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HEBEY�VAUGON CONJECTURE IIFARID MADANIAbstrat. In this paper we onsider the remaining ases of Hebey�Vaugon onjeture. We give a positive answer to the onjeture.1. IntrodutionLet (M,g) be a ompat Riemannian manifold of dimension n ≥ 3. Denoteby I(M,g), C(M,g) and Rg the isometry group, the onformal transforma-tions group and the salar urvature, respetively. Let G be a subgroup ofthe isometry group I(M,g). The equivariant Yamabe problem an be for-mulated as follows: in the onformal lass of g, there exists a G−invariantmetri with onstant salar urvature. Assuming the positive mass theoremand the Weyl vanishing onjeture (for more details on the subjet, see [7℄,[10℄ and the referenes therein), E. Hebey and M. Vaugon [4℄ proved that thisproblem has solutions. Moreover, they proved that the in�mum of Yamabefuntional(1) Ig(ϕ) =

∫

M |∇ϕ|2 + n−2
4(n−1)Rgϕ

2dv

‖ϕ‖2
2n

n−2over G−invariant nonnegative funtions is ahieved by a smooth positive
G−invariant funtion. This funtion is a solution of the Yamabe equation,whih is the Euler�Lagrange equation of Ig:

∆gϕ +
n − 2

4(n − 1)
Rgϕ = µϕ

n+2

n−2One of the onsequenes of these results is that the following onjeture dueto Lihnerowiz [6℄ is true.Lihnerowiz onjeture. For every ompat Riemannian manifold
(M,g) whih is not onformal to the unit sphere Sn endowed with its stan-dard metri gs, there exists a metri g̃ onformal to g for whih I(M, g̃) =
C(M,g), and the salar urvature Rg̃ is onstant.The lassial Yamabe problem, whih onsists of �nding a onformal metriwith onstant salar urvature on a ompat Riemannian manifold, is a par-tiular ase of the equivariant Yamabe problem (it orresponds to G = {id}).This problem was ompletely solved by H. Yamabe [13℄, N. Trudinger [12℄,T. Aubin [1℄ and R. Shoen [11℄. The main idea to prove the existene ofpositive minimizers for Ig is to show that if (M,g) is not onformal to thesphere endowed with its standard metri, then(2) µ(g) := inf

C∞(M)
Ig(ϕ) <

1

4
n(n − 2)ω2/n

n1



2 FARID MADANIwhere ωn is the volume of the unit sphere Sn.T. Aubin [1℄ proved (2) in some ases by onstruting a test funtion uεsatisfying:
Ig(uε) <

1

4
n(n − 2)ω2/n

nHe onjetured that (2) always holds exept for the sphere. R. Shoen on-struted another test funtion whih involves the Green funtion of the on-formal Laplaian ∆g+ n−2
4(n−1)Rg. Using the positive mass theorem, R. Shoenproved (2) for all ompat manifolds whih are not onformal to (Sn, gs). Thesolution of the Yamabe problem follows.Later, E. Hebey and M. Vaugon [4℄ showed that we an generalize (2) forthe equivariant ase as follows:Denote by OG(P ) the orbit of P ∈ M under G and by card OG(P ) itsardinal. Let C∞

G (M) be the set of smooth G-invariant funtions and
µG(g) := inf

C∞

G
(M)

Ig(ϕ)Following E. Hebey and M. Vaugon [3, 4℄, we de�ne the integer ω(P ) at apoint P as
ω(P ) = inf{i ∈ N/‖∇iWg(P )‖ 6= 0} (ω(P ) = +∞ if ∀i ∈ N, ‖∇iWg(P )‖ = 0)Hebey�Vaugon onjeture. Let (M,g) be a ompat Riemannian man-ifold of dimension n ≥ 3 and G be a subgroup of I(M,g). If (M,g) is notonformal to (Sn, gs) or if the ation of G has no �xed point, then the fol-lowing inequality holds(3) µG(g) <

