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Spin and charge transport in U-shaped one-dimensional channels with spin-orbit couplings
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A general form of the Hamiltonian for electrons confined to a curved one-dimensional (1D) channel with
spin-orbit coupling (SOC) linear in momentum is re-derivedand is applied to a U-shaped channel. Discretizing
the derived continuous 1D Hamiltonian to a tight-binding version, Landauer-Keldysh formalism (LKF) for
nonequilibrium transport can be applied. Spin transport through the U-channel based on LKF is compared
with previous quantum mechanical approaches. The role of curvature-induced geometric potential which is
previously neglected in the literature of the ring issue is also revisited. Transport regimes between nonadiabatic,
corresponding to weak SOC or sharp turn, and adiabatic, corresponding to strong SOC or smooth turn, is
discussed. Based on the LKF, interesting charge and spin transport properties are further revealed. For the
charge transport, the interplay between the Rashba and the linear Dresselhaus (001) SOCs leads to an additional
modulation to the local charge density in the half-ring partof the U-channel, which is shown to originate from the
angle-dependent spin-orbit potential. For the spin transport, theoretically predicted eigenstates of the Rashba
rings, Dresselhaus rings, and the persistent spin helix state, are numerically tested by the present quantum
transport calculation.

PACS numbers: 72.25.–b,73.63.Nm,71.70.Ej

I. INTRODUCTION

Recent progress in the experimental techniques fabricat-
ing semiconductor nanostructures1 has made low-dimensional
electronic transport one of the enduring focuses in condensed-
matter physics. For one-dimensional (1D) systems, quantum
wires (QWs) can be realized by growing nanowires such as
semiconductor-based nanowhiskers or carbon nanotubes. In
layered semiconductors, formation of QWs by confining the
electron gas to a quasi-1D region is also possible in various
ways, such as V-groove quantum wells, cleaved-edge over-
growth, or atomic force microscopy (AFM) lithography.2 The
latter provides an even more flexible way of designing the
shape of the confinement, and quantum ring (QR) is one of
the important examples.

1D transport in QWs was previously focused on the
charge properties.3 Subsequent intensive investigation on
spin-dependent transport was triggered ever since the proposal
of the Datta-Das transistor,4 whose underlying mechanism is
based on the Rashba spin-orbit coupling (SOC) due to struc-
tural inversion asymmetry.5 On the other hand, QRs provide a
natural platform to study Aharonov-Bohm effect6 in solids.
The idea of “textured” magnetic field applied on the QR7

opened the study of Berry phase8 in rings, in which the adia-
batic transport plays a key role. Berry phase acquired by the
electron spin in rings was later on discussed,9 and investiga-
tion of the Rashba effect in QRs was subsequently initiated,10

although the employed Hamiltonian at that time was “incor-
rect”. After the “correct” ring version of the Rashba Hamil-
tonian was derived by Meijeret al. almost a decade later,11

a series of theoretical discussion over the Rashba ring issue
continued until recently.12–18

So far we have been reviewing planar 1D systems where
the curvature either vanishes (QWs) or globally exists (QRs),
whereas a general 1D system may include position depen-

dent curvature. Quantum mechanical particle motion confined
to a surface was first discussed by Jensen, Koppe,19 and da
Costa,20 regardless of spin, and was later generalized to in-
clude the SOC effect.21 When further restricted to curved pla-
nar 1D wire, da Costa has proposed a linear potential term
due to curvature,20 which was later termed asgeometric po-
tential and is recently claimed to be experimentally observed
in photonic crystals.22

Spin transport in curved 1D wire in the presence of SOC
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FIG. 1. (a) Schematic sketch of the tight-binding model for the U-
channel. Left and right arms are labeled as regions I and III,respec-
tively, both withNw sites. Region II is the half-ring part withNr

sites. (b) In quantum mechanical approaches, the electron spin prop-
agates through the U-channel via either translation operator or the
spin propagator, which is spiritually identical to dragging the spins
by hand along a U-shaped path in two-dimension. (c) Schematic
sketch of the U-channel realized by AFM lithography.
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was recently discussed.23–25 In Ref. 23, however, only the
Rashba SOC was considered; in Ref.24, both Rashba SOC
and the Dresselhaus (001) linear term (arising from the bulk
inversion asymmetry of the underlying crystal26) were taken
into account, but both Refs.23and24did not consider the ge-
ometric potential. In Ref.25, the geometric potential was con-
sidered but the SOC includes only the Rashba term. Hence a
more complete study of the spin transport in curved 1D wires,
taking into account both Rashba and Dresselhaus terms, as
well as the curvature-induced geometric potential, is essential.

Regardless of the geometric potential, spin precession due
to SOCs along arbitrary paths was previously studied quan-
tum mechanically, either through the conventional translation
operator24 or a spin propagator obtained by a properly defined
spin-orbit gauge.27 Despite the fact that the electron spin is in-
deed forced to evolve through a 1D path, these spin precession
studies24,27 are built on a two dimensional nature—there is no
confinement. Thus how well this simple quantum mechanical
picture can survive when a more realistic situation is consid-
ered, such as a lead-conductor system subject to electric bias,
is for years a question we would like to answer.

In this paper, spin precession patterns along a curved
1D wire based on the previous formalisms, namely, quan-
tum mechanical space translation [and its approximating
result–spin vector formula (SVF)]24 and spin-orbit gauge
method27 will be qualitatively and quantitatively compared
with those obtained by the more sophisticated nonequilibrium
Green’s function formalism28 [or in ballistic systems free of
particle-particle interaction, the Landauer-Keldysh formalism
(LKF)29,30]. Meanwhile, we will re-investigate the influence
of the geometric potential in curved 1D transport. These are
regarded as our first goal. Whereas the SOCs in general de-
pend on the momentum, electron spin traversing a curved 1D
wire encounters a varying effective magnetic field. This re-
sembles the textured magnetic field7 and is therefore closely
related to the issue of adiabatic transport, which is our second
goal in the present work.

For these purposes we consider a U-shaped 1D channel,
composed of two straight QWs and a half QR in between,
and theoretically inject electron spin from the source end and
analyze the spin orientation along the U-channel down to the
drain end. For computational concern, the U-channel is de-
scretized into a finite number of lattice grid points, as sketched
in Fig. 1(a). We label the left and right QWs of the U-channel
as regions I and III, respectively, each containingNw sites,
and the half-ring as region II, containingNr sites. In addition
to the listed two goals, further investigation of the chargeand
spin transport properties based on LKF will be the last goal.
For the charge transport, the interplay between the Rashba
and the linear Dresselhaus (001) SOCs leads to an additional
modulation to the local charge density in the half-ring partof
the U-channel, and will be shown to originate from the emer-
gence of the angle-dependent spin-orbit potential. For thespin
transport, theoretically predicted eigenstates of the Rashba
rings,12–14,16,17 Dresselhaus rings,17 and the persistent spin he-
lix state,31–33 are numerically tested by the present quantum
transport calculation.

This paper is organized as follows. In Sec.II we introduce

the Hamiltonians and briefly the formalisms to be used in the
transport calculations, which are reported next in Sec.III . Nu-
merical results carrying out the above listed three goals are
reported respectively in Secs.III A , III B , andIII C. Experi-
mental aspects regarding the fabrication of the U-channel is
given in Sec.IV. We conclude in Sec.V.

II. THEORY

In this section we will introduce the Hamiltonians to be
used in the LKF, and review the different theoretical ap-
proaches for the spin transport calculation.

A. Hamiltonians

In the following we first review and re-derive the general
form of the Hamiltonian for a continuous curved 1D system,
and then apply it to the 1D ring case, which is the nontrivial
part of our U-channel. We then write down its corresponding
tight-binding version of the Hamiltonian, to be used in the
LKF calculation. Throughout we will not explicitly discuss
the Hamiltonian for the straight parts of the U-channel since
they are relatively trivial and well known.

