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CLASSIFICATION OF TRACES AND HYPERTRACES ON SPACES
OF CLASSICAL PSEUDODIFFERENTIAL OPERATORS

MATTHIAS LESCH AND CAROLINA NEIRA JIMÉNEZ

Abstract. Let M be a closed manifold and let CL•(M) be the algebra of classical
pseudodifferential operators. The aim of this note is to classify trace functionals on
the subspaces CLa(M) ⊂ CL•(M) of operators of order a. CLa(M) is a CL0(M)–
module for any real a; it is an algebra only if a is a non–positive integer. Therefore,
it turns out to be useful to introduce the notions of pretrace and hypertrace. Our
main result gives a complete classification of pre– and hypertraces on CLa(M) for any
a ∈ R, as well as the traces on CLa(M) for a ∈ Z, a ≤ 0. We also extend these results
to classical pseudodifferential operators acting on sections of a vector bundle.

As a byproduct we give a new proof of the well–known uniqueness results for the
Guillemin–Wodzicki residue trace and for the Kontsevich–Vishik canonical trace. The
novelty of our approach lies in the calculation of the cohomology groups of homoge-
neous and log–polyhomogeneous differential forms on a symplectic cone. This allows
to give an extremely simple proof of a generalization of a Theorem of Guillemin about
the representation of homogeneous functions as sums of Poisson brackets.

This paper exposes and extends some of the results of the Ph.D. Thesis [NJ10]
of the second named author. We acknowledge with gratitude the substantial help
received from Sylvie Paycha.
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1. Introduction and formulation of the result

Let M be a smooth closed connected riemannian manifold of dimension n > 1. 1 We
denote by CLa(M) the space of classical pseudodifferential operators of order a ∈ R on
M . It is well–known that the residue trace Res, which was discovered independently by
V. Guillemin [Gui85] and M. Wodzicki [Wod87b], is up to normalization the unique
trace on the algebra CLZ(M) of integer order classical pseudodifferential operators
([Wod87b], [BrGe87], [FGLS96], [Les99]). Res is non–trivial only on CLk(M) for
integers k ≥ −n, and it is complemented by the canonical trace, TR, of Kontsevich and
Vishik [KoVi95]. The latter is defined on operators of real order a 6= −n,−n+1, . . ., it
extends the Hilbert space trace on smoothing operators and it vanishes on commutators
(for the precise statement see Eq. (3.12) below). By [MSS08] it is the unique functional
which is linear on its domain, has the trace property and coincides with the L2–operator
trace on trace–class operators.
A natural problem which arises is to characterize the traces on the spaces CLa(M).

First, one has to note that CLa(M) is always a CL0(M)–module; it is an algebra
if and only if a ∈ Z≤0 =

{
0,−1,−2, . . .

}
. Let us call a functional on CLa(M) a

hypertrace (resp. pretrace) if τ
(
[A,B]

)
= 0 for A ∈ CL0(M), B ∈ CLa(M) (resp.

A,B ∈ CLa/2(M)), see Definition 3.1.
The above mentioned uniqueness results for Res and TR cannot extend to CLa(M)

for a simple reason: let T be a distribution on the cosphere bundle S∗M and denote
by σa : CLa(M) → C∞(S∗M) the leading symbol. Due to the multiplicativity of the
leading symbol (Eq. (3.3)) the map T ◦ σa is a pretrace and a hypertrace on CLa(M),
and for a ∈ Z≤0 it is a trace on CLa(M). T ◦ σa is called a leading symbol trace,
[PaRo04].
For CL0(M) it was already proved by Wodzicki [Wod87a] that any trace is a linear

combination of Res and a leading symbol trace, see also Lescure, Paycha [LePa07] and
Ponge [Pon10].
Before stating our generalization of this result we introduce a convenient notation

which combines TR and Res. Namely, fix a linear functional T̃r : CL0(M) → C such

1The case n = 1 has some peculiarities due to the non–connectedness of the cosphere bundle of S1.
As a consequence many results need to be slightly modified in the case n = 1. These modifications are
more annoying than difficult and for the sake of a clean exposition they are left to the reader. But see
Remark 2.10.
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that for a ∈ Z<−n =
{
−n− 1,−n− 2, . . .

}

T̃ra = T̃r ↾ CLa(M) = Tr ↾ CLa(M) = Tra,

and put

TRa :=





TRa, if a ∈ R \ Z≥−n,

T̃ra, if a ∈ Z,−n ≤ a < −n+1
2
,

Resa, if a ∈ Z, −n+1
2

≤ a ≤ 0.

(1.1)

In this note we will prove:

Theorem 1.1. Let M be a closed connected riemannian manifold of dimension n > 1.
1. Let a ∈ R and let τ be a hypertrace on CLa(M). Then there are uniquely

determined λ ∈ C and a distribution T ∈
(
C∞(S∗M)

)∗
such that

τ = T ◦ σa +

{
λTRa, if a /∈ Z>−n,

λ Resa, if a ∈ Z>−n.
(1.2)

2. Let a ∈ Z≤0, and denote by

πa : CL
a(M) −→ CLa(M)/CL2a−1(M)

the quotient map. Let τ : CLa(M) → C be a trace. Then there are uniquely determined
λ ∈ C and T ∈

(
CLa(M)/CL2a−1(M)

)∗
such that

τ = λTRa + T ◦ πa. (1.3)

This Theorem is a summary of Theorem 4.10, Theorem 4.12 and Corollary 4.13 in
the text. It extends to the vector bundle case. This requires even more notation and is
therefore not reproduced here in the introduction. The interested reader is referred to
Theorem 5.7 in Section 5.
It is interesting to note that Res and TR as well as the leading symbol traces have

precise analogues on the symbolic level. This analogy is not only formal but is used to
prove Theorem 1.1. Namely, consider the Hörmander symbols CSa(Rn)

(
= CSa({0} ×

Rn)
)
. This is the space of smooth functions f on Rn such that f ∼

∑∞
j=0 fa−j with

fa−j(ξ) positively homogeneous of order a − j for ξ large enough. The analogue of
a hypertrace is then a linear functional τ : CSa(Rn) → C such that τ(∂jf) = 0 for
j = 1, . . . , n. Such functionals have been investigated by Paycha [Pay07] and were
partially classified (up to functionals on smoothing symbols).
Functionals with the “Stokes’ property”, τ(∂jf) = 0, can most naturally be classified

by looking at a certain variant of de Rham cohomology. Namely, putting T (fdξ1∧ . . .∧
dξn) := τ(f) one obtains a linear function on the top degree de Rham cohomology of
forms in Rn whose coefficients lie in CSa(Rn). While the calculation of this cohomology
is possible, it will be postponed to a subsequent paper. Rather it turns out that to
classify the functionals with the Stokes’ property it suffices to calculate the de Rham
cohomology of forms with homogeneous coefficients. This, in a sense a simple extension
of Euler’s identity from homogeneous functions to forms, will be carried out in Section
2. There are two main consequences: first we will be able to prove a generalization
of Guillemin’s Theorem [Gui85] on the representation of homogeneous functions on
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a symplectic cone as sums of Poisson brackets (Theorem 2.9). Secondly, we will be
able to completely characterize the functionals on CSa(Rn) with the Stokes’ property or
equivalently when a function in CSa−1(Rn) can be written as a sum of partial derivatives
of functions in CSa(Rn) (Proposition 2.12). This generalizes [Pay07, Prop. 2, Thm. 2].
These results about symbols allow to prove an improved version of the known results

about the representation of a pseudodifferential operator as a sum of commutators
(Theorem 4.6).
The paper is organized as follows:
In Section 2 we study homogeneous differential forms on cones and calculate their

de Rham cohomology. As applications we prove the aforementioned generalization of
Guillemin’s Theorem on homogeneous functions and a characterization of functionals
with the Stokes’ property.
In Section 3 we first review some basic facts about pseudodifferential operators and

trace functionals. We introduce pretraces and hypertraces and we give some examples.
In Section 4 we apply the results of Section 2 and provide a result about the represen-
tation of a classical pseudodifferential operator as a sum of commutators. We use this
result to give the classification of hypertraces and traces on CLa(M) for different values
of a. For the case of integral a we give two proofs, one relying on a result due to Ponge
[Pon10] and a completely self–contained one in Subsection 4.4.
Finally, in Section 5 we extend the results about tracial functionals to operators acting

on sections of vector bundles over the manifold. The main result then is Theorem 5.7.

Acknowledgments and bibliographical remarks

The second named author would like to thank her coadvisor Sylvie Paycha for her
guidance during this project, as well as the Max–Planck Institute für Mathematik and
the University of Bonn for their support and hospitality.
Lemma 4.5 was communicated to the second named author by Sylvie Paycha. This

Lemma is crucial for the classification of traces on the integer order algebras CLk(M,E)
for k < 0 as well as for showing that every pretrace is a hypertrace, cf. Proposition
4.9, Proposition 5.1. Furthermore, the alternative approach to Theorem 4.12 presented
in Subsection 4.4 is based on joint work of the second named author and Sylvie Pay-
cha. These results are included here with the kind permission of Sylvie Paycha whose
generosity is greatly appreciated.
The results of Section 2, in particular the simple approach to the generalization

of a result by Guillemin, Theorem 2.9, using homogeneous cohomology (Subsections
2.1, 2.2) is due to the first named author and a rather general version of homogeneous
cohomology was announced in [Les11, Sec. 7]. The second named author acknowledges
the kind permission to include these results in her thesis [NJ10]. Lemma 4.5 and
Subsection 4.4 are not needed to prove the classification results about hypertraces
contained in Theorem 4.10, 4.12, and Theorem 5.7. These results, due to the first
named author, are also independent of [NJ10]. Section 5, written entirely by ML,
supercedes the in part erroneous Section 5.2 of [NJ10].
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2. Cohomology of homogeneous differential forms

In this section we calculate the de Rham cohomology of homogeneous differential
forms on cones. The theory is stunningly simple. Nevertheless as corollaries we ob-
tain generalizations of the results of V. Guillemin [Gui85] on the representation of
homogeneous functions on symplectic cones as sums of Poisson brackets. Also our ap-
proach generalizes the theory of homogeneous functions on Rn\{0} in a straightforward
way. Therefore, we also obtain as a corollary the precise criterion when a homogeneous
function can be written as a sum of partial derivatives of homogeneous functions, cf.
[FGLS96], [Les99]. Finally, this criterion is generalized to classical symbol functions,
generalizing [Pay07, Prop. 2, Thm. 2].

2.1. Homogeneous differential forms on cones. A cone over a manifold B is a
principal bundle π : Y → B with structure group R∗

+, the multiplicative group of
positive real numbers. Denote by ̺λ : Y → Y , the action of λ ∈ R∗

+. Via Φt := ̺et
we obtain a one parameter group of diffeomorphisms of Y . Let X ∈ C∞(TY ) be the
infinitesimal generator of this group, which is sometimes called the Liouville vector field.
A differential form ω ∈ Ωp(Y ) is called homogeneous of degree a if ̺∗λω = λaω for

all λ ∈ R∗
+. The space of differential forms of form degree p and homogeneity a is

denoted by ΩpPa(Y ). Pa(Y ) := Ω0Pa(Y ) are the smooth functions on Y which are
homogeneous of degree a.
We choose a function r ∈ P1(Y ) which is everywhere positive and put Z :=

{
y ∈

Y
∣∣ r(y) = 1

}
. π|Z is a diffeomorphism from Z onto B and r induces a trivialization

of Y as follows:
Φ : Y −→ R

∗
+ × Z, y 7→ (r(y), ̺r(y)−1y). (2.1)

Note that
Φ(̺λ(y)) = (r(̺λ(y)), ̺r(̺λ(y))−1̺λ(y)) = (λr(y), ̺r(y)−1y). (2.2)

Hence Φ intertwines the R∗
+ action on Y and the natural R∗

+ action on the product
R∗

+×Z. For convenience we will from now on work with the trivialized bundle R∗
+×Z.

