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ABSTRACT. We construct bosonic and fermionic locally covariant quantum
field theories on curved backgrounds for large classes of fields. We investigate
the quantum field and n-point functions induced by suitable states.

1. INTRODUCTION

Classical fields on spacetime are mathematically modeled by sections of a vector
bundle over a Lorentzian manifold. The field equations are usually partial dif-
ferential equations. We introduce a class of differential operators, called Green-
hyperbolic operators, which have good analytical solubility properties. This class
includes wave operators as well as Dirac type operators.
In order to quantize such a classical field theory on a curved background, we need
local algebras of observables. They come in two flavors, bosonic algebras encoding
the canonical commutation relations and fermionic algebras encoding the canoni-
cal anti-commutation relations. We show how such algebras can be associated to
manifolds equipped with suitable Green-hyperbolic operators. We prove that we
obtain locally covariant quantum field theories in the sense of [11]. There is a
large literature where such constructions are carried out for particular examples of
fields, see e.g. [14, 17, 18, 20, 26, 38]. In all these papers the well-posedness of
the Cauchy problem plays an important role. We avoid using the Cauchy problem
altogether and only make use of Green’s operators. In this respect, our approach
is similar to the one in [39]. This allows us to deal with larger classes of fields,
see Section 2.7, and to treat them systematically. Much of the earlier work on con-
structing observable algebras for particular examples can be subsumed under this
general approach.
It turns out that bosonic algebras can be obtained in much more general situations
than fermionic algebras. For instance, for the classical Dirac field both construc-
tions are possible. Hence, on the level of observable algebras, there is no spin-
statistics theorem. In order to obtain results like Theorem 5.1 in [41] one needs
more structure, namely representations of the observable algebras with good prop-
erties.
In order to produce numbers out of our quantum field theory that can be compared
to experiments, we need states, in addition to observables. We show how states
with suitable regularity properties give rise to quantum fields and n-point functions.
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We check that they have the properties expected from traditional quantum field
theories on a Minkowski background.
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for very valuable discussion. The authors would also like to thank SPP 1154
“Globale Differentialgeometrie” and SFB 647 “Raum-Zeit-Materie”, both funded
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2. FIELD EQUATIONS ON LORENTZIAN MANIFOLDS

2.1. Globally hyperbolic manifolds. We begin by fixing notation and recalling
general facts about Lorentzian manifolds, see e.g. [30] or [4] for more details.
Unless mentioned otherwise, the pair (M,g) will stand for a smooth m-dimensional
manifold M equipped with a smooth Lorentzian metric g, where our convention
for Lorentzian signature is (−+ · · ·+). The associated volume element will be
denoted by dV. We shall also assume our Lorentzian manifold (M,g) to be time-
orientable, i.e., that there exists a smooth timelike vector field on M. Time-oriented
Lorentzian manifolds will be also referred to as spacetimes. Note that in contrast
to conventions found elsewhere, we do not assume that a spacetime is connected
nor do we assume that its dimension be m = 4.
For every subset A of a spacetime M we denote the causal future and past of A in
M by J+(A) and J−(A), respectively. If we want to emphasize the ambient space
M in which the causal future or past of A is considered, we write JM

± (A) instead of
J±(A). Causal curves will always be implicitly assumed (future or past) oriented.

Definition 2.1. A Cauchy hypersurface in a spacetime (M,g) is a subset of M
which is met exactly once by every inextensible timelike curve.

Cauchy hypersurfaces are always topological hypersurfaces but need not be
smooth. All Cauchy hypersurfaces of a spacetime are homeomorphic.

Definition 2.2. A spacetime (M,g) is called globally hyperbolic if and only if it
contains a Cauchy hypersurface.

A classical result of R. Geroch [21] says that a globally hyperbolic spacetime can
be foliated by Cauchy hypersurfaces. It is a rather recent and very important result
that this also holds in the smooth category:

Theorem 2.3 (A. Bernal and M. Sánchez [6, Thm. 1.1]). Let (M,g) be a globally
hyperbolic spacetime.
Then there exists a smooth manifold Σ, a smooth one-parameter-family of Rie-
mannian metrics (gt)t on Σ and a smooth positive function β on R×Σ such that
(M,g) is isometric to (R×Σ,−βdt2 ⊕gt). Each {t}×Σ corresponds to a smooth
spacelike Cauchy hypersurface in (M,g).

For our purposes, we shall need a slightly stronger version of Theorem 2.3 where
one of the Cauchy hypersurfaces {t}×Σ can be prescribed:

Theorem 2.4 (A. Bernal and M. Sánchez [7, Thm. 1.2]). Let (M,g) be a globally
hyperbolic spacetime and Σ̃ a smooth spacelike Cauchy hypersurface in (M,g).
Then there exists a smooth splitting (M,g)∼=(R×Σ,−βdt2⊕gt) as in Theorem 2.3
such that Σ̃ corresponds to {0}×Σ.

We shall also need the following result which tells us that one can extend any com-
pact acausal spacelike submanifold to a smooth spacelike Cauchy hypersurface.
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Here a subset of a spacetime is called acausal if no causal curve meets it more than
once.

Theorem 2.5 (A. Bernal and M. Sánchez [7, Thm. 1.1]). Let (M,g) be a glob-
ally hyperbolic spacetime and let K ⊂ M be a compact acausal smooth spacelike
submanifold with boundary.
Then there exists a smooth spacelike Cauchy hypersurface Σ in (M,g) with K ⊂ Σ.

Definition 2.6. A closed subset A ⊂ M is called spacelike compact if there exists
a compact subset K ⊂ M such that A ⊂ JM(K) := JM

− (K)∪ JM
+ (K).

Note that a spacelike compact subset is in general not compact, but its intersection
with any Cauchy hypersurface is compact, see e.g. [4, Cor. A.5.4].

Definition 2.7. A subset Ω of a spacetime M is called causally compatible if and
only if JΩ

±(x) = JM
± (x)∩Ω for every x ∈ Ω.

This means that every causal curve joining two points in Ω must be contained
entirely in Ω.

2.2. Differential operators and Green’s functions. A differential operator of
order (at most) k on a vector bundle S → M over K= R or K= C is a linear map
P : C∞(M,S)→C∞(M,S) which in local coordinates x= (x1, . . . ,xm) of M and with
respect to a local trivialization looks like

P = ∑
|α|≤k

Aα(x)
∂ α

∂xα .

Here C∞(M,S) denotes the space of smooth sections of S → M, α =
(α1, . . . ,αm) ∈ N0 × ·· · ×N0 runs over multi-indices, |α| = α1 + . . .+ αm and
∂ α

∂xα = ∂ |α|

∂ (x1)α1 ···∂ (xm)αm . The principal symbol σP of P associates to each covector
ξ ∈ T ∗

x M a linear map σP(ξ ) : Sx → Sx. Locally, it is given by

σP(ξ ) = ∑
|α|=k

Aα(x)ξ α

where ξ α = ξ α1
1 · · ·ξ αm

m and ξ = ∑ j ξ jdx j. If P and Q are two differential operators
of order k and ℓ respectively, then Q◦P is a differential operator of order k+ ℓ and

σQ◦P(ξ ) = σQ(ξ )◦σP(ξ ).
For any linear differential operator P : C∞(M,S) → C∞(M,S) there is a unique
formally dual operator P∗ :C∞(M,S∗)→C∞(M,S∗) of the same order characterized
by ∫

M
⟨φ,Pψ⟩dV =

∫
M
⟨P∗φ,ψ⟩dV

for all ψ ∈ C∞(M,S) and φ ∈ C∞(M,S∗) with supp(φ)∩ supp(ψ) compact. Here
⟨·, ·⟩ : S∗⊗S →K denotes the canonical pairing, i.e., the evaluation of a linear form
in S∗x on an element of Sx, where x ∈ M. We have σP∗(ξ ) = (−1)kσP(ξ )∗ where k
is the order of P.

Definition 2.8. Let a vector bundle S→M be endowed with a non-degenerate inner
product ⟨· , ·⟩. A linear differential operator P on S is called formally self-adjoint if
and only if ∫

M
⟨Pφ ,ψ⟩dV =

∫
M
⟨φ ,Pψ⟩dV
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holds for all φ,ψ ∈C∞(M,S) with supp(φ)∩ supp(ψ) compact.
Similarly, we call P formally skew-adjoint if instead∫

M
⟨Pφ ,ψ⟩dV =−

∫
M
⟨φ,Pψ⟩dV .

We recall the definition of advanced and retarded Green’s operators for a linear
differential operator.

Definition 2.9. Let P be a linear differential operator acting on the sections of a
vector bundle S over a Lorentzian manifold M. An advanced Green’s operator for
P on M is a linear map

G+ : C∞
c (M,S)→C∞(M,S)

satisfying:
(G1) P◦G+ = idC∞

c (M,S) ;
(G2) G+ ◦P|C∞

c (M,S)
= idC∞

c (M,S) ;
(G+

3 ) supp(G+φ)⊂ JM
+ (supp(φ)) for any φ ∈C∞

c (M,S).
A retarded Green’s operator for P on M is a linear map G− : C∞

c (M,S)→C∞(M,S)
satisfying (G1), (G2), and

(G−
3 ) supp(G−φ)⊂ JM

− (supp(φ)) for any φ ∈C∞
c (M,S).

Here we denote by C∞
c (M,S) the space of compactly supported smooth sections of

S.

Definition 2.10. Let P : C∞(M,S)→C∞(M,S) be a linear differential operator. We
call P Green-hyperbolic if the restriction of P to any globally hyperbolic subregion
of M has advanced and retarded Green’s operators.

Remark 2.11. If the Green’s operators of the restriction of P to a globally hyper-
bolic subregion exist, then they are necessarily unique, see Remark 3.7.

2.3. Wave operators. The most prominent class of Green-hyperbolic operators
are wave operators, sometimes also called normally hyperbolic operators.

Definition 2.12. A linear differential operator of second order P : C∞(M,S) →
C∞(M,S) is called a wave operator if its principal symbol is given by the
Lorentzian metric, i.e., for all ξ ∈ T ∗M we have

σP(ξ ) =−⟨ξ ,ξ ⟩ · id.

In other words, if we choose local coordinates x1, . . . ,xm on M and a local trivial-
ization of S, then

P =−
m

∑
i, j=1

gi j(x)
∂ 2

∂xi∂x j +
m

∑
j=1

A j(x)
∂

∂x j +B(x)

where A j and B are matrix-valued coefficients depending smoothly on x and (gi j)

is the inverse matrix of (gi j) with gi j = ⟨ ∂
∂xi ,

∂
∂x j ⟩. If P is a wave operator, then so

is its dual operator P∗. In [4, Cor. 3.4.3] it has been shown that wave operators are
Green-hyperbolic.

Example 2.13 (d’Alembert operator). Let S be the trivial line bundle so that sec-
tions of S are just functions. The d’Alembert operator P = 2 = −div ◦ grad is a
formally self-adjoint wave operator, see e.g. [4, p. 26].
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Example 2.14 (connection-d’Alembert operator). More generally, let S be a vector
bundle and let ∇ be a connection on S. This connection and the Levi-Civita con-
nection on T ∗M induce a connection on T ∗M⊗S, again denoted ∇. We define the
connection-d’Alembert operator 2∇ to be the composition of the following three
maps

C∞(M,S) ∇−→C∞(M,T ∗M⊗S) ∇−→C∞(M,T ∗M⊗T ∗M⊗S)
−tr⊗idS−−−−→C∞(M,S)

where tr : T ∗M ⊗ T ∗M → R denotes the metric trace, tr(ξ ⊗ η) = ⟨ξ ,η⟩. We
compute the principal symbol,

σ2∇(ξ )φ =−(tr⊗ idS)◦σ∇(ξ )◦σ∇(ξ )(φ) =−(tr⊗ idS)(ξ ⊗ξ ⊗φ) =−⟨ξ ,ξ ⟩φ.

Hence 2∇ is a wave operator.

