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Pseudospin in optical and transport properties of graphene

Maxim Trushin and John Schliemann
Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

(Dated: May 4, 2011)

We show that the pseudospin being an additional degree of freedom for carriers in graphene can
be efficiently controlled by means of the electron-electron interactions which, in turn, can be manip-
ulated by changing the substrate. In particular, an out-of-plane pseudospin component can occur
leading to a zero-field Hall current as well as to polarization-sensitive interband optical absorption.

Introduction. Electrons in solids demonstrate a huge
variety of behavior which can be described by an appro-
priate effective Hamiltonian depending on the host crys-
tal. For the charge carriers in graphene being an one-
atom-thick planar sheet of carbon atoms densely packed
in a honeycomb crystal lattice, the effective Hamilto-
nian at low energies turns out to be formally equivalent
to the massless two-dimensional Dirac Hamiltonian[1, 2]
H0 = ~v0(σxkx + σyky), where v0 ≈ 106ms−1 is the ef-
fective “speed of light”, k is the two-component particle
momentum, and σx,y are Pauli matrices. In the origi-
nal Dirac Hamiltonian the Pauli vector ~σ represents the
spin orientation of a spin-1/2 particle which can be de-
tected in Stern–Gerlach-like experiments. The carriers
in graphene do also have additional degree of freedom
known as pseudospin which is formally equivalent to the
true spin of massless fermions but originates entirely from
the peculiarity of the honeycomb lattice whose elemen-
tary cell has a basis of two atoms. As consequence the
pseudospin is not linked with the internal magnetic mo-
ment of an electron and does not directly interact with
the external magnetic field prohibiting Stern–Gerlach
type experiments. In contrast to that, we predict in this
letter situations where the pseudospin manifests itself in
observable quantities and can be detected in transport as
well as optical measurements on graphene Hall bars.

First of all we show that the exchange electron-electron
interaction can alter the pseudospin orientation in a very
broad range. In an eigenstate of H0 the pseudospin is al-
ways parallel to the wave vector forming the well-known
radial texture in the xy-plane. As we shall see shortly,
the exchange interactions can turn the pseudospin tex-
ture to the out-of-plane phase with the out-of-plane angle
depending on the absolute value of the particle momen-
tum. This is due to the huge negative contribution to the
Hartree–Fock ground state energy from the valence band
(i. e. “antiparticle” states) which cannot be neglected
in graphene because of the zero gap (i. e. zero effective
mass of carriers) and large effective fine structure con-
stant α∗ = e2/(ε~v0) where ε is the dielectric constant
depending on the environment[3]. The exchange contri-
bution to the ground state energy has previously been
studied in both monolayer and bilayer graphene regard-
ing properties such as the electronic compressibility[4–6]
and ferromagnetism[7–9], but the importance of the in-

terplay between pseudospin and electron-electron inter-
actions has been recognized only recently in bilayers[10].

Having established the possibility to create an out-of-
plane pseudospin orientation by means of the exchange
interaction, we apply the Boltzmann approach to derive
the electrical conductivity tensor which turns out to have
Hall components even though the external magnetic field
is absent. The mechanism of this phenomenon is in-
timately linked to the pseudospin-momentum coupling
which can be read out immediately from the Hamiltonian
H0. Similar to the skew scattering of electrons on impu-
rities in spin-orbit coupled systems partly responsible for
the anomalous Hall effect,[11, 12] the carriers in graphene
do also skew to one side of the Hall bar as long as their
pseudospin has non-zero out-of-plane component. This
effect has been intensively studied[13–15] assuming that
the out-of-plane component occurs due to the band gap
opened by spin-orbit coupling[13] which, however, seems
to be weak in graphene[2]. We emphasize that neither
spin-orbit coupling nor an external magnetic field is nec-
essary to obtain a Hall current in graphene being in the
pseudospin out-of-plane phase.

Experimental manifestations of the pseudospin are not
limited to the electron skew scattering phenomenon but
can also be seen in the interband optical absorption. Per-
forming optical measurements on graphene[16] one can
obtain direct information regarding conduction and va-
lence band states without advanced sample processing
necessary for transport investigations. Moreover, the pe-
culiar properties discovered so far make graphene a very
promising material for optoelectronic applications[17].
Optical absorption via the direct interband optical tran-
sitions in graphene has been investigated in the seminal
paper[18] as well as in [19–24], but the mechanism consid-
ered there lies essentially in the two-dimensional nature
and gapless electronic spectrum and does nor directly in-
volve the pseudospin orientation. Here we show that, due
to the out-of-plane pseudospin orientation, the interband
absorption is sensitive to the light polarization. In par-
ticular, it can be substantially reduced or enhanced as
compared to its universal value πe2/~c just by switching
the helicity.