The first coordinate will be called r, so the Liouville vector field is then given by
X = r ∂

∂r
.

With the projection π : R∗
+ × Z → Z, a differential form ω ∈ ΩpPa(R∗

+ × Z) can be
written

ω = ra−1dr ∧ π∗τ + raπ∗η (2.3)

with
η = i∗Zω ∈ Ωp(Z), τ = i∗Z(ιXω) ∈ Ωp−1(Z), (2.4)

where iZ : Z →֒ Y is the inclusion map and ιX denotes interior multiplication by the
Liouville vector field X . We have furthermore

dω = ra−1dr ∧ (aπ∗η − π∗dZτ) + raπ∗dZη ∈ Ωp+1Pa(R∗
+ × Z), (2.5)

so exterior derivation preserves the homogeneity degree. Hence we can form the homo-
geneous de Rham cohomology groups

HpPa(Y ) :=
ker
(
d : ΩpPa(Y ) −→ Ωp+1Pa(Y )

)

im
(
d : Ωp−1Pa(Y ) −→ ΩpPa(Y )

) . (2.6)



CLASSIFICATION OF TRACES ON CLASSICAL PSEUDODIFFERENTIAL OPERATORS 6

These cohomology groups can easily be calculated:

Theorem 2.1. Let Z be a smooth paracompact manifold, let π : Y → Z be a R∗
+

principal bundle over Z.

(1) If a 6= 0 then HpPa(Y ) = {0}.
(2) If a = 0 then the map

Ψ : Ω•P0(Y ) −→ Ω•−1(Z)⊕ Ω•(Z)

ω 7→
(
i∗Z(ιXω), i

∗
Zω
)

is up to a sign a complex isomorphism, in particular it induces an isomorphism

HpP0(Y ) ∼= Hp−1(Z)⊕Hp(Z). (2.7)

In terms of the everywhere positive function r ∈ P1(Y ) the inverse of Ψ is given
by (τ, η) 7→ r−1dr ∧ π∗τ + π∗η.

Proof. As before we work with the trivialized bundle R∗
+ × Z. If ω is closed then (2.5)

implies that
dZτ = aη, dZη = 0, (2.8)

and hence we obtain a form analogue of Euler’s identity (see Eq. (2.19) below)

d
(
iXω

)
= d(raπ∗τ) = ara−1dr ∧ π∗τ + raπ∗dZτ = aω. (2.9)

Thus ω is exact if a 6= 0, explicitly

ω =
1

a
d
(
iXω

)
. (2.10)

Now let a = 0 and consider ω ∈ ΩpP0(R∗
+ × Z). Since ̺∗etω = ω,

LXω =
d

dt
∣∣t=0

̺∗etω = 0, (2.11)

and Cartan’s magic formula dιX + ιXd = LX implies that dιXω = −ιXdω. Thus

d
(
i∗Z(ιXω), i

∗
Zω
)
=
(
−i∗Z(ιXdω), i

∗
Zdω

)
, (2.12)

and hence the exterior derivative on Ω•−1(Z)⊕ Ω•(Z) can be modified by a sign such
that Ψ becomes a complex homomorphism. Furthermore,

ω = r−1dr ∧ π∗τ + π∗η (2.13)

and, since r−1dr is closed,

dω = π∗dZη − r−1dr ∧ π∗dZτ, (2.14)

from which (2.7) is now obvious. �

Remark 2.2. We comment on a special case of Theorem 2.1 which combines the con-
structions of the residue of a homogeneous function on Rn\{0} (see the next Subsection)
and of Guillemin’s symplectic residue (Subsection 2.3).
Let dimY = n and suppose that ω ∈ ΩnPa(Y ) is a homogeneous volume form.

Then i∗Z(ιXω) is a volume form on Z. In particular Z is orientable and we choose the
orientation such that i∗Z(ιXω) is positively oriented. If additionally Z is compact, then
integration yields an isomorphism Hn−1(Z) ∼= C.
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For f ∈ P−a(Y ) the closed form fω ∈ ΩnP0(Y ) defines a class [fω] ∈ HnP0(Y )
which under the isomorphism Ψ corresponds to the class

[
i∗Z(fιXω)

]
∈ Hn−1(Z).

Definition 2.3. For f ∈ P−a(Y ) we define the residue with respect to the fixed vol-
ume form ω ∈ ΩnPa(Y ) to be the complex number corresponding to the class [fω] ∈
HnP0(Y ) under the composition of the isomorphisms HnP0(Y ) ∼= Hn−1(Z) ∼= C:

resω(f) :=

∫

Z

i∗Z
(
fιXω

)
. (2.15)

For f ∈ Pb(Y ), b 6= −a, we put resω(f) = 0.

Example: Y = Rn \ {0} ∼= R∗
+ × Sn−1, B = Z = Sn−1. We elaborate on this interesting

special case. Denote by (ξ1, . . . , ξn) the coordinates on Rn \ {0} and put ω := dξ1 ∧
· · · ∧ dξn ∈ ΩnPn(Rn \ {0}). Then

X =

n∑

i=1

ξi
∂

∂ξi
, ιXω =

n∑

i=1

(−1)i−1ξi dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn. (2.16)

The form ιXω is in Ωn−1Pn(Rn \ {0}), and i∗Sn−1(ιXω) is the standard volume form on
Sn−1. Moreover, by (2.9) we have for f ∈ Pa(Rn \ {0})

d(fιXω) = (a+ n)f ω, (2.17)

on the other hand by (2.16)

d
(
fιXω

)
=

n∑

i=1

∂ξi(fξi) dξ1 ∧ · · · ∧ dξn =
( n∑

i=1

(∂ξif)ξi + n f
)
ω, (2.18)

and thus we arrive at Euler’s identity for homogeneous functions:

n∑

i=1

(∂ξif)ξi = a f. (2.19)

Corollary 2.4. Let resω be the residue associated to ω = dξ1∧· · ·∧dξn ∈ ΩnPn(Rn\{0})
according to Definition 2.3. Then for a homogeneous function f ∈ Pa(Rn \ {0}) the
following holds:

(1) resω(∂ξjf) = 0.

(2) There exist σj ∈ Pa+1(Rn\{0}) such that f =
n∑

j=1

∂ξjσj if and only if resω(f) = 0.

Note that resω(f) 6= 0 at most if a = −n.

Proof. It follows from the remarks before Definition 2.3 that for a function g ∈ Pa(Rn \
{0}) the residue vanishes if and only if the class [g ω] ∈ HnPa+n(Rn \ {0}) vanishes.
To prove (1) we note that (∂ξjf)dξ1 ∧ · · · ∧ ξn = dη with the form

η = (−1)j−1fdξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξn ∈ Ωn−1Pa+n−1(Rn \ {0})

and hence resω(∂ξjf) = 0.
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(1) shows that for the σj in (2) to exist it is necessary that resω(f) = 0. To prove
sufficiency consider f ∈ Pa(Rn\{0}) with resω(f) = 0. Then there is η ∈ Ωn−1Pa+n(Rn\
{0}) with dη = fω. We write

η =
n∑

j=1

(−1)j−1σjdξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξn (2.20)

with σj ∈ Pa+1(Rn \ {0}). Then f =
n∑

j=1

∂ξjσj . �

2.2. Extension to log–polyhomogeneous forms. We generalize our previous con-
siderations to log–polyhomogeneous forms.
A p–form ω ∈ Ωp(R∗

+ × Z) is called log–polyhomogeneous of degree (a, k) if

ω =

k∑

j=0

ωj logj r, (2.21)

with ωj ∈ ΩpPa(R∗
+ × Z), cf. [Les99]. The set of all such forms is denoted by

ΩpPa,k(R∗
+ × Z).

The exterior derivative preserves the (a, k)–degree. More explicitly,

d
((
ra−1dr ∧ π∗τ + raπ∗η

)
logj r

)

=
(
ra−1dr ∧ (aπ∗η − π∗dZτ) + raπ∗dZη

)
logj r + jra−1dr ∧ π∗η logj−1 r. (2.22)

Hence analogously to Eq. (2.6) we define the log–homogeneous de Rham cohomology
groups

HpPa,k(Y ) :=
ker
(
d : ΩpPa,k(Y ) −→ Ωp+1Pa,k(Y )

)

im
(
d : Ωp−1Pa,k(Y ) −→ ΩpPa,k(Y )

) , (2.23)

for which we can prove the following analogue of Theorem 2.1:

Theorem 2.5. Let Z be a smooth paracompact manifold, let π : Y → Z be a R∗
+

principal bundle over Z. Let r ∈ P1(Y ) be everywhere positive.

(1) If a 6= 0 then HpPa,k(Y ) = {0}.
(2) If a = 0 then the map

Φk : Ω•−1(Z)⊕ Ω•(Z) −→ Ω•P0,k(Y )

(τ, η) 7→ r−1dr ∧ (π∗τ) logk r + π∗η

induces an isomorphism

H(Φk) : Hp−1(Z)⊕Hp(Z) ∼= HpP0,k(Y ). (2.24)

If ω =
k∑

j=0

ωj log
j r ∈ ΩpP0,k(Y ), ωj ∈ ΩpP0(Y ), is a closed form then the inverse

of H(Φk) applied to [ω] is given by
(
[i∗Z(ιXωk)], [i

∗
Zω0]

)
.
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Proof. We consider a closed form ω ∈ ΩpPa,k(R∗
+ × Z) and write

ω = ωk logk r + χ (2.25)

with χ ∈ ΩpPa,k−1(R∗
+ × Z). Then

0 = dω = (dωk) logk r + lower log degree, (2.26)

thus ωk is closed and Euler’s identity (2.9) gives

d
(
ιXω

)
= d
(
ιXωk logk r

)
+ lower log degree

= aωk logk r + lower log degree

= aω + lower log degree.

(2.27)

If a 6= 0 then ω is cohomologous to ω − 1
a
d
(
iXω

)
∈ ΩpPa,k−1(R∗

+ × Z). By induction
and Theorem 2.1 one then shows that ω is exact.
Next let a = 0 and consider a closed form ω ∈ ΩpP0,k(R∗

+ × Z):

ω =

k∑

j=0

(
r−1dr ∧ π∗τj + π∗ηj

)
logj r, (2.28)

0 = dω

=

k∑

j=0

(
−r−1dr ∧ π∗dZτj + π∗dZηj

)
logj r + jr−1dr ∧ π∗ηj logj−1 r

=
(
−r−1dr ∧ π∗dZτk + π∗dZηk

)
logk r

+
k−1∑

j=0

(
r−1dr ∧ ((j + 1)π∗ηj+1 − π∗dZτj) + π∗dZηj

)
logj r,

(2.29)

hence

dZτk = 0, dZηk = 0,

dZηj = 0, dZτj = (j + 1)ηj+1, j = 0, ..., k − 1.
(2.30)

This shows that H(Φk) is well–defined. Furthermore,

ω − d

(
k−1∑

j=0

1

j + 1
π∗τj logj+1 r

)
= r−1dr ∧ π∗τk logk r + π∗η0, (2.31)

showing that H(Φk) is surjective.
Finally, consider a closed form

ω = r−1dr ∧ π∗τk logk r + π∗η0 (2.32)

and suppose that dχ = ω with

χ =

k∑

j=0

(
r−1dr ∧ π∗αj + π∗βj

)
logj r. (2.33)

Then dZβ0 = η0 and −dZαk = τk. This proves the remaining claims. �
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Example: Y = Rn \ {0}, B = Z = Sn−1. As in the homogeneous case we put:

Definition 2.6. Let f ∈ P−n,k(Rn \ {0}). We define the residue of f to be the integral

resω,k(f) := resω(fk) =

∫

Sn−1

i∗Sn−1

(
fk ιXω

)
, ω = dξ1 ∧ · · · ∧ dξn. (2.34)

Note that by Theorem 2.5, HnP0,k(Rn\{0}) ∼= Hn−1(Sn−1) ∼= C, and that resω,k(f) is
the image in C of the class [fω] under this isomorphism. Therefore exactly as Corollary
2.4 one now proves:

Corollary 2.7. For a log–polyhomogeneous function f ∈ Pa,k(Rn \ {0}) the following
holds:

(1) resω,k(∂ξjf) = 0.

