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1 SUMMARY 

During double fertilization of angiosperms, the two sperm cells are transported 

conjointly to the female gametophyte, where one sperm cell fuses with the egg cell and 

the other sperm cell with the central cell. These fusions have to take place in a 

controlled manner to avoid undesired gamete fusion events and prevent polyspermy. 

Only little is known about gamete recognition and coordination of gamete fusion in 

plants. The aim of this work was to characterize the function of the Arabidopsis egg 

cell-expressed EGG CELL 1 (EC1) gene family during gamete recognition and to 

identify putative interaction partners. The EC1 gene family comprises five members 

that encode cysteine-rich proteins, which are secreted from the egg cell during 

fertilization. Triple knockout mutants were additionally transformed with an RNAi 

construct targeting the remaining two genes. In these plants (ec1+/-) the fusion of the 

sperm cells with the female gametes was impaired resulting in a reduced seed set. 

Detailed analyses of ec1+/- plants showed that in 45% of the ovules of ec1+/- plants 

sperm cells did not fuse with the female gametes and that non-fused sperm cells were 

always observed as pairs, which indicated that EC1 might function in sperm cell 

separation. This hypothesis was supported by the observation that single sperm cells of 

mutant pollen seemed to be able to fuse in ec1 ovules. With the aim to identify 

interaction partners of EC1, a pollen cDNA library was screened using a yeast-two-

hybrid approach. Two putative interactors were found: (i) a protein containing two 

ubiqutin-like (UBL) domains (UbDKγ3), which is probably involved in substrate 

delivery to the 26S proteasome and (ii) a regulatory subunit of the Phosphatase 2A 

(PP2A B’θ). The putative interaction with a PP2A subunit and predicted 

phosphorylation sites at the C-terminus of EC1 indicated that phosphorylation might 

play a role in EC1. The transient expression of a phospho-mimicking variant of EC1 

fused to eGFP in N. benthamiana leaves was more stable, i.e. showed fluorescence, 

compared to the wild type form of EC1. Moreover, a proteasome inhibitor experiment 

with plants expressing EC1.1 fused to eGFP under control of the 35S promoter 

suggested that misexpressed EC1 is rapidly degraded via the ubiquitin-proteasome 

pathway. Based on these findings, it was hypothesized that the pollen tube delivers the 

regulatory subunit of PP2A, which triggers dephosphorylation of the secreted EC1 and 
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thereby marks it for degradation. This was supported by the observation that 

misexpressed PP2A B’θ in the synergid cell partially phenocopied the ec1 phenotype. 

This work shows that EC1 is essential during double fertilization probably for 

gamete recognition or sperm cell separation. After fertilization and in all other cells, 

EC1 is unstable, its degradation is highly regulated and any protein accumulation is 

avoided. 
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2 ZUSAMMENFASSUNG 

Während der Doppelten Befruchtung bei Angiospermen werden die zwei 

Spermazellen als Einheit zum weiblichen Gametophyten transportiert, wo eine der 

Spermazellen mit der Eizelle und die andere mit der Zentralzelle fusioniert. Diese 

Zellfusionen müssen kontrolliert ablaufen, um ungewollte Fusionen zu verhindern und 

um Polyspermie zu vermeiden. In Pflanzen ist nur wenig über Gametenerkennung und 

die Koordinierung der Gametenfusion bekannt. Ziel dieser Arbeit war die funktionelle 

Charakterisierung der eizell-spezifisch exprimierten Genfamilie EGG CELL 1 (EC1) 

aus Arabidopsis während der Gameteninteraktion und die Identifizierung putativer 

Interaktionspartner. Die EC1 Genfamilie umfasst fünf Mitglieder, die cysteinreiche 

Proteine kodieren, welche während der Befruchtung von der Eizelle sekretiert werden. 

Dreifachmutanten wurden zusätzlich mit einem RNAi-Konstrukt transformiert, das 

gegen die übrigen zwei Gene gerichtet ist.  In diesen Pflanzen (ec1+/-) war die Fusion 

der Spermazellen mit den weiblichen Gameten beeinträchtigt was sich in einem 

verringerten Samenansatz äußerte. 

Detailierte Analysen der ec1+/- Pflanzen ergaben, dass in 45% der Samenanlagen die 

Spermazellen nicht mit den weiblichen Gameten fusionierten, und dass nicht-fusionierte 

Spermazellen immer als Paare beobachtet wurden. Dies deutete darauf hin, dass EC1 an 

der Trennung der Spermazellen beteiligt sein könnte. Diese Hypothese wurde durch die 

Beobachtung gestützt, dass einzelne Spermazellen einer Mutante in der Lage zu sein 

schienen mit einem der weiblichen Gameten in ec1 Samenanlagen zu fusionieren. Mit 

dem Ziel Interaktionspartner zu identifizieren, wurde ein Screen einer Pollenschlauch 

cDNA-Bank mittels Hefe-2-Hybrid System durchgeführt. Zwei putative 

Interaktionspartner wurden identifiziert: (i) ein Protein, das zwei Ubiquitin-ähnliche 

(UBL) Domänen enthält (UbDKγ3), welches vermutlich bei der Substratübergabe an 

das 26S Proteasom eine Rolle spielt und (ii) eine regulatorische Untereinheit der 

Phosphatase 2A (PP2A B’θ). Die mögliche Interaktion mit der PP2A Untereinheit und 

vorhergesagte Phosphorylierungsstellen am C-Terminus von EC1 deuteten darauf hin, 

dass Phosphorylierung eine Rolle bei EC1 spielen könnte. Die transiente Expression 

einer phospho-mimicking Variante von EC1 fusioniert mit eGFP war stabiler, d.h. 

zeigte Fluoreszenz, im Gegensatz zur Wildtypform von EC1. Desweiteren ließen 
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Proteasom-Inhibitor Experimente mit Pflanzen, die EC1.1-eGFP unter Kontrolle des 

35S Promotors exprimieren, darauf schließen, dass missexprimiertes EC1 rasch über 

den Ubiquitin-Proteasom-Weg abgebaut wird. Auf diesen Ergebnissen basierend wurde 

die Hypothese aufgestellt, dass der Pollenschlauch die regultorische Untereinheit B’θ 

der PP2A anliefert, welche dann die Dephosphorylierung des sekretierten EC1 auslöst 

und dieses dadurch gleichzeitig für den Abbau markiert. Dies wurde duch die 

Beobachtung bestätigt, dass Missexpression von PP2A B’θ in den Synergiden zu einem 

ec1-ähnlichen Phänotyp führte.  

Diese Arbeit zeigt, dass EC1 während der Doppelten Befruchtung essentiell ist, 

vermutlich für die Gametenerkennung oder für die Trennung der Spermazellen. Nach 

Befruchtung oder in allen anderen Zellen ist EC1 instabil, der ist Abbau streng reguliert 

und jegliche Akkumulation von Protein wird verhindert. 
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3 INTRODUCTION 

The lifecycle of higher plants alternates between a multicellular, diploid sporophyte and 

a multicellular, haploid gametophyte (Figure 1). In flowering plants (angiosperms), the 

major part of the plant body is represented by the sporophyte whereas the gametophytic 

generations are highly reduced. The sporophyte produces the flower, in which 

specialized cells undergo meiosis and develop haploid male and female spores that 

differentiate into the male and female gametophyte, respectively (Figure 1, red 

background). 

 

 

Figure 1: Schematic representation of the life cycle of a flowering plant. 
The diploid sporophyte (white background) develops flowers that contain female and male reproductive 
organs. The female organ (carpel) contains the ovary that encloses one or more ovules in which meiosis 
takes place. In the anthers of the male organ (stamen) the pollen mother cell differentiates, which 
undergoes meiosis. The haploid products of meiosis enter several rounds of mitosis resulting in the 
mature gametophytes, the embryo sac and the pollen grain (red background). The gametes contained in 
the gametophytes are unified during fertilization (grey background) giving rise to the next diploid 
generation. Image taken from www.wikipedia.org 
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The major function of the gametophytes is to produce the gametes. In angiosperms, two 

male gametes, the sperm cells, and two female gametes, the egg and the central cell are 

produced, both of each participating in the angiosperm characteristic double 

fertilization. The fusion of sperm and egg cell giving rise to the diploid zygote 

completes the lifecycle (Figure 1, grey background). From the zygote the embryo 

develops within the seed and is nurtured by the endosperm, which represents the second 

fertilization product. 

3.1 Development of the male gametophyte  

The development of the male gametophyte (pollen grain) takes place in the anther, 

which is part of the stamen, the male reproductive organ. Male gametophyte 

development is divided into microsporogenesis and microgametogenesis. During 

microsporogenesis the diploid pollen mother cell, also called microspore mother cell, 

undergoes meiosis producing a tetrad of haploid microspores. These haploid 

microspores are released from the tetrad and develop further into the mature male 

gametophyte, a developmental process that is called microgametogenesis. The 

microspores enlarge and polarize before they undergo the first mitosis, which is an 

asymmetric cell division and is called Pollen Mitosis I (PMI). The daughter cells consist 

of one large, vegetative cell and the smaller germ cell, representing the male germline. 

After PMI, the germ cell is engulfed within the cytoplasm of the larger vegetative cell. 

Some plant species including Arabidopsis shed tricelluar pollen. In these species the 

germ cell undergoes another division, Pollen Mitosis II (PMII), generating the two 

sperm cells. In most angiosperms however, the pollen is bicellular at anthesis. In these 

plants, PMII takes place in the growing pollen tube, which is formed by the vegetative 

cell (reviewed by Borg et al., 2009; Borg and Twell, 2010). 

3.2 Development of and cell specification in the female gametophyte 

The female gametophyte (embryo sac) develops within the ovule, which is located in 

the ovary and comprises the two phases of megasporogenesis and megagametogenesis, 

comparably to the development of the male gametophyte. Different types of patterning 

in the female gametophyte have been observed. The Polygonum-type, first observed in 

Polygonum divaricatum, occurs in most species (Strasburger, 1879; Maheshwari, 1950). 
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The Polygonum-type female gametophyte results after three rounds of nuclear divisions 

in a seven-celled structure with four distinct cell types. During megasporogenesis a cell 

from the nucellus (archesporial cell) differentiates into the megaspore mother cell 

(MMC, Figure 2A), which undergoes meiosis giving rise to four haploid megaspores 

(tetrad, Figure 2B). One of these megaspores develops into the functional megaspore, 

the remaining three megaspores undergo programmed cell death (Figure 2C). In the 

Polygonum-type of female gametophytes, the functional megaspore undergoes three 

rounds of nuclear divisions (mitosis without cytokinesis) resulting in a coenocyte with 

eight nuclei at distinct positions of the female gametophyte (Figure 2E, FG5, FG6). 

 

 

Figure 2: Development of the Arabidopsis female gametophyte, schematic representation. 
A Ovule primordium: initiation of the formation of outer (OIn) and inner integuments (IIn); archesporial 
cell within the nucellus (Nu) differentiates into megaspore mother cell (MMC); Fu = funiculus: 
connection to the septum. B Megaspore mother cell undergoes meiosis generating a tetrad of four haploid 
megaspores. C FG1 stage: Three of the megaspores undergo programmed cell death (DM = degenerated 
megaspores); the integuments continue to grow around the female gametophyte. D FG2 stage: after the 
first mitotic division of the FM the female gametophyte comprises two nuclei, the chalazal nucleus (CN) 
and the micropylar nucleus (MN). E After migration of the CN and MN to the chalazal and the 
micropylar pole, respectively, a large vacuole is formed in the center (v) (FG3). After two more rounds of 
nuclear divisions the female gametophyte contains eight nuclei (FG5). After cellularization (FG6) the 
female gametophyte consists of seven cells: One egg cell (EC) and two synergid cells (SC) at the 
micropylar pole, one central cell carrying two polar nuclei (PN) and a large central vacuole (CV) and 
three antipodal cells (AC) at the chalazal pole. In the mature female gametophyte, prior to fertilization 
(FG7), the polar nuclei have fused to form the central cell nucleus (CCN) and the antipodal cells 
degenerate. Image taken form Sundaresan and Alandaete-Saez, 2010. 
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Fig. 2. Schematic of female gametophyte development, based on the model plant Arabidopsis. (A) The megaspore mother cell (MMC) is
surrounded by epidermal cells of the nucellus (Nu) prior to undergoing meiosis to generate four spores. At this stage, the formation of the outer
(OIn) and inner (IIn) integuments has just initiated. (B) Diagram of MMC asymmetric meiosis that generates four spores (tetrad). Three of these
undergo programmed cell death. The proximal (chalazal) megaspore becomes the functional megaspore (FM). (C) FG1 stage. The FM is teardrop-
shaped and undergoes the first mitotic division. (D) FG2 stage. The female gametophyte comprises two nuclei. The nucellus (Nu) is enclosed by the
OIn, but not the IIn integuments. (E) Stages FG3 to FG7. The female gametophyte comprises two nuclei, separated by a large vacuole (V), that
undergo second and third mitotic divisions to generate the eight-nucleate mature embryo sac at the FG5 stage. Subsequent cellularization (FG6
stage) results in the formation of seven cells: two synergid cells (SC); one egg cell (EC); one central cell (CC) carrying two polar nuclei (PN); and
three antipodal cells (AC). By FG7, the two polar nuclei have fused to form the central cell nucleus (CCN), and the antipodal cells degenerate. 
CN, chalazal nucleus; CV, central vacuole; DM, degenerating megaspores; Fu, funiculus; IIn, inner integuments; MMC, megaspore mother cell; 
MN, micropylar nucleus; Nu, nucellus; OIn, outer integuments.
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After nuclei migration and cellularization, the female gametophyte contains seven 

cells: one egg cell and two synergid cells at the micropylar end, two polar nuclei 

forming the diploid central cell and three antipodal cells at the chalazal pole (Figure 

2E). In Arabidopsis, the antipodal cells degenerate prior to fertilization. At this 

developmental stage, the integuments have enlarged and completely surround the 

female gametophyte except for a small part. Through this opening, called the micropyle, 

the pollen tube will grow to deliver the two sperm cells during fertilization (reviewed by 

Yang et al., 2010; Sprunck and Gross-Hardt, 2011). 

3.3 Early and late events during double fertilization 

The major function of the male and the female gametophytes is to produce the 

gametes and enable their unification during double fertilization. The first step during 

fertilization is pollination. After a compatible pollen grain has landed on a stigma, 

adhesion of the pollen grain to a receptive stigma cell and hydration is required for the 

initiation of pollen tube growth (Figure 3A, 1). Some species are self incompatible, like 

the Brassica species. In these species, self-pollen is rejected and prevented from 

hydration and germination. Proteins on the pollen coat (S locus cysteine-rich protein, 

SCR) and on the stigma surface (S locus receptor kinase, SRK) are the main 

determinants that mediate the incompatibility response. The Brassica sporophytic self 

incompatibility (SSI) system has been studied for years and is currently the probably 

best understood SI system (reviewed by Fobis-Loisy et al., 2004). 

After successful hydration, pollen tube growth is initiated. The tip growing pollen 

tube navigates through the stigma and the style until it reaches the transmitting tract of 

the ovary (Figure 3A, 2). At some point during the journey the pollen tube changes its 

direction and grows along the funiculus towards the ovule (Figure 3A, 3+4). Thus, the 

growth of the pollen tube occurs in a directed manner. A couple of molecules have been 

identified that mediate the so-called pollen tube guidance. Some molecules important 

during the sporophytic phase of pollen tube guidance (Figure 3A, 2) have been 

identified, like for example the arabinogalactan protein TTS from tobacco (Cheung et 

al., 1995) or chemocyanin, a small basic protein from lily (Kim et al., 2003). In 

Arabidopsis, γ-amino butyric acid (GABA) (Palanivelu et al., 2003) and nitric oxide 

(NO) signaling have been shown to play a role (Prado et al., 2004; Prado et al., 2008). 
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Figure 3: Schematic representation of steps during double fertilization in Arabidopsis and structure 
of the mature ovule. 
A Phases of pollen tube guidance. Left: Arabidopsis pistil showing the pollen tube path by aniline blue 
staining; Right: Schematic drawing. 1 Pollen lands on stigma, pollen tube grows and penetrates the 
stigmatic tissue. 2 Growth through the transmitting tract. 3 Exit from transmitting tissue. 4 Funicular 
guidance. 5 Micropylar guidance. 6 Pollen tube reception (A: taken from Johnson and Lord, 2006). B 
DIC microscopy image of a mature Arabidopsis ovule. C Schematic representation of the mature female 
gametophyte (FG) of Arabidopsis showing the four cell types: egg cell, synergid cell, central cell and 
antipodal cells. Abbreviations: ap = antipodal cells; ccn = central cell nucleus; chz = chalaza; cv = central 
vacuole; ecn = egg cell nucleus; f = filiform apparatus; mp = micropyle; sn = synergid nucleus. (B + C: 
taken from Sprunck and Gross-Hardt, 2011). 

In contrast to the early phase of pollen tube guidance, in which the signals are 

derived from the sporophyte, the signals for funicular (Figure 3A, 4) and micropylar 

guidance (Figure 3A, 5) are produced by the female gametophyte. Over the past years, 

considerable progress has been made in identifying genes and proteins involved in the 

last steps of pollen tube guidance. Recently, the two K+ transporters CHX21 and 

CHX23 have been identified as candidates for perception of female gametophytic 

signals during these phases of pollen tube guidance. chx21 chx23 pollen tubes grow 

down the transmitting tract but fail to change their growth direction towards the ovule 

and to grow along the funiculus. CHX23 co-localizes with ER markers in the pollen 

tube and may play a role in K+ and/or H+ homeostasis. The authors hypothesized that 

CHX21 and CHX23 play a role in perception of funicular and micropylar guidance 

signals by affecting membrane trafficking to the tube apex (Lu et al., 2011). Moreover, 

224 M.A. Johnson · E. Lord

Fig. 1 Phases of pollen tube guidance. A The tube path is shown in an aniline blue stained
Arabidopsis pistil (left) and in a schematic (right). B Critical cells and structures of the
male and female gametophytes

female gametophyte, or embryo sac, develops within an ovule from a megas-
pore and most commonly consists of seven-cells (Yadegari and Drews 2004).
The egg and the two synergids develop at the micropylar pole, three antipo-
dal cells are located at the chalazal pole, the central cell is the largest cell and
lies between the other two groups of cells. With the exception of the central
cell, which is produced by fusion of a cell from each pole, each cell is haploid
(Yadegari and Drews 2004).

Pollen tubes only encounter sporophytic cells on their way to the ovule
and do not interact with gametophytic cells until they stop growing and burst
within one of the synergids. However, there is growing evidence that pollen
tube guidance is regulated by collaboration between sporophytic and game-
tophytic cells of the female tissue.

2
Major Models for Pollen Tube Guidance:
Floral Architecture and Chemotropism

Two major hypotheses have been proposed to explain the precise growth of
pollen tubes to ovules (Heslop-Harrison 1986, 1987). One holds that pistil

is based on division of labor, indicating that the differen-

tiation and coordination of single cell types has to be
tightly controlled. Here, we review current knowledge on

the mechanisms of cell specification in the FG.

The development of the female gametophyte
is characterized by a consistent pattern of nuclear
behavior

Oriented mitosis and defined nuclear positioning of

daughter nuclei are key features during the development

of Polygonum-type FGs. Elaborate microscopic analyses of
developing embryo sacs from maize and Arabidopsis
revealed a characteristic pattern of morphologies (Fig. 2a–h)

(Christensen et al. 1997; Diboll and Larson 1966; Huang
and Sheridan 1994; Kiesselbach 1998; Schneitz et al. 1995;

Vollbrecht and Hake 1995; Webb and Gunning 1994).

Shortly after meiosis, three of the megaspores degenerate,
whereas the functional megaspore enlarges, revealing a

pronounced micropylar region. After the first round of

karyokinesis, the two daughter nuclei are aligned along the
micropylar-chalazal axis, separated by a central vacuole.

Subsequently, another smaller vacuole is formed at the

chalazal pole of the developing FG (Fig. 2b). The asym-
metric enrichment of plastids observed in the micropylar

cytoplasmic domain of maize-developing embryo sacs

corroborates the bipolar axis (Huang and Sheridan 1994;
Vollbrecht and Hake 1995). During the second round of

karyokinesis in developing embryo sacs of maize, the

division planes lie nearly perpendicular to one another,

indicating different spindle orientations with respect to the

long axis. The daughter chromosomes at the micropylar
region migrate in a nearly horizontal fashion relative to the

long axis, whereas those in the chalazal region move nearly

longitudinally (Huang and Sheridan 1996). At the late four-
nucleate stage, one of each of the pairs of sister nuclei

migrates away from its sister nucleus and moves toward the

center of the embryo sac. By contrast, in Arabidopsis
embryo sacs, both pairs of daughter nuclei are initially

found in an almost transverse orientation to the micropylar-
chalazal (long) axis at the early four-nucleate stage. At

later four-nucleate stages the sister nuclei at both poles

become positioned along the long axis, implying nuclear
migration (Fig. 2c) (Christensen et al. 1997; Punwani and

Drews 2008; Yadegari and Drews 2004). During the fol-

lowing third mitosis, both in maize and in Arabidopsis, the
division plane of the micropylar-most nucleus is transverse

to the long axis, giving rise to two synergid nuclei

(Fig. 2d). The more chalazally positioned second nucleus
forms a longitudinal spindle and gives rise to the egg

nucleus and one of the two polar nuclei of the central cell

(Huang and Sheridan 1994; Drews and Yadegari 2002).
A similar pattern of perpendicular division planes is visible

at the chalazal pole, as the chalazal-most nucleus forms a

transverse spindle to the long axis and gives rise to the two
antipodal nuclei, while the more micropylar positioned

nucleus divides along the long axis and gives rise to one

antipodal nucleus and one polar nucleus (Fig. 2d). The
eight-nucleate coenocytic stage is a short phase in which

both cytokinesis and nuclear migration takes place.

Phragmoplasts between sister and non-sister nuclei are

Fig. 1 Arabidopsis thaliana ovule. a Schematic of the mature seven-
celled female gametophyte (FG). The FG is enclosed by the
integuments of the ovule, which provide a small opening (micropyle,
mp) as entry point for the pollen tube. The synergid nuclei (sn) are
positioned toward the filiform apparatus (f) that forms at the micropylar
pole of the synergids. The egg cell nucleus (ecn) is positioned at the
chalazal side of the egg, close to the central cell nucleus (ccn). Three

antipodals (ap) are located at the chalazal pole (chz) of the FG. The cell
vacuoles are indicated as shaded areas. The big central cell vacuole (cv)
fills a large part of the FG. b Differential interference contrast (DIC)
microscopy of a cleared ovule at maturity. Position of the nuclei is
indicated. Abbreviations: ap antipodal cells, ccn central cell nucleus,
chz chalaza, cv central vacuole, ecn egg cell nucleus, f filiform
apparatus, FG female gametophyte,mpmicropyle, sn synergid nucleus

Sex Plant Reprod
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two Arabidopsis mutants with defective micropylar pollen tube guidance have been 

described. The magatama (maa) mutants maa1 and maa3, of which the latter encodes a 

helicase, show a pollen tube guidance effect. The pollen tubes are normally attracted 

towards the ovule but fail to enter the micropyle (Shimizu and Okada, 2000; Shimizu et 

al., 2008). A similar phenotype was observed in hapless 2 (hap2) mutants. In addition 

to defects in gamete fusion, the loss of GCS1/HAP2 leads to defective micropylar pollen 

tube guidance. Interestingly, GCS1/HAP2 is specifically expressed in sperm cells 

indicating an active role of the male gametes in their delivery to the female gametes 

(von Besser et al., 2006). Higashiyama et al. (2001) found already ten years ago, that 

the synergid cell has the key role in final pollen tube attraction to the female 

gametophyte (Figure 3A, 5). Single cells of the naked female gametophyte of Torenia 

fournieri were ablated by a laser. These experiments showed that at least one intact 

synergid cell is needed to attract the pollen tube and that the egg cell and the central cell 

are not necessary for pollen tube attraction in Torenia (Higashiyama et al., 2001). In the 

last years molecules from different species have been identified that are secreted by the 

female gametophyte to attract pollen tubes. The maize EGG APPARATUS 1 (EA1) is 

expressed in the egg cell and the synergid cell and encodes a 94 amino acid protein, 

which is secreted into the cell walls of the nucellus cells at the micropylar region. 

Down-regulation of EA1 results in loss of micropylar pollen tube guidance, i.e. pollen 

tubes fail to enter the embryo sac (Márton et al., 2005). Moreover, it was shown that the 

predicted mature EA1 protein directly attracts maize pollen tubes in vitro (Márton and 

Dresselhaus, 2010). Similarly, the defensin-like LURE proteins have been identified as 

chemoattractants in Torenia fournieri (Okuda et al., 2009).  