Example 2.15 (Hodge-d’Alembert operator). Let S = ΛkT ∗M be the bundle of
k-forms. Exterior differentiation d : C∞(M,ΛkT ∗M) → C∞(M,Λk+1T ∗M) in-
creases the degree by one while the codifferential δ = d∗ : C∞(M,ΛkT ∗M) →
C∞(M,Λk−1T ∗M) decreases the degree by one. While d is independent of the
metric, the codifferential δ does depend on the Lorentzian metric. The operator
P =−dδ −δd is a formally self-adjoint wave operator.

2.4. The Proca equation. The Proca operator is an example of a Green-
hyperbolic operator of second order which is not a wave operator. First we need
the following observation:

Lemma 2.16. Let M be globally hyperbolic, let S → M be a vector bundle and let
P and Q be differential operators acting on sections of S. Suppose P has advanced
and retarded Green’s operators G+ and G−.
If Q commutes with P, then it also commutes with G+ and with G−.

Proof. Assume [P,Q] = 0. We consider

G̃± := G±+[G±,Q] : C∞
c (M,s)→C∞

sc(M,S).

We compute on C∞
c (M,S):

G̃±P = G±P+G±QP−QG±P = id+G±PQ−Q = id+Q−Q = id

and similarly PG̃± = id. Hence G̃± are also advanced and retarded Green’s opera-
tors, respectively. By Remark 2.11, Green’s operators are unique, hence G̃± = G±
and therefore [G±,Q] = 0. �
Example 2.17 (Proca operator). The discussion of this example follows [39,
p. 116f], see also [20] where is the discussion is based on the Cauchy problem.
The Proca equation describes massive vector bosons. We take S = T ∗M and let
m0 > 0. The Proca equation is

(1) Pφ := δdφ +m2
0φ = 0

where φ ∈C∞(M,S). Applying δ to (1) we obtain, using δ 2 = 0 and m0 ̸= 0,

(2) δφ = 0

and hence

(3) (dδ +δd)φ +m2
0φ = 0.

Conversely, (2) and (3) clearly imply (1).
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Since P̃ := dδ + δd +m2
0 is minus a wave operator, it has Green’s operators G̃±.

We define

G± : C∞
c (M,S)→C∞

sc(M,S), G± := (m−2
0 dδ + id)◦ G̃± = G̃± ◦ (m−2

0 dδ + id) .

The last equality holds because d and δ commute with P̃. For φ ∈ C∞
c (M,S) we

compute
G±Pφ = G̃±(m−2

0 dδ + id)(δd +m2
0)φ = G̃±P̃φ = φ

and similarly PG±φ = φ . Since the differential operator m−2
0 dδ + id does not in-

crease supports, the third axiom in the definition of advanced and retarded Green’s
operators holds as well.
This shows that G+ and G− are advanced and retarded Green’s operators for P,
respectively. Thus P is not a wave operator but Green-hyperbolic.

2.5. Dirac type operators. The most important Green-hyperbolic operators of
first order are the so-called Dirac type operators.

Definition 2.18. A linear differential operator D : C∞(M,S) → C∞(M,S) of first
order is called of Dirac type, if −D2 is a wave operator.

Remark 2.19. If D is of Dirac type, then i times its principal symbol satisfies the
Clifford relations

(iσD(ξ ))2 =−σD2(ξ ) =−⟨ξ ,ξ ⟩ · id,
hence by polarization

(iσD(ξ ))(iσD(η))+(iσD(η))(iσD(ξ )) =−2⟨ξ ,η⟩ · id.
The bundle S thus becomes a module over the bundle of Clifford algebras Cl(T M)
associated with (T M,⟨· , ·⟩). See [5, Sec. 1.1] or [27, Ch. I] for the definition and
properties of the Clifford algebra Cl(V ) associated with a vector space V with inner
product.

Remark 2.20. If D is of Dirac type, then so is its dual operator D∗. On a globally
hyperbolic region let G+ be the advanced Green’s operator for D2 which exists
since −D2 is a wave operator. Then it is not hard to check that D ◦ G+ is an
advanced Green’s operator for D, see e.g. the proof of Theorem 2.3 in [14] or [29,
Thm. 3.2]. The same discussion applies to the retarded Green’s operator. Hence
any Dirac type operator is Green-hyperbolic.

Example 2.21 (Classical Dirac operator). If the spacetime M carries a spin struc-
ture, then one can define the spinor bundle S = ΣM and the classical Dirac operator

D : C∞(M,ΣM)→C∞(M,ΣM), Dφ := i
m

∑
j=1

ε je j ·∇e j φ .

Here (e j)1≤ j≤m is a local orthonormal basis of the tangent bundle, ε j = ⟨e j,e j⟩ =
±1 and “·” denotes the Clifford multiplication, see e.g. [5] or [3, Sec. 2]. The
principal symbol of D is given by

σD(ξ )ψ = iξ ♯ ·ψ.

Here ξ ♯ denotes the tangent vector dual to the 1-form ξ via the Lorentzian metric,
i.e., ⟨ξ ♯,Y ⟩ = ξ (Y ) for all tangent vectors Y over the same point of the manifold.
Hence

σD2(ξ )ψ = σD(ξ )σD(ξ )ψ =−ξ ♯ ·ξ ♯ ·ψ = ⟨ξ ,ξ ⟩ψ.
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Thus P = −D2 is a wave operator. Moreover, D is formally self-adjoint, see e.g.
[3, p. 552].

Example 2.22 (Twisted Dirac operators). More generally, let E → M be a com-
plex vector bundle equipped with a non-degenerate Hermitian inner product and a
metric connection ∇E over a spin spacetime M. In the notation of Example 2.21,
one may define the Dirac operator of M twisted with E by

DE := i
m

∑
j=1

ε je j ·∇ΣM⊗E
e j

: C∞(M,ΣM⊗E)→C∞(M,ΣM⊗E),

where ∇ΣM⊗E is the tensor product connection on ΣM⊗E. Again, DE is a formally
self-adjoint Dirac type operator.

Example 2.23 (Euler operator). In Example 2.15, replacing ΛkT ∗M by S :=
ΛT ∗M⊗C=⊕n

k=0ΛkT ∗M⊗C, the Euler operator D = i(d−δ ) defines a formally
self-adjoint Dirac type operator. In case M is spin, the Euler operator coincides
with the Dirac operator of M twisted with ΣM.

Example 2.24 (Buchdahl operators). On a 4-dimensional spin spacetime M, con-
sider the standard orthogonal and parallel splitting ΣM = Σ+M⊕Σ−M of the com-
plex spinor bundle of M into spinors of positive and negative chirality. The fi-
nite dimensional irreducible representations of the simply-connected Lie group
Spin0(3,1) are given by Σ(k/2)

+ ⊗Σ(ℓ/2)
− where k, ℓ ∈ N. Here Σ(k/2)

+ = Σ⊙k
+ is the

k-th symmetric tensor product of the positive half-spinor representation Σ+ and
similarly for Σ(ℓ/2)

− . Let the associated vector bundles Σ(k/2)
± M carry the induced

inner product and connection.
For s ∈ N, s ≥ 1, consider the twisted Dirac operator D(s) acting on sections of
ΣM⊗Σ((s−1)/2)

+ M. In the induced splitting

ΣM⊗Σ((s−1)/2)
+ M = Σ+M⊗Σ(s−1/2)

+ M⊕Σ−M⊗Σ((s−1)/2)
+ M

the operator D(s) is of the form (
0 D(s)

−
D(s)
+ 0

)
because Clifford multiplication by vectors exchanges the chiralities. The Clebsch-

Gordan formulas [10, Prop. II.5.5] tell us that the representation Σ+⊗Σ( s−1
2 )

+ splits
as

Σ+⊗Σ( s−1
2 )

+ = Σ( s
2 )

+ ⊕Σ( s
2−1)

+ .

Hence we have the corresponding parallel orthogonal projections

πs : Σ+M⊗Σ( s−1
2 )

+ M → Σ( s
2 )

+ M and π ′
s : Σ+M⊗Σ( s−1

2 )
+ M → Σ( s

2−1)
+ M.

On the other hand, the representation Σ− ⊗Σ( s−1
2 )

+ is irreducible. Now Buchdahl
operators are the operators of the form

B(s)
µ1,µ2,µ3 :=

(
µ1 ·πs +µ2 ·π ′

s D(s)
−

D(s)
+ µ3 · id

)
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where µ1,µ2,µ3 ∈ C are constants. By definition, B(s)
µ1,µ2,µ3 is of the form D(s)+b,

where b is of order zero. In particular, B(s)
µ1,µ2,µ3 is a Dirac-type operator, hence it is

Green-hyperbolic.
If M were Riemannian, then D(s) would be formally self-adjoint. Hence the oper-
ator B(s)

µ1,µ2,µ3 would be formally self-adjoint if and only if the constants µ1,µ2,µ3
are real. In Lorentzian signature, Σ+M and Σ−M are isotropic for the natural inner
product on ΣM, so that the bundles on which the Buchdahl operators act, carry no
natural non-degenerate inner product.
For a definition of Buchdahl operators using indices we refer to [12, 13, 44] and to
[28, Def. 8.1.4, p. 104].

2.6. The Rarita-Schwinger operator. For the Rarita-Schwinger operator on Rie-
mannian manifolds, we refer to [43, Sec. 2], see also [8, Sec. 2]. In this section let
the spacetime M be spin and consider the Clifford-multiplication γ : T ∗M⊗ΣM →
ΣM, θ ⊗ψ 7→ θ ♯ ·ψ , where ΣM is the complex spinor bundle of M. Then there is
the representation theoretic splitting of T ∗M⊗ΣM into the orthogonal and parallel
sum

T ∗M⊗ΣM = ι(ΣM)⊕Σ3/2M,

where Σ3/2M := ker(γ) and ι(ψ) :=− 1
m ∑m

j=1 e∗j ⊗e j ·ψ . Here again (e j)1≤ j≤m is a
local orthonormal basis of the tangent bundle. Let D be the twisted Dirac operator
on T ∗M⊗ΣM, that is, D := i · (id⊗ γ)◦∇, where ∇ denotes the induced covariant
derivative on T ∗M⊗ΣM.

Definition 2.25. The Rarita-Schwinger operator on the spin spacetime M is de-
fined by Q := (id− ι ◦ γ)◦D : C∞(M,Σ3/2M)→C∞(M,Σ3/2M).

By definition, the Rarita-Schwinger operator is pointwise obtained as the orthog-
onal projection onto Σ3/2M of the twisted Dirac operator D restricted to a section
of Σ3/2M. Using the above formula for ι , the Rarita-Schwinger operator can be
written down explicitly:

Qψ = i ·
m

∑
β=1

e∗β ⊗
m

∑
α=1

εα(eα ·∇eα φβ − 2
m

eβ ·∇eα φα)

for all ψ = ∑m
β=1 e∗β ⊗ψβ ∈ C∞(M,Σ3/2M), where here ∇ is the standard connec-

tion on ΣM. It can be checked that Q is a formally self-adjoint linear differential
operator of first order, with principal symbol

σQ(ξ ) : ψ 7→ i
{
(id⊗ξ ♯·)ψ − 2

m

m

∑
β=1

e∗β ⊗ eβ · (ξ ♯yψ)
}
,

for all ψ = ∑m
β=1 e∗β ⊗ψβ ∈ Σ3/2M. Here Xyψ denotes the insertion of the tangent

vector X in the first factor, that is, Xyψ := ∑m
β=1 e∗β (X)ψβ .

Lemma 2.26. Let M be a spin spacetime of dimension m ≥ 3. Then the char-
acteristic variety of the Rarita-Schwinger operator of M coincides with the set of
lightlike covectors.

