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Linearized stability analysis of surface diffusion for
hypersurfaces with boundary contact

Daniel Depner

Abstract. The linearized stability of stationary solutions for surface diffusion is studied. We consider
hypersurfaces that lie inside a fixed domain, touch its boundary with a right angle and fulfill a no-flux
condition. We formulate the geometric evolution law as a partial differential equation with the help of a
parametrization from Vogel [Vog00], which takes care of a possible curved boundary. For the linearized
stability analysis we identify as in the work of Garcke, Ito and Kohsaka [GIK05] the problem as an
H−1-gradient flow, which will be crucial to show self-adjointness of the linearized operator. Finally we
study the linearized stability of some examples.
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1 Introduction

We consider the geometric evolution law

V = −∆H , (1.1)

called surface diffusion flow, for evolving hypersurfaces Γ in Rn+1. Here V is the normal velocity of
the evolving hypersurface, H is the mean curvature and ∆ is the Laplace-Beltrami operator. Our sign
convention is that H is negative for spheres provided with outer unit normal.
Surface diffusion flow (1.1) was first proposed by Mullins [Mu57] to model motion of interfaces where

this motion is governed purely by mass diffusion within the interfaces. Davi and Gurtin [DG90] derived
the above law within rational thermodynamics and Cahn, Elliott and Novick-Cohen [CEN96] identified
it as the sharp interface limit of a Cahn-Hilliard equation with degenerate mobility. An existence result
for curves in the plane and stability of circles has been shown by Elliott and Garcke [EG97] and this
result was generalized to the higher dimensional case by Escher, Mayer and Simonett [EMS98]. Cahn and
Taylor [CT94] showed that (1.1) is the H−1-gradient flow of the area functional and we finally mention
that for closed embedded hypersurfaces the enclosed volume is preserved and the surface area decreases
in time as can be seen for example in [EG97] or [EMS98].
We will examine surface diffusion flow with boundary conditions by considering evolving hypersurfaces

Γ that meet the boundary of a fixed bounded region Ω. These boundary conditions were derived by
Garcke and Novick-Cohen [GN00] as the asymptotic limit of a Cahn-Hilliard system with a degenerate
mobility matrix. At the outer boundary this yields natural boundary conditions given by a 90◦ angle
condition and a no-flux condition, i.e. we require at Γ(t) ∩ ∂Ω

Γ(t) ⊥ ∂Ω , (1.2)
∇H · n∂Γ = 0 . (1.3)

Here ∇ is the surface gradient and n∂Γ is the outer unit conormal of Γ at boundary points. The conditions
(1.2) and (1.3) are the natural boundary conditions when viewing surface diffusion (1.1) with outer
boundary contact as the H−1-gradient flow of the area functional.
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Smooth solutions Γ of the flow (1.1) together with the boundary conditions (1.2) and (1.3) are area-
minimizing and volume-preserving in the sense that

d

dt
A(t) ≤ 0 and

d

dt
V ol(t) = 0 ,

where A(t) indicates the surface area of Γ(t) and V (t) the volume of the region enclosed by Γ(t) and ∂Ω,
see e.g. [Dep10].
For one evolving curve in the plane with boundary conditions (1.2) and (1.3) Garcke, Ito and Kohsaka

gave in [GIK05] a linearized stability criterion for spherical arcs resp. lines, which are the stationary states
in this case. In [GIK08] the same authors showed nonlinear stability results for the above situation.
We will introduce a linear stability criterion based on the work of Garcke, Ito and Kohsaka [GIK05] for

curves in the plane and extend it to the case of hypersurfaces. One of the main difficulties lies in the
very beginning of the work when we want to introduce a parametrization with good properties to rewrite
the geometric evolution law as a partial differential equation for an unknown function. Therefore we use
a curvilinear coordinate system as in the work of Vogel [Vog00] which accounts for a possible curved
boundary. In this way we consider evolving hypersurfaces given as a graph over some fixed stationary
reference hypersurface. It is very important that we can describe the linearized problem as in the curve
case as an H−1-gradient flow, because this is the main reason that the linearized operator is self-adjoint.
Then we are in a good position to apply results from spectral theory. We can relate the asymptotic
stability of the zero solution of the linearized problem to the fact that the eigenvalues of the linearized
operator are negative. Since we can describe the largest eigenvalue with the help of a bilinear form arising
due to the gradient flow structure, we can finally give a criterion for linearized stability of the original
geometric problems around stationary states. At the end of the work we discuss some examples.
The linearized equations are given through

∂tρ = −∆Γ∗
(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ for all t > 0 ,