After successful targeting to the micropylar opening, the pollen tube enters the 

female gametophyte, stops its growth and bursts to release the two sperm cells (Figure 

3A, 6). The receptor-like kinase FERONIA (FER) from Arabidopsis has been identified 

in a genetic screen for mutants where the reception of the pollen tube was affected 

(Huck et al., 2003). After entering a fer female gametophyte, pollen tubes fail to arrest 

and thus continue to grow. Consequently, double fertilization cannot take place. Besides 

vegetative tissues, FER is expressed in the synergid cells and the encoded plant-specific 

Catharanthus roseus Receptor-Like Kinase 1-Like (CrRLK1L) is polarly localized in 

the synergid plasma membrane at the filiform apparatus. Crossing experiments with 

Arabidopsis thaliana and different Brassicaceae species indicated that FER-mediated 

pollen tube reception acts as a reproductive isolation barrier (Escobar-Restrepo et al., 
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2007). Similar to fer, pollen tubes fail to arrest in abstinence by mutual consent (amc) 

and lorelei (lre) mutants (Boisson-Dernier et al., 2008; Capron et al., 2008). LRE is 

predominantly expressed in the synergid cell and encodes a small, putatively 

glucosylphosphatidylinositol (GPI)-anchored protein. In contrast to feronia, the 

majority of synergid cells in lorelei mutants do not degenerate after pollen tube entry 

(Capron et al., 2008; Tsukamoto et al., 2010). Similarly, synergid cells do also not 

degenerate in the amc mutant. However, in amc, the phenotype of overgrowing pollen 

tubes only occurs when an amc pollen tube grows into an amc female gametophyte 

(Boisson-Dernier et al., 2008). In Arabidopsis it was observed that only after direct 

interaction with the pollen tube, the synergid degenerates (Sandaklie-Nikolova et al., 

2007). In other species however, synergid cell death is triggered by pollination (Van 

Went and Willemse, 1984; Willemse and Van Went, 1984; Russell, 1992). 

Over the past years, two proteins have been identified, one of which appears to 

inhibit premature pollen tube burst before arrival at the synergid cell and the other one 

induces pollen tube burst allowing discharge of the sperm cells. The FERONIA 

homologs ANXUR 1 (ANX1) and ANX2 are preferentially expressed in pollen. The 

respective proteins function redundantly and are localized at the plasma membrane at 

the tip of the pollen tube. In vivo, the majority of anx1 anx2 pollen tubes stops growth in 

stigma and style tissues and fail to grow to the female gametophyte (Miyazaki et al., 

2009). In vitro experiments showed that the disruption of ANX1 and ANX2 results in 

pollen tube burst indicating a role of ANX1 and ANX2 in the timing of pollen tube 

growth, i.e. inhibition of burst until the pollen tube has reached the female gametophyte 

(Boisson-Dernier et al., 2009; Miyazaki et al., 2009). Recently it was proposed that 

ANX1 and ANX2 act as male counterparts of synergid cell-expressed FER and that 

these CrRLKL proteins may play a role in controlling cell wall integrity of the pollen 

tube tip (Boisson-Dernier et al., 2011). In maize, the synergid cell-expressed EMBRYO 

SAC 4 (ES4) is essential for gamete delivery. Experiments using a chemically 

synthesized peptide showed that ES4 induces pollen tube burst in vitro in a species 

dependent manner. This mechanism is induced by the ES4-mediated opening of the 

potassium channel KZM1 (Amien et al., 2010). 

In addition to pollen tube guidance, reception and burst, the synergid cells may also 

play a role in transporting the two non-motile sperm cells to the site of fusion with the 

egg and central cell. After pollination, the actin network of the receptive synergid cell 

reorganizes at the chalazal end and contributes to the formation of an intercellular actin 
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corona, which is suggested to mediate sperm cell transport to the future fusion site 

(Huang et al., 1999). Interestingly, on the surface of lily sperm cells, myosin I as been 

found as a counterpart of actin (Miller et al., 1995) and would thus provide the 

necessary motive force. 

3.4 Gamete interaction 

Gamete interaction is a fundamental process in all eukaryotes, nevertheless only little 

is known about molecular players participating in this process. Some important proteins 

for gamete recognition and fusion have been identified in mammals (Nixon et al., 2007; 

Primakoff and Myles, 2007). Here, the egg cell expresses CD9, which encodes a 

member of the tetraspanin superfamily. These proteins are characterized by four 

transmembrane domains and short, intracellular N- and C- termini. The molecular 

mechanism of CD9 function is still unclear, but it is discussed to be involved in a 

binding step or membrane mixing of gametes. Moreover, GPI-anchored proteins appear 

to be important for gamete fusion. Pig-a encodes the first enzyme in the biosynthetic 

pathway of the GPI-anchor. Female mice with an egg cell-specific knockout of Pig-a 

are infertile. A putative role for GPI-anchored proteins is in establishment or 

maintenance in specific lipid microdomains of the plasma membrane. However, until 

now there is no experimental evidence. IZUMO is testis-specifically expressed and 

encodes an immunoglobulin superfamily (IgSF) type I transmembrane protein with one 

extracellular domain that is essential for gamete fusion in mammals. A member of the 

epididymal produced cysteine-rich secretory proteins (CRISPs), called DE or CRISP-1, 

is tightly associated with the sperm plasma membrane but also binds to the fusogenic 

region of the egg cell and may be essential for fertilization. Other possible players in 

mammalian gamete recognition and fusion of the sperm cell may be the ADAM (A 

Disintegrin And Metalloprotease) family of integral membrane proteins (Rubinstein et 

al., 2006). Most of the putative players have been identified by means of monoclonal 

antibodies that inhibit egg-sperm fusion. However, for some of the candidates the exact 

function remains to be determined. 

In plants the situation is even more elusive (Sprunck, 2010); only one protein has 

been described that seems to be essential for gamete fusion. The GENERATIVE CELL 

SPECIFIC 1/HAPLESS 2 (GCS1/HAP2) gene form Arabidopsis is specifically 

expressed in sperm cells and encodes a protein with an extracellular N-terminus, which 
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is indispensible for gamete interaction, one transmembrane domain and a histidine-rich 

C-terminus. Mutant gcs1 sperm cells are delivered to the female gametophyte but fail to 

fuse with the egg and the central cell (Mori et al., 2006; von Besser et al., 2006; Mori et 

al., 2010). However, direct participation of GCS1 in the membrane fusion step has not 

been shown in Arabidopsis gametes. 

Orthologs of GCS1 have also been identified in red and green algae and in the 

malaria parasite Plasmodium (Mori et al., 2006). In Plasmodium and Chlamydomonas, 

it could be shown that GCS1 is directly involved in membrane fusion after the 

membrane merger during gamete interaction (Hirai et al., 2008; Liu et al., 2008). In 

addition to GCS1, the surface protein P48/45 of the 6-cys family from Plasmodium has 

a central role in fertilization. The 6-cys family seems to be Apicomplexan specific and 

encodes proteins with a double six-cysteine domain. The P48/45 protein is present on 

the surface of male and female gametes, however only the male P48/45 knockout 

gametes are affected during fertilization, being unable to attach to or penetrate female 

gametes (van Dijk et al., 2001). Recently, other members of the 6-cys family in addition 

to P48/45 have been identified, termed P230 and P47. Similar to P48/45, P230 is 

essential for male fertility, whereas P47 plays a role in female gamete fertility. In 

knockout mutants of P230 and P47 the attachment of Plasmodium gametes is disturbed. 

The failure of gamete attachment in 6-cys family mutants indicates that these proteins 

function upstream of GCS1, which is essential for gamete fusion (van Dijk et al., 2010). 

3.5 The versatile roles of small cysteine-rich proteins 

Small, cysteine-rich proteins (CRPs) play key roles in diverse mechanisms of cell-

cell communication during development and plant reproduction (Higashiyama, 2010; 

Marshall et al., 2011). Common features of these proteins are a small size of less than 

160 amino acids, an N-terminal region with a signal peptide for secretion and a C-

terminal part containing 4 to 16 cysteine residues (Marshall et al., 2011). However, not 

many pairs of receptors and cysteine-rich proteins as ligands have been identified so far. 

Root growth and development involve CRP-mediated signaling. The class of 

cysteine-rich Rapid Alkalinization Factor (RALF) proteins has been shown to 

negatively influence root growth (Pearce et al., 2001) and probably also plays a role in 

other plant developmental aspects. RALF proteins are named after their ability to induce 

alkalinization of the medium in cell suspension cultures by binding to a cell surface 
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receptor and inhibiting a membrane bound H+-ATPase. Besides, the process of stoma 

patterning and differentiation also seems to involve CRPs as signaling molecules. 

EPIDERMAL PATTERNING FACTOR 1 (EPF1) and EPF2 are expressed in stomatal 

precursor cells and negatively regulate stomata development (Hara et al., 2007; Hara et 

al., 2009). It is suggested that EPF signals are perceived by receptor-like kinase TOO 

MANY MOUTHS (TMM) and receptor kinases of the ERECTA (ER) family, that are 

critical for proper patterning and differentiation of stomata (Shpak et al., 2005). 

Recently, the cysteine-rich protein STOMAGEN has been identified as positive 

regulator of stomata development (Sugano et al., 2010). 

In plant defense mechanisms, cysteine-rich proteins of the defensin and defensin-like 

class play important roles. First hints that defensins induce a pathogen response by 

affecting ion fluxes at the fungal membrane were obtained by works with Neurospora 

crassa and an anti-fungal peptide from radish (Terras et al., 1992a; Terras et al., 

1992b). CRPs are not only involved in plant defense but also in symbiosis between 

plant and bacteria. Scheres et al. (1990) found that in pea the two genes encoding the 

cysteine-rich peptides ENOD3 and ENOD14 are expressed exclusively during 

nodulation and are important for the interaction of nitrogen fixing bacteria and the host 

plant. Also in the leguminous plant Medicago truncatula a number of nodule-specific 

CRPs have been identified (Mergaert et al., 2003). 

In addition to roles in developmental processes and plant-microbe interaction, CRPs 

are also involved in various steps of plant reproduction (Figure 4) (Higashiyama, 2010; 

Marshall et al., 2011). As described in section 3.3, among the S-locus proteins there is 

one CRP, called SCR (Schopfer et al., 1999) or SP11 (Suzuki et al., 1999) playing an 

important role as the male determinant in the self-incompatibility response. Contrarily, 

in poppy, the female determinant of SI encodes a CRP named Papaver rhoeas stigma S-

determinant (PrsS) (Foote et al., 1994; Wheeler et al., 2009). In tomato, receptor-ligand 

pairs with LRRs as receptors and CRPs as ligands have been identified that are essential 

for pollen germination and fertilization. Lycopersicon esculentum Pollen-specific 

Receptor Kinase 1 (LePRK1), LePRK2 and LePRK3 bind, among other CPRs, the 

pollen-specific, LAT52, which is a small CRP of the Kunitz trypsin inhibitor class, and 

the stigma-expressed LeSTIG1 (Muschietti et al., 1994; Tang et al., 2004). From lily, a 

CRP of the lipid-transfer protein class called Stigma/style Cysteine-rich Adhesion 

(SCA) has been isolated that mediates the adhesion of the pollen tube wall to the 

epidermis cells of the transmitting tract (Mollet et al., 2000; Park et al., 2000). The 
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defensin-like LURE proteins secreted from synergid cells in Torenia fourinieri have 

been shown to be essential for the final step of micropylar pollen tube guidance (Okuda 

et al., 2009). Moreover, defensin-like proteins are also involved in pollen tube burst. 

Similar to mechanisms in pathogen defense, the ES4 protein of maize leads to changes 

in ion fluxes by mediating the opening of the potassium channel KZM1, which causes 

pollen tube burst (Amien et al., 2010). Additionally, CRPs play a role after fertilization 

in seed development. In maize, CRPs have been identified that are specifically 

expressed in distinct domains of the endosperm like AE1, BAP and ZmESR-6 that may 

regulate the transfer of nutrients to the developing embryo (Magnard et al., 2000; Serna 

et al., 2001; Balandin et al., 2005). Moreover, the paternally imprinted MATERNALLY 

EXPRESSED 1 (MEG1) from maize, which is endosperm transfer cell-specifically 

expressed and important for the correct development of these cells might function in 

nutrient trafficking from the maternal tissue into the developing seed (Gutierrez-Marcos 

et al., 2004; Marshall et al., 2011). 

 

 

Figure 4: Schematic drawing showing cysteine-rich proteins (CRPs) involved in cell-cell 
communication during reproduction. 
Left side: Pollination of an ovary (schematic drawing). Right side, top image: CRPs involved in pollen-
stigma interaction, pollen germination and pollen tube growth are illustrated. Right side, bottom image: 
CRPs that play a role in male and female gametophyte interactions are shown. Image taken from Marshall 
et al., 2011. of flowering plants have evolved a method of preventing

self-fertilization at this stage, known as self-incompatibility
(SI). SI is pivotal for maintaining genetic diversity and it
has been attributed to the successful evolution of angio-
sperms (Whitehouse, 1950). SI determinants were first
identified in Brassica through molecular cloning of the
‘sterility locus’ (S-locus), and are expressed in the stigma,
pollen or anther. There are three S-locus derived proteins
expressed on the stigma surface—S-locus glycoprotein
(SLG), S-locus receptor-like kinase (SRK) (Stein et al.,
1991), and a membrane-anchored protein kinase, named M
locus protein kinase (MLPK) (Murase et al., 2004), and also
one secreted by the anther and pollen coat—S-locus CRP
(SCR) (Schopfer et al., 1999) or S-locus protein 11 (SP11)
(Suzuki et al., 1999). The latter CRP contains eight
conserved cysteine residues and interacts with the two
S-locus receptors present in the stigmatic membranes
(Takayama et al., 2001). Conversely, in poppies, it is the
female determinant of SI that encodes a secreted CRP, in
this case one containing four conserved cysteines and
named S-Protein Homologue (Foote et al., 1994) and later
renamed Papaver rhoeas stigma S-determinant (PrsS)
(Wheeler et al., 2009). When secreted by the papillae cells
PrsS is able to interact with the Papaver rhoeas pollen
S-determinant (PrpS), a novel small transmembrane pro-
tein expressed in pollen (Wheeler et al., 2009). In vitro
pollen tube growth assays first identified stigmatic candi-
date S-proteins that inhibited pollen tube growth. Inter-
actions with incompatible pollen also activated
downstream signalling events triggering programmed-cell
death (Thomas and Franklin-Tong, 2004). Although it is
not fully understood how S-proteins elicit these responses,
in the case of PrpS, it is proposed that it could act as
a calcium ion channel to initiate a calcium influx that
causes PCD of the pollen tube (Wheeler et al., 2010). These
data are consistent with the emerging trend that CRPs can

act as signalling ligands eliciting a variety of responses
in planta.

CRPs in pollen tube growth and guidance

Once accepted onto the stigmatic surface, the compatible
pollen grains hydrate and pollen tube formation is initiated
(Fig. 2). Three pollen-specific LRR receptor kinases identi-
fied in tomato, LePRK1, LePRK2, and LePRK3, have been
shown to bind two different CRP ligands at specific stages
of pollen tube growth. A small, pollen-specific CRP, Lat52,
is necessary to achieve pollen germination in vitro and
fertilization in vivo (Muschietti et al., 1994). Before germi-
nation, Lat52 binds to LePRK1, whereas after pollen tube
germination and prior to fertilization, Lat52 interacts with
the extracellular domain of LePRK2 (Tang et al., 2002).
Several other CRPs from stigma/style libraries have also
been shown to interact with LePRK2, among them,
LeSTIG1, a CRP with sixteen cysteine residues. Pollen tube
growth assays in vitro concluded that low concentrations of
available LeSTIG1 were sufficient to promote pollen tube
growth, thus implying that LeSTIG1 acts as a positive
regulator, and not a directional cue (Tang et al., 2004).
Further, in vitro competition assays demonstrated dissocia-
tion of the Lat52-LePRK2 complex upon treatment with
LeSTIG1, suggesting that LeSTIG1 outcompetes Lat52 for
the extracellular binding domain of LePRK2. However,
conclusive evidence for the action of LeSTIG1 in vivo is
lacking.

It was initially thought that pollen tube guidance
occurred via chemical gradient(s) produced by the female
sporophytic and gametophytic reproductive structures
(Mascarenhas, 1993). Emerging molecular data, however,
implicate a variety of other potential extracellular signals
including lipids (Preuss et al., 1993) and c-aminobutyric
acid (GABA) (Palanivelu et al., 2003). During their

Fig. 2. Schematic diagram showing CRPs involved in communication during plant reproduction. (Left) Schematic diagram of a pollinated
ovary. (Top right) Diagram representing CRPs acting during pollen–stigma interactions, pollen germination, and tube growth. (Bottom
right) CRPs involved in gametophytic interactions prior to fertilization. Different CRPs are shown as coloured ellipsoid structures.
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3.6 Identification of the EGG CELL 1 gene family 

The egg cell-specific gene family encoding Triticum aestivum EGG CELL 1 

(TaEC1) was found as the largest cluster of expressed sequence tags (ESTs) in a cDNA 

library of isolated egg cells from wheat (Sprunck et al., 2005). In BLAST searches a 

gene family comprising five members was identified that encode EC1 homologous 

proteins in Arabidopsis thaliana. One gene is located on chromosome 1 and was 

therefore named AtEC1.1, two genes in tandem on chromosome 2 (AtEC1.2a and 

AtEC1.2b), one on chromosome 4 (AtEC1.4) and one on chromosome 5 (AtEC1.5). The 

proteins encoded by the EC1 genes have a predicted N-terminal signal peptide for 

secretion and a conserved pattern of six cysteine residues in the middle part. The C-

terminus is more variable and contains numerous predicted phosphorylation sites. 

Several approaches were taken to analyze, whether this gene family also shows egg 

cell specific expression in Arabidopsis: (i) EC1 promoter activities were analyzed in 

transgenic plants driving the expression of the reporter gene β-glucuronidase (GUS) or 

of a nuclear localized eGFP, (ii) mRNA of EC1.1, EC1.2a and EC1.5 was detected 

using in situ hybridization and (iii) Arabidopsis plants expressing a fusion of eGFP and 

the EC1.1 coding sequence under control of the EC1.1 promoter were analyzed 

regarding protein localization. The results showed an egg cell-specific expression for 

the Arabidopsis EC1 gene family and a rapid loss of transcriptional activity after 

fertilization. 

Detailed analyses of ovules expressing EC1.1 fused to eGFP under control of the 

endogenous promoter showed that the fusion protein is located in vesicle-like structures 

in mature egg cells before fertilization. However, this pattern changes during 

fertilization. The fusion protein appears to be secreted at the site where fusion of egg 

cell and sperm cell will take place. The secretion of EC1 is probably triggered by pollen 

tube reception or burst (S. Sprunck, unpublished observation). 

To study the function of the EC1 gene family, T-DNA insertion lines were analyzed. 

Single knockout lines of EC1.1, EC1.4 and EC1.5 as well as double and triple mutants 

did not display any phenotype regarding seed set. To achieve a knockdown of the entire 

gene family an RNAi construct was generated targeting EC1.2a and EC1.2b 

simultaneously. In these plants, homozygous for the T-DNA insertion in EC1.1, EC1.4 

and EC1.5 and heterozygous for the RNAi construct, a reduced seed set of about 50% 

was observed. Pollination experiments with a sperm cell marker line (Ingouff et al., 
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2007) and the analysis of Feulgen stained mutant ovules revealed that sperm cells are 

delivered into the female gametophyte but were still detectable 24 to 40 hours after 

pollination indicating a defect in gamete interaction. 

(Sprunck, S., Rademacher, S., et al., in preparation) 

3.7 Aims of this work 

The EC1 genes encode small cysteine-rich proteins. One goal of this thesis was to 

determine and evaluate the phylogenetic relation of the EC1 proteins to other members 

of the recently annotated and classified superfamily of CRPs in Arabidopsis (Silverstein 

et al., 2007). Moreover, homologous proteins to EC1 in other species should be 

identified and subjected to bioinformatic analyses. Another objective of this thesis was 

to continue the characterization of the phenotype of EC1 knockdown plants in detail. 

This included transmission analysis of the RNAi construct, dissection of the fertilization 

process, quantification of phenotypes and functional analyses by ectopic overexpression 

of EC1 in vegetative tissues. With the aim to perform biochemical approaches, the EC1 

genes should be heterologously expressed and applied in bioassays to address the 

mechanistic role of EC1. To understand the molecular mechanism of EC1 function, 

another goal was to identify EC1-interacting proteins using the yeast-two-hybrid 

system. After verification of interaction, identified candidates should then be 

functionally characterized by analyzing knockdown mutants and overexpressing plants.  
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4 MATERIAL & METHODS 

4.1 Standard molecular biology work  

Standard methods of molecular biology were performed according to Sambrook 

et al. (1989) using molecular grade reagents. 

4.2 Bioinformatic analyses 

To gather general information about genes, nucleotide and protein sequences, The 

Arabidopsis Information Resource (TAIR, http://arabidopsis.org/) and the National 

Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) were 

consulted. For analysis of protein sequences, structures and proteomic tools, programs 

on the ExPASy page (Expert Protein Analysis System, http://expasy.org/) were used. 

For mass spectrometry (MS)-digest searches ProteinProspector was used 

(http://prospector.ucsf.edu/prospector/mshome.htm). To predict the subcellular 

localization of proteins TargetP (http://www.cbs.dtu.dk/ services/TargetP/) was used, 

for the prediction of signal peptide cleavage sites SignalP was used 

(http://www.cbs.dtu.dk/services/SignalP/) and putative serine, threonine and tyrosine 

phosphorylation sites in eukaryotic proteins were identified by NetPhos 

(http://www.cbs.dtu.dk/services/NetPhos/). For prediction of disulfide bond formation, 

DISULfind was used (http://disulfind.dsi.unifi.it/, Ceroni et al., 2006). For all prediction 

programs, standard settings were applied and, if possible, eukaryote or plant was chosen 

as organism group. In silico expression analysis were performed using Genevestigator 

(https://www.genevestigator.com/gv/index.jsp, Hruz et al., 2008) or the Arabidopsis 

eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, Winter et al., 2007). Vector 

NTI® 9.0.0 (Invitrogen) was used for in vitro cloning procedures. 

For the construction of phylogenetic trees of CRP classes (Silverstein et al., 2007), 

namely ECA1 gametogenesis related proteins and defensin-like proteins (DEFLs), the 

protein sequences were aligned using the multiple sequence alignment program 

ClustalW2 at the European Bioinformatic Institute (EBI) (http://www.ebi.ac.uk/ 

Tools/msa/clustalw2/). The output .dnd-file was saved and the deduced phylogenetic 
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tree was illustrated with PhyloDraw 0.8 software (Graphics Application Lab, Pusan 

National University). 

The EC1.1 protein sequence was used as a query for the Basic Local Alignment 

Search Tool (“BLAST searches”) to identify EC1-related genes in Arabidopsis 

(http://blast.ncbi.nlm.nih.gov/). The BLASTP algorithm was run on the non-redundant 

protein sequence (nr) collection of Arabidopsis thaliana. Similarly, for the identification 

of EC1 homologs in different plant species, BLASTP and TBLASTN searches were 

performed at different genome databases, namely the plant genome database 

(http://www.plantgdb.org/), the Brachypodium distachyon database,  

(http://www.brachypodium.org/) and the Medicago truncatula database, version MT3.0 

(http://www.medicago.org/). All BLAST searches were performed with default settings. 

The corresponding nucleotide sequences of the identified proteins were downloaded and 

the alignment on the amino acid level was performed in SeaView 4.2.4 (Gouy et al., 

2010) using the muscle algorithm. For the construction of phylogenetic trees, the 

aligned sequences were imported to MEGA 4.1 and converted into the respective format 

(.meg). The phylogenetic trees based on nucleotide sequences were calculated using the 

Neighbor Joining (NJ) method treating gaps with Pairwise Deletion. To test the support 

of the relationship, the Bootstrap method with 10,000 replicates was applied. For 

illustration of the alignment GeneDoc 2.7.000 was used. 

The BLAST searches to identify EC1 orthologs were performed from April to 

August 2010 and searches for EC1 related proteins were performed in the end of 2010. 

4.3 Work with plants 

4.3.1 Plant material and growth conditions 

The Arabidopsis thaliana Columbia accession (Col-0) was used as wild type and for 

transformation. Seeds were put on soil (mixture of 65% substrate, 25% sand and 10% 

expanded clay), stratified at 4°C in the dark for two days and subsequently transferred 

into plant growth chambers under short day conditions with 8 hours light and 16 hours 

dark at 22°C and about 70% humidity. After four weeks, plants were transferred to long 

day chambers (16 hours light/8 hours dark) to induce flowering. Transformation of 

Arabidopsis thaliana plants was carried out using the floral dip method as previously 

described by Clough and Bent (1998). Plants transformed with the bar or pat gene 
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(Phosphinotricin-Acetyltransferase) as a selection marker conferring BASTA® 

resistance, were sprayed with BASTA® (Bayer Crop Science) with a concentration of 

200 mg/l glufosinate ammonium supplemented with 0.1% Tween-20 three days after 

germination. Spraying was repeated three more times with an interval of two days. For 

growing plants under sterile conditions, seeds had to be surface sterilized. The desired 

amount of seeds was filled into a 1.5 ml reaction cup, incubated with 700 µl 70% 

ethanol for 3 min and repeatedly vortexed. After 15 sec of centrifugation ethanol was 

replaced by an aqueous solution containing 1% NaOCl and 0.1% Mucasol® (Merz 

Consumer Care GmbH). After 2 min incubation the seeds were centrifuged again for 15 

sec. The seeds were washed by adding 1 ml of sterile H2O, vortexed and subsequently 

centrifuged for 15 sec. This step was repeated four more times. The sterile seeds were 

dispersed in a sterile 0.1% agarose solution and sowed out on solid ½ x MS medium 

containing vitamins and MES buffer (Murashige & Skoog, Duchefa) prepared with 

0.8% Phytagar (Duchefa). For selection of plants carrying the hph gene (Hygromycin B 

Phosphotransferase) as a selection marker, the medium was supplemented with 30 

µg/ml Hygromycin. Seeds were stratified for two days at 4°C in the dark and then 

transferred to a short day plant growth chamber. 