Proof. By definition, the characteristic variety of Q is the set of nonzero co-
vectors ξ for which σQ(ξ ) is not invertible. Fix an arbitrary point x ∈ M. Let
ξ ∈ T ∗

x M \ {0} be non-lightlike. Without loss of generality we may assume
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that ξ is normalized and that the Lorentz orthonormal basis is chosen so that
ξ ♯ = e1. Hence ε1 = 1 if ξ is spacelike and ε1 = −1 if ξ is timelike. Take
ψ = ∑m

β=1 e∗β ⊗ψβ ∈ ker(σQ(ξ )). Then

0 =
m

∑
β=1

e∗β ⊗ e1 ·ψβ − 2
m

m

∑
β=1

e∗β ⊗ eβ ·ψ1

=
m

∑
β=1

e∗β ⊗ (e1 ·ψβ − 2
m

eβ ·ψ1),

which implies e1 · ψβ = 2
m eβ · ψ1 for all β ∈ {1, . . . ,m}. Choosing β = 1, we

obtain e1 ·ψ1 = 0 because m ≥ 3. Hence ψ1 = 0, from which ψβ = 0 follows for
all β ∈ {1, . . . ,m}. Hence ψ = 0 and σQ(ξ ) is invertible.
If ξ ∈ T ∗

x M\{0} is lightlike, then we may assume that ξ ♯ = e1+e2, where ε1 =−1
and ε2 = 1. Choose ψ1 ∈ ΣxM \ {0} with (e1 + e2) ·ψ1 = 0. Such a ψ1 exists
because Clifford multiplication by a lightlike vector is nilpotent. Set ψ2 := −ψ1

and ψ := e∗1 ⊗ψ1 + e∗2 ⊗ψ2. Then ψ ∈ Σ3/2
x M \{0} and

−iσQ(ξ )(ψ) =
2

∑
j=1

e∗j ⊗ (e1 + e2) ·ψ j︸ ︷︷ ︸
=0

− 2
m

e∗j ⊗ e j · (ψ1 +ψ2︸ ︷︷ ︸
=0

) = 0.

This shows ψ ∈ ker(σQ(ξ )) and hence σQ(ξ ) is not invertible. �
The same proof shows that in the Riemannian case the Rarita-Schwinger operator
is elliptic.

Remark 2.27. Since the characteristic variety of the Rarita-Schwinger operator is
exactly that of the Dirac operator, Lemma 2.26 together with [24, Thms. 23.2.4 &
23.2.7] imply that the Cauchy problem for Q is well-posed in case M is globally
hyperbolic. This implies they Q has advanced and retarded Green’s operators.
Hence Q is not of Dirac type but it is Green-hyperbolic.

Remark 2.28. The equations originally considered by Rarita and Schwinger in
[33] correspond to the twisted Dirac operator D restricted to Σ3/2M but not pro-
jected back to Σ3/2M. In other words, they considered the operator

D |C∞(M,Σ3/2M) : C∞(M,Σ3/2M)→C∞(M,T ∗M⊗ΣM).

These equations are over-determined. Therefore it is not a surprise that non-trivial
solutions restrict the geometry of the underlying manifold as observed by Gibbons
[22] and that this operator has no Green’s operators.

2.7. Combining given operators into a new one. Given two Green-hyperbolic
operators we can form the direct sum and obtain a new operator in a trivial fashion.
It turns out that this operator is again Green-hyperbolic. Note that the two operators
need not have the same order.

Lemma 2.29. Let S1,S2 → M be two vector bundles over the globally hyperbolic
manifold M. Let P1 and P2 be two Green-hyperbolic operators acting on sections
of S1 and S2 respectively. Then

P1 ⊕P2 :=
(

P1 0
0 P2

)
: C∞(M,S1 ⊕S2)→C∞(M,S1 ⊕S2)

is Green-hyperbolic.
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Proof. If G1 and G2 are advanced Green’s operators for P1 and P2 respectively, then

clearly
(

G1 0
0 G2

)
is an advanced Green’s operator for P1 ⊕P2. The retarded case

is analogous. �

It is interesting to note that P1 and P2 need not have the same order. Hence Green-
hyperbolic operators need not be hyperbolic in the usual sense. Moreover, it is
not obvious that Green-hyperbolic operators have a well-posed Cauchy problem.
For instance, if P1 is a wave operator and P2 a Dirac-type operator, then along a
Cauchy hypersurface one would have to prescribe the normal derivative for the
S1-component but not for the S2-component.

3. ALGEBRAS OF OBSERVABLES

Our next aim is to quantize the classical fields governed by Green-hyperbolic dif-
ferential operators. We construct local algebras of observables and we prove that
we obtain locally covariant quantum field theories in the sense of [11].

3.1. Bosonic quantization. In this section we show how a quantization process
based on canonical commutation relations (CCR) can be carried out for formally
self-adjoint Green-hyperbolic operators. This is a functorial procedure. We define
the first category involved in the quantization process.

Definition 3.1. The category GlobHypGreen consists of the following objects and
morphisms:

• An object in GlobHypGreen is a triple (M,S,P), where� M is a globally hyperbolic spacetime,� S is a real vector bundle over M endowed with a non-degenerate inner
product ⟨· , ·⟩ and� P is a formally self-adjoint Green-hyperbolic operator acting on sec-
tions of S.

• A morphism between two objects (M1,S1,P1) and (M2,S2,P2) of
GlobHypGreen is a pair ( f ,F), where� f is a time-orientation preserving isometric embedding M1 →M2 with

f (M1) causally compatible and open in M2,� F is a fiberwise isometric vector bundle isomorphism over f such that
the following diagram commutes:

(4) C∞(M2,S2)
P2 //

res

��

C∞(M2,S2)

res

��
C∞(M1,S1)

P1 // C∞(M1,S1),

where res(φ) := F−1 ◦φ ◦ f for every φ ∈C∞(M2,S2).

Note that morphisms exist only if the manifolds have equal dimension and the
vector bundles have the same rank. Note furthermore, that the inner product ⟨· , ·⟩
on S is not required to be positive or negative definite.
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The causal compatibility condition, which is not automatically satisfied (see e.g.
[4, Fig. 33]), ensures the commutation of the extension and restriction maps with
the Green’s operators:

Lemma 3.2. Let ( f ,F) be a morphism between two objects (M1,S1,P1) and
(M2,S2,P2) in the category GlobHypGreen and let (G1)± and (G2)± be the respec-
tive Green’s operators for P1 and P2. Denote by ext(φ) ∈C∞

c (M2,S2) the extension
by 0 of F ◦φ ◦ f−1 : f (M1)→ S2 to M2, for every φ ∈C∞

c (M1,S1). Then

res◦ (G2)± ◦ ext = (G1)±.

Proof. Set (G̃1)± := res ◦ (G2)± ◦ ext and fix φ ∈ C∞
c (M1,S1). First observe that

the causal compatibility condition on f implies that

supp((G̃1)±(φ)) = f−1(supp((G2)± ◦ ext(φ)))
⊂ f−1(JM2

± (supp(ext(φ))))
= f−1(JM2

± ( f (supp(φ))))
= JM1

± (supp(φ)).

In particular, (G̃1)±(φ) has spacelike compact support in M1 and (G̃1)± satisfies
Axiom (G3). Moreover, it follows from (4) that P2 ◦ ext = ext◦P1 on C∞

c (M1,S1),
which directly implies that (G̃1)± satisfies Axioms (G1) and (G2) as well. The
uniqueness of the advanced and retarded Green’s operators on M1 yields (G̃1)± =
(G1)±. �

Next we show how the Green’s operators for a formally self-adjoint Green-
hyperbolic operator provide a symplectic vector space in a canonical way. First
we see how the Green’s operators of an operator and of its formally dual operator
are related.

Lemma 3.3. Let M be a globally hyperbolic spacetime and G+,G− the advanced
and retarded Green’s operators for a Green-hyperbolic operator P acting on sec-
tions of S → M. Then the advanced and retarded Green’s operators G∗

+ and G∗
−

for P∗ satisfy ∫
M
⟨G∗

±φ ,ψ⟩dV =
∫

M
⟨φ ,G∓ψ⟩dV

for all φ ∈C∞
c (M,S∗) and ψ ∈C∞

c (M,S).

Proof. Axiom (G1) for the Green’s operators implies that∫
M
⟨G∗

±φ ,ψ⟩dV =
∫

M
⟨G∗

±φ,P(G∓ψ)⟩dV

=
∫

M
⟨P∗(G∗

±φ),G∓ψ⟩dV

=
∫

M
⟨φ,G∓ψ⟩dV,

where the integration by parts is justified since supp(G∗
±φ) ∩ supp(G∓ψ) ⊂

JM
± (supp(φ))∩ JM

∓ (supp(ψ)) is compact. �
Proposition 3.4. Let (M,S,P) be an object in the category GlobHypGreen. Set
G := G+−G−, where G+,G− are the advanced and retarded Green’s operator for
P, respectively.
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Then the pair (SYMPL(M,S,P),ω) is a symplectic vector space, where

SYMPL(M,S,P) :=C∞
c (M,S)/ker(G) and ω([φ], [ψ]) :=

∫
M
⟨Gφ,ψ⟩dV.

Here the square brackets [·] denote residue classes modulo ker(G).

Proof. The bilinear form (φ,ψ) 7→
∫

M⟨Gφ,ψ⟩dV on C∞
c (M,S) is skew-symmetric

as a consequence of Lemma 3.3 because P is formally self-adjoint. Its null-space
is exactly ker(G). Therefore the induced bilinear form ω on the quotient space
SYMPL(M,S,P) is non-degenerate and hence a symplectic form. �

Put C∞
sc(M,S) := {φ ∈ C∞(M,S) |supp(φ) is spacelike compact}. The next result

will in particular show that we can consider SYMPL(M,S,P) as the space of
smooth solutions of the equation Pφ = 0 which have spacelike compact support.

Theorem 3.5. Let M be a Lorentzian manifold, let S → M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections of S. Let G± be advanced
and retarded Green’s operators for P, respectively. Put

G := G+−G− : C∞
c (M,S)→C∞

sc(M,S).

Then the following linear maps form a complex:

(5) {0}→C∞
c (M,S) P−→C∞

c (M,S) G−→C∞
sc(M,S) P−→C∞

sc(M,S).

This complex is always exact at the first C∞
c (M,S). If M is globally hyperbolic, then

the complex is exact everywhere.

Proof. The proof follows the lines of [4, Thm. 3.4.7] where the result was shown
for wave operators. First note that, by (G±

3 ) in the definition of Green’s operators,
we have that G± : C∞

c (M,S)→C∞
sc(M,S). It is clear from (G1) and (G2) that PG =

GP = 0 on C∞
c (M,S), hence (5) is a complex.

If φ ∈ C∞
c (M,S) satisfies Pφ = 0, then by (G2) we have φ = G+Pφ = 0 which

shows that P|C∞
c (M,S)

is injective. Thus the complex is exact at the first C∞
c (M,S).

From now on let M be globally hyperbolic. Let φ ∈ C∞
c (M,S) with Gφ = 0, i.e.,

G+φ = G−φ . We put ψ := G+φ = G−φ ∈ C∞(M,S) and we see that supp(ψ) =
supp(G+φ)∩ supp(G−φ)⊂ J+(supp(φ))∩ J−(supp(φ)). Since (M,g) is globally
hyperbolic J+(supp(φ))∩ J−(supp(φ)) is compact, hence ψ ∈ C∞

c (M,S). From
Pψ =PG+φ =φ we see that φ ∈P(C∞

c (M,S)). This shows exactness at the second
C∞

c (M,S).
It remains to show that any φ ∈ C∞

sc(M,S) with Pφ = 0 is of the form φ = Gψ
with ψ ∈C∞

c (M,S). Using a cut-off function decompose φ as φ = φ+−φ− where
supp(φ±)⊂ J±(K) where K is a suitable compact subset of M. Then ψ := Pφ+ =
Pφ− satisfies supp(ψ) ⊂ J+(K)∩ J−(K). Thus ψ ∈ C∞

c (M,S). We check that
G+ψ = φ+. Namely, for all χ ∈C∞

c (M,S∗) we have by Lemma 3.3∫
M
⟨χ,G+Pφ+⟩dV =

∫
M
⟨G∗

−χ ,Pφ+⟩dV =
∫

M
⟨P∗G∗

−χ ,φ+⟩dV =
∫

M
⟨χ,φ+⟩dV.

