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Abstract Ras regulates a variety of different signal transduc-
tion pathways acting as molecular switch. It was shown by liquid
and solid-state 31P NMR spectroscopy that Ras exists in the
guanosine-5 0-(b,c-imido)triphosphate bound form in at least
two conformational states interconverting in millisecond time
scale. The relative population between the two conformational
states affects drastically the affinity of Ras to its effectors. 31P
NMR spectroscopy shows that the conformational equilibrium
can be shifted specifically by point mutations, including muta-
tions with oncogenic potential, thus modifying the effector inter-
actions and their coupling to dynamic properties of the protein.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

31P NMR spectroscopy revealed that the guanine nucleo-

tide-binding protein Ras occurs in two conformational states

(state 1 and state 2) when it is complexed with the GTP analog

guanosine-5 0-(b,c-imido)triphosphate (GppNHp) [1]. These

two states are characterized by typical 31P NMR chemical

shifts of the phosphate groups of the bound nucleotide and

interconvert with rate constants in the millisecond time scale.

NMR structural studies have shown that this dynamic equilib-

rium comprises mainly two regions of the protein called switch

I and switch II [1–3]. 31P solid-state NMR shows that surpris-

ingly even in single crystals of Ras(wt) ÆMg2+ Æ GppNHp, the

two conformational states can be observed which are in dy-

namic equilibrium at ambient temperatures [4].

One of these conformational states (state 2) corresponds clo-

sely to the conformation found in the complex with the Ras

binding domains (RBD) of Raf-kinase [1], RalGDS [5], AF6

[6] and Byr2 [7]. In Ras-complexes with effectors, Thr35 is in-

volved via its side chain hydroxyl in the coordination of the

crucial metal ion and, via its main chain NH, in contacting

the c-phosphate of the nucleotide [8,9]. The same coordination
Abbreviations: GppNHp, guanosine-5 0-(b,c-imido)triphosphate; mant,
N-methylanthraniloyl; RBD, Ras binding domain
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pattern is most probably also characteristic for state 2 of

uncomplexed Ras. Replacing this threonine by an alanine or

serine residue leads to a complete shift of the equilibrium

towards state 1 [1,10]. The structure of Ras(T35S) Æ
Mg2+ Æ GppNHp was determined by X-ray crystallography

[10]. Whereas the overall structure is very similar to wild-type,

residues 31–37 and 64–67 from switch I and switch II are com-

pletely invisible, indicating that these parts of the structure are

either disordered or mobile. Upon addition of Ras effectors,

the 31P resonance lines of Ras(T35S) nucleotide complex but

not of Ras(T35A) shift to positions corresponding to the bind-

ing conformation [10].

A conformational equilibrium in the interaction site with

effectors seems to be a general property of small GTP-binding

proteins. In the present study, we will investigate if and how

the conformational equilibrium can be perturbed selectively

by mutations of single amino acids in the P-loop, the switch

I or switch II region of the protein, by C-terminal truncation

of Ras, or by switching from H-Ras to K-Ras. Some of the

studied mutants such as T35S and Y40C have been used in

biological studies as partial loss-of-function mutants, because

they are believed to interact specifically only with a certain

subset of effectors; other mutants investigated are found in hu-

man tumors. For correlating kinetic data obtained with fluo-

rescent N-methylanthraniloyl (mant)-derivates of the

nucleotide analog GppNHp with NMR data, it is also neces-

sary to know their potential effects on the conformational

equilibrium of Ras. The NMR studies presented lead to a bet-

ter understanding of the biological importance of the effector

loop equilibrium for the effector interaction.
2. Materials and methods

2.1. Protein purification
Wild-type and mutants of human H-Ras (amino acids 1–189 or 1–

166) were expressed in E. coli and purified as described before [11].
Nucleotide exchange to GppNHp or the mGppNHp was done using
alkaline phosphatase treatment in the presence of excess GTP analog
described by John et al. [12]. Free nucleotides and phosphates were
removed by gel filtration. Final purity of the protein was >95% as
judged from the sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis. Ras binding domains of human Raf-1 (Raf-RBD, amino
acids 51–131) were expressed and purified as described by Herrmann
et al. [13].