4.3.2 mRNA isolation and reverse transcriptase (RT)-PCR 

For general expression analysis of genes in various tissues, mRNA was extracted 

directly and reversely transcribed into cDNA. For mRNA isolation, the Dynabeads® 

mRNA DIRECT™ Micro Kit (Invitrogen) was used and the extraction was carried out 

following the manufacturer’s instructions. Directly after isolation, mRNA was treated 

with DNase I, Amplification Grade (Invitrogen). Briefly, 8 µl DEPC-treated H2O, 1 µl 

10 x DNase I Reaction Buffer, 1 µl DNase I together with the mRNA attached to 

Oligo(dT)25 Dynabeads® were incubated for 15 min at RT. For inactivation of DNase I, 

1 µl of 25 mM EDTA was added and the sample was incubated at 65°C for 10 min. 

First-strand synthesis of cDNA was carried out using oligo(dT)18 primers and 

RevertAid™ M-MuLV Reverse Transcriptase according to the manufacturer’s 

instructions (MBI Fermentas). For following PCR reactions, 1 µl of cDNA was used as 

template.  
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4.3.3 Dissection of ovules and clearing 

For microscopy analysis, ovules and developing seeds had to be dissected using a 

stereomicroscope. First, the pistil or silique was freed by removing all other floral 

organs. Afterwards, the pistil or silique was cut along the septum at both sides using a 

hypodermic needle (0.4 x 20 mm, Braun) so that the carpels could be detached.  For 

fluorescence microscopy, the pistil was then transferred into 50 mM sodium phosphate 

buffer pH 7.5, the placenta was separated lengthwise into two halves using two 

hypodermic needles and directly analyzed at a fluorescence microscope with the 

respective filter set. For differential interference contrast (DIC) microscopy, the 

preparations were cleared using chloral hydrate clearing solution (80 g chloral hydrate; 

10 ml glycerol; ad 50 ml H2O). In this case, the ovules or developing seeds were 

dissected in clearing solution instead of phosphate buffer. After 30 min to 2 hours, 

depending on the developmental stage of the ovule or developing seed, the preparations 

were analyzed at the Axioskop FL (Zeiss) with DIC optics. 

4.3.4 GUS staining of ovules 

For analysis of pollen tube guidance and reception, flowers were pollinated with the 

marker line ARO1:GUS (Gebert et al., 2008) and subsequently histochemically stained. 

The ARO1 promoter is active in pollen and pollen tubes and was thus used for the 

above-mentioned analyses. Therefore, stage 12 flowers were emasculated and two days 

later pollinated with flower stage 13 (stages according to Smyth et al., 1990) 

ARO1:GUS pollen. One day after pollination, the pistils were detached from the 

inflorescence, carefully cut with a hypodermic needle along the septum, transferred to 

GUS-staining solution (10 mM EDTA, 2 mM K4Fe(CN)6, 2 mM K3Fe(CN)6, 0.1% 

Triton X-100, 1 mg/ml X-Gluc (Applichem) in 50 mM sodium phosphate buffer 

pH 7.0) and incubated at 37°C overnight (modified from Vielle-Calzada et al., 2000). 

The preparations were washed three times in sodium phosphate buffer before they were 

dissected in clearing solution as described in section 4.3.3 (page 21). 

4.3.5 In vitro pollen germination 

Pollen germination medium consisted of 18% sucrose, 0.01% boric acid, 

1 mM MgSO4, 1 mM CaCl2, 1 mM Ca(NO3)2 and 0.5% agar (ultrapure, granulated; 
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Merck) as previously described by Li et al. (1999). At first, a two fold concentrated 

solution containing sucrose, boric acid, MgSO4, CaCl2 and Ca(NO3)2 was prepared in 

sterile H2O by dissolving in a 50°C water bath. Agar (1%) was dissolved in H2O using a 

microwave and afterwards cooled to 50°C in a water bath. Equal amounts of the 

salt/sucrose solution and the agar were combined and the pollen germination medium 

was poured into small petri dishes (30 mm in diameter) under the clean bench. The 

plates were kept open under the clean bench and dried for exactly one hour. Fresh 

pollen from stage 13 flowers (Smyth et al., 1990) was dipped onto the plate. The plates 

with closed lid were put into a plant growth chamber (22°C, approximately 70% 

humidity, 16 hours light/8 hours dark) and incubated 5 to 20 hours. 

4.3.6 Bioassay with purified GST-EC1.1 and sperm cells released from in vitro 

germinated pollen 

Pollen of the sperm cell marker line HTR10-mRFP1 was germinated in vitro for six 

hours as described in section 4.3.5, page 21. To induce pollen tube burst and release of 

the sperm cells from the tube, the petri dish was place under an inverted microscope, a 

drop (app. 5 µl) of mannitol solution (285 mosmol/kg H2O) was pipetted onto the 

sample and pollen tube burst induced by the osmotic shock was observed under the 

microscope. Subsequently, 10 µl of the 1 ml fraction of refolded and purified GST-

EC1.1 fusion protein was applied in the same way.  

For DAPI staining of burst pollen tubes, the staining solution (aqueous solution 

containing 2.5 µg/ml 4',6-diamidino-2-phenylindole (DAPI), 0.01% Tween-20, 5% 

DMSO, 50 mM phosphate buffered saline (PBS) (pH7.2)) was carefully pipetted onto 

the samples on the petri dish. Samples were analyzed for DAPI fluorescence after 

30 min using the Nikon ECLIPSE TE2000-S inverted microscope with an UV-

MBE41300 filter set (340-380 nm excitation, 435-485 nm emission). 

4.3.7 Generation of P35S:EC1.1-eGFP plants and proteasome inhibitor assay 

The EC1.1-eGFP fusion construct was amplified from p7U-EC1-GFP (Sprunck et 

al., unpublished) using the primer pair AtEC1.1 SalI+1f/GFP SalI rev and ligated into 

the binary vector pCHF5 behind the CaMV35S promoter via SalI restriction sites. The 

construct was named pRAS7 and used for transformation of Arabidopsis thaliana wild 

type plants with the floral dip method (Clough and Bent, 1998). For proteasome 
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inhibitor studies, T2 generation seeds were germinated on solid ½ x MS medium 

enriched with 2% sucrose. Two weeks after sowing, the seedlings were transferred to 

solid ½ x MS medium with 2% sucrose and containing 100 µM MG132 (Sigma-

Aldrich, 100 mM stock solution in DMSO) or just DMSO as a control. The seedlings 

were kept on these plates for 16 hours or 24 hours, respectively and then harvested for 

microscopy analysis or protein extraction. For microscopy analysis, agar blocks 

containing roots were cut out of the plate, placed on a microscope slide and covered 

with a cover slip. eGFP fluorescence was observed by using a Nikon ECLIPSE 

TE2000-S inverted microscope with an F36-525 filter set (472/30 nm excitation, BP 

520/35 nm). For Western Blot analysis, 15 seedlings were frozen in liquid nitrogen 

together with two steel balls in 2 ml Eppendorf cups and homogenized using a CryoMill 

(Retsch). Afterwards, proteins were extracted by adding 300 µl extraction buffer (20 

mM Tris-HCl, pH7.5; 150 mM NaCl; 1 mM EDTA; 10 mM DTT, one “Complete” 

protease inhibitor pellet (Roche)). The lysate was furthermore vortexed until it was 

homogenous. After 30 min centrifugation at 20,000 x g at 4°C, the supernatant was 

transferred into a clean cup and the protein concentration was determined by a Bradford 

Assay (Bradford, 1976). Pistil proteins were extracted in a stepwise procedure by 

consecutive centrifugation steps to separate microsomal and cytoplasmic fractions. For 

this purpose, 50 pistils of stage 12 flowers (Smyth et al., 1990), that had been 

emasculated two days before, were collected in 2 ml Eppendorf cups and immediately 

frozen in liquid nitrogen. The tissue was homogenized in the cup by grinding with a 

plastic pestle. After adding 300 µl of homogenization buffer (330 mM sucrose; 100 mM 

KCl; 1 mM EDTA; 50 mM Tris/0.05% MES pH7.5; 5 mM DTT; one “Complete” 

protease inhibitor pellet (Roche)) the sample was centrifuged for 15 min at 1,000 x g. 

The supernatant was transferred into a fresh cup and centrifuged again for 15 min at 

10,000 x g. Again, the supernatant was transferred into a fresh cup and centrifuged one 

more time for 75 min at 48,000 x g. The resulting pellet represents the microsomal 

fraction and the supernatant contains the cytoplasmic fraction of proteins. The 

supernatant was precipitated by adding first 1/100 vol. of 2% DOC (sodium 

deoxycholate). After vortexing and incubation at 4°C for 30 min, 1/10 vol. of 100% 

TCA (trichloroacetic acid, 100% = 454 ml H2O/kg TCA) was added. Precipitation was 

carried out overnight at 4°C. The sample was centrifuged for 15 min at 15,000 x g at 

4°C. The supernatant was discharged and the pellet was dried. For SDS-PAGE (SDS 

polyacrylamide gel electrophoresis), the pellet was resuspended in 20 µl of 1 x SDS 
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sample buffer. For titration against some residual TCA, NH3 gas was passed through the 

sample using a Pasteur pipette. After separating the proteins by SDS-PAGE, they were 

transferred to a PVDF membrane (Bio-Rad) by the tank-blot procedure. The membrane 

was blocked for 1 h with blocking solution (1% skimmed milk powder, 0.1% Triton X-

100 in 1 x TBS). The GFP was visualized with indirect two-step immunodetection. 

using a 1:5,000 dilution of monoclonal anti-GFP antibody (Roche) in blocking solution 

and a secondary goat anti-mouse antibody conjugated with HRP (Horseradish 

Peroxidase, Sigma-Aldrich) were used, 1:5,000 diluted in blocking solution. The 

Immobilon Western Detection Reagent (Millipore) served as a substrate for the HRP 

enzyme. 

4.3.8 Cloning of the EC1.1 phospho-mimicking variant and transient expression in 

N. benthamiana leaves 

In order to phospho-mimick the three putatively phosphorylated serine residues at the 

C-terminus of EC1 (S151, S152, S154) a primer was designed through which the 

serines were replaced with aspartate residues (AtEC1.1 3xSD). For the amplification of 

the construct, AtEC1.1 3xSD was used as reverse primer, P-mim EC1.1 fw as forward 

primer and pRAS7 served as a template. Finally, the construct was recombined into 

pB7FWG2 (Karimi et al., 2007) via an LR-Clonase reaction (Invitrogen) to create a 

translational fusion of the EC1.1 phospho-mimicking variant with eGFP under control 

of the viral CaMV35S promoter (pRAS28). For transient expression in N. benthamiana 

leaves, Agrobacterium tumefaciens (C58C1) was transformed with pRAS28. For 

infiltration into N. benthamiana leaves, Agrobacterium cells were grown overnight in 

5 ml selective medium. After 15 min centrifugation at 3,500 x g, cells were resuspended 

in infiltration buffer (10 mM MgCl2; 10 mM MES-KOH, pH5.7; 100 µM aceto—

syringone) and adjusted to OD600 = 1. The cell suspension was infiltrated at the abaxial 

side of the leaf using a 5 ml syringe and applying slight pressure on the opposite side 

with a finger. eGFP fluorescence in leaf epidermis cells was analyzed one to three days 

after infiltration by confocal laser scanning microscopy (Zeiss Axiovert 200 M 

microscope equipped with a confocal laser scanning unit LSM 510 META) using the 

488 nm-line of the argon laser for excitation and a BP 505-550 filter for selective GFP 

detection. 
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4.3.9 Expression of PP2A B’θ in synergid cells and pollination experiments 

For the misexpression of PP2A B’θ in synergid cells, the respective ORF (open 

reading frame) was amplified from a clone (U85787) ordered at the ABRC (Arabidopsis 

Biological Resource Center, http://abrc.osu.edu/). The synergid cell-specific DD31 

promoter (Steffen et al., 2007) was amplified from genomic DNA using 

DD31 prom fw (SacI)/DD31 prom rev (SpeI) and cloned into the Gateway® Destination 

vector pB7FWG2 (Karimi et al., 2007) via SacI and SpeI restriction sites. Finally, the 

translational fusion of PP2A B’θ and eGFP under control of the DD31 promoter was 

created by LR Clonase® reaction (pRAS56). Col-0 Arabidopsis plants were 

transformed, seeds of the T0 generation were germinated and transgenic plants were 

selected (see section 4.3.1, page 19). For analysis of the fertilization process, stage 12 

flowers (Smyth et al., 1990) were emasculated. Two days after emasculation, pistils 

were pollinated with flower stage 13 (Smyth et al., 1990) pollen of the sperm cell 

marker line HTR10-mRFP1 (Ingouff et al., 2007). For microscopy analysis, ovules were 

prepared as described above (see section 4.3.3, page 21). The preparation was then 

analyzed for eGFP and mRFP1 fluorescence at the Nikon ECLIPSE TE2000-S inverted 

microscope with the F36-525 filter set (472/30 nm excitation, BP 520/35 nm) for eGFP 

visualization and with the filter set F36-506 (575/15 nm excitation; BP 624/40) for 

mRFP1 detection. 

4.4 Work with yeast 

4.4.1 Yeast-two-hybrid screening 

The yeast-two-hybrid (Y2H) screen was carried out using the MatchmakerTM Library 

Construction & Screening Kits (Clontech-Takara Bio Europe). For generation of the 

bait construct, a truncated version of EC1.1 without the predicted leader peptide was 

amplified from genomic DNA (EC1 genes do not contain introns) using the primer pair 

AtEC1.1 EcoRI+82f/AtEC1.1 EcoRI+477r and cloned via EcoRI restriction sites into 

pGBKT7 vector (Clontech-Takara Bio Europe) to create a translational fusion of the 

GAL4 DNA binding domain and the open reading frame of EC1.1. The resulting 

construct was named pRAS4. The yeast strain Y187 (Harper et al., 1993) was 

transformed with pRAS4 according to “Yeast Protocols Handbooks” (Clontech-Takara 
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Bio Europe).  For the construction of the ovule cDNA library material from 132 flowers 

was used in total. Two days after emasculation of stage 12 flowers carpels were 

removed from the pistils (see section 4.3.3, page 21) and ovules attached to the placenta 

were frozen in liquid nitrogen and stored at -80°C. mRNA was extracted using 

Dynabeads® mRNA DIRECT™ Micro Kit according to the manual (Invitrogen). To 

determine the concentration of the mRNA, Dynabeads® were removed from the mRNA 

directly after boiling at 90°C for 2 min while the tube was still standing in the 

thermocycler. Afterwards, the mRNA was immediately cooled on ice. The 

concentration of mRNA was determined using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific) and was 30 ng/µl. First strand synthesis using 

random hexamer primer (CDSIII/6 Primer) and Long-Distance (LD) PCR were carried 

out according to the manual (MatchmakerTM Library Construction & Screening Kits, 

Clontech-Takara Bio Europe). After purification of the cDNA, the yeast strain AH109 

(James et al., 1996) was transformed with pGADT7 rec and the ovule cDNA to 

generate the yeast-two-hybrid library following the instructions of the manual. The 

transformation efficiency was 2.1 x 106 transformants and agreed approximately with 

the expected number according to the manual (1 x 106 transformants). After pooling of 

transformants, the library titer was calculated to be 1.8 x 109 cfu/ml, which above the 

minimum according to the manual (2 x 107 cfu/ml). Mating of bait and prey yeast 

strains and selection of interacting clones on triple dropout medium (SD/-His/-Leu/-

Trp) was carried out according to the manual. The mating efficiency was 1.6%. As a 

positive control for mating and for interacting proteins the strains AH109 and Y187 

were transformed with the vectors pGADT7-T and pGBKT7-53, respectively, which 

were included in the kit. The construction of the pollen tube cDNA library in the yeast 

strain AH109 is described elsewhere (Gebert, 2008) and served as prey. The titer of the 

pollen tube cDNA library was calculated to be 1.6 x 107 cfu/ml, which was slightly 

below the expected minimum of 2 x 107 cfu/ml according to the manual.  Mating of bait 

and prey yeast strains and selection of interacting clones on triple dropout medium was 

carried out according to the manual. The mating efficiency of the bait strain with the 

pollen tube cDNA library was approximately 1%.  

In total, 564 and 480 diploid yeast colonies were picked after mating of the EC1.1 

bait strain with the ovule and pollen tube cDNA library, respectively and resuspended in 

100 µl sterile water in 96 well plates and replica plated onto triple (SD/-His/-Leu/-Trp) 

and quadruple dropout medium (SD/-Ade/-His/-Leu/-Trp) to select for more strongly 
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interacting partners. After 6 days of growth at 30°C, an X-Gal-Assay was performed to 

analyze the activation of the lacZ (β-Galactosidase) reporter gene.  For covering one 

plate of 150 mm in diameter, 20 ml of 1 M sodium phosphate buffer pH 7.0, 2.4 ml of 

DMFA (N, N-dimethylformamide), 400 µl of 10% SDS (sodium dodecyl sulfate) and 

400 µl X-β-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, 20 mg/ml in 

DMFA) were combined. 20 ml 1% BactoAgar in H2O was boiled, afterwards cooled 

down in a water bath to 60°C and finally added to 20 ml of the above described staining 

solution. The agar plate was carefully laminated with the X-Gal staining solution, 

solidified for 30 min under the clean bench and then incubated at 30°C overnight. From 

diploid colonies that activated the lacZ reporter gene, i.e. colonies showing blue 

staining, the prey-plasmids were isolated like previously described (Robzyk and Kassir, 

1992) and used for transformation of E. coli for propagation and subsequent sequence 

analysis. To confirm the putative interactions, AH109 was transformed with the rescued 

plasmids and mated with the bait strain (see “Yeast Protocols Handbook”, Clontech-

Takara Bio Europe). Mating with Y187 carrying the empty bait vector pGBKT7 was 

used as a control to evaluate auto-activation of the identified positive clones.  

4.4.2 Yeast-two-hybrid direct interaction tests 

For the interaction analysis of full length clones of PP2A B’θ and UbDK3γ, the 

coding sequence was amplified from a clone (U85787) ordered at the ABRC 

(Arabidopsis Biological Resource Center) and from pollen cDNA using the primer pair 

PP2AB'theta SmaI+1f/ PP2AB'theta XhoI+1479r and UbDk3gamma SmaI fw/ 

UbDK3gammaXhoI rev, respectively. Afterwards, the cDNA was cloned into pGADT7 

via SmaI and XhoI restriction sites. The resulting vectors were named pRAS9 and 

pRAS64. For GCS1-EC1 interaction analysis, only the N-terminal, extracellular part of 

GCS1/HAP2 (amino acid position 25 to 550) without the predicted signal peptide 

(amino acid position 1 to 24) was amplified using GCS1c+73f EcoRI/ 

GCS1c+1650r EcoRI and cloned into pGADT7 via EcoRI restriction sites (pRAS13). 

The resulting vectors were transformed into AH109 and mated with Y187 carrying 

pRAS4 or the empty bait vector pGBKT7 (see “Yeast Protocols Handbook”, Clontech-

Takara Bio Europe) and grown on selective medium to evaluate interaction of target 

proteins. 
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4.4.3 Expression of EC1.1 in Pichia pastoris 

For heterologous expression of EC1.1 in Pichia pastoris, the EasySelectTM Pichia 

Expression Kit (Invitrogen) was used. The EC1 coding sequence without the predicted 

signal peptide was amplified from genomic DNA using the primer pair 

AtEC1.1 Pichia fw/ AtEC1.1 Pichia rev and cloned into pPICZα via EcoRI and XbaI 

restriction sites (pRAS10). In pPICZα, the α-factor secretion signal from 

Saccharomyces cerevisiae upstream of the multiple cloning site leads to secretion of the 

target protein into the growth medium. For protein purification, the target protein is C-

terminally tagged with c-myc and 6xHis. Moreover, the expression in P. pastoris is 

under control of the methanol inducible AOX1 promoter. pRAS10 was integrated into 

P. pastoris (X-33) genome by electroporation according to the manual (BioRad 

electroporator; voltage: 1.25 V; resistance: 200 Ω; capacity: 25 µF). Induction of target 

protein expression was carried out according the manual. To avoid clogging of the 

column during purification, the cells were removed from the medium by two times 

centrifugation at 15,000 x rpm for 15 min. Purification of recombinant EC1.1 was 

carried out using Ni-NTA agarose (Qiagen) via column with gravity flow or the batch 

method according to the guidelines of “The QIAexpressionistTM” (Qiagen). 

Additionally, a HisTrapTM column (5 ml) connected to an ÄktaTM System (both GE 

Healthcare) was used for EC1.1 purification (flow rate: 4 ml/min). For the latter 

method, loading of the column and washing (5 column volumes) was performed at 4°C. 

Protein elution was achieved with 50 mM NaH2PO4, 300 mM NaCl, 500 mM 

imidazole, pH 8.0 and was carried out gradually at room temperature. 

4.5 Expression of EC1 in E. coli and protein purification  

For heterologous expression of EC1.1 and EC1.2a in E. coli, the coding sequences 

lacking the predicted N-terminal signal peptide were amplified from genomic DNA 

using the primer pair AtEC1.1+82f GW/AtEC1.1 rev GW and 

AtEC1.2a+67f GW/AtEC1.2a rev GW, respectively, and recombined into two different 

Gateway® vectors with different tags for purification. To generate a translational fusion 

of EC1.1 with N-terminal GST (Glutathion-S-Transferase) the pGEX-2-GW vector 

(pGEX-2T [GE Healthcare] derived, gateway cassette was introduced) was used and the 

resulting construct was named pRAS37. In this construct, the target gene is under 
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control of the synthetic tac promoter, enabling inducible target protein expression by 

adding IPTG (isopropyl-β-D-thiogalactopyranosid). Additionally, an inducible T7 

promoter based expression system was used. Here, the EC1.2a was fused to a N-

terminal His•Tag® and a C-terminal Strep•Tag®II by using the pET-53-DEST™ vector 

(Novagen). The resulting construct was named pRAS42. The expression vectors were 

used for transformation of various E. coli expression strains with different properties 

regarding target protein expression: RosettaTM(DE3) (Novagen), ArcticExpressTM(DE3) 

(Stratagene), OrigamiTM(DE3) (Novagen), Lemo21(DE3) (NEB), LemoGami 

(combination of OrigamiTM(DE3) and pLemo plasmid). For protein extraction from 

RosettaTM(DE3), ArcticExpressTM(DE3), OrigamiTM(DE3) or LemoGami transformed 

with the expression vector, a preculture of 5 ml LB medium with respective antibiotics 

was grown overnight. 50 ml of LB medium including antibiotics was inoculated with 1 

ml of the preculture and grown to OD600 = 1. Target protein expression was induced by 

adding 1 mM IPTG. After 4 h of growth, the cells were harvested by 20 min 

centrifugation at 4,000 x g. Either, the cells were resuspended in 0.1 culture volume 

phosphate buffered saline (PBS) pH 7.4 including protease inhibitors (“Complete” 

protease inhibitor pellet (Roche), without EDTA for purification of His-tagged proteins) 

and lysed by adding 1 mg/ml lysozyme and subsequent sonication (20 s at 60%, 20 s on 

ice; 7 cycles) or by using the BugBuster® Protein Extraction Reagent according to the 

manufacturer’s instructions (Novagen). Inclusion body solubilization and protein 

refolding was carried out as described in the manual of the Protein Refolding Kit 

(Novagen). GST-EC1.1 fusion protein expressed in the RosettaTM(DE3) strain was 

solubilized in 50 mM CAPS, pH 11.0, 0.3% N-lauroylsarcosine (sodium salt) and 1 mM 

DTT. After dialysis and refolding, the GST-EC1.1 fusion protein was purified via 

GSTrapTM 4B column (GE Healthcare), connected to a peristaltic pump. The 

purification was carried out at 4°C with a flow rate of 0.5 ml/min according to the 

manufacturer’s guidelines. Growth conditions and induction of target protein expression 

in Lemo21(DE3) was carried out according to the manufacturer’s instructions with 

400 µM IPTG at 28°C for 4 h. Eventually, the protein extracts and fractions of 

purification were analyzed by SDS-PAGE and stained with PageBlueTM (MBI 

Fermentas) according to the manufacturer’s instructions. 
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5 RESULTS 

5.1 Small cysteine-rich proteins in the Arabidopsis female gametophyte 

The subject of research of this thesis, the EC1 gene family, encodes cysteine-rich 

proteins. To identify the proteins most closely related to the EC1 family, BLASTP 

searches were performed. These revealed a group of nine proteins (Table 1) with 

highest similarity to EC1 that were named EC1-related (ECR). Interestingly, one of the 

ECR genes, namely At2g27315 has been shown to be expressed synergid cell-

specifically (Punwani et al., 2008) and two others, At5g54062 and At5g52975, are 

predominantly expressed in the synergid cells (Jones-Rhoades et al., 2007; Steffen et 

al., 2007). 

Table 1: Identification of EC1-related (ECR) proteins. BLASTP results with EC1.1 as a query. 
Accession, AGI, E value and term are indicated. Expression data of previously published work is also 
quoted. SY = synergid cell, EC = egg cell, CC = central cell. N. d. = not determined/no expression data 
available. 