The integration by parts in the second equality is justified because supp(φ+)∩
supp(G∗

−χ)⊂ J+(K)∩J−(supp(χ)) is compact. Similarly, one shows G−ψ = φ−.
Now Gψ = G+ψ −G−ψ = φ+−φ− = φ which concludes the proof. �
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In particular, given an object (M,S,P) in GlobHypGreen, the map G induces an
isomorphism from

SYMPL(M,S,P) =C∞
c (M,S)/ker(G)

∼=−→ ker(P)∩C∞
sc(M,S).

Remark 3.6. Exactness at the first C∞
c (M,S) in sequence (5) says that there are

no non-trivial smooth solutions of Pφ = 0 with compact support. Indeed, if M is
globally hyperbolic, more is true.
If φ ∈C∞(M,S) solves Pφ = 0 and supp(φ) is future or past-compact, then φ = 0.
Here a subset A⊂M is called future-compact if A∩J+(x) is compact for any x∈M.
Past-compactness is defined similarly.

Proof. Let φ ∈ C∞(M,S) solve Pφ = 0 such that supp(φ) is future-compact. For
any χ ∈C∞

c (M,S∗) we have∫
M
⟨χ,φ⟩dV =

∫
M
⟨P∗G∗

+χ,φ⟩dV =
∫

M
⟨G∗

+χ ,Pφ⟩dV = 0.

This shows φ = 0. The integration by parts is justified because supp(G∗
+χ)∩

supp(φ)⊂ J+(supp(χ))∩ supp(φ) is compact, see [4, Lemma A.5.3]. �
Remark 3.7. Let M be a globally hyperbolic spacetime and (M,S,P) an object in
GlobHypGreen. Then the Green’s operators G+ and G− are unique. Namely, if
G+ and G̃+ are advanced Green’s operators for P, then for any φ ∈ C∞

c (M,S) the
section ψ := G+φ − G̃+φ has past-compact support and satisfies Pψ = 0. By the
previous remark, we have ψ = 0 which shows G+ = G̃+.

Now, let ( f ,F) be a morphism between two objects (M1,S1,P1) and (M2,S2,P2) in
the category GlobHypGreen. For φ ∈ C∞

c (M1,S1) consider the extension by zero
ext(φ) ∈C∞

c (M2,S2) as in Lemma 3.2.

Lemma 3.8. Given a morphism ( f ,F) between two objects (M1,S1,P1) and
(M2,S2,P2) in the category GlobHypGreen, extension by zero induces a symplectic
linear map SYMPL( f ,F) : SYMPL(M1,S1,P1)→ SYMPL(M2,S2,P2).
Moreover,

(6) SYMPL(idM, idS) = idSYMPL(M,S,P)

and for any further morphism ( f ′,F ′) : (M2,S2,P2)→ (M3,S3,P3) one has

(7) SYMPL(( f ′,F ′)◦ ( f ,F)) = SYMPL( f ′,F ′)◦SYMPL( f ,F).

Proof. If φ = P1ψ ∈ ker(G1) = P1(C∞
c (M1,S1)), then ext(φ) = P2(ext(ψ)) ∈

P2(C∞
c (M2,S2)) = ker(G2). Hence ext induces a linear map

SYMPL( f ,F) : C∞
c (M1,S1)/ker(G1)→C∞

c (M2,S2)/ker(G2).

Furthermore, applying Lemma 3.2, we have, for any φ ,ψ ∈C∞
c (M1,S1)∫

M2

⟨G2(ext(φ)),ext(ψ)⟩dV =
∫

M1

⟨res◦G2 ◦ ext(φ),ψ⟩dV =
∫

M1

⟨G1φ,ψ⟩dV,

hence SYMPL( f ,F) is symplectic. Equation (6) is trivial and extending once or
twice by 0 amounts to the same, so (7) holds as well. �
Remark 3.9. Under the isomorphism SYMPL(M,S,P) → ker(P)∩C∞

sc(M,S) in-
duced by G, the extension by zero corresponds to an extension as a smooth solution
of Pφ = 0 with spacelike compact support. This follows directly from Lemma 3.2.
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In other words, for any morphism ( f ,F) from (M1,S1,P1) to (M2,S2,P2) in
GlobHypGreen we have the following commutative diagram:

SYMPL(M1,S1,P1)
SYMPL( f ,F) //

∼=
��

SYMPL(M2,S2,P2)

∼=
��

ker(P1)∩C∞
sc(M1,S1)

extensionas

asolution
// ker(P2)∩C∞

sc(M2,S2).

Let Sympl denote the category of real symplectic vector spaces with symplectic
linear maps as morphisms. Lemma 3.8 says that we have constructed a covariant
functor

SYMPL : GlobHypGreen−→ Sympl.

In order to obtain an algebra-valued functor, we compose SYMPL with the func-
tor CCR which associates to any symplectic vector space its Weyl algebra. Here
“CCR” stands for “canonical commutation relations”. This is a general algebraic
construction which is independent of the context of Green-hyperbolic operators
and which is carried out in Section A.2. As a result, we obtain the functor

Abos := CCR◦SYMPL : GlobHypGreen−→ C∗Alg,

where C∗Alg is the category whose objects are the unital C∗-algebras and whose
morphisms are the injective unit-preserving C∗-morphisms.
In the remainder of this section we show that the functor CCR ◦ SYMPL is a
bosonic locally covariant quantum field theory. We call two subregions M1 and
M2 of a spacetime M causally disjoint if and only if JM(M1)∩M2 = /0. In other
words, there are no causal curves joining M1 and M2.

Theorem 3.10. The functor Abos : GlobHypGreen −→ C∗Alg is a bosonic locally
covariant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let (M j,S j,Pj) be objects in GlobHypGreen, j = 1,2,3,
and ( f j,Fj) morphisms from (M j,S j,Pj) to (M3,S3,P3), j = 1,2, such that
f1(M1) and f2(M2) are causally disjoint regions in M3.

Then the subalgebras Abos( f1,F1)(Abos(M1,S1,P1)) and
Abos( f2,F2)(Abos(M2,S2,P2)) of Abos(M3,S3,P3) commute.

(ii) (Time slice axiom) Let (M j,S j,Pj) be objects in GlobHypGreen, j = 1,2, and
( f ,F) a morphism from (M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurface Σ ⊂ M1 for which f (Σ) is a Cauchy hypersurface of M2. Then

Abos( f ,F) : Abos(M1,S1,P1)→ Abos(M2,S2,P2)

is an isomorphism.

Proof. We first show (i). For notational simplicity we assume without loss of gen-
erality that f j and Fj are inclusions, j = 1,2. Let φ j ∈ C∞

c (M j,S j). Since M1 and
M2 are causally disjoint, the sections Gφ1 and φ2 have disjoint support, thus

ω([φ1], [φ2]) =
∫

M
⟨Gφ1,φ2⟩dV = 0.

Now relation (iv) in Definition A.11 tells us

w([φ1]) ·w([φ2]) = w([φ1]+ [φ2]) = w([φ2]) ·w([φ1]).
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Since Abos( f1,F1)(Abos(M1,S1,P1)) is generated by elements of the form w([φ1])
and Abos( f2,F2)(Abos(M2,S2,P2)) by elements of the form w([φ2]), the assertion
follows.
In order to prove (ii) we show that SYMPL( f ,F) is an isomorphism of symplec-
tic vector spaces provided f maps a Cauchy hypersurface of M1 onto a Cauchy
hypersurface of M2. Since symplectic linear maps are always injective, we only
need to show surjectivity of SYMPL( f ,F). This is most easily seen by replacing
SYMPL(M j,S j,Pj) by ker(Pj)∩C∞

sc(M j,S j) as in Remark 3.9. Again we assume
without loss of generality that f and F are inclusions.
Let ψ ∈C∞

sc(M2,S2) be a solution of P2ψ = 0. Let φ be the restriction of ψ to M1.
Then φ solves P1φ = 0 and has spacelike compact support in M1 by Lemma 3.11
below. We will show that there is only one solution in M2 with spacelike com-
pact support extending φ . It will then follow that ψ is the image of φ under the
extension map corresponding to SYMPL( f ,F) and surjectivity will be shown.
To prove uniqueness of the extension, we may, by linearity, assume that φ = 0.
Then ψ+ defined by

ψ+(x) :=

{
ψ(x), if x ∈ JM2

+ (Σ),
0, otherwise,

is smooth since ψ vanishes in an open neighborhood of Σ. Now ψ+ solves P2ψ+ =
0 and has past-compact support. By Remark 3.6, ψ+ ≡ 0, i.e., ψ vanishes on
JM2
+ (Σ). One shows similarly that ψ vanishes on JM2

− (Σ), hence ψ = 0. �

Lemma 3.11. Let M be a globally hyperbolic spacetime and let M′ ⊂ M be a
causally compatible open subset which contains a Cauchy hypersurface of M. Let
A ⊂ M be spacelike compact in M.
Then A∩M′ is spacelike compact in M′.

Proof. Fix a common Cauchy hypersurface Σ of M′ and M. By assumption, there
exists a compact subset K ⊂ M with A ⊂ JM(K). Then K′ := JM(K)∩Σ is compact
[4, Cor. A.5.4] and contained in M′.
Moreover A ⊂ JM(K′): let p ∈ A and let γ be a causal curve (in M) from p to some
k ∈ K. Then γ can be extended to an inextensible causal curve in M, which hence
meets Σ at some point q. Because of q ∈ Σ∩ JM(k)⊂ K′ one has p ∈ JM(K′).
Therefore A∩M′ ⊂ JM(K′)∩M′ = JM′

(K′) because of the causal compatibility of
M′ in M. The lemma is proved. �

The quantization process described in this subsection applies in particular to for-
mally self-adjoint wave and Dirac-type operators.

3.2. Fermionic quantization. Next we construct a fermionic quantization. For
this we need a functorial construction of Hilbert spaces rather than symplectic
vector spaces. As we shall see this seems to be possible only under much more
restrictive assumptions. The underlying Lorentzian manifold M is assumed to be
a globally hyperbolic spacetime as before. The vector bundle S is assumed to be
complex with Hermitian inner product ⟨· , ·⟩ which may be indefinite. The formally
self-adjoint Green-hyperbolic operator P is assumed to be of first order.

Definition 3.12. A formally self-adjoint Green-hyperbolic operator P of first order
acting on sections of a complex vector bundle S over a spacetime M is of definite
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type if and only if for any x ∈ M and any future-directed timelike tangent vector
n ∈ TxM, the bilinear map

Sx ×Sx → C, (φ,ψ) 7→ ⟨iσP(n
♭) ·φ,ψ⟩,

yields a positive definite Hermitian scalar product on Sx.

Example 3.13. The classical Dirac operator P from Example 2.21 is, when defined
with the correct sign, of definite type, see e.g. [5, Sec. 1.1.5] or [3, Sec. 2].

Example 3.14. If E → M is a semi-Riemannian or -Hermitian vector bundle en-
dowed with a metric connection over a spin spacetime M, then the twisted Dirac
operator from Example 2.22 is of definite type if and only if the metric on E is
positive definite. This can be seen by evaluating the tensorized inner product on
elements of the form σ ⊗ v, where v ∈ Ex is null.

Example 3.15. The operator P = i(d −δ ) on S = ΛT ∗M⊗C is of Dirac type but
not of definite type. This follows from Example 3.14 applied to Example 2.23,
since the natural inner product on ΣM is not positive definite. An alternative el-
ementary proof is the following: for any timelike tangent vector n on M and the
corresponding covector n♭, one has

⟨iσP(n
♭)n♭,n♭⟩=−⟨n♭∧n♭−nyn♭,n♭⟩= ⟨n,n⟩⟨1,n♭⟩= 0.

