
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Transport moments beyond the leading order

Gregory Berkolaiko1 and Jack Kuipers2,3

1 Department of Mathematics, Texas A&M University, College Station,
TX 77843-3368, USA
2 Institut für Theoretische Physik, Universität Regensburg,
D-93040 Regensburg, Germany
E-mail: Jack.Kuipers@physik.uni-regensburg.de

New Journal of Physics 13 (2011) 063020 (40pp)
Received 16 December 2010
Published 10 June 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/6/063020

Abstract. For chaotic cavities with scattering leads attached, transport
properties can be approximated in terms of the classical trajectories that enter
and exit the system. With a semiclassical treatment involving fine correlations
between such trajectories, we develop a diagrammatic technique to calculate
the moments of various transport quantities. Namely, we find the moments
of the transmission and reflection eigenvalues for systems with and without
time-reversal symmetry. We also derive related quantities involving an energy
dependence: the moments of the Wigner delay times and the density of states
of chaotic Andreev billiards, where we find that the gap in the density persists
when subleading corrections are included. Finally, we show how to adapt our
techniques to nonlinear statistics by calculating the correlation between transport
moments. In each setting, the answer for the nth moment is obtained for arbitrary
n (in the form of a moment generating function) and for up to three leading
orders in terms of the inverse channel number. Our results suggest patterns
that should hold for further corrections, and by matching with the lower-order
moments available from random matrix theory, we derive the likely higher-order
generating functions.
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1. Introduction

Transport through a chaotic cavity is usually studied through a scattering description. For a
chaotic cavity attached to two leads with N1 and N2 channels, respectively, the scattering matrix
is an N × N unitary matrix, where N = N1 + N2. It can be separated into transmission and
reflection subblocks:

S(E) =

(
r1 t ′

t r2

)
, (1)

which encode the dynamics of the system and the relation between the incoming and outgoing
wavefunctions in the leads. The unitarity of the scattering matrix S†S = I = SS† leads to the
following relations (among others),

r †
1r1 + t†t = IN1, r2r

†
2 + t t†

= IN2, (2)
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while the transport statistics themselves are related to the terms in (2) involving the scattering
matrix (or its transmitting and reflecting subblocks) and their transpose conjugate. For example,
the conductance is proportional to the trace Tr[t†t] (the Landauer–Büttiker formula [1–3]), while
other physical properties are expressible through higher moments such as Tr[t†t]n.

There are two main approaches to studying the transport statistics in clean ballistic systems:
a random matrix theory (RMT) approach, which argues that S can be viewed as a random
matrix from a suitable ensemble, and a semiclassical approach that approximates elements of
the matrix S by sums over open scattering trajectories through the cavity.

It was shown by Blümel and Smilansky [4, 5] that the scattering matrix of a chaotic cavity
is well modelled by Dyson’s circular ensemble of random matrices of suitable symmetry. Thus,
transport properties of chaotic cavities are often treated by replacing the scattering matrix with a
random one (for a review, see [6]). The eigenvalues of the transmission matrix t†t then follow a
joint probability distribution, which depends on whether the system has time-reversal symmetry
or not, and from which transport moments and other quantities can be derived. Although the
conductance and its variance were known for an arbitrary channel number [7, 8], other quantities
were limited to diagrammatic expansions in inverse channel number, see [9]. However, the RMT
treatment has recently experienced a resurgence due to the connection to the Selberg integral
noted in [10]. Following the semiclassical result for the shot noise [11], the authors of [10] used
recursion relations derived from the Selberg integral to calculate the shot noise and later all the
various moments up to fourth order for an arbitrary channel number [12].

Since then, a range of transport quantities has been treated: for example the moments of
the transmission eigenvalues for chaotic systems without time-reversal symmetry (the unitary
random matrix ensemble) [13–16] and those with time-reversal symmetry (the orthogonal
random matrix ensemble) [15, 16]. For the unitary ensemble, the moments of the conductance
itself were also obtained in [14] and, using a different approach, in [17] which was later extended
to the moments of the shot noise [18]. Building again on the Selberg integral approach, the
moments of the conductance and shot noise have been derived for both symmetry classes [19].
Interestingly, these results, although all exact for an arbitrary channel number, are given by
different combinatorial sums, and the question of how they are related to each other is still open
in many cases.

On the other hand, the semiclassical approach makes use of the following approximation
for the scattering matrix elements [20–22],

Soi(E) ≈
1

√
Nτd

∑
γ (i→o)

Aγ (E)ei/h̄Sγ (E), (3)

which involves the open trajectories γ that start in channel i and end in channel o, with their
action Sγ and stability amplitude Aγ . The prefactor also involves τd, which is the average dwell
time, or the time the trajectory spends inside the cavity. For transport moments, we consider
quantities of the type〈
Tr[X † X ]n

〉
∼

〈
1

(Nτd)
n

n∏
j=1

∑
i j ,o j

∑
γ j (i j →o j )

γ ′

j (i j+1→o j )

Aγ j A∗

γ ′

j
e

i/h̄(Sγ j −Sγ ′
j
)

〉
, (4)

where the trace means that we identify in+1 = i1 and where X is either the transmitting or
the reflecting subblock of the scattering matrix. The averaging is performed over a window
of energies E .
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Figure 1. (a) The semiclassical trajectories for the second moment travel around
a closed cycle. By collapsing the trajectories onto each other as in (b), we
can create a small action difference and a trajectory quadruplet with a single
encounter that contributes to the shot noise at leading order in inverse channel
number. (c) For the conductance, a trajectory pair with a similar encounter
provides the first subleading order correction for systems with time-reversal
symmetry.

The choice of the subblock X affects the sums over the possible incoming and outgoing
channels, but not the trajectory structure which involves 2n classical trajectories connecting
channels. Of these, n trajectories γ j , j = 1, . . . , n, contribute with positive action, while n
trajectories γ ′

j contribute with negative action. In the semiclassical limit h̄ → 0, we require
that these sums cancel on the scale of h̄ so that the corresponding trajectories can contribute
consistently when we apply the averaging in (4).

The main idea of the semiclassical treatment is that, in order to achieve a small action
difference, the trajectories {γ ′

j} must follow the path of trajectories {γ j} most of the time,
deviating only in small regions called encounters. This is best illustrated with an example. In
figure 1(a), a schematic representation of the trajectories is shown for the case n = 2. We have
two trajectories γ depicted by solid lines, γ1 : i1 → o1 and γ2 : i2 → o2, and two trajectories
γ ′ depicted by dashed lines, γ ′

1 : i2 → o1 and γ ′

2 : i1 → o2. Figure 1(b) shows one possible
configuration for achieving a small action difference: trajectory γ ′

1 departs from the incoming
channel i2 following the path of trajectory γ2. Then, when the trajectories γ1 and γ2 come close to
each other in phase space (thus the term ‘encounter’), the trajectory γ ′

1 switches from following
γ2 to following γ1, before arriving at its destination channel o1. The trajectory γ ′

2 does the
opposite. The picture in figure 1(b) is referred to as a ‘diagram’; it describes the topological
configuration of the trajectories in question, while leaving out metric details. The task of
semiclassical evaluation can therefore be divided into two parts: evaluation of the contribution of
a given diagram by integrating over all possible trajectories of a given structure and enumeration
of all possible diagrams.

Historically, the semiclassical treatment started with the mean conductance 〈Tr[t†t]〉,
involving a single trajectory and its partner. The leading order contribution comes from
trajectory pairs that are identical—the so-called diagonal approximation that was evaluated
in [23, 24]. The first non-diagonal pair was treated in [22] and involved a single encounter
where one trajectory had a self-crossing while the partner avoided crossing as in figure 1(c).
Such a pair can only exist when the system has time-reversal symmetry and its contribution was
shown to be one order higher in inverse channel number, 1/N , than the diagonal terms. The
expansion to all orders in inverse channel number was then performed in [25] for systems with
and without time-reversal symmetry by considering arbitrarily many encounters each involving
arbitrarily many trajectory stretches.

Importantly, the work on conductance [25] showed that the semiclassical contribution of
a diagram can be decomposed into a product over the constituent parts of the diagram, greatly
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simplifying the resulting sums. In fact, for the second moment, the shot noise, all such diagrams
were generated in [11] and with them the full expansion in inverse channel number. This,
along with the conductance variance and other transport correlation functions, as well as the
semiclassical background, was covered in detail in [26].

However, the method of diagram enumeration considered in [11, 25, 26] becomes unwieldy
for higher moments, which encode finer transport statistics. To the leading order in 1/N , the
higher moments were derived in [27]. The semiclassical approach requires a large number of
channels in each lead, 1 � N1, N2, but to unambiguously separate the orders in inverse channel
number one may additionally assume that both N1 and N2 are of the same order as N . For
example, the result of [27] was in terms of the variable ξ = N1 N2/N 2, which should then
be constant and introduce no further channel number scaling. We therefore make the same
assumption in this paper when describing the different orders in 1/N , although of course a
different scaling, say keeping N1 fixed so that ξ ∼ O(1/N ), may simply lead to a mixing of the
different ‘orders’ without changing the individual results.

The diagrams contributing at the leading order to the nth moment were shown in [27]
to be trees. The tree expansions turned out to be very well suited to the analysis of other
interesting physical quantities, such as the statistics of the Wigner delay times [28], which
are a measure of the time spent in the scattering region, and the density of states in Andreev
billiards [29, 30]. If we imagine replacing the scattering leads by a superconductor, we have
a closed system called an Andreev billiard. Each time an electron inside the system hits the
superconductor it is reflected as a hole retracing its path until it hits the superconductor and is
retroreflected as an electron again. Wave interference between these paths leads to significant
effects, most notably a complete suppression of the density of states for a range of energies
around the Fermi energy. Similarly, strong effects on the conductance (of the order of the mean
conductance) can also be seen if we attach additional superconducting leads to our original
chaotic cavity (making a so-called Andreev dot) [31, 32]. The size of these effects makes
such systems particularly interesting for a semiclassical treatment. But treating these effects
effectively requires a knowledge of all the higher moments and this gives us a strong reason to
go beyond low n.

One particular nicety of the semiclassical approach is that it can incorporate, in a natural
way, the effect of the Ehrenfest time. This is the time scale that governs the transition from
classical dynamics to wave interference, which dominates when the Ehrenfest time is small (on
the scale of the typical dwell time). For larger Ehrenfest times, the competition between the
different types of behaviour leads to quite striking features, such as an additional gap both in
the density of states of Andreev billiards and in the probability distribution of the Wigner delay
times [30, 33]. Semiclassically we can explicitly track the effect of the Ehrenfest time all the
way to the ‘classical’ limit, which can only be achieved using RMT by postulating the Ehrenfest
time dependence of the scattering matrix.

In addition to the case of ballistic systems, typical chaotic behaviour and transport
statistics can also be induced by introducing disorder in the system. For weak disorder the
transport properties coincide with those obtained from RMT, and one can also obtain the
full counting statistics at leading order, as well as weak localization corrections and universal
conductance fluctuations, using circuit theory [34]. If the disorder averaging is treated using
diagrammatic perturbation theory (see e.g. [35]) multiple scattering events can be summed,
in the limit of weak disorder, as a ladder diagram known as a Diffuson. This corresponds
to the parts of semiclassical diagrams where the trajectories are nearly identical, as on the left of
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the encounter in figure 1(c). The disordered systems’ counterpart of the loop on the right of the
encounter in figure 1(c), traversed by trajectories in opposite directions, is called a Cooperon,
while the encounter itself corresponds to a Hikami box [36]. Although transport properties
such as the weak localization diagram related to figure 1(c) and conductance and energy level
fluctuations [37] can be treated diagrammatically, powerful field-theoretic methods involving
the nonlinear σ model are usually used (see [38] for an introduction). These methods can treat
both weak and stronger disorder non-perturbatively, and by using supersymmetry [39, 40] a
large range of transport and spectral properties can be obtained, for open and closed systems
correspondingly. More importantly, the applicability of RMT for weakly disordered systems
can be justified and RMT shown to be the zero-dimensional variant of the σ model [41, 42].
Alongside the supersymmetric σ model, there is also the replica σ model which is particularly
useful for perturbative expansions. This leads to a diagrammatic expansion, with diagrams
that can be reinterpreted as correlated semiclassical trajectories [43]. In fact this connection
between semiclassical diagrams and disorder diagrams from the replica σ model lay behind the
semiclassical treatment of energy level correlations in closed systems [44–46], which in turn led
to the semiclassical treatment of transport [22, 25, 26] discussed above.