1. Continuous curved 1D systems: General form

Consider the motion of electrons confined in a 1D planar
curvilinear wire. Electrons originally in a two-dimensional
plane are confined to a quasi-1D channel. We will derive
the one-dimensional effective Hamiltonian in the presenceof
spin-orbit couplings. Under the effective-mass approximation
in solids, the Hamiltonian for an electron in our model is

H =
p2

2m
+

∑

i=x,y

∑

j=x,y,z

Sijp
iσj + V (r), (1)

where p = (px, py) is the momentum operator in two-
dimension,m is the effective mass, andσj ’s with j = x, y, z
are the Pauli matrices. The second term is the general form
of SOC in the Cartesian coordinate, whereSij is determined
by SOCs linear in momentum such as Rashba or Dresselhaus
(001) terms. HereV (r) represents the potential confining
electrons to the quasi-1D channel.

In order to obtain the effective Hamiltonian, we take the
same approach as Refs.20and25. Leta(q1) be the parametric
equation of a planar curve whereq1 is the arc length of the
curve. The position of an electron in the plane can be written
as

r(q1, q2) = a(q1) + q2n̂(q1),

wheren̂(q1) is the unit normal vector ofa(q1). V (r) is of the
form:

V (q2) =

{

0, q2 = 0

∞, else
.
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We are going to obtain the effective 1D Hamiltonian only de-
pending onq1. The steps are (i) to write the Hamiltonian in
the curvilinear coordinatesq1 andq2, (ii) adequate transform
of wave function and (iii) to takeq2 → 0. After these steps,
the Hamiltonian will be separated into two independent parts
regardingq1 andq2, respectively. Letdl be an infinitesimal
distance. We have

dl2 = gijdq
idqj ,

wheregij , the metric tensor, is defined by the inner product,
(∂r/∂qi) · (∂r/∂qj). We can use the coordinatesq’s and the
metric tensorgij to express Laplacian:

∇2ψ =
1√
g

∂

∂qi

[√
ggij

∂ψ

∂qj

]

, (2)

whereg is the determinant ofgij . Once we haveSijp
iσj in

the Cartesian coordinates, we can obtain the expression in the
coordinatesq’s via the transform’s laws of tensors:

p′i =
∂q′i

∂qj
pj ,

σ′i =
∂q′i

∂qj
σj ,

S
′

µν =
∂qi

∂q′µ
∂qj

∂q′ν
Sij ,

(3)

where the primed symbols denote those in the new coordi-
nates. Using Eqs. (2) and (3), we can write the Hamilto-
nian (1) in the coordinatesq’s:

H = − ~
2

2m

1√
g

∂

∂q1

(√
gg11

∂

∂q1

)

−i~
3

∑

j=1

S1jσ
jg11

∂

∂q1

− ~
2

2m

[

∂2

∂q22
+

∂

∂q2
(ln

√
g)

∂

∂q2

]

−i~
3

∑

j=1

S2jσ
jg22

∂

∂q2
+ V (q2), (4)

where for brevity the sign′ is neglected. We have usedgi2 =
g2i = δ2i in Eq. (4). The first two terms and latter two of
Eq. (4) are not independent sinceg is a function ofq1 and
q2. Given an eigenfunctionΨ(q1, q2) of H, we haveHΨ =
EΨ. Following Ref.20, we make the transformχ(q1, q2) =
f1/2Ψ(q1, q2) with f =

√
g = (1 − κq2), whereκ is the

curvature ofa(q1). After the transform, we obtain

Hχ =
√

f

[

− ~
2

2m

1√
g

∂

∂q1

(√
gg11

∂

∂q1
χ√
f

)]

−i~
3

∑

j=1

S1jσ
jg11

∂χ

∂q1

− ~
2

2m

{

∂2χ

∂q22
+

1

4f2

[

(

∂f

∂q2

)2
]

χ

}

−i~
3

∑

j=1

S1jσ
jg22

(

∂

∂q2
+

1

2f
κ

)

χ+ V (q2)χ. (5)

Takingq2 → 0 except that inV (q2), Eq. (5) becomes

Hχ = − ~
2

2m

∂2χ

∂q12
− i~

3
∑

j=1

S1j(q
1, 0)σj ∂χ

∂q1

− ~
2

2m

(

∂2χ

∂q22
+
κ2χ

4

)

− i~

3
∑

j=1

S2j(q
1, 0)σj

(

∂χ

∂q2
+
κχ

2

)

+ V (q2)χ. (6)

Renamingq1 ass and deleting the terms dependent onq2 in
Eq. (6), we obtain the 1D effective Hamiltonian

H1D = − ~
2

2m

∂2

∂s2
− ~

2κ2

8m

−i~S‖(s) · ~σ
∂

∂s
− i~κ

2
S⊥(s) · ~σ, (7)

wheres denotes the arc length of the wire, andS‖ andS⊥ are
defined by

S‖ · ~σ =

3
∑

j=1

S1j(q
1, 0)σj , (8)

S⊥ · ~σ =

3
∑

j=1

S2j(q
1, 0)σj . (9)

The second term in Eq. (7) is the curvature-induced geomet-
ric potential, which was first introduced by da Costa20 and
was previously neglected in the literature of mesoscopic ring
transport.9–15,17 We will later come back to investigate the role
played by this geometric potential term.

2. 1D arc with SOC: Continuous form

Below we consider the Rashba SOC in an arc. In two-
dimensional electron gas (2DEG), the intensively discussed
Rashba SOC5 reads

H2D
R =

α

~
(pyσx − pxσy), (10)
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whereα is the Rashba coupling parameter. In this case,Sij

are

Sxx = 0,

Sxy =
−α
~
,

Syx =
α

~
,

Syy = 0.

(11)

The parametric equation for an arc can be written asR = rρ̂,
wherer is the radius of the ring. The position of an electron is
written asRe = (r−q2)ρ̂.Here,q1 is rφ. Using the transform
law of tensors, we obtainS′ij in the qi coordinates from Eq.
(11), and thus

S11 = 0,

S12 =
−α
~
,

S21 =
α

~
,

S22 = 0.

(12)

Using Eqs. (7), (8), (9) and (12), we obtain the confinedHR

in the polar coordinates,

HR = −iα
(

−σ2 ∂

r∂φ
+
σ1

2r

)

,

whereσ1 andσ2 are defined by Eq. (3), or in the Cartesian
coordinates,

HR = − iα
r

(cosφσx + sinφσy)
∂

∂φ

− iα
2r

(cosφσy − sinφσx) , (13)

which is in agreement with the terms given by Meijeret al.11

The linear Dresselhaus (001) term, in 2DEG expressed
as26,34

H2D
D =

β

~
(pyσy − pxσx), (14)

can be derived similarly for the arc, but can be written down
even more conveniently by replacing fromHR with α →
β, σx → σy, σy → σx:

HD = − iβ
r

(cosφσy + sinφσx)
∂

∂φ

− iβ
2r

(cosφσx − sinφσy) . (15)

Thus the 1D Hamiltonian in an arc in the presence of Rashba
and linear Dresselhaus (001) SOCs reads

H = − ~
2

2m

∂2

∂s2
− ~

2κ2

8m
+Hso, (16)

whereHso is given in Eqs. (13) and (15).

3. 1D arc with SOC: Tight-binding form

Previously Souma and Nikolić had derived the tight-
binding Hamiltonian for two-dimensional rings in the pres-
ence of Rashba SOC.15 Following their construction, here we
take the 1D limit, add the previously absent geometric po-
tential term [second term in Eqs. (7) or (16)] and the linear
Dresselhaus (001) term, to obtain

H = (U + 2t0 + Ug)σ
0
∑

n

c†ncn

+
∑

n

(

tn←n+1c
†
ncn+1 + H.c.

)

, (17)

with the hopping matrix

tn←n+1 = −t0σ0 + i[cosφn,n+1 (tRσ
x + tDσ

y)

+ sinφn,n+1 (tRσ
y + tDσ

x)]. (18)

Here t0 = ~
2/2ma2, a the lattice grid spacing, is the ki-

netic hopping parameter,σ0 is the 2 × 2 identity matrix,
tR = α/2a, tD = β/2a are the Rashba and Dresselhaus hop-
ping parameters, respectively, andφn,n+1 =

(

φn + φn+1

)

/2
is the average azimuthal angle between siten and siten + 1
(φn+1 > φn; see Ref.15). In the on-site potential term in Eq.
(17), U + 2t0 responsible for energy band offset corresponds
to the atomic orbital energy in the language of empirical tight-
binding band calculation. In generalU can also take into ac-
count other local potentials, but here for convenience we will
putU to zero. The additional termUg is the geometric poten-
tial and can be re-expressed in terms oft0 as,

Ug = −~
2κ2

8m
= −

(

π

2Nr

)2

t0, (19)

where relationsκ = 1/r andNra = πr are used. Note that
theUg term will be later considered only in the LKF, but not
other quantum mechanical approaches.