Example 3.16. The Rarita-Schwinger operator defined in Section 2.6 is not of
definite type if the dimension of the manifolds is m ≥ 3. This can be seen as
follows. Fix a point x ∈ M and a pointwise orthonormal basis (e j)1≤ j≤m of TxM
with e1 timelike. The Lorentzian metric induces inner products on ΣM and on
Σ3/2M which we denote by ⟨· , ·⟩. Choose ξ := e♭1 ∈ T ∗

x M and ψ ∈ Σ3/2
x M. Since

σQ(ξ ) is pointwise obtained as the orthogonal projection of σD(ξ ) onto Σ3/2
x M,

one has

⟨−iσQ(ξ )ψ,ψ⟩ = ⟨(id⊗ξ ♯·)ψ,ψ⟩− 2
m

m

∑
β=1

⟨e∗β ⊗ eβ ·ψ1,ψ⟩︸ ︷︷ ︸
=0

=
m

∑
β=1

εβ ⟨e1 ·ψβ ,ψβ ⟩.

Choose, as in the proof of Lemma 2.26, a ψ ∈ Σ3/2
x M with ψk = 0 for all 3≤ k ≤m.

For such a ψ the condition ψ ∈ Σ3/2
x M becomes e1 ·ψ1 = e2 ·ψ2. As in the proof

of Lemma 2.26 we obtain

⟨−iσQ(ξ )ψ,ψ⟩=−⟨e1 ·ψ2,ψ2⟩+ ⟨e1 ·ψ2,ψ2⟩= 0,

which shows that the Rarita-Schwinger operator cannot be of definite type.

We define the category GlobHypDef, whose objects are the triples (M,S,P), where
M is a globally hyperbolic spacetime, S is a complex vector bundle equipped with
a complex inner product ⟨· , ·⟩, and P is a formally self-adjoint Green-hyperbolic
operator of definite type acting on sections of S. The morphisms are the same as in
the category GlobHypGreen.
We construct a covariant functor from GlobHypDef to HILB, where HILB denotes
the category whose objects are complex pre-Hilbert spaces and whose morphisms
are isometric linear embeddings. As in Section 3.1, the underlying vector space



CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN MANIFOLDS 17

is the space of classical solutions to the equation Pφ = 0 with spacelike compact
support. We put

SOL(M,S,P) := ker(P)∩C∞
sc(M,S).

Here “SOL” stands for classical solutions of the equation Pφ = 0 with spacelike
compact support.

Lemma 3.17. Let (M,S,P) be an object in GlobHypDef. Let Σ ⊂ M be a smooth
spacelike Cauchy hypersurface with its future-oriented unit normal vector field n
and its induced volume element dA. Then

(8) (φ,ψ) :=
∫

Σ
⟨iσP(n

♭) ·φ|Σ ,ψ|Σ⟩dA,

yields a positive definite Hermitian scalar product on SOL(M,S,P) which does not
depend on the choice of Σ.

Proof. First note that supp(φ)∩Σ is compact since supp(φ) is spacelike compact,
so that the integral is well-defined. We have to show that it does not depend on
the choice of Cauchy hypersurface. Let Σ′ be any other smooth spacelike Cauchy
hypersurface. Assume first that Σ and Σ′ are disjoint and let Ω be the domain
enclosed by Σ and Σ′ in M. Its boundary is ∂Ω = Σ∪Σ′. Without loss of generality,
one may assume that Σ′ ⊂ JM

+ (Σ). By the Green’s formula [40, p. 160, Prop. 9.1]
we have for all φ ,ψ ∈C∞

sc(M,S),

(9)
∫

Ω
(⟨Pφ ,ψ⟩−⟨φ,Pψ⟩) dV =

∫
Σ′
⟨σP(n

♭)φ,ψ⟩dA−
∫

Σ
⟨σP(n

♭)φ,ψ⟩dA.

For φ,ψ ∈ SOL(M,S,P) we have Pφ = Pψ = 0 and thus

0 =
∫

Σ
⟨σP(n

♭)φ,ψ⟩dA−
∫

Σ′
⟨σP(n

♭)φ,ψ⟩dA.

This shows the result in the case Σ∩Σ′ = /0.
If Σ∩Σ′ ̸= /0 consider the subset IM

− (Σ)∩ IM
− (Σ′) of M where, as usual, IM

+ (Σ) and
IM
− (Σ) denote the chronological future and past of the subset Σ in M, respectively.

This subset is nonempty, open, and globally hyperbolic. This follows e.g. from
[4, Lemma A.5.8]. Hence it admits a smooth spacelike Cauchy hypersurface Σ′′

by Theorem 2.3. By construction, Σ′′ meets neither Σ nor Σ′ and it can be easily
checked that Σ′′ is also a Cauchy hypersurface of M. The result follows from the
argument above being applied first to the pair (Σ,Σ′′) and then to the pair (Σ′′,Σ′).

�

Remark 3.18. If one drops the assumption that P be of definite type, then the
above sesquilinear form (· , ·) on ker(P)∩C∞

sc(M,S) still does not depend on the
choice of Σ, however it need no longer be positive definite and can even be de-
generate. Pick for instance the spin Dirac operator Dg associated to the underlying
Lorentzian metric g on a spin spacetime M (see Example 2.21) and, keeping the
spinor bundle ΣgM associated to g, change the metric on M so that the new met-
ric g′ has larger future and past cones at each point. Note that this implies that
any globally hyperbolic subregion of (M,g′) is also globally hyperbolic in (M,g).
Then, denoting by D∗

g the formal adjoint of Dg with respect to the metric g′, the

operator
(

0 Dg
D∗

g 0

)
on ΣgM⊕ΣgM remains Green-hyperbolic but it fails to be

of definite type, since there exist timelike vectors for g′ which are lightlike for g.
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Hence the principal symbol of the operator becomes non-invertible and the bilinear
form in (8) becomes degenerate for these g′-timelike covectors.

For any object (M,S,P) in GlobHypDef we will from now on equip SOL(M,S,P)
with the Hermitian scalar product in (8) and thus turn SOL(M,S,P) into a pre-
Hilbert space.
Given a morphism ( f ,F) from (M1,S1,P1) to (M2,S2,P2) in GlobHypDef, then
this is also a morphism in GlobHypGreen and hence induces a homomor-
phism SYMPL( f ,F) : SYMPL(M1,S1,P1) → SYMPL(M2,S2,P2). As explained
in Remark 3.9, there is a corresponding extension homomorphism SOL( f ,F) :
SOL(M1,S1,P1) → SOL(M2,S2,P2). In other words, SOL( f ,F) is defined such
that the diagram

(10) SYMPL(M1,S1,P1)
SYMPL( f ,F) //

∼=
��

SYMPL(M2,S2,P2)

∼=
��

SOL(M1,S1,P1)
SOL( f ,F) // SOL(M2,S2,P2)

commutes. The vertical arrows are the vector space isomorphisms induced be the
Green’s propagators G1 and G2, respectively.

Lemma 3.19. The vector space homomorphism SOL( f ,F) : SOL(M1,S1,P1) →
SOL(M2,S2,P2) preserves the scalar products, i.e., it is an isometric linear embed-
ding of pre-Hilbert spaces.

Proof. Without loss of generality we assume that f and F are inclusions. Let Σ1
be a spacelike Cauchy hypersurface of M1. Let φ1,ψ1 ∈ C∞

sc(M1,S1). Denote the
extension of φ1 by φ2 := SOL( f ,F)(φ1) and similarly for ψ1.
Let K1 ⊂ M1 be a compact subset such that supp(φ2) ⊂ JM2(K1) and supp(ψ2) ⊂
JM2(K1). We choose a compact submanifold K ⊂ Σ1 with boundary such that
JM1(K1) ∩ Σ1 ⊂ K. Since Σ1 is a Cauchy hypersurface in M1, JM1(K1) ⊂
JM1(JM1(K1)∩Σ1)⊂ JM1(K).
By Theorem 2.5 there is a spacelike Cauchy hypersurface Σ2 ⊂ M2 containing
K. Since Σi is a Cauchy hypersurface of Mi (where i = 1,2), it is met by every
inextensible causal curve [30, Lemma 14.29]. Moreover, by definition of a Cauchy
hypersurface, Σi is achronal in Mi. Since it is also spacelike, Σi is even acausal [30,
Lemma 14.42]. In particular, it is met exactly once by every inextensible causal
curve in Mi.
This implies JM2(K1) ⊂ JM2(K): namely, pick p ∈ JM2(K1) and a causal curve γ
in M2 from p to some k1 ∈ K1. Extend γ to an inextensible causal curve γ in M2.
Then γ meets Σ2 at some point q2, because Σ2 is a Cauchy hypersurface in M2. But
γ ∩M1 is also an inextensible causal curve in M1, hence it intersects Σ1 at a point
q1, which must lie in K by definition of K. Because of K ⊂ Σ2 and the uniqueness
of the intersection point, one has q1 = q2. In particular, p ∈ JM2(K).
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M2

K1
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JM2(K1)

Σ2

Σ1
K

Fig. 1

We conclude supp(φ2) ⊂ JM2(K). Since K ⊂ Σ2, we have supp(φ2) ∩ Σ2 ⊂
JM2(K) ∩ Σ2 and JM2(K) ∩ Σ2 = K using the acausality of Σ2. This shows
supp(φ2)∩Σ2 = supp(φ1)∩Σ1 and similarly for ψ2. Now we get

(φ2,ψ2) =
∫

Σ2

⟨iσP2(n
♭) ·φ2,ψ2⟩dA =

∫
Σ1

⟨iσP1(n
♭) ·φ1,ψ1⟩dA = (φ1,ψ1)

and the lemma is proved. �

The functoriality of SYMPL and diagram (10) show that SOL is a functor from
GlobHypDef to HILB, the category of complex pre-Hilbert spaces with isometric
linear embeddings. Composing with the functor CAR (see Section A.1), we obtain
the covariant functor

Aferm := CAR◦SOL : GlobHypDef −→ C∗Alg.

The fermionic algebras Aferm(M,S,P) are actually Z2-graded algebras, see Propo-
sition A.5 (iii).

Theorem 3.20. The functor Aferm : GlobHypDef −→ C∗Alg is a fermionic locally
covariant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let (M j,S j,Pj) be objects in GlobHypDef, j = 1,2,3,
and ( f j,Fj) morphisms from (M j,S j,Pj) to (M3,S3,P3), j = 1,2, such that
f1(M1) and f2(M2) are causally disjoint regions in M3.
Then the subalgebras Aferm( f1,F1)(Aferm(M1,S1,P1)) and
Aferm( f2,F2)(Aferm(M2,S2,P2)) of Aferm(M3,S3,P3) super-commute1.

(ii) (Time slice axiom) Let (M j,S j,Pj) be objects in GlobHypDef, j = 1,2, and
( f ,F) a morphism from (M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurface Σ ⊂ M1 for which f (Σ) is a Cauchy hypersurface of M2. Then

Aferm( f ,F) : Aferm(M1,S1,P1)→ Aferm(M2,S2,P2)

is an isomorphism.

1This means that the odd parts of the algebras anti-commute while the even parts commute with
everything.
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Proof. To show (i), we assume without loss of generality that f j and Fj are inclu-
sions. Let φ1 ∈ SOL(M1,S1,P1) and ψ1 ∈ SOL(M2,S2,P2). Denote the extensions
to M3 by φ2 := SOL( f1,F1)(φ1) and ψ2 := SOL( f2,F2)(ψ1). Choose a compact
submanifold K1 (with boundary) in a spacelike Cauchy hypersurface Σ1 of M1 such
that supp(φ1)∩Σ1 ⊂ K1 and similarly K2 for ψ1. Since M1 and M2 are causally
disjoint, K1 ∪K2 is acausal. Hence, by Theorem 2.5, there exists a Cauchy hyper-
surface Σ3 of M3 containing K1 and K2. As in the proof of Lemma 3.19 one sees
that supp(φ2)∩Σ3 = supp(φ1)∩Σ1 and similarly for ψ2. Thus, when restricted
to Σ3, φ2 and ψ2 have disjoint support. Hence (φ2,ψ2) = 0. This shows that
the subspaces SOL( f1,F1)(SOL(M1,S1,P1)) and SOL( f2,F2)(SOL(M2,S2,P2)) of
SOL(M3,S3,P3) are perpendicular. Definition A.1 shows that the corresponding
CAR-algebras must super-commute.
To see (ii) we recall that ( f ,F) is also a morphism in GlobHypGreen and that
we know from Theorem 3.10 that SYMPL( f ,F) is an isomorphism. From dia-
gram (10) we see that SOL( f ,F) is an isomorphism. Hence Aferm( f ,F) is also an
isomorphism. �
Remark 3.21. Since causally disjoint regions should lead to commuting ob-
servables also in the fermionic case, one usually considers only the even part
Aeven

ferm(M,S,P) (or a subalgebra thereof) as the observable algebra while the full
algebra Aferm(M,S,P) is called the field algebra.