2.2. Sample preparation
Typically, 1 mM Ras Æ Mg2+ Æ GppNHp was dissolved in 40 mM

HEPES/NaOH, pH 7.4, 10 mM MgCl2, 150 mM NaCl, 2 mM
DTE and 0.1 mM DSS in 5% D2O and 95% H2O. For binding
blished by Elsevier B.V. All rights reserved.
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studies, 5–7 mM Raf-RBD contained in the same buffer was added in
appropriate amounts to the samples. When not stated otherwise full
length H-Ras (amino acids 1–189) was used for the studies.

2.3. NMR spectroscopy
31P NMR spectra were recorded with a Bruker DRX-500 NMR

spectrometer operating at 202 MHz. Measurements were performed
in a 10 mm probe using 8 mm Shigemi sample tubes at 278 K. 31P
70� pulses were used with a total repetition time of approximately
8 s (typical T1 values for Ras-nucleotide complexes determined exper-
imentally vary between 4 and 6 s [14]). Under our experimental condi-
tions, the relative errors in the obtained integrals should be smaller
than 10%. Typically, 1600 FIDs were summarized. Protons were
decoupled during data acquisition by a GARP sequence [15] with a
strength of the B1-field of 830 Hz. A N value of 0.4048073561 reported
by Maurer and Kalbitzer [16] was used, which corresponds to 85%
external phosphoric acid contained in a spherical bulb. Temperature
was controlled by using the line separation (methylene-hydroxyl) of
external ethylene glycol [17]. Thus, the absolute accuracy of the tem-
peratures given in this study is better than ±0.5 K.
Fig. 1. Effect of mutation in the switch I region of Ras Æ
Mg2+ Æ GppNHp detected by 31P NMR spectroscopy. The samples
contained 0.9–1.3 mM Ras Æ Mg2+ Æ GppNHp in 40 mM HEPES/
NaOH, pH 7.4, 10 mM MgCl2, 150 mM NaCl, 2 mM DTE and 0.1
mM DSS in 5% D2O and 95% H2O, respectively. Data were recorded
at 278 K. Resonances are assigned to the a-, b-, and c-phosphate,
respectively, according to Spoerner et al. [14]. Mutations are indicated.

Fig. 2. 31P NMR chemical shifts and populations of the two
conformational states in Ras mutants. 31P chemical shifts of GppNHp
bound to Ras point mutants uncomplexed (� = state 1; h = state 2) or
complexed with Raf-RBD (q). The shaded areas represent S.D. of the
phosphorus chemical shifts in each of the two states. Only Ras variants
were used for the calculation of the confidence intervals where the two
conformational states 1 and 2 could unambiguously be assigned.
3. Results and discussion

3.1. Effect of different mutations on the conformational dynamics

of Ras
31P NMR spectroscopy allows to probe the conformational

states of the Ras-protein, which in turn are related to the type

of nucleotide present in the active center. In principle, when-

ever chemical shift changes are visible they indicate that there

is a change of the environment of the phosphorus nuclei. For
31P NMR spectroscopy on nucleotides, it is known that two

factors are the major determinants of chemical shift changes,

namely a conformational strain and electric field effects polar-

izing the oxygens of the phosphate groups. In addition to these

direct factors, long range effects may occur due to structure-

dependent changes of the anisotropy of the magnetic suscepti-

bility. Here, ring current effects may be the most dominant

contribution.