To summarize, there are established semiclassical tools for the analysis of (4) for small n
to all orders of 1/N and for all n but only to the leading order of 1/N . It is the purpose of this
paper to start closing this gap. For all n we derive the next two corrections for (4) and related
quantities. We show that the contributing diagrams can be generated by grafting trees onto the
‘base diagrams’, which can be obtained by ‘cleaning’ the diagrams used in [25]. We therefore
first review the leading order tree recursions in section 2 before treating transport moments
beyond the leading order in section 3. We start by cleaning the diagram of figure 1(c) which
gives the first subleading order orthogonal correction. Grafting trees onto the base diagram
leads to a generating function, which we apply to calculate the moments of the transmission and
reflection eigenvalues. Proceeding to the next order in 1/N , we then treat the second subleading
order diagrams for the unitary and the orthogonal case. For the moments of the reflection and
transmission eigenvalues we find that our generating functions simplify and become rather
straightforward.

The graphical recursions we use provide a new insight into the leading order terms which
is particularly useful for energy-dependent correlation functions. Such correlation functions
are needed for a treatment of the density of states of Andreev billiards, which we consider
in section 4 where we find that the hard gap, previously found at leading order in 1/N , persists
at least for the next two orders. Also derivable from energy-dependent correlation functions are
the moments of the Wigner delay times, treated in section 5, and we find that the corrections
at each order in 1/N are also generated by relatively simple functions. Of course, the transport
moments in (4) are only one type of transport quantity, and we finally look at nonlinear statistics
in section 6 and see how their treatment follows naturally from the previous semiclassical
considerations.

We shall be comparing our semiclassical results with the prediction of RMT, where those
predictions are available: previously (of the quantities treated here) only the moments of the
transmission amplitudes for systems without time-reversal symmetry have been given for an
arbitrary number of channels [13, 14]. Explicit results for systems with time-reversal symmetry
have just been derived [15, 16], and we were pleased that the authors of [15] shared those results
with us beforehand. The moments of the Wigner delay times for both symmetry classes have
also been obtained [15].
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Of the recent RMT results, it is those concerned with the asymptotic expansion as the
number of channels increases, currently to leading order [47–49], that particularly connect
with the work here. Semiclassically, without the equivalent of the Selberg integral, we are still
restricted to an expansion in inverse powers of the channel number, but as we shall see, the
semiclassical treatment leads to explicit and surprisingly simple generating functions at each
order in inverse channel number. This simplicity until now remained hidden in the combinatorial
sums of the RMT results and may suggest ways of simplifying those results and of highlighting
the underlying combinatorial structure.

2. Subtrees

The semiclassical treatment of the conductance beyond the diagonal contribution, starting [22]
with the trajectory pair depicted in figure 1(c), required two main ingredients. The first was to
estimate how often a trajectory would come close to itself and have a self-encounter. This is
performed using the global ergodicity of the chaotic dynamics. The second was that, given such
an encounter, we can use the local hyperbolicity of the motion to find the partner trajectory that
reconnects the stretches of the original trajectory in a different way. Then one can determine the
action difference between the two trajectories and hence their contribution in the semiclassical
limit. When treating diagrams with more numerous and more complicated encounters, the
authors of [25] showed that these two ingredients allowed them to express the total contribution
as a product of integrals over the encounters and over the ‘links’, the trajectory stretches that
connect the encounters together. Performing these integrals then led to simple rules for the
contributions of the constituent parts of any diagram, and essentially reduced the problem
down to the combinatorial one of finding all the possible diagrams. For the first two transport
moments, this was done [26] by cutting open the periodic orbit pairs that contribute to spectral
statistics [44–46].

For the higher moments, as shown in [27], the diagrams that contribute at leading order
in inverse channel number are rooted plane trees. The reason is simple: according to the
semiclassical evaluation rules of [26], every encounter contributes a factor of −N while every
link contributes a factor of 1/N . The leading order is thus achieved by a diagram with the
minimum possible difference between the number of links (edges) and encounters (internal
vertices). It is a basic fact of graph theory that this difference is minimized by trees; each
independent cycle in a graph adds one to this difference. Thus to go beyond the leading order
one needs to consider diagrams with an increasing number of cycles. We will approach this
task by describing the topology of the cycles using ‘base diagrams’—graphs with no vertices of
degree 1 or 2—and then grafting subtrees onto the base diagrams.

Adding a subtree does not change the order of the contribution in inverse channel number
1/N but adds more incoming and outgoing channels, thus changing the order of the moment
n. Because we will be joining the trees to existing structures, unlike the treatment in [27–30],
here we do not root our trees in an incoming channel, but at an arbitrary point. These trees then
correspond to the restricted trees in [27, 30] and will be referred to as ‘subtrees’. We also note
that the generating function variables we use here have definitions slightly different from those
in [27–30]. Our present choice is more appropriate for the subleading orders and the different
transport quantities considered.

We now summarize the derivation of the subtree generating functions that were introduced
in [27] and further developed in [28, 30]. A subtree consists of a root, several vertices of even
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Figure 2. The subtree shown in (a) is cut at its top node (of degree 4), creating
subtrees (b)–(d). Subtree (c) has the incoming and outgoing directions reversed.
The lower vertex in (a), and hence (c), is i-touching the lead so that the channels
i4 and i5 (not shown) coincide (i4 = i5). This is represented by the short stubs,
and the encounter now starts in the incoming lead.

degree (called ‘nodes’, they correspond to encounters between various trajectories) and 2n − 1
vertices of degree one (called ‘leaves’, they correspond to incoming or outgoing channels). The
leaves are labelled i or o alternatingly as we go around the tree anti-clockwise. There are two
types of subtrees: the f -subtrees have leaves labelled ok , ik+1, ok+1, ik+2, etc. The label ik would
correspond to the root if we were to label it too. The f̂ -subtrees have leaf labels ik+1, ok+1, ik+2,
ok+2, etc. The reference index k depends on the location of the subtree on the diagram.

It is possible that an encounter happens immediately as several trajectories enter the cavity
from the lead or exit the cavity into the lead. To keep account of these situations, we say that an
l-encounter (node of degree 2l) may ‘i-touch’ the lead if it is connected directly to l incoming
channels (leaves with label i) and ‘o-touch’ if connected to l outgoing channels. When an
encounter touches the lead, the edges connecting it to the lead get cut off and all the channels
must coincide, although in the diagrams we keep short ‘stubs’ to avoid changing the degree of
the encounter vertex.

We define the generating functions f (x, zi , zo) and f̂ = f (x, zo, zi), which are counting
f - and f̂ -trees correspondingly. The meaning of the variables x = (x2, x3, . . .), zi =

(zi,2, zi,3, . . .) and zo = (zo,2, zo,3, . . .) is as follows:

• xl enumerate the l-encounters that do not touch the lead,
• zi,l enumerate the l-encounters that i-touch the lead,
• zo,l enumerate the l-encounters that o-touch the lead.

For example, the coefficient of x3x2
2 zi,2 gives the number of trees with one 3-encounter (a vertex

of degree 6) and three 2-encounters (vertices of degree 4), one of which i-touches the lead. An
example of such a tree is given in figure 2(a). We note that if an encounter may touch the lead,
the generating function includes (and sums) both possibilities: touching and non-touching. For
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example, the leftmost vertex of the tree in figure 2(a) may o-touch the lead, but this possibility
is counted separately.

In addition, we will use several secondary parameters that will allow us to adapt the subtree
generating functions to each of the four quantities considered in the paper. These parameters are:

• y is the semiclassical contribution of an edge (link);

• ci and co are the contributions of an incoming and an outgoing channel;

• σ is a special correction parameter for the situation when an o-touching node is directly
connected to an i-channel (σ = 0 everywhere except for section 5).

We obtain a recursion for the functions f and f̂ by cutting the subtree at the top encounter
node. If this node is of degree 2l, this leads to 2l − 1 further subtrees as illustrated in figure 2.
Assuming that we started with an f -subtree, l of the new subtrees also have type f , while the
remaining l − 1 are f̂ -subtrees. Thus an f -subtree with an l-encounter at the top contributes
yxl f l f̂ l−1 to the generating function f . Additionally, we consider the possibility for the top
node of an f -subtree to o-touch. In this case, its odd-numbered further subtrees are empty stubs
and the even-numbered subtrees are still arbitrary, leading to the contribution yzo,l( f̂ + σ)l−1.
Here we have included a correction term σ , which is used in section 5 to control the contribution
of any f̂ -subtree that consists of one edge and directly connects an incoming and an outgoing
channel and is set to 0 in the rest of the paper.

We start our recursion relation at the value for an empty tree, which consists of a link (with
the factor y) and an outgoing channel (providing a factor co),

f = yco + y
∞∑

l=2

[
xl f l f̂

l−1
+ zo,l( f̂ + σ)l−1

]
. (5)

The recursion is similar for f̂ , with the roles of i- and o-variables switched,

f̂ = yci + y
∞∑

l=2

[
xl f̂

l
f l−1 + zi,l f l−1

]
. (6)

2.1. Reflection

For the reflection into lead 1, we will consider the generating function

R(s) =

∞∑
n=1

sn
〈
Tr[r †

1r1]n
〉
, (7)

where the power of s counts the order of the moments. For individual semiclassical diagrams,
we make use of the diagrammatic rules of [26], where each link contributes a factor of 1/N
while each encounter provides the factor −N . Each channel is in lead 1, so it can be chosen
from the N1 available and provides this factor. When an encounter starts (or ends) in the lead,
all the incoming (or outgoing) channels must then coincide in the same channel, leading again
to the factor N1. Bearing in mind the meaning of the variables introduced above, we therefore
have to make the following semiclassical substitutions:

y =
1

N
, xl = −N , zi,l = zo,l = r l N1, ci = co = r N1, σ = 0, (8)
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where we have introduced r whose power counts the total number of channels and which allows
us to keep track of the total contributions to different moments. The nth moment involves 2n
channels, so we have the relation s = r 2. Each channel factor c then includes the factor r , while
the formula for zi,l in (8) accounts for the fact that when an l-encounter enters the incoming
channels we have l channels coinciding but only a single channel factor.

If we define ζ1 = N1/N , the subtree recursions (5) and (6) both become

f = rζ1 −

∞∑
l=2

f 2l−1 + rζ1

∞∑
l=2

r l−1 f l−1. (9)

Performing the sums (where the terms f and rζ1 correspond to l = 1 of the sums) this is

0 = −
f

1 − f 2
+

rζ1

1 − r f
, (10)

which can be written as the quadratic

r(1 − ζ1) f 2
− f + rζ1 = 0, f =

1 −
√

1 − 4ξr 2

2r(1 − ζ1)
, (11)

where ξ = ζ1(1 − ζ1) and where we take the solution whose expansion agrees with the
contributions of the semiclassical diagrams.