(2) There exist σj ∈ Pa+1,k(Rn \ {0}) such that f =
n∑

j=1

∂ξjσj if and only if

resω,k(f) = 0. Note that resω,k(f) 6= 0 at most if a = −n.

2.3. Homogeneous functions on symplectic cones. In this section we give an
explicit expression of a homogeneous function in terms of Poisson brackets. This gen-
eralizes work of V. Guillemin [Gui85, Thm. 6.2].
To fix some notation and to fix some (sign) conventions let us briefly collect some

basic facts from symplectic geometry:
Let Y be a symplectic manifold with symplectic form ω. The Hamiltonian vector

field Xf associated to f ∈ C∞(Y ) is characterized by ιXf
ω = −df . The Poisson bracket

of two functions f, g ∈ C∞(Y ) is defined by

{f, g} := ω(Xf , Xg).

If X1 and X2 are Hamiltonian vector fields, then [X1, X2] is also a Hamiltonian vector
field with Hamiltonian function ω(X1, X2) (see Def. 18.5 in [CdS01]):

ι[X1,X2]ω = ιXω(X1,X2)
ω,

hence
X{f,g} = Xω(Xf ,Xg) = [Xf , Xg], (2.35)

and (C∞(Y ), {, }) is a Poisson algebra.

Proposition 2.8 (1.2 in [Wod87b]). The Poisson bracket of two functions f, g ∈
C∞(Y ) satisfies:

{f, g}ωn = n df ∧ dg ∧ ωn−1 = d(g ιXf
ωn). (2.36)

Let Y be a symplectic cone, i.e. a cone π : Y → Z with a symplectic form ω ∈
Ω2P1(Y ). We assume furthermore that Z is compact and connected; of course, Y
is then connected, too. The main example we have in mind is the cotangent bundle
with the zero section removed, T ∗M \ M , of a compact connected manifold M of
dimension dimM > 1, with its standard symplectic structure. The base manifold Z
is then the cosphere bundle S∗M . In the case M = S1 (the only compact connected
one–dimensional manifold!), each of the two connected components of T ∗S1 \ S1 is a
symplectic cone over S1.
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2.3.1. The symplectic residue. Let dimY =: 2n, so ωn ∈ Ω2nPn(Y ) is a volume form
on Y . The form α := ιXω is in Ω1P1(Y ) and by Euler’s identity for forms Eq. (2.9), it
satisfies ω = dα. Hence we can apply Definition 2.3 and define the symplectic residue
of a function f ∈ Pa(Y ) to be the residue with respect to the volume form ωn. That is

resY (f) := resωn(f) =

{∫
Z
i∗Z(fιXω

n), if a = −n,

0, if a 6= −n.
(2.37)

Recall that by construction resY (f) = 0 if and only if there is a form β ∈ Ω2n−1Pa+n(Y )
such that dβ = fωn.
Our definition of the symplectic residue differs from the original one by Guillemin

[Gui85] by a factor.

2.3.2. Homogeneous functions in terms of Poisson brackets. Now we prove the following
generalization of [Gui85, Thm. 6.2]. The proof we present is based on the homogeneous
cohomology developed in Subsection 2.1. To the best of our knowledge this approach
is completely new.
In the following we will for brevity write Pa instead of Pa(Y ).

Theorem 2.9. Let Y be a connected symplectic cone of dimension 2n > 2 with compact
base. Then for any real numbers l, m the following holds

{P l,Pm} = ker(resY ) ∩ P l+m−1

=

{
P l+m−1, if l +m 6= −n + 1,

ker(resY ) ∩ P l+m−1, if l +m = −n + 1.

(2.38)

Proof. We first note that Proposition 2.8 implies that {P l,Pm} ⊂ P l+m−1. Fur-
thermore, by loc. cit. we have {f, g}ωn = d(g ιXf

ωn), and if f ∈ P l, g ∈ Pm then

g ιXf
ωn ∈ Ω2n−1P l+m+n−1. Thus the homogeneous cohomology class of {f, g}ωn van-

ishes and hence resY ({f, g}) = 0. So {P l,Pm} ⊂ ker(resY ).
Conversely, let f ∈ P l+m−1 be given with resY (f) = 0. That is, the homogeneous co-

homology class of fωn ∈ Ω2nPn+l+m−1 vanishes and hence there is a β ∈ Ω2n−1Pn+l+m−1

such that

fωn = dβ. (2.39)

1. l 6= 0 or m 6= 0. Since the claim is symmetric in l and m we may, without loss of
generality, assume that l 6= 0.
Choose functions g1, . . . , gN ∈ P l such that at every point y of Y their differentials

dg1|y, . . . , dgN |y span the cotangent space T ∗
y Y . Let X1, . . . , XN be the Hamiltonian

vector fields of g1, . . . , gN . Since ωn is a volume form also ιX1ω
n|y, . . . ιXN

ωn|y span
Λ2n−1T ∗

y Y .
Consequently, there are functions f1, . . . , fN ∈ C∞(Y ) such that

β =

N∑

j=1

fj ιXj
ωn. (2.40)
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Since β,Xj, ω
n are homogeneous it is clear that also fj can be chosen to be homogeneous.

Counting degrees then shows fj ∈ Pm. Thus by Proposition 2.8

f ωn = dβ =
N∑

j=1

d(fj ιXj
ωn)

= n

N∑

j=1

dgj ∧ dfj ∧ ω
n−1 =

N∑

j=1

{gj, fj}ω
n,

(2.41)

and hence f =
N∑
j=1

{gj, fj} ∈ {P l,Pm}.

2. l = m = 0. In this case f ∈ P−1. By assumption, n > 1 and thus by Eq. (2.9)

f ωn =
1

n− 1
d(fιXω

n) =
n

n− 1
d(fα ∧ ωn−1), α = ιXω. (2.42)

The 1–form fα is homogeneous of degree 0 and since α = ιXω, it is the pullback of a
1–form on Z.
We now choose g1, . . . , gN ∈ P0 such that at every point z of Z, their differentials

span the cotangent space T ∗
z Z. Of course it is impossible to find homogeneous functions

of degree 0 such that their differentials span T ∗
y Y at every y ∈ Y 2.

Therefore there are functions f1, . . . , fN ∈ C∞(Y ) such that

fα =

N∑

i=1

fi dgi.

As before, we see that fi can be chosen such that fi ∈ P0. Moreover, continuing Eq.
(2.42) and again using Proposition 2.8

f ωn =
n

n− 1
d(fα) ∧ ωn−1 =

n

n− 1
d

(
N∑

i=1

fi dgi

)
∧ ωn−1

=
1

n− 1

N∑

i=1

{fi, gi}ω
n,

and we reach the conclusion f = 1
n−1

N∑
i=1

{fi, gi} ∈ {P0,P0}. �

Remark 2.10. If n = 1, then {P0,P0} = 0. Indeed, by Eq. (2.36) with n = 1, {f, g}ω =
df ∧ dg, so if f, g ∈ P0 we have {f, g} = 0. In this one–dimensional case, there are two
different symplectic residues (res+, res−), corresponding to each connected component
of T ∗S1 \ S1; then, when l 6= 0 or m 6= 0 we can argue as in the corresponding part of

2The second named author would like to thank Prof. Jean-Marie Lescure for pointing this out to
her.
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the proof of Theorem 2.9, to conclude that

{P l,Pm} =

{
P l+m−1, if l +m 6= 0,

ker(res+) ∩ ker(res−) ∩ P l+m−1, if l +m = 0.
(2.43)

2.4. The residue of a classical symbol function. As an application of homogeneous
cohomology we give a precise criterion when a classical symbol function is a sum of
partial derivatives. A more thorough discussion of de Rham cohomology of forms whose
coefficients are symbol functions will be given in a subsequent publication.

2.4.1. Classes of symbols. Let U ⊂ Rn be an open subset. We denote by Sm(U ×RN),
m ∈ R, the space of symbols of Hörmander type (1, 0) (Hörmander [Hör71], Grigis–

Sjøstrand [GrSj94]). More precisely, Sm(U×R
N ) consists of those a ∈ C∞(U×R

N )
such that for multi–indices α ∈ Zn

+, γ ∈ ZN
+ and compact subsets K ⊂ U we have an

estimate ∣∣∂αx∂γξ a(x, ξ)
∣∣ ≤ Cα,γ,K(1 + |ξ|)m−|γ|, x ∈ K, ξ ∈ R

N . (2.44)

The best constants in (2.44) provide a set of semi–norms which endow S∞(U ×RN) :=⋃
m∈R S

m(U ×RN) with the structure of a Fréchet algebra. A symbol a ∈ Sm(U ×RN)
is called classical if there are am−j ∈ C∞(U × RN ) with

am−j(x, rξ) = rm−jam−j(x, ξ), r ≥ 1, |ξ| ≥ 1, (2.45)

such that for N ∈ Z+

a−

N−1∑

j=0

am−j ∈ Sm−N (U × R
N). (2.46)

The latter property is usually abbreviated a ∼
∞∑
j=0

am−j .

Homogeneity and smoothness at 0 contradict each other except for monomials. Our
convention is that symbols should always be smooth functions, thus the am−j are smooth
everywhere but homogeneous only in the restricted sense of Eq. (2.45). The homoge-
neous extension of am−j to U × R

n \ {0} will also be needed: we put

ahm−j(x, ξ) := am−j(x, ξ/|ξ|) |ξ|
m−j, (x, ξ) ∈ U × R

n \ {0}. (2.47)

Furthermore, we denote by S−∞(U × Rn) :=
⋂

a∈R S
a(U × Rn) the space of smoothing

symbols.
For brevity we write CSa(Rn) (Sa(Rn)) instead of CSa({pt} × R

n) (Sa({pt} × R
n)).

Note that S−∞(Rn) = S (Rn) is nothing but the Schwartz space of rapidly decaying
functions.
We will now discuss the analogue of Corollary 2.4 for the space CSa(Rn). We start

with smoothing symbols:

Lemma 2.11. Let f ∈ S (Rn) be a Schwartz function. Then there are functions

σj ∈ CS−n+1(Rn) such that f =
n∑

j=1

∂ξjσj.

One can choose the σj to be Schwartz functions if and only if
∫
Rn f = 0.
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Proof. We start with the first claim and note that if n = 1 then the function σ(ξ) =∫ ξ

−∞
f(t) dt is in CS0(R) and ∂ξσ = f .

For general n we infer from the standard proof of the Poincaré Lemma in Rn applied
to the closed form f dξ1 ∧ · · · ∧ dξn, that we can put

σj(ξ) =

∫ 1

0

f(tξ) ξj t
n−1 dt.