Ras(wt) ÆMg2+ Æ GppNHp exists in solution in (at least) two

conformational states, state 1 and state 2. The two states are

primarily defined on a spectroscopic basis where in state 1

the resonances assigned to the a- and c-phosphate group are

shifted downfield relative to those of state 2 by 0.5 ppm and

0.73 ppm, respectively. The resonances of the b-phosphate
group in the two states cannot be separated at a 31P frequency

of 202 MHz [1,10]. From the spectroscopic view, the confor-

mational states in which the mutants occur are defined by

the chemical shifts. Comparing the 31P NMR spectra of the

various Ras mutants, we can mainly observe two effects of

the mutations: changes in the chemical shift values for each

phosphate resonance of the bound GppNHp and a shift of

the equilibrium between state 1 and state 2. In addition, line-

widths can be somewhat influenced by the local environment

of the phosphate groups and strongly when exchange between

more than one state leads to an exchange broadening. In the

most extreme case, only one state is detectable (Fig. 1). The

assignment is straightforward in cases where only small

changes in chemical shifts are observed or where two spectro-

scopic states exist (Figs. 1 and 2, Table 1). In these cases, it is

very likely that the major structural features are similar.

Mutations of Gly12 in the P-loop, such as to valine or aspar-

tate, are known to inhibit GTP-hydrolysis and thus lead to an

oncogenic activation of Ras. The 31P NMR spectra of

Ras(G12D) [1] were re-evaluated and show, just as for
Ras(G12V), two states in the Mg2+ Æ GppNHp complex. At

278 K, only one wide resonance line is observed for the a-phos-
phate of GppNHp of Ras(G12D), but the c-phosphate reso-

nance splits into two lines. In Ras(G12V), clearly two pairs of

resonance lines are observed for the a-phosphate as well as

the c-phosphate resonance. The equilibrium is slightly shifted

towards state 1 (Figs. 1–3, Table 1). Compared to the wild-type

protein, the chemical shifts of the 31P resonances are also con-

siderably influenced by these mutations. The separation of res-

onances corresponding to the a-phosphate in the two states is

smaller and that of the c-phosphate is larger compared to the



Table 1
31P chemical shifts and conformational states of Ras complexed with GppNHpa

Ras Æ Mg2+ Æ GppNHp-complex a-Phosphate b-Phosphate c-Phosphate K12

d1 (ppm) d2 (ppm) d1 (ppm) d2 (ppm) d1 (ppm) d2 (ppm)

H-Ras(wt)b �11.20 �11.70 �0.25 �2.59 �3.32 1.9
Ras(wt) (mantGppNHp) �10.92 �11.72 �0.49 �2.53 �3.48 1.7
c 0 Ras(wt) �11.15 �11.71 �0.27 �2.54 �3.36 1.7

K-Ras(wt) �11.08 �11.71 �0.30 �2.52 �3.36 1.2

c 0Ras(G12D)c �11.49 �0.36 �2.47 �3.39 0.5
Ras(G12V) �11.24 �11.55 �0.01 �2.36 �4.08 0.9
Ras(V29G) �10.54 �0.23 �2.59 <0.1
Ras(V29G/I36G) �10.49 �0.26 �2.54 <0.05
c 0Ras(Y32C/C118S) �11.45 �0.20 �2.67 <0.05
Ras(Y32F) �11.41 �12.05 �0.34 0.07 �2.50 �2.81 0.7
Ras(Y32R) �11.00 �11.36 �0.24 0.11 �2.54 �2.97 0.8
Ras(Y32W) �12.02 �0.21 �2.53 <0.05
Ras(T35A)b �11.09 �0.33 �2.49 <0.05
Ras(T35S)b �11.10 �0.26 �2.57 <0.1
c 0Ras(T35S) �11.00 �0.35 �2.57 <0.1
Ras(I36G) �10.54 �0.22 �2.60 <0.05
Ras(Y40C) �11.08 �0.23 �2.46 <0.1
c 0Ras(E62H)c �11.21 �11.82 �0.38 �0.24 �2.60 �3.42 1.0
c 0Ras(S65P)c �11.28 �11.78 �0.37 �0.23 �2.58 �3.59 1.0