There is a slightly different description of the functor Aferm. Let HILBR denote
the category whose objects are the real pre-Hilbert spaces and whose morphisms
are the isometric linear embeddings. We have the functor REAL : HILB→ HILBR
which associates to each complex pre-Hilbert space (V,(· , ·)) its underlying real
pre-Hilbert space (V,Re(· , ·)). By Remark A.10,

Aferm = CARsd ◦REAL◦SOL.

Since the self-dual CAR-algebra of a real pre-Hilbert space is the Clifford algebra
of its complexification and since for any complex pre-Hilbert space V we have

REAL(V )⊗RC=V ⊕V ∗,

Aferm(M,S,P) is also the Clifford algebra of SOL(M,S,P)⊕ SOL(M,S,P)∗ =
SOL(M,S ⊕ S∗,P ⊕ P∗). This is the way this functor is often described in the
physics literature, see e.g. [39, p. 115f].
Self-dual CAR-representations are more natural for real fields. Let M be globally
hyperbolic and let S→M be a real vector bundle equipped with a real inner product
⟨· , ·⟩. A formally skew-adjoint2 differential operator P acting on sections of S is
called of definite type if and only if for any x ∈ M and any future-directed timelike
tangent vector n ∈ TxM, the bilinear map

Sx ×Sx → R, (φ ,ψ) 7→ ⟨σP(n
♭) ·φ,ψ⟩,

yields a positive definite Euclidean scalar product on Sx. An example is given by
the real Dirac operator

D :=
m

∑
j=1

ε je j ·∇e j

acting on sections of the real spinor bundle ΣRM.

2instead of self-adjoint!
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Given a smooth spacelike Cauchy hypersurface Σ ⊂ M with future-directed time-
like unit normal field n, we define a scalar product on SOL(M,S,P) = ker(P)∩
C∞

sc(M,S,P) by

(φ,ψ) :=
∫

Σ
⟨σP(n

♭) ·φ|Σ ,ψ|Σ⟩dA.

With essentially the same proofs as before, one sees that this scalar product
does not depend on the choice of Cauchy hypersurface Σ and that a morphism
( f ,F) : (M1,S1,P1)→ (M2,S2,P2) gives rise to an extension operator SOL( f ,F) :
SOL(M1,S1,P1) → SOL(M2,S2,P2) preserving the scalar product. We have con-
structed a functor

SOL : GlobHypSkewDef −→ HILBR

where GlobHypSkewDef denotes the category whose objects are triples (M,S,P)
with M globally hyperbolic, S → M a real vector bundle with real inner product
and P a formally skew-adjoint, Green-hyperbolic differential operator of definite
type acting on sections of S. The morphisms are the same as before.
Now the functor

Asd
ferm := CARsd ◦SOL : GlobHypSkewDef −→ C∗Alg

is a locally covariant quantum field theory in the sense that Theorem 3.20 holds
with Aferm replaced by Asd

ferm.

4. STATES AND QUANTUM FIELDS

In order to produce numbers out of our quantum field theory that can be compared
to experiments, we need states, in addition to observables. We briefly recall the
relation between states and representations via the GNS-construction. Then we
show how the choice of a state gives rise to quantum fields and n-point functions.

4.1. States and representations. Recall that a state on a unital C∗-algebra A is a
linear functional τ : A → C such that

(i) τ is positive, i.e., τ(a∗a)≥ 0 for all a ∈ A;
(ii) τ is normed, i.e., τ(1) = 1.

One checks that for any state the sesquilinear form A×A → C, (a,b) 7→ τ(b∗a),
is a positive semi-definite Hermitian product and |τ(a)| ≤ ∥a∥ for all a ∈ A. In
particular, τ is continuous.
Any state induces a representation of A. Namely, the sesquilinear form τ(b∗a)
induces a scalar product ⟨·, ·⟩τ on A/{a ∈ A | τ(a∗a) = 0}. The Hilbert space com-
pletion of A/{a ∈ A | τ(a∗a) = 0} is denoted by Hτ . The action of A on Hτ is
induced by the multiplication in A,

πτ(a)[b]τ := [ab]τ ,

where [a]τ denotes the residue class of a ∈ A in A/{a ∈ A | τ(a∗a) = 0}. This
representation is known as the GNS-representation induced by τ . The residue class
Ωτ := [1]τ ∈ Hτ is called the vacuum vector. By construction, it is a cyclic vector,
i.e., the orbit πτ(A) ·Ωτ = A/{a ∈ A | τ(a∗a) = 0} is dense in Hτ .
The GNS-representation together with the vacuum vector allows to reconstruct the
state since

(11) τ(a) = τ(1∗a1) = ⟨πτ(a)Ωτ ,Ωτ⟩τ .
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If we look at the vector state τ̃ : L (Hτ) → C, τ̃(ã) = ⟨ãΩτ ,Ωτ⟩τ , on the C∗-
algebra L (Hτ) of bounded linear operators on Hτ , then (11) says that the diagram

A
πτ //

τ
��=

==
==

==
= L (Hτ)

τ̃
{{ww

ww
ww

ww
w

C

commutes. One checks that ∥πτ∥≤ 1, see [2, p. 20]. In particular, πτ : A→L (Hτ)
is continuous.
See e.g. [2, Sec. 1.4] or [9, Sec. 2.3] for details on states and representations of
C∗-algebras.

4.2. Bosonic quantum field. Now let (M,S,P) be an object in GlobHypGreen
and τ a state on the corresponding bosonic algebra Abos(M,S,P). Intuitively, the
quantum field should be an operator-valued distribution Φ on M such that

eiΦ( f ) = w([ f ])

for all test sections f ∈ C∞
c (M,S). Here [ f ] denotes the residue class in

SYMPL(M,S,P) = C∞
c (M,S)/kerG and w : SYMPL(M,S,P) → Abos(M,S,P) is

as in Definition A.11. This suggests the definition

Φ( f ) :=−i
d
dt

∣∣∣∣
t=0

w(t[ f ]).

The problem is that w is highly discontinuous so that this derivative does not make
sense. This is where states and representations come into the play. We call a state
τ on Abos(M,S,P) regular if for each f ∈ C∞

c (M,S) and each h ∈ Hτ the map
t 7→ πτ(w(t[ f ]))h is continuous. Then t 7→ πτ(w(t[ f ])) is a strongly continuous
one-parameter unitary group for any f ∈C∞

c (M,S) because

πτ(w((t + s)[ f ])) = πτ(eiω(t[ f ],s[ f ])/2w(t[ f ])w(s[ f ])) = πτ(w(t[ f ]))πτ(w(s[ f ])).

Here we used Definition A.11 (iv) and the fact that ω is skew-symmetric so that
ω(t[ f ],s[ f ]) = 0. By Stone’s theorem [34, Thm. VIII.8] this one-parameter group
has a unique infinitesimal generator, i.e., a self-adjoint, generally unbounded oper-
ator Φτ( f ) on Hτ such that

eitΦτ ( f ) = πτ(w(t[ f ])).

For all h in the domain of Φτ( f ) we have

Φτ( f )h =−i
d
dt

∣∣∣∣
t=0

πτ(w(t[ f ]))h.

We call the operator-valued map f 7→ Φτ( f ) the quantum field corresponding to τ .

Definition 4.1. A regular state τ on Abos(M,S,P) is called strongly regular if

(i) there is a dense subspace Dτ ⊂Hτ contained in the domain of Φτ( f ) for any
f ∈C∞

c (M,S);
(ii) Φτ( f )(Dτ)⊂ Dτ for any f ∈C∞

c (M,S);
(iii) the map C∞

c (M,S)→ Hτ , f 7→ Φτ( f )h, is continuous for every fixed h ∈ Dτ .
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For a strongly regular state τ we have for all f ,g ∈C∞
c (M,S), α,β ∈R and h ∈Dτ :

Φτ(α f +βg)h =−i
d
dt

∣∣∣∣
t=0

πτ(w(t[α f +βg]))h

=−i
d
dt

∣∣∣∣
t=0

{
eiαβ t2ω([ f ],[g])/2πτ(w(αt[ f ]))πτ(w(β t[g]))h

}
=−i

d
dt

∣∣∣∣
t=0

πτ(w(αt[ f ]))h− i
d
dt

∣∣∣∣
t=0

πτ(w(β t[g]))h

= αΦτ( f )h+βΦτ(g)h.

Hence Φτ( f ) depends linearly on f . The quantum field Φτ is therefore a distribu-
tion on M with values in self-adjoint operators on Hτ .
The n-point functions are defined by

τn( f1, . . . , fn) := ⟨Φτ( f1) · · ·Φτ( fn)Ωτ ,Ωτ⟩τ

= τ̃ (Φτ( f1) · · ·Φτ( fn))

= τ̃

((
−i

d
dt1

∣∣∣∣
t1=0

πτ(w(t1[ f1]))

)
· · ·

(
−i

d
dtn

∣∣∣∣
tn=0

πτ(w(tn[ fn]))

))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ̃ (πτ(w(t1[ f1])) · · ·πτ(w(tn[ fn])))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ̃ (πτ(w(t1[ f1]) · · ·w(tn[ fn])))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ (w(t1[ f1]) · · ·w(tn[ fn])) .

For a strongly regular state τ the n-point functions are continuous separately in
each factor. By the Schwartz kernel theorem [23, Thm. 5.2.1] the n-point function
τn extends uniquely to a distribution on M × ·· · ×M (n times) in the following
sense: Let S∗� · · ·�S∗ be the bundle over M×·· ·×M whose fiber over (x1, . . . ,xn)
is given by S∗x1

⊗·· ·⊗S∗xn
. Then there is a unique distribution on M×·· ·×M in the

bundle S∗� · · ·�S∗, again denoted τn, such that for all f j ∈C∞
c (M,S),

τn( f1, . . . , fn) = τn( f1 ⊗·· ·⊗ fn)

where ( f1 ⊗·· ·⊗ fn)(x1, . . . ,xn) := f1(x1)⊗·· ·⊗ fn(xn).

Theorem 4.2. Let (M,S,P) be an object in GlobHypGreen and τ a strongly regular
state on the corresponding bosonic algebra Abos(M,S,P). Then

(i) PΦτ = 0 and Pτn( f1, . . . , f j−1, ·, f j+1, . . . , fn) = 0 hold in the distributional
sense where fk ∈C∞

c (M,S), k ̸= j, are fixed;
(ii) the quantum field satisfies the canonical commutation relations, i.e.,

[Φτ( f ),Φτ(g)]h = i
∫

M
⟨G f ,g⟩dV ·h

for all f ,g ∈C∞
c (M,S) and h ∈ Dτ ;
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(iii) the n-point functions satisfy the canonical commutation relations, i.e.,

τn+2( f1, . . . , f j−1, f j, f j+1, . . . , fn+2)

− τn+2( f1, . . . , f j−1, f j+1, f j, f j+2, . . . , fn+2)

= i
∫

M
⟨G f j, f j+1⟩dV · τn( f1, . . . , f j−1, f j+2, . . . , fn+2)

for all f1, . . . , fn+2 ∈C∞
c (M,S).

Proof. Since P is formally self-adjoint and GP f = 0 for any f ∈C∞
c (M,S), we have

for any h ∈ Dτ :

(PΦτ)( f )h = Φτ(P f )h =−i
d
dt

∣∣∣∣
t=0

πτ(w(t [P f ]︸︷︷︸
=0

))h =−i
d
dt

∣∣∣∣
t=0

h = 0.