Accession AGI E value Term Expression 

AAU44598.1 At5g54062 4e-05 ECR6 SY (EC) (Steffen et al., 2007; 
Jones-Rhoades et al., 2007) 

NP_680764.1 At4g35165 5e-05 ECR2 n. d. 

NP_00107789.1 At2g14378 2e-04 - n. d. 

NP_68118.1 At3g48675 4e-04 - n. d. 

NP_568782.1 At5g52975 0.006 DD8/ECR4 SY (EC, CC) (Steffen et al., 
2007) 

AAM60965 At2g27315 0.011 ECR1 SY (Punwani et al., 2008) 

NP_680427.1 At5g52965 0.014 ECR3 n. d. 

NP_680430.1 At5g53905 0.1 - n. d. 

NP_001078753.1 At5g53742 0.26 ECR5 n. d. 

 

The multiple sequence alignment of EC1 and ECR proteins is shown in Figure 5A. 

The two groups share the same conserved cysteine pattern but differ in other parts, 

which are only conserved within the EC1 and the ECR proteins, respectively (Figure 

5A, blue line and yellow line, respectively). Moreover it is evident that At5g54062 has a 
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duplicated cysteine pattern. In this case, the second cysteine pattern is aligned to the 

sequence of the remaining ECR proteins. The phylogenetic tree shows that EC1 and 

ECR proteins are clustering in two clearly distinct groups (Figure 5B). 

 

Figure 5: Similarity between EC1 and ECR proteins. 
A Multiple sequence alignment of EC1 and ECR proteins. Conserved amino acids between both groups 
are shown with a black background, consensus sequence is shown below the alignment. EC1-group 
conserved residues are indicated by the blue line and ECR-conserved residues by the yellow line. B 
Phylogenetic relation of the EC1- (blue) and the ECR-group (yellow). The number on each node 
represents the probability that supports the relationship (determined with Bootstrap Method). The branch 
length is the measurement of divergence between two nodes. Bar = 0.1 nucleotide substitutions per site. 

The interest in the different roles of small cysteine-rich proteins (CRPs) has strongly 

increased within the last few years. Silverstein et al. (2007) identified 825 genes in the 

Arabidopsis genome encoding CRPs. These predicted proteins were classified into 
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different groups and classes according to the number of cysteine residues and their 

pattern. Both EC1 and ECR proteins fall into the class called ‘ECA1 gametogenesis 

related family protein’. Moreover, Jones-Rhoades et al. (2007) showed that the 

expression of genes encoding CRPs drastically decreased in ovules lacking a female 

gametophyte.  

To gain an overview about the relation of EC1 proteins, ECR proteins and other 

members of this class of CRPs, an unrooted phylogenetic tree was constructed (Figure 

6A). Interestingly, the five EC1 proteins (blue) as well as the ECR proteins cluster in an 

isolated clade. The complete ECR-group comprises nine members, which are 

highlighted in yellow (Figure 6A). The relationship of both groups is well supported by 

a bootstrap value of 98 and 91, respectively. The EC1 gene family is exclusively 

expressed in the egg cell and the genes cluster in one phylogenetic clade. Also the ECR-

group might be expressed predominantly in one cell type within the female 

gametophyte, the synergid cell in this case (Steffen et al., 2007, Jones-Rhoades et al., 

2007, Punwani et al., 2008). Possibly, all genes that cluster in one phylogenetic group 

show the same expression pattern. Based on this hypothesis the phylogenetic trees of 

the ECA1 and the DEFL class were used to search for more groups of genes that may be 

specifically expressed in one cell type of the female gametophyte. 

 
 
Figure 6: Unrooted phylogenetic trees of ECA1 gametogenesis related proteins (encoded by 118 
genes) and DEFL class proteins (encoded by 291 genes). Classification according to Silverstein et al. 
(2007). 
A Unrooted tree of the ECA1 class of CRPs. The distinct clade of the five EC1 proteins is highlighted in 
blue. The ECR-group, putatively synergid cell-specific, is highlighted in yellow. B Unrooted tree of the 
DEFL class of CRPs. The two candidate groups for central cell-specific expression are highlighted in 
green. 

ECA1 class DEFL class 

Egg cell specific 
group (EC1) 

Putative synergid 
specific group 

Putative central cell 
specific groups 

A B 
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Based on publicly available expression data and microarray data of isolated egg, 

central and synergid cells (Šoljić et al., in preparation) two more, putative central cell 

groups among the DEFL class of CRPs were identified (Figure 6B). Steffen et al. 

(2007) showed that DD22/LCR80, a member of the first group comprising six proteins 

is specifically expressed in the central cell. The members of this family have been 

annotated as ‘low-molecular-weight-cysteine-rich’ (LCR) before and will be termed the 

LCR-group here (Table 2). The second group comprising five genes was chosen 

because At5g54220 is specifically expressed in the central cell, according to microarray 

data (Šoljić et al., in preparation). Moreover, this gene and At2g25305 are similar to 

central cell-specific genes that were identified in EST analyses of maize female 

gametophytes and egg cells (Yang et al., 2006).  The members of this group comprise 

eight cysteine residues in total, including a characteristic triple-cysteine motif at the C-

terminus. For that reason this group was termed CCC-group here. 

Table 2: LCR- and CCC-candidate gene families for central cell-specific gene expression. The LCR-
group comprises six members and the CCC-group comprises five members. AGI, term and expression 
data of previously published work are indicated. N. d. = not determined/no expression data available. 

AGI Term Expression 

At4g30074 LCR19 n. d. 

At5g42242 LCR57 n. d. 

At5g38317 LCR58 n. d. 

At4g30070 LCR59 n. d. 

At4g30067 LCR63 n. d. 

At5g38830 DD22/LCR80 CC (Steffen et al., 2007) 

At1g24062 CCC1 n. d. 

At5g54220 CCC2 mentioned in Yang et al., 2006 

At2g25305 CCC3 mentioned in Yang et al., 2006 

At5g54215 CCC4 n. d. 

At5g54225 CCC5/LCR83 n. d. 

 

Taken together, three new candidate groups for female gametophyte cell-specific 

expression were found including one putative synergid-group of the ECA1 class, the 

ECRs, and two putative central cell-groups of the DEFL class, the LCR-group and the 

CCC-group. A precondition for a real candidate for cell specific expression within the 

female gametophyte is the absence of transcript in all kinds of other tissue. To test this, 



R E S U L T S  | 34 

the candidate genes were subjected to reverse transcriptase (RT) - PCR with various 

tissues (Figure 7).  

 

Figure 7: Expression analysis of candidate groups for cell-specific expression within the female 
gametophyte by reverse transcriptase (RT) - PCR. 
Gel electrophoretic separation of PCR products after amplification from cDNA of different tissues. 
rt  = root; lf = leaf; st = stem; an = anther, ps = pistil; ds = developing seed; - = non template control; + = 
genomic DNA control. Internal standard: ACTIN3 (ACT3). Fragment sizes and oligo nucleotide 
sequences are given in the appendix. 
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The female gametophyte-specific expression of EC1 could be confirmed. The EC1 

transcript was not detected in any of the tested vegetative tissues (root, leaf, stem). All 

of the five genes are expressed in pistils; only EC1.4 is also detectable in developing 

seeds. ECR1, ECR2 and ECR3 show the strongest expression in pistils, whereas the 

ECR2 transcript is also weakly detectable in roots and developing seeds. ECR4/DD8 is 

very weakly expressed in pistils and developing seeds. For ECR5, a transcript was not 

detected in the tested tissues and ECR6 is only expressed in pistils. LCR19 shows 

signals in pistils and developing seeds. LCR57 and LCR59 show both a weak signal in 

pistils and a stronger signal in developing seeds, whereas LCR80/DD22 shows a 

stronger signal in pistils than in developing seeds. For LCR58, a transcript was not 

detected in any of the tested tissues. All five members of the CCC group show a strong 

signal in developing seeds and a much weaker signal in pistils.  

 

In summary, all of the analyzed genes are preferentially expressed in tissues 

containing the female gametophyte or the embryo and the endosperm. The central cell 

candidate group is even more strongly expressed in the developing seed than before 

fertilization in the pistil. Taken together, these gene families are interesting for further, 

more detailed expression analysis and functional analysis to elucidate their roles during 

female gametophyte development, fertilization and early seed development. 

5.2 EC1 homologs in different species 

BLASTP searches were performed to identify EC1 homologous proteins in other 

species. Interestingly, homologs were only found angiosperms. Homologs of 

Arabidopsis EC1 were neither identified in gymnosperms nor in bryophytes 

(Physcomitrella patens), nor in ferns (Adiantum sp.) nor in algae. The Arabidopsis 

lyrata genome encodes five EC1 proteins like Arabidopsis thaliana. In Populus 

trichocarpa, two homologs were identified, in Ricinus communis four and in Vitis 

vinifera two. From the monocots, three EC1 homologs were identified in Brachypodium 

distachyon, the ECA1 protein from Hordeum vulgare was found as a homolog, three 

EC1 homologs in Oryza sativa, two in Sorghum bicolor and two in Zea mays (Table 3; 

see Appendix for detailed BLAST search results, page 102). 
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Table 3: Number of identified EC1 homologs in different species. 
Division, name of the species and number of identified homologs are indicated. EC1 homologs are only 
found in angiosperms (dicots and monocots). Homologous proteins were not found in gymnosperms, 
ferns (pteridophyta), moss (bryophyta) or algae (chlorophyta). 

Division Species Number of EC1 
homologous proteins 

Arabidopsis thaliana 5 

Arabidopsis lyrata 5 

Medicago truncatula 2 

Populus trichocarpa 2 

Ricinus communis 4 

Vitis vinifera 2 

Brachypodium distachyon 3 

Hordeum vulgare 1 

Oryza sativa 3 

Sorghum bicolor 2 

Triticum aestivum 1 

Angiosperms 

Zea mays 2 

Abies sp. 0 

Larix sp. 0 

Picea sp. 0 
Gymnosperms 

Pinus sp. 0 

Pteridophyta Adiantum sp. 0 

Bryophyta Physcomitrella patens 0 

Volvox sp. 0 
Chlorophyta 

Chlamydomonas sp. 0 

 

 

Figure 8 shows a multiple sequence alignment of all identified EC1 homologs. In the 

middle part of the sequence a region with high similarity was identified: 

C W x8 C x7 F x2-4 G x7-13 C C x9 C W x7-9 G x T x2 E x3 L x3 C. This sequence does 

not only contain the characteristic cysteine pattern but additional conserved amino acids 

like tryptophan, phenylalanine, glycine, threonine, glutamate and leucine. 

AtEC1.5 and AlEC1.5 have an insertion of eight amino acids within the second and 

the third cysteine residue. This insertion does not appear in any of the other homologs 

(Figure 8) and is also noticeable in the phylogeny where AtEC1.5 and AlEC1.5 form a 

small outgroup (Figure 9). 
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Figure 8: Multiple sequence alignment of the identified EC1 homologs from different species.  
Upper part of the alignment: sequences of dicots, lower part: monocot sequences of EC1 homologs. 
Highly conserved residues are shown with a black background. Consensus sequence is shown below the 
alignment. The protein domain containing the conserved cysteine pattern is indicated by the red box. 
Insertion of amino acids in AtEC1.5 and AlEC1.5 is highlighted by the blue boxes. At = Arabidopsis 
thaliana; Al = Arabidopsis lyrata; Mt = Medicago truncatula; Pt = Populus trichocarpa; Rc = Ricinus 
communis; Vv = Vitis vinifera; Bd = Brachypodium distachyon; Hv = Hordeum vulgare; Os = Oryza 
sativa; Sb = Sorghum bicolor; Ta = Triticum aestivum; Zm = Zea mays. 
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The construction of a phylogeny based on the alignment shown above (Figure 8) 

indicates that EC1 proteins in dicots and monocots evolved independently (Figure 9). 

 

Figure 9: Phylogenetic tree of EC1 homologs. 
The upper part of the phylogenetic tree represents members of dicots (light grey) and the lower part 
members of monocots (dark grey). The number on each node represents the probability that supports the 
relationship (determined with Bootstrap Method). The branch length is the measurement of divergence 
between two nodes. Bar = 0.1 nucleotide substitutions per site. 
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The ancestors of Arabidopsis thaliana and Arabidopsis lyrata diverged from one 

another approximately 5 million years ago (Koch et al., 2000). Because of this, the EC1 

proteins show a high degree of similarity (Table 4). 

Table 4: Similarity table of EC1 proteins between Arabidopsis thaliana and Arabidopsis lyrata. The 
percentage of similarity is indicated. Percentages of the respective five pairs are underlined and written in 
bold letters. 

 AtEC1.1 AtEC1.2a AtEC1.2b AtEC1.4 AtEC1.5 AlEC1.1 AlEC1.2a AlEC1.2b AlEC1.4 AlEC1.5 

AtEC1.1 100 29 32 30 20 91 29 32 32 21 

AtEC1.2a  100 87 80 35 29 96 87 77 35 

AtEC1.2b   100 81 34 32 87 93 78 35 

AtEC1.4    100 33 32 78 82 95 34 

AtEC1.5     100 21 35 34 35 95 

AlEC1.1      100 29 32 33 22 

AlEC1.2a       100 86 76 35 

AlEC1.2b        100 78 34 

AlEC1.4         100 35 

AlEC1.5          100 

 

The 158 amino acids (aa) comprising EC1.1 protein shows 91% similarity between 

both species with only 13 exchanges, one insertion and one deletion. The smaller 

proteins EC1.2a (125 aa), EC1.2b (125 aa) and EC1.4 (127 aa) show only seven, eleven 

and nine exchanges and have a similarity degree of 96%, 93% and 95%, respectively. 

The EC1.5 proteins of A. thaliana and A. lyrata with its characteristic insertion show a 

similarity of 95%. 

 

 



R E S U L T S  | 40 

5.3 Functional analysis of the EC1 gene family 

To study the function of EC1, T-DNA insertion lines were identified in a previous 

project (S. Sprunck, personal communication). The analyzed T-DNA insertion lines of 

EC1.1, EC1.4 and EC1.5 were complete knockout lines, i.e. no transcript was detectable 

anymore. However, single, double and triple knockout lines of these three genes did not 

display any phenotype. Since T-DNA insertion lines were not available for EC1.2a and 

EC1.2b, the triple mutant was transformed with an RNAi construct targeting these two 

genes and will be termed ec1+/- hereafter. After knockdown of the complete EC1 

family, a reduced seed set was observed (Figure 10A). These plants were homozygous 

for the T-DNA insertions in EC1.1, EC1.4 and EC1.5 and heterozygous for the RNAi 

construct. At the beginning of this project preliminary data about the phenotype of 

ec1+/- were available (see section 3.6, page 16). The goal of my PhD thesis was to 

examine the fertilization process in ec1+/- plants step by step and to quantify the 

observed phenotypes in order to achieve a detailed and precise functional 

characterization of the EC1 gene family. 

5.3.1 Quantification of seed set in ec1+/- mutants 

Three independent lines were analyzed in detail regarding seed set of selfed flowers 

(Figure 10B). Line ec1+/--9 showed a seed set of approximately 67% compared to 

99.5% in wild type. The remaining 33% of the seeds in ec1+/--9 were aborted, probably 

resulting from undeveloped ovules. The lines ec1+/--16 and ec1+/--18 exhibited 54% and 

64% normally developed seeds, respectively. Seeds that had a normal size but had a 

white color instead of green probably resulted from defects during seed maturation. This 

phenotype only occurred at a frequency of 0.2% in line ec1+/--18 and was thus not 

further analyzed. Two further categories, shriveled seeds of brown or white color 

occurred rarely and were detected at a maximum of 1% of all ovules. Taken together, in 

average 38% of seeds were aborted from three independent ec1+/- lines.  Within the 

siliques, aborted and developed seeds were randomly distributed (Figure 10A). This 

suggests that the reduced seed set is caused by the loss of EC1 function rather than by 

abiotic or plant growth effects. 
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Figure 10: Siliques of ec1+/- plants show a reduced seed set (selfed plants). 
A Images of siliques of three independent ec1+/- lines (-9, -16, -18). Wild type silique is shown in the 
uppermost row of each column. Aborted seeds are recognizable as gaps. Pictures were taken by B. 
Bellmann. Bar = 2 mm. B Wild type siliques have 99.5% normally developed seeds, three independent 
ec1+/- lines (-9, -16, -18) have a seed set of 67%, 54% and 64%, respectively; the remaining ovules were 
mainly aborted. n = number of siliques counted ± standard error (bars). 

5.3.2 Heredity and transmission analysis of RNAi lines 

In order to determine whether a sporophytic or gametophytic effect caused the 

fertility defect, the offspring of selfed ec1+/- plants was analyzed regarding its 

sensitivity to Hygromycin B. The resistance against the antibiotic is linked to the 

transmission of the RNAi construct and was thus used as a scorable marker. 

The progeny of ec1+/--9 (n = 232) was resistant to Hygromycin at 52.2%. Of the 

seedlings of the ec1+/--16 progeny (n = 258) and the ec1+/--18 progeny (n = 296) 53.1% 

and 51.4% of the seedlings were resistant to Hygromycin, respectively. The dead to 

alive ratio of seedlings was 1:1.09 for ec1+/--9, 1:1.1 for ec1+/--16 and 1:1.06 for 

ec1+/--18. Taken together, in each of the three independent lines, the segregation of 
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Hygromycin-sensitive to Hygromycin-resistant plants was approximately 1:1. As 

expected, this ratio strongly suggests a gametophytically caused defect. 

 

To analyze the transmission efficiency via the female and the male gametophyte, 

respectively, reciprocal backcrosses with wild type plants were performed. First, the 

percentage of developed seeds after hand-pollination of wild type was determined 

(Table 5, first row). Approximately 84% of the seeds developed normally. This value 

served as a control and also showed the efficiency of hand-pollination. Moreover, it was 

also above the accepted limit of 80% successfully fertilized ovules. 

Table 5: Transmission efficiency of the ec1 allele (RNAi construct). Reciprocal crossings of ec1+/- 
(ec1/EC1) with wild type (EC1/EC1): parental genotypes, percentage of normally developed and aborted 
seeds are indicated. n = number of counted seeds. 

Parental genotype 
(female x male) 

Normal 
% 

Aborted 

% 
n 
 

EC1/EC1 x EC1/EC1 83.8 17.2 187 

ec1-9/EC1 x EC1/EC1 50.2 49.8 181 

EC1/EC1 x ec1-9/EC1 82.6 17.4 278 

ec1-16/EC1 x EC1/EC1 50.1 49.9 252 

EC1/EC1 x ec1-16/EC1 87.3 12.7 139 

ec1-18/EC1 x EC1/EC1 58.9 41.1 366 

EC1/EC1 x ec1-18/EC1 83.7 17.3 186 

 

 

These crossing experiments showed that transmission through the female, but not the 

male gametophyte was severely affected (Table 5). The seed set of ec1+/--9 plants 

pollinated with wild type pollen was reduced to 50%, whereas pollination of wild type 

plants with ec1+/--9 resulted in approximately 83% normally developed seeds. Siliques 

with ec1+/--16 as mother and wild type as father had only about 50% developed seeds 

whereas the reciprocal crossing resulted in 87% normally developed seeds. Similar 

results were obtained for ec1+/--18. In this case the transmission via the female 
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gametophyte was not as strongly affected, which was reflected by almost 59% normally 

developed seeds. Nevertheless, there was still a clear difference to the reciprocal 

crossing of wild type plants pollinated with ec1+/--18 resulting in 84% developed seeds. 

5.3.3 Morphology analysis of ec1+/- female gametophytes 

The transmission analysis described in the previous section indicated that the reduced 

seed set in ec1+/- plants was caused by a defect of the female gametophyte. To examine 

the morphology and maturity of ec1 female gametophytes, ovules were dissected from 

ec1+/- pistils and analyzed by differential interference contrast (DIC) microscopy. 

 

 

Figure 11: DIC microscopy analysis of dissected and cleared mature ovules of ec1+/- lines two days 
after emasculation. 
Nuclei of the different cell types of the female gametophyte were artificially colored: egg cell: blue; 
central cell: green; synergid cells: yellow; antipodal cells: red. A Wild type ovule, dissected from the 
pistil. Arrowheads point to the filiform apparatus. B ec1+/--9 ovule. Egg and central cell are in focus 
plane. C ec1+/--16 ovule. Egg and central cell nuclei and the two synergid nuclei are visible. D ec1+/--18 
ovule. Egg and central cell nuclei are in focus. Bars = 20 µm. 

WT, emasculated ec1+/--9, emasculated 

ec1+/--16, emasculated ec1+/--18, emasculated 
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Figure 11 shows representative images of wild type and ec1+/- ovules dissected from 

pistils two days after emasculation. In the wild type ovule the four cell types of the 

female gametophyte can be clearly seen (Figure 11A): both female gametes, haploid 

egg cell and diploid central cell as well as two synergid cells at the micropylar pole and 

three antipodal cells at the chalazal pole. Due to the focus plane, not all cell types are 

visible in the preparations shown in Figure 11B, C and D like in the image of the wild 

type preparation (Figure 11A). Nevertheless, morphological analyses of ec1 female 

gametophytes did not reveal any aberrations compared to wild type. 

5.3.4 Pollen tube guidance ability of ec1+/- ovules 

At this point the results suggested that ec1+/- ovules contain fully mature female 

gametophytes but exhibited a defect during fertilization. To explore at which step 

during the fertilization process the aberrations occur, the pollen tube guidance ability of 

ec1+/- ovules was analyzed. Therefore, ec1+/- flowers were pollinated with a pollen tube 

marker line, in which GUS expression was driven by the ARO1 promoter that has been 

shown to be strongly active in pollen and pollen tubes (Gebert et al., 2008). 

 

 

Figure 12: DIC microscopy analysis of pollen tube guidance of ec1+/- ovules. GUS histochemical 
staining after pollination with the pollen tube marker line PARO1:GUS. 
A Wild type ovule targeted by one pollen tube (blue GUS staining, arrowhead). Receptive synergid cell 
(sy) is stained blue. B ec1+/--18 ovule targeted by two pollen tubes (blue GUS staining, arrowheads 
indicating the entry of multiple pollen tubes). Receptive synergid cell shows strong GUS staining (sy). 
Bars = 20 µm. 

Figure 12A shows a wild type ovule targeted by one pollen tube visualized through 

histochemical GUS staining. In addition to the pollen tube also the synergid cell was 
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strongly stained. This effect can be explained by pollen tube rupture and subsequent 

release of its content into the receptive, degenerating synergid cell. Ovules of ec1+/- 

plants also attracted pollen tubes. This experiment showed that pollen tube attraction 

was not altered in ec1+/- ovules, moreover, that pollen tubes stop growth as in wild type 

ovules and that pollen tube reception occurs as indicated by the pollen tube rupture and 

release of its content. This conclusion was evidenced by the blue staining of the 

synergid. This fact in turn means that the receptive synergid cell must have degenerated 

before pollen tube reception, as reported by Sandaklie-Nikolova et al. (2007). In some 

cases also multiple pollen tubes entered ec1+/- embryo sacs (Figure 12B, arrowheads, 

see section 5.3.5, page 47). Apart from this, pollen tube growth and targeting towards 

mutant ovules seemed to be comparable to the wild type situation. 

5.3.5 Quantification of non-fused sperm cells within ec1+/- ovules 

Ovules in wild type pistils are reached by pollen tubes approximately five to eight 

hours after pollination. Karyogamy between female and male gametes takes place after 

three to four additional hours (Ingouff et al., 2007). Wild type and ec1+/- lines were 

hand pollinated with pollen of the sperm cell marker line HTR10-mRFP1 (Ingouff et al., 

2007) and the developing seeds were analyzed by fluorescence microscopy 30 to 40 

hours later. As mentioned before (see section 3.6, page 16), the phenotype of non-

separating and non-fusing sperm cells had already been observed in ec1+/- mutant 

ovules (Figure 13A, B). In order to get more information about this phenotype, 

quantifications of pollination experiments with the sperm cell marker line were 

performed (Figure 13C).  

Four independent lines were analyzed in more detail (ec1+/--4, -9, -16 and -18). In 

wild type siliques, sperm cells were only detectable in 3% of the ovules. In these few 

cases probably multiple pollen tube attraction accidently occurred. In 97% of the ovules 

seeds were developing normally, i.e. sperm cells had been delivered, separated and 

fused with the female gametes and were thus no longer detectable. Fluorescence of 

mRFP1 is becoming weaker due to chromatin decondensation, which starts about two 

hours after sperm cell discharge. Later after fertilization HTR10-mRFP1 is no longer 

detectable, because paternally contributed HISTONE 3 (H3) variants including HTR10 

are actively removed from the zygote within a few hours and the HTR10 promoter is 

switched off (Ingouff et al., 2007; Ingouff et al., 2010).  
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Figure 13: Fluorescence microscopy analysis and quantification of the ec1+/- ovule phenotype 
during double fertilization. 
A Overlay of DIC and mRFP1 fluorescence channel. Fluorescence of HTR10-mRFP1 in sperm cell 
nuclei is shown in red (arrowheads). Sperm cells are located within the degenerated synergid cells (dsy). 
The margins of the egg cell (ec) and the embryo sac, respectively, are indicated by a dotted line. B 
mRFP1 fluorescence channel only of the same preparation. The sperm cell nuclei are shown in red. Inset: 
close up of the sperm cell pair. Bars = 20 µm. C Quantification of phenotypes in % of targeted ovules, 
divided into five different categories: Dev. = developed; enlarged embryo sac; undev. = undeveloped; 
small embryo sac. n = number of siliques counted ± standard error (bars). 
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Sperm cells that had been delivered to ec1+/- ovules fused only in 53.3% to 56.7% of 

all ovules and were thus not detectable any more (Figure 13C). Instead, four additional 

phenotypes were observed at significantly high percentages in ec1+/- ovules. A pair of 

two sperm cells within a rather small, likely unfertilized embryo sac was observed in 

8.7% to 26.5% of ovules. A sperm cell pair within an enlarged embryo sac was 

observed in 16.1% to 20.4% of the ovules. At frequencies of less than 10% and 12%, 

respectively, four sperm cells were observed in enlarged embryo sacs and small embryo 

sacs, respectively (Figure 13C). Deduced from these data, multiple pollen tube 

attraction occurred in at least 13% of ec1+/- ovules (mean value of four independent 

lines). In summary, in approximately 45% of the ovules of ec1+/- plants non-fused 

sperm cells were observed within the female gametophyte. 