aData were recorded at various temperatures, the shifts actually given were taken from spectra recorded at 278 K and pH 7.4 with an estimated error
of ± 0.05 ppm. The equilibrium constant K12 between state 1 and state 2 is calculated from the integrals of the c-resonances defined by K12 = k12/
k21 = [2]/[1]. State 1 and state 2 are two conformational states of the Ras-nucleotide complexes with different chemical shifts. In the Ras(wt) Æ
Mg2+ Æ GppNHp complex, state 1 is defined as the state where the c-resonance is shifted downfield relative to state 2. The error of the K12 values is
determined by the integration of the c-phosphate resonances of the two states of approximately 0.1. Note that T1 relaxation effects do not influence
the relative integrals in the wo states, since T1 is averaged by the exchange.
bData were recorded at 278 K and pH 7.4. The data from Spoerner et al. [10] were reanalyzed and re-assigned according to [14]. The chemical shifts
are slightly different from those reported by Geyer et al. [1] due to differences in the referencing method.
cData were recorded at 278 K and pH 7.4 [1]. The re-assignment of Spoerner et al. [14] was applied to the data.

Fig. 3. Correlation of population shifts with the site of mutation. (A) Amino acids which were mutated are indicated. The color code represents the
shift of the conformational equilibrium as follows: green, K12 < 0.1; yellow, K12 � 1; and orange, 0.1 < K12 < 0.8 depending on the mutation. (B)
Equilibrium constants of the K12 = [2]/[1] of state 1 and state 2 of different Ras mutants.
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wild-type protein. An especially strong effect is observed for

Ras(G12V) where the resonance of the c-phosphate group cor-

responding to state 1 is shifted downfield by 0.13 ppm and that

corresponding to state 2 is shifted highfield by 0.76 ppm com-

pared to the wild-type protein. This indicates that not only

the equilibrium between the two states is shifted but that in

Ras(G12V) the environment of the c-phosphate group is also

perturbed significantly. As in the wild-type protein, a significant

exchange broadening can be observed at low temperatures.
Mutations in the hinges of the effector loop which replace

amino acids with more bulky side chains by glycine, such as

the single and double mutants V29G, I36G, V29G/I36G, in-

duce a complete shift to state 1 probably because the loop be-

comes much more mobile. As already reported [10], the same

result has been obtained for the partial loss-of-function mu-

tants T35S and T35A, since Thr35 stabilizes state 2 by hydro-

gen bonds to the c-phosphate of GppNHp and to the metal

ion. As shown here, also the other well-known partial



Fig. 4. Interaction of the Ras-binding domain of Raf-kinase with
Ras Æ Mg2+ Æ GppNHp complexes. The samples contained between 0.9
and 1.3 mM Ras Æ Mg2+ Æ GppNHp in 40 mM HEPES/NaOH, pH 7.4,
10 mM MgCl2, 150 mM NaCl, 2 mM DTE and 0.1 mM DSS in 5%
D2O and 95% H2O, respectively. A solution of 6.8 mM Raf-RBD
dissolved in the same buffer was added in increasing amounts up to a
molar Raf-RBD:Ras ratio of 2.5 at Ras(Y32W) and Ras(T35A) and a
final Raf-RBD:Ras ratio of 1.5 for the other Ras variants. All spectra
were recorded at 278 K. Mutations are indicated.
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loss-of-function mutant Ras(Y40C) is characterized by a com-

plete shift towards state 1.

Mutations of Tyr32 are always characterized by a shift of

the equilibrium to state 1 but the magnitude of the shift is

dependent on the amino acid introduced in position 32. A

small effect on the equilibrium could possibly be explained

by the interaction between the aromatic ring hydroxyl group

and the c-phosphate of bound GppNHp. In Ras(Y32F) and

Ras(Y32R), the equilibrium constant for the dynamic inter-

change between the conformations 1 and 2, K12 = [2]/[1], drops

from 1.9 for wild-type Ras to 0.7 and 0.8, respectively.