This shows PΦτ = 0. The result for the n-point functions follows and (i) is proved.
To show (ii) we observe that by Definition A.11 (iv) we have on the one hand

w([ f +g]) = eiω([ f ],[g])/2w([ f ])w([g])

and on the other hand

w([ f +g]) = eiω([g],[ f ])/2w([g])w([ f ]),

hence
w([ f ])w([g]) = e−iω([ f ],[g])w([g])w([ f ]).

Thus

Φτ( f )Φτ(g)h =− ∂ 2

∂ t∂ s

∣∣∣∣
t=s=0

πτ(w(t[ f ])w(s[g]))h

=− ∂ 2

∂ t∂ s

∣∣∣∣
t=s=0

πτ(e−iω(t[ f ],s[g])w(s[g])w(t[ f ]))h

=− ∂ 2

∂ t∂ s

∣∣∣∣
t=s=0

{
e−iω(t[ f ],s[g]) ·πτ(w(s[g])w(t[ f ]))h

}
= iω([ f ], [g])h+Φτ(g)Φτ( f )h

= i
∫

M
⟨G f ,g⟩dV ·h+Φτ(g)Φτ( f )h.

This shows (ii). Assertion (iii) follows from (ii). �

Remark 4.3. As a consequence of the canonical commutation relations we get

[Φτ( f ),Φτ(g)] = 0

if the supports of f and g are causally disjoint, i.e., if there is no causal curve from
supp( f ) to supp(g). The reason is that in this case the supports of G f and g are
disjoint. A similar remark holds for the n-point functions.

Remark 4.4. In the physics literature one also finds the statement Φ( f ) = Φ( f )∗.
This simply expresses the fact that we are dealing with a theory over the reals. We
have encoded this by considering real vector bundles S, see Definition 3.1, and the
fact that Φτ( f ) is always self-adjoint.
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4.3. Fermionic quantum fields. Let (M,S,P) be an object in GlobHypDef and
let τ be a state on the fermionic algebra Aferm(M,S,P). For f ∈C∞

c (M,S) we put

Φτ( f ) := −πτ(a(G f )∗),
Φ+

τ ( f ) := πτ(a(G f )),

where a is as in Definition A.1 (compare [18, Sec. III.B, p. 141]). Since πτ , a, and
G are sequentially continuous (for G see [4, Prop. 3.4.8]), so are Φτ and Φ+

τ . In
contrast to the bosonic case, no regularity assumption on τ is needed. Hence Φτ
and Φ+

τ are distributions on M with values in the space of bounded operators on
Hτ . Note that Φτ is linear while Φ+

τ is anti-linear.

Theorem 4.5. Let (M,S,P) be an object in GlobHypDef and τ a state on the
corresponding fermionic algebra Aferm(M,S,P). Then

(i) PΦτ = PΦ+
τ = 0 holds in the distributional sense;

(ii) the quantum fields satisfy the canonical anti-commutation relations, i.e.,

{Φτ( f ),Φτ(g)} = {Φ+
τ ( f ),Φ+

τ (g)}= 0,

{Φτ( f ),Φ+
τ (g)} = i

(∫
M
⟨G f ,g⟩dV

)
· idHτ

for all f ,g ∈C∞
c (M,S).

Proof. Since GP= 0 on C∞
c (M,S), we have PΦτ( f )=Φτ(P f )=−πτ(a(GP f )∗)=

0 and similarly for Φ+
τ . This proves assertion (i).

Using Definition A.1 (ii) we compute

{Φτ( f ),Φτ(g)}= {πτ(a(G f )∗),πτ(a(Gg)∗)}
= πτ({a(G f )∗,a(Gg)∗})
= πτ({a(Gg),a(G f )}∗)
= 0.

Similarly one sees {Φ+
τ ( f ),Φ+

τ (g)}= 0. Definition A.1 (iii) also yields

{Φτ( f ),Φ+
τ (g)}=−πτ({a(G f )∗,a(Gg)}) =−(G f ,Gg) · idHτ .

To prove assertion (ii) we have to verify

(12) (G f ,Gg) =−i
∫

M
⟨G f ,g⟩dV

Let Σ ⊂ M be a smooth spacelike Cauchy hypersurface. Since supp(G+g) is past-
compact, we can find a Cauchy hypersurface Σ′ ⊂ M in the past of Σ which does
not intersect supp(G+g) ⊂ JM

+ (supp(g)). Denote the region between Σ and Σ′ by
Ω′. The Green’s formula (9) yields

(G f ,G+g) =
∫

Σ
⟨iσP(n

♭) ·G f ,G+g⟩dA

=
∫

Σ′
⟨iσP(n

♭) ·G f ,G+g⟩dA+ i
∫

Ω′
(⟨PG f ,G+g⟩−⟨G f ,PG+g⟩)dV

=−i
∫

Ω′
⟨G f ,g⟩dV

because PG+g = g and PG f = 0. Since Σ′ can be chosen arbitrarily to the past,
this shows

(13) (G f ,G+g) =−i
∫

J−(Σ)
⟨G f ,g⟩dV.
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A similar computation yields

(14) (G f ,G−g) = i
∫

J+(Σ)
⟨G f ,g⟩dV.

Subtracting (14) from (13) yields (12) and concludes the proof of assertion (ii). �
Remark 4.6. Similarly to the bosonic case, we find

{Φτ( f ),Φ+
τ (g)}= 0

if the supports of f and g are causally disjoint.

Remark 4.7. Using the anti-commutation relations in Theorem 4.5 (ii), the com-
putation of n-point functions can be reduced to those of the form

τn,n′( f1, . . . , fn,g1, . . . ,gn′) = ⟨Ωτ ,Φτ( f1) · · ·Φτ( fn)Φ+
τ (g1) · · ·Φ+

τ (gn′)Ωτ⟩τ .

As in the bosonic case, the n-point functions satisfy the field equation in the distri-
butional sense in each argument and extend to distributions on M×·· ·×M.

If one uses the self-dual fermionic algebra Asd
ferm(M,S,P) instead of Aferm(M,S,P),

then one gets the quantum field

Ψτ( f ) := πτ(b(G f ))

where b is as in Definition A.6. Then the analogue to Theorem 4.5 is

Theorem 4.8. Let (M,S,P) be an object in GlobHypSkewDef and τ a state on the
corresponding self-dual fermionic algebra Asd

ferm(M,S,P). Then
(i) PΨτ = 0 holds in the distributional sense;

(ii) the quantum field takes values in self-adjoint operators, Ψτ( f ) = Ψτ( f )∗ for
all f ∈C∞

c (M,S);
(iii) the quantum fields satisfy the canonical anti-commutation relations, i.e.,

{Ψτ( f ),Ψτ(g)}=
∫

M
⟨G f ,g⟩dV · idHτ

for all f ,g ∈C∞
c (M,S).

Remark 4.9. It is interesting to compare the concept of locally covariant quantum
field theories as proposed in [11] to the axiomatic approach to quantum field theory
on Minkowski space based on the Gårding-Wightman axioms as exposed in [35,
Sec. IX.8]. Property 1 (relativistic invariance of states) and Property 6 (Poincaré
invariance of the field) in [35] are replaced by functoriality (covariance). Prop-
erty 4 (invariant domain for fields) and Property 5 (regularity of the field) have
been encoded in strong regularity of the state used to define the quantum field in
the bosonic case and are automatic in the fermionic case. Property 7 (local commu-
tativity or microscopic causality) is contained in Theorems 4.2 and 4.5. Property 3
(existence and uniqueness of the vacuum) has no analogue and is replaced by the
choice of a state. Property 8 (cyclicity of the vacuum) is then automatic by the
general properties of the GNS-construction.
There remains one axiom, Property 2 (spectral condition), which we have not dis-
cussed at all. It gets replaced by the Hadamard condition on the state chosen. It was
observed by Radzikowski [32] that earlier formulations of this condition are equiv-
alent to a condition on the wave front set of the 2-point function. Much work has
been put into constructing and investigating Hadamard states for various examples
of fields, see e.g. [15, 16, 19, 25, 36, 37, 38, 42] and the references therein.
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APPENDIX A. ALGEBRAS OF CANONICAL (ANTI-) COMMUTATION
RELATIONS

We collect the necessary algebraic facts about CAR and CCR-algebras.

A.1. CAR algebras. The symbol “CAR” stands for “canonical anti-commutation
relations”. These algebras are related to pre-Hilbert spaces. We always assume the
Hermitian inner product (· , ·) to be linear in the first argument and anti-linear in
the second.

Definition A.1. A CAR-representation of a complex pre-Hilbert space (V,(· , ·)) is
a pair (a,A), where A is a unital C∗-algebra and a : V → A is an anti-linear map
satisfying:

(i) A =C∗(a(V )),
(ii) {a(v1),a(v2)}= 0 and

(iii) {a(v1)
∗,a(v2)}= (v1,v2) ·1,

for all v1,v2 ∈V .

We want to discuss CAR-representations in terms of C∗-Clifford algebras, whose
definition we recall. Given a complex pre-Hilbert vector space (V,(· , ·)), we denote
by VC := V ⊗RC the complexification of V considered as a real vector space and
by qC the complex-bilinear extension of Re(· , ·) to VC. Let Clalg(VC,qC) be the
algebraic Clifford algebra of (VC,qC). It is an associative complex algebra with
unit and contains VC as a vector subspace. Its multiplication is called Clifford
multiplication and denoted by “ ·”. It satisfies the Clifford relations

(15) v ·w+w · v =−2qC(v,w)1

for all v,w ∈ VC. Define the ∗-operator on Clalg(VC,qC) to be the unique anti-
multiplicative and anti-linear extension of the anti-linear map VC →VC, v1+ iv2 7→
−(v1 + iv2) =−(v1 − iv2) for all v1,v2 ∈V . In other words,

∗( ∑
i1<...<ik

αi1,...,ik zi1 · . . . · zik) = (−1)k ∑
i1<...<ik

αi1,...,ik · zik · . . . · zi1

for all k ∈ N and zi1 , . . . ,zik ∈VC. Let ∥ · ∥∞ be defined by

∥a∥∞ := sup
π∈Rep(V )

(∥π(a)∥)

for every a ∈ Clalg(VC,qC), where Rep(V ) denotes the set of all (isomorphism
classes of) ∗-homomorphisms from Clalg(VC,qC) to C∗-algebras. Then ∥ · ∥∞ can
be shown to be a well-defined C∗-norm on Clalg(VC,qC), see e.g. [31, Sec. 1.2].

Definition A.2. The C∗-Clifford algebra of a pre-Hilbert space (V,(· , ·)) is the C∗-
completion of Clalg(VC,qC) with respect to the C∗-norm ∥·∥∞ and the star operator
defined above.

Theorem A.3. For every complex pre-Hilbert space (V,(· , ·)), the C∗-Clifford al-
gebra Cl(VC,qC) provides a CAR-representation of (V,(· , ·)) via a(v) = 1

2(v+ iJv),
where J is the complex structure of V .
Moreover, CAR-representations have the following universal property: Let Â
be any unital C∗-algebra and â : V → Â be any anti-linear map satisfying Ax-
ioms (ii) and (iii) of Definition A.1. Then there exists a unique C∗-morphism
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α̃ : Cl(VC,qC)→ Â such that

V
â //

a
��

Â

Cl(VC,qC)

α̃
;;

commutes. Furthermore, α̃ is injective.