5.3.6 Microscopy analysis of developing seeds from ec1+/- siliques 

The pollination experiment described in the previous section revealed a phenotype-

frequency of about 45%, which was not consistent with the percentage of seed abortion 

in ec1+/- plants with only 38% of aborted seeds. This suggests that some of the ovules 

accumulated EC1 protein over time thus enabling the sperm cells to eventually fuse 

with the egg cell and the central cell. To investigate this hypothesis, the morphologies 

of developing seeds from 5 mm siliques of selfed ec1+/- plants were analyzed in detail 

by DIC microscopy. 

Of wild type seeds from 5 mm siliques 99% contained embryos at the four-celled or 

the octant-stage (Figure 14A, G). These stages were only observed in about 43% of 

ovules of ec1+/- plants (Figure 14B, G). The remaining phenotypes mainly comprised 

either ovules that were not fertilized but containing intactly appearing central and egg 

cells (Figure 14C, G) or ovules that seemed to be degenerating without any clearly 

detectable cell structure within the female gametophyte (Figure 14D, G). Delayed 

developmental stages like zygote or two-celled proembryo with only two or four 

endosperm nuclei were also observed, but only at frequencies below 5% (Figure 14E, F, 

G). This indicates that the phenotype of the unfertilized ovules with intact egg and 

central cells could be regarded as intermediates that have not been fertilized yet but are 

still capable of being fertilized. 
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Legend for Figure 14: Developmental stages of developing seeds in 5 mm siliques of ec1+/- plants. 
A – F DIC microscopy analysis of developing seeds of 5 mm siliques after clearing. Egg cell, zygote or 
embryo nuclei are artificially colored in blue; endosperm or central cell nuclei are artificially colored in 
green. The frequency of the observed phenotype is given in the upper right corner of the image. 
Bars = 20 µm. A Wild type seed at the four-celled embryo stage. B Ovule at the four-celled embryo stage 
of an ec1+/--9 line. C Unfertilized ovule of an ec1+/--16 line. Central and egg cell nuclei are clearly 
detectable. D Degenerating ovule of an ec1+/--18 line. Identification of cell structures within the female 
gametophyte is not possible. E ec1+/--16 ovule at the elongated zygote stage with its nucleus in the 
middle. The endosperm is probably two-celled. F Two-celled proembryo in an ovule of an ec1+/--9 line 
with four endosperm nuclei. G Quantification of various phenotypes shown in A-F in wild type and three 
independent ec1+/- lines (-9, -16, -18). n = number of siliques counted ± standard error (bars). 

 

5.3.7 Pollination of ec1+/- plants with single sperm pollen 

The genetic and cellular data indicate, that EC1 is necessary during gamete fusion. 

However, because the sperm cells were always observed as a pair we asked whether the 

EC1 protein is required for gamete fusion or rather for gamete separation. To address 

this question, a genetic approach was used. Iwakawa et al. (2006) and Nowack et al. 

(2006) characterized the Arabidopsis mutant cyclin dependent kinase a;1 (cdka;1) that 

has a defect during the second mitotic division in pollen development. A mature 

Arabidopsis pollen grain is tricellular consisting of one vegetative and two sperm cells. 

The defect in CDKA;1 leads to bicellular pollen consisting of one vegetative cell and 

only one sperm-like cell. Developing seeds resulting from a single fertilization event 

abort later on, but since the single sperm is able to fertilize the egg cell (Iwakawa et al., 

2006; Nowack et al., 2006) this mutant was used to analyze its ability to fuse with ec1 

female gametes. If EC1 was exclusively required for sperm cell separation, then the 

single sperm cell would be expected to fuse with one of the female gametes and would 

not be visible 30 hours after pollination. If, however, EC1 was needed for fusion of 

male and female gametes, the single sperm would not be expected to fuse. The numbers 

of single sperm pollen within the pool of all pollen grains of a heterozygous cdka;1+/-  

plant differ among the analyzing labs: Iwakawa et al. (2006) reported 48.7% bicellular 

pollen and Nowack et al. (2006) 41.9%. Recently, Aw et al. (2010) found that the 

number of bicellular pollen decreases continuously during in vitro pollen tube growth 

assays. After 20 hours only 34% of the pollen tubes contained one sperm cell (Aw et al., 

2010). Since these variations might be caused by different growth conditions (A. 

Schnittger, F. Berger, personal communications), the number of single sperm cells in 

pollen grains and in pollen tubes after 20 hours of germination was determined for 

HTR10-mRFP1/cdka;1+/- plants grown in our growth chambers by counting red 
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fluorescing sperm cell nuclei. At anthesis, HTR10-mRFP1/cdka;1+/- plants contained 

48% bicellular pollen grains (n = 4424). Eight to nine hours after germination 43% of 

pollen tubes contained single sperm cells (n = 402) and 20 hours after germination 40% 

of pollen tubes contained single sperms (n = 428). These results further supported the 

above described findings that the ability of cdka;1 sperm cells to undergo the second 

mitotic division during pollen tube growth might dependent on growth conditions and 

male germline maturation. 

Based on these data and on the pollination experiments of ec1+/- plants with HTR10-

mRFP1 pollen, the expected numbers for the two possible scenarios after pollination of 

ec1+/- with HTR10-mRFP1/cdka;1+/- were calculated as described in Figure 15. 

 

 

Figure 15: Expected numbers of phenotype combination after pollination of ec1+/- plants with 
cdka;1+/-  pollen. 
Probability of phenotypes of parental plants are indicated (single sperm cell, wild type sperm cells (sperm 
cell pair)); ec1 embryo sac with later non-fusing sperms, wild type embryo sac, later fusing sperms). 
Numbers in big squares represent the probability of phenotype combination during 
pollination/fertilization. Blue squares represent the proportion of ovules with non-fused sperm cells. 
A Single sperms are able to fuse; i.e. only sperm cell pairs will not fuse in ec1 ovules (27%). B Single 
sperms are also not able to fuse with ec1; i.e. 45% of all ovules show non-fused sperm cells (27% plus 
18%). 

The probability for a pair of sperm cells (mainly of CDKA;1 genotype) to be 

delivered to an ec1 mutant ovule would be 27% and for a single sperm 18%. If the 

single sperm cell was able to fuse with one of the female gametes in ec1 ovules, then 

this category would add on the wild type ovule category, in which fusion of a sperm 

pair or a single sperm takes place. This means that non-fused sperm cells would occur 

in 27% of all ovules (Figure 15A, blue square). However, if the single sperm cell was 
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also not able to fuse in ec1 ovules, then the same percentage of fused and non-fused 

sperm cells would be expected like in pollination experiments with wild type pollen 

(45% non-fused).  

In wild type ovules hardly any non-fused sperm cells were detectable, no matter 

whether wild type or single sperm pollen was used for pollination (Figure 16, black 

bars). In contrast, there was a clear difference in ec1+/- ovules after wild type and single 

sperm pollination. As described before, pollination with wild type pollen resulted in 

non-fused sperms in 45% of the ovules. When pollen of the cdka;1+/- mutant was used, 

the number of ovules with non-fused sperm cells was about 23% (Figure 16, mean value 

of three independent lines). A t-test was performed and revealed a significant difference 

between the pollination with wild type and cdka;1+/- pollen for all three independent 

lines (p ≤ 0.01). 

 
 
Figure 16: Pollination of ec1+/- plants with wild type pollen and pollen from cdka;1+/- plants. 
Wild type and ec1+/- (-9, -16, -18) plants were pollinated with HTR10-mRFP1 marked wild type pollen or 
pollen of cdka;1/CDKA;1 plants (also marked with HTR10-mRFP1). Fluorescence microscopy analysis 
was performed 30 to 40 hours after pollination. The number of targeted ovules was determined in two 
categories fused sperms and non-fused sperms (comprising all categories of non-fused sperms). The 
number of siliques counted is indicated (n) ± standard error (bars). * significant difference between wild 
type and cdka;1/CDKA;1 pollination. 
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The percentage of ovules with non-fused sperms was even slightly smaller than 

expected. This finding can be explained by the fact that if single sperms fuse, multiple 

pollen tube attraction may not occur in these ovules, but happens in a considerable 

amount of ec1 ovules when pollinated with wild type pollen. Single non-fused sperm 

cells were detected in rare cases (below 5%) in ec1+/- as well as in wild type ovules. 

This pollination experiment indicated that EC1 is required rather for a process upstream 

of gamete fusion, for example sperm cell separation. 

5.3.8 Pollination of ec1+/- plants with generative cell specific1 mutant pollen 

Mori et al. (2006) and von Besser et al. (2006) characterized a mutant that shows a 

phenotype similar to ec1+/-. GENERATIVE CELL SPECIFIC 1 (GCS1) is specifically 

expressed in sperm cells and encodes a protein with an N-terminal extracellular domain, 

one transmembrane domain and a C-terminal histidine-rich part of unknown function. A 

mutation of GCS1 leads to defects in pollen tube guidance and gamete fusion defects. 

Transmission of the mutant allele by the male gamete is severely affected (Mori et al., 

2006). 

The ec1+/- lines were pollinated with HTR10-mRFP1/gcs1+/- and the number of 

ovules with non-fused sperm cells was determined by fluorescence microscopy as in the 

previously described experiments. Since the ec1 phenotype is only transmitted through 

the female side, whereas the gcs1 phenotype is exclusively caused by a defect on the 

male side, an additive phenotype related to the frequency was expected. In control 

experiments, where wild type plants were pollinated with gcs1+/-pollen, non-fused 

sperms were observed in 22% of all ovules (n = 97). This value served as a reference 

and is similar to previously published results (Mori et al., 2006). Importantly, only 71% 

of the ovules developed into seeds. The remaining 7% ovules seemed to contain a 

collapsed female gametophyte, which may result from the additional pollen tube 

guidance defect that has been reported for this mutant (von Besser et al., 2006). The 

pollination of ec1+/- with gcs1+/- resulted in 45% of all ovules exhibiting non-fused 

sperms, whereas fertilization only occurred in 36% of all ovules (n = 252). In this 

experiment the female gametophyte had collapsed even in 19% of the ovules. 

Taken together, after pollination of ec1+/- plants with wild type and gcs1+/- pollen the 

ratio of ovules with non-fused sperms to ovules with fused sperm cells changed from 

1:1.2 to 1:0.8. As expected the amount of ovules with non-fusing sperms increased 

compared to the crossing of wild type plants with ec1+/- and gcs1+/- plants, respectively. 
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The experiments described above show that the egg cell-specific, small and secreted 

protein EC1 seems to be necessary for gamete interaction during double fertilization. 

The loss of EC1 lead to a reduced seed set due to defects in double fertilization. Pollen 

tube guidance, reception and burst as well as gamete delivery were not affected. 

However, the sperm cells did not separate and as a consequence fusion with the female 

gametes did not take place. Pollination experiments with single sperm pollen supported 

the hypothesis that sperm cell separation was affected in ec1+/- ovules rather than 

gamete fusion. 
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5.4 Expression of EC1 and protein purification 

 In addition to the genetic data about EC1 function, biochemical approaches were 

taken to further understand the function and mechanistic activity of the protein. 

Therefore, EC1 was fused to various tags and overexpressed in planta or heterologously 

in yeast or E. coli for subsequent affinity purification. The protein should then be used 

in a bioassay to analyze its ability to separate the two sperm cells in vitro. Moreover, the 

EC1 protein could be used to study the binding capacity to the sperm cell surface.  

5.4.1 Expression of EC1.1 in planta 

First, it was aimed to purify the protein from plants because EC1 proteins are 

cysteine-rich and the correct formation of disulfide bonds in heterologous systems is 

critical and might cause problems especially in E. coli (see Appendix for predicted 

disulfide bond formation, page 104). Arabidopsis plants expressing EC1.1 under control 

of the strong Cauliflower Mosaic Virus 35S (CaMV35S) promoter had already been 

generated in a previous project (B. Bellmann). The transgenic plants did not display an 

altered phenotype in comparison to wild type plants. Although the transcript of EC1 

was detected in leaves by reverse transcriptase-PCR in large amounts in all lines tested 

(data not shown), the presence of the protein remained questionable since there was no 

antibody for immunodetection available. To circumvent this problem, plants were 

generated that expressed a fusion of EC1.1 and enhanced Green Fluorescent Protein 

(eGFP) under control of the CaMV35S promoter (RAS7). The fusion protein should 

then be easily detectable by fluorescence microscopy. However, eGFP fluorescence was 

not detected in all tissues tested. To exclude that the transgene was not transcribed, the 

presence of transcript was proven by RT-PCR. A possible reason for the absence of the 

protein might be down-regulation or translational inhibition in stably transformed plants 

since the EC1.1 protein might be harmful for cells. Therefore, the EC1.1-eGFP 

construct was expressed transiently in Nicotiana benthamiana by agrobacteria 

infiltration. A fusion of the amino acid transporter CAT6 and eGFP, which localizes to 

Golgi vesicles and the plasma membrane (U. Hammes, unpublished), was used as a 

positive control. For the evaluation of autofluorescence a non-infiltrated leaf served as a 

negative control. Agrobacteria were transformed with the respective constructs (pRAS7, 

P35S:CAT6-eGFP) and infiltrated into the abaxial side of N. benthamiana leaves. Two 
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and three days after infiltration, eGFP fluorescence was analyzed microscopically. The 

control experiment showed strong eGFP fluorescence in Golgi vesicles and the plasma 

membrane as expected (Figure 17B). However, fluorescence was not detected in leaves 

infiltrated with EC1.1-eGFP (Figure 17A). These leaves were not distinguishable from 

leaves that had not been infiltrated (Figure 17C). 

 

 

Figure 17: Fluorescence microscopy of transiently expressed EC1.1-eGFP in N. benthamiana leaf 
epidermal cells, 48 hours after infiltration. 
A Leaf after infiltration with EC1.1-eGFP. eGFP fluorescence was not detectable. B Control experiment: 
CAT6-eGFP infiltrated leaf showing strong eGFP fluorescence in Golgi vesicles (closed arrowhead) and 
the plasma membrane (open arrowhead). C Negative control: non-infiltrated leaf. All images are overlays 
of bright field and eGFP fluorescence channels. Bars = 20 µm. 

Taken together, the EC1.1-eGFP fusion protein seemed not to be present in stably 

transformed Arabidopsis plants as well as in transiently transformed N. benthamiana 

leaf epidermal cells, at least not above the fluorescence detection limit. These two in 

planta systems were thus not suitable for EC1.1 expression and purification of the 

protein. 

5.4.2 EC1.1 expression in Pichia pastoris 

The protein expression system in Pichia pastoris has been reported to be very useful 

(Macauley-Patrick et al., 2005), especially for expression of genes encoding cysteine-

rich proteins (Invitrogen). The EasySelectTM Pichia Expression Kit from Invitrogen can 

be used with a vector comprising an N-terminal α-factor secretion signal from 

Saccharomyces cerevisiae targeting the protein to the medium. Since EC1 is also a 

secreted protein, this vector was used to ensure similar targeting and similar conditions 

like pH and redox status. Moreover, this system comprises a methanol inducible 

promoter (AOX1). To the 3’ end of the EC1.1 coding sequence a c-myc-tag and a 

6xHis-tag were fused for later protein purification.  

A B C 

EC1.1-eGFP CAT6-eGFP not infiltrated 
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The Pichia pastoris strain expressing EC1.1 and the respective wild type strain 

(X-33) were grown in the respective medium. Samples of the growth medium were 

taken before induction (t = 0), 24 hours (t = 24 h) and 48 hours after induction (t = 48 h) 

and analyzed for target protein induction by Western Blot analysis using a c-myc 

antibody (Figure 18A). Before induction, a signal was not detected in wild type or in the 

EC1.1 expressing strains. After 24 hours of induction, a clear signal was detected in the 

strain expressing EC1.1, which became even stronger 48 hours after induction. The 

signal did not appear in a clear, distinct band but was rather diffuse. The calculated 

molecular weight of EC1.1-c-Myc-6xHis including the tags was 17.5 kDa, which 

approximately overlapped with the size of the bands detected on Western Blots (Figure 

18A, B, lower image). 

 

 

Figure 18: Induction of EC1 expression in Pichia pastoris and purification with Ni-NTA agarose. 
A Western Blot: accumulation of EC1 protein in the medium at 24 hours and 48 hours after induction of 
target protein expression cells with methanol. 5 µg of total protein was loaded (concentration determined 
by a Bradford assay). EC1-c-Myc-6xHis was detected with a c-myc antibody. B Purification of 
EC1-c-Myc-6xHis with Ni-NTA agarose via gravity flow. Upper image: Coomassie stained SDS-gel after 
separation of different fractions of purification. A faint, diffuse band of approximately 20 kDa is 
detectable in the eluate 1 fraction (asterisk). Lower image: Western Blot with the same samples as shown 
on the Coomassie stained gel above. EC1-c-Myc-6xHis was detected with a c-myc antibody. 

For EC1.1 purification, cells were grown for 48 hours in induction medium. After 

cells had been removed by centrifugation, the supernatant was loaded onto a Ni-NTA 

column via gravity flow. The column was washed with sodium phosphate buffer 

containing 20 mM imidazole and the protein was eluted with 250 mM imidazole in five 
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fractions. The analysis of the different fractions on a Coomassie stained SDS-gel 

revealed poor purification efficiency. Only a very faint, diffuse band occurred in the 

first fraction after elution (Figure 18B, asterisk). Another gel, loaded with the same 

samples was blotted onto a PVDF membrane after gel electrophoresis. After 

immunodetection with an anti-c-myc antibody, a very strong band was detected in the 

first fraction of elution. Signals were also detectable in the fraction that was loaded onto 

the column and in the first washing fraction, whereas the latter one was very weak 

(Figure 18B, lower image). The faint Coomassie band seemed to correlate in size with 

the signals on the Western Blot. 

 

To improve the purification efficiency, the experiment was scaled up by increasing 

the culture volume. In the experiment described above, the supernatant was 100 ml and 

had been loaded after 4.5 hours. However, after upscaling, the time for loading the 

column was up to ten hours, which might have been the reason for even worse results 

after purification. Bands were no longer detectable on Coomassie stained gels and much 

weaker signals occurred on the Western Blot. To reduce and minimize the time of the 

whole purification procedure, the batch method by incubating Ni-NTA agarose with the 

supernatant and subsequent packing of the column was carried out. Since also this 

method did not lead to satisfying results, purification of EC1.1 produced in P. pastoris 

was carried out using a HisTrapTM column that was connected to an ÄktaTM purification 

system. First, the supernatant was loaded with a peristaltic pump, which strongly 

reduced the time of loading by at least ten fold so that protein purification of larger 

culture volumes could be carried out. The ÄktaTM purification profile of the supernatant 

of EC1.1 expressing P. pastoris with a HisTrapTM column is shown in Figure 19A. The 

photometric measurement at 280 nm  (Figure 15A, blue line) during protein purification 

shows only a small peak in the elution fractions A4 to B8. Nevertheless, these 17 

fractions were combined and analyzed by SDS-PAGE. The Coomassie stained SDS gel 

showed a clear enrichment of one band of about 30 kDa. Since this size did not agree 

with the calculated molecular weight of 17.5 kDa for EC1.1-c-Myc-6xHis, the same 

samples were also blotted onto a PVDF membrane after gel electrophoresis to check for 

specificity. However, the signal on the Blot had a size of about 20 kDa as it had already 

been observed in the experiments before (Figure 18). The band of the enriched protein 

on the Coomassie stained gel was not identical to the signal obtained on the Western 

Blot, which means that another protein but not EC1.1-c-Myc-6xHis had been purified. 
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Figure 19: HisTrapTM purification of the supernatant of EC1.1 expressing P. pastoris strain. 
A ÄktaTM purification profile of the supernatant of P. pastoris expressing EC1.1. The blue line shows the 
absorption of protein in each fraction by photometric measurement at 280 nm. A slight peak is visible in 
fraction A4 to B8 (arrow). These fractions were combined for SDS-PAGE and Western Blot analyses 
shown in B. The red line shows the absorption at 260 nm. The light green line indicates the applied 
gradient of increasing imidazole concentration during the elution and the dark green line shows the 
constant flow rate of 4 ml/min. B Coomassie stained SDS gel (left side) and Western Blot after detection 
of EC1.1-c-Myc-6xHis with an anti-c-myc antibody. Coomassie stained gel shows a strong band in the 
eluate fraction of approximately 30 kDa. Signal on the Western Blot in the eluate fraction corresponds to 
a size of about 20 kDa. 

Since obviously a non-target protein from the Pichia growth medium had a much 

higher affinity to Ni-NTA agarose, the Pichia system was set aside for heterologous 

expression and purification of EC1.1. 

5.4.3 Expression of EC1 in E. coli 

The EC1 proteins possess six cysteine residues that may form up to three disulfide 

bonds. Therefore, E. coli was not the expression system of first choice because disulfide 

bond formation in the reducing E. coli cytoplasm occurs only rarely. Nevertheless, EC1 
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genes were expressed in different E. coli strains because all other attempts of 

heterologous expression failed. The coding sequences without the predicted signal 

peptide of all five EC1 genes (EC1.1, EC1.2a, EC1.2b, EC1.4 and EC1.5) were 

recombined into the pGEX-2-GW vector generating translational fusions of an N-

terminal glutathione-S-transferase (GST) and EC1. For EC1.2a, the coding sequence 

was additionally recombined into pET-53-DEST™ for N-terminal His•Tag® fusion and 

C-terminal Strep•Tag®II fusion. First, all expression vectors were used for 

transformation of the RosettaTM strain and target protein expression was analyzed by 

SDS-PAGE four hours after induction with IPTG. For the E. coli strain transformed 

with the GST-EC1.2b fusion, the expression of a protein of 26 kDa was induced, which 

is the size of the GST alone. In all other strains expressing EC1.1, EC1.2a, EC1.4 or 

EC1.5 the size of the induced protein overlapped with the calculated molecular weight 

of the fusion proteins of 40 to 44 kDa (data not shown). However, the fusion proteins 

were insoluble (see also Figure 21 for GST-EC1.1), probably aggregating in inclusion 

bodies. 

To avoid solubilization of EC1 from inclusion bodies and refolding of the protein 

before purification, EC1 solubility was analyzed in different E. coli strains. First, 

ArcticExpressTM cells were transformed with the expression vectors. ArcticExpressTM 

cells carry a plasmid with genes encoding cold-adopted chaperonins. These possibly 

enhance the solubility of critical target protein expression in cells grown at 4 to 12°C. 

However, SDS-PAGE analyses of samples before and after induction showed that target 

protein expression did not occur at all, only one of the chaperonins was detectable in 

large amounts (not shown). Therefore, the expression of EC1 in ArcticExpressTM was 

no longer followed up.  

The OrigamiTM E. coli strain carries mutations in the thioredoxin reductase (trxB) 

and the glutathione reductase (gor) gene, which strongly enhance disulfide bond 

formation in the cytoplasm. SDS-PAGE analyses of OrigamiTM cells expressing GST-

EC1.1 or 6xHis-EC1.2a-Strep revealed that also in these cells the target protein is 

insoluble (not shown).  

Finally, expression of EC1.2a was carried out in the Lemo21 strain that carries the 

pLEMO plasmid encoding lysozyme. Lysozyme is an inhibitor of the T7 RNA 

Polymerase and is under control of an L-rhamnose inducible promoter on pLEMO. The 

target protein expression from T7 based inducible promoters can thus be tuned 

depending on the amount of added L-rhamnose. Indeed, a proportion of 
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6xHis-EC1.2a-Strep was found in the soluble fraction of proteins, using this expression 

system (not shown). 

To combine the property of the OrigamiTM strain allowing disulfide bond formation 

in the cytoplasm and of Lemo21 to achieve solubility of the target proteins, Origami 

cells were simultaneously transformed with pLEMO and the EC1.2a expression vector. 

It seemed that in these newly generated LemoGami cells, some target protein was 

soluble. Figure 20 shows Coomassie stained gels after SDS-PAGE of LemoGami 

samples grown with different concentrations of L-rhamnose.  

 

Figure 20: Analysis of 6xHis-EC1.2a-Strep expression in LemoGami cells by SDS-PAGE 
(Coomassie staining). 
Expression of 6xHis-EC1.2a-Strep was analyzed without L-rhamnose and with 250 µM, 500 µM, 
1000 µM and 2000 µM L-rhamnose during induction of target protein expression with IPTG. Increasing 
intensity of the lysozyme band (#, 14 kDa) is detectable. Two additional bands of different sizes (*, **) 
are also visible in the soluble (sol) and the insoluble (insol) fraction of proteins. bi = cells before 
induction; ai = cells after induction. 