0 =
(
∂µ − S(n∗, n∗)

)
ρ on ∂Γ∗ for all t > 0 ,

0 = ∂µ

(
∆Γ∗ρ+ |σ∗|2ρ

)
on ∂Γ∗ for all t > 0 ,

and the zero solution is asymptotically stable if and only if

I(ρ, ρ) =
∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫
∂Γ∗

S(n∗, n∗)ρ2 dHn−1

is positive for all ρ ∈ H1(Γ∗)\{0} with
∫

Γ∗
ρ = 0. Herein σ∗ is the second fundamental form of Γ∗ with

respect to the unit normal n∗ and S is the second fundamental form of the boundary ∂Ω of the fixed
region with respect to the inwards pointing unit normal (−µ) of Ω.
This work is part of the thesis [Dep10] of the author, where also the case of three evolving hypersurfaces

that meet each other at a triple line, is considered. This problem will be the subject of a forthcoming
publication.

2 Parametrization

In this section we present a suitable parametrization in order to formulate a partial differential equation
out of the geometric evolution law (1.1)-(1.3).
In detail the problem consists in finding an evolving hypersurface Γ =

⋃
t∈[0,T ){t}×Γ(t) with Γ(t) ⊂ Rn+1

evolving due to surface diffusion flow, such that Γ(t) lies in a fixed bounded region Ω ⊂ Rn+1 and the
boundary ∂Γ(t) of each of the hypersurfaces intersects the boundary ∂Ω of the fixed region at a right
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angle. In formulas, the problem reads as follows. Find Γ as above, such that

V = −∆Γ(t)H in Γ(t) for all t > 0 ,
∇Γ(t)H · n∂Γ(t) = 0 on ∂Γ(t) for all t > 0 ,

Γ(t) ⊂ Ω for all t > 0 ,
∂Γ(t) ⊂ ∂Ω for all t > 0 ,

n(t) · µ = 0 on ∂Γ(t) for all t > 0 ,
Γ(0) = Γ0 .

(2.1)

Here V , H, n, n∂Γ(t) and µ are the normal velocity, the mean curvature, a unit normal of the evolving
hypersurface Γ, the outer unit conormal of Γ(t) at ∂Γ(t) and the outer unit normal to ∂Ω. ∇Γ(t) is the
surface gradient and ∆Γ(t) the Laplace-Beltrami operator on Γ(t). Γ0 is a given starting surface, which
lies in Ω and intersects the boundary ∂Ω at a right angle.
Now we fix a stationary hypersurface Γ∗ of (2.1), i.e. Γ∗ lies in Ω, intersects ∂Ω at a right angle, fulfills

the natural boundary condition ∇Γ∗H
∗ ·n∂Γ∗ = ∇Γ∗H

∗ ·µ = 0 on ∂Γ∗ and the surface diffusion equation
with V = 0, resulting in constant mean curvature H∗.
As a first step to describe the hypersurfaces Γ(t) that we want to consider, we set up a specific curvilinear

coordinate system as in the work of Vogel [Vog00], that takes into account a possible curved boundary
∂Ω and the fact, that the considered hypersurfaces have to stay inside Ω and their boundary has to lie
on ∂Ω. Therefore, we postulate for small d > 0 the existence of a smooth mapping

Ψ : Γ∗ × (−d, d) −→ Ω , (q, w) 7−→ Ψ(q, w) , (2.2)

such that

Ψ(q, 0) = q for all q ∈ Γ∗ (2.3)

and

Ψ(q, w) ∈ ∂Ω for all q ∈ ∂Γ∗ . (2.4)

We also assume that for every (local) parametrization q : D → Γ∗ with D ⊂ Rn open, the mapping
(y, w) 7→ Ψ(q(y), w) is a locally invertible map from Rn to Rn. At last, we choose a normal n∗ of Γ∗ and
impose the condition that ∂wΨ(q, 0) · n∗(q) 6= 0 for q ∈ Γ∗, which means that there is some movement
in normal direction. With a rescaling in the w-coordinate we can then even assume that

∂wΨ(q, 0) · n∗(q) = 1 for q ∈ Γ∗ . (2.5)

In [Vog00] there are some examples for situations when such a curvilinear coordinate system exists. Due
to the angle condition at the boundary of Γ∗, we can conclude even more than (2.5) at the boundary
∂Γ∗.

Lemma 2.1. For q ∈ ∂Γ∗, it holds that ∂wΨ(q, 0) = n∗(q).