2.2. Transmission

For the transmission we treat the function

T (s) =

∞∑
n=1

sn
〈
Tr[t†t]n

〉
, (12)

and to distinguish it more clearly from the reflection, we will call the corresponding
subtree generating function f = φ here. For the transmission, the equations are slightly more
complicated than for the reflection because φ 6= φ̂ in general. For the substitution, we need

y =
1

N
, xl = −N , zi,l = r l N1, zo,l = r l N2, ci = r N1, co = r N2, σ = 0, (13)

where the only difference from (8) is that the outgoing channels are now in lead 2 and can be
chosen from the N2 available.

The contribution of the subtrees (5) once summed becomes

0 = −
φ

1 − φφ̂
+

rζ2

1 − r φ̂
or φ = rζ2 + rζ1φφ̂, (14)

with ζ2 = N2/N and assuming that ζ1 + ζ2 = 1. Likewise, (6) becomes

0 = −
φ̂

1 − f φ̂
+

rζ1

1 − rφ
or φ̂ = rζ1 + rζ2φφ̂, (15)

where, as before, ξ = ζ1(1 − ζ1) = ζ1ζ2. With h = φφ̂ we have

r 2ξh2 + [r 2(1 − 2ξ) − 1]h + r 2ξ = 0, (16)

from which we obtain the equations

φ2
−

(
1 − r 2

rζ2
+ 2r

)
φ + 1 = 0, φ̂2

−

(
1 − r 2

rζ1
+ 2r

)
φ̂ + 1 = 0. (17)
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(d)

(c)
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i1 o1
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Figure 3. The correlated trajectory quadruplet in (a) which contributes to the
second moment at leading order in inverse channel number can be redrawn as the
ribbon tree in (b) by ‘untwisting’ the encounter. The four trajectories themselves
can be read off from the boundary walk shown. At subleading order in inverse
channel number, we start with the correlated periodic orbit pair in (c), which can
be represented as the graph in (d) with corresponding boundary walks. Cutting
the periodic orbit along the left link (which is traversed in the same direction
by the orbit and its partner) creates the correlated trajectory pair in (e), which
contributes to the first moment. Changing this diagram into a graph we arrive
at the structure in (f), which is a Möbius strip with an empty subtree inside and
outside the loop. The intertwined S’s in diagrams (d) and (f) represent twists in
the corresponding ribbon links.

3. Transport moments

By a simple counting argument, the order of a diagram in terms of inverse channel number is
the number of edges minus the number of vertices (both leaves and nodes). Thus a diagram
contributes at the order (1/N )β−1, where β is the number of independent cycles in the diagram
(also known as the cyclomatic number or the first Betti number, hence the notation). The leading
contribution thus comes from tree diagrams which have β = 0 and the next contribution comes
from diagrams with one cycle.

3.1. First orthogonal correction

A diagram with one cycle can be thought of as a loop with trees grafted on it. But there is a
twist. The reconstruction of the trajectories’ structure from a tree, see [27], was done by means
of the boundary walk. It helps to visualize the edges of the tree as strips, a model that is called
a fat or ribbon graph in combinatorics. This fixes the circular order of edges around each vertex
and, going along the boundary, prescribes a unique way to continue the walk around a vertex
(see [50] for an accessible introduction). The trajectories γ j of equation (4) are then read as
the portions of the walk going from i j to o j . The trajectories γ ′

j , on the other hand, appear in
reverse as portions of the walk going from o j to i j+1. For example, the diagram in figure 3(a)
that contributes at leading order in 1/N can be redrawn as the tree in figure 3(b) with the
corresponding boundary walk shown.
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Figure 4. To obtain the base structure in (a), we can simply remove the empty
subtrees of figure 3(f). Appending subtrees to (a), we can then create all the
possible graphs, but for the graph to remain a Möbius strip we need an odd
number of odd nodes, as for example in the graph in (b). We draw the boundary
walk in (c), where we truncated the subtrees at their first node as they always have
an odd number of leaves thereafter. The top left and bottom right nodes along the
Möbius strip in (b) or (c) may also enter the lead for reflection quantities.

The trace in (4) means that the boundary walk is closed and the equality of total actions
implies that each edge of the diagram is traversed twice (once by γ and once by γ ′). This means
that a valid diagram must have one face. In particular, there must be a way for the walk to
cross from inside to outside the cycle of the first correction diagram. The diagram thus has the
topology of a Möbius strip with (ribbon) trees grafted on the edges. We will refer to the diagram
without any trees (the Möbius strip in this case) as the base diagram or structure.

It is also beneficial to consult the full expansion in powers of the inverse channel number
of the first two moments of the transmission eigenvalues [11, 22, 25, 26] and to draw the
corresponding diagrams as ribbon graphs. The procedure of going from the closed periodic
orbits to scattering trajectories and then to a graph is illustrated in figure 3 for the first subleading
order correction. Removing the remaining subtrees from figure 3(f) leads to the base structure in
figure 4(a) to which we can append subtrees to create valid diagrams like figure 4(b) whose
boundary walk is depicted in figure 4(c). As the base structure involves a loop that is traversed in
opposite directions by the trajectory and its partner, all the diagrams created in this way can only
exist in systems with time-reversal symmetry (corresponding to the orthogonal RMT ensemble).

Along the loop we can add subtrees at any point, and to make a valid l-encounter we must
add 2l − 2 subtrees (the remaining two stretches in the encounter belong to the loop itself).
If the node has an odd number of trees both inside and outside the loop, we refer to it as an odd
node. It is easy to convince oneself that in order to have each stretch of the loop traversed once
by a γ -trajectory and once by a γ ′-trajectory, there must be an odd number of odd nodes around
the loop.

We start by evaluating the contribution of a node along the loop. For the node we include all
possible sizes l of the resulting encounter. Adding the 2l − 2 subtrees (of which l − 1 start with
an incoming direction and l − 1 with an outgoing direction), there are 2l − 1 ways of splitting
them into groups inside or outside the encounter. With the l − 1 ways that result in an odd node
we include the factor p whose power will later count the total number of odd nodes around the
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loop. This leads to

A(p) =

∞∑
l=2

xl( f f̂ )l−1[p(l − 1) + l]. (18)

The numbers of incoming and outgoing channels connected to the same nodes are equal
(see the example in figure 4(b)). An l-encounter can touch the lead only if every other edge
connected to it is empty (connected directly to a leaf). Since for nodes on the loop we need to
include the edges that belong to the loop itself and which cannot be empty, we conclude that
only odd nodes can possibly touch the lead. Since in this case we need l empty edges and we
have l − 1 edges of each type, touching the lead is possible only if the incoming and outgoing
channels are in the same lead, as they are when we consider a reflection quantity.

With 2k − 1 trees on the inside of which k must be empty (and the remaining k − 1
arbitrary) and the remaining 2l − 2k − 1 on the outside (with l − k empty and l − k − 1 arbitrary)
and with zi = zo = z for reflection quantities, we add the following to the node contribution:

B(p) =

∞∑
l=2

zl

l−1∑
k=1

p f k−1( f̂ + σ)l−k−1. (19)

We then allow any number of nodes along the loop, although each time we add a new node
it creates a new edge of the loop. Because of the rotational symmetry, we divide by the number
of nodes. In addition, there is a symmetry between the inside and the outside of the loop, leading
to a factor of 1/2. The total contribution thus becomes

K̃ 1 =
1

2

∞∑
k=1

[y(A + B)]k

k
= −

1

2
ln[1 − y(A + B)]. (20)

Finally, to ensure that we have an odd number of odd nodes along the loop, we set

K1 =
K̃ 1(p = 1) − K̃ 1(p = −1)

2
. (21)

This function then generates all the diagrams with 2n channels. We can now choose any of
the leaves to be labelled i1, which fixes the numbering of all other leaves: they are numbered in
order along the boundary walk. The freedom of choosing one of the leaves gives a factor of 2n.
To obtain this factor we differentiate the result with respect to r and multiply by r , so that the
power of r still counts the total number of channels. Thus, we obtain the generating function

F = r
dK

dr
. (22)

For the transmission, using the semiclassical values of the variables in (13), we find that
the node contribution in (18) becomes

A(p) =
Nh(h − p − 2)

(1 − h)2
. (23)

As we do not allow the nodes to enter the leads (as the incoming and outgoing channels are now
in different leads), we also have B = 0. Note that the node contribution is given solely in terms
of h = φφ̂ and the full contribution evaluates to

K1 =
1

4
ln

(
1 − h

1 + h

)
. (24)
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Putting in the correct explicit solution for h from (16) and transforming according to (22),
we find the following generating function for the orthogonal correction to the moments of the
transmission eigenvalues,

T1(s) = −
ξs

(1 − s)(1 − s + 4ξs)
, (25)

where we set s = r 2 to generate the moments as the nth moment involves 2n channels. This
order correction was previously treated using an RMT diagrammatic expansion [9], and can be
derived by performing an asymptotic expansion in inverse channel number of the RMT result
for arbitrary channel number of [15].

For the reflection we have f̂ = f and the node contributions in (18) and (19) are

A(p) =
N f 2( f 2

− p − 2)

(1 − f 2)2
, B(p) =

pNζ1r 2

(1 − r f )2
. (26)

Using relation (10) we can rewrite B(p) as

B(p) =
pN

ζ1

f 2

(1 − f 2)2
, (27)

so that for the generating function we find

K1 =
1

4
ln

(
ζ1 + ζ2 f 2

ζ1 − ζ2 f 2

)
=

1

4
ln

(
f

2rζ1 − f

)
, (28)

where for the last term we simplified the numerator and denominator inside the logarithm
by only keeping the remainder after polynomial division with respect to the quadratic for f
in (11). Putting in the explicit solution from (11) and following (22), we obtain the rather simple
generating function for the orthogonal correction to the moments of the reflection eigenvalues

R1(s) =
ξs

(1 − 4ξs)
. (29)

Note that this result only depends on ξ = ζ1(1 − ζ1) = ζ1ζ2, which is not so obvious from (28)
and (11). However, the relations in (2) and the fact that the trace of the identity matrix, being
the respective number of channels, is only leading order in inverse channel number mean that
the dependence only on ξ of the subleading transmission moments (25) must be mirrored in the
reflection moments. For the reflection into lead 2 we simply swap ζ1 and ζ2, which clearly does
not affect this order correction.

3.2. Unitary correction

We can continue using the above ideas to treat higher-order corrections. In particular, for
systems without time-reversal symmetry the first correction occurs at the second subleading
order in inverse channel number. The semiclassical diagrams for the conductance are given, for
example, in [26] and can be represented as the graph diagrams shown in figures 5(a) and (b).
We note that this representation is not unique and is chosen for simplicity. It is also important
to observe that, despite the twists, the corresponding ribbon graphs are orientable, i.e. have two
surfaces (unlike the Möbius strip). It can be shown this is true in general: diagrams contributing
to the unitary case are orientable. Further, the diagrams contributing at this order have genus
1, i.e. embeddable on a torus (but not a sphere). This, too, can be shown to continue: the
contribution to the order 1/N (2g−1) comes from diagrams of genus g.
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Figure 5. The first subleading order semiclassical diagrams for systems without
time-reversal symmetry. We start with the trajectory pairs that contribute to the
conductance in (a) and (b). Removing the channels and their links we obtain the
base structures (c) and (d) for this case.

From the diagrams in figures 5(a) and (b), we can form the base structures by removing
the channels and their links; see figures 5(c) and (d). A similar restriction the one above still
holds when appending subtrees to ensure that the resulting diagrams are permissible. Namely,
the total number of odd nodes and twists along every closed cycle in the diagram has to be even.
We note that the definition of an odd node depends on the cycle: the left node of figure 5(a) is
odd with respect to the cycles formed from the top and bottom arcs and is even relative to the
cycle formed from the top arc and the middle edge. We remark that this rule was enforced for
the Möbius diagram as well.