Exchange interactions. The Coulomb exchange Hamil-
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tonian is given by

Hexch(k) = −
∑

κ′

∫

d2k′

4π2
U|k−k′||χκ′k′〉〈χκ′k′ | (1)

with U|k−k′| = 2πe2/ε|k−k
′| and κ′ = ± being the band

index. The eigenstates of H0 +Hexch can be formulated
as Ψk±(r) = eikr|χ±k〉 with the spinors being |χ+k〉 =
(cosϑk, sinϑke

iϕ)T , |χ−k〉 = (sinϑk,− cosϑke
iϕ)T , and

tanϕ = ky/kx. Thus, a non-zero out-of-plane component
of the pseudospin corresponds to ϑk 6= π/2. To diago-
nalize H0 +Hexch the following equation for ϑk must be
satisfied[25]

~v0k cosϑk +
∑

κ′

∫

d2k′

8π2
κ′U|k−k′| [cosϑk′ sinϑk−

− sinϑk′ cosϑk cos(ϕ
′ − ϕ)] = 0 (2)

where the integration goes over the occupied states. Note
that the conduction and valence states are entangled,
and the latter cannot be disregarded even at positive
Fermi energies. Thus, in order to evaluate the integrals

in Eq. (2) a momentum cut-off Λ is necessary. Its value
≃ 0.1nm−1 is usually chosen to keep the number of states
in the Brillouin zone fixed[7], but our outcomes do not de-
pend on any particular choice of Λ. Substituting x = k/Λ
we arrive at

4πx cosϑk

α∗
= (3)

2π
∫

0

dϕ′

1
∫

kF /Λ

dx′x′ cosϑk′ sinϑk − sinϑk′ cosϑk cosϕ
′

√

x2 + x′2 − 2xx′ cosϕ′
.

The momentum cuf-off is obviously much larger than the
Fermi momentum kF at any reasonable electron doping,
and therefore we can to set the lower integral limit to
zero. There is a trivial solution with ϑk = π/2 indepen-
dent of k, and a non-trivial one ϑ(k) which is shown in
Fig. 1 for different α∗. These two solutions represent to
two phases with different total ground state energies Ein

tot

(Eout
tot ) for the in-plane (out-of-plane) pseudospin phase.

The difference ∆Etot = Ein
tot − Eout

tot per volume reads

∆Etot

~v0Λ3
= − 2

π

1
∫

0

dx′x′2(1− sinϑk′)− α∗

8π3

2π
∫

0

dϕ

2π
∫

0

dϕ′

1
∫

0

dx

1
∫

0

dx′xx′ (1− sinϑk′ sinϑk) cos(ϕ
′ − ϕ)− cosϑk′ cosϑk

√

x2 + x′2 − 2xx′ cos(ϕ− ϕ′)

(4)

where we take into account spin and valley degeneracy
by a factor of 4. The energy difference for α∗ ∼ 1 is
small because the integrand in Eq. (4) is always mul-
tiplied by x′ and therefore vanishes at x′ → 0, but at
larger x′ the ϑk′ gets close to π/2, and the integrand
vanishes again. The Inset in Fig. 1 shows, however,
that strong electron-electron interactions make the out-
of-plane phase energetically preferable. The estimates
of α∗ for clean graphene vary from 2 (Ref. [3]) to 2.8
(Ref. [7]) and are on the borderline of the out-of-plane
phase. Moreover, the presence of disorder can change
this qualitative picture essentially[7].