Ras(Y32W), a mutant often used in fluorescence based binding

studies, occurs in only one state. From the chemical shift of the

c-phosphate resonance, it represents most probably state 1. In

contrast, replacement of GppNHp in the Ras(wt) complex by

the fluorescent mant-analog mGppNHp has only a slight effect

on the phosphorus chemical shifts and the population of the

different states (Table 1), which is important to know as the

mant group is often used in kinetic and thermodynamic studies

with effectors and regulators. In contrast, the 31P NMR data

presented here suggest that Ras(Y32W) is in a different confor-

mational equilibrium compared to wild-type Ras, suggesting

that caution must be applied in the use of this mutation in

effector binding studies.

The switch II mutants Ras(E62H) and Ras(S65P) investi-

gated by Geyer et al. [1] show similar spectra as the wild-type

but with a slight shift of the equilibrium towards state 1

(Table 1).

3.2. Effects of truncation and change of isoforms

Most 31P NMR experiments were performed with H-Ras(1–

189) but in the literature also the C-terminal truncated

H-Ras(1–166) is used. From 31P NMR spectroscopy point of

view, truncation does not have a significant effect on the chem-

ical shifts or the conformational equilibrium (Table 1). Since

NMR-spectroscopy is very sensitive against small structural

changes, this supports earlier conclusions based on biochemi-

cal data that this truncation does not perturb any biochemical
Table 2
31P chemical shifts in Ras complexed with Ras binding domains of different

Ras ÆMg2+ Æ GppNHp-complex Effector a-Phosphate (

Ras(wt)b Raf-RBD �11.55
Ras(wt)b RalGDS-RBD �11.54
Ras(wt)c AF6-RBD �11.70
Ras(wt)d Byr2-RBD �11.54

Ras(G12V) Raf-RBD �11.60
Ras(V29G/I36G) Raf-RBD �10.79
Ras(T35A)b Raf-RBD �11.10
Ras(T35A)b RalGDS-RBD �11.11
Ras(T35S)b Raf-RBD �11.60
Ras(T35S)b RalGDS-RBD �11.54

Ras(Y32R) Raf-RBD �11.33
Ras(Y32W) Raf-RBD �12.03
Ras(Y40C) Raf-RBD �11.60

aData were recorded at 278 K and pH 7.4. Published data were reassigned acc
shift values is less than ± 0.1 ppm.
bData from Spoerner et al. [10].
cData from Linnemann et al. [6].
dData from Gronwald et al. [7].
property of the protein [18]. This is different for K-Ras: here

the equilibrium constant K12 is significantly reduced and drops

from 1.9 in H-Ras(wt) to 1.2 in K-Ras(wt).

3.3. Complex formation between Ras effectors and different Ras

mutants

Binding of effectors to Ras(wt) Æ Mg2+ Æ GppNHp normally

leads to the disappearance of the 31P NMR resonances corre-

sponding to state 1 and the appearance of resonances with

shifts that correspond closely to state 2 (Fig. 4, Table 2)
effectorsa

d, ppm) b-Phosphate (d, ppm) c-Phosphate (d, ppm)

�0.22 �3.50
�0.37 �3.40
�0.30 �3.60
�0.37 �3.36

�0.23 �4.46
�0.08 �3.42
�0.31 �2.49
�0.31 �2.49
�0.27 �3.42
�0.29 �3.31

+0.15 �3.23
�0.11 �2.80
�0.21 �3.52

ording to Spoerner et al. [14]. The estimated error of the given chemical
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[1,5–7]. This means that complex formation usually stabilizes a

conformation, which should be very similar to state 2 of

uncomplexed wild-type Ras. However, small but significant

chemical shift differences between Ras and Ras-effector com-

plexes are observed. Thus, the environment of the phosphate

groups of the bound nucleotide senses the bound effector due

to a change in conformation induced by the latter (Table 2).