Finally, we need to discuss the symmetries of each base diagram. The generators of the
symmetry group of base diagram 5(c) are the shift of the edge numbering and the reflection,
giving a group of size 6. The generators for base diagram 5(d) are inside–outside mappings of
the two edges, giving a group of size 4.

When we append subtrees along each edge of a diagram, whether we append f or f̂ -type
subtrees depends in a complicated way on the types of subtrees appended along the other edges.
Therefore, we restrict ourselves to the simpler situation where f = f̂ and only treat reflection
quantities (with σ = 0). Along the links connecting the nodes in the base diagrams we can
append subtrees as before, but because the rotational symmetry is now broken we no longer
divide by the number of nodes. The edge contributions can therefore be written as

E(p) = y
∞∑

k=0

[y(A + B)]k
=

y

1 − y(A + B)
, (30)

where A(p) and B(p) are as in (18) and (19) but with the simplification f = f̂ and σ = 0.
We also need to append subtrees to the nodes of the base structures and, finally, ensure

that we have the correct number of objects (odd nodes and twists) around each closed cycle. To
proceed, we number each of the regions around the nodes and label the closed cycles with Greek
letters as in figures 5(c) and (d). We start with figure 5(c) and use powers of pα, pβ and pγ to

New Journal of Physics 13 (2011) 063020 (http://www.njp.org/)



16

count the number of objects along the respective cycles. At the top node we can add subtrees in
any region we like as long as we add an odd number in total to ensure that the top node becomes
a valid l-encounter. An l-encounter involves 2l stretches and we have three stretches already
from the base structure. If we place ki subtrees in each region i and use the power of q to count
the total number of subtrees added, we can write the contribution of the top node as

Ṽ 3c(q) =

∞∑
k1,k2,k3=0

xl(q f )(k1+k2+k3) pk2
α pk3

β pk1
γ , (31)

with l = (k1 + k2 + k3 + 3)/2 and where the number 3 in the subscript refers to the fact that
the node in the base diagram starts with three stretches, while the ‘c’ refers to its label in
figure 5. Further, when we have an odd number of trees in each region, and when the odd
numbered trees in each region are empty, then the top node can also enter the lead (since we are
considering reflection quantities). If we define ki = 2k̃i + 1, then we have k̃i + 1 empty subtrees
and k̃i arbitrary subtrees in each region. In total, we would then add the contribution

Ṽ ′

3c(q) = qpα pβ pγ

∞∑
k̃1,k̃2,k̃3=0

zl f (k̃1+k̃2+k̃3), (32)

where l = (k̃1 + k̃2 + k̃3 + 3) and we simplified the powers of q and p as in the end we are only
interested in whether they are odd or even and they are all odd here. Finally, to ensure that the
total number of trees added is odd, we substitute

V3c =
Ṽ 3c(q = 1) − Ṽ 3c(q = −1)

2
+ Ṽ ′

3c(q = 1). (33)

The complete diagram in figure 5(c) is made up of two such nodes as well as three links.
Each of the links lies on two cycles so we can write the full contribution as

K̃ U
2c =

1
6 E(pα pβ)E(pβ pγ )E(pγ pα)(V3c)

2, (34)

where we divide by 6 to account for the symmetry of the base structure. Here the number in
subscript now refers to the order of the contribution while the ‘U’ in superscript refers to the
fact that these diagrams correspond to the unitary ensemble. Then to ensure that the number of
objects along each cycle is even, we simply average

K U
2c =

K̃ U
2c(p = 1) + K̃ U

2c(p = −1)

2
, (35)

for pα, pβ and pγ in turn.
For the base structure in figure 5(d) we now have a single node and four regions. Region 3

lies inside both cycles and each cycle starts with a single object inside (and likewise outside),
which are the stretches of the other cycle leaving or entering the node. Treating the node as
above, we obtain the contributions

Ṽ 4d(q) =

∞∑
k1,k2,k3,k4=0

xl(q f )(k1+k2+k3+k4) pk2
α (pα pβ)

k3 pk4
β , (36)

with l = (k1 + k2 + k3 + k4 + 4)/2 and

Ṽ ′

4d(q) =

∞∑
k̃1,k̃2,k̃3,k̃4=0

zl f (k̃1+k̃2+k̃3+k̃4), (37)
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where l = k̃1 + k̃2 + k̃3 + k̃4 + 4, and with an odd number of trees in each region in this
second case we are guaranteed to add an even number to each cycle and an even number
overall. With four edges touching the node in the base structure we need to add an even
number of subtrees in total to the node to make a valid l-encounter so the node contribution
reduces to

V4d =
Ṽ 4d(q = 1) + Ṽ 4d(q = −1)

2
+ Ṽ ′

4d(q = 1). (38)

By including the two edges, we have a total contribution of

K̃ U
2d =

1
4 pα pβ E(pα)E(pβ)V4d, (39)

where we divide by 4 to account for the symmetry of the diagram and the pα pβ accounts for
the fact that the cycles each start with a single object (the original node, which is odd for both
cycles). We likewise take the average

K U
2d =

K̃ U
2d(p = 1) + K̃ U

2d(p = −1)

2
, (40)

for pα and pβ in turn.
When we put in the semiclassical substitutions from (8), the formulae above can be

summed and simplified. After applying the operator r d
dr , we find that the first correction for

the reflection for the unitary case (adding the two base cases) has the generating function

N RU
2 (s) =

ξ 2 s2(s − 1)

(1 − 4ξs)5/2
. (41)

By restricting ourselves above to the situation where f = f̂ , we are not able to obtain
the transmission directly, but we can instead obtain the likely transmission generating function
using (2) that t†t + r †

1r1 = I :

N T U
2 (s) = −

ξ 2 s2

(1 − s)3/2(1 − s + 4ξs)5/2
. (42)

The fact that we get such simple functions is a little surprising, especially because the result
from each base case is notably more complex. In fact, this pattern can be seen to continue
if we expand the RMT result as in appendix A. The generating function in (42) can also be
obtained [15] from their RMT result.

3.3. Second orthogonal correction

When the system has time-reversal symmetry, the edges and encounters can again be traversed
in different directions by the trajectory set and their partners. For the conductance, there are
seven further semiclassical diagrams at this order as depicted, for example, in [26]. When we
remove the starting and end links to arrive at the base structures, we find that they reduce to the
four-base cases depicted in figure 6.

We note that the additional diagrams are non-orientable when viewed as ribbon graphs.
Their groups of symmetry contain two elements each: reflection for diagrams 6(a)–(c) and
inside-out flipping of both edges simultaneously for diagram 6(d).

Figures 6(c) and (d) are almost the same as figures 5(c) and (d), so we start by evaluating
the contribution of figure 6(a). Although regions 1 and 3 are spatially connected they differ as
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Figure 6. The additional four base structures that exist for systems with time-
reversal symmetry at the second subleading order in inverse channel number.

to where we append subtrees at the nodes. Starting with the node on the left we therefore obtain
the contributions

Ṽ 3a(q) =

∞∑
k1,k2,k3=0

xl(q f )(k1+k2+k3) pk2
α , (43)

with l = (k1 + k2 + k3 + 3)/2 and

Ṽ ′

3a(q) = qpα

∞∑
k̃1,k̃2,k̃3=0

zl f (k̃1+k̃2+k̃3). (44)

Again to ensure that an odd number of trees are appended, we substitute

V3a =
Ṽ 3a(q = 1) − Ṽ 3a(q = −1)

2
+ Ṽ ′

3a(q = 1). (45)

For the node on the right, we obtain the contribution V̂ 3a, which is the same as V3a but with pα

swapped with pβ (and also k2 with k4).
Along with the two nodes in figure 6(a), we have three links, two of which form cycles that

already contain a single object (a twist). The total contribution is then

K̃ O
2a =

1
2 pα pβ E(pα)E(1)E(pβ)V3aV̂ 3a, (46)

and to have an even number of objects along both cycles we average

K O
2a =

K̃ O
2a(p = 1) + K̃ O

2a(p = −1)

2
, (47)

for pα and pβ in turn.
The node in the base structure in figure 6(b) provides the following contributions,

Ṽ 4b(q) =

∞∑
k1,k2,k3,k4=0

xl(q f )(k1+k2+k3+k4) pk2
α pk4

β , (48)
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with l = (k1 + k2 + k3 + k4 + 4)/2 and

Ṽ ′

4b(q) = pα pβ

∞∑
k̃1,k̃2,k̃3,k̃4=0

zl f (k̃1+k̃2+k̃3+k̃4). (49)

The total number of trees added must be even, leading to

V4b =
Ṽ 4b(q = 1) + Ṽ 4b(q = −1)

2
+ Ṽ ′

4b(q = 1), (50)

while with the two cycles (which each start with a single object) we have a total contribution of

K̃ O
2b =

1
2 pα pβ E(pα)E(pβ)V4b. (51)

As before we take the average

K O
2b =

K̃ O
2b(p = 1) + K̃ O

2b(p = −1)

2
, (52)

for pα and pβ in turn.
The difference between the structure in figure 6(c) and that in figure 5(c) is that now cycles

α and β start with an odd number of objects. The contribution is then

K̃ O
2c =

1
2 pα pβ E(pα pβ)E(pβ pγ )E(pγ pα)(V3c)

2 (53)

before averaging over the p’s in turn. Only the α-cycle in the structure in figure 6(d) now starts
with an odd number of objects, so its contribution is

K̃ O
2d =

1
2 pα E(pα)E(pβ)V4d, (54)

and then we average over pα and pβ in turn.
Summing over the four new base cases (as well as the two that also exist without time-

reversal symmetry), we obtain the second subleading correction for the orthogonal case

N RO
2 (s) = −

ξs [ξs(3 + s) + 1 − 2s]

(1 − 4ξs)5/2
. (55)

From this we can again find the likely generating function for the transmission

N T O
2 (s) =

ξs
[
ξs(4s − 3) + 1 − s2

]
(1 − s)3/2(1 − s + 4ξs)5/2

. (56)

The moments generated by (56) can be proved [15] to agree with the moments obtained from
an asymptotic expansion of their RMT result. Semiclassically, time-reversal symmetry allows
more possible diagrams, so the results here are somewhat more complicated than the results (41)
and (42) for systems without time-reversal symmetry, but the RMT result [15] for the orthogonal
case is notably more complex than that for the unitary case. The results here are therefore useful
in simplifying asymptotic expansions of RMT moments.

3.4. Leading order revisited

To obtain the leading order contributions [27], the start of the tree was fixed in the first incoming
channel i1, which allowed the top node to possibly i-touch. For example, we simply place
an incoming channel on top of the tree in figure 2(a). If the odd numbered subtrees after
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the top node were empty, then the top node could i-touch the lead, leading to the generating
function [28]

F0 = ci f +
∞∑

l=2

zi,l f l + coσ + σ

∞∑
l=2

zo,l( f̂ + σ)l−1. (57)

Here the terms involving σ derive from the fact that the section of the tree above the top node is
actually an empty f̂ tree.

However, using the ideas we developed for the subleading corrections we can imagine a
way of generating the leading order trees without fixing any of the channels as a root. As we
shall see, this is particularly beneficial in calculating energy-dependent correlation functions as
in sections 4 and 5. To start, we view a single point as the base structure for the leading order
diagrams. We therefore obtain the leading order diagrams by joining subtrees to this point. To
create a valid encounter we need to add 2l subtrees (with l > 2), l of which are f -type subtrees
starting from an incoming direction and the other l are f̂ -type subtrees. If all of the subtrees of
a particular type are empty, then the node created can touch the lead. We obtain the generating
function

K̃ 0 =

∞∑
l=2

xl( f f̂ )l

2l
+

∞∑
l=2

zi,l f l

2l
+

∞∑
l=2

zo,l( f̂ + σ)l

2l
, (58)

where we divide by l because of the rotational symmetry and by a further factor of 2 because of
the additional possibility of swapping the incoming and outgoing channels. The last two terms in
(58) represent moving the l-encounter (formed by appending the subtrees to the starting point)
into the incoming and outgoing channels. Importantly, we overcount the trees by the factor V
of their total number of encounters because, for a given resulting tree, any of the nodes could
have been used as the base structure.