Proof. Define p∓ :V →Cl(VC,qC) by p−(v) := 1
2(v+ iJv) and p+(v) := 1

2(v− iJv).
Since p−(Jv) =−ip−(v), the map a = p− is anti-linear. Because of a(v)−a(v)∗ =
p−(v) + p+(v) = v, the C∗-subalgebra of Cl(VC,qC) generated by the image of
a contains V . Hence a(V ) generates Cl(VC,qC) as a C∗-algebra. Axiom (i) in
Definition A.1 is proved.
Let v1,v2 ∈V , then

{a(v1),a(v2)} = p−(v1) · p−(v2)+ p−(v2) · p−(v1)

= −2qC(p−(v1), p−(v2)) ·1
= 0,

which is Axiom (ii) in Definition A.1. Furthermore,

{a(v1)
∗,a(v2)} = −p+(v1) · p−(v2)− p−(v2) · p+(v1)

= 2qC(p+(v1), p−(v2)) ·1
= Re(v1,v2) ·1+ iRe(v1,Jv2) ·1
= (v1,v2) ·1,

which shows Axiom (iii) in Definition A.1. Therefore (a,Cl(VC,qC)) is a CAR-
representation of (V,(· , ·)).
The second part of the theorem follows from Cl(VC,qC) being simple, i.e.,
from the non-existence of non-trivial closed two-sided ∗-invariant ideals, see [31,
Thm. 1.2.2]. Let â : V → Â be any other anti-linear map satisfying (ii) and (iii)
in Definition A.1. Since a and â are injective (which is clear by Axiom (iii)) one
may set α(a(v)) := â(v) for all v ∈ V . Axioms (ii) and (iii) allow us to extend α
to a C∗-morphism α̃ : C∗(a(V )) = Cl(VC,qC)→ Â. The injectivity of â implies the
non-triviality of α̃ which, together with the simplicity of Cl(VC,qC), provides the
injectivity of α̃ . Therefore we found an injective C∗-morphism α̃ : Cl(VC,qC)→ Â
with α̃ ◦a = â. It is unique since it is determined by a and â on a subset of genera-
tors. This concludes the proof of Theorem A.3. �

For an alternative description of the CAR-representation in terms of creation and
annihilation operators on the fermionic Fock space we refer to [9, Prop. 5.2.2].

Corollary A.4. For every complex pre-Hilbert space (V,(· , ·)) there exists a CAR-
representation of (V,(· , ·)), unique up to C∗-isomorphism.

Proof. The existence has already been proved in Theorem A.3. Let (â, Â) be any
CAR-representation of (V,(· , ·)). Theorem A.3 states the existence of a unique
injective C∗-morphism α̃ : Cl(VC,qC)→ Â such that α̃ ◦ a = â. Now α̃ has to be
surjective since Axiom (i) holds for (â, Â). �
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From now on, given a complex pre-Hilbert space (V,(· , ·)), we denote the C∗-
algebra Cl(VC,qC) associated with the CAR-representation (a,Cl(VC,qC)) of
(V,(· , ·)) by CAR(V,(· , ·)). We list the properties of CAR-representations which
are relevant for quantization, see also [9, Vol. II, Thm. 5.2.5, p. 15].

Proposition A.5. Let (V,(· , ·)) be a complex pre-Hilbert space and
(a,CAR(V,(· , ·))) its CAR-representation.

(i) For every v ∈ V one has ∥a(v)∥ = |v| = (v,v)
1
2 , where ∥ · ∥ denotes the C∗-

norm on CAR(V,(· , ·)).
(ii) The C∗-algebra CAR(V,(· , ·)) is simple, i.e., it has no closed two-sided ∗-

ideals other than {0} and the algebra itself.
(iii) The algebra CAR(V,(· , ·)) is Z2-graded,

CAR(V,(· , ·)) = CAReven(V,(· , ·))⊕CARodd(V,(· , ·)),

and a(V )⊂ CARodd(V,(· , ·)).
(iv) Let f : V →V ′ be an isometric linear embedding, where (V ′,(· , ·)′) is another

complex pre-Hilbert space. Then there exists a unique injective C∗-morphism
CAR( f ) : CAR(V,(· , ·))→ CAR(V ′,(· , ·)′) such that

V
f //

a
��

V ′

a′
��

CAR(V,(· , ·))
CAR( f ) // CAR(V ′,(· , ·)′)

commutes.

Proof. We show assertion (i) . On the one hand, the C∗-property of the norm ∥ · ∥
implies

∥a(v)∥4 = ∥a(v)a(v)∗∥2

= ∥(a(v)a(v)∗)2∥.

On the other hand,

(a(v)a(v)∗)2 = a(v){a(v)∗,a(v)}a(v)∗

= |v|2a(v)a(v)∗,

where we used a(v)2 = 0 which follows from the second axiom. We deduce that

∥a(v)∥4 = |v|2 · ∥a(v)a(v)∗∥
= |v|2 · ∥a(v)∥2.

Since a is injective, we obtain the result.
Assertion (ii) follows from Cl(VC,qC) being simple, see [31, Thm. 1.2.2]. Alterna-
tively, it can be deduced from the universal property formulated in Theorem A.3.
To see (iii) we recall that the Clifford algebra Cl(VC,qC) has a Z2-grading where
the even part is generated by products of an even number of vectors in VC and,
similarly, the odd part is the vector space span of products of an odd number of
vectors in VC, see [31, p. 27]. This is compatible with the Clifford relations (15).
Clearly, a(V )⊂ CARodd(V,(· , ·)).
It remains to show (iv). It is straightforward to check that a′◦ f satisfies Axioms (ii)
and (iii) in Definition A.1. The result follows from Theorem A.3. �



30 CHRISTIAN BÄR AND NICOLAS GINOUX

One easily sees that CAR(id) = id and that CAR( f ′ ◦ f ) = CAR( f ′)◦CAR( f ) for

all isometric linear embeddings V
f−→ V ′ f ′−→ V ′′. Therefore we have constructed a

covariant functor
CAR : HILB−→ C∗Alg,

where HILB denotes the category whose objects are the complex pre-Hilbert spaces
and whose morphisms are the isometric linear embeddings.
For real pre-Hilbert spaces there is the concept of self-dual CAR-representations.

Definition A.6. A self-dual CAR-representation of a real pre-Hilbert space
(V,(· , ·)) is a pair (b,A), where A is a unital C∗-algebra and b : V → A is an R-
linear map satisfying:

(i) A =C∗(b(V )),
(ii) b(v) = b(v)∗ and

(iii) {b(v1),b(v2)}= (v1,v2) ·1,
for all v,v1,v2 ∈V .

Given a self-dual CAR-representation, one can extend b to a C-linear map from
the complexification VC to A. This extension b : VC → A then satisfies b(v̄) = b(v)∗
and {b(v1),b(v2)} = (v1, v̄2) · 1 for all v,v1,v2 ∈ VC. These are the axioms of a
self-dual CAR-representation as in [1, p. 386].

Theorem A.7. For every real pre-Hilbert space (V,(· , ·)), the C∗-Clifford algebra
Cl(VC,qC) provides a self-dual CAR-representation of (V,(· , ·)) via b(v) = i√

2
v.

Moreover, self-dual CAR-representations have the following universal property:
Let Â be any unital C∗-algebra and b̂ : V → Â be any R-linear map satisfying
Axioms (ii) and (iii) of Definition A.6. Then there exists a unique C∗-morphism
β̃ : Cl(VC,qC)→ Â such that

V
b̂ //

b
��

Â

Cl(VC,qC)

β̃
;;

commutes. Furthermore, β̃ is injective.

Corollary A.8. For every real pre-Hilbert space (V,(· , ·)) there exists a CAR-
representation of (V,(· , ·)), unique up to C∗-isomorphism.

From now on, given a real pre-Hilbert space (V,(· , ·)), we denote the C∗-algebra
Cl(VC,qC) associated with the self-dual CAR-representation (b,Cl(VC,qC)) of
(V,(· , ·)) by CARsd(V,(· , ·)).
Proposition A.9. Let (V,(· , ·)) be a real pre-Hilbert space and
(b,CARsd(V,(· , ·))) its self-dual CAR-representation.

(i) For every v ∈V one has ∥b(v)∥= 1√
2
|v|, where ∥ · ∥ denotes the C∗-norm on

CARsd(V,(· , ·)).
(ii) The C∗-algebra CARsd(V,(· , ·)) is simple.

(iii) The algebra CARsd(V,(· , ·)) is Z2-graded,

CARsd(V,(· , ·)) = CAReven
sd (V,(· , ·))⊕CARodd

sd (V,(· , ·)),
and b(V )⊂ CARodd

sd (V,(· , ·)).
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(iv) Let f : V →V ′ be an isometric linear embedding, where (V ′,(· , ·)′) is another
real pre-Hilbert space. Then there exists a unique injective C∗-morphism
CARsd( f ) : CARsd(V,(· , ·))→ CARsd(V ′,(· , ·)′) such that

V
f //

b
��

V ′

b′

��
CARsd(V,(· , ·))

CARsd( f ) // CARsd(V ′,(· , ·)′)
commutes.

The proofs are similar to the ones for CAR-representations of complex pre-Hilbert
spaces. We have constructed a functor

CARsd : HILBR −→ C∗Alg,

where HILBR denotes the category whose objects are the real pre-Hilbert spaces
and whose morphisms are the isometric linear embeddings.

Remark A.10. Let (V,(· , ·)) be a complex pre-Hilbert space. If we consider V as
a real vector space, then we have the real pre-Hilbert space (V,Re(· , ·)). For the
corresponding CAR-representations we have

CAR(V,(· , ·)) = CARsd(V,Re(· , ·)) = Cl(VC,qC)

and
b(v) =

i√
2
(a(v)−a(v)∗).

A.2. CCR algebras. In this section, we recall the construction of the representa-
tion of any (real) symplectic vector space by the so-called canonical commutation
relations (CCR). Proofs can be found in [4, Sec. 4.2].

Definition A.11. A CCR-representation of a symplectic vector space (V,ω) is a
pair (w,A), where A is a unital C∗-algebra and w is a map V → A satisfying:

(i) A =C∗(w(V )),
(ii) w(0) = 1,

(iii) w(−φ) = w(φ)∗,
(iv) w(φ +ψ) = eiω(φ,ψ)/2w(φ) ·w(ψ),

for all φ ,ψ ∈V .

The map w is in general neither linear, nor any kind of group homomorphism, nor
continuous [4, Prop. 4.2.3].

Example A.12. Given any symplectic vector space (V,ω), consider the Hilbert
space H := L2(V,C), where V is endowed with the counting measure. Define the
map w from V into the space L (H) of bounded endomorphisms of H by

(w(φ)F)(ψ) := eiω(φ,ψ)/2F(φ +ψ),

for all φ,ψ ∈ V and F ∈ H. It is well-known that L (H) is a C∗-algebra with the
operator norm as C∗-norm, and that the map w satisfies the Axioms (ii)-(iv) from
Definition A.11, see e.g. [4, Ex. 4.2.2]. Hence setting A := C∗(w(V )), the pair
(w,A) provides a CCR-representation of (V,ω).

This is essentially the only example of CCR-representation:
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Theorem A.13. Let (V,ω) be a symplectic vector space and (ŵ, Â) be a pair
satisfying the Axioms (ii)-(iv) of Definition A.11. Then there exists a unique C∗-
morphism Φ : A → Â such that Φ◦w = ŵ, where (w,A) is the CCR-representation
from Example A.12. Moreover, Φ is injective.
In particular, (V,ω) has a CCR-representation, unique up to C∗-isomorphism.

We denote the C∗-algebra associated to the CCR-representation of (V,ω) from
Example A.12 by CCR(V,ω). As a consequence of Theorem A.13, we obtain the
following important corollary.

Corollary A.14. Let (V,ω) be a symplectic vector space and (w,CCR(V,ω)) its
CCR-representation.

(i) The C∗-algebra CCR(V,ω) is simple, i.e., it has no closed two-sided ∗-ideals
other than {0} and the algebra itself.

(ii) Let (V ′,ω ′) be another symplectic vector space and f : V → V ′ a symplec-
tic linear map. Then there exists a unique injective C∗-morphism CCR( f ) :
CCR(V,ω)→ CCR(V ′,ω ′) such that

V
f //

w
��

V ′

w′

��
CCR(V,ω)

CCR( f ) // CCR(V ′,ω ′)

commutes.

Obviously CCR(id) = id and CCR( f ′ ◦ f ) = CCR( f ′)◦CCR( f ) for all symplectic

linear maps V
f→V ′ f ′→V ′′, so that we have constructed a covariant functor

CCR : Sympl−→ C∗Alg.
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