The band that only appeared after the addition of L-rhamnose and became stronger 

with increasing L-rhamnose concentrations represents lysozyme (Figure 20, sharp) with 

an expected size of approximately 14 kDa. Moreover, two other bands occurred that 

seemed to be induced. Without addition of L-rhamnose, one band is detectable in the 

soluble and the insoluble fraction (Figure 20, asterisk) and another more slowly 
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migrating band only occurs in the insoluble fraction (Figure 20, two asterisks). The 

more L-rhamnose was added to the medium, the fainter this band became until it 

eventually disappeared at 2000 µM L-rhamnose. With the larger band becoming fainter, 

the intensity of the smaller one seemed to increase. The calculated molecular weight of 

6xHis-EC1.2a-Strep was 16.3 kDa. Because of that, EC1 would have been expected to 

migrate more slowly than lysozyme, however, this was not the case. Nevertheless, it 

was tried to purify the 6xHis-EC1.2a-Strep fusion from LemoGami cells, but without 

success. After SDS-Page and Coomassie staining only unspecific bands were detected 

in the elution fractions without any enrichment of the target protein (not shown). 

 

Due to the lack of success with the expression of recombinant EC1 protein in other 

E. coli strains, the inclusion bodies from GST-EC1.1 expressing RossettaTM cells were 

solubilized with the detergent N-lauroylsarcosine. After dialysis and refolding, the 

fusion protein was purified via GSTrapTM 4B column. Although most of the GST-EC1.1 

protein did not bind, which became evident by the strong signal in the flow through, a 

single, clean band of the expected size occurred in three of the elution fractions (Figure 

21, E2- E4). 

 

 

Figure 21: Purification of GST-EC1.1 from RosettaTM cells after solubilization and refolding. 
First two lines represent the cells before induction (bi) and after induction (ai) of target protein expression 
(asterisk). Target protein cannot be detected in the soluble fraction of proteins (sol), whereas a strong 
signal appeared in the insoluble fraction (insol). After dialysis and refolding with reduced and oxidized 
glutathione, the protein was loaded onto the GSTrap column (load). Most of the GST-EC1.1 was detected 
in the flow through (ft). The first washing fraction (W1) showed as well a strong signal of GST-EC1.1. 
The elution fractions E2, E3 and E4 only showed clear signals at the size of the GST-EC1.1 fusion 
(44 kDa). 
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To confirm, that these signals were indeed the GST-EC1.1 fusion protein, the bands 

were cut out, digested with trypsin and the fragment sizes were mass spectrometrically 

analyzed by Matrix-assisted laser desorption/ionization (MALDI). Comparison of the 

obtained data with the predicted fragment sizes after trypsin digestion revealed that the 

purified band indeed reflected the GST-EC1.1 fusion protein (see Appendix, page 104). 

5.4.4 Application of  the GST-EC1.1 fusion protein in a bioassay       

In order to analyze whether the GST-EC1.1 fusion protein possesses the ability to 

separate the two sperm cells in vitro, a bioassay was established. Therefore, pollen of 

the sperm cell marker line was germinated in vitro on solid pollen germination medium 

for six hours and release of the sperm cells was achieved by induction of pollen tube 

burst through an osmotic shock (Figure 22). After release, the sperm cells were still 

located next to each other and appeared to be connected. 45 minutes after application of 

the GST-EC1.1 fusion protein an effect was not observed and the sperm cells were still 

located next to each other (Figure 22C, D). Similar results were obtained when liquid 

pollen germination medium was used instead of solid medium. 

 

Figure 22: Effect of GST-EC1.1 on sperm cell pairs released from pollen tubes after osmotic shock. 
A In vitro germinated pollen of the sperm cell marker line, overlay of brightfield and mRFP1 
fluorescence channel. Sperm cells are located within the growing pollen tube; mRFP1 fluorescence of 
sperm cell nuclei is shown in red. B Fluorescence channel of the same preparation. The sperm cell nuclei 
are shown in red (arrowheads). C Burst pollen tube after osmotic shock, 45 minutes after application of 
GST-EC1.1 protein. The sperm cells are released but are still located next to each other (overlay of 
brightfield and mRFP1 fluorescence channel). D Same sample as in C, sperm cell nuclei are shown in red 
(arrowheads), fluorescence channel only. E + F DAPI staining of burst pollen tubes. Sperm cells (closed 
arrowheads) are in close vicinity to the vegetative nucleus (open arrowhead). E Brightfield only. F 
Overlay of fluorescence channels for mRFP1 (red) and DAPI (blue) detection, respectively. Bars = 20 
µm. 
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Since the sperm cells seemed to be tightly connected I asked whether the male germ 

unit (MGU) was still intact, i.e. the sperm cells were connected to the vegetative 

nucleus, mediating the adhesion of the two sperm cells to each other. In vivo, the MGU 

is likely to be dissolved upon pollen tube burst or during transport of the sperm cell to 

the site of fusion. In order evaluate whether the male germ unit might still be present, 

DAPI (4',6-diamidino-2-phenylindole) staining of DNA was performed to visualize the 

vegetative nucleus. Figure 22E and F show a ruptured pollen tube of the sperm cell 

marker line after DAPI staining. The vegetative nucleus is located in close vicinity to 

the two sperm cells. This indicates that the MGU might still be intact. Consequently, 

this bioassay likely does not reflect the in vivo situation and may thus not be suitable. 

 

In summary, the expression and purification of EC1 turned out to be very 

challenging. Overexpression in planta did not work and it was not possible to purify 

EC1.1 and from Pichia supernatant. Most promising results were obtained with 

heterologous expression in E. coli. However, it remains questionable whether EC1.1 

was correctly folded regarding disulfide bond formation, since the applied bioassay is 

probably not suitable and there was no other test to evaluate the biological functionality 

of the purified and refolded EC1 protein. 
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5.5 Post-translational regulation of EC1.1 stability 

5.5.1 Proteasome inhibitor studies 

As described in section 5.4.1 (page 54) plants expressing EC1.1-eGFP under control 

of the CaMV35S promoter were initially generated with the aim to purify the 

EC1.1-eGFP fusion protein. However, eGFP fluorescence could not be detected in any 

tissue, whereas the transcript of EC1.1 was present abundantly (Figure 23A, inset). The 

absence of fluorescence could be explained by two simple scenarios: (i) the 

misexpressed protein is not translated at all, or (ii) it is degraded rapidly after 

translation, presumably via the ubiquitin-proteasome pathway. To test the latter 

hypothesis a proteasome inhibitor assay was established. Seedlings expressing 

PCaMV35S:EC1.1-eGFP were grown on solid MS medium and after two weeks 

transferred to MS medium containing the proteasome inhibitor MG132. Seedlings were 

analyzed after 16 to 24 hours on plates. Microscopy analysis showed that only MG132 

treated EC1.1-eGFP expressing roots showed eGFP fluorescence, mainly in the 

vasculature (Figure 23A). Protein extracts from these seedlings were made and 

analyzed by SDS-PAGE. The increased amount of fusion protein in EC1.1-eGFP 

expressing seedlings after MG132 treatment could also be confirmed by Western Blot 

analysis using a GFP antibody (Figure 23B, left side). Additionally, some degradation 

products were detectable in plants misexpressing the fusion protein under control of the 

CaMV35S promoter. In contrast, the control experiment with pistil extracts of plants 

expressing EC1.1-eGFP under control of the endogenous EC1.1 promoter showed a 

single band of the size of the fusion protein without a prominent degradation product 

(Figure 23B, right side). 

 

These data suggest that misexpressed EC1.1-eGFP is degraded rapidly via the 

ubiquitin-proteasome pathway. Endogenous EC1.1 localized in the egg cell did not 

seem to be affected by degradation and seems to be stabilized by a yet unknown 

mechanism (see section 5.5.3, page 70). 
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Figure 23: Misexpressed EC1.1-eGFP is degraded via the ubiquitin-proteasome pathway. 
A Roots of wild type seedlings (left side) and seedlings expressing PCaMV35S:EC1.1-eGFP (right side) 14 
days after stratification. eGFP signals were investigated 24 h after transfer to solid MS medium including 
DMSO as a control (upper row) and on medium containing 100 µM MG132 (lower row). eGFP 
fluorescence is only detectable in roots expressing EC1.1-eGFP after MG132 treatment. Inset: RT-PCR 
of PCaMV35S:EC1.1-eGFP and wild type seedling cDNA, EC1.1 transcript is detectable in overexpressing 
lines but not in wild type seedlings. Bars = 50 µm. B Western Blots using a monoclonal anti-GFP 
antibody. Left side: whole plant protein extracts of PCaMV35:EC1.1-eGFP plants. The fusion protein is 
only detectable after MG132 treatment. Degradation products are marked with asterisks. Right side: pistil 
protein extracts. Only the fusion protein is detectable in lines expressing EC1.1-eGFP under control of 
the endogenous promoter; 42 kDa represents the calculated molecular weight of the fusion proteins 
without the predicted leader peptide. 
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5.5.2 Identification of EC1.1 interacting proteins by yeast-two-hybrid approaches 

As already mentioned above, the knockout of the sperm cell-specific GCS1 gene 

causes a phenotype similar to ec1+/-. GCS1 encodes for a protein with a predicted signal 

or leader peptide targeting it to the secretory pathway. Furthermore, it contains one 

large extracellular domain, a transmembrane domain and an intracellular histidine-rich 

C-terminal part (Figure 24A, B). Due to the observed phenotype GCS1 was tested as a 

putative interaction partner of EC1.1, which is secreted from the egg cell during 

fertilization. To analyze whether these two proteins interact, a direct yeast-two-hybrid 

test was performed. EC1.1 without the predicted signal peptide served as a bait and the 

N-terminal extracellular part of GCS1, which is sufficient for gamete fusion (Mori et 

al., 2010), as a prey. However, the diploid yeast strain expressing EC1.1 and GCS1 did 

not grow on quadruple dropout medium selecting for interacting proteins indicating that 

the two proteins do not interact directly (Figure 24C). 

 

 

Figure 24: GCS1-EC1.1 interaction analysis by mating based yeast-two-hybrid system. 
A Schematic representation of the GCS1 protein domains. SP = signal peptide; TMD = transmembrane 
domain; His-rich = Histidine-rich domain. B Proposed topology of GCS1 in the sperm cell (according to 
Wong et al., 2010); N- and C-termini are indicated; nuc = nucleus. C Growth of mated yeast strains on 
medium lacking leucine (L) and tryptophan (W) selecting for diploid clones and on medium lacking 
additionally adenine (A) and histidine (H) selecting for interacting proteins. The positive control is 
growing on medium selective for interaction of bait and prey (#5). Yeast expressing GCS1 as a prey and 
EC1.1 as a bait is not growing on –A/H/L/W medium (#8). 
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In addition to the direct yeast-two-hybrid interaction test with GCS1, cDNA libraries 

were screened with the aim to identify interaction partners of EC1.1. First, a cDNA 

library of mature ovules attached to the placenta was generated. After mating with the 

EC1.1 bait strain 564 clones grew on quadruple dropout medium, but none of which 

activated the third reporter gene. This means that no interaction partners were identified 

in the ovule cDNA library. Since the phenotype of ec1+/- is related to the male gametes, 

a pollen tube cDNA library (generated by M. Gebert; Gebert, 2008) was screened. In 

total, 480 clones were identified that activated two reporter genes, 27 of which activated 

three reporter genes, i.e. diploid clones grew on quadruple dropout medium and 

additionally showed blue staining after an X-Gal assay (Table 6). After plasmid rescue 

and propagation in E. coli, isolated plasmids were subjected to a test digestion. Inserts 

of different sizes were sequenced and plasmids of interesting candidate clones were 

used for retransformation of yeast. The generated yeast strains were mated again with 

the strain expressing the EC1.1 bait construct. Additionally, these strains were mated 

with a yeast strain transformed with the empty bait vector to evaluate auto-activation. 

Table 6: Analysis of reporter-gene activating yeast-two-hybrid clones from a pollen tube cDNA 
library (Gebert, 2008) using EC1.1 without the predicted signal peptide as a bait. Clone number (#), 
staining intensity after X-Gal assay, success of transformation of E. coli with the rescued plasmid, 
sequence identity and length and verified interaction after retransformation and remating are indicated. 

Clone 
# 

X-Gal Assay; 
Staining 
intensity 

Transformation 
of E.coli 

Insert sequence, length of 
fragment 

Interaction after 
retransformation

/-mating 

1 +  At3g07820; putative 
polygalacturonase (PGA3); 206 bp n.d. 

2 +  At3g07820; putative 
polygalacturonase (PGA3); 782 bp - 

3 +  At3g07820; putative 
polygalacturonase (PGA3); 710 bp n.d. 

4 +  n.d. n.d. 

5 ++  At3g29180, unknown protein, 
DUF1336; 261 bp n.d. 

6 ++  At3g29180, unknown protein, 
DUF1336; 261 bp - 

7 +  At3g07820; putative 
polygalacturonase (PGA3); 1087 bp n.d. 

8 ++ - n.a. n.a. 

9 +  n.d. n.d. 

10 +  n.d. n.d. 

11 +  At5g07410; pectinesterase family 
protein; 304 bp n.d. 
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Clone 
# 

X-Gal Assay; 
Staining 
intensity 

Transformation 
of E.coli 

Insert sequence, length of 
fragment 

Interaction after 
retransformation

/-mating 

12 +  At3g07820; putative 
polygalacturonase (PGA3); 599 bp n.d. 

13 +  At3g07820; putative 
polygalacturonase (PGA3); 754 bp n.d. 

14 ++  At5g07410; pectinesterase family 
protein; 933 bp n.d. 

15 +  n.d. n.d. 

16 ++  
At1g13460; serine/threonine protein 
phosphatase 2A (PP2A) regulatory 
subunit B', putative; 320 bp 

 

17 +  At3g28830; unknown protein, 
DUF1216; 252 bp - 

18 +  At3g07820; putative 
polygalacturonase (PGA3); 578 bp n.d. 

19 +  n.d. n.d. 

20 +  At5g07410; pectinesterase family 
protein; 358 bp n.d. 

21 +  At3g07820; putative 
polygalacturonase (PGA3); 617 bp n.d. 

22 ++  n.d. n.d. 

23 + - n.a. n.a. 

24 +  At2g45800; putative LIM domain 
protein; 126 bp - 

25 +  
At5g24240; phosphatidylinositol 3- 
and 4-kinase family protein/ubiquitin 
family protein; 337 bp 

 

26 +  At3g07820; putative 
polygalacturonase (PGA3); > 768 bp n.d. 

27 ++ - n.a. n.a. 

 

The clones encoding a putative polygalacturonase (At3g07820) and a pectin esterase 

family protein (At5g07410) were also identified in large numbers in another screening 

of this library but turned out to be false positives (Gebert, 2008) and were therefore not 

further analyzed here. For clones #16 and #25 the interaction could be verified, i.e. 

these clones showed activation of three reporter genes and did not reveal auto-activation 

(Figure 25A). These clones encoded a fragment of the regulatory subunit B’θ of the 

Phosphatase 2A (PP2A B’θ) and one of the ubiquitin-like domain kinase γ3 (UbDKγ3), 

respectively. UbDKγ3 was formerly predicted to encode a type II phosphoinositide 4-

kinase (PI4K) and was therefore also named as AtPI4Kγ3. However, it has been shown 

that UbDKγ4 – the most similar protein to UbDKγ3 – interacts with RPN10 and UFD1, 

which are both involved in the ubiquitin-proteasome pathway (Galvão et al., 2008). It 



R E S U L T S  | 69 

was therefore suggested that UbDKγ4 functions in delivery of polyubiquitinated 

proteins to the proteasome. The EC1.1 interacting fragment of UbDKγ3 partly consists 

of the second UBL (ubiquitin-like) domain and a region between the UBL and the 

conserved PI3/4 kinase domain (Figure 25B). B’θ is a regulatory B’ subunit of the 

Phosphatase 2A (PP2A). The fragment that was found to interact with EC1.1 consisted 

of 110 amino acids from residue 7 to 117 comprising a more variable part at the N-

terminus and part of the conserved PP2A B domain (Figure 25C). 

 

 

Figure 25: Identification of EC1.1 interaction partners by screening of a yeast-two-hybrid pollen 
tube cDNA library. 
A Growth of mated yeast strains on medium lacking leucine (L) and tryptophan (W) selecting for diploid 
clones (left picture) and on medium lacking additionally adenine (A) and histidine (H) selecting for 
interacting proteins. Yeast strains expressing the PP2A B’θ fragment together with EC1.1 (#2) but not 
without bait (#3) are able to grow on selective medium. Yeast strains expressing the UbDKγ3 fragment 
are also able to grow on selection medium together with EC1.1 (#4) but not without bait (#5). B + C 
Schematic representation of the identified EC1-interacting proteins. The full length protein (above) and 
the interacting protein fragment (below) are shown. B AtPI4Kγ3/UbDKγ3 contains two UBL domains 
and one kinase domain. C PP2A B’θ contains the PP2A B domain. 

 

To verify the interaction of EC1.1 with PP2A B’θ and UbDKγ3, respectively, the 

full-length coding sequences of the two identified proteins were expressed in yeast as 

prey and mated with the EC1.1 expressing bait strain. However, interaction with the 

full-length clones could not be confirmed (data not shown). 

-A/H/L/W -L/W 
1 

2 
6 

A 

5 3 

4 

1 

2 
6 

5 
3 

4 

PP2A B‘! 

7-117 

PP2A B domain 

C 

100 aa 

AtPI4K!3 
/UbDK!3 

146-257 

PI3/4 kinase domain 

B 

100 aa 

UBL domains 
1 2 

# BD –vector (bait) AD-vector (prey) 

1 pGBKT7-53 pGADT7-T (positive control) 

2 EC1.1 PP2A B‘ ! (fragment) 

3 empty PP2A B‘ ! (fragment) 

4 EC1.1 AtPI4K!3  (fragment) 

5 empty AtPI4K!3  (fragment) 

6 empty pGADT7-T (negative control) 



R E S U L T S  | 70 

5.5.3 Stability of a phospho-mimicking variant of EC1.1 fused to eGFP 

B’ subunits of the PP2A determine substrate specificity and subcellular localization 

(Farkas et al., 2007). According to in silico analysis (NetPhos 2.0) each of the 

Arabidopsis EC1 proteins exhibits numerous predicted phosphorylation sites, especially 

at serine residues at the C-terminal part of the protein behind the conserved cysteine-

rich domain (Figure 26). These predictions together with the identified PP2A subunit in 

the yeast-two-hybrid screen suggest that phosphorylation of EC1.1 might occur and be 

possibly linked to the instability of the EC1.1 protein: phosphorylation might stabilize 

the protein and dephosphorylation of EC1.1 might mark it for degradation. 

 

 

Figure 26: Alignment of Arabidopsis EC1 proteins showing predicted phosphorylation sites. 
Full length AtEC1.1 to AtEC1.5 were aligned. Consensus sequence is shown below the alignment. 
Conserved cysteine-rich domain is indicated by the black line. The serine, threonine and tyrosine residues 
that are predicted to be phosphorylated (according to NetPhos 2.0) are highlighted in blue, red and green, 
respectively. Predicted phosphorylation sites of serine residues accumulate at the C-terminus of all 
proteins. Serine residues of EC1.1 that were exchanged against aspartate residues in the phospho-
mimicking variant are indicated (blue stars). 

 

To test this hypothesis, a phospho-mimicking construct was generated. The serine 

residues S151, S152 and S154 of EC1.1 (Figure 25, blue stars), which had – according 

to predictions – the highest probability to be phosphorylated, were exchanged against 

aspartate residues. This construct was used for transformation of agrobacteria and 

transiently expressed in Nicotiana benthamiana by leaf infiltration. Leaves infiltrated 

with the wild type form of EC1.1 fused to eGFP did almost not show fluorescence 

(Figure 27A, B), whereas eGFP fluorescence is clearly detectable in vesicle-like 

structures in leaves expressing the phospho-mimicking variant, (Figure 27C, D). This 

finding supported the hypothesis that the phosphorylated version of EC1.1 is more 
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stable and that the dephosphorylated form is marked for degradation. In contrast, 

fluorescence was not detected in stably transformed Arabidopsis expressing the 

phospho-mimicking variant of EC1.1 fused to eGFP under control of the CaMV35S 

promoter indicating that there are additional mechanisms that regulate the stability of 

the EC1.1 protein (data not shown). 

 

 

Figure 27: Fluorescence microscopy images of N. benthamiana leaf epidermal cells expressing the 
native EC1.1-eGFP or the phospho-mimicking variant of EC1.1-eGFP. 
A + B Leaves expressing the wild type form of EC1.1-eGFP. eGFP fluorescence is not detectable. C + D 
Leaves expressing the phospho-mimicking form of EC1.1 fused to eGFP; fluorescence is detectable and 
localizes to vesicle-like structures. A + C merge image of brightfield and fluorescence channel for eGFP. 
B + D Fluorescence channel for eGFP. Bars = 20 µm. 

 

5.5.4 Misexpression of PP2A B’θ in synergid cells 

According to publicly available array data, PP2A B’θ is ubiquitously expressed, but 

is absent in female gametophytic cells (Šoljić et al., unpublished). Due to this finding, it 

was proposed that the degradation of EC1.1, which is secreted by the egg cell during 
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fertilization, is initiated by dephosphorylation. PP2A B’θ would be delivered by the 

pollen tube to the female gametophyte where it is released into the degenerating 

synergid. After gamete fusion PP2A B’θ might dephosphorylate secreted EC1.1 and 

thereby trigger its inactivation and degradation. In order to support this model PP2A B’θ 

was misexpressed in the synergid cells using the strong synergid cell-specific promoter 

DD31 (Steffen et al., 2007). For visualization, the PP2A B’θ was expressed as a 

translational fusion with eGFP. According to the hypothesis these plants should 

phenocopy ec1+/- plants because PP2A B’θ would then be present too early in the 

female gametophyte and EC1 would be degraded before it can induce sperm cell 

separation. 

 

 

Figure 28: Misexpression of PP2A B‘θ-eGFP in synergid cells. 
A Confocal Laser Scanning Microscopy (CLSM) image of a flower stage 13 (Smyth et al., 1990) ovule 
expressing PP2A B’θ-eGFP in the cytoplasm of the synergid cell (open arrowhead); closed arrowhead 
points towards the egg cell. Overlay of DIC and eGFP channel. B + C Fluorescence Microscopy image of 
an ovule 12 hours after pollination of a PDD31:PP2A B’θ-eGFP plant with HTR10-mRFP1 pollen (Ingouff 
et al., 2007); eGFP fluorescence of PP2A B’θ-eGFP expressing synergid cells is shown in green (open 
arrowhead); mRFP1 fluorescence of sperm cell nuclei expressing HTR10-mRFP1 is shown in red (closed 
arrowheads). Sperm cells do not separate and do not fuse with the female gametes. B Overlay of eGFP 
and mRFP1 fluorescence channels. C Overlay of brightfield, eGFP and mRFP1 fluorescence channels. 
Bars = 20 µm. 

 

Figure 28A shows an ovule expressing PDD31:PP2A B’θ-eGFP with strong eGFP 

fluorescence in the cytoplasm of the synergid cell. Plants expressing PP2A B’θ in the 

synergid cells were pollinated with the sperm cell marker line HTR10-mRFP1. Twelve 

hours after pollination a phenotype reminiscent of the ec1+/- phenotype was visible 

(Figure 28B, C). The pollen tube is normally attracted to the female gametophyte, 

pollen tube reception and discharge are also not affected, but the sperm cells are not 

separated and fusion of male and female gametes does not take place. Degenerated, 
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receptive synergid cells expressing eGFP were recognizable by their altered shape. Of 

all targeted ovules expressing PP2A B’θ-eGFP (n = 73) 70% showed non-fused sperm 

cells 14 to 17 hours after pollination. 

 

The experiments described in this chapter show that additionally to its tight 

transcriptional regulation, EC1.1 is also strongly regulated at the post-translational 

level. A phospho-mimicking variant of EC1.1 fused to eGFP showed an increased 

stability, whereas misexpressed EC1.1 was degraded quickly via the proteasome. 

Overexpression of the gene encoding the PP2A regulatory subunit B’θ interacting with 

EC1.1 in the synergid phenocopied the ec1+/- phenotype. Taken together, these data 

suggest that the regulatory subunit B’θ triggers dephosphorylation of EC1.1 and that 

this modification is a mark for degradation via the ubiquitin-proteasome pathway. 
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6 DISCUSSION 

Double fertilization is the characteristic trait of angiosperms. During the double 

fertilization process, a lot of intercellular signaling events occur.  The two male gametes 

are transported towards the female gametophyte by the pollen tube representing the 

male gametophyte. The pollen tube cell grows through the transmitting tract to the 

female gametophyte involving extensive cross-talk with the sporophytic tissue 

(Dresselhaus et al., 2011). After arrival at the female gametophyte, the two immobile 

sperm cells are released from the pollen tube and are delivered to the female gametes, 

the egg cell and the central cell. In a coordinated manner one sperm cell fuses with the 

egg cell giving rise to the embryo and the second sperm cell fuses with the central cell 

giving rise to the nurturing endosperm. For the development of healthy and strong 

offspring, these mechanisms are based on cell-cell communication events between the 

male and female gametophytes as well as between the gametes and have to be tightly 

controlled to ensure successful fertilization and to inhibit polyspermy (reviewed by 

Dresselhaus, 2006; Higashiyama, 2010). 

