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The electronic spectra of long carbon nanotubes (CNTs) can, to a very good approximation, be obtained using
the dispersion relation of graphene with both angular and axial periodic boundary conditions. In short CNTs
one must account for the presence of open ends, which may give rise to states localized at the edges. When a
magnetic field is applied parallel to the tube axis, it modifies both momentum quantization conditions, causing
hitherto extended states to localize near the ends. We study analytically and numerically the appearance and
evolution of this peculiar localization phenomenon in CNTs of any nonarmchair chirality, including the electron
spin. Conductance calculations show different evolution of spin up and down states in increasing magnetic field.
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The existence of geometry-induced localized states at the
zigzag edge of graphene nanoribbons has been predicted
some years ago,"? recently seen experimentally and shown
to influence the transport in graphene quantum dots.* Similar
states at the ends of single-wall nanotubes have been observed*
and studied.”® In zigzag-armchair nanotube junctions, the
interface states calculated to appear at the junction were iden-
tified with the end states of the zigzag nanotube fragment.®'?

In this work we study another type of edge states, namely
those which arise when initially extended states become
localized in a parallel magnetic field.'""'> We present a
detailed analytical and numerical study of this effect in CNTs
of arbitrary nonarmchair chirality, including the spin-orbit
coupling and the Zeeman effect. We find that this phenomenon
occurs also in those chiral CNTs which have no localized
end states when the magnetic field is absent. Numerical
calculations of the conductance of finite CNT devices in a
continuously varying magnetic field suggest the possibility of
spin-selective transport.

The model. Our starting point is the tight-binding Hamilto-
nian for a honeycomb lattice with one p, orbital per atom and
with the interatomic potential V. If we calibrate our energy
scale so that the on-site energies vanish, the Hamiltonian is
given by

A=Y tjlzj)(zl, e
i#]

where i and j are the lattice site indices, |z;) is a p, orbital at
site j, and #;; = (z;] V|z;) is the hopping integral between the
sites. This Hamiltonian nicely captures the properties of flat
graphene and CNTs. In order to properly describe finite size
nanotubes in the magnetic field it is necessary to include the
Peierls phase and curvature effects in the hopping elements
t;;. We follow here the approach of Ando."® For the sake of
clarity we shall initially neglect the spin-orbit coupling and
the Zeeman effect, as they do not change our main conclusion.
The spin-dependent effects will be addressed later.

The graphene coordinate system and the relevant real space
vectors are shown in Fig. 1(a), while the graphene Brillouin
zone with K and K’ points is shown in Fig. 1(b). In order to find
the appropriate boundary conditions and eigenstates of CNTs
we use an approach based on the Dirac equation treatment.>!*
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Parallel magnetic field. The magnetic field modifies all
hopping integrals by a Peierls phase factor. Its form can be
derived using the substitution p — p — ¢A and reads

o
m®=m@m4%/Amd¢ @

r;
In the cylindrical coordinates (r,¢,z), with the z direction
aligned with the axis of the nanotube, a parallel magnetic
field has coordinates B = (0, 0, B). In the tangential gauge
this gives A = (0, Br/2, 0). The Peierls phase then becomes

%AAmdnﬂ%w—m, 3)

where ¢ is the magnetic flux threading the nanotube, ¢g = h/e
the flux quantum, and ¢; — ¢; is the difference between the
angular coordinates of site j and site i.

Curvature. In a nanotube the o bonds are not orthogonal to
the p, orbitals and the hopping integral #;; can be expressed as

670) = (z;IV|zi) = Vo i - Mjn + Vo my-mjy,  (4)

where V,; and V,, are hopping parameters for the corresponding
bonds."? In our calculations we shall use the parameters from
Ref. 15, V, =6.38 eV and V, = —2.66 eV. The vector n; is
a unit vector normal to the nanotube surface at the site i. The
components n;, (normal) and n;; (tangential) are defined with
respect to a plane containing the o bond between i and j and
parallel to the CNT axis. The hopping integral #;;(0) then reads

(zj1 V|zi) = Vi cos(gi — ¢))
R2
4w—m;ﬂ—m@—wﬁ<ﬁ

c

where R is the nanotube radius and a. = 1.42 A is the bond
length in graphene.