On the other hand, we can also construct trees by joining two subtrees together, one f -type
and the other f̂ -type. After joining, the new vertex of degree two gets absorbed into the edge.
A tree has exactly V − 1 internal edges; therefore there are V − 1 ways to obtain a given tree
from joining two subtrees. The joining operation gives the contribution

K̃ ′

0 =
1

2y
( f − yco)( f̂ − yci) −

1

2
co(yci + σ), (59)

where we divide by 2 because of the symmetry of swapping the incoming and outgoing
channels. In the first term in (59) we subtract the empty tree from both f quantities to ensure that
they both include at least one node so that the edge formed is an internal one. The last term in
(59) is then to ensure that the diagram made of a single diagonal link with no encounters (V = 0)
is included with the correct factor of −1/2. Taking the difference between (58) and (59) then
means that we count each tree exactly once. Fittingly, for all the physical quantities we consider
in this paper, (59) equals minus the l = 1 term in the sums in (58). This is natural because by
joining two subtrees we essentially create a one-encounter. We simplify the difference to

K0 = K̃ 0 − K̃ ′

0 =

∞∑
l=1

xl( f f̂ )l

2l
+

∞∑
l=1

zi,l f l

2l
+

∞∑
l=1

zo,l( f̂ + σ)l

2l
. (60)

Now that no root is fixed we can make any channel the first incoming channel and this
generating function indeed misses a factor 2n compared with the generating function F . This
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turns out to be very useful for the density of states of Andreev billiards in section 4, and to
recover F we can use relation (22).

The generating function (57) for the reflection into lead 1 becomes

F0 =
r Nζ1 f

1 − r f
. (61)

Taking the solution of (11) or inverting (61) and substituting into (11) leads to the generating
function for the reflection

R0(s)

N
=

2ζ1s − 1 +
√

1 − 4ξs

2(1 − s)
. (62)

For the reflection into lead 2, we swap ζ1 and ζ2. Note again that when we take the explicit
solutions to any of the generating functions, we chose the solution whose expansion in r agrees
with the semiclassical diagrams.

If, on the other hand, we start with (60), we obtain the generating function without the
factor 2n,

K0

N
=

1

2
ln(1 − f 2) − ζ1 ln(1 − r f ). (63)

To obtain the missing factor 2n we substitute the correct solution of (11) into (63) and apply the
operator r d

dr , as in (22). Simplifying the result we recover (62).
For the leading order transmission moments, we also start with (61), so with (17) we

obtain [27]

T0(s)

N
=

1

2

√
1 +

4ξs

1 − s
−

1

2
. (64)

The integrated generating function is

K0

N
=

1

2
ln(1 − φφ̂) −

ζ1

2
ln(1 − rφ) −

ζ2

2
ln(1 − r φ̂). (65)

As for the reflection, substituting the solutions of (17) and transforming according to (22), we
recover (64).

4. Density of states of Andreev billiards

If we imagine merging the scattering leads and replacing them by a superconductor, then our
chaotic cavity becomes an Andreev billiard. Using the scattering approach [51], the density of
states (normalized by its average) of such a billiard can be written as [52]

d(ε) = 1 + 2 Im
∞∑

n=1

(−1)n

n

∂C(ε, n)

∂ε
, (66)

in terms of energy-dependent correlation functions of the full scattering matrix:

C(ε, n) =
1

N
Tr

[
S†

(
E −

εh̄

2τd

)
S

(
E +

εh̄

2τd

)]n

. (67)

Here the energy difference is in units of the Thouless energy ET = h̄/2τd (which depends on the
average classical dwell time τd) and measured relative to the Fermi energy E . Strictly speaking,
for Andreev billiards we should use S∗ (matrix S with complex-conjugated entries) instead of
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the adjoint matrix S† but we will only consider systems with time-reversal symmetry where
S is symmetric. With a superconductor at the lead, each time the particle (electron or hole)
hits a channel it is retroreflected as the opposite particle (hole or electron) and semiclassically
(see [29, 30] for complete details) we traverse the partner trajectories in the opposite direction
than for the reflection or transmission. For the leading order diagrams, this means that all the
links (and encounters) are traversed in opposite directions by electrons and holes, so that if we
break the time-reversal symmetry, say with a magnetic field, then none of these diagrams are
possible any longer. Interestingly, at subleading order some diagrams are still allowed when the
symmetry is completely broken, as for example the coherent backscattering contribution that
comes from moving the node in figure 3(e) into the lead.

We can consider the generating function

G(s) =

∞∑
n=1

snC(ε, n), (68)

which generates the required correlation functions. We note that the definition of G here is
marginally different from that in [29, 30]. The semiclassical treatment there just requires us to
make the substitutions

y =
1

N (1 − a)
, xl = −N (1 − la), zi,l = zo,l = r l N , co = ci = r N , σ = 0, (69)

where a = iε.

4.1. Subtrees

As zi = zo we have f = f̂ , so (5) becomes

f (1 − a) = r −

∞∑
l=2

(1 − la) f 2l−1 + r
∞∑

l=2

r l−1 f l−1 (70)

or
f (1 − a − f 2)

(1 − f 2)2
=

r

(1 − r f )
, (71)

which reduces to the cubic

f 3
− r(1 + a) f 2

− (1 − a) f + r = 0. (72)

4.2. Leading order

The leading order in inverse channel number was obtained semiclassically in [29, 30], and for
the energy-dependent correlation functions we have

F0 =
r N f

1 − r f
; (73)

setting G0 = F0/N , inverting (73) and substituting into (72), we obtain the cubic

(1 − s)2G0
3 + s(3s + a − 3)G0

2 + s(3s + a − 1)G0 + s2
= 0. (74)

However, for the density of states the correlation function (60)

K0

N
=

1

2
ln(1 − f 2) +

a f 2

2(1 − f 2)
− ln(1 − r f ), (75)
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turns out to be more useful. Indeed with G = F/N and comparing (22) with (68), we find that

K0

N
=

∞∑
n=1

sn

2n
C(ε, n). (76)

Introducing

H(s) =

∞∑
n=1

sn

n

∂C(ε, n)

∂a
= 2

∂

∂a

K0

N
, (77)

this is precisely what is required for the density of states of Andreev billiards in (66), as by
setting s = −1 we have

d(ε) = 1 + 2 Re H(s = −1). (78)

Performing the energy differential implicitly, we arrive at the cubic

a2(1 − s)H0
3 + a [s(a − 2) + 2(1 − a)] H0

2 +
[
s(1 − 2a) − (1 − a)2

]
H0 + s = 0. (79)

Having the generating function K therefore allows us to have easier access to the density of
states than we had previously [29, 30]. To make the connection to the RMT treatment, we set
s = −1 and make the final substitution

H0(s = −1) =
[iW0(ε) − 1]

2
(80)

so that the leading order contribution to the density of states is d0(ε) = −Im W0(ε), where W0

satisfies the cubic

ε2W0
3 + 4εW0

2 + (4 + ε2)W0 + 4ε = 0, (81)

as found previously using RMT [53]. The result can be written explicitly as

d0(ε) = Re

√
3

6ε

[
Q0,+(ε) − Q0,−(ε)

]
, (82)

where

Q0,±(ε) =

[
8 − 36ε2

± 3ε
√

3D
]1/3

, D = ε4 + 44ε2
− 16. (83)

Note that the density of states is only nonzero when the discriminant D is positive, which occurs
when ε > 2(

√
5−1
2 )5/2.

4.3. First correction

With the techniques in this paper, we can go beyond this, and RMT, and see what happens at
the next two orders in inverse channel number. For the first subleading order the even node
contribution in (18) becomes

A(p) =
f 2( f 2

− p − 2)

(1 − f 2)2
+

a f 2( f 4
− 3 f 2 + 2p + 4)

(1 − f 2)3
, (84)

while the odd node contribution in (19) is

B(p) =
pr 2

(1 − r f )2
=

p f 2(1 − a − f 2)2

(1 − f 2)4
, (85)
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which we rewrite using (71). This simplifies the generating function (21), which reduces to

K1 =
1

4
ln

(
(1 + a) f 4

− (2 − a2) f 2 + 1 − a

(1 + a) f 4 − (2 + a2) f 2 + 1 − a

)
. (86)

We provide the further generating functions in appendix B, but for the density of states we
substitute H1(s = −1) = iW1(ε)/2 in (B.2) and obtain the cubic

0 =
ε2

4
D2(N W1)

3 + 2ε(11ε2
− 8)D(N W1)

2 + (ε6 + 528ε4
− 720ε2 + 256)N W1 + 16ε(3ε2 + 16),

(87)

so that the first correction to the density of states is given by

d1(ε) =
1

N
Re

√
3

3εD

[
Q1,+(ε) − Q1,−(ε)

]
, (88)

with

Q1,±(ε) =
[
4096 − 46 848ε2 + 10 3584ε4

− 3232ε6 + 126ε8

±3ε(768 − 2928ε2 + 96ε4 + ε6)
√

3D
]1/3

. (89)

As this involves the same discriminant as (82), the correction to the density of states is also only
nonzero when ε > 2(

√
5−1
2 )5/2, i.e. it has the same gap as the leading order term. The correction,

however, is negative and has a singular peak from the discriminant in the denominator.

4.4. Second correction

Repeating this procedure for the six base cases that contribute at the second subleading order,
we find

d2(ε) = −
1

N 2
Re

√
3

3D3

[
Q2,+(ε) − Q2,−(ε)

]
, (90)

with

Q2,±(ε) =

[
2εD2

(
16 224 878 592 + 74 096 377 856ε2 + 153 714 421 760ε4 + 86 120 095 744ε6

+ 28 154 556 672ε8 + 6522 754 176ε10 + 739 116 528ε12 + 12 120 680ε14

+122837ε16
− 5324ε18

)
± 3D

(
3189 506 048 − 41 603 760 128ε2

− 187 618 951 168ε4
− 192 686 981 120ε6

− 237 943 482 368ε8

− 10 821 101 9264ε10
− 13 928 492 544ε12 + 1338 160 896ε14 + 274 655 180ε16

−6774 219ε18 + 52 756ε20
) √

3D
]1/3

. (91)

This correction is positive again and has a larger and steeper singular peak than the first-
order correction. In order to illustrate this, we plot the leading order result, as well as the two
corrections in figure 7(a) for N = 25, whereas in figure 7(b) we sequentially add the corrections
to the leading order result, again for N = 25.

The fact that the hard gap remains derives from the discriminant D, which is already
present in f (at s = r 2

= −1) from (72). We could then expect that the gap is robust against
further higher-order corrections, considering that the expressions always involve f . Some way
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(a) (b)

Figure 7. (a) The leading order density of states (dotted) along with the first
(dashed) and second (solid) corrections for N = 25. (b) The leading order density
of states (dotted) with the first (dashed) and then the second (solid) correction
added for N = 25.

above the gap we see that the corrections (especially the second) make little difference but it
is the region directly above the gap that is particularly interesting. The expansion in inverse
channel numbers is poorly (if at all) convergent, but if the pattern of alternating singular peaks
continues its sum (or rather the exact result for finite channel number) it could take any value.
In particular, the gap could widen.

Although treating the density of states of Andreev billiards semiclassically basically just
involves using different values for the variables in the graphical recursions, on the RMT side it
remains to be seen how one could use recent advances, such as the Selberg integral approach,
to proceed beyond the leading order in inverse channel number. For the leading order [53] a
diagrammatic expansion was performed, but a result for an arbitrary number of channels would
be especially welcome. It would determine whether the gap indeed persists and would clarify
what happens to the density of states just above the current gap.