1

4
n(n − 2)ω2/n

n ( inf
Q∈M

card OG(Q))2/nE. Hebey and M. Vaugon showed that if this onjeture holds, then it im-plies that the equivariant Yamabe problem has minimizing solutions and theLihnerowiz onjeture is also true. Notie that if G = {id}, then this on-jeture orresponds to (2).Let us reall the results already known about this onjeture. Assuming thepositive mass theorem, E. Hebey and M. Vaugon [4℄ proved the following:Theorem 1.1 (E. Hebey and M. Vaugon). Let (M,g) be a smooth ompatRiemannian manifold of dimension n ≥ 3 and G be a subgroup of I(M,g).We always have :
µG(g) ≤

1

4
n(n − 2)ω2/n

n ( inf
Q∈M

card OG(Q))2/nand inequality (3) holds if at least one of the following onditions is satis�ed.1. The ation of G on M is free.2. 3 ≤ dim M ≤ 11.3. There exists a point P ∈ M with �nite minimal orbit under G suhthat ω(P ) > (n − 6)/2 or ω(P ) ∈ {0, 1, 2}.We have also the following result obtained by the author in [9℄:Theorem 1.2. Hebey�Vaugon onjeture holds for every smooth ompatRiemannian manifold (M,g) of dimension n ≤ 37.



HEBEY�VAUGON CONJECTURE II 3The main result of this paper is the following:Theorem 1.3. If there exists a point P ∈ M suh that ω(P ) ≤ (n − 6)/2,then(4) µG(g) <
1

4
n(n − 2)ω2/n

n (card OG(P ))2/nNote that if we assume the positive mass theorem, then Theorem 1.3 andTheorem 1.1 implies that Hebey�Vaugon onjeture holds.The proof of Theorem 1.3 doesn't require the positive mass theorem. If
card OG(Q) = +∞ for all Q ∈ M , then (3) holds. So we have to onsideronly the ase when there exists a point in M with �nite orbit. From nowuntil the end of this paper, we suppose that P ∈ M is ontained in a �niteorbit and ω(P ) ≤ n−6

2 . The assumption ω(P ) ≤ n−6
2 deletes the ase (M,g)is onformal to (Sn, gs).2. G-invariant test funtionIn order to prove Theorem 1.3 and 1.2, we onstrut from the funtion ϕε,Pde�ned below a G-invariant test funtion φε suh that(5) Ig(φε) <

1

4
n(n − 2)ω2/n

n (card OG(P ))2/nLet us reall the onstrution in [9℄ of ϕε,P . Let {xj} be the geodesi normaloordinates in the neighborhood of P and de�ne r = |x| and ξj = xj/r.Without loss of generality, we suppose that det g = 1 + O(rN ), with N > 0su�iently large (for the existene of suh oordinates for a G−invariantonformal lass, see [4℄, [5℄).
ϕε,P (Q) = (1 − rω(P )+2f(ξ))uε,P (Q)

uε,P (Q) =











(

ε

r2 + ε2

)
n−2

2

−

(

ε

δ2 + ε2

)
n−2

2 if Q ∈ BP (δ)

0 if Q ∈ M − BP (δ)for all Q ∈ M , where r = d(Q,P ) is the distane between P and Q, and
BP (δ) is the geodesi ball of enter P and radius δ �xed su�iently small.
f is a funtion depending only on ξ (de�ned on Sn−1), hosen suh that
∫

Sn−1 fdσ = 0.Let R̄ be the leading part in the Taylor expansion of the salar urvature Rgin a neighborhood of P and µ(P ) is its degree. Hene,
Rg(Q) = R̄ + O(rµ(P )+1)

R̄ = rµ(P )
∑

|β|=µ(P )

∇βRg(P )ξβWe summarize some properties of R̄ in the following proposition.Proposition 2.1. 1. R̄ is a homogeneous polynomial of degree µ(P )and is invariant under the ation of the stabilizer group of P .2. We always have µ(P ) ≥ ω(P )