The single-particle spectrum is given by

E±(x)

~v0Λ
= ±x sinϑk − α∗

4π

2π
∫

0

dϕ′

1
∫

0

dx′x′

×1∓ (cosϑk′ cosϑk + sinϑk′ sinϑk cosϕ
′)

√

x2 + x′2 − 2xx′ cosϕ′
, (5)

and the group velocity can be written as v± =

(v± cosϕ, v± sinϕ)T with v± being

v±
v0

= ± sinϑk +
α∗

4π

2π
∫

0

dϕ′

1
∫

0

dx′x′x(1− cosϕ′)

×1∓ (cosϑk′ cosϑk + sinϑk′ sinϑk cosϕ
′)

(x2 + x′2 − 2xx′ cosϕ′)
3

2

. (6)

The dispersion law (5) is depicted in Fig. 2 for graphene
placed on SiO2 substrate. The exchange interactions
shift the bands down to lower energies, but, most im-
portantly, they open a gap between the valence and con-
duction band as soon as the system changes to the pseu-
dospin out-of-plane one phase. The gap at k = 0 equals

e2Λ
ε

1
∫

0

dx′ cosϑk′ . Note that the group velocity (6) van-

ishes at small momentum k/Λ ≪ 1 as long as the system
is in the out-of-plane phase corresponding to the almost
flat bands close to k = 0 shown in the inset of Fig. 2.
From now on we assume n-doping so that the Fermi en-
ergy is always higher than the bottom of the conduction
band.
Zero-field Hall current. To describe the Hall conduc-

tivity due to skew scattering we utilize the semiclassical
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FIG. 1: The pseudospin out-of-plane angle ϑ(k) for differ-
ent environments numerically calculated from Eq. (3). The
corresponding values of the substrate-dependent effective fine
structure constant α∗ are taken from Ref. [3]. The inset shows
the total ground state energy difference (4) between the in-
plane and out-of-plane phases for different effective fine struc-
ture constant α∗ = e2/ε~v0. Increasing α∗ makes the out-of-
plane phase more preferable.

Λ
   

E
 / 

hv
 0

α  = 0.8*

Λk / 

−1.5

−1

−0.5

 0

 0.5

 1

 0  0.2  0.4  0.8  1 0.6

 0  0.1

−0.4

−0.3

−0.5

FIG. 2: The dispersion law E±(k) in the in-plane (dashed
curves) and out-of-plane (solid curves) phases for α∗ = 0.8
corresponding to SiO2 substrate[3]. The curves for both
phases coincide for momenta larger than a certain critical
value where ϑk = π/2 becomes independent of k, see Fig. 1.
The inset shows the gap region in detail.

Boltzmann approach which allows a physically transpar-
ent interpretation of this mechanism[12, 14]. In general
the anomalous Hall conductivity contributions can be
classified by their mechanism: (i) The intrinsic contribu-
tion is due to the anomalous velocity (being non-diagonal
with respect to the band index, see Refs. [27, 28]) of carri-
ers which is coupled to the equilibrium part of the distri-
bution function. (ii) The side-jump contribution follows
from coordinate shifts during scattering events. It occurs
in the non-equilibrium part of the distribution function as
well as in the anomalous velocity[12, 14]. (iii) The skew
scattering contribution is independent of the coordinate
shift and of the anomalous velocity. It occurs when the
scattering rate is asymmetric with respect to the initial

and final states and, therefore, must be considered be-
yond the first Born approximation
The first two conductivity contributions do not depend

on disorder but on the out-of-plane angle ϑk and can
be adopted from [14]. The skew scattering can be de-
scribed using the interband incoherent Boltzmann equa-
tion where the anomalous velocity is neglected but the
scattering probability is calculated up to the third or-
der in the short-range scattering potential which is char-
acterized by the momentum-independent Fourier trans-
form V . In linear order in the homogeneous electric field
E this equation reads −eEvk

[

−∂f0(Ek)/∂Ek

]

= I[f1
k ],

where f0(Ek) is the Fermi-Dirac function, f1
k
is the non-

equilibrium addition, and vk, Ek are taken from the up-
per cases of Eqs. (6,5). The collision integral can be

written as I[f1
k
] =

∫

d2k′

(2π)2wkk′(f1
k′ − f1

k
) with wkk′ be-

ing the scattering probability. We divide wkk′ into two
parts. The first one is proportional to the cosine of the
scattering angle and calculated up to the second order
in V . The second one is proportional to the sine of the
scattering angle and calculated up to the third order in
V . These two parts correspond to the conventional and
skew scattering respectively which can be alternatively
expressed in terms of the momentum relaxation times

1

τ‖
= (1 + 3 cos2 ϑk)

nikV
2

4~2vk
,
1

τ⊥
= cosϑk sin

2 ϑk
nik

2V 3

8~3v2k
(7)

Here, ni is the concentration of such scatterers. Note,
that in contrast to the non-interacting case neither of
τ ’s diverges at k = 0 because of the k-dependent group
velocity (6).
The solution of the Boltzmann equation can be found

in the form[26–28]

f1
k = eEvk

(

ax cosϕ+ bx sinϕ
ay cosϕ+ by sinϕ

)[

−∂f0(Ek)