5. Moments of the Wigner delay times

Another quantity related to the energy-dependent correlation functions are the moments of the
Wigner delay times. To obtain them, we define the correlation function

D(ε, n) =
1

N
Tr

[
S†

(
E −

εh̄

2τd

)
S

(
E +

εh̄

2τd

)
− S†(E)S(E)

]n

, (92)

where we subtract the identity matrix in the form of S†S = I . The corresponding generating
function is

L(s) =

∞∑
n=1

sn D(ε, n). (93)

The moments of the Wigner–Smith matrix [54, 55]

Q =
h̄

i
S†(E)

dS(E)

dE
(94)
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are then given by [28]

mn = Tr [Q]n
=

τ n
d

inn!

dn

dεn
D(ε, n)

∣∣∣
ε=0

, (95)

whose generating function we will denote by

M(s) =

∞∑
n=1

sn

τ n
d

mn. (96)

The identity matrix in (92) follows from removing the ε dependence of the scattering
matrices. However, as the identity matrix only has diagonal elements we identify these
elements as diagonal trajectory pairs that travel directly from incoming to outgoing channels.
We considered these to be formed when we moved encounters into the outgoing channels
(equivalently we could use the incoming channels instead) whenever we formed an empty
f̂ subtree. The empty subtree is included in the general f̂ contribution and we included the
contribution σ to allow us to change the effective value of f̂ in this situation. The empty
f̂ subtrees consist of a single link and an incoming channel, producing the contribution
yci = r/(1 − a). To mimic subtracting the identity matrix in (92), we simply take away the
value of this empty subtree at zero energy (a = 0) by setting

σ = −r, (97)

along with the remaining semiclassical values in (69).

5.1. Subtrees

Including σ breaks the symmetry of f and f̂ , so the subtree recursions (5) and (6) become

f (1 − a − f f̂ )

(1 − f f̂ )2
=

r

(1 + r 2 − r f̂ )
,

f̂ (1 − a − f f̂ )

(1 − f f̂ )2
=

r

(1 − r f )
, (98)

and we find [28] that f satisfies the following cubic,

(1 + r 2)2 f 3
− r(1 + r 2)(1 + a) f 2

− (1 + r 2)(1 − a) f + r = 0, (99)

while f̂ is related by

f̂ = (1 + r 2) f. (100)

5.2. Leading order

For the energy-dependent correlation functions we have

F0 =
r N f

1 − r f
−

r 2 N

(1 + r 2)(1 − r f )
. (101)

Setting L0 = F0/N , inverting (101) and substituting into (72), we obtain the cubic

(1 + s)L0
3 + as(1 + s)L0

2 + s(2as + a − 1)L0 + as2
= 0. (102)

For the nth moment of the delay times, we want the coefficient of the nth power of a, which we
can extract by transforming s → s/a and then setting a = 0. This leads to a quadratic and the
leading order moment generating function [28, 56]

M0(s) =
1 − s −

√
1 − 6s + s2

2
. (103)
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Alternatively, we can start with the generating function from (60):

K0

N
=

1

2
ln(1 − (1 + r 2) f 2) +

a(1 + r 2) f 2

2(1 − (1 + r 2) f 2)
−

1

2
ln(1 − r f ) −

1

2
ln

[
(1 + r 2)(1 − r f )

]
(104)

from which we can recover (102) and hence (103) by differentiating with respect to r ,
multiplying by r and using the result for d f

dr from differentiating (99) implicitly.

5.3. First orthogonal correction

For the first orthogonal correction, we evaluate the contributions of the even and odd nodes
around the Möbius strip

A(p) =
h(h − p − 2)

(1 − h)2
+

ah(h2
− 3h + 2p + 4)

(1 − h)3
(105)

and

B(p) =
pr 2

(1 + r 2 − r f̂ )(1 − r f )
=

ph(1 − a − h)2

(1 − h)4
, (106)

which we again rewrite using (98) and both contributions only depend on h = f f̂ . Putting these
contributions into the generating function (21), we again obtain

K1 =
1

4
ln

(
(1 + a)h2

− (2 − a2)h + 1 − a

(1 + a)h2 − (2 + a2)h + 1 − a

)
, (107)

as in section 4.3 but with different values for f and f̂ as given in (99) and (100). Differentiating
in line with (22) and differentiating (99) implicitly we arrive at the generating function, given as
(B.3) in appendix B, which generates the orthogonal correction to the correlation functions
D(ε, n). Finally, by transforming s → s/a and setting a = 0, we find the correction to the
moments of the delay times to be

N M1(s) =
1 − 3s −

√
1 − 6s + s2

2(1 − 6s + s2)
. (108)

5.4. Next corrections

Since we only treated reflection quantities where f = f̂ for the next order corrections, we
cannot obtain the corresponding generating functions of the moments of the delay times.
Instead we can generate the energy-dependent correlation functions C(ε, n) by expanding the
generating function G2(s), which can be found by treating the six base cases as in section 4.4.
Expanding to finite order, we can then obtain the functions D(ε, n) using the relation

D(ε, n) =

n∑
k=0

(−1)n−k

(
n

k

)
C(ε, k), (109)

which follows from the binomial expansion of (92) and where C(ε, 0) = 1 has no subleading
order contribution. Doing this only for the two base structures that exist without time-reversal
symmetry and plugging the resultant D(ε, n) into (95), we obtain the moments for the unitary
case to low order. We find that the generating function

N 2 MU
2 (s) =

2s2

(1 − 6s + s2)5/2
(110)

New Journal of Physics 13 (2011) 063020 (http://www.njp.org/)



28

(a)

i′

i

i

o′

o

o

(b) i

i

o

o

i′

o′

(c)

i′

i

i

o′

o

o

Figure 8. (a) With two traces, the semiclassical trajectories separate into two
closed cycles. When the two sets do not interact as in (b), we recreate terms from
〈Tr[X †

1 X1]n1〉〈Tr[X †
2 X2]n2〉, but when they do interact as in (c), further diagrams

are possible as in figure 9.

fits with these moments, while if we treat all six base structures, the generating function

N 2 MO
2 (s) =

s(s − 3)(
1 − 6s + s2

)2 +
3s(s − 1)2 + 2s2(

1 − 6s + s2
)5/2 (111)

fits the low moments for systems with time-reversal symmetry.

6. Cross correlation of transport moments

Along with transport moments, we can also consider nonlinear statistics such as the cross
correlation between transport moments, generated by

P[X1,X2](s1, s2) =

∞∑
n1,n2=1

sn1
1 sn2

2

〈
Tr[X †

1 X1]n1 Tr[X †
2 X2]n2

〉
, (112)

which involves two traces inside the energy average. Semiclassically, we then have an
expression involving two trajectory sets that form two separate cycles, as in figure 8(a). Of
course when we look for trajectory sets that lead to a small action difference, we can have
independent diagrams for each set, as in figure 8(b). However, these are included in the
individual moments treated previously, and when we remove them,

P̃ [X1,X2](s1, s2) = P[X1,X2](s1, s2) −

∞∑
n1,n2=1

sn1
1 sn2

2

〈
Tr[X †

1 X1]n1

〉 〈
Tr[X †

2 X2]n2

〉
, (113)

we are left with trajectories that must interact, as in figure 8(c). In RMT, this quantity is known
as the ‘connected’ part of the correlation function.

It is interesting to consider the combinatorial interpretation of the interacting sets of
trajectories. Denote the incoming channels belonging to the first trace by i j , j = 1, . . . , n1 and
the incoming channels from the second trace by i ′

j , j = 1, . . . , n2. Input channels are mapped
onto output channels by trajectories from X and also by trajectories from X †. If we apply the
first mapping followed by the inverse of the second mapping, we end up with the following
transitions:

i1 7→ i2, . . . in1 7→ i1 and i ′

1 7→ i ′

2, . . . i ′

n2
7→ i ′

1. (114)

Thus, the overall result is a permutation, written in the cycle notation as π =

(i1, . . . , in1)(i
′

1, . . . , i ′

n2
). We can interpret each l-encounter as a cycle permuting l labels of
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Figure 9. Example graphs, which contribute to the leading order in inverse
channel number of P̃ [X1,X2](s1, s2), made of a single loop with subtrees attached
at nodes. For a small action difference, the (blue) solid or dashed dotted lines
must partner (red) dashed or dotted lines on the other side of the loop. (a) Without
time-reversal symmetry the odd nodes have either incoming or outgoing channels
on the outer subtrees on each side of the loop. (b) With time-reversal symmetry
we may also swap the incoming and outgoing channels inside the loop.

the corresponding X trajectories. Then an entire leading order diagram can be interpreted as a
factorization of π into smaller cycles (cf [57]). In the language of combinatorics, interacting
trajectories correspond to a transitive factorization, leading order corresponds to the minimality
condition and the fact that encounters on different ‘branches’ have no ordering imposed on
them corresponds to counting inequivalent factorizations (up to a permutation of commuting
factors). To summarize, the leading order interacting diagrams are in one-to-one correspondence
with the minimal transitive inequivalent factorizations of a permutation into smaller cycles.
This question has been studied combinatorially (for factorizations into transpositions only) for
a permutation consisting of two cycles in [58] and for three and more cycles (these correspond
to three-point and higher cross-correlations) in [59, 60]. We note that the above combinatorial
questions and the evaluation of transport properties are not completely equivalent problems. To
evaluate transport properties we need to find additional information on the number of encounters
touching the lead. On the other hand, we make substitutions (8) or (13), which significantly
simplify the results.

6.1. Leading order

We now proceed to expand the contributions of the interacting sets of trajectories in inverse
powers of the total channel number by describing the corresponding graphical representations.
The base diagram for the leading order term is just a single loop, like in figure 4(d) but with no
twist. Without the twist, the two cycles of the permutation arise from the two walks on the inside
and outside of the loop; see figure 9(a). One requirement, to ensure a small action difference,
is that the parts of the loop are traversed on either side by parts of trajectories that contribute
actions with different signs in the semiclassical expression. In figure 9, this means that the (blue)
solid or dashed dotted lines on either side of the loop must partner (red) dashed or dotted lines on
the other. Without time-reversal symmetry the parts of the loop must additionally be traversed
in the same direction by trajectory stretches and their partners, so that at odd nodes (those with
an odd number of subtrees on each side of the loop) there is unequal number of channels of a
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given type, as in figure 9(a). With time-reversal symmetry, parts of the loop may be traversed in
any direction and we may also swap all the incoming and outgoing directions on one side (say
the inside) of the loop as in figure 9(b).