Indeed,

∂ξjσj(ξ) =

∫ 1

0

f(tξ) tn−1 dt+

∫ 1

0

∂ξj (f)(tξ) ξj t
n dt,

thus

n∑

j=1

∂ξjσj(ξ) =

∫ 1

0

f(tξ) n tn−1 dt +

∫ 1

0

n∑

j=1

∂ξj (f)(tξ) ξj t
n dt

=

∫ 1

0

∂t

(
f(tξ) tn

)
dt = f(ξ).

It remains to show that σj ∈ CS−n+1(Rn). The function σj is certainly smooth. For
ξ 6= 0, |ξ| ≥ 1 we have by change of variables r = t|ξ|:

σj(ξ) =

∫ |ξ|

0

f
(
r
ξ

|ξ|

)
rn−1 dr |ξ|−n ξj

=

∫ ∞

0

f
(
r
ξ

|ξ|

)
rn−1 dr |ξ|−n ξj −

∫ ∞

|ξ|

f
(
r
ξ

|ξ|

)
rn−1 dr |ξ|−n ξj.

The first summand is homogeneous of degree −n+1 while the second summand satisfies
the estimates of a Schwartz function at ∞ (it is not a Schwartz function since it is not
smooth at 0). Thus σj ∈ CS−n+1(Rn) and its homogeneous expansion consists only of
one term of homogeneity −n + 1:

σj(ξ) ∼

∫ ∞

0

f
(
r
ξ

|ξ|

)
rn−1 dr |ξ|−n ξj,

proving the first claim.
For the second claim the necessity of

∫
Rn f = 0 is clear. In fact the proof of the

Poincaré Lemma with compact supports [BoTu82, Sec. I.4] works verbatim for the
forms Ω•S (Rn) with coefficients in S (Rn). Thus the closed n–form fdξ1 ∧ · · · ∧ dξn is
exact in Ω•S (Rn) if and only if

∫
Rn f = 0. If this is the case then fdξ1∧ · · ·∧ dξn = dη

with an (n−1)–form η ∈ Ωn−1S (Rn). Expanding η as in (2.20) we see that f =
n∑

j=1

∂ξjσj

with Schwartz functions σj . �

2.4.2. The residue and the regularized (cut–off) integral. We now extend the residue
(Def. 2.3) from homogeneous functions to CSa(Rn):
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Let σ ∈ CSa(Rn) be with asymptotic expansion σ ∼
∞∑
j=0

σa−j , cf. Eq. (2.45) and

(2.47). Then σh
a−j ∈ Pa−j(Rn \ {0}). Put

res(σ) := resω(σ
h
−n) =

∫

Sn−1

i∗Sn−1(σh
−n) d volSn−1

=

∫

Sn−1

i∗Sn−1(σh
−nιXω), ω = dξ1 ∧ . . . ∧ dξn.

(2.48)

In other words the residue of σ equals the residue of its homogeneous component of
homogeneity degree −n. Thus res(σ) 6= 0 at most if a is an integer ≥ −n. The
functional res was studied by S. Paycha in [Pay07].
We also recall the regularized integral or cut–off integral −

∫
: CSa(Rn) −→ C (cf. e.g.

[Les11, Sec. 4.2]): If f ∈ CSa(Rn) then the asymptotic expansion f ∼
∞∑
j=0

fa−j implies

that as R → ∞ one has an asymptotic expansion

∫

|ξ|≤R

f(ξ) dξ ∼
R→∞

∞∑

j=0
a−j+n 6=0

ca−j R
a−j+n + c̃ R0 + res(f) logR. (2.49)

The regularized integral −
∫
Rn f(ξ) dξ is, by definition, the constant term in this asymp-

totic expansion, i.e. c̃. It has the property that −
∫
Rn ∂ξjf 6= 0 at most if a is an integer

≥ −n + 1.
The following result generalizes [Pay07, Prop. 2, Thm. 2] where it was proved modulo

smoothing symbols.

Proposition 2.12. 1. Let a ∈ Z. For a symbol f ∈ CSa(Rn) there exist symbols σj ∈

CSr(a)(Rn), r(a) := max(a,−n) + 1, such that f =
n∑

j=1

∂ξjσj if and only if res(f) = 0.

2. Let a ∈ R\Z. For a symbol f ∈ CSa(Rn) there exist symbols σj ∈ CSa+1(Rn) such

that f =
n∑

j=1

∂ξjσj if and only if −
∫
Rn f = 0.

Proof. 1. We will repeatedly use that by construction the asymptotic relation Eq. (2.46)

may be differentiated, i.e. if g ∈ CSa(Rn) with g ∼
∞∑
l=0

ga−l then

∂ξjg ∼

∞∑

l=0

∂ξjga−l.

Now let a ∈ Z and f ∈ CSa(Rn) with f ∼
∞∑
l=0

fa−l. If f =
n∑

j=1

∂ξjτj with τj ∈

CSr(a)(Rn) then certainly fh
−n =

n∑
j=1

∂ξjτ
h
j,−n+1 and hence res(f) = res(fh

−n) = 0 by

Corollary 2.4.
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Conversely, if res(f) = 0 then again by Corollary 2.4 there are τhj,a−l+1 ∈ Pa−l+1(Rn \

{0}) such that fh
a−l =

n∑
j=1

∂ξjτ
h
j,a−l+1.

We fix a cut–off function χ ∈ C∞(Rn) such that

χ(ξ) =

{
1, if |ξ| ≥ 1/2,

0, if |ξ| ≤ 1/4.
(2.50)

Now asymptotic summation [GrSj94, Prop. 1.8] guarantees the existence of τj ∈

CSa+1(Rn) such that τj ∼
∞∑
l=0

χτhj,a−l+1 and hence

n∑

j=1

∂ξjτj ∼
∞∑

l=0

n∑

j=1

χ∂ξjτ
h
j,a−l+1 ∼

∞∑

l=0

fa−l ∼ f, (2.51)

thus

f −
n∑

j=1

∂ξjτj =: g ∈ S−∞(Rn) = S (Rn). (2.52)

Applying Lemma 2.11 to g the case a ∈ Z is settled.
2. Let a 6∈ Z. It was remarked before Proposition 2.12 that the condition −

∫
Rn f = 0

is necessary. To prove sufficiency consider f ∈ CSa(Rn) with −
∫
Rn f = 0. Since a 6∈ Z,

res(f) = 0 trivially. Therefore, as before we arrive at (2.52) (this is the content of

[Pay07, Prop. 2]). Still we have
∫
Rn g = −

∫
Rn f −

n∑
j=1

−
∫
Rn ∂ξjτj = 0. Now apply the

second part of Lemma 2.11 to g and the proof is complete. �

3. Pseudodifferential operators and tracial functionals

Standing assumptions. Unless otherwise said in the rest of the paper M will denote
a smooth closed connected riemannian manifold of dimension n. The riemannian metric
is chosen for convenience only to have an L2–structure at our disposal. One could avoid
choosing a metric by working with densities.
Given b ∈ R, we use the notation Z≤b := Z ∩ (−∞, b], Z>b := Z ∩ (b,+∞).

3.1. Classical pseudodifferential operators. We denote by L•(M) the algebra
of pseudodifferential operators with complete symbols of Hörmander type (1, 0)
(Hörmander [Hör71], Shubin [Shu01]), see Subsection 2.4.1. The subalgebra of
classical pseudodifferential operators is denoted by CL•(M).
Let U ⊂ R

n be an open subset. Recall that for a symbol σ ∈ Sm(U × R
n), the

canonical pseudodifferential operator associated to σ is defined by

Op(σ) u(x) :=

∫

Rn

ei〈x,ξ〉 σ(x, ξ) û(ξ) d̄ξ

=

∫

Rn

∫

U

ei〈x−y,ξ〉 σ(x, ξ) u(y) dy d̄ξ,

d̄ξ := (2π)−ndξ. (3.1)
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For a manifold M , elements of L•(M) (resp. CL•(M)) can locally be written as Op(σ)
with σ ∈ S•(U × Rn) (resp. CS•(U × Rn)).
Recall that there is an exact sequence

0 −→ CLm−1(M) −֒→ CLm(M)
σm−→ Pm(T ∗M \M) −→ 0, (3.2)

where σm(A) is the homogeneous leading symbol of A ∈ CLm(M). σm has a (non–
canonical) global right inverse Op which is obtained by patching together the locally
defined maps in Eq. (3.1). σm(A) is a homogeneous function on the symplectic cone
T ∗M \M (cf. Subsection 2.3). We will tacitly identify Pm(T ∗M \M) by restriction
with C∞(S∗M). Here, S∗M is the cosphere bundle, i.e. the unit sphere bundle ⊂ T ∗M .
Recall that the leading symbol map is multiplicative in the sense that

σa+b(A ◦B) = σa(A) σb(B) (3.3)

for A ∈ CLa(M), B ∈ CLb(M). Furthermore, we record the important formula

σa+b−1

(
[A,B]

)
=

1

i
{σa(A), σb(B)}, (3.4)

which is a consequence of the asymptotic formula for the complete symbol of a product,
cf. e.g. [Shu01, Thm. 3.4].

3.2. Tracial functionals on subspaces of CL•(M). Let a ∈ R. CLa(M) is an
algebra if and only if a ∈ Z≤0. In this case a linear functional τ : CLa(M) −→ C is a
trace if and only if

τ
(
[A,B]

)
= 0, for all A,B ∈ CLa(M). (3.5)

Therefore, in order to characterize traces on CLa(M), one has to understand the space of
commutators [CLa(M),CLa(M)]. Note that the commutator [A,B] ∈ CL2a(M). Here,
in the situation of operators with scalar coefficients, one even has [A,B] ∈ CL2a−1(M).
However, AB and BA are only in CL2a(M) and that [A,B] ∈ CL2a−1(M) is only due
to the fact that the leading symbols of A and B commute. If A,B are pseudodifferen-
tial operators acting on sections of a vector bundle (see Section 5) then one can only
conclude that [A,B] is of order 2a.
Conversely, if τ : CL2a(M) −→ C is a linear functional satisfying Eq. (3.5) then any

linear extension τ̃ of τ to CLa(M) is a trace on CLa(M).
CL2a(M) is a subspace of CLa(M) if and only if a ∈ Z≤0. However, for any a ∈ R it

makes sense to consider linear functionals on CL2a(M) satisfying (3.5):

Definition 3.1. Let b ∈ R and let τ : CLb(M) −→ C be a linear functional.
1. τ is called a pretrace if τ

(
[A,B]

)
= 0 for all A,B ∈ CLb/2(M).

2. τ is called a hypertrace if τ
(
[A,B]

)
= 0 for all A ∈ CL0(M), B ∈ CLb(M).

If CLa(M) ⊂ CLb(M) we sometimes use the abbreviation τa := τ ↾ CLa(M).

Remark 3.2. If b ∈ Z≤0 then any hypertrace on CLb(M) is a trace on CLb(M) since
CLb(M) ⊂ CL0(M). The restriction of a trace on CLb(M) to CL2b(M) is obviously a
pretrace.

Next we discuss the canonical (pre, hyper)traces which exist on CLa(M) for various
a.
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3.2.1. The L2–trace. A pseudodifferential operator A of order ord(A) < −n = − dimM
is a trace–class operator. The standard Hilbert space trace on operators acting on
L2(M) is denoted by Tr. Note that

Tr(A) =

∫

M

KA(x, x) d vol(x), (3.6)

where KA is the Schwartz kernel of the operator A. If KA is supported in a coordinate
chart U where A is given as Op(σ) with σ ∈ CSa(U × Rn) then by Eq. (3.1)

Tr(A) =

∫

U

∫

Rn

σ(x, ξ) d̄ξ dx. (3.7)

Since for any trace–class operator K in the Hilbert space L2(M) and any bounded
operator T in L2(M) one has Tr(KT ) = Tr(TK) it follows that Tr is a hypertrace on
CLa(M) for any real a < −n. Furthermore, if p, q ≥ 1 are real numbers such that
1/p+ 1/q = 1 and if A ∈ L p(L2(M)), the p–th Schatten ideal of operators in L2(M),
and B ∈ L q(L2(M)) then also Tr(AB) = Tr(BA). From CLa(M) ⊂ L p(L2(M)) for
a < −n/p it then follows that

Tr
(
[A,B]

)
= 0, for A ∈ CLa(M), B ∈ CLb(M) if a+ b < −n, (3.8)

in particular Tra = Tr ↾ CLa(M) is a pretrace for any a < −n. In fact, Eq. (3.8) can
be improved slightly:

Lemma 3.3. Let A ∈ CLa(M), B ∈ CLb(M) with a + b < −n + 1. Then [A,B] is of
trace–class and Tr

(
[A,B]

)
= 0.