The egg cell-specific EC1 gene family from Arabidopsis had been identified in a 

previous project. In the present work, the analysis of the physiological role of these 

small, cysteine-rich and secreted proteins during double fertilization in Arabidopsis was 

addressed in detail and events after fertilization including post-translational control and 

degradation of EC1 were analyzed.   

6.1 EC1 proteins belong to the large class of ‘ECA1 gametogenesis 

related family proteins’ of cysteine-rich proteins 

Silverstein et al. (2007) identified 825 cysteine-rich proteins in the Arabidopsis 

genome and clustered them into different classes according to their cysteine pattern and 

similarity. The proteins encoded by the EC1 gene family are part of the class called 

‘ECA1 gametogenesis related family protein’ comprising 118 members. This class is 

named after ECA1 (early culture abundant 1), which was identified in a cDNA library 

of barley microspores and was shown to be strongly induced in early stages of 

microspore culture (Vrinten et al., 1999). In BLAST searches, I identified the EC1 
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related- (ECR-) group comprising nine proteins with highest similarity to the EC1 

proteins. The constructed phylogenetic tree of all proteins of the ECA1 gametogenesis 

class of Arabidopsis showed that the five EC1 family members clustered in an isolated 

clade. This was also true for the nine ECR proteins. At2g27315 (ECR1) of the ECR-

group has been shown already to be synergid-specifically expressed (Punwani et al., 

2008). For At5g54062 (ECR6) and At5g52975/DD8 (ECR4) predominant expression in 

the synergid cell and weak expression in egg and central cell were observed (Jones-

Rhoades et al., 2007; Steffen et al., 2007). Thus, the hypothesis arose that ECRs might 

be EC1 equivalents of the synergid cell. To date, there is no functional analysis 

available about ECR genes. Synergid cell-specific expression within the female 

gametophyte might point to a specific role in cell-cell communication during pollen 

tube guidance or reception. The cysteine-rich LURE proteins of the defensin-like class 

are secreted from the synergid cell in Torenia fournieri to attract pollen tubes towards 

the ovule (Okuda et al., 2009). Moreover, Amien et al. (2010) recently showed that the 

defensin-like cysteine-rich ES4 protein (EMBRYO SAC 4) from maize is secreted from 

the synergid cells during fertilization and induces pollen tube burst via opening of the 

potassium channel KZM1. ECR proteins likely have different roles than these defensin-

like proteins but might also be important during double fertilization. 

Additionally, two putative central cell-specific groups among the defensin-like 

(DEFL) genes were identified in this thesis. Reverse transcriptase-PCR analyses showed 

that none of the tested genes is expressed in roots, leaves, stems or anthers. The absence 

of transcript in vegetative tissues tested so far makes these genes interesting candidates 

for detailed expression analysis and functional studies during the double fertilization 

process. Except for the fact that there are small cysteine-rich proteins among the 

prolamin superfamily of cereal seed storage proteins (Shewry and Halford, 2002), 

nothing is known about the function of central cell-specific cysteine-rich proteins. 

Especially the genes encoding the CCC proteins of the two identified putative central 

cell groups show a strong expression in siliques containing the embryo and the 

endosperm indicating a function after fertilization. Similarly, the paternally imprinted 

genes encoding cysteine-rich proteins of the MEG1 class are expressed in the 

endosperm and might play a role in nutrient trafficking to the developing seed 

(Gutierrez-Marcos et al., 2004). Therefore, functional analysis of these genes might be 

very interesting and give new insights into the role of cysteine-rich proteins also after 
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fertilization such as endosperm development or communication of fertilization products 

with the surrounding maternal tissue (Marshall et al., 2011). 

6.2 EC1 homologs only occur in angiosperms 

BLAST searches revealed that EC1 homologs were found exclusively in 

angiosperms. During the angiosperm characteristic trait of double fertilization, fusion of 

one sperm cell with the egg cell and of the second sperm with the central cells takes 

place in a highly coordinated manner. In gymnosperms such as white pine, which 

produces pollen with two sperm cells, the second sperm cell degenerates after fusion of 

the leading sperm with the egg cell (Bruns and Owens, 2000). Also in Ginkgo there is 

no classical double fertilization event. In ginkgo pollen two mobile sperm cells develop 

of which only one eventually fertilizes the egg cell (Nakao et al., 2001). The phenotype 

of ec1 knockout mutants, the non-separating and non-fusing sperm cells within the 

female gametophyte clearly involves double fertilization and thus underlines the 

importance of EC1 during the evolution of this angiosperm characteristic process. 

 The search for homologous proteins showed that Arabidopsis thaliana and 

Arabidopsis lyrata both contain an EC1.5 protein with a characteristic insertion within 

the conserved cysteine pattern. However, until now it is unclear whether this protein is 

functionally redundant to the other four proteins. The analysis of a quadruple mutant in 

Arabidopsis thaliana still remains standing to see if these plants also show the same 

phenotype like the knockdown of the entire gene family. On the other hand, ec1.5 single 

knockout lines did not display a phenotype in terms of reduced seed set indicating that 

the protein is functionally redundant although experiments are still missing, which show 

that the protein is expressed and secreted during the double fertilization process. 

6.3 ec1+/- mutants display a non-fusing sperm phenotype 

The knockout of EC1 genes lead to reduced seed set. More detailed analyses showed 

that earlier steps of the double fertilization process such as pollen tube growth, guidance 

and attraction to the female gametophyte were not affected in ec1+/- plants. Moreover, 

pollen tube reception, synergid degeneration and pollen tube burst occurred normally in 

these mutants. Only separation of the sperm cell pair did not take place and fusion of 

male and female gametes was impaired. In average, 45% of ovules of ec1+/- plants 
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showed non-fused sperm cells. The numbers of the different phenotypes varied between 

independent transgenic lines. This can be explained by an RNAi effect, i.e. differential 

transcriptional activities of the RNAi construct due to positional effects of the 

transgene. Moreover, the number of aborted seeds in ec1+/- siliques did not correlate 

with the frequency of ovules showing non-fused sperms. DIC microscopy analysis of 

siliques of selfed ec1+/- flowers showed that intermediate stages of female gametophytes 

with intact appearing cells occurred, which thus were probably still able to be fertilized. 

Post-transcriptional gene silencing of plant genes using RNAi constructs leads usually 

to a maximum of 90% gene silencing (Wesley et al., 2001). Thus, in some of these 

ovules enough EC1 protein might accumulate over time, so that fertilization can take 

place and seeds will develop normally. In other ovules, fertilization might not happen 

due to an insufficient amount of EC1 protein. These seeds then would be aborted 

eventually. 

Two other Arabidopsis mutants have been described that show a non-fusing sperm 

phenotype similar to ec1+/-. Recently, Yu et al. (2010) showed that (i) the mitochondrial 

ankyrin repeat protein ANK6 is essential for gamete recognition. However, the 

phenotype of non-fusing sperm cells only occurred when an ank6 sperm cell reaches an 

ank6 female gametophyte. ANK6 interacts with SIG5 that functions as transcription 

initiation factor in mitochondria and chloroplasts. The authors propose that these two 

proteins together play a central role in gamete recognition by regulating mitochondrial 

gene expression. However, the mechanism of ANK6 activity is completely unclear. Due 

to the localization of the proteins, a direct interaction of ANK6 and EC1 is very 

unlikely. The loss of GCS1/HAP2 (ii) also leads to non-fusing sperm cells within the 

Arabidopsis female gametophyte (Mori et al., 2006; von Besser et al., 2006). 

GCS1/HAP2 is specifically expressed in sperm cells and encodes a protein anchored in 

the membrane where it presents its extracellular N-terminal domain (Mori et al., 2010; 

Wong et al., 2010). EC1 is expressed in the egg cell and is secreted upon fertilization. 

Given these data about localization of the two proteins and their topology together with 

the similar loss-of-function phenotype, an interaction might be possible. Nevertheless, 

two facts indicate that GCS1/HAP2 and EC1 have different roles at different time points 

during gamete recognition and fusion: (i) In contrast to EC1, which only has homologs 

in angiosperms, GCS1/HAP2 homologous proteins have been identified also in green 

and red algae (Chlamydomonas reinhardtii and Cyanidioschyzon merolae), in slime 

molds (Physarum polycephalum) and parasites (Plasmodium falciparum and 
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Leishmania major) (Mori et al., 2006). Liu et al. (2008) could show that 

Chlamydomonas and Plasmodium berghei each need one member of the conserved 

GCS1/HAP2 protein family and another species-specific protein for gamete fusion. The 

authors further showed that Chlamydomonas and Plasmodium GCS1/HAP2 functions in 

membrane merger downstream from gamete membrane attachment. Since GCS1/HAP2 

is found in genomes of all major eukaryotic taxa, it was recently proposed that 

GCS1/HAP2 might represent an ancestral gamete fusogen (Wong and Johnson, 2010). 

Contrarily, EC1 is likely to be involved in a double fertilization-specific process 

upstream of gamete fusion. Moreover, (ii) pollen tube attraction of ec1 and gcs1 ovules 

differs. Multiple pollen tube attraction occurs only very rarely in wild type plants in 

order to avoid polyspermy (Shimizu and Okada, 2000). However, pollen tube entry 

alone seems not to the clue to prevent further pollen tube attraction. sirene/feronia, 

abstinence by mutual consent (amc) and lorelei mutants from Arabidopsis show pollen 

tube overgrowth within the female gametophyte but these ovules continue to attract 

further pollen tubes (Huck et al., 2003; Rotman et al., 2003; Escobar-Restrepo et al., 

2007; Boisson-Dernier et al., 2008; Capron et al., 2008). In ec1+/- plants multiple pollen 

tube attraction still occurred in at least 13% of all ovules indicating that the signal to 

stop pollen tube attraction occurs after gamete recognition. Interestingly, gcs1 mutant 

ovules only rarely attract more than one pollen tube (Mori et al., 2006) or not at all (von 

Besser et al., 2006). The difference found here can probably be attributed to the two 

different alleles of gcs1 and hap2 that were analyzed. The clear difference regarding 

multiple pollen tube attraction in ovules of ec1+/- and gcs1+/- plants indicates that EC1 

presumably acts upstream of GCS1/HAP2, i.e. the two proteins function at different 

levels during fertilization. Comparison of these data also suggests that the block of 

multiple pollen tube attraction can be narrowed down between the two mechanisms of 

gamete recognition or membrane adhesion and gamete fusion.   

6.4 What is the mechanistic role of EC1? 

Comparing pollination of ec1+/- plants with wild type pollen and with single sperm 

pollen of the cdka;1+/- mutant suggested that EC1 is rather needed for sperm cell 

separation than for sperm cell recognition or fusion. Recently, Aw et al. (2010) reported 

that the mRFP1 fluorescence intensity of the HTR10-mRFP1 fusion in sperm-like cells 

of cdka;1+/- mutants varies and is in some cases lower than in wild type. Thus, it is 
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possible that some non-fused sperms were not detected within ec1 female gametophytes 

due to a weak fluorescence signal, which might explain why a slightly higher number of 

fused sperm cells was observed than expected.  

On their journey to the female gametophyte, the sperm cells are transported 

conjointly within the pollen tube. After the pollen tube has arrived at the receptive 

synergid, it ruptures, its content is released and the two sperm cells are delivered to the 

site of fusion in a sudden burst. Nevertheless, shortly after arrival they still appear to be 

attached to each other. Moreover, after induction of burst of in vitro grown pollen tubes, 

Arabidopsis sperm cells still seemed to be connected as well. Thus, for the fusion of one 

sperm cell with the egg cell and the other sperm cell with the central cell to take place, 

this robust connection probably has to be disintegrated. But what kind of connection 

holds the two sperm cells together? In maize, the two sperm cells do not seem to be as 

tightly associated. Analysis of an α-tubulin-YFP line showed that microtubule bundles 

form around the sperm cell nuclei and a microtubuli knot is visible at half distance 

between the two sperm cell nuclei (Kliwer and Dresselhaus, 2010). Moreover it was 

proposed that this cytoplasmic connection is rather labile and may disintegrate rapidly 

after delivery of the sperm cells to the egg apparatus. 

 Dumas et al. (1985) coined the term male germ unit (MGU) after studies in 

Brassica. The MGU comprises the vegetative cell linked to the two sperm cells. 

Ultrastructural analyses showed that in Brassica oleracea, the two sperm cells do not 

have cell walls but are held together in a common periplasm.  However, in Plumbago 

zeylanica and Nicotiana tabacum the situation is different. Here it was shown that the 

two sperm cells are connected by a transverse cell wall and that a common periplasm 

binds the membranes of the sperm cells and of the vegetative cell thereby forming the 

MGU (Russell and Cass, 1981; Yu et al., 1989). In most plants examined a MGU has 

been detected and in some it appears that a cytoplasmic projection of one sperm cell is 

connected to the vegetative nucleus. However, only little is known about the structure of 

this sperm cell cytoplasmic projection (McCue et al., 2011). 

Obviously, the detailed structure of the male germ unit differs among species. 

Unfortunately, there are no precise ultrastructural analyses for the Arabidopsis MGU. 

Instead, some genetic data are available. The progeny of an ethylmethane sulfonate 

(EMS) mutagenized population revealed two classes of mutants: germ unit malformed 

(gum) and MGU displaced (mud). In gum1 mutants, the sperm cells are separated from 

the vegetative cell, which is located at the pollen wall. However, the two sperm cells are 
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not separated from each other. In wild type, the MGU is compact and located in the 

middle of the pollen grain, whereas in mud1 mutants the whole MGU is displaced and 

shifted to the pollen wall. Both mud and gum mutants show a reduced male transmission 

(Lalanne and Twell, 2002). Interestingly, mutants were not described in which the 

connection of the two sperm cells to each other was disrupted.  

Alternatively to a role directly in sperm cell separation, EC1 might function in 

membrane adhesion. The role of stigma/style cysteine-rich adhesion (SCA) proteins 

during pollination in lily has been described. The growth of the pollen tube through the 

style involves adhesion of the pollen tube wall to the extracellular matrix of the style. 

This adhesion is on the one hand mediated by basic, positively charged SCA molecules 

that are secreted from the pollen and epidermis cells of the transmitting tract (for review 

see Lord, 2000; Chae and Lord, 2011) and on the other hand by negatively charged 

pectin involved in forming an adhesive matrix between the pollen tube cell wall and the 

transmitting tract (Mollet et al., 2000; Park et al., 2000). A similar mechanism for 

adhesion of egg and sperm cell membranes would be conceivable. In Plasmodium, three 

cysteine-rich proteins have already been identified that are essential for the attachment 

of gametes. However, the molecular mechanism has not been clarified yet (van Dijk et 

al., 2001; van Dijk et al., 2010). Also in mammalians, cysteine-rich secretory proteins 

(CRISPs) have been identified that play a role in sperm-egg interaction (Da Ros et al., 

2007). CRISP1 is suggested to play a dual role during gamete interaction. First, it 

participates in the initial step of sperm cell binding to the zona pellucida. After the 

acrosome reaction and relocalization of CRISP1 to the site of fusion on the egg cell 

surface, it may mediate the fusion of the membranes of egg and sperm cell (Cohen et 

al., 2008). It would be interesting to investigate whether there is a general mechanism 

involving cysteine-rich proteins in gamete attachment and/or recognition.   

EC1 might also play a role in triggering sperm cells to acquire fusion competence. 

The PH-30 protein from pig sperm cells is essential for egg-sperm fusion and consists 

of two subunits that are both present as precursors in early developmental stages. The 

final processing of the two precursors, which is necessary for successful gamete fusion, 

is accomplished shortly before fertilization, i.e. the sperm cells acquire fusion 

competency (Blobel et al., 1990). In a similar manner, EC1 might trigger events at the 

sperm cell to make them competent for membrane fusion. If this was the case, the tight 

post-translational regulation of EC1 in terms of rapid degradation would be reasonable 

to prevent some unfavorable membrane fusion events. 
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Another possibility could be that EC1 is a link between gamete recognition and the 

authorization for one sperm cell to fuse with the egg cell. If attachment of one sperm 

cell to the egg cell and separation from the second sperm cell occur more or less at the 

same time, EC1 might act as a checkpoint to ensure that there is only a single sperm that 

is going to fuse with the egg cell. This theory agrees with the result that single sperms 

are able to fuse with ec1 but without obligatory direct involvement of EC1 in sperm cell 

separation.  

6.5 EC1 expression and protein purification is challenging 

To study the mechanistic role of EC1 in more detail it was aimed to purify the 

protein and apply it in a bioassay. However, EC1 expression and purification turned out 

to be very difficult. In planta systems were not suitable because of rapid degradation of 

misexpressed protein, which was indicated by the proteasome inhibitor assay. Although 

the phospho-mimicking form of EC1.1 fused to eGFP was more stable than the native 

variant it will probably not be useful for purification because the fluorescence was still 

much weaker compared to the positive control CAT6-eGFP or other fusion constructs. 

Moreover, in stably transformed Arabidopsis plants expressing the phospho-mimicking 

variant of EC1.1 fused to eGFP, fluorescence could not be detected. This might 

indicate, that either reduced promoter activity prevents the accumulation of protein, or 

that additional mechanisms induce ubiquitination and thus mark the protein for 

degradation.  The inhibition of EC1.1 protein accumulation indicates that the presence 

of this protein is harmful or even toxic to cells, perhaps due to its possible function in 

membrane adhesion. Misexpression of Drosophila Reggie2/Flo1 requires the presence 

of the stabilizing protein Reggie1/Flo2 (Hoehne et al., 2005). Similarly, misexpressed 

EC1 might also need the co-expression of a (egg cell-) specific kinase mediating EC1 

phosphorylation and stabilization. 

The attempt to express EC1.1 in Pichia pastoris also failed. Western Blot analyses 

showed that the induction of target protein expression was successful, but the signal on 

the Blot correlated to a molecular mass that was larger than expected. Additionally, the 

signal on the Western Blot did not appear as a clear band but was diffuse. The increased 

apparent molecular weight suggested some post-translational modification like 

glycosylation. However, only one Asn-X-Ser/Thr sequon for N-linked glycosylation 

was found in EC1.1. To clarify, whether EC1.1 is N-glycosylated in P. pastoris the 
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putative N-linked glycan could be cleaved off by performing an Endoglycosidase H 

digest. In yeast and fungi secreted proteins are substantially O-mannosylated (reviewed 

by Strahl-Bolsinger et al., 1999) and it has been also shown that O-mannosylation 

occurs on expressed proteins in Pichia pastoris (Duman et al., 1998). To date, O-

mannosylation has been found in fungi and in mammals, however homologs of the key 

enzymes that initiate O-mannosylation (protein O-mannoslytransferases, PMT) have not 

been found in C. elegans or in plants (reviewed by Lommel and Strahl, 2009). In Pichia 

pastoris, expressed EC1.1 enters the secretory pathway. EC1.1 contains a large number 

of serine and threonine residues (22% of all amino acids are serine or threonine), which 

are the most commonly used hydroxy amino acids for O-linking of mannose. Thus, 

Pichia pastoris expressed EC1.1 might be O-mannosylated, a post-translational 

modification that does not take place in plants, and which might be critical for the 

biological activity of EC1.1. Apart from this possible post-translational modification, 

EC1.1 could not be purified by Ni-NTA agarose affinity chromatography. The most 

prominent protein enriched after chromatography, which was visible on the Coomassie 

stained gel did not correlate in size with the specific signal obtained on the Western 

Blot. The enrichment of a 30 kDa non-target protein, presumably an endogenous 

secreted protein from Pichia pastoris, occurred also in other experiments during 

expression of a secreted cysteine-rich or another hydrophobic protein (I. Kliwer, 

personal communication). 

TfCRP1 an TFCRP3, two genes encoding defensin-like LURE proteins from Torenia 

fournieri have been successfully expressed in E. coli, whereas TfCRP2 could not be 

expressed (Okuda et al., 2009). Although the cytoplasm of E. coli is too reducing to 

form disulfide bonds, it was tried to purify EC1 from E. coli. Expression of two 

constructs in several strains with different properties revealed various problems. In 

addition to the problem of disulfide bond formation and purification of N-terminally 

His-tagged protein, the major problem was insolubility of the target protein. Finally, the 

most promising results were obtained after expressing EC1.2a in the T7 based 

LemoGami cells. Here, the problem of disulfide bond formation was solved due to the 

use of Origami cells that carry mutations in the genes encoding the thioredoxin 

reductase and the glutathione reductase. Moreover, the introduction of the pLEMO 

plasmid enables tunable expression and the target protein was partially soluble. 

However, the purification of EC1.2a by Ni-NTA agarose affinity chromatography did 

not work. On the other hand, the purification with a GSTrap column of refolded GST-
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EC1.1 from Rosetta cells worked. Thus, the use of a vector with a GST-tag for T7 based 

expression may represent the future solution for EC1 expression and purification from 

E. coli. 

6.6 EC1.1 interacts with a fragment of PP2A B’θ and UbDKγ3 in yeast 

In a yeast-two-hybrid screen of a pollen tube cDNA library two putative interaction 

partners of EC1.1 were identified: the regulatory B’θ subunit of Phosphatase 2A and 

UbDKγ3, a protein with two ubiquitin-like domains. The interaction of the full length 

clones could not be verified in yeast. It has been observed before that full length 

proteins do not always interact in the yeast-two-hybrid system although fragments were 

found to interact and the interaction could be verified with other methods (Preuss et al., 

2006). Biochemical interaction of EC1 with PP2A B’θ and UbDKγ3 has not be shown 

so far, but at least for PP2A B’θ the experiments described in this thesis further support 

the hypothesis of interaction. The phospho-mimicking experiments suggest that 

phosphorylation plays a role in EC1.1 stability and misexpressed PP2A B’θ results in a 

phenotype similar to ec1+/- indicating genetic interaction. 

PP2A B’θ is a regulatory subunit of serine/threonine phosphoprotein phosphatases 

(PPPs) that are found in all eukaryotes and which are grouped into different types. In 

general, all functional phosphatases consist of one catalytic subunit encoded by only 

few genes and one or more regulatory subunits, which mediate, for example, substrate 

specificity and subcellular localization. The regulatory subunits are usually encoded by 

several genes to ensure a large spectrum of specificity and diversity (reviewed by 

Virshup and Shenolikar, 2009). The Arabidopsis genome encodes for 5 ubiquitously 

expressed catalytical subunits of PP2A and for 21 regulatory subunits that are grouped 

into four major classes: A, B, B’ and B’’  (reviewed by Farkas et al., 2007). The gene 

encoding the B’θ subunit identified in the yeast-two-hybrid screen is ubiquitously 

expressed, according to publicly available expression data (Genevestigator and 

Arabidopsis eFP Browser), but not present in the cells of the female gametophyte 

(Šoljić et al., in preparation). This expression pattern suggests that B’θ might trigger 

dephosphorylation of misexpressed EC1.1 in any other tissue. In the endogenous 

situation, EC1.1 might be dephosphorylated to trigger its degradation after fertilization. 

According to our hypothesis, the pollen tube would not only deliver the sperm cells to 
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the female gametophyte but also the B’θ subunit to ensure that the first step of EC1.1 

degradation after fertilization is accomplished in a controlled manner. 

Matre et al. (2009) showed that the B’θ subunit of PP2A localizes to peroxisomes in 

transiently transformed tobacco and onion epidermal cells as well as in Arabidopsis cell 

suspension cultures. The authors could show that the C-terminal SSL peptide is 

necessary for localization to peroxisomes. Masking of the C-terminus by fusing a 

fluorophore resulted in an even distribution of fusion protein in the cytosol. This 

localization has not been verified yet for Arabidopsis pollen tubes and is currently 

investigated, but nevertheless complicates the model. After pollen tube arrival EC1 is 

secreted into the space that was occupied by the receptive synergid cell. If B’θ was still 

localized to peroxisomes the interaction of EC1 and B’θ is unlikely. However, it has 

been proposed that the molecular mechanisms during pollen tube guidance and burst are 

similar to defense mechanisms although the direct involvement of reactive oxygen 

species (ROS) in fertilization remains unclear (Dresselhaus and Márton, 2009). ROS act 

as signaling molecules and oxidative burst takes place during early events of plant-

pathogen interactions and can induce hypersensitive cell death (reviewed by Nanda et 

al., 2010). Moreover, conserved molecular components for pollen tube reception and 

fungal invasion have been identified recently. NORTIA (NRT) encodes a Mildew 

resistance locus o (MLO) protein and is involved in pollen tube reception. In nrt female 

gametophytes, pollen tubes fail to arrest (Kessler et al., 2010). Interestingly, a similar 

mutant phenotype has been described involving peroxisome function. When an amc 

pollen tube enters an amc female gametophyte, it fails to burst and to release its content. 

Instead amc pollen tubes continue to grow within the embryo sac. AMC encodes a 

peroxin and is involved in peroxisomal protein import (Boisson-Dernier et al., 2008). If 

the synergid cell underwent cell death induced by an oxidative burst then presumably 

also the organelles of the pollen tube including the peroxisomes would disintegrate and 

thus enable the interaction of EC1.1 and PP2A B’θ. For the complete understanding of 

the interaction of EC1.1 and PP2A B’θ subcellular localization studies of both proteins 

and co-localization experiments have to be performed necessarily. 