∂Eκ

]

(8)

Substituting (8) into the kinetic equation one can find
easily ax = by = τ‖τ

2
⊥/(τ

2
‖ + τ2⊥) and bx = −ay =

τ2‖ τ⊥/(τ
2
‖ +τ2⊥). Including the valley and spin degeneracy

the conductivity at zero temperature reads

σ =
2e2

h

kvkτ‖τ⊥

τ2‖ + τ2⊥

(

τ⊥ −τ‖
τ‖ τ⊥

)
∣

∣

∣

∣

k=kF

(9)

Since τ⊥ ∝ 1/V 3 whereas τ‖ ∝ 1/V 2 it is natural
to assume τ⊥ ≫ τ‖, and σyx ∼ σxxτ‖/τ⊥ which can
vary in a quite broad range depending on the scat-
tering parameter and Fermi momentum. In particu-
lar, at lower carrier concentrations one can approximate
τ‖/τ⊥ ∼ (kFϑ

2
kF

V )/(8~vkF
). Note, that the Hall cur-

rent changes to opposite direction if the sample becomes
p-doped because the electrons and holes having antipar-
allel pseudospins skew to the opposite sides of the Hall
bar.
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Interband optical absorption. From H0 one can de-
duce the following interaction Hamiltonian between the
electromagnetic wave and carriers in graphene Hint =
ev0
c (σxAx + σyAy) which couples the vector potential A

and pseudospin ~σ. As consequence, the inter-band tran-
sition matrix elements turn out to be sensitive to the light
polarization and pseudospin orientations in the initial
and final states. To be specific we assume monochromatic
light of frequency ω, normal incidence (i.e. zero momen-
tum transfer from photons to electrons), and circular po-
larization (fulfilling Ax = ±iA/

√
2, Ay = A/

√
2). The

probability to excite an electron from the valence band
to an unoccupied state in the conduction band can be
calculated using the golden-rule. Finally, the absorption
P can be calculated as a ratio between the total elec-
tromagnetic power Wa absorbed by graphene per unit
square and the incident energy flux Wi = ω2A2/4πc. Af-
ter some algebra we obtain the following expression

P =
πe2

~c

16Λv0
ω

∞
∫

0

dxx

{

sin4 ϑk

2

cos4 ϑk

2

}

δ

(

E+ − E− − ~ω

~v0Λ

)

.

(10)
In the non-interacting limit the absorption equals to the

universal value πe2

~c , as expected[18]. Note, that the inte-

grand in Eq. (10) contains the multipliers sin4(ϑk/2) and
cos4(ϑk/2) for two opposite helicities of light. At small
k/Λ the absorption of the right-hand circularly polarized
light is substantially reduced whereas it is facilitated in
the opposite case. Moreover changing the excitation en-
ergies ~ω one can investigate the dependence θ(k) shown
in Fig. 1. In the in-plane phase with ϑ = π/2 the ab-
sorption does not depend on light polarization but its
absolute value is renormalized due to the exchange inter-
actions.

Conclusions. We have demonstrated that the pseu-
dospin being until now rather uncontrollable and al-
most unmeasurable quantity can be “unfrozen” by the
exchange electron-electron interactions (1) and play an
essential role in optical and transport properties of
graphene. Thus, the pseudospin can be seen as an ad-
ditional degree of freedom similar to the true spin but
unaffected by the magnetic field directly. We hasten
to say that the Hartree-Fock approximation employed
here has generically a tendency to overestimate ordering
such a the pseudospin out-of-plane polarization. We be-
lieve, however, that the pseudospin eigenstates |χ±k〉 de-
rived above are much more robust because their special
pseudospin-momentum entangled structure stems from
the free Hamiltonian H0, and the electron-electron inter-
actions do only modify it. Thus, the predictions made
here should be reliable at the qualitative level.

Having this similarity in mind one can think about
pseudospin ferromagnetism[10], pseudospin accumula-
tion at the sample’s edge by means of the zero-field Hall
current (9), pseudospin selectivity in the optical absorp-

tion (10), and, probably, pseudospin filtering and switch-
ing. In a more distant future one can imagine some useful
effects based on the pseudospin polarization like an all-
electrical counterpart for GMR which is obviously very
promising for application. This Letter should be seen as
a first step in this direction.
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