B. Spin transport formalisms

Below we briefly review a set of different formalisms to
be used to study the charge and spin transport in the U-
channel. We will first introduce the tight-binding-based LKF
(Sec.II B 1), for which the U-channel is precisely described
by Fig. 1(a). That is, a ferromagnetic lead is attached to the
left end of the U-channel, while the right lead is made of nor-
mal metal; a bias potential difference is applied between the
leads so that electrical spin injection from the left lead are the-
oretically simulated. Contrary to the sophisticated LKF, the
quantum-mechanics-based translation (Sec.II B 2), as well as
its approximating form–spin vector formula (Sec.II B 3), and
the spin-orbit gauge method (Sec.II B 4) are schematically de-
scribed by Fig.1(b). That is, we simply assume an ideal spin
injected at the left end of the channel, drag the spin through
a U-shaped path using either space translation operator or a
more elegant spin-orbit gauge operator, and then see how the
spin direction changes along the path.
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1. Landauer-Keldysh formalism

The key role in the LKF is played by the lesser Green’s
function, which requires (i) tight-binding Hamiltonian and (ii)
lead self-energy. For (i), the Hamiltonian matrix for the half-
ring part has been introduced in Sec.II A 3. That for the arm
parts (regions I and III) can be straightforwardly constructed
from the first-quantized Hamiltonians Eqs. (10) and (14) and
will not be repeated here. The size of the full Hamiltonian
matrix [H ] amounts toN × N , whereN = 2Nw + Nr is
the total number of sites. Each matrix element is a2 × 2
matrix because we are considering spin1

2 systems. For (ii),
we consider semi-infinite discrete leads and summarize the
self-energy expression as follows.

Consider a ferromagnetic semi-infinite chain
with uniform magnetization pointing alongeM =
(sin θM cosφM , sin θM sinφM , cos θM ). Extending the
nonmagnetic and continuous case from Ref.28 to a ferro-
magnetic and discrete one, we obtain

ΣM (E) = t2cg
R
M (E)

gRM (E) =
∑

σ=±

gR (E − σtM ) |σ; eM 〉〈σ; eM |, (20)

wheretc is the coupling strength between the lead and the
central transport channel (and will be set equal tot0), tM is
the Zeeman splitting energy, the eigenkets are35

|σ = +; eM 〉 =







e−iφM cos
θM
2

sin
θM
2







|σ = −; eM 〉 =







e−iφM sin
θM
2

− cos
θM
2






,

and the retarded surface Green’s function reads

gR (E) =
1

2td

{

∆− i
√
4−∆2, |∆| ≤ 2

∆− sgn∆
√
∆2 − 4, |∆| > 2

∆ =
E − (V + 2td)

td
,

where td is the kinetic hopping parameter in the lead and
will be again set equal tot0 in the later computation. The
self-energy function Eq. (20) is the only nonvanishing ma-
trix element of the full self-energy matrices:[ΣL(E)]11 and
[ΣR(E)]NN . For our U-channel here, we will consider for
the left leadtM = 0.1t0 to inject spins while for the right lead
tM = 0 to let the spins outflow freely.

With both the tight-binding Hamiltonian and lead self-
energy matrix constructed, one can construct the space-
resolved retarded Green function matrix

[

GR (E)
]

= {E [I]− [H ]− [ΣL (E)]− [ΣR (E)]}−1 ,

where[I] is the2N × 2N identity matrix,[H ] is the space-
resolved tight-binding Hamiltonian matrix for the U-channel,

and
[

ΣL/R (E)
]

is the self-energy matrix of the left/right lead.
The lesser Green function matrix is then obtained via the ki-
netic equation

[

G< (E)
]

=
[

GR (E)
] [

Σ< (E)
] [

GA (E)
]

, (21)

where
[

GA (E)
]

is the advanced Green function matrix ob-
tained by the hermitian conjugate of

[

GR (E)
]

and the lesser
self-energy matrix is given by

[

Σ< (E)
]

= −
∑

p=L,R

{

[Σp (E − eVp)]− [Σp (E − eVp)]
†
}

×f0 (E − eVp) ,

wheref0 is the Fermi function,eVp is the electric potential
energy applied on leadp. In our numerical computation we
will put eVL = +eV0/2 andeVR = −eV0/2 for a potential
energy difference ofeV0, a bias parameter that is taken as pos-
itive (while the electron chargee = − |e| is negative), so that
the electrons are injected from the left lead. In addition, we
will consider zero temperature limit so that the Fermi function
becomes step-like and will strictly cut the energy integration
range [see Eqs. (22) and (23) below].

Desired physical quantities can then be extracted from
the lesser Green function Eq. (21) through properly defined
expressions.30 In this paper our main interest lies on the local
charge density,

e〈Nn〉 =
e

2πi

∫ EF+eV0/2

EF−eV0/2

dE Trs
[

G< (E)
]

nn
, (22)

and the local spin density,

〈Si
n〉 =

~/2

2πi

∫ EF+eV0/2

EF−eV0/2

dE Trs
{

σi
[

G< (E)
]

nn

}

, (23)

i = x, y, z

whereEF is the Fermi level that will be set to0.2t0 above the
band bottom,[G< (E)]nn is thenth diagonal matrix element
of the entire[G< (E)] matrix and is a2 × 2 matrix, andTrs
is the trace done with respect to spin. The subscript in the left
hand sides of both Eqs. (22) and (23) stand for thenth site of
the U-channel.

2. Quantum mechanical translation method

In the following we briefly review an earlier work done by
some of us,24 a theoretical method based on quantum mechan-
ics to analyze spin precession along an arbitrary path.

An electron spin injected atr0 is described by a state ket
|s0; r0〉, where s0 labels the spin orientation, and is later
evolved to another state ket|s; r〉 at position r, through
the translation operatorT (p) = exp [ip/~ · (r− r0)], i.e.,
|s; r〉 = T (p) |s0; r0〉. In two-dimensional boundless sys-
tems with Rashba and linear Dresselhaus (001) SOCs [Eqs.
(10) and (14)], the eigenstates|±;φk〉 are well known (see, for
example, also Ref.24) and can serve as a convenient basis to
expand the spin state ket;φk is the propagation angle of wave
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vectorsk±. Hence expanding|s0; r0〉 in terms of|±;φk〉 we
can proceed by usingf (p) |±;φk〉 = f (~k±) |±;φk〉:

|s; r〉 = T (p) |s0; r0〉
= eik±·(r−r0)

∑

σ=±

|σ;φk〉〈σ;φk|s0; r0〉

= eik̄∆r
∑

σ=±

eiσ∆θ/2|σ;φk〉〈σ;φk|s0; r0〉, (24)

with k̄ = (k+ + k−)/2,∆θ = ∆k∆r = (k+ − k−)∆r,
and∆r = |r− r0|. The global phase involvinḡk will be
canceled in calculating expectation value while the phase dif-
ference involving∆k = −2mζ/~2 with ζ given later in
Eq. (29) plays a key role in spin precession. For successive
nearest neighbor hoppings in Fig.1(a), we simply apply Eq.
(24) for every step and then calculate the expectation value
for Pauli matrices to obtain the spin direction on each site,
〈S〉 = (~/2)〈~σ〉 = (~/2)〈s; r|(σx, σy, σz)|s; r〉, starting with
the assumed injected spin at the first site in contact with the
left lead.