With these restrictions we can start appending subtrees at nodes around the loop. We will
use the tree function f1 and generating variable ρ1 for the subtrees outside the loop and f2 and
ρ2 for those inside. At each node we can either add an even or odd number of subtrees on each
side of the loop and we start with the contribution when we add an even number

Aeven
=

∞∑
l=2

xl

l−1∑
k=0

hk
1h(l−1−k)

2 =

∞∑
l=2

xl
hl

1 − hl
2

h1 − h2
, (115)

where h1 = f1 f̂ 1.
For systems without time-reversal symmetry, with an odd number of subtrees on each side

(an odd node) we have two possibilities as in figure 9(a). The subtrees in the odd positions on
both sides all connect (first and last) to either incoming or outgoing channels. With outgoing
channels we have the contribution

Aodd
a,o =

∞∑
l=2

xl

l−1∑
k=1

f1hk−1
1 f2h(l−1−k)

2 =

∞∑
l=2

xl f1 f2
hl−1

1 − hl−1
2

h1 − h2
, (116)

whereas with incoming channels we swap f with f̂ :

Aodd
a,i =

∞∑
l=2

xl f̂ 1 f̂ 2
hl−1

1 − hl−1
2

h1 − h2
. (117)

As before, it is possible that an odd node touches the lead when the odd-positioned subtrees
on both sides are empty. Of course this also requires that the incoming or outgoing channels of
the two quantities X1 and X2 originate or end in the same lead. When this is the case, we also
have the following contribution,

Ba,o =

∞∑
l=2

zo,l

r l

l−1∑
k=1

ρk
1 f̂ k−1

1 ρl−k
2 f̂ (l−k−1)

2

=

∞∑
l=2

zo,l

r l
ρ1ρ2

(ρ1 f̂ 1)
l−1

− (ρ2 f̂ 2)
l−1

ρ1 f̂ 1 − ρ2 f̂ 2

, (118)

where we needed to include the explicit ρ1 and ρ2 dependence of zo on the number of empty
trees on each side of the loop. With incoming channels instead we again swap f and f̂ :

Ba,i =

∞∑
l=2

zi,l

r l
ρ1ρ2

(ρ1 f1)
l−1

− (ρ2 f2)
l−1

ρ1 f1 − ρ2 f2
. (119)

We allow an arbitrary number, k, of nodes along the loop, but the total number of odd nodes
must be even. Taking into account rotational symmetry, we obtain

κ̃1a = − ln[1 − y Za(p)], (120)

where Za(p) is a contribution of one node. The node can either be even or odd of one of two
types. Since the number of odd i-nodes is equal to the number of odd o-nodes, we can write
Za(p) as

Za(p) = Aeven + p
√

(Aodd
a,i + Ba,i)(Aodd

a,o + Ba,o). (121)
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To ensure that we indeed have an even number of odd nodes, we set

κ1 =
κ̃1(p = 1) + κ̃1(p = −1)

2
, (122)

leading to

κ1a = −
1
2 ln

[
(1 − y Aeven)2

− y2
(

Aodd
a,i + Ba,i

) (
Aodd

a,o + Ba,o

)]
. (123)

For the additional contribution, in the case of systems with time-reversal symmetry, from
the diagrams like figure 9(b) we swap the incoming and outgoing channels inside the loop so
that we now have the contributions

Aodd
b,o =

∞∑
l=2

xl f̂ 1 f2
hl−1

1 − hl−1
2

h1 − h2
, Aodd

b,i =

∞∑
l=2

xl f1 f̂ 2
hl−1

1 − hl−1
2

h1 − h2
, (124)

and

Bb,o =

∞∑
l=2

zo,l

r l
ρ1ρ2

(ρ1 f1)
l−1

− (ρ2 f̂ 2)
l−1

ρ1 f1 − ρ2 f̂ 2

,

(125)

Bb,i =

∞∑
l=2

zi,l

r l
ρ1ρ2

(ρ1 f̂ 1)
l−1

− (ρ2 f2)
l−1

ρ1 f̂ 1 − ρ2 f2

,

and correspondingly

κ1b = −
1
2 ln

[
(1 − y Aeven)2

− y2
(

Aodd
b,i + Bb,i

) (
Aodd

b,o + Bb,o

)]
. (126)

There is also an additional freedom of placing the label i1 on any leaf outside, giving a
factor of 2n1. Once i1 has been placed the type (in- or out-) of the leaves inside is fixed and the
freedom of placing the label i ′

1 inside produces only a factor of n2. We obtain these factors by
differentiating with respect to the variables ρ1 and ρ2,

0 =
ρ1ρ2

2

∂2κ

∂ρ1∂ρ2
. (127)

We further note that the differentiation ensures that there are at least two channels both inside
and outside the loop.

Using the appropriate semiclassical values of the variables x, z and y as well as the
corresponding subtree contributions, we find the following generating functions,

P̃U
[r1,r1],1(s1, s2) = P̃U

[r1,r2],1(s1, s2) =
s1s2

2 (s1 − s2)
2

[
1 − 2ξ (s1 + s2)

√
1 − 4ξs1

√
1 − 4ξs2

− 1

]
, (128)

with s1 = ρ2
1 and s2 = ρ2

2 and twice this result for the orthogonal case with time-reversal
symmetry. Even though for the autocorrelation P̃U

[r1,r1],1 we can always move the odd nodes
into the lead while for the cross-correlation P̃U

[r1,r2],1 we cannot, this is somehow compensated
by the different subtree contributions and both give the same result.

For the transmission autocorrelation, we can move the odd nodes into the lead only for the
unitary diagrams, leading to the generating function

P̃U
[t,t],1(s1, s2) =

s1s2

2 (s1 − s2)
2

1 + (2ξ − 1) (s1 + s2) + (1 − 4ξ) s1s2

(1 − s1)

√
1 + 4ξs1

1−s1
(1 − s2)

√
1 + 4ξs2

1−s2

− 1

 , (129)
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Figure 10. The base structures that break into two cycles (for systems with time-
reversal symmetry) at the second subleading order in inverse channel number.

and we still obtain twice this for the orthogonal result. Finally, for the cross-correlation between
the reflection and transmission, we have

P̃U
[r1,t],1(s1, s2) =

s1s2

2 (s1 − s1s2 + s2)
2

1 −
1 − s2 + 2ξ (s2 − s1 + s1s2)

√
1 − 4ξs1(1 − s2)

√
1 + 4ξs2

1−s2

 , (130)

and twice this for the orthogonal case. Note that the above results remain unchanged if we
swap r1 and r2 as this just means swapping ζ1 and ζ2 in the semiclassical contributions, which
does not change ξ . From these results we can obtain the corresponding P[X1,X2] up to the first
subleading order by including the first three orders in inverse channel number of the moments
corresponding to X1 multiplied by the moments corresponding to X2. If we also include n = 0
terms (which are just the number of channels in the respective lead) with those moments,then
we obtain the n1 = 0 and n2 = 0 terms in (112). This then allows us to check that expansions of
the various transport correlation functions indeed fulfil the unitarity conditions in (2). Note that
if we assume a priori that the unitarity is preserved by the semiclassical approximation (3), any
one of equations (128)–(130) implies all others.

6.2. Subleading correction

We can continue this process and look at the base structures as in figures 5 and 6 but which
separate into two cycles. In fact, the possibilities are almost the same as in figure 6 but with one
twist more or fewer as depicted in figure 10. These can also exist only for systems with time-
reversal symmetry and we can treat them in a similar way as before, but with the modifications
above.

Again the types of subtrees at each node depend on the nodes elsewhere in the diagram, so
we restrict out attention to the simpler case of the reflection where f = f̂ . Because of (2), we
have

Tr[r †
1r1]n

− N1 =

n∑
k=1

(−1)k

(
n

k

)
Tr[t†t]k

= Tr[r †
2r2]n

− N2, (131)
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so that P̃ [r1,r1] = P̃ [r1,r2] where the reflection autocorrelation is equal to the reflection cross
correlation. However, for the cross-correlation, as the channels of the two reflections are in
different leads, the nodes that lie on both cycles cannot enter the lead, and this further simplifies
the calculation. The edges that travel through both cycles then provide factors

η(p) =
1

1 − (Aeven + p Aodd)
, (132)

while the edges that only pass through one cycle provide factors E(p) as before, but with the
semiclassical values corresponding to the reflection into lead 1 or lead 2 as appropriate. We will
denote this correspondence by a subscript in the following.

The treatment of the diagrams is very similar to that in section 3.3, so we merely highlight
the steps here. But first we discuss the symmetry factors. Because of time-reversal symmetry,
we can put the first incoming channels on both faces on any leaf, leading to the differential
operator ρ1ρ2

∂2κ

∂ρ1∂ρ2
. Unlike the diagrams in figure 9, the ‘inside’ and ‘outside’ faces are, in

general, not related by symmetry, and we should consider both putting f1-trees on the ‘outside’
and on the ‘inside’. For brevity we will only list the former contributions. Finally, the symmetry
groups of diagrams 10(c) and 10(d) have order 2 and 4 correspondingly and we will divide their
contributions by the appropriate factor.

Starting with the diagram in figure 10(a), for the node on the left, which cannot enter the
lead, we have

ν̃3a(q) = −

∞∑
k1,k2,k3=0

(q f1)
(k1+k3)(q f2)

k2 pk2
α , (133)

with an odd number of trees appended

ν3a =
ν̃3a(q = 1) − ν̃3a(q = −1)

2
. (134)

For the node on the right, we have V̂ 3a as before but with semiclassical values corresponding
to the reflection into lead 1. To ensure a valid semiclassical diagram we still need each cycle to
contain an even number of objects, so we have

κ̃O
2a = pβη(pα)E1(1)E1(pβ)ν3aV̂ 3a. (135)

This is then averaged

κO
2a =

κ̃O
2a(p = 1) + κ̃O

2a(p = −1)

2
, (136)

for pα and pβ in turn. Finally, we add the contribution where we place f1 subtrees along the
inside and f2 subtrees along the outside. For the reflection cross correlation this reduces to
swapping ρ1 with ρ2 and swapping ζ1 with ζ2 = 1 − ζ1.

The node in figure 10(b) gives

ν̃4b(q) = −

∞∑
k1,k2,k3,k4=0

(q f1)
(k1+k3+k4)(q f2)

k2 pk2
α pk4

β , (137)

with an even number of subtrees in total

ν4b =
ν̃4b(q = 1) + ν̃4b(q = −1)

2
. (138)
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The total contribution is then

κ̃O
2b = pβη(pα)E1(pβ)ν4b. (139)

averaged over pα and pβ in turn and we again add the result where we swap the trees on the
inside and the outside.

For the structure in figure 10(c) the nodes provide

ν̃3c(q) = −

∞∑
k1,k2,k3=0

(q f1)
k1(q f2)

(k2+k3) pk2
α pk3

β pk1
γ , (140)

with

ν3c =
ν̃3c(q = 1) − ν̃3c(q = −1)

2
, (141)

so that the contribution is then

k̃O
2c =

1
2 pα pβ E2(pα pβ)η(pβ pγ )η(pγ pα)(ν3c)

2 (142)

before averaging over the p’s in turn. Likewise we include the contribution where we swap the
subtrees on the inside with those on the outside.

Finally, the node in figure 10(d) provides

ν̃4d(q) = −

∞∑
k1,k2,k3,k4=0

(q f1)
(k1+k3)(q f2)

(k2+k4) pk2
α (pα pβ)

k3 pk4
β , (143)

with

ν4d =
ν̃4d(q = 1) + ν̃4d(q = −1)

2
. (144)

The total contribution is then

κ̃O
2d =

1
4η(pα)η(pβ)ν4d, (145)

averaged over pα and pβ in turn. We also include the contribution where we swap the subtrees
on the inside and outside.

Summing the four diagrams, we eventually arrive at the generating function

N P̃O
[r1,r2],2(s1, s2) =

[
s1 + s2 − 2s1s2 − 2ξ

(
4s2

1 + s2
2 + 3s1s2 − s3

1 − 5s2
1s2 − 2s1s2

2

)
+8s2

1ξ
2
(
s1 + 3s2 − 3s1s2 − s2

2

)] s1s2

(s1 − s2)3(1 − 4ξs1)2
√

1 − 4ξs2
+ (s1 ↔ s2), (146)

where (s1 ↔ s2) means that we add the result with s1 and s2 swapped.
We could check that the results in this section all agree with the first four moments

calculated from the arbitrary channel RMT results of [12].