Although chemical shift changes cannot be interpreted in a

simple way in structural terms and large chemical shift changes

do not necessarily imply large structural changes, the rather

small chemical shift changes after effector binding suggest only

small structural rearrangements close to the reporter groups

(the phosphate groups).

Previously, we have shown [10] that Ras(T35A) Æ
Mg2+ Æ GppNHp can bind the RBD of Raf-kinase but there

is no conformational shift to state 2, whereas in Ras(T35S)

state 2 becomes stabilized when an effector-RBD is bound.

We have investigated some other Ras variants containing a

mutation in their switch I region which contains the interact-

ing loop between Ras and its effectors. The resulting chemical

shift values are summarized in Table 2. Except of Ras(T35A)

and probably Ras(Y32W) (Figs. 2 and 4), all investigated

mutants show a significant additional upfield shift for the

c-phosphate resonances in the presence of a Ras-binding

domain.

As described for the c-phosphate resonance, a shift to higher

fields is usually observed for the a-phosphate resonance after

effector binding. The largest effect is seen for the mutant

Ras(Y40C) with �0.52 ppm. Also, large effects are found for

the b-phosphate resonances of Ras(G12V) with an upfield shift

of 0.22 ppm. The Ras(Y32R)-Raf-RBD complex shows a large

downfield shift of all three resonances compared to the wild-

type Ras-effector complex.

From 31P NMR titration experiments, we estimate for the

interaction between Ras(T35S) and RalGDS-RBD an equilib-

rium dissociation constant of about 350 lM and a affinity less

than 10 mM in the case of Ras(T35A) [10]. From investiga-

tions on the other switch I mutants presented here, we can

see that the affinity between Ras variants containing a muta-

tion in switch I and Raf-RBD is drastically decreased, so that

at millimolar concentrations and excess of effector-RBD, only

a fraction of Ras is in state 2 (Fig. 4). From the 31P NMR titra-

tion experiments (see Section 2) with known concentrations of

Ras and the effector-RBD, the corresponding KD values were

estimated assuming that the population of state 2 exclusively

represents the effector-bound state and state 1 that of free

Ras. Thus, we can estimate KD values between Ras(Y32R)

and Raf-RBD of about 50 to 100 lM, between Ras(Y40C)

and Raf-RBD of about 400 lM, and a value of 1 mM for

the interaction between Raf-RBD and Ras(V29G/I36G),

respectively.

Mutations within switch I region most often lead to a shift of

the equilibrium towards state 1 (Figs. 1–3). This is especially

remarkable for the partial loss-of-function mutants Ras(T35S),

which can interact with Raf-kinase but not any more with Ral-

GDS, and for Ras(Y40C), which interacts with PI3-kinase but

neither with Raf-kinase nor with RalGDS. From this study,

we see that in principle the complex formation between

Ras(Y40C) and the Ras-binding domain of Raf (Raf-RBD)

as well as Ras(T35S) and RalGDS-RBD is possible but the

affinity drops drastically, so that under physiological concen-

trations there is almost no binding any more (Fig. 4).
4. Conclusion

Ras exists in (at least) two conformational states, which can

be identified by NMR spectroscopy. One of the states (state 2)

represents the high affinity state for effectors, the other state

(state 1) represents a different (GDP-like?) state of the protein

with a strongly reduced affinity to effectors. All investigated

mutations but especially mutations in switch I shift the equilib-

rium between the states towards state 1 followed by a decrease

of binding affinity to effectors. These mutations seem to dis-

turb directly or indirectly the interactions of Thr35 with the

Mg2+ ion and the c-phosphate group. In general, the 31P chem-

ical shifts after effector binding are close to that of state 2 of

free Ras(wt) but nevertheless different. This means that upon

effector binding, a limited structural re-arrangement occurs

(induced fit) which selects one of the possible substates of state

2. This is in line with the general theory of effector interaction

described by Spoerner et al. [14]. State 1 could represent a new

target for the development of anti-cancer drugs, since its stabil-

ization would reduce the strength of the effector interaction

considerably.
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