Proof. We see that for fixed q ∈ ∂Γ∗ the curve c(w) := Ψ(q, w) lies on the boundary ∂Ω, and with
c(0) = Ψ(q, 0) = q it therefore holds ∂wΨ(q, 0) ∈ Tq(∂Ω). With the help of the angle condition we get
TqΓ∗ ⊥ Tq(∂Ω) and so we observe that ∂wΨ(q, 0) · v = 0 for all v ∈ TqΓ∗. So ∂wΨ(q, 0) has just a normal
part, that is ∂wΨ(q, 0) = (∂wΨ(q, 0) · n∗(q))n∗(q). With the rescaling condition of the normal (2.5) the
claim follows. �

With the help of the mapping Ψ from (2.2) we define the hypersurfaces, that we want to consider. For
a given smooth function

ρ : [0, T )× Γ∗ −→ (−d, d) (2.6)
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we introduce the mapping

Φρ : [0, T )× Γ∗ −→ Ω , Φρ(t, q) := Ψ(q, ρ(t, q)) . (2.7)

Then we observe that for fixed t due to the assumptions on Ψ, the function

Φρt : Γ∗ −→ Ω , Φρt (q) := Φρ(t, q) (2.8)

is a diffeomorphism onto its image. We denote this image by Γρ(t), that is

Γρ(t) := {Φρt (q) | q ∈ Γ∗} . (2.9)

In such a way we get an evolving hypersurface Γ =
⋃
t∈[0,T ){t} × Γρ(t) and we made sure that the

hypersurfaces Γρ(t) always fulfill the conditions Γρ(t) ⊂ Ω and ∂Γρ(t) ⊂ ∂Ω. We also observe that for
ρ ≡ 0 it holds Γρ≡0(t) = Γ∗ for all t ∈ [0, T ).
At last we impose that the starting hypersurface Γ0 is given with the help of a smooth function ρ0 :

Γ∗ → R through Γ0 = {Ψ(q, ρ0(q)) | q ∈ Γ∗}.
With the help of the diffeomorphisms Φρt , we can finally formulate (2.1) over the fixed stationary

hypersurface Γ∗ as follows. Find ρ as in (2.6) as a solution to the problem
V (Ψ(q, ρ(t, q))) = −∆Γρ(t)H(Ψ(q, ρ(t, q))) in Γ∗ for all t > 0 ,

0 =
(
∇Γρ(t)H · n∂Γρ(t)

)
(Ψ(q, ρ(t, q))) on ∂Γ∗ for all t > 0 ,

0 = (n(t) · µ) (Ψ(q, ρ(t, q))) on ∂Γ∗ for all t > 0 ,
ρ(0, q) = ρ0(q) in Γ∗ .

(2.10)

3 Linearization

In this section we give the linearization of (2.10) around ρ ≡ 0, which corresponds to the linearization of
(2.1) around the stationary state Γ∗. To get the linearization, we consider each term separately, write ερ
instead of ρ in (2.10), differentiate with respect to ε and set ε = 0.

Lemma 3.1. The linearization of the surface diffusion equation from (2.10)

V (Ψ(t, ρ(t, q))) = −∆Γρ(t)H(Ψ(t, ρ(t, q)))

around the stationary state represented through ρ ≡ 0 is given by

∂tρ(t, q) = −∆Γ∗
(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,

where q ∈ Γ∗, t > 0, ∆Γ∗ is the Laplace-Beltrami operator on Γ∗ and |σ∗|2 is the squared norm of
the second fundamental form of Γ∗ with respect to n∗, which is given through the sum over the squared
principal curvatures.

Proof. For the normal velocity we use the representation

V (t,Ψ(q, ρ(t, q))) = n(t,Ψ(q, ρ(t, q))) · d
dt

Ψ(q, ρ(t, q)) =
(
n(t,Ψ(q, ρ(t, q))) · ∂wΨ(q, ρ(t, q))

)
∂tρ(t, q) .

Therefore we can calculate
d

dε
V (t,Ψ(q, ερ(t, q)))

∣∣∣∣
ε=0

=
d

dε

(
n(t,Ψ(q, ερ(t, q))) · ∂wΨ(q, ερ(t, q))

)∣∣∣∣
ε=0

(∂tερ(t, q))|ε=0︸ ︷︷ ︸
=0

+
(
n(t,Ψ(q, ερ(t, q))) · ∂wΨ(q, ερ(t, q))

)∣∣∣
ε=0

∂tρ(t, q)

=
(
n(t,Ψ(q, 0)) · ∂wΨ(q, 0)

)
∂tρ(t, q)

(2.3)
=

(
n∗(q) · ∂wΨ(q, 0)

)
∂tρ(t, q)