In order to find the CNT spectrum it is convenient to express
the Hamiltonian in the Bloch wave basis. The Bloch waves for
the CNT sublattice p are given by'®

1
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FIG. 1. (Color online) (a) Fragment of a graphene lattice. When
considering a CNT with chiral angle 0, we shall use the system of
coordinates defined by directions perpendicular (x ) and parallel (x)
to the tube axis. (b) Brillouin zone of graphene. (c) Real and imaginary
solutions of Eq. (17), determining the quantization of k| as a function
of /. (d) Some of the real and imaginary solutions of Eq. (17) for
the Fermi subband (k; = 0) of an (18,0) CNT with 100 unit cells,
with «) and «; as functions of the magnetic flux ¢.

where N is the number of the unit cells. The Bloch wave on
the whole lattice is a linear combination of Bloch waves on
individual sublattices and can be written as

na(k)
200) = 3 1,[®, k) = ( ! ) @)

p=A,B nB (k)
In this basis the Hamiltonian acquires the form,
. 0 Hyp(k)
A= ®)
H, (k) 0

where Hyp(k) = Z?:I t; ¢4 d; are the vectors connecting
an A sublattice atom with its neighbors, as shown in Fig. 1(a),
and ¢#; are the hopping integrals between an atom on sublattice
A and its neighbors. Because both the magnetic field and the
curvature are uniform along the whole nanotube, the #; do not
depend on the position of the initial A atom. This Hamiltonian
can be further expanded around the K (t = 1) and K’ (t =
—1) points [see Fig. 1(b)], yielding

) 0 e (T + ix|)
H: (k) = hvp A , )
e ™ (T, — k| 0
where 0 is the CNT chiral angle, indices (L , ||) denote the

components perpendicular and parallel to the nanotube axis,
respectively, vy = 3|V la./2, k = k — tK, and

K\ =KL+ TAKS —|—l£
1 1 R(f)()’
Klll =K +7,'Akﬁ.

(10a)
(10b)
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The last term in (10a) is the Aharonov-Bohm contribution
while Ak§ and Akj are due to the curvature,

. a, 3Vy — Vg
- (1427 11
Ak§ 4R2( + 8V, cos(36), (11a)

¢ ac 5 Va - Vr[ .

In this derivation we used a small angle approximation,
sin(p; — @;) >~ ¢; — ¢j, which is good already for CNTs
with R > 5 A. The energy eigenvalues of the Hamiltonian
are

Es = +hvp J(c))? + (k)2

Eigenfunctions of the Hamiltonian. The energy eigenstates
are a linear combination of Bloch waves. Since we have
expanded the Hamiltonian around the K and K’ points, the
corresponding Bloch waves and the coefficients 7, acquire
the index t. We shall be using

Ey = E+/(hvp). (12)

Qrp(r6) = (r| Pp(rK+1)). 13)

Angular boundary condition. The wave function in the
angular direction must be periodic. This imposes

(.
., (2T R x)),k) = €7 Dy, ((0,x)),K0),
= (Ki+k)=2. (14

which is the standard quantization condition.'®

Axial boundary condition. The wave function at the ends
of the nanotube must satisfy open boundary conditions. We
shall derive them for a zigzag nanotube (6 = 0°), but they are
valid for any other chirality except armchair,!” provided the
nanotube edge is a so-called minimal boundary (there are no
atoms with only one neighbor).

The Hamiltonian (9) acting on the wave functions |®.(k)),
(7) with (13), gives two equations:

¢ ltic + ikl nep(k) = Exnralio),
e Lt —iK|1neale) = Exnep(c).