Proof. We follow Sect. 4 of [Les99]. Let P ∈ CL1(M) be an elliptic pseudodifferential
operator whose leading symbol is positive and let A ∈ CLa(M), B ∈ CLb(M). We put

∇0
P (B) := B, ∇j+1

P B := [P,∇j
PB],

and by induction, for all j ∈ N we have

∇j
PB ∈ CLb(M).

Then, for N large enough one has

e−tPB =

N−1∑

j=0

(−t)j

j!
(∇j

PB)e−tP +RN (t),

where RN(t) is a smoothing operator such that Tr
(
ARN (t)

)
= Tr

(
RN(t)A

)
= O(t) as

t→ 0+; therefore

Tr
(
[A,B]e−tP

)
= −

N−1∑

j=1

(−t)j

j!
Tr
(
A(∇j

PB)e−tP
)
+O(t), t→ 0 + . (3.9)

Invoking the short time heat kernel asymptotics, cf. e.g. [GrSe95],

Tr
(
A(∇j

PB)e−tP
)
∼t→0+

∞∑

k=0

(ck + dk log t)t
k−a−b−n +

∞∑

k=0

ekt
k (3.10)
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we see that for j ≥ 1, thanks to j − a− b− n > 0,

lim
t→0+

Tr
(
A(∇j

PB)e−tP
)
= 0. (3.11)

Since [A,B] ∈ CLa+b−1(M) and a + b − 1 < −n the operator [A,B] is of trace–class
and from (3.9), (3.10), and (3.11) we thus infer

Tr
(
[A,B]

)
= lim

t→0+
Tr
(
[A,B]e−tP

)
= 0. �

3.2.2. The Kontsevich–Vishik canonical trace. For non–integer a there is a regulariza-
tion procedure which allows to extend the L2–trace in a canonical way to CLa(M) (see
[KoVi95], [Les99], [Les11, Sec. 4.3]). In brief for a ∈ R \ Z≥−n there is a canonical
linear functional, the Kontsevich–Vishik canonical trace, TR : CLa(M) → C such that

TRa = TR ↾ CLa(M) = Tr ↾ CLa(M) = Tra, if a < −n,

TR
(
[A,B]

)
= 0, if A ∈ CLa(M), B ∈ CLb(M), a + b 6∈ Z≥−n+1.

(3.12)

Usually, the second property is stated only for a+b 6∈ Z. However, if a+b < −n then AB
is of trace–class and TR(AB) = Tr(AB) = Tr(BA) = TR(BA) follows from the theory
of the trace in Schatten ideals (see an analogous discussion in the previous Subsection).
If only a+b−1 < −n then [A,B] is still of trace–class and TR

(
[A,B]

)
= Tr

(
[A,B]

)
= 0

follows from Lemma 3.3.
The properties (3.12) immediately imply that the canonical trace TR is a hypertrace

and a pretrace on CLa(M) for a ∈ R \ Z≥−n.

3.2.3. The residue trace. The residue trace, called by some authors the noncommutative
residue, somehow complements the canonical trace. In terms of the complete symbol,
the residue trace of an operator A ∈ CL•(M) is given by (see [Wod87b]):

Res(A) =
1

(2π)n
res(σ(A)) =

1

(2π)n

∫

M

∫

S∗

xM

σ−n(A)(x, ξ) ν(ξ) ∧ dx,

where ν(ξ) is a volume form on S∗
xM . This is the unique trace on the whole algebra

CL•(M) whenever n > 1 ([Wod87b], [BrGe87], [FGLS96], [Les99]). By definition,
this trace vanishes on trace–class pseudodifferential operators and non–integer order
pseudodifferential operators.
The residue trace Res is a pretrace and a hypertrace on CLa(M) for all a ∈ R. It is

non–trivial, however, only if a ∈ Z≥−n.

4. Operators as sums of commutators

In order to classify traces and (pre, hyper)traces on CLa(M) we first study the
representation of an operator as a sum of commutators.

4.1. Smoothing operators. The closure of the algebra CL−∞(M) of smoothing op-
erators in B(L2(M)) is the algebra of compact operators. The latter is known to be
simple. Indeed one has the following, which is in a sense an analogue of the second part
of Lemma 2.11:
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Theorem 4.1 ([Gui93, Thm. A.1]). Let M be a closed manifold. Then for any J ∈
CL−∞(M) with Tr(J) = 1 the following holds: for R ∈ CL−∞(M) there exist smoothing
operators S1, . . . , SN , T1, . . . , TN ∈ CL−∞(M), such that

R = Tr(R) J +

N∑

j=1

[Sj, Tj ].

Briefly, we have an exact sequence

0 −→ [CL−∞(M),CL−∞(M)] −→ CL−∞(M)
Tr
−→ C −→ 0. (4.1)

Can we write J as a sum of commutators of general pseudodifferential operators?
Since Res is up to constants the only trace on CL•(M) (for M compact and connected
of dimension > 1) the answer is yes. A more precise answer is the following:

Proposition 4.2 (See Prop. 4.2 in [Pon10]). LetM be a compact riemannian manifold
of dimension n > 1. Then CL−∞(M) ⊂ [CL0(M),CL−n+1(M)].

We present here a brief variant of the proof of Ponge; our proof is based on

Lemma 4.3. Let n ≥ 2.
1. The operator Qj of convolution by the function

fj(y) :=
yj
|y|2

= ∂yj (log |y|)

is a classical pseudodifferential operator of order −n+ 1 on Rn.
2. For any smoothing operator R ∈ CL−∞(Rn) there exist Bj ∈ CL−n+1(Rn),

j = 1, . . . , n, such that R =
n∑

j=1

[Op(xj), Bj].

Remark 4.4. Op(xj) is the pseudodifferential operator associated to the symbol function
(x, ξ) 7→ xj . Of course, this is nothing but the operator of multiplication by the
coordinate xj . Therefore, Op(xj) commutes with multiplication operators, a fact which
will often be used below.

Proof. 1. We have fj ↾ R
n \{0} ∈ P−1(Rn\{0}). Since fj is locally integrable in Rn, it

defines a distribution in D ′(Rn) which is homogeneous of degree −1. Then by [Hör03,

Thm. 7.1.18 and 7.1.16], fj ∈ S ′(Rn) and its Fourier transform f̂j is a homogeneous
distribution of degree −n + 1 in Rn which is smooth in Rn \ {0}. With the cut–off

function χ of Eq. (2.50) we therefore have χf̂j ∈ CS−n+1(Rn). Furthermore, (1− χ) is

compactly supported and thus (1− χ) = ψ̂ with ψ ∈ S (Rn). For u ∈ C∞
c (Rn) we now

have
Qju = fj ∗ u = Op(χf̂j)u+ (ψ ∗ fj) ∗ u.

Convolution by the Schwartz function ψ ∗ fj is smoothing and thus Qj ∈ CL−n+1(Rn).
2. A smoothing operator R has a smooth kernel KR(x, y), and therefore, (x, y) 7→

KR(x, y)−KR(x, x) is smooth and vanishes on the diagonal. It follows that there are
smooth functions K1, . . . , Kn such that

KR(x, y) = KR(x, x) +

n∑

j=1

(xj − yj)Kj(x, y).
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Let Q be the operator defined by the kernel KQ(x, y) = KR(x, x), and let Rj be the
smoothing operators defined by the kernels Kj(x, y), then

R = Q+
n∑

j=1

[Op(xj), Rj].

Let Hj be the operator with kernel (x, y) 7→ fj(x − y)KR(x, x). Hj is Qj followed by
multiplication by the smooth function x 7→ KR(x, x) and is therefore, by the proved
part 1., a classical pseudodifferential operator of order −n + 1. Since

n∑

j=1

(xj − yj)fj(x− y)KR(x, x) =

n∑

j=1

(xj − yj)
2

|x− y|2
KR(x, x)

= KR(x, x) = KQ(x, y),

it follows that Q =
n∑

j=1

[Op(xj), Hj]. The result of the lemma follows with Bj := Rj +

Hj ∈ CL−n+1(Rn). �

Proof of Proposition 4.2. Let U ⊆ Rn be an open set and let R ∈ CL−∞
comp(U) be a

smoothing operator with compactly supported Schwartz kernel KR ∈ C∞
c (U × U). Let

ψ ∈ C∞
c (U) be such that ψ(x)ψ(y) = 1 in a neighborhood of the support of the kernel

of R, then ψRψ = R.

By Lemma 4.3 there exist Pi ∈ CL−n+1(U) such that R =
n∑

i=1

[Op(xi), Pi]. Let

χ ∈ C∞
c (U) be such that χ = 1 in a neighborhood of supp(ψ). Then we have

ψ[Op(xi), Pi]ψ = Op(xi)χψPiψ − ψPiψOp(xi)χ = [Op(xi)χ, ψPiψ],

thus

R =
n∑

i=1

[Op(xiχ), ψPiψ]. (4.2)

Note that xiχ ∈ C∞
c (U) and ψPiψ ∈ CL−n+1

comp (U).
Now let (ϕj) ⊂ C∞(M) be a partition of unity subordinate to a finite open covering

(Uj) of M by coordinate charts. Furthermore, choose ψj ∈ C∞
c (Uj) such that ψj = 1 in

a neighborhood of supp(ϕj). Then for any R ∈ CL−∞(M) we have

R =
N∑

j=1

ϕjRψj +
N∑

j=1

ϕjR(1− ψj). (4.3)

For each index j the operator ϕjRψj belongs to CL
−∞
comp(Uj), so by the previous argument

it can be written as a sum of commutators of the form (4.2). Moreover, the operator

S :=
N∑
j=1

ϕjR(1 − ψj) is smoothing and its Schwartz kernel vanishes on the diagonal,

so its trace vanishes and by Theorem 4.1 it can be written as a sum of commutators
in [CL−∞(M),CL−∞(M)]. Hence R belongs to the space [CL0(M),CL−n+1(M)] as
claimed. �
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The degrees 0 and −n + 1 in the commutator [CL0(M),CL−n+1(M)] in Proposition
4.2 can be traded against each other as the following simple but very useful Lemma,
which is based on joint work of the second named author with Sylvie Paycha, shows:

Lemma 4.5. For any α, β ∈ R

[CL0(M),CLα+β(M)] ⊂ [CLα(M),CLβ(M)],

meaning that any commutator in [CL0(M),CLα+β(M)] can be written as a sum of
commutators in [CLα(M),CLβ(M)].

