1 (16, 27). 

In vivo experiments even described a negative inotropic effect of endothelin-1 (5, 
39). As endothelin-1 also has a coronary constrictive effect (3, 7, 23, 25) and may cause 
electrocardiographic signs of myocardial ischemia (5, 25) it is of importance to 
determine the inotropic effects of endothelin-1 on hearts with an intact regulation of the 
coronary perfusion. We used an in vivo model which allows (besides making hemody- 
namic measurements in the intact circulation) the determination of the left ventricular 
pressure generating capacity as a well-established method to assess myocardial contrac- 
tility independent of peripheral vascular effects (28) but dependent on changes of the 
coronary perfusion. To investigate the dose-dependent hemodynamic and inotropic 
effects of endothelin-1 we administered increasing doses of endothelin-1. Although 
endothelin-1 has a rather high first-pass effect (1) the plasma-endothelin levels at the 
end of the experiments indicate that there is also a dose-dependent rise of endothelin-1 
in the myocardium. 

In our experiments endothelin-1 produces a biphasic blood pressure response. The 
initial transient hypotension and the following dose-dependent sustained hypertensive 
response confirm the results of other in vivo studies (9, 19, 20, 25, 30, 39). This biphasic 
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response is mostly pronounced in the diastolic aortic pressure, reflecting the peripheral 
vascular effects of endothelin-1. As the cardiac output remained unchanged during the 
early phase of endothelin-infusion, the reduction of blood pressure is primarily due to a 
transient vasodilatation. This short-lived vasodilatatory response of endothelin-1 (19, 
27, 30, 39) may be explained by the fact that endothelin-1 induces the release of 
vasodilatatory mediators like endothelium-derived relaxing factor (EDRF) (4, 31, 36), 
prostacyclin (4, 29) and atrial natriuretic peptide (ANP) (8). The following dose- 
dependent and sustained endothelin-induced vasoconstriction is in accordance to other 
in vivo studies. While Yang et al. (39) observed an increase of the LVEDP and Garcia 
et al. (9) could not detect a change of the LVEDP after endothelin-1, our experiments 
show an endothelin-induced reduction of the LVEDP. Endothelin-1 may decrease 
venous return due to reduction of plasma volume by a loss of plasma water to the 
interstitium (18) or due to a vasoconstriction in the splanchnic vascular bed (24). 

In our experiments endothelin-doses up to 5000 ng ET-1/kg have no effect on the 
heart rate. This data confirm the results of other in vivo studies (5, 20, 39). Ishikawa et 
al. (13) detected a positive chronotropic response of endothelin-1 in guinea pig 
spontaneously beating right atrial preparation. In vivo studies of Mir et al. (25) 
described a positive chronotropic effect by lower doses of endothelin-1 and a hypoxia- 
induced bradycardia by higher doses of endothelin-1. Indeed, in the animals which 
received the lethal dose of 10 000 ng ET-1/kg the heart rate was also reduced (end of 
infusion: NaCI: 100.8 + 1.6 % vs. 10000 ng ET-1/kg: 71.9 + 6.9 %, p < 0.01). 

The reduction of the cardiac output in our experiments may be explained in part by 
the decrease of the preload and the increase of the afterload. Yang et al. (39) supposed 
that the endothelin-induced fall of CO can be explained in part by a direct depressant 
effect on cardiac contractility. They supported this hypothesis by the fact that dP/dtma x 
was also reduced in their in-vivo experiments. In contrast to that, Kitayoshi et al. (20) 
and Garcia et al. (9) measured an endothelin-induced increase of dP/dtmax and they 
concluded that endothelin-1 has a positive inotropic effect. We also measured a 
significant increase of dP/dtmax after 5000 ng ET-1/kg. But dP/dtm~x from the auxotonic 
beating heart may be influenced by the pre- and afterload (32). As endothelin-1 has 
such a tremendous effect on pre- and afterload, it was an important part of our study to 
determine the peak of the isovolumic LVSP and the corresponding dP/dtm~x as indexes 
of myocardial contractility independent of these effects. The results of the isovolumic 
measurements do not indicate a positive inotropic effect of endothelin-1 detectable in 
our in vivo model. Endothelin-1 has a strong and dose-dependent coronary constrictive 
effect (16). So it may be possible that the direct positive inotropic effect of endothelin- 
1, which is detectable in in vitro studies, is counterbalanced in vivo by an indirect 
negative inotropic effect due to the coronary constrictive effect of endothelin-1. This 
has also been suggested previously by us in a review of myocardial actions of endothelin 
(21) and can also be derived fi'om experiments in isolated hearts, in which the coronary 
flow decreased due to endothelin-1 (16, 27). 
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