3. Spin vector formula

A further approximating step done in Ref.24 was to take
the continuous limit (see the Appendix therein), so that each
section approaches to infinitesimal. After successive infinites-
imal translations from injection pointr0 to a certain desired
positionr, the spinor overlaps carried by the final state ket
was approximated as

〈σ1|σ0〉〈σ2|σ1〉 · · · 〈σj+1|σj〉 · · · 〈σN |σN−1〉
≈ 〈σ1|σ0〉δσ2σ1

· · · δσj+1σj
· · · δσNσN−1

,
(25)

where|σ0〉 = |s0; r0〉 is the input,|σj〉 is the shorthand for
|σj ;φ

j
k〉, φ

j
k being the propagation angle of thejth section,

andN → ∞ is the number of infinitesimal straight transla-
tions fromr0 to r. A closed form of the state ket generalized
from Eq. (24) can thus be obtained. Using the generalized
state ket one obtains the spin vector formula,

〈S〉 = ~

2













− cos θM cosϕk sin∆Θ+ sin θM

[

cos
(

ϕk − ϕ0
k + φM

)

cos2
∆Θ

2
− cos

(

ϕk + ϕ0
k − φM

)

sin2
∆Θ

2

]

− cos θM sinϕk sin∆Θ + sin θM

[

sin
(

ϕk − ϕ0
k + φM

)

cos2
∆Θ

2
− sin

(

ϕk + ϕ0
k − φM

)

sin2
∆Θ

2

]

cos θM cos∆Θ + sin θM cos
(

ϕ0
k − φM

)

sin∆Θ













, (26)

with

ϕk = arg[(α cosφk − β sinφk) + i(α sinφk − β cosφk)],
(27)

∆Θ =
2m⋆

~2

∫

C

ζds, (28)

and

ζ =

√

α2 + β2 − 2αβ sin 2φk (s). (29)

The angleϕ0
k in Eq. (26) stands forϕk

(

φ0
k

)

with φ0
k the prop-

agation direction of the input|s0; r0〉.
For the present U-channel, the transport direction as a func-

tion of position coordinates can be written as

φk (s) =















π/2, s ∈ [0, L]

π/2− π
s− L

πr
, s ∈ [L,L+ πr]

−π/2, s ∈ [L+ πr, 2L+ πr]

, (30)

L being the length of each arm;s runs from0 to 2L + πr.
In the following we give two concrete examples to show
the convenience of Eq. (26), one for pure Rashba case and
the other for pure Dresselhaus, both withSx spin injection:
(θM , φM ) = (π/2, 0).

In the presence of only the Rashba SOC, we have from Eq.
(27) ϕ0

k = φk (s = 0) = π/2, ϕk = φk (s), and from Eqs.

(28) and (29) ∆Θ = 2(tR/t0)(s/a). Putting these together
with (θM , φM ) = (π/2, 0) into Eq. (26) we have

〈S〉|R,Sx inj =
~

2





sinφk
− cosφk

0



 . (31)

In the presence of only the linear Dresselhaus (001) SOC,
we haveϕ0

k = −π, ϕk = −φk(s) − π/2, and ∆Θ =
2(tD/t0)(s/a). Equation (26) then reduces to

〈S〉|D,Sx inj =
~

2





cos∆Θ sinφk
cos∆Θ cosφk

− sin∆Θ



 . (32)

Despite the elegant description of these spin vector formu-
las, a crucial approximation of the spinor overlaps that has
been made in Eq. (25) deserves a further discussion before we
move on. Take one pair of the overlap, say, betweenjth and
(j+1)th for example. Recall the eigenspinors in the presence
of both Rashba and linear Dresselhaus (001) SOCs,24

|σj〉 =
1√
2

(

ie−iϕ
j

k

σj

)

, (33)

whereϕj
k = ϕk(φ

j
k) is given in Eq. (27). When the two sec-

tions point along the same direction, i.e.,φj
k = φj+1

k , the or-
thogonality becomes exact:〈σj+1|σj〉 = δσj+1σj

, regardless
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of the type of the SOCs in the straight 1D structure. Oth-
erwise, the orthogonal approximation always contains error.
For pure Rashba case, the overlap using Eq. (33) up to first-
order in∆φk reads〈σj+1|σj〉 = (ei(φ

j+1

k
−φj

k
)+σj+1σj)/2 =

δσj+1σj
+ i∆φk/2 + · · · , which indicates that the major er-

ror term accumulating upon “turning” along the curved 1D
structure is proportional to the change of the angle∆φk =

φj+1
k − φjk and is therefore still moderate. In the presence of

only the linear Dresselhaus term, the situation is similar.In
the presence of both SOC terms, however, the error accumu-
lated becomes drastic, which we will show numerically later.

4. Spin-orbit gauge method

The spin propagator can be obtained with the help of spin-
orbit gauge.27 Noting that the highest order in momentum
P = pσ0 in the Hamiltonian of a 2DEG with Rashba and
Dresselhaus SOCs (both linear inp) is quadratic, one can de-
fine the spin-orbit gauge,

ASO = (Ax, Ay) ≡
mc

e~
(ασy + βσx,−ασx − βσy) , (34)

to express the 2DEG Hamiltonian,

HRD =
P2

2m
+H2D

R +H2D
D

=
1

2m

(

P−e
c
ASO

)2

− Vbσ
0 (35)

with the constant background potentialVb =
(m/~2)

(

α2 + β2
)

; recall that σ0 is the 2 × 2 identity
matrix. Consider now the transformation operator,

USO(r) = exp

[

ie

~c

(

ASO · r
)

]

, (36)

with the unitary propertyUSO(r)USO(r)
†
= σ0 ensured by

the hermitianASO = ASO† from the definition (34) andr be-
ing the position vector of the electron displacement. Since
the spin-orbit-interacting Hamiltonian (35) differs from the
Hamiltonian of the free electron gas (with a background po-
tentialVb),

Hfree =
P2

2m
− Vbσ

0, (37)

only by the gauge term(e/c)ASO in P, the following trans-
formation is therefore suggested,

USO(r)PUSO(r)† = P+
ie

~c

[

ASO · r,P
]

+
1

2

(

ie

~c

)2
[

ASO · r,
[

ASO · r,P
]]

+ · · · , (38)

with [ASO · r,P] = i~ASO. Due to the non-commutability
[ASO

x , ASO
y ] 6= 0, the terms containing higher orders of|r|, in

general, do not vanish, while in the small displacement limit
|r| ≈ 0 in which one hase (c~)−1 ASO · r ≪ 1, Eq. (38)

reduces toUSO(r)PUSO(r)
†
= P−e/cASO, rendering the

following transformation,

USO(r)HfreeUSO(r)
†
= HRD, (39)

between the two systems,HRD andHfree. Accordingly, when
|r| ≈ 0 or e (c~)−1 ASO · r ≪ 1 is satisfied, the free elec-
tron gasHfree, Eq. (37), and the SO-interacting electron gas
HRD, Eq. (35), share the same eigenenergiesEk. Their
corresponding eigenfunctions, denoted byψEk

(r)χfree
s and

ΨEk
(r)χSO

s , respectively, differ from each other only by a
phase factor, the2× 2 matrixUSO(r), namely,ΨEk

(r)χSO
s =

ψEk
(r)USO(r)χfree

s . Hereχs is the spin part of the wave
function. Moreover, any wave function is constructed by a
superposition of the eigenfunctions, so for any given wave
functionψ(r)χfree

s in Hfree, the corresponding wave function
in HRD isψ(r)USO(r)χfree

s .
The correspondence, originated from the gauge transfor-

mation (39), betweenHfree andHRD systems, allows one
to construct the spin propagator forHRD; to elaborate this,
consider an injected electron in systemHfree described by
ψinj(r)χinj = [

∑

k
CkψEk

(r)]χinj with the initial spin state
χinj and the weighting factorCk. Without any spin-dependent
mechanisms, this electron remains at spin stateχinj , while im-
portingASO turns onUSO(r) so that the electron wave func-
tion in the SO-interacting systemHRD can be expressed by
the gauge transformation in the form,

USO(r)ψinj (r)χinj =
∑

k

CkψEk
(r)USO(r)χinj . (40)

As a result, the spin polarization of the electron in sys-
temHRD varies spatially according toUSO(r)χinj , and thus
USO(r) can be viewed as a spin propagator.