Additionally, a fragment of UbDKγ3 was found to interact with EC1.1 in the yeast-

two-hybrid screen. Galvão et al. (2008) proposed that UbDKγ4 might assist in 

delivering polyubiquitinated proteins targeted for degradation. If UbDKγ3, the closest 

homolog to UbDKγ4, has a similar function, it could be assumed that polyubiquitinated 

EC1.1 is recognized and transported to the proteasome for degradation. Galvão et al. 
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(2008) could also show that UbDKγ4 interacts with RPN10 and UFD1, which are both 

known to bind forms of ubiquitin and which are involved in protein degradation via the 

ubiquitin proteasome pathway (reviewed by Elsasser and Finley, 2005). Moreover, 

RPN10 is directly associated to the 19S regulatory particle of the 26S proteasome. 

Arabidopsis plants that have a defect in RPN10 accumulate ubiquitinated proteins 

(Smalle et al., 2003). Although rpn10 plants display a pleitropic phenotype like reduced 

growth and reduced fertility they might be a useful tool for overexpression of EC1 in 

planta. 

Based on the available data, I established a model about EC1 function and its 

subsequent degradation (Figure 29): in the mature egg cell, EC1 is localized in vesicles 

(Figure 29A). The pollen tube carries the PP2A regulatory subunit B’θ as well as its 

main cargo, the two sperm cells. During fertilization, the pollen tube grows through the 

stigma and the transmitting tract, along the funiculus and finally enters the ovule at the 

micropylar opening (Figure 29B). Upon pollen tube arrival and/or synergid cell death, 

vesicles containing EC1 are secreted from the egg cell upon induced signaling (Figure 

29B, C). After synergid degeneration the pollen tube ruptures and releases its content 

into the space of the degenerating, receptive synergid cell (Figure 29C). The sperm cells 

are rapidly transported to the site of gamete fusion through a yet unknown mechanism 

(Figure 29D). At this point we assume that EC1 acts on sperm cell separation and/or 

gamete recognition. Simultaneously, PP2A B’θ is also located at the site of gamete 

fusion and triggers EC1 degradation by dephosphorylation (Figure 29E, F). Finally, 

fusion of the two sperm cells with the central cell and the egg cell, respectively, is 

completed, and EC1 protein is degraded via the ubiquitin-proteasome pathway. 

 

 

 

______________________________________________________________________ 

Legend for Figure 29: Model about EC1 function and degradation during double fertilization in 
Arabidopsis. 
A Mature ovule: EC1 is localized in vesicles within the mature egg cell. B Pollen tube arrival: the 
receptive synergid cell degenerates; EC1 vesicles may localize polarly to the site of secretion. C Pollen 
tube reception, rupture and release of its content; EC1 is being secreted. D Sperm cells have been 
transported to the site of fusion between egg and central cell. EC1 functions in sperm cell separation 
and/or gamete recognition.  PP2A B’θ is dispersed in the space of the degenerated synergid cell. E PP2A 
B’θ is also located at the site of fusion, EC1 degradation is initiated. F Fusion of gametes is completed, 
EC1 is completely degraded. Cell colors: yellow = synergid cell; blue = egg cell; dark green = central 
cell; red = antipodal cells in (A), sperm cells in (B)-(F); bright green dots = EC1; purple dots = 
PP2A B’ θ; pollen tube is shown in light blue. 
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6.7 A phospho-mimicking variant of EC1.1 shows increased stability 

In order to study the role of phosphorylation for EC1.1 stability, an EC1.1 variant 

was generated, in which the three C-terminal serine residues that were predicted to have 

the highest probability to be phosphorylated were exchanged against aspartate residues. 

N. benthamiana leaf infiltration showed that this phospho-mimicking variant of EC1.1 

fused to eGFP has an increased stability compared to the wild type form. This indicates 

that dephosphorylation of EC1.1 might trigger its degradation. However, it has not been 

analyzed, whether all three serines have to be phosphorylated for increased stability or 

if one or two serine phosphorylations are sufficient. To investigate this, single serine to 

aspartate exchanges or double exchanges in different combinations could be performed 

and analyzed for stability. 

Nevertheless, one question remains open: how is the phosphorylated form stabilized 

and why is the non-phosphorylated form a better substrate for degradation? A look at 

the amino acid residues in the vicinity of the C-terminal serines shows that lysine 

residues appear in a distance of five to seven amino acids from these serine residues. It 

has been reported that phosphoserine-lysine saltbridges can stabilize the tertiary 

structure of proteins (Errington and Doig, 2005). Thus, on the one hand phosphorylated 

EC1.1 might be stabilized by electrostatic interaction of the positively charged lysine 

and the negatively charged phosphate group of phosphoserine and on the other hand the 

lysine residue might be masked for ubiquitination. To study this hypothesis it would be 

interesting to mutate these or maybe all lysine residues to amino acids such as histidine 

or arginine and analyze, for example, the stability of an EC1.1-eGFP fusion protein in 

the transient expression system in N. benthamiana. 

6.8 EC1 degradation is initiated by dephosphorylation triggered by 

pollen tube delivered PP2A B’θ 

Misexpression of the B’θ subunit of PP2A in the synergid cells could partially 

phenocopy the ec1+/- phenotype. Not all PP2A B’θ-GFP expressing ovules that were 

targeted and thus had a degenerated synergid cell showed non-fused sperms. This 

indicates the existence of a dosage effect: if there is enough EC1 that can act before the 

overexpressed PP2A B’θ-GFP can trigger its degradation by dephosphorylation, then 

gamete fusion will take place and fertilization will be successful. If, however, 
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PP2A B’θ-GFP is present abundantly and inhibits the function of EC1 by triggering its 

degradation, the phenotype similar to ec1+/- will occur. Taken together, the dosage of 

synergid cell-expressed PP2A B’θ-GFP will decide whether EC1 has enough time to 

induce the separation of the sperm cells (Figure 30). Moreover these data indicate that 

all EC1 proteins in Arabidopsis may be regulated by the same mechanism. 

A tight regulation in terms of degradation of proteins involved in gamete fusion has 

also been observed in Chlamydomonas. The plus gamete specific FUS1 protein and the 

minus gamete specific GCS1 protein are degraded rapidly in the zygote. This 

degradation is triggered by gamete fusion and thus constitutes a membrane block of 

polygamy (Liu et al., 2010). In addition to its egg cell-specific expression, EC1 seems 

also to be tightly regulated on the post-translational level. The rapid degradation of EC1 

after gamete recognition and fusion and the fact that misexpressed EC1 is immediately 

degraded might indicate that EC1 acts in some fundamental cellular events that are 

commonly unwanted for all other cells comparable to GCS1 and FUS1 specific function 

in gamete membrane fusion. Since membrane fusion is rather unlikely, membrane 

adhesion or cell wall loosening might be possible mechanisms. 

 

 

Figure 30: Model for EC1 dephosphorylation. 
Inactive Phosphatase 2A (PP2A) consisting of catalytic subunit (C, red) and regulatory subunit A (blue). 
Activation of the complex upon binding of pollen tube derived B’θ regulatory subunit (green), which 
mediates substrate specificity for EC1 (yellow). Phosphorylated EC1 is secreted from the egg cell and 
becomes dephosphorylated by the activated PP2A complex. Dephosphorylated EC1 is destabilized and 
targeted for ubiquitin/proteasome dependent degradation. Adapted from Virshup and Shenolikar, 2009. 
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6.9 Outlook 

In the future, the most interesting aspects regarding EC1 function are to find out how 

EC1 acts mechanistically during the process of membrane recognition or membrane 

attachment. Ultrastructural analyses of wild type and ec1 female gametophytes will be 

indispensable. These analyses will be technically challenging though they may not only 

show at which point the defect caused by the loss of EC1 occurs, but also give 

interesting insights into the Arabidopsis MGU organization during fertilization. 

Moreover, the identification of the sperm cell interaction partner is another important 

step towards the complete understanding of EC1 function. Since EC1 is a secreted 

protein and seems to act on the sperm cells, a receptor on the sperm cell surface might 

be expected. However, the exact function of EC1 has not been identified yet, which 

complicates the application of classical biochemical approaches like co-

immunoprecipitation or pull-down assays. It is, for example, not clear whether EC1 acts 

during gamete adhesion or during separation of the sperm cells. In the first case, the 

membrane fraction would be the most interesting fraction of proteins for the search of 

an interaction partner, whereas in the latter case it would probably be important to have 

pairs of sperm cells with an intact connection. A more promising approach would be a 

mutant screen. HTR10-mRFP1 expressing Arabidopsis lines could be mutagenized, e.g. 

chemically by ethylmethane sulfonate (EMS) and the progeny could then be screened 

for an ec1+/--like phenotype. The first trait for a candidate would be a reduced seed set. 

However, disruption of a housekeeping gene often leads to lethal defects in haploid 

gametophytes resulting in reduced seed. But since the screen for non-fusing sperm cells 

within the population of siliques with aborted seeds should be quite specific, I think that 

such a screen might be promising. 

The generation of antibodies against EC1 might also be useful for e.g. whole mount 

protein localization in the female gametophyte. This method of protein 

immunolocalization has been described by Sauer et al. (2006) and has been already 

successfully applied for female gametophytes with different primary antibodies. With 

these antibodies the changing localization of the native protein during fertilization could 

be confirmed. 

Another interesting aspect regarding EC1.1 post-translational modification and 

degradation would be to analyze which of the three serines residues are necessary for 

stabilization of the EC1.1 protein. Therefore, different combinations of serine-aspartate 

exchanges could be analyzed. Moreover, it needs to be shown, that the egg cell derived 



D I S C U S S I O N  | 90 

EC1.1 protein is indeed phosphorylated. Due to the limited amount of protein it will be 

very difficult to show. However, it may be aimed to identify the EC1 kinase. Therefore, 

another yeast-two-hybrid screen with an egg cell library or a targeted approach with the 

most strongly expressed kinases in the egg cell could be performed.  The identification 

of the ubiquitinated lysine residue(s) would also deepen the knowledge about the 

regulation of EC1.1 degradation. Similar to the analysis of serine phosphorylation, the 

lysine residues could be mutagenized and the protein could be analyzed for stability in 

the N. benthamiana system. 

Furthermore, the interaction of PP2A B’θ and EC1.1 has to be confirmed using, for 

example, FRET analysis. In the future, plants expressing a fusion of tagRFP-T and 

PP2A B’θ under control of the endogenous PP2A B’θ promoter will be analyzed for 

subcellular localization. Moreover, these lines will be used for pollination of plants 

expressing EC1.1-GFP under control of the endogenous EC1.1 promoter and 

localization of both fusion proteins will be observed within the gametophytes and 

simultaneously during fertilization. The phenotype of strongly misexpressed PP2A B’θ 

was already described in this thesis but data about a loss-of-function mutant remain still 

elusive. To investigate the PP2A B’θ knockout situation, an artificial microRNA 

(amiRNA) has already been generated that should target all genes encoding PP2A B’ 

subunits, which are expressed in pollen and will be analyzed in the future. 
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8 APPENDIX 

8.1 Oligo nucleotides 

8.1.1 Oligo nucleotides for expression analyses by RT-PCR 

Table 7: Oligo nucleotides for expression analyses. Name of the amplified gene, AGI, primer name, 
oligo nucleotide sequence, annealing temperature and the resulting product size of genomic and cDNA 
are indicated. 

     Product size 

Gene name AGI Primer name Sequence 5’ – 3’ Annealing °C gDNA cDNA 

RT EC1.1 fw ACAGTGACAGCTCGCCCTCTC 
EC1.1 At1g76750 

RT EC1.1 rev AGTCATTGCCATCACAGTAACCTT 
53 301 301 

qRT EC1.2a fw ACAAAACAAAAACCCCAAAAAGAA 
EC1.2a At2g21740 

qRT EC1.2a rev GAAGGCGCCGGAGAAGAA 
57 392 392 

qRT EC1.2b fw ACGCCGTTGATGTCATTACCACT 
EC1.2b At2g21750 

qRT EC1.2b rev ACGTCAGCGAGGAACATTTATCAA 
57 169 169 

EC1.4 fw CCAGCGGAGTCATCAACCAACATA 
EC1.4 At4g39340 

EC1.4 rev GGAGACGGAGCCGGAGAAGAGT 
61 287 287 

EC1.5 fw GCGCCGGAAACTTGATGGACT 
EC1.5 At5g64720 

EC1.5 rev GGCGCCGGTGAAGGAGATAAT 
57 277 277 

At2g27315 fw TCCAACCAGGCTCACCCGTTG 
ECR1 At2g27315  

At2g27315 rev AACGCCTTGCAACATGCGCC 
64 136 136 

At4g35165 fw ATGAACAACCACCGCCCCGC 
ECR2  At4g35165 

At4g35165 rev TCCCGCTTTCACTTTGAGGGAGA 
64 283 283 

At5g52965 fw ACCACCAACGGTTCCAGGACTTCT 
ECR3 At5g52965 

At5g52965 rev AGGGGAGTTGGGGACAATGCGA 
62 262 262 

At5g52975 fw AGCCGCATGTTGCAAGGCGT 
ECR4 / DD8 At5g52975 

At5g52975 rev TGGGGACAATACGAGCGCAGCTA 
64 116 116 

At5g53742 fw TGGCGCACCAACACACACGAA 
ECR5 At5g53742  

At5g53742 rev GCTGAAAACGCCTTGCAGCACA 
62 177 177 

At5g54062 fw GCCCGGGCTAGCTCAACTCC 
ECR6   At5g54062 

At5g54062 rev TGCGGTGTCTTGTGTGCTGGT 
62 294 294 

At4g30074 fw GCCAGACACGGACCAGCGG 
LCR19 At4g30074 

At4g30074 rev TTTGGGCTGCGGAGGCGATG 
64 102 102 

At5g42242 fw TGCAAGGCCAAACACGGACCA 
LCR57 At5g42242 

At5g42242 rev CGCACCGATGCACAGTTTGGC 
64 102 102 

At5g38317 fw AGGCCAAACACGGGCCATCG 
LCR58 At5g38317 

At5g38317 rev CAGTCCCACCGCTGCAAACG 
62 126 126 

At4g30070 fw GCAAGGCCAAGCACGGACCA 
LCR59 At4g30070 

At4g30070 rev TACCAGCCCCACCGTCGCAT 
62 138 138 

LCR80 / DD22 At5g38330 At5g38330 fw AGGCCAAACACGGGCCATCG 62 124 124 
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     Product size 

Gene name AGI Primer name Sequence 5’ – 3’ Annealing °C gDNA cDNA 
  At5g38330 rev TCACCGCAATTGCCAAGCCC    

At1g24062 fw GCGGCAACGCTTGTGATTCCA 
CCC1 At1g24062  

At1g24062 rev GGGGGAAGATCATCAACCTCAGAAGG 
62 143 143 

At5g54220 fw AGATGCGAGAACTGTGCCTCCG 
CCC2 At5g54220  

At5g54220 rev ACCTCAGGAGGAGGATAAATGCAGC 
62 129 129 

At2g25305 fw ACCTCCGACTTGTGGACCAGAT 
CCC3 At2g25305  

At2g25305 rev GTCCTCGGAATAGAATGCAAACACCA 
62 110 110 

At5g54215 fw GCCTCCCACTTGTGGACGAGAC 
CCC4 At5g54215 

At5g54215 rev CGGAGGAAGTCCTTCGGATAGAATGC 
62 118 118 

At5g54225 fw GCATCCGGGGAGGCTTCGAG 
CCC5 At5g54225 

At5g54225 rev TGGAAGTAGGGGGAATTCCAAAACCA 
60 139 139 

AtACT3 fw GATTTGGCATCACACTTTCTACAATG 
ACTIN3 At3g53750 

AtACT3 rev GTTCCACCACTGAGCACAATG 
60 740 657 

eIF4G fw CGGCGATGTTCTTGGGAGTG EUKARYOTIC 
TRANSL. INIT. 
FACTOR 4G 

At3g60240 
eIF4G rev CCGGTTAGGTGCATGAGGTTTG 

58 123 123 

 

 

8.1.2 Oligo nucleotides for cloning 

Table 8: Oligo nucleotides for cloning. Gene name and purpose of cloning, AGI, primer name and the 
oligo nucleotide sequence are indicated. Restriction endonuclease recognition sites are underlined and 
written in italic letters, start and stop codons are written in bold letters. 

Gene name AGI Primer name Sequence 5' - 3' 

GCS1c+73f EcoRI GACACAGAATTCATTCAGATTTTATCGAAATCA 
GCS1/HAP2 (Y2H) At4g11720 

GCS1c+1650r EcoRI GACACAGAATTCGAAGTCGAAGAAACTCGAGC 

PP2A B' theta SmaI +1f GACACACCCGGGTATGTGGAAACAGATTCTGA 
PP2A B'θ (Y2H) At1g13460 

PP2A B' theta XhoI +1479r GACACACTCGAGTTACAATGAACTCTTTTTTGCT 

UbDk3gamma SmaI fw GACACACCCGGGTATGTCAGTTGCTAGTGTAGC 
UbDK3γ (Y2H) At5g24240 

UbDK3gamma XhoI rev GACACACTCGAGTCAGTTCCAAGCATACTGG 

P-mim EC1.1 fw CACCATGGCTTCCAAATCTAGTTTCATGGC EC1.1 
(phospho-mimicking) At1g76750 

AtEC1.1 3xSD AGGGTTAGAAGGATCAGCATCATCTCTAAC 

PP2AB'tp fw SacI GACACAGAGCTCTCCAATTCCAAGGAG 

PP2AB'tp rev kurz SpeI GACACAACTAGTAATTTTAATTGTTTTTTTATTCCCCTTTATT 
PP2A B'θ promoter 
(expression analysis/ 
subcellular localization) 

At1g13460 

PP2AB'tp rev lang SpeI GACACAACTAGTGTATTAAACTCAGATTCTTCTTTG 

PP2AB't cds fw PstI TTACTGCAGTCATGTGGAAACAGATTCTGAGTAAG PP2A B'θ (expression 
analysis/ subcellular 
localization) 

At1g13460 
PP2AB't cds rev SmaI ATAACCCGGGTTACAATGAACTCTTTTGCTTTTGA 

PP2A B’Θc+1f GW CACCATGTGGAAACAGATTCTGAGTAAGC PP2A B'θ (mis-
expression in synergid 
cells) 

At1g13460 
PP2A B’Θ rev w/o stop CAATGAACTCTTTTGCTTTTGATTACCAATTTC 

DD31 prom fw (SacI) AAGCTTGAGCTCGTTTATTTTTGTAACATTACT DD31 promoter 
(misexpression in 
synergid cells) 

At1g47470 
DD31 prom rev (SpeI) TGATTACTAGTTTTTTTATGGATGTAAGAATACTTTTAGTATTGA

ATGTA 
AtEC1.1 SalI+1f GACACAGTCGACATGGCTTCCAAATCTAGTTTC 

EC1.1-GFP (A.th. expr.) At1g76750 
GFP SalI rev GACACAGTCGACTCACTTGTAGAGTTCATCCAT 

AtEC1.1 Pichia fw CACAGAATTCGCCCTCTCATGAAACC 
EC1.1 (Pichia expr.) At1g76750 

AtEC1.1 Pichia rev CTCTTCTAGAAACTTATCGTCATCGTCAGGGTTAGAAGGAGAA
GCA 
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Gene name AGI Primer name Sequence 5' - 3' 

AtEC1.1+82f GW CACCCGCCCTCTCATGAAACCATC 
EC1.1 (E.coli expr.) At1g76750 

AtEC1.1 rev GW TCAAGGGTTAGAAGGAGAAGCAGAA 

AtEC1.2a+67f GW CACCAGAACTCTCCCGGAGACGG 
EC1.2a (E.coli expr.) At2g21740 

AtEC1.2a rev GW TCAAAGTTTCACAGAGGAAGGCGC 

At1g13460 I miR-s B't gaTTCTAGGATCCTCGGAGTCCAtctctcttttgtattcc 

At3g26020 II miR-a B't gaTGGACTCCGAGGATCCTAGAAtcaaagagaatcaatga 

At3g54930 III miR*s B't gaTGAACTCCGAGGAACCTAGATtcacaggtcgtgatatg 
amiRNA against 

At5g25510 IV miR*a B't gaATCTAGGTTCCTCGGAGTTCAtctacatatatattcct 

ami fw HAU62 CACCAAACACACGCTCGGACGCATATTAC 

ami rev 
Gateway® 
compatibility HAU63 CATGGCGATGCCTTAAATAAAGATAAACC 

 

8.2 BLAST results 

8.2.1 Plant GDB BLAST 

Table 9: BLASTP results at plantgdb.org with AtEC1.1 as a query. The ID of the hit, BLAST score, 
E value and the term is indicated. The line before the third last row indicates the threshold that was used 
for EC1 homologs. * Annotation of nucleotide sequence is ambiguous and could therefore not be used for 
phylogeny construction 

Query ID #of hits Hit (Subject) ID BLAST Score E value Term 

Q9SRD8_ARATH 328 1e-89 AtEC1.1 
D7KTW7_ARALY 277 2e-74 AlEC1.1 
B9SE79_RICCO 132 9e-31 RcEC1 
B9S177_RICCO 121 3e-27 RcEC2 
B9GGT7_POPTR 116 8e-26 PtEC1 
Q9SES8_HORVU 114 3e-25 HvECA1 
A5AIQ2_VITVI 113 7e-25 VvEC1* 
B9N9C7_POPTR 110 4e-24  
A5AZZ7_VITVI 103 4e-22 VvEC2 
B9HN98_POPTR 103 6e-22  
A2XFL4_ORYSI 103 7e-22  
Q10MT0_ORYSJ 102 1e-21 OsEC1 
A2XFM3_ORYSI 102 1e-21  
D7SWA7_VITVI 102 2e-21  
B9NHC0_POPTR 100 3e-21  
B4FS19_MAIZE 100 9e-21 ZmEC1 
Q53JF8_ORYSJ 99 1e-20 OsEC2 
A2ZBV3_ORYSI 99 1e-20  
C5YSL3_SORBI 98 3e-20 SbEC1 
C5WNG6_SORBI 96 8e-20 SbEC2 
Q9T039_ARATH 96 1e-19 AtEC1.4 
A0MFC9_ARATH 96 1e-19  
B9GGU6_POPTR 93 7e-19 PtEC2 
D7MGE0_ARALY 93 1e-18 AlEC1.4 
Q9SJ23_ARATH 92 1e-18 EC1.2b 
A0MEP0_ARATH 92 1e-18  

AtEC1.1 37 

D7LBY4_ARALY 92 2e-18 AlEC1.2b 
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Query ID #of hits Hit (Subject) ID BLAST Score E value Term 

B9SVP8_RICCO 92 2e-18 RcEC3 
Q2QX72_ORYSJ 89 2e-17 OsEC3 
A2WMU5_ORYSI 89 2e-17 OsEC4 
B9SVP5_RICCO 86 1e-16 RcEC4 
Q9SJ24_ARATH 84 3e-16 AtEC1.2a 
A0MEN9_ARATH 84 4e-16  
D7LBY3_ARALY 84 5e-16 AlEC1.2a 
D7MSJ0_ARALY 54 4e-07 AlEC1.5 
Q9FGG1_ARATH 54 8e-07 AtEC1.5 

  

B9T251_RICCO 51 4e-06  
 

8.2.2 Brachypodium distachyon BLAST 

Table 10: BLASTP results at brachypodium.org with AtEC1.1 as a query. The ID of the hit, BLAST 
score, E value and term is indicated. Line after the third hit indicates the threshold for EC1 homology. 

Query ID Hit (Subject) ID BLAST Score E value Term 

Bradi1g65190.1 112 1e-25 BdEC1 
Bradi2g28070.1 105 2e-23 BdEC2 
Bradi4g24640.1 90 7e-19 BdEC3 
Bradi4g23900.1 62 1e-10  

AtEC1.1 

    
 

8.2.3 Medicago truncatula BLAST  

For the identification of EC1 orthologs in Medicago truncatula, BLAST version MT3.0 

was used. 

Table 11: BLASTP results at medicago.org with AtEC1.1 as a query. The ID of the hit, BLAST 
score, E value, position on BAC and the term is indicated. Threshold for EC1 homology after the second 
hit (indicated by thick line). 

Query ID Hit (Subject) ID BLAST Score E value On BAC Term 

Medtr3g064370.1 115 6e-27 AC122170.28 MtEC1 
Medtr3g144340.1 98.2 2e-21 CU041253.11 MtEC2 AtEC1.1 
Medtr3g064340.1 67.8 2e-12 AC122170.28  
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8.3 Prediction of disulfide bond formation in EC1.1 

 

Figure 31: Prediction of EC1 disulfide bond formation. 
Disulfide bonds are predicted to form between the first and the third, the second and the fourth and the 
fifth and the sixth cysteine residue. 

8.4 MS-Digest search and MALDI data 

 

Figure 32: Results of the MS digest research. 
Amino acid sequence comprises the linker between the N-terminal GST and EC1 the identified fragments 
are highlighted in red. Table below lists the expected fragments after trypsin digest and their respective 
masses. Identified fragments (see MALDI data) are marked in red. 

>EC1.1 

EC1.1 linker 
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Figure 33: Reflector Spectrum of MALDI analysis. 
Predicted masses of fragments after GST-EC1 trypsin digest identified in the spectrum are marked in red. 
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8.5 Vector maps 

Yeast-two-hybrid vectors 
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Binary vectors for expression in plants 
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Pichia pastoris expression vector 
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E.coli expression vectors 
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