Proof. Let A ∈ CL0(M), B ∈ CLα+β(M). Fix a first order positive definite elliptic op-
erator Λ ∈ CL1(M). Then AΛα,ΛαA,Λα ∈ CLα(M), BΛ−α,Λ−αB, ABΛ−α,Λ−αBA ∈
CLβ(M). Moreover,

[AΛα,Λ−αB] = AB − Λ−αBAΛα, (4.4)

[ΛαA,BΛ−α] = ΛαABΛ−α −BA, (4.5)

[ABΛ−α,Λα] = AB − ΛαABΛ−α, (4.6)

[Λ−αBA,Λα] = Λ−αBAΛα −BA. (4.7)

Adding up (4.4)–(4.7) yields twice the commutator [A,B], whence [A,B] ∈
[CLα(M),CLβ(M)]. �

4.2. General classical pseudodifferential operators. We now combine the main
result of Subsection 2.3, Theorem 2.9, and the results of the previous Subsection to
obtain statements about general pseudodifferential operators as sums of commutators.
This improves, for classical pseudodifferential operators, [Les99, Prop. 4.7 and Prop.
4.9]; for such operators loc. cit. in fact goes back to [Wod84]. In [Les99] the more gen-
eral class of pseudodifferential operators with log–polyhomogeneous symbol expansions
was considered.

Theorem 4.6. LetM be a compact connected riemannian manifold of dimension n > 1.
Fix Q ∈ CL−n(M) with Res(Q) = 1. Then for any real numbers m, a there ex-
ist P1, . . . , PN ∈ CLm(M), such that for any A ∈ CLa(M) there exist Q1, . . . , QN ∈
CLa−m+1(M) and R ∈ CL−∞(M) such that

A =

N∑

j=1

[Pj , Qj] + Res(A)Q+R. (4.8)

Proof. We follow the proof of [Les99, Prop. 4.7], where the case m = 1 is discussed,
with a few modifications and improvements.
First, replacing A by A − Res(A)Q if necessary, we may, without loss of generality,

assume that Res(A) = 0.
We choose p1, . . . , pN ∈ Pm(T ∗M \M) such that their differentials span the cotangent

bundle of T ∗M \M at every point if m 6= 0; if m = 0 we choose the pj such that their
differentials restricted to S∗M span the cotangent bundle of S∗M (cf. the proof of
Theorem 2.9). Choose Pj ∈ CLm(M) with leading symbols pj. Consider the leading
symbol σa(A) ∈ Pa(T ∗M \M) of A. Its symplectic residue is 0 if a 6= −n, and if a = −n
it is up to a normalization equal to Res(A), hence it is also 0 in that case.
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Then by Theorem 2.9 and its proof there are q
(1)
j ∈ Pa−m+1(T ∗M \M) such that

σa(A) = 1
i

N∑
j=1

{pj , q
(1)
j }. Thus choosing Q

(1)
j ∈ CLa−m+1(M) with leading symbol q

(1)
j

we find, see Eq. (3.4),

A(1) = A−
N∑

j=1

[Pj, Q
(1)
j ] ∈ CLa−1(M).

We iterate the procedure: inductively, assume that we have operators Q
(l)
j ∈

CLa−m+1(M), 1 ≤ l ≤ l0, such that

A(l) = A−
N∑

j=1

[Pj , Q
(l)
j ] ∈ CLa−l(M)

and
Q

(l)
j −Q

(l+1)
j ∈ CLa−m+1−l(M), 1 ≤ l ≤ l0 − 1. (4.9)

As for A we then choose Bj ∈ CLa−m−l0+1(M) such that

A(l0+1) = A(l0) −

N∑

j=1

[Pj, Bj ] ∈ CLa−l0−1(M).

Now put Q
(l0+1)
j = Q

(l0)
j +Bj . Then (4.9) holds for all l and we can invoke the asymptotic

summation principle [GrSj94, Prop. 1.8] and choose Qj ∈ CLa−m+1(M) such that for

all l ∈ N, Qj −Q
(l)
j ∈ CLs−m+1−l(M). Then

A−

N∑

j=1

[Pj, Qj ] ∈ CL−∞(M). �

Combining Theorem 4.6 and Lemma 4.5 we find

Theorem 4.7. Under the assumptions of Theorem 4.6 let a ∈ Z,−n ≤ a < 0. Then

CLa(M) = [CL(a+1)/2(M),CL(a+1)/2(M)]⊕ C ·Q, (4.10)

= [CL0(M),CLa+1(M)]⊕ C ·Q. (4.11)

In other words for A ∈ CLa(M) there exist operators P1, . . . , PN , Q1, . . . , QN ∈

CL(a+1)/2(M) resp. P1, . . . , PN ∈ CL0(M), Q1, . . . , QN ∈ CLa+1(M) such that

A =

N∑

j=1

[Pj, Qj ] + Res(A)Q. (4.12)

Proof. Apply Theorem 4.6 with m = (a + 1)/2 (resp. m = 0). This yields P1, . . . , PN ′

in CL(a+1)/2(M) (resp. CL0(M)), Q1, . . . , QN ′ ∈ CL(a+1)/2(M) (resp. CLa+1(M)) and
R ∈ CL−∞(M) such that

A =

N ′∑

j=1

[Pj , Qj] + Res(A)Q+R.
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By Proposition 4.2 we have

CL−∞(M) ⊂ [CL0(M),CL−n+1(M)] ⊂ [CL0(M),CLa+1(M)]

and hence there are PN ′+1, . . . , PN ∈ CL0(M) and QN ′+1, . . . , QN ∈ CLa+1(M) such

that R =
N∑

j=N ′+1

[Pj , Qj] proving Eq. (4.11).

To prove Eq. (4.10) we apply Lemma 4.5 with α = (a+ 1)/2, β = −n+ 1− α. Then
α− β = a+ n ∈ Z≥0, hence CLβ(M) ⊂ CLα(M) and we find

R ∈ CL−∞(M) ⊂ [CL0(M),CL−n+1(M)]

⊂ [CLα(M),CLβ(M)] ⊂ [CL(a+1)/2(M),CL(a+1)/2(M)]. �

4.3. Classification of traces on CLa(M). We are now going to classify the pretraces
and the hypertraces on CLa(M) for all a ∈ R, as well as the traces on CLa(M) for
a ∈ Z≤0. The following definition will be convenient:

Definition 4.8. We fix once and for all, a linear functional T̃r : CL0(M) → C such
that for a ∈ Z<−n

T̃ra = T̃r ↾ CLa(M) = Tr ↾ CLa(M) = Tra,

cf. Definition 3.1. Furthermore put

TRa :=





TRa, if a ∈ R \ Z≥−n,

T̃ra, if a ∈ Z,−n ≤ a < −n+1
2
,

Resa, if a ∈ Z, −n+1
2

≤ a ≤ 0.

(4.13)

TRa conveniently combines the Kontsevich-Vishik trace and the residue trace.
The notation is slightly abusive since for a, b ∈ Z, a < (−n + 1)/2 ≤ b one has
TRb ↾ CL2a−1(M) = Res ↾ CL2a−1(M) = 0 6= Tr ↾ CL2a−1(M) = TR2a−1. The
disadvantages of this notational conflict are outweighed by the convenience of having a
common notation for the Kontsevich-Vishik trace and the residue trace. This will free
us from repetitively having to make a distinction between the cases a ∈ R \ Z>−n and
a ∈ Z>−n.

We also emphasize that the choice of T̃r is not canonical but certainly possible.

Proposition 4.9. Let a ∈ R.
1. Any pretrace on CLa(M) is a hypertrace on CLa(M).
2. If τ is a hypertrace on CLa(M) then there is a unique constant λ ∈ C such that

τ ↾ CL−∞(M) = λ Tr.
3. If a ∈ Z≤0 and τ is a trace on CLa(M) then τ ↾ CL2a(M) is a pretrace (and hence

a hypertrace). Conversely, given a pretrace on CL2a(M), any linear extension τ̃ of τ to
CLa(M) is a trace.
4. For a ∈ Z≤0, TRa is a trace on CLa(M). For a ∈ R \

(
Z ∩ [−n + 1,−n/2]

)
it is

a pretrace (and hence a hypertrace).
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Proof. 1. follows from Lemma 4.5.
2. follows from Theorem 4.1.
3. is obvious.
4. For −n+1

2
≤ a ≤ 0 the claim follows from the properties of the residue trace.

Except for a = −n the fact that TRa is a pretrace follows since Resa and TRa are
pretraces.
Next consider a ∈ R, a < −n+1

2
. Then for A,B ∈ CLa(M) it follows from Lemma 3.3

that [A,B] ∈ CL2a−1(M) is of trace–class and that

TR2a−1

(
[A,B]

)
= Tr

(
[A,B]

)
= 0.

This proves the remaining claims under 4. �

Thus to classify traces on CLa(M) (for a ∈ Z≤0) it suffices to classify pretraces on
CL2a(M). And to classify pretraces on CLb(M) (for any b ∈ R!) it suffices to classify
hypertraces on CLb(M).
The following considerably improves a uniqueness result by Maniccia, Schrohe, Seiler

[MSS08].

Theorem 4.10. LetM be a closed connected riemannian manifold of dimension n > 1,
a ∈ R\Z>−n and let τ be a hypertrace on CLa(M). Then there are uniquely determined
λ ∈ C and a distribution T ∈

(
C∞(S∗M)

)∗
such that τ = λTRa + T ◦ σa.

Consequently, a linear functional on CLa(M) is a hypertrace if and only if it is a
pretrace.

Remark 4.11. Recall from Eq. (3.2) that σa denotes the leading symbol map. Since the
leading symbol is multiplicative (see Eq. (3.3)) it follows that for any T ∈

(
C∞(S∗M)

)∗
the functional T ◦ σa is a pretrace and a hypertrace on CLa(M). Some authors (see
[PaRo04]) call such traces leading symbol traces.

Proof. We note that if τ is a hypertrace on CLa(M) then by Proposition 4.9 (2.), there
is a unique λ ∈ C such that τ ↾ CL−∞(M) = λTr .
We apply Theorem 4.6 with m = 0. Then for A ∈ CLa−1(M) we find

A =
N∑

j=1

[Pj , Qj] +R, (4.14)

with Pj ∈ CL0, Qj ∈ CLa(M). Note that Res(A) = 0 since a − 1 ∈ R \ Z≥−n. From
Eq. (4.14) we infer τ(A) = τ(R) = λTr(R) = λTR(R) = λTR(A).
Thus we have τ ↾ CLa−1(M) = λ TR ↾ CLa−1(M) = λ TRa−1 = λTRa−1. Put τ̃ :=

τ − λTRa. Then τ̃ vanishes on CLa−1(M) and thus in view of the exact sequence Eq.
(3.2) there is indeed a unique linear functional T ∈

(
C∞(S∗M)

)∗
such that τ̃ = T ◦ σa.

The last statement follows from Proposition 4.9 and the fact that Resa and T ◦ σa
are pretraces on CLa(M). �

The remaining cases of integral values are dealt with in the following:
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Theorem 4.12. LetM be a closed connected riemannian manifold of dimension n > 1,
a ∈ Z>−n and let τ be a hypertrace on CLa(M). Then there are uniquely determined
λ ∈ C and a distribution T ∈

(
C∞(S∗M)

)∗
such that τ = λ Resa +T ◦ σa.

Consequently, a linear functional on CLa(M) is a hypertrace if and only if it is a
pretrace.

Proof. We apply Theorem 4.7 and find for A ∈ CLa−1(M)

A =
N∑

j=1

[Pj, Qj ] + Res(A)Q, (4.15)

with Pj ∈ CL0(M), Qj ∈ CLa(M). Thus τ(A) = τ(Q) Res(A). As in the proof of
Theorem 4.10 one now concludes τ = τ(Q) Resa+T ◦ σa.
The last statement follows from Proposition 4.9 and the fact that Resa and T ◦ σa

are pretraces on CLa(M). �

Combining Theorem 4.10, Theorem 4.12 and Proposition 4.9 we now obtain a com-
plete classification of traces on the algebras CLa(M), a ∈ Z≤0.