For general applications based on the gauge transformation,
assume an electron moving along an arbitrarily curved trajec-
tory denoted as pathc starting from one spatial point to the
other. Divide this path intoN pieces. Label the divided pieces
(paths) by path1, path2, · · · , pathN , sequentially (i.e., path
i + 1 follows pathi) and letri denote the position vector of
the displacement for theith path. One can always choose large
enoughN to havee (c~)−1 ASO · ri ≪ 1 such that Eq. (36)
can be approximately interpreted as a propagator for eachri.
The spin propagator along an arbitrary pathc then reads,

USO
c (r) = USO(rN )USO(rN−1) · · · USO(r2)USO(r1) ,

(41)
which can be concisely written as,

USO
c (r) = P exp

(

ie

~c

∫

c

ASO · dr
)

, (42)

whereP is the path-ordering operator that orders the operator
USO(ri) with earlier passing pathri to the right of the later
USO(ri+1) such thatP exp[(ie/~c)

∫

pathi+1←pathi A
SO·dr] =

USO(ri+1)USO(ri).
Obviously, if both theith and(i+1)th paths form a straight

line, then one has

USO(ri+1 + ri) = USO(ri+1)USO(ri) (43)
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simply because only one dimension (component) ofASO will
be used, and thus the commutators appeared in the higher or-
der terms of Eq. (38) vanish. In other words, if the electron
moves along a straight line, i.e., pathc is not curved, we have
USO
c (r) = USO(r), namely, Eq. (42) reduces to Eq. (36).
To study the spin evolution through the U-channel in the

continuouslimit, one can useUSO(r) for parts I and III while
Eq. (41) for part II. In order to be consistent with thedis-
cretetight-binding model shown in Fig.1(a) adopted in LKF,
however, we will successively applyUSO(r) for each nearest
neighbor hopping.

III. TRANSPORT ANALYSIS

Having reviewed the theoretical formalisms, we are now
in a position to carry out our three goals of this work. In
Sec.III A , we compare the spin precession patterns calculated
by quantum mechanical approaches with those by Landauer-
Keldysh formalism, or nowadays generally termed as quan-
tum transport. Meanwhile, we will examine the role played
by the curvature-induced geometric potential based on LKF.
We proceed in Sec.III B with a detailed discussion for adi-
abatic and nonadiabatic transport regimes and connect the
present work with previous ones. In Sec.III C we discuss the
anisotropic charge transport due to the interplay between the
Rashba and Dresselhaus SOCs, and spin precession in special
cases, which is equivalent to numerically test the eigenstates
of Rashba rings, Dresselhaus rings, and the persistent spinhe-
lix state.

A. Quantum mechanical approaches vs. quantum transport

1. Weak geometric potential

Recall the geometric potentialUg expressed in terms oft0
in Eq. (19). From the tight-binding Hamiltonian (17), one can
see that whetherUg is sensible by the electrons depends on its
competition with the energy band width2t0. Here we begin
with a U-channel withNr = 50, yielding |Ug| ≈ 2.47 ×
10−4t0, which is hardly competitive with2t0, andNw = 30.

In Fig. 2 we report the local spin densities by LKF under
a high bias ofeV0 = 0.4t0, spin components by spin vector
formula, translation method, and spin-orbit gauge method,for
pure Rashba case withtR = 0.1t0 in column (a), pure Dres-
selhaus case withtD = 0.1t0 in column (c), and a mixed case
with (tR, tD) = (0.1, 0.03)t0 in column (b). At the bottom of
each column, the local charge density obtained by LKF with
both high bias ofeV0 = 0.4t0 and low bias ofeV0 = 10−3t0 is
also reported. At the top of each column, the spatially imaged
spin vectors are from the LKF results. Note that the LKF-
based spin densities〈Si

n〉 given by Eq. (23) have been normal-
ized by requiring|〈Sn=1〉| = ~/2, while the spin components
obtained by the quantum mechanical methods are inherently
of unit norm due to the normalized state kets.

Clearly in Fig.2 all the spin curves obtained by translation
and by spin-orbit gauge methods are identical to each other.

These curves further fit with those by LKF all quite well, ex-
cept the oscillating tails that appear in the LKF results. These
oscillations result from the nonequilibrium accumulationof
the electron number that cannot be taken into account in the
quantum mechanical approaches. With low bias the electrons
behave like waves (as shown in the charge density curves in
the bottom panels of Fig.2), which is the assumption in the
quantum mechanical approaches. The spin density curves by
translation/spin-orbit gauge method match to those by LKF
with low bias perfectly (not shown).

For the curves from spin vector formulas, we use Eq. (31)
for the Rashba case of Fig.2(a), Eq. (32) for the Dresselhaus
case of Fig.2(c), and Eq. (26) for the mixed case of Fig.2(b).
In region I of all the three cases, the SVF curves match with
the others all perfectly since in that region the orthogonality
approximation Eq. (25) is in fact exact. Once the electron
enters region II, the error contained in Eq. (25) for the SVF
curves starts to accumulate. The error is still moderate in Figs.
2(a) and (c), but becomes drastic in the mixed case of Fig.2(b)
as we have remarked previously in Sec.II B 3.

Comparing the low-bias charge densities in all the three
cases, one can see that an additional modulation appears
in region II when both SOCs are present [bottom panel of
2(b)]. This charge density modulation stems from the angle-
dependent spin-orbit potential, and will be explained in detail
later in Sec.III C 1.

Before leaving for the stronger geometric potential case, we
give a further discussion over the Rashba channel: Fig.2(a).
SinceSx is one of the Rashba eigenstates in region I, the in-
jected spin perfectly remains its spin direction until the half-
ring section is reached. Since then nonvanishing〈Sz〉 compo-
nent is induced in the curves from LKF and translation/spin-
orbit gauge method since the eigenstates of the Rashba ring
are no longer inplane.12–14 The spin direction described by the
SVF, on the other hand, remains inplane and perpendicular to
the transport, since after the orthogonal approximation [Eq.
(25)] the coplanar normal of a continuous 1D channel is still
concluded as the eigenstate. Hence the “generalized preces-
sionless” transport in the curved 1D Rashba channel predicted
in Ref.24 may not work well. TheSx spin entering the half-
ring region, in fact, starts to precess about the tilted eigenstate
of the Rashba ring with spin precession lengthLso [given later
in Eq. (45)], which matches exactly the period shown in〈Sz〉
of Fig. 2(a). We will come back to this tilted eigenstate later
in Sec.III C 2.

2. Strong geometric potential

Next we consider a U-channel withNr = 10 and the same
Nw. The geometric potential for such aNr is |Ug| = 0.025t0,
which is no longer negligible for the electrons. We keep the
same figure orientation as Fig.2. The only information added
in Fig. 3 is the spin components computed by LKF with low
bias.

The spin curves by translation and spin-orbit gauge meth-
ods are again identical to each other, and match well with the
LKF curves with high bias. SVF curves this time become
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FIG. 2. (Online color) Spatially resolved spin components (in units of~/2) calculated by LKF, translation method (Tran), spin-orbitgauge
(SOG) method, and spin vector formula (SVF) in a U-channel with (Nw, Nr) = (30, 50) under a strong bias ofeV0 = 0.4t0 and SOC
strengths of (a)(tR, tD) = (0.1, 0)t0, (b) (tR, tD) = (0.1, 0.03)t0, and (c)(tR, tD) = (0, 0.1)t0. The local charge density obtained by LKF
for high bias ofeV0 = 0.4t0 and low bias ofeV0 = 10−3t0 are shown in the bottom panels. Spin vectors in the top subplots are based on the
high bias LKF results.

rather poor after entering the half-ring region since therethe
change in the direction∆φk upon every hopping is no longer
small, and the spinor overlap approximation (25) hardly ap-
plies.

For the spin curves by LKF with low bias, the effect of the
geometric potentialUg can now be seen. The injected spin
previously parallel to the internal magnetic field direction eM
is here reversed due to the reflection off theUg potential well
and a certain matching condition between the Fermi wave-
length and the arm lengthL within region I. Either shifting
the Fermi energyEF , changing the lengthL, or putting dif-
ferent SOC energies [such as Fig.3(b)] will make the reversal
of the spin direction disappear. This is also why in the strong

bias regime, where a larger range of contributing states are
integrated, the reversal does not show.