We choose then, up to a normalization factor, n- 4 (k) = [« +
ikﬁ] and n;p(k) = £|n: 4] e*. We can see from (10b) and
(12) that the energies of states with « and —(k + 27 Ak})
are the same. The energy eigenstate is therefore a linear
combination of both:

Y (r,Ex) = ap @ (r,(k1,k)))
+ay ®.(r,(k1, — (k) + 2‘L’Akﬁ))). (15)

From the structure of the lattice in Fig. 1(a) we see that
when the graphene patch is rolled in order to create a zigzag
nanotube, the lower CNT edge is formed entirely by B
sublattice atoms while the upper edge only by A sublattice
atoms. Therefore the wave function on this patch must vanish
at the “missing” A atoms below the lower edge (x; = 0) and
B atoms above the upper edge (x; = L). The conditions for
the sublattice components of v, (r, E1) are

|
VYra((x1,0),Ex) =0,

— al(tici—i—i/cﬁ)—l—ag(tici—iKﬁ):O, (16a)
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|
Vp((x1,L),Ex) =0,

TS c S c
lK”L 1rAkHL +aye lKHL erk“L = 0. (16b)

— aye
These equations lead to a constraint on the values of Kl’l,
‘CK/i + lKﬁ 2ik| L
— .., =€ =, (17)
TK) — K|
Thus the allowed values of «; depend on ', and in particular
on the Aharonov-Bohm flux ¢. The quantity Kﬁ can be
either real or imaginary. If it is real, the wave function
describes an extended state. If k| is imaginary, then «j must
be complex, with its real part equal to the second term in
(10b). Equation (17) has then one trivial (Kﬁ =0) and two
nontrivial solutions. The latter describe evanescent waves
localized near the ends of the nanotube,!! because the factor
expli(tK + k) - rp;] from (6) acquires a damping real part.
The regions where Kl’l is real or imaginary are determined
by the value of v« [see Fig. 1(c)]. The two localized state
solutions exist if

forK: k| >1/L, forK': k| <—1/L. (18)

The spectrum of the CNT is then determined by the value of
the magnetic field, which enters into «/ via (10a). In order to
calculate the energy levels, the allowed values of x; must be
found from (17) for each value of «'| separately, as shown in
Fig. 1(d) for an (18,0) zigzag CNT.

The analytical method described above gives a remarkable
agreement with the spectra obtained by the numerical diag-
onalization of the nanotube Hamiltonian (1) [see Figs. 2(a)
and 3(a)]. The energy of the decaying states tends to 0 with
increasing magnetic flux because for ¢ — oo, |i Kﬁ| — « for
the K point solutions [see Fig. 1(d)]. The CNT spectrum
may contain localized (E = 0) states even at ¢ = 0, as can
be seen in Fig. 2(a) for an (18,0) CNT. If the neighboring
(k1 # 0) subbands lie on the Dirac cone and the condition
(18) is fulfilled, then the lowest k| states in the neighboring
subbands are localized, while the remaining ones have energies
in a higher range, appropriate for their subband. Whether the
other subbands lie on the Dirac cone depends on the chirality
and diameter of the CNT.

Spin effects. With spin, the Bloch waves (7) become four-
component spinors and both the spin-orbit coupling (SOC) and
the Zeeman effect must be considered. They will be treated in
detail elsewhere. Here we just note that SOC can be taken into
account by yet another shift of «, , while the Zeeman effect
splits the energy:

¢
Ey — Ei‘i‘allsm, (19)

3V, =V,
8 V, ’

/ /
k| — k| + 0 Akso,

28
Akso = — <1 + (20)

R
where 0 = +1/ — 1 for spin parallel/antiparallel to the CNT
axis, pp is the Bohr magneton, and § is a parameter defining
the SOC strength. In our calculations we take § ~ 2.8 x 1073,
as, for example, in Ref. 18. The resulting spectra of (18,0) and
(12,9) CNTs are shown in Figs. 2(c) and 3(b).