Corollary 4.13. Let a ∈ Z≤0, and denote by

πa : CL
a(M) −→ CLa(M)/CL2a−1(M)

the quotient map. Let τ : CLa(M) → C be a trace. Then there are uniquely determined
λ ∈ C and T ∈

(
CLa(M)/CL2a−1(M)

)∗
such that

τ = λTRa + T ◦ πa. (4.16)

Remark 4.14. Note that for a = 1, the space CL1(M) is not an algebra but it is a Lie
algebra and it makes sense to talk about traces; in this case, the quotient map π1 is
trivial and the proof below shows that Res is up to normalization the unique trace on
CL1(M).
In the case a = 0 this result was known, see [LePa07] (and also [Wod87a]).
If 2a ≤ −n ≤ a, Resa is a non–trivial trace on CLa(M), however since Res ↾

CL2a−1(M) = 0 (since 2a − 1 < −n) there is λ ∈
(
CLa(M)/CL2a−1(M)

)∗
, such that

Resa = λ ◦ πa.
By choosing right inverses θa : C∞(S∗M) → CLa(M) to the symbol map one itera-

tively obtains an isomorphism

CLa(M)/CL2a−1(M) ∼=

|a|⊕

k=0

CLa−k(M)/CLa−k−1(M)

∼=

|a|⊕

k=0

C∞(S∗M).

(4.17)

Under this (non–canonical) isomorphism T ∈
(
CLa(M)/CL2a−1(M)

)∗
corresponds to

a (|a|+ 1)–tuple (Tj)
|a|
j=0 of distributions Tj ∈

(
C∞(S∗M)

)∗
.
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Proof. By Proposition 4.9, τ2a = τ ↾ CL2a(M) is a hypertrace on CL2a(M). By Theorem
4.10 (if 2a < −n+ 1) resp. Theorem 4.12 (if −n+ 1 ≤ 2a ≤ 0) there is a unique λ ∈ C

such that

τ2a−1 =

{
λ Tr2a−1, if 2a < −n + 1,

λ Res2a−1, if − n + 1 ≤ 2a ≤ 0.
(4.18)

Putting

τ̃ = τ − λTRa (4.19)

it follows that τ̃ vanishes on CL2a−1(M) and hence is of the form T ◦ πa for a unique
T ∈

(
CLa(M)/CL2a−1(M)

)∗
. �

4.4. Alternative approach to Theorem 4.12 (Joint work of the second named
author with Sylvie Paycha). The proof of the uniqueness of the canonical trace TR
(Theorem 4.10) relied solely on the results of Section 2 and Theorem 4.1. The proof
of the uniqueness of the residue trace (Theorem 4.12), however, relied additionally on
Theorem 4.7 and thus on Proposition 4.2 due to Ponge. We will give here an alternative
completely self–contained proof of Theorem 4.12 which does not make use of Proposition
4.2.
Given a hypertrace τ on CLa(M), a ∈ Z,−n < a ≤ 0, apply Theorem 4.6 with

m = 0. Then for A ∈ CLa−1(M)

A =
N∑

j=1

[Pj, Qj ] + Res(A)Q+R (4.20)

with Pj ∈ CL0(M), Qj ∈ CLa(M) and R ∈ CL−∞(M). If one can conclude that
τ(R) = 0 then one can proceed as after (4.15). So we have to prove directly

Proposition 4.15. Let M be a closed riemannian manifold and for a ∈ Z, −n + 1 ≤
a ≤ 0, let τ be a hypertrace on CLa(M). Then τ ↾ CL−∞(M) = 0.

Proof. Let (U, x1, . . . , xn) be a local coordinate chart of M . Recall that by CSa
comp(U ×

Rn) we denote the set of classical symbols of order a on U with U–compact support,
and CLa

comp(U) denotes the space of classical pseudodifferential operators of order a on
U whose Schwartz kernel has compact support in U × U . Any operator in CLa

comp(U)
can be extended by zero to an operator in CLa(M), and we have the natural inclusion
CLa

comp(U) ⊂ CLa(M).
Note, however, that although for σ ∈ CSa

comp(U × Rn) the operator Op(σ) maps
C∞

c (U) → C∞
c (U), it does not necessarily lie in CLa

comp(U). Below we will take care of
this fact by multiplying by some cut–off function from the right.
Let τ ∈ S (Rn) be a Schwartz function with

∫
Rn τ(ξ)dξ = 1. By Lemma 2.11 there

exist τ1, . . . , τn ∈ CSa(Rn) such that

τ =

n∑

k=1

∂ξkτk. (4.21)

We note in passing that since the function τ has non–vanishing integral, at least one of
the functions τk does not lie in S (Rn).
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Next we choose f ∈ C∞
c (U) with

∫
U
f(x)dx = 1. Then σ := f ⊗ τ , defined by

σ(x, ξ) := f(x)τ(ξ), is a smoothing symbol with U–compact support. Furthermore,

σ = f ⊗ τ = f ⊗
n∑

k=1

∂ξkτk =
n∑

k=1

∂ξk(f ⊗ τk), (4.22)

∫

U×Rn

σ(x, ξ) dξ dx = 1. (4.23)

Integration by parts shows that (cf. [Hör03, Thm. 18.1.6], (3.4))

Op(σ) =
n∑

k=1

Op(∂ξk(f ⊗ τk)) = −i
n∑

k=1

[Op(xk),Op(f ⊗ τk)]. (4.24)

Let ψ ∈ C∞
c (U) be a function with ψ = 1 in a neighborhood of supp(f); then ψf = f .

Moreover, for all k = 1, . . . , n,

[Op(xk),Op(f ⊗ τk)] Op(ψ) = [Op(xk),Op(f ⊗ τk) Op(ψ)]

= [Op(ψxk),Op(f ⊗ τk) Op(ψ)] + Ak,
(4.25)

with

Ak := Op(f ⊗ τk) Op(ψ) Op(xk) Op(ψ)−Op(ψ) Op(f ⊗ τk) Op(ψ) Op(xk)

= Op(f ⊗ τk) Op(ψ) Op(xk)(Op(ψ)− 1).
(4.26)

Here, we used that the operator Op(xk) commutes with the operator of multiplication
by ψ, Op(ψ), cf. Remark 4.4, and that ψf = f .
Since f ⊗ τk ∈ CSa

comp(U × Rn), the operator Op(f ⊗ τk) Op(ψ) lies in CLa
comp(U);

similarly, ψxk ∈ CS0
comp(U × Rn) and the operator of multiplication by ψxk, Op(ψxk),

lies in CL0
comp(U).

Let τ be a hypertrace on CLa(M). Then τ vanishes on [CL0
comp(U),CL

a
comp(U)]. In

particular, for all k = 1, . . . , n,

τ
(
[Op(ψxk),Op(f ⊗ τk) Op(ψ)]

)
= 0.

By Proposition 4.9 (2.), we have τ ↾ CL−∞(M) = λTr for some λ ∈ C. Now, since
ψ = 1 near the support of f , by (4.26) the operator Ak is smoothing and its Schwartz
kernel vanishes on the diagonal. Hence, its L2–trace vanishes and thus also τ(Ak) =
λTr(Ak) = 0.
Thus, for Op(σ) Op(ψ) ∈ CL−∞

comp(U), from (4.24) and (4.25) we conclude

τ( Op(σ) Op(ψ)) = −i

n∑

k=1

τ
(
[Op(xk),Op(f ⊗ τk)] Op(ψ)

)

= −i

n∑

k=1

(
τ
(
[Op(ψxk),Op(f ⊗ τk) Op(ψ)]

)
+ τ(Ak)

)
= 0.

(4.27)

On the other hand, by (3.7) and Proposition 4.9 (2.),

τ(Op(σ) Op(ψ)) = λ Tr(Op(σ) Op(ψ)) = λ

∫

U×Rn

σ(x, ξ) dξ dx = λ. (4.28)
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Therefore, by (4.27) we obtain λ = 0. �

5. Extension to vector bundles

In this final section we extend the classification of traces and hypertraces to the spaces
CLa(M,E) of pseudodifferential operators acting on sections of the vector bundle E over
M .

5.1. Preliminaries. Unless otherwise said, during the whole section M denotes a
smooth closed connected riemannian manifold of dimension n. Let E → M be a
smooth hermitian vector bundle over M . We denote by CLa(M,E) the space of clas-
sical pseudodifferential operators of order a acting on the sections of E. CLa(M,E)
acts naturally as (unbounded) operators on the Hilbert space L2(M,E) of square in-
tegrable sections of E. The elementary discussion of traces, pretraces and hypertraces
in Subsection 3.2 extends verbatim to CLa(M,E). However, as noted there, we now
only have [CLa(M,E),CLb(M,E)] ⊂ CLa+b(M,E) as opposed to [CLa(M),CLb(M)] ⊂
CLa+b−1(M) in the scalar case E =M × C. Lemma 4.5 holds with the same proof for
CL•(M,E) instead of CL•(M). Finally, Theorem 4.1 holds for CL−∞(M,E) too; this
follows directly from [Gui93, Thm. A.1], which is stated in a Hilbert space context and
therefore flexible enough.
In sum, also Proposition 4.9 (1.–3.) holds accordingly:

Proposition 5.1. Let a ∈ R.
1. Any pretrace on CLa(M,E) is a hypertrace on CLa(M,E).
2. If τ is a hypertrace on CLa(M,E) then there is a unique constant λ ∈ C such that

τ ↾ CL−∞(M,E) = λ Tr.
3. If a ∈ Z≤0 and τ is a trace on CLa(M,E) then τ ↾ CL2a(M,E) is a pretrace

(and hence a hypertrace). Conversely, given a pretrace on CL2a(M,E) then any linear
extension τ̃ of τ to CLa(M,E) is a trace.

For the analogue of Proposition 4.9 (4.) see Proposition 5.5.
The main task now is to classify the hypertraces on CLa(M,E).

5.2. Trivial vector bundles. Let MN(C) be the space of N ×N matrices with coeffi-
cients in C. For all i, j = 1, . . . , N , we denote by Eij the elementary matrix in MN (C)
with 1 in the (i, j)–position and 0 everywhere else. The matrices Eij form a basis of
MN(C) and we have

Eij Ekl = δjk Eil. (5.1)

Let us denote by trN the unique trace on the algebra MN (C) such that for all i =
1, . . . , N , trN(Eii) = 1.
For a complex vector space V we will tacitly identify MN(V ) with V ⊗MN (C) via

x := (xij)i,j 7−→

N∑

i,j=1

xij ⊗Eij . (5.2)

Obviously, we have CLa(M,CN) =MN

(
CLa(M)

)
∼= CLa(M)⊗MN (C).
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Definition 5.2. Let a ∈ R and let τ be a linear functional on CLa(M). Then we put

τ ⊗ trN : CLa(M,CN ) −→ C,

A := (Aij)i,j 7→

N∑

i,j=1

(τ ⊗ trN)(Aij ⊗Eij) =

N∑

i=1

τ(Aii).
(5.3)

It is straightforward to check that if τ is a hypertrace (pretrace, trace) on CLa(M) then
τ ⊗ trN is a hypertrace (pretrace, trace) on CLa(M,CN).

Proposition 5.3. Let a ∈ R. Then every hypertrace on CLa(M,CN) is of the form
τ ⊗ trN with a unique hypertrace τ on CLa(M).