The huge difference due to the strongerUg shown in Fig.3
is hence only a special case: the reflection off theUg well and
the length matching happen to make the opposite spin state
favored upon injection. Here we conclude that the role played
by the geometric potential is merely a rather weak potential
well that can be possibly sensed by the electrons when the
bending of the 1D structure is severe, and that even ifUg is
sensed, it serves simply as a potential well, which becomes
crucial only in the linear transport regime with certain partic-
ular matching condition between the Fermi wavelength and
the channel size.
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FIG. 3. (Color online) Similar with Fig.2 butNr = 10. Spin densities by LKF are shown for both low and high bias. Inthe top subplots,
black/red (gray) vectors correspond to high/low bias LKF calculation.

Apart from the spin behavior, the potential well nature of
the Ug can be clearly identified by comparing the low-bias
charge density curves shown in the bottom panels of Figs.2
and 3. In the previous weakUg case, the electron density
distributes like a standing wave from the source to the drain
ends, while in the present strongUg case the electron wave is
disturbed by the central geometric potential well in the half-
ring part.

B. Adiabatic and nonadiabatic transport regimes

Comparing further the previous two U-channels, one can
see from the Rashba cases that the spin initially injected atone
of the Rashba wire eigenstates may or may not follow the local

eigenstate throughout the U-channel; see Fig.4(a). Certainly
the key lies on the half-ring part, where the larger the number
Nr is, the easier the spin can follow the eigenstate, but the
strength of the SOC is also an important factor.13

To make quantitative investigation, we first define the fol-
lowing spin flip ratio,

fr ≡
1

π
cos−1

(

SL · SR

|SL| |SR|

) |SR|
|SL|

× 100%, (44)

whereSL andSR are the average spin direction of the left and
right arm, respectively, computed by the LKF. In the case of
Rashba U-channel withSx injection, the spin is flipped from
+Sx to −Sx when reaching the right arm, if the local eigen-
state is strictly followed. Thus the definition of Eq. (44) help
us quantify how well the local eigenstate is followed: whether
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FIG. 4. (Color online) (a) Top view of the spin density vectors shown
in Figs.2(a) and3(a) with high bias. (b) Spin flip ratiofr as a func-
tion ofNr with (tR, tD) = (0.1, 0)t0 and the output spin polariza-
tion based on Ref.23; the nonadiabatic curve is given by Eq. (47).

a change in direction or a shrink in the magnitude reduces
the spin flip ratio. Note that Eq. (44) is also valid for pure
Dresselhaus U-channels, provided that the injected spin has to
be oriented along±y, due to the180◦ turn of the U-channel.
That is, as long as the spin transport is enough adiabatic, the
injected spin is able to follow the local eigenstate so that the
spin is flipped after passing through the half-ring region.

Let us first fix the Rashba SOC strength astR = 0.1t0
but change the half-ring from small radius to larger ones, as
shown in Fig.4(b), where a clear jump at aboutNr = 16 is
observed. WithinNr . 16 the spin flip ratio is nearly zero,
showing that the spin can hardly follow the local spin eigen-
state when entering the half-ring region. At right side of the
jump,fr increases to 100% and then exhibits a resonance-like
oscillation below the maximum value, in close analogy with
Ref.23and similar to some of the results reported in Ref.25.
The oscillation period of about32 corresponds to a distance
for the spin to complete a2π of precession angle under the
Rashba SOC, i.e., two times the spin precession length,29

Lso/a =
π

2

t0
tR
. (45)

Here we have2Lso/a = 10π. This oscillation period can be
well described by Ref.23, which we will discuss later.

The jump offr and the wavelength of the resonance-like
oscillation depends on the SOC strength. Hence we next vary
both Rashba strength and the site number of the half-ring, and

Nr

t R
/
t 0
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FIG. 5. (Color online) Spin flip ratiofr defined in Eq. (44) as a
function of tR andNr, free of tD. The white dashed line given by
QR = 1 divides the transport into nonadiabatic (left-bottom) and
adiabatic (right-top) regimes. Horizontal dashed line corresponds to
Fig. 4(b).

make the plot forfr as a function oftR andNr in Fig. 5. The
fr pattern is clearly divided into two regimes that can be per-
fectly described by theQR = 1 curve, which was inspired
from Ref.13. The adiabatic condition was previously argued
as9,10 Q≫ 1 whereQ = QB +QR includes the contribution
from external magnetic field and the Rashba field. In our anal-
ysis no external magnetic field is applied, and the adiabatic
condition readsQR ≫ 1. The definition ofQR from Ref.13
is here re-expressed in terms of our tight-binding parameters,

QR =
2

π

tR
t0
Nr, (46)

which implies that the increase of eitherNr or tR brings the
transport regime to adiabatic. Therefore the criterion that
QR ≫ 1 preserves the transport in the adiabatic regime is well
agreed. Furthermore, by comparing with Eq. (45) the meaning
of QR given by Eq. (46) is transparent:QR = Nr/ (Lso/a) ,
i.e., the number of precession half-periods that the spin can
complete within the half-ring. Hence the conditionQR = 1
from our notation corresponds exactly to the arc length of the
half-ring that matches one spin precession lengthLso. The
mathematical criterion for adiabatic transport, within which
the electron spins are able to follow the local field, means that
the electron spins have to be able to complete at least an angle
of π of precession within the half-ring. One might attempt to
extend this interpretation to an arbitrary expanding angleof
an arc, such as the curvilinear QW considered in Ref.25, but
further examination is left here as a possible extending work.

Finally, we compare our result with Ref.23, which is
shortly reviewed in the following. Trushinet al. previously
considered also a U-shaped 1D channel with Rashba SOC
and solved the transmission problem by matching the bound-
ary conditions.23 A spin polarization was defined asP =
(j+ − j−)/(j+ + j−), wherej± is the probability current
of the± eigenspin components. Polarized wave occupying
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the+ Rashba eigenstate was assumed as the incoming state
so thatPin = 1 and the spin polarization for the outgoing
wavePout is the main quantity of interest. If the injected spin
remains at its local eigenstate,Pout = 1 is expected, which
is the adiabatic limit. Oppositely, strongly nonadiabaticlimit
leads to a simplified expression23

Pout = cos

(

πQR

√

1 +Q−2R

)

, (47)

which has been translated to our tight-binding language. As
shown in Fig.4(b), the oscillation matches with our result;
the curve in the lowNr region (QR small) match particularly
well. For largerQR, Eq. (47) approaches tocos(πQR) with
the oscillation period∆QR = 2 = ∆Nr/(Lso/a), which
well describes the period of∆Nr = 2Lso/a in Fig. 4(b),
in agreement with our previous discussion. For generalQR,
Pout can be computed following their results and is plotted
also in Fig.4(b) (with tR = 0.1t0 andEF = 0.2t0). Overall,
the oscillation behavior in both the nonadiabatic and general
cases from Ref.23agrees with our result.

In the above discussion, we have injectedSx spin, which is
the eigenstate of the Rashba wire. The fact that the eigenstates
in the ring differ with those in the wire by a tilt angle is the
origin that a spin starting withSx in the U-channel can never
perfectly follow the local eigenstate in the half-ring part. In
principle, when the spin direction happens to match with the
ring eigenstate when the electron is just about to enter the ring,
the local ring eigenstate can then be well followed. In the
following section, we will show that these special cases do
exist, provided that the lengthL and the orientation angle of
the injected spin are precisely designed.

C. More on charge and spin transport

The last goal to be carried out here is to reveal some of
the interesting transport properties, regarding both charge and
spin, based on quantum transport calculations.

1. Charge density modulation: Emergence of spin-orbit potential

As previously remarked in Sec.III A 1 [or specifically the
bottom panel of Fig.2(b)], an additional modulation to the
low-bias charge density in the half-ring region appears when
both terms of SOCs are present. In Fig.6(a), we show the
formation of this charge density modulation in a(Nw, Nr) =
(50, 100) U-channel by fixingtD = 0.02t0 and varying from
tR = 0 to tR = tD, with eV0 = 10−3t0 and EF =
0.2t0. Clearly, the modulation appears only whentRtD 6= 0,
and reaches its maximum when both SOCs are of the same
strength. This modulation was similarly obtained in a recent
study of the anisotropic spin transport in mesoscopic rings,36

but the origin there was not clear. In the following we pro-
vide a simple quantum mechanical picture to account for this
modulation.