Localization. Equation (18) defines the localization flux
P1oc, at which the extended solutions morph into localized
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FIG. 2. (Color online) Magnetic-field-induced localization in a
(18,0) zigzag CNT with 100 unit cells (L =42.6 nm, 6 = 0°).
(a) The spectra close to the Fermi level obtained by a numerical
diagonalization of the real space Hamiltonian (1) and analytically
from the Dirac-like dispersion (12) with k;, = 0 (E # O states) and
k; = £1/R (E = 0 states), where & is defined by (17), neglecting
the spin. The black dashed line marks the onset of the localization.
(b) The setup used for the conductance calculation. (c) Spectra
obtained analytically with the electron spin included through (19).
(d) Grayscale plot of conductance, in units of conductance quantum
Gy = €%/ h,as a function of ¢ and the chemical potential E, including
spin effects.

0.15 0.2 0 0.05 0.15 0.2

0.1
b/ bo

states. This threshold flux depends on the spin via (19) and
using it together with (10a) we obtain

1
Ploc = TR(Z - Aki>¢0, e = Ploc — 0 RAkso ¢o.
(21

The value of ¢ depends on the length of the nanotube. For
sufficiently long CNTs the spectra are very close to those of
the infinite nanotubes.

The localization induced by the magnetic field is gradual,
in principle, allowing the involved states to conduct as long as
the two sublattice wave functions overlap. The evolution of an
eigenstate in increasing magnetic field is shown in Fig. 3(c),
through a sequence of plots of the wave function amplitude
at each atom, projected onto x;. The apparent continuity of
the curves is due to the overlap between close plot points;
near the CNT ends the wave function oscillates with the
azimuthal angle ¢ and the individual points can be seen clearly.
Initially (¢ = 1073 ¢) the state is extended; when the magnetic
flux reaches ¢jo, its wave function begins to be described
by an imaginary solution of (17). With the magnetic field
increasing further, the wave function decays exponentially
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FIG. 3. (Color online) Localization in a (12,9) chiral CNT with
16 unit cells (L = 41.5 nm, 8 = 25°). (a) Comparison of numerical
and analytical spectra, neglecting the spin. In this case there are no
localized states at ¢ = 0. The dashed line marks the onset of the
localization. (b) Analytical spectrum including spin effects. (c) The
amplitude of the highest valence eigenstate (obtained numerically) at
each atom, projected onto x, for different values of ¢ and neglecting
the spin. (d) Conductance as a function of magnetic flux ¢ and
chemical potential £, including spin effects.

with the distance from the CNT ends, the localization becomes
complete, and the state ceases to conduct.
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The above analysis is confirmed by conductance cal-
culations, with the CNT in a setup shown in Fig. 2(b).
We derive the elastic linear response conductance via the
Fisher-Lee formula for the quantum mechanical transmission:

G = eh—zTI'{FLgFRgT}, where FL/R = i(EL/R — EZ/R)’ EL/R
is the self-energy of the left or right lead, respectively, and
G is the Green function of the central region dressed by the
electrodes. For simulating bulk metal electrodes we consider
wide band leads, that is, Zwg(E) = —i ImX(Er). The results
shown in Figs. 2(d) and 3(d) were obtained with Xwp =
—i 0.22 eV. In both we see a gradual drop of the conductance
of the highest valence and lowest conduction spin states, as
they become localized in the increasing magnetic field. The
“native” end states of the (18,0) CNT, localized also at ¢ = 0,
can be seen in the spectrum in Fig. 2(c), but do not contribute
to the conductance, as we expect. The good matching of
analytical spectra of isolated CNTs and the conductance peaks
[compare Fig. 2(c) with 2(d) and Fig. 3(b) with 3(d)] implies
that even with rather strong coupling the CNT is sufficiently
distinct from the leads for the transport to be determined by
the spectrum of an isolated nanotube.

The magnetic field By, corresponding to ¢, depends on
the nanotube length and radius. For our choice of V, and
Vs, Bioe of CNTs with R =7 A and L =40 nm ranges
from 50 T (0 ~ 30°) to 85 T (6 = 0°). However, for the
same nanotubes with L = 500 nm the value of By, drops to
4-42 T. Hence the localization induced by the magnetic field
might be detected in currently accessible transport experiments
or by spin-resolved STM spectroscopy revealing localized
spin states at the nanotube ends. Moreover, the localization
induced by a magnetic flux appears to be a chirality-
independent phenomenon, to which only armchair CNTs are
immune.
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