4 FARID MADANI3. if µ(P ) ≥ ω(P ) + 1, then ∫

Sn−1(r) Rdσ < 0 for r > 0 su�ientlysmall.4. If µ(P ) = ω(P ), then there exist eigenfuntions ϕk of the Laplaianon Sn−1 suh that the restrition of R̄ to the sphere is given by
R̄|Sn−1 =

q
∑

k=1

νkϕkwhere q ≤ [ω(P )/2], ∆sϕk = νkϕk and νk = (ω−2k+2)(n+ω−2k)are the eigenvalues of ∆s with respet to the standard metri gs of
Sn−1.Sine the salar urvature is invariant under the ation of the isometry group

I(M,g), R̄ is invariant under the ation of the stabilizer of P . The seondstatement of Proposition 2.1 is proven by E. Hebey and M. Vaugon ([4℄,Setion 8) and the third one by T. Aubin ([2℄, Setion 3). So, in the ase
µ(P ) ≥ ω(P ) + 1, the onjeture holds immediately, by hoosing f = 0,
ϕε,P = uε,P (see [8, 9℄ for more details).From now we suppose that µ(P ) = ω(P ). Using the fat that R̄ is homoge-neous polynomial of degree ω(P ) and the fat that for all j ≤ ω(P ) − 1(6) |∇jRg(P )| = 0, ∆j+1

g Rg(P ) = 0 and |∇∆j+1
g Rg(P )| = 0we dedue that ∆

[ω(P )/2]
E R̄ = 0. Hene, if we restrit R̄ to the sphere, we getthe deomposition of item 4. in Proposition 2.1. The proof of (6) is given in[4℄, Setion 8.Using the split of R̄ given in Proposition 2.1, we proved in [9℄ that if theardinal of OG(P ) is minimal and ω(P ) ≤ 15 , then there exists c ∈ R suhthat for f = cR̄|Sn−1 , the funtion

φε =
∑

Pi∈OG(P )

ϕε,Piis G-invariant and satis�es (5), whih proves Theorem 1.2. Moreover, weproved the following theorem:Theorem 2.1. If ω(P ) ≤ (n − 6)/2, then there exist ck ∈ R, suh that for
f =

∑q
k=1 ckϕk, the funtion ϕε,P satis�es(7) Ig(ϕε,P ) <

1

4
n(n − 2)ω2/n

nThe proof of Theorem 2.1 is tehnial and uses Proposition 2.1. It is givenin [9℄ (see also [8℄ for a detailed proof).Below, we show that using Theorem 2.1, we an onstrut a G−invariantfuntion φε whih satis�es (5) for ω(P ) ≤ n−6
2 (the ardinal of OG(P ) is notneessarily minimal). It implies Theorem 1.3.Proof of Theorem 1.3. Let H ⊂ G be the stabilizer of P . We onsider thefuntion f =

∑q
k=1 ckϕk of Theorem 2.1. Using the exponential map on Pas a loal hart, we an view f and ϕk as funtions de�ned over the unitsphere of TP M , the tangent spae of M on P . Let h be an isometry in H.

h∗(P ) : (TP M,gP ) → (TP M,gP )



HEBEY�VAUGON CONJECTURE II 5is the linear tangent map of h on P . It is a linear isometry with respetto the inner produt gP whih is Eulidean. h∗(P ) onserves the unitsphere Sn−1 ⊂ TP M and the Laplaian. We already know that the funtion
R̄ = rω(P )

∑q
k=1 νkϕk is H-invariant. Notie that ϕk and ϕj belong to twodi�erent eigenspaes if k 6= j. Sine, isometries onserve the Laplaian and

ϕk are eigenfuntions of the Laplaian on the sphere endowed with its stan-dard metri, it yields that ϕk and f are H-invariant. On the other hand, wehave the following bijetive map:
G/H −→ OG(P )

σH 7−→ σ(P )Sine f is H-invariant, ϕε,P is H−invariant and the funtion
φε =

∑

σ∈G/H
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