Proof. Let T be a hypertrace on CLa(M,CN). For i, j = 1, . . . , N we put Tij :
CLa(M) → C, Tij(A) := T (A⊗Eij).
Since Id ∈ CL0(M,CN) we infer from the hypertrace property

Tij(A) = T (A⊗ Eij) = T
(
(A⊗ Ei1) (id⊗E1j)

)

= T
(
(id⊗E1j) (A⊗Ei1)

)
= δij T11(A),

(5.4)

thus Tij = 0 for i 6= j and T11 = T22 = . . . = TNN =: τ .
τ is a hypertrace on CLa(M). Namely, for A ∈ CLa(M), B ∈ CL0(M) we have

τ(AB) = T ((AB)⊗ E11) = T
(
(A⊗ E11) (B ⊗E11)

)

= T
(
(B ⊗E11) (A⊗ E11)

)
= τ(BA).

(5.5)

Certainly, we have T = τ ⊗ trN .
For the uniqueness we only have to note that if T = τ ⊗ trN then τ(A) = T (A ⊗

E11). �

5.3. General vector bundles. Let E be a vector bundle overM . By Swan’s Theorem
there is a positive integer N , such that E is a direct summand of M × CN ; let e ∈
MN(C

∞(M)) = C∞(M,MN(C)) be a smooth projection onto E. Then the C∞(M)–
module of smooth sections of E is given by

Γ∞(M,E) ∼= e(C∞(M)N ). (5.6)

Note that since we assumed M to be connected (cf. Subsection 5.1), the idempotent
valued function e has constant rank.
The following lemma is well–known. Since we could not find a place where it is stated

as needed we provide, for convenience, a quick proof:

Lemma 5.4. Let A := C∞(M,MN(C)). Then A eA = A. In other words there exist
pj, qj ∈ C∞(M,MN(C)), j = 1, . . . , r such that

r∑

j=1

pj e qj = 1M ⊗ IN , (5.7)

where 1M denotes the function which is constant 1 on M and IN is the N ×N identity
matrix.
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Proof. It obviously suffices to prove Eq. (5.7). Choose a finite partition of unity ψj , j =
1, . . . , s, smooth functions χj ∈ C∞(M) such that χj = 1 in a neighborhood of supp(ψj)
and such that in a neighborhood Uj of supp(χj) there is a smooth map v : Uj →MN (C)
such that

v e v−1 = ek :=

(
Ik 0
0 0

)
.

Choose N ×N matrices al, bl, l = 1, . . . , t, with

t∑

l=1

al ek bl = IN .

We tacitly view al, bl also as constant matrix valued functions on M . Slightly abusing
notation we now find the decomposition

1M ⊗ IN =
s∑

j=1

ψjχj ⊗ IN =
s∑

j=1

t∑

l=1

ψj v
−1 al ek bl v χj

=
s∑

j=1

t∑

l=1

(
ψj v

−1 al v
)
e
(
v−1 bl v χj). �

For a linear functional τ on CLa(M,CN) we now put

τE(A) := τ(eAe). (5.8)

This definition depends on the choice of the idempotent e and is therefore not canonical.
As in the scalar case if CLa(M,E) ⊂ CLb(M,E) we write τE,a := τE ↾ CLa(M,E).
The canonical trace TR and the residue trace Res are naturally defined on CL•(M,E)

for any vector bundle E (cf. [Les99]). To distinguish them let us for the moment denote

by TR(N),Res(N) the corresponding functionals on CL•(M,CN) and by TR(E),Res(E)

the corresponding functionals on CL•(M,E).
Then one immediately checks that

TR(N) = TR⊗ trN , TR(E) =
(
TR⊗ trN)E, (5.9)

Res(N) = Res⊗ trN , Res(E) =
(
Res⊗ trN)E , (5.10)

hence TR and Res are compatible with the operations τ 7→ τ ⊗ trN and τ 7→ τE in the
most natural way.
From now on we will write TRE for TR(E), and ResE for Res(E). A confusion with

the notation introduced in Definition 3.1 should not arise.
We also extend the linear functional T̃r of Definition 4.8 to CL0(M,E) by defining

T̃rE :=
(
T̃r⊗ trN

)
E
.

Since T̃r is not a trace, this definition may depend on the choice of the idempotent e,

hence is not canonical; but T̃r already depended on a choice.
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Finally we put TRE,a :=
(
TRa ⊗ trN

)
E
on CLa(M,E). From Subsection 4.3 we see

TRE,a :=





TRE,a, if a ∈ R \ Z≥−n,

T̃rE,a, if a ∈ Z,−n ≤ a < −n+1
2
,

ResE,a, if a ∈ Z, −n+1
2

≤ a ≤ 0.

(5.11)

Proposition 5.5. 1. Let a ∈ R and let τ be a hypertrace (resp. pretrace, trace)
on CLa(M,CN ). Then τE : CLa(M,E) −→ C, A 7→ τ(eAe) is a hypertrace (resp.
pretrace, trace) on CLa(M,E).
2. Any hypertrace on CLa(M,E) is of the form

(
τ ⊗ trN)E for a unique hypertrace τ

on CLa(M).
3. For a ∈ Z≤0, TRE,a is a trace on CLa(M,E). For a ∈ R \

(
Z ∩ [−n + 1,−n/2]

)

it is a pretrace (and hence a hypertrace).

Proof. 1. To prove that the linear functional τE is a hypertrace consider A ∈
CLa(M,E), B ∈ CL0(M,E). Then

τE(AB) = τ(eABe) = τ
(
(eAe)(eBe)

)

= τ
(
(eBe)(eAe)

)
= τ(eBAe) = τE(BA).

(5.12)

Note that eAe ∈ CLa(M,CN), eBe ∈ CL0(M,CN). Repeating the argument with

A,B ∈ CLa/2(M,E) shows that if τ is a pretrace then so is τE . Similarly if a ∈ Z≤0

and τ is a trace then τE is a trace.
2. Conversely, let T be a hypertrace on CLa(M,E). We choose pj , qj, j = 1, . . . , r

according to Lemma 5.4. We will repeatedly use that multiplication by pj , qj is in
CL0(M,CN), resp. epje, eqje ∈ CL0(M,E).

Suppose we had a hypertrace T̃ on CLa(M,CN) such that T̃E = T . Then for A ∈
CLa(M,CN)

T̃ (A) = T̃
(
(1M ⊗ IN )A

)
=

r∑

j=1

T̃
(
pjeqjA

)
=

r∑

j=1

T
(
eqjApje). (5.13)

Thus there is at most such a T̃ . We now define T̃ by the right hand side of Eq. (5.13).

We have T̃E = T . Indeed, for A ∈ CLa(M,E)

T̃E(A) = T̃ (eAe) =
r∑

j=1

T
(
(e qj eA e) (e pj e)

)

=

r∑

j=1

T
(
e pj e qj eA e

)
= T (eAe) = T (A).

(5.14)

In the last line we used Eq. (5.7).
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Next we show that T̃ is a hypertrace on CLa(M,CN ). Indeed, for A ∈
CLa(M,CN), B ∈ CL0(M,CN) we find using Eq. (5.7),

T̃ (AB) =

r∑

j=1

T
(
e qjA (1M ⊗ IN)B pj e

)
=

r∑

j,k=1

T
(
e qj Apk e qk B pj e

)

=

r∑

j,k=1

T
(
e qk B pj e qj Apk e

)
=

r∑

k=1

T
(
e qk BApk e

)
= T̃ (BA).

(5.15)

By Proposition 5.3 there is now a unique hypertrace τ on CLa(M) such that T̃ = τ⊗trN .

Then we conclude T = T̃E =
(
τ ⊗ trN)E . Recall that T̃ is uniquely determined by T

and τ is uniquely determined by T̃ , whence τ is uniquely determined by T .
3. follows from the proved part 1., Eq. (5.11) and Proposition 4.9. �

Before stating the final result, we have to clarify how leading symbol traces on
CLa(M,E) look like. For the moment consider a closed manifold X with a vector bun-
dle E → X . We can construct traces on the noncommutative algebra Γ∞(X,EndE) as
follows: first the fiberwise trace induces a linear map

trE : Γ∞(X,EndE) → C∞(X)

trE(s)(x) = trEx

(
s(x)

)
.

(5.16)

trE vanishes on commutators. Thus for any T ∈
(
C∞(X)

)∗
the composition T ◦ trE is

a trace on Γ∞(X,EndE).
It is straightforward to see that indeed all traces on Γ∞(X,EndE) are of this form.

Since we will not use this fact we leave the details of proof to the reader:

Proposition 5.6. Let X be a closed manifold and let E be a vector bundle over X.
Then for any trace τ on Γ∞(X,EndE) there is a unique distribution T ∈

(
C∞(X)

)∗
such that τ = T ◦ trE.

The final result is now a consequence of Theorems 4.10, 4.12, Corollary 4.13, and
Propositions 5.1, 5.5.

Theorem 5.7. Let M be a closed connected riemannian manifold of dimension n > 1
and let E be a complex vector bundle over M . Denote by Π : E → M the projection
map, by σa : CLa(M,E) → Γ∞

(
S∗M,Π∗EndE

)
the leading symbol map, and by trE

the fiberwise trace Γ∞
(
S∗M,Π∗EndE

)
→ C∞(S∗M). Fix N and an idempotent e as

in Eq. (5.6) and let TRE,a be as defined in Eq. (5.11).
1. Let a ∈ R and let τ be a hypertrace on CLa(M,E). Then there are uniquely

determined λ ∈ C and a distribution T ∈
(
C∞(S∗M)

)∗
such that

τ = T ◦ trE ◦ σa +

{
λTRE,a, if a /∈ Z>−n,

λ ResE,a, if a ∈ Z>−n.
(5.17)

2. Let a ∈ Z≤0 and denote by

πa : CL
a(M,E) → CLa(M,E)/CL2a(M,E)
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the quotient map. Furthermore, let

θa : CL
a(M,E)/CL2a(M,E) → CLa(M,E)

be a right inverse to πa.
Let τ : CLa(M,E) → C be a trace. Then there are uniquely determined λ ∈ C,

T ∈
(
C∞(S∗M)

)∗
and Φ ∈

(
CLa(M,E)/CL2a(M,E)

)∗
such that

τ = λTRE,a + T ◦ trE ◦ σ2a(id−θa ◦ πa) + Φ ◦ πa. (5.18)

In the first line of Eq. (5.17) the case a = −n is included, thus we write TRE,a instead
of TRE,a there.

Proof. The right inverse θa can be constructed successively from the map Op, cf. Remark
4.14.
1. By Proposition 5.5 there is a unique hypertrace τ̃ on CLa(M) such that τ =

(τ̃ ⊗ trN)E. The claim now follows from Theorem 4.10 and Theorem 4.12 applied to τ̃ .
Note that T ◦ trE ◦ σa =

(
(T ◦ σa)⊗ trN

)
E
, cf. Eq. (5.8) and Definition 5.2.

2. Let a ∈ Z≤0. By Proposition 5.1, τ ↾ CL2a(M,E) is a hypertrace. Thus, by the
proved part 1. we have

τ ↾ CL2a(M,E) = T ◦ trE ◦ σ2a +

{
λTRE,2a, if 2a ≤ −n,

λ ResE,2a, if 2a > −n.
(5.19)

We emphasize that by Eq. (5.11)

TRE,a ↾ CL
2a(M,E) =

{
λTRE,2a, if 2a ≤ −n,

λ ResE,2a, if 2a > −n.
(5.20)

Consider for A ∈ CLa(M,E)

τ̃(A) := τ(A)− λTRE,a(A)− T ◦ trE ◦ σ2a(A− θa ◦ πa(A)).

Then due to Eq. (5.20) and Eq. (5.19) the functional τ̃ vanishes on CL2a(M,E) and
thus is of the form Φ ◦ πa with Φ ∈

(
CLa(M,E)/CL2a(M,E)

)∗
. Then τ = Φ ◦ πa + τ̃

and the theorem is proved. �
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