Recall the anisotropic spin splitting, Eq. (29). By solving
for k± from EF = ~

2k2±/2m ± ζk± and defining the Fermi
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FIG. 6. (a) Formation of the charge density modulation in a
(Nw, Nr) = (50, 100) U-channel witheV0 = 10−3t0, tD fixed
at 0.02t0, andtR varied from0 to tD. (b) 1D Schrödinger problem
for a 1D linear chain subject to the spin-orbit potential model. The
top, middle, and bottom panels account for the zero SOC, single type
of SOC, and mixed type of SOCs, respectively. Parameters used here
are identical to the U-channel shown in (a). In addition to regions I,
II, and III that correspond to those in the U-channel, the left (L) and
right (R) leads are also labeled. (c) Local charge density〈eN〉 for the
U-channel and the electron correlation functionGn ∝ |ψ (s)|2 for
the linear chain, both consideringtR = tD = 0.02t0. Calculations
here in (a)–(c) are all withEF = 0.2t0.

wave vector askF = (k+ + k−) /2, we have

kFa =

√

EF

t0
+

(

tso
t0

)2

, (48)

where

tso (φk) =
ζ

2a
=

√

t2R + t2D − 2tRtD sin 2φk. (49)

The fact that the Fermi wavelengthλF = 2π/kF is forced
(whentRtD 6= 0) to be modulated upon changing propagation
angleφk, can be mapped to alinear 1D chainwith position-
dependent local potential. Defining

Vso
t0

= −
(

tso
t0

)2

, (50)

Eq. (48) then readskF a =
√

(EF − Vso) /t0, as if the elec-
tron is propagating in a 1D linear system subject to a potential
Vso, i.e., the electron is governed by

(

p2/2m+ Vso
)

ψ = Eψ.



13

This interpretation is exact whenVso is a constant potential;
whenVso is position-dependent but weak compared toEF ,
the argument is still a good approximation.

We therefore consider a 1D linear chain subject to, together
with the geometric potential, the full local potential,

U (s) =











Vso (+π/2) , s ∈ [0, L]

Vso (φk) + Ug, s ∈ [L,L+ πr]

Vso (−π/2) , s ∈ [L+ πr, 2L+ πr]

, (51)

whereφk as a function ofs is taken identical to Eq. (30). The
1D Schrödinger problem subject to the potentialU(s) given
by Eq. (51),

[

−~
2∂2/2m∂s2 + U(s)

]

ψ(s) = Eψ(s), can be
analytically cumbersome due to the irregular shape ofU(s),
but can be easily solved by the quantum transport formalism
introduced in Sec.II B 1 at an even lower cost. The lead self-
energy Eq. (20) with tM = 0 is taken for both left and right
leads (with potential+eV0/2 and−eV0/2, respectively) to
simulate the incoming and outgoing waves. The squared norm
of the wave function in such an equilibrium problem corre-
sponds to the electron correlation functionGn (E) (equiv-
alent to−iG<) that can be obtained fromf0 (E)A (E).28

The Fermi functionf0 will be taken as unity, concerning the
presently assumed zero temperature, and the spectral func-
tion A can be obtained fromA = GRΓGA, whereGR and
GA are the retarded and advanced Green’s function of the lin-
ear chain, respectively; the broadening function is given by
Γ = i(ΣL − Σ†L). Note that we have turned off the con-
tribution of the right lead to the broadening function to sup-
press the inflow of the particles from the right leads. This is
equivalent to set the wave function in the outgoing region as
ψ (s)|s≥L+πr ∝ e+iks, which is a usual assumption taken in
most quantum physics textbooks.

The potential profileU (s) together withGn ∝ |ψ (s)|2 is
plotted in Fig.6(b) for the three situations: zero SOC, sin-
gle type of SOC, and mixed type of the two SOCs. The last
case clearly resembles the charge density modulation in the
U-channel withtRtD 6= 0, and the present spin-orbit poten-
tial model seems to work well. Thus the modulation of the
electron density profile simply reflects the position-dependent
spin-orbit potential Eq. (50) that is usually small compared to
EF . Indeed, in Fig.6(c) we further compare the local charge
density〈eN〉 in the U-channel with the electron correlation
functionGn in the linear chain. The difference between them
is only up to a tiny phase shift. Detailed parameters used here
in Fig. 6 are given in the caption thereof.

When |Vso| is close toEF , either by strengthening the
SOC parameters or lowering the Fermi energy, the phase shift
grows, but theGn calculated for the linear chain and the〈eN〉
calculated for the U-channel still resemble in their shapes(not
shown). The present model hence works equally well to ex-
plain the charge density modulation, which we conclude to
originate from the emergence of the angle-dependent spin-
orbit potential whentRtD 6= 0.
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FIG. 7. (Color online) Spin precession in a(Nw, Nr) = (50, 50)
U-channel with (a)(tR, tD) = (π/Nw , 0) t0, (b) (tR, tD) =
(0, π/Nw) t0, and (c)tR = tD =

(

π/
√
2Nw

)

t0. The injected
spin is oriented in (a) as the Rashba ring eigenstate Eq. (52), in (b) as
the Dresselhaus ring eigenstate Eq. (56), and in (c) as the persistent
spin helix eigenstate Eq. (57). Note that in the imaging of the space-
resolved spin vectors, only half of the vectors are drawn in order for
clarity.

2. Spin precession in special cases

In this subsection we discuss spin precessions in three spe-
cial cases. In the first two cases, only one type of SOC is
considered, and we inject the spin oriented as the theoreti-
cally predicted eigenstate for thering (which is different from
those for the wire), and adjusttR or tD such that the length
L equals exactly to two times the spin precession lengthLso.
The injected spin arriving at the half ring returns exactly to
the eigenspin direction, such that the previously derived tilted
eigenstate, e.g., the eigenspinor for clockwise-propagating ↓
eigenspinor in Rashba ring from Ref.13,

χ↓R− (φ) =

(

sin (γR/2)
eiφ cos (γR/2)

)

=

(

cos[(π − γR)/2]
eiφ sin[(π − γR)/2]

)

,

(52)
with the tilt angleγR = tan−1QR, can be numerically ex-
amined. Note that hereφ is the azimuthal angle in the polar
coordinate (φ = 0 defined along+x axis), rather than the
propagation angleφk.

To account for the two extreme cases of pure Rashba and
pure Dresselhaus using one single formula, we write the
clockwise-propagating↓ eigenspinor as

χ↓− (φ) =

(

cos[(π − γ)/2]
eiϕ sin[(π − γ)/2]

)

, (53)

whereϕ is given, similar to Eq. (27), as

ϕ = arg [tR cosφ− tD sinφ+ i (tR sinφ− tD cosφ)] .
(54)

The tilt angle in Eq. (53) is given by

γ = tan−1
(

√

Q2
R +Q2

D

)

, (55)
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where QD is defined similar to Eq. (46) as QD =
(2/π)(tD/t0)Nr. Equation (53) clearly recovers the Rashba
ring case of Eq. (52) since ϕ|tD=0 = φ from Eq. (54) and
γ|tD=0 = γR from Eq. (55), can cover thetR = 0 Dressel-
haus ring case,

χ↓D− =

(

cos[(π − γD)/2]
e−i(π/2+φ) sin[(π − γD)/2]

)

, (56)

where γD = tan−1QD, but does not apply for general
tRtD 6= 0 cases.

The last case istR = tD, corresponding to the persistent
spin helix in 2DEG,31–33 the main feature of which is the fixed
eigenspin directions. In the present case, the↓ eigenspinor is

χ↓R=D =
1√
2

(

e−iπ/4

1

)

, (57)

corresponding toEk = ~
2k2/2m − ζk. Whether this eigen-

state, valid for 2DEG, still works in the curved 1D system, is
what we are about to answer.

a. Rashba ring eigenstateWe begin withtD = 0 and
injectχ↓R− (φ = π) as given by Eq. (52) in a U-channel with
(Nw, Nr) = (50, 50). We tunetR/t0 = π/Nw ≈ 0.063
such thatNw = πt0/tR = 2Lso/a [see Eq. (45)] ensures the
return of the injected spin to its initial spin direction, which
is the eigenstate of the ring atφ = π, after going through
region I. As shown in Fig.7(a), the spin entering the half-
ring region remains perfectly in the eigenstate. (Note thatwe
have chosen another view angle to focus on the half-ring part;
injection conditions are remained the same as previous dis-
cussions.) The curves of〈Si〉 within region II can be well
described by〈χ↓R− (φ) |~σ|χ↓R− (φ)〉 [given below in Eq. (58)]
with φ running fromπ to 0. The validity of the previously
derived tilted eigenstate in Rashba rings is hence numerically
verified.