7. Conclusions and discussion

We described a method for the semiclassical calculation of the expansion of several transport
statistics asymptotically in the inverse channel number 1/N . The calculation is performed by
grafting trees onto the base structures with a low number of cycles, and relies on the fact that
attaching trees does not change the order in inverse channel number. Instead, the trees add
more incoming and outgoing channels and so increase the order of the moment. With graphical
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recursions, this allows us to generate all the moments at a given order in inverse channel number,
which we performed up to the third order. The terms we considered suggest the following
observations about the ribbon graphs that arise as the contributing diagrams:

• absence of time-reversal symmetry results in graphs being orientable; both orientable and
non-orientable graphs contribute to the calculation with time-reversal symmetry;

• the order (in 1/N ) of a contribution is reflected in the genus of the corresponding graph;

• linear moments (with one trace) result in graphs with one face, while nonlinear moments
with m traces will require considering graphs with m faces.

The above general observations suggest that a complete expansion in 1/N should be both
feasible and interesting to specialists working in algebra and combinatorics.

We find that the semiclassical contribution of individual base diagrams depends
significantly on the global structure of the diagram. This is in contrast to the expansions of
the first two moments performed in [11, 25, 26], where the contribution factorized into a
product over the vertices of the diagram and the problem was thus reduced to a combinatorial
enumeration. The latter was achieved through finding recursion relations that connect different
diagrams, and similar ideas could well be useful for the base structures we need for all moments.
To illustrate the scale of the problem of going to higher order in 1/N , for the unitary case
there are 1848 base diagrams at the next contributing order. As they can involve more than two
nodes, they can no longer be derived by cleaning the corresponding semiclassical conductance
diagrams as was the case for the orders treated in this paper. However, in the end all these
diagrams would probably lead to the generating functions (A.3) and (A.7), highlighting the
scale of the simplifications that take place.

Our results fully agree with the predictions of RMT theory (as far as those are
available [15]), and importantly are given in terms of very simple generating functions. This
would suggest that extending the types of asymptotic analyses of [47–49] beyond the leading
order (as is currently being performed [15]), one could also expect to see simplifications of the
RMT results. For the unitary case, where several different formulae are known for the moments
of the transmission eigenvalues [13–16], this analysis and the semiclassical endpoints could
shed light on the combinatorial relationships between the different approaches. Because of
the connection between RMT and weakly disordered systems, we can expect that our results
also apply to such systems. Likewise, with the close correspondence between semiclassical and
disorder diagrams [43], one might hope to find similar graphical recursions in a perturbative
expansion of the appropriate nonlinear σ model.

If we were to consider nonlinear statistics involving three traces (with their mean parts
removed), the leading contribution would come from the diagrams like in figures 6 and 10
that split into three cycles, i.e. diagrams (a)–(c) without any twists. Considering quantities with
m traces we would then need to treat base diagrams related to those which contribute to order
1/N (m−2) (and higher) for the linear statistics, and so we immediately run into the considerations
and difficulties described above. Curiously, however, the moments of the conductance and the
shot noise themselves can be efficiently treated using RMT [14, 17–19]. Semiclassically, the
mth moment of these quantities corresponds to having exactly two or four channels along
each of the m cycles, and the RMT results might then provide a pathway for generating such
semiclassical diagrams. This could in turn be useful in generating and treating the corresponding
base diagrams for the linear statistics.
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The methods described in this paper were also used to treat the density of states of Andreev
billiards. Replacing the normal conducting leads of the chaotic cavity by a superconductor
produces strong effects such as the complete suppression of the density of states around the
Fermi energy [29, 30, 53]. Being interested in the density of states one must evaluate moments
of all orders, something that our methods are particularly geared towards. Going beyond leading
order in inverse channel number we could show that this gap persists for the next two orders
and that the behaviour of the density of states slightly above the gap is not determined by just
these terms in the expansion. Because of the superconductor, one not only needs to know all
the moments but also all the higher orders in inverse channel number. A result for arbitrary
channel number would therefore be particularly welcome for such systems, which leads to the
question of how to adapt the recent RMT advances to tackle this problem. Similarly, chaotic
cavities with additional superconductors attached (Andreev dots) also exhibit significant effects
due to the presence of the superconductors and also require one to be able to treat what would
correspond to all the moments of usual transport quantities. For example, at leading order in
inverse channel number, the conductance through a normal chaotic cavity requires just the
diagonal pair of trajectories, while for the conductance through an Andreev dot one needs full
tree recursions [32]. The treatment is actually similar to the edges in the base diagrams here,
but with the added ingredient of having two (or more) different species of subtree. One can then
see that treating the transport moments of Andreev dots requires an extra layer of complexity
compared to normal chaotic cavities.

The results in this paper are all for the case when the leads are perfectly coupled to the
chaotic cavity, rather than for the more general and experimentally relevant case of non-ideal
coupling. This is typically modelled by introducing tunnel barriers into the leads with some
probability to backscatter when entering (or leaving) the cavity. Semiclassically, along with
affecting the contributions of the channels and modifying the survival probability and hence
contributions of the links and the correlated trajectory stretches inside the encounters, the main
change is that a wealth of new diagrams become possible [61]. Specifically, encounters may now
partially touch the leads and have some of their links backreflected at the tunnel barrier while
the rest tunnel through to enter or exit the system. In principle, these possibilities would become
extra terms in the tree and graphical recursions in this paper, but so far these types of diagrams
have only been treated semiclassically for the lowest moments [61, 62]. However, from an RMT
viewpoint at leading order in inverse channel number and with the same tunnelling probability
for each channel, the non-ideal contacts just increase the order of the generating functions by
one, for example for both the density of states of Andreev billiards [53] and the moments of the
Wigner delay times [63].

Finally, one can wonder whether the effect of the Ehrenfest time can be incorporated into
the graphical recursions developed here. For the leading order in inverse channel number, the
effect could be included [33] in the tree recursions. Firstly, the trees are related to each other
through a continuous deformation, for example by giving the nodes a certain size (actually,
the Ehrenfest time itself) and allowing them to slide into each other. Secondly, this is then
partitioned in a particular way, so that one can extract the Ehrenfest time dependence efficiently.
Each partition and hence the sum of all diagrams leads to the same simple Ehrenfest time
dependence at leading order in inverse channel number [33] and this pattern and treatment
seems to also hold at the first subleading order [64]. Whether this continues to higher order and
nonlinear statistics, which start to include the complications of periodic orbit encounters, is an
intriguing question.
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Appendix A. Unitary reflection and transmission

Using the RMT result from [14], we can compute the moments up to finite order and expand
them in powers of the inverse channel number. Looking at the patterns for the reflection in
(62), (29) and (41), we can expect that each order in the inverse channel number just increases
the powers in the denominators (the square root comes simply from the subtrees). In fact we
find that the first several subleading orders can be written as

N 2k−1 R2k(s) =
ξ 2 s2(s − 1)

(1 − 4ξs)(6k−1)/2
· χ 2k−1 X2k−1 ST

2k−1, (A.1)

where χm is the vector (1, ξs, ξ 2 s2, . . . , ξm−1sm−1), Xm is an m × m matrix and Sm is the row
vector (1, s, s2, . . . , sm−1). The first few values of Xm are

X1 = (1), (A.2)

X3 =

 1 −8 8
20 −20 −8
9 −2 9

, (A.3)

X5 =


1 −40 220 −360 180

136 −1240 2480 −1360 −32
1770 −5700 4890 −1392 528
3080 −4760 1736 408 −720

450 −360 76 −360 450

, (A.4)

X7 =



1 −168 2 688 −13 104 26 712 −24 192 8 064
636 −19 068 125 832 −313 824 342 048 −151 200 15 552

34 659 −401 142 1357 755 −1917 888 1210 608 −326 496 42 744
398 328 −2303 784 4455 864 −3638 040 1157 712 5 952 −77 312

1152 438 −3903 144 4477 620 −1989 144 322 326 −186 288 130 032
766 584 −1652 952 1107 456 −238 704 −35 400 172 872 −126 000
55 125 −78 750 28 539 −5 732 28 539 −78 750 55 125


.

Similarly, we can write the transmission as

N 2k−1T2k(s) = −
ξ 2 s2

(1 − s)(2k+1)/2(1 − s + 4ξs)(6k−1)/2
· υ2k−1Y2k−1 ST

2k−1, (A.5)
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where υm is the vector ((1 − s)m−1, ξs(1 − s)m−2, ξ 2 s2(1 − s)m−3, . . . , ξm−1sm−1) and Sm is the
row vector (1, s, s2, . . . , sm−1). The first few values of the matrix Ym are

Y1 = (1), (A.6)

Y3 =

 1 6 1
−20 20 8

9 −16 16

, (A.7)

Y5 =


1 36 106 36 1

−136 −696 424 424 16
1770 −1380 −1590 1632 96

−3080 7560 −5936 1920 256
450 −1440 1696 −512 256

, (A.8)

Y7 =



1 162 1 863 4 012 1 863 162 1
−636 −15 252 −40 032 11 544 25 572 3 228 24

34 659 193 188 −128 070 −194 892 111 939 25 680 240
−398 328 86 184 1088 136 −885 864 84 144 101 760 1280
1152 438 −3011 484 2248 470 61 344 −524 256 199 680 3840
−766 584 2946 552 −4341 456 2993 280 −862 464 150 528 6144

55 125 −252 000 461 664 −423 424 221 952 −12 288 4096


.

Similar patterns hold for the moments of the delay times for the unitary case, and the results
are actually simpler than those for the transmission and reflection since there is one parameter
fewer. The likely generating functions can be found by expanding the RMT result of [15] and
fitting to the behaviour of (103) and (110).

Appendix B. Further generating functions

For the energy-dependent correlation functions, we find that the generating function G1 = F1/N
satisfies the cubic

0 =
[
4(1 − a)3 + s(a4

− 20a2
− 8) + 4s(a + 1)3

]2
(N G1)

3 + 2
[
(a − 1)3 + s2(a + 1)3

] [
4(1 − a)3

+s(a4
− 20a2

− 8) + 4s2(a + 1)3
]
(N G1)

2 +
[
(a − 1)6

− 4s(a + 1)(a − 1)4

+3s2(a − 1)(a + 1)(a4
− 8a2

− 2) + 4s3(a − 1)(a + 1)4 + s4(a + 1)6
]

N G1

+ a2s
[
(a − 1)3 + s2(a + 1)3

]
, (B.1)

while the energy differentiated generating function instead satisfies

0 = a2
[
4(1 − a)3 + s(a4

− 20a2
− 8) + 4s2(a + 1)3

]2
(N H1)

3 + 2a
[
(4 − a)(a − 1)2

−2s(5a2 + 4) + s2(a + 4)(a + 1)2
] [

4(1 − a)3 + s(a4
− 20a2

− 8)

+4s2(a + 1)3
]
(N H1)

2 +
[
(a − 4)2(a − 1)4 + 4s(a − 1)2(6a3

− 21a2 + 4a − 16)

+ s2(−3a6 + 156a4 + 102a2 + 96) − 4s3(a + 1)2(6a3
− 21a2 + 4a − 16)

+s4(a + 4)2(a + 1)4
]

N H1 + as(s − 1)
[
(a + 2)(a − 4)2 + s(a − 2)(a + 4)2

]
.

(B.2)
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For the moments of the delay times we have the first subleading order generating function

0 = (s + 1)2
[
4(1 − a)3 + sa(a3

− 8a2 + 4a − 24) + s2a2(a2 + 4)
]2

(N L1)
3 + 2(s + 1)

[
(a − 1)3

+2s(a − 1)3 + 2s2a(a2 + 3)
] [

4(1 − a)3 + sa(a3
− 8a2 + 4a − 24)

+s2a2(a2 + 4)
]
(N L1)

2 +
[
(a − 1)6 + 4sa(a − 3)(a − 1)4 + 3s2a2(a − 1)

×(3a3
− 13a2 + 20a − 28) + 2s3a2(a − 1)(5a3

− 11a2 + 16a − 32)4

+s4a2(5a4 + 27a2 + 32)
]

N L1 + sa2
[
(a − 1)3 + 2s(a − 1)3 + 2s2a(a2 + 3)

]
.

(B.3)
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