Note the subtle difference between the special spin injec-
tion here and Sec.III B , where we injected an inplaneSx: an
eigenstate of the wire. The precise design of the lengthL and
the orientation of the injected spin allows the spin to stay per-
fectly in the tilted ring eigenstate. Thex-component of spin
with such a precise design can always be flipped, but should
be regarded as a special situation.

b. Dresselhaus ring eigenstateWe continue withtR =

0 and injectχ↓D− (φ = π) given by Eq. (56). In this case we
similarly havetD/t0 = π/Nw. Again the spin arriving at the
half-ring enters its eigenstate, and remains so until leaving the
ring, as shown in Fig.7(b). The spin components〈Si〉 within
region II can be well described by〈χ↓D− (φ) |~σ|χ↓D− (φ)〉 and
the validity of the Dresselhaus ring eigenstate is also numer-
ically verified. For both Figs.7(a) and (b), spin components
from Eq. (53):

〈χ↓− (φ) |~σ|χ↓− (φ)〉 =





sin (π − γ) cosϕ
sin (π − γ) sinϕ

cos (π − γ)



 , (58)

describes the〈Si〉 curves in region II well.

We remind here that the eigenstate given by Eq. (53) is in-
tended only for the two extreme cases oftR(D) 6= 0, tD(R) =
0 discussed above, although a solution given in Ref.17 sim-
ilar to our Eq. (53) was claimed to be valid for rings in the
presence of both Rashba and Dresselhaus terms. The simple
reason why the form of Eq. (53) does not apply for general
cases oftRtD 6= 0 is that the tilt angleγ [Eq. (55)] does not
recoverπ/2 when thetR = tD 6= 0 persistent spin helix state
is reached, which is true as we will next numerically show.

c. Persistent spin helix eigenstateWe proceed by con-
sideringtR = tD = (π/

√
2Nw)t0 ≈ 0.044t0, keeping the

size of the U-channel unchanged. The injected spin state is
oriented asχ↓R=D given in Eq. (57). As expected, the in-
jected spin stays at this eigenstate in region I, as shown in
Fig. 7(c). Somewhat surprisingly, however, the injected spin
remains precessionless throughout the whole U-channel, even
in the half-ring region. Therefore, the persistent spin helix
eigenstate, originally derived for 2DEG, is equally valid in
straight wires and curved rings. This is in sharp contrast to
the pure Rashba and pure Dresselhaus cases, for which the
eigenstates in wires and in rings are different.

IV. EXPERIMENTAL ASPECTS

The U-shaped 1D channel theoretically discussed in the
present work can be experimentally prepared by using AFM
lithography,1 i.e., local oxidation2 written by AFM tip on the
sample. The oxide lines turn out to completely deplete the un-
derneath 2DEG, and can hence confine the electron gas in the
desired nanostructure. A schematic sketch of the U-channel
based on this technique is suggested in Fig.1(c). Accord-
ing to the present fabrication ability (see, for example, Ref.
37), however, the ring radius is of the order of100 nm, and
the induced geometric potential is rather weak:10−2 meV
for GaAs-based quantum wells. To focus on the effect of the
geometric potential, a single turn as in our U-channel is not
enough; a series of geometric potential wells such as a sine-
like wave guide similar to the design reported in a recent ex-
periment on photonic crystal22 may give rise to a resonance
that could potentially be measured.

The spin injection assumed here may be realized either
electrically or optically. The former requires ferromagnetic
source contact and may further complicate the sample fabri-
cation and even the transport properties. The latter, optical
spin injection, has been mature in generating spin packets that
can be electrically manipulated.38 Regarding the U-channel
sketched in Fig.1(c), the adiabatic/nonadiabatic spin trans-
port discussed here may be experimentally tested by optically
pumping at the source a spin packet that can be electrically
dragged to the drain end by applying a bias voltage between
the source and the drain contacts. Optical spin detection of
the spin packet at the drain end shows whether the spin is re-
versed (adiabatic), decayed (spin-relaxed), or remained (nona-
diabatic), compared to the injected spin direction. The laser
spot size for the optical spin injection/detection typically of a
few hundreds of microns may impose a corresponding limit on
the design but could be possibly overcome by hard masks. A
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top gate covering the U-channel may control the Rashba SOC
strength39–41 and switch the transport regimes between adia-
batic and nonadiabatic, provided that the effect of the Dressel-
haus term is well treated.

Experimental proof of the interesting charge and spin trans-
port properties discussed in Sec.III C are also expected. In
particular, the charge density modulation in the presence of
both Rashba and linear Dresselhaus (001) SOCs discussed in
Sec.III C 1 requires measurement on the local charge densities
only and should be possible. The profile of the charge density
modulation simply reflects the angle-dependent spin-orbitpo-
tential and hence determines the type of the SOCs: flat for
single type of SOC and sine-like for mixed type of SOC. Note
that in our discussion of the U-channel, the nature ofsin 2φ
dependence of the spin-orbit potential provides the modula-
tion in the half-ring with one period of the sine function. In
the case of a full ring, we expect two periods then.

An alternative to prepare a 1D channel is the V-groove QW
based on electron beam lithography,1 but so far application of
this technique to curved 1D QWs is not seen.

V. CONCLUSION

In conclusion, we have re-derived the Hamiltonian for
curved 1D structure in the presence of SOC. Applied to the 1D
ring, the Hamiltonian is not only consistent to the previously
proposed proper Hamiltonian for Rashba ring,11 but also con-
tains a curvature-induced geometric potential, which was first
derived in Ref.20, but less discussed in the literature of ring
issues. The U-shaped 1D channel is further taken to be a spe-
cific example to investigate the role of this geometric poten-
tial, as well as to compare the spin densities by LKF with the
previous quantum mechanical approaches. Both translation24

and spin-orbit gauge27 methods mostly agree with the LKF
results, even though the underlying assumption is rather sim-
plified: an ideally injected spin at the initial position, and the
technique is rather artificial: to drag the injected spin by oper-
ating quantum operators. Whether the spin vector formula,24

a further approximating result from the translation method,
may work well or not depends on whether the orthogonality
approximation [Eq. (25)] is enough valid: exact for straight
1D structure, of moderate error for ring with single type of
SOC, and poor for ring with mixed type of SOCs.

The influence of the geometric potential taken into account
in the LKF calculation is shown to be sensible only when the
turn of the channel is sharp and the transport is under low bias.
Overall the role played by the geometric potential is moderate,
just like a local potential well, and can be drastic [such as the
reversal of the injected spin state shown in Fig.3(a) or3(c)]
only when certain resonance condition is reached.

We have also discussed the spin transport in adiabatic and
nonadiabatic regimes. In addition to the increase of the ge-
ometric potential when making the turn sharper by reducing
the number of siteNr in the turning part, the transport be-
comes nonadiabatic since the change of the local eigenstate
becomes rapid. The spin transport shows adiabatic behav-
ior when the turn is smooth and the spin-orbit coupling is
strong enough, which agree with the previously stated adia-
batic condition.9,10,13 We have also compared our results with
a recent similar work by Trushinet al.23 and showed good
agreement.

The last part of the numerical results revealed interesting
charge and spin transport properties. For charge transport,
the interplay between the Rashba and linear Dresselhaus (001)
SOCs leads to anisotropic spin splitting, and hence an angle-
dependent Fermi wavelength. Charge transport in curved 1D
chain subject to a modulated Fermi wavelength is therefore
mapped to transport in a 1D linear chain subject to a position-
dependent potential. We have shown that the charge density
modulation that appears only whentRtD 6= 0 in the half-ring
part of the U-channel can be well explained by the spin-orbit
potential model. For spin transport, we have shown spin pre-
cession patterns in three special cases, which are equivalent to
numerically test the validity of the previously predicted tilted
eigenstates of the Rashba rings and Dresselhaus rings, as well
as that of the persistent spin helix state.
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