= ∂tρ(t, q) ,
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where we used (2.5) in the last line. To see n(t,Ψ(q, 0)) = n∗(q) in the line before, we observe the
fact that n(t,Ψ(q, ερ(t, q))) is the normal of Γερ(t) at Ψ(q, ερ(t, q)) ∈ Γερ(t), so that for ε = 0 the term
n(t,Ψ(q, 0)) is the normal of Γρ≡0(t) at Ψ(q, 0) ∈ Γρ≡0. With (2.3) and Γρ≡0(t) = Γ∗ for all t we find
that n(t,Ψ(q, 0)) = n(t, q) = n∗(q) is the normal of Γ∗ at q ∈ Γ∗.
For the Laplace-Beltrami operator of mean curvature we use the transformation rule

−∆Γρ(t)H(Ψ(t, ρ(t, q))) = −∆ρ
Γ∗

(
H̃ρ(t, q)

)
,

where H̃ρ(t, q) = H(Ψ(t, ρ(t, q))) and ∆ρ
Γ∗ is the Laplace-Beltrami operator of Γ∗ equipped with the

pull-back metric (Φρt )
∗
η, where η is a symbol for the euclidian scalar product in Rn+1.

Then we observe that for ρ ≡ 0 due to Φ0
t = id|Γ∗ the identity ∆0

Γ∗ = ∆Γ∗ holds, where ∆Γ∗ is the
Laplace-Beltrami operator of Γ∗ with respect to the restriction of the euclidian scalar product. We
also have H̃0 = H∗, where H∗ is the constant mean curvature of Γ∗. Therefore we get with a similar
calculation as in the work of Escher, Mayer and Simonett [EMS98]

d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H̃0 =
d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H∗ =
d

dε
(∆ερ

Γ∗H
∗)︸ ︷︷ ︸

=0

∣∣∣∣∣∣
ε=0

= 0 .

Finally, this gives for the right side of the surface diffusion equation

d

dε

(
−∆ερ

Γ∗H̃ερ(t, q)
)∣∣∣∣
ε=0

= − d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H∗ −∆Γ∗

(
d

dε
H̃ερ(t, q)

∣∣∣∣
ε=0

)
= −∆Γ∗

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,

where we used the well-known linearization of mean curvature δH = ∆ρ+ |σ∗|2ρ. A proof of this identity
using the notion of normal-time derivative can be found in the work of the author [Dep10]. �

The next point is to linearize the first boundary condition in (2.10).

Lemma 3.2. The linearization of the boundary condition

0 =
(
∇Γρ(t)H · n∂Γρ(t)

)
(Ψ(q, ρ(t, q)))

from (2.10) around the stationary state represented through ρ ≡ 0 is given by

0 = ∇Γ∗

(
∆Γ∗ρ(t, q) + |σ∗|2ρ(t, q)

)
· µ(q) = ∂µ

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,

where q ∈ ∂Γ∗ and t > 0.

Proof. As for the Laplace-Beltrami operator we can correlate the surface gradient on Γρ(t) and on Γ∗

equipped with the pull-back metric (Φρt )
∗
η via

∇Γρ(t)H(Ψ(q, ρ(t, q))) = dqΦ
ρ
t

(
∇ρΓ∗H̃ρ(t, q)

)
,

where p = Φρt (q) = Ψ(q, ρ(t, q)) ∈ Γρ(t) and dqΦ
ρ
t : TqΓ∗ → TΦt(q)Γρ(t) is the differential. With the same

notation as in the previous lemma we get

d

dε

(
dqΦ

ερ
t

(
∇ερΓ∗H̃ερ(t, q)

))∣∣∣∣
ε=0

=
d

dε
(dqΦ

ερ
t )
∣∣∣∣
ε=0

(∇Γ∗H
∗)︸ ︷︷ ︸

=0

+ dqΦ
ρ≡0
t︸ ︷︷ ︸

=Id

(
d

dε

(
∇ερΓ∗H̃ερ(t, q)

)∣∣∣∣
ε=0

)

=
d

dε
∇ερΓ∗H0︸ ︷︷ ︸

=0

∣∣∣∣∣∣
ε=0

+∇Γ∗

(
d

dε
H̃ερ(t, q)

∣∣∣∣
ε=0

)
= ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
(t, q) .
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With the additional observation n∂Γρ≡0(t) = n∂Γ∗ = µ due to the right angle condition for the fixed
stationary hypersurface Γ∗ we can show the assertion. �

We proceed with the linearization of the boundary condition n(t,Ψ(q, ρ(t, q))) · µ(Ψ(q, ρ(t, q))) = 0 on
∂Γ∗ for t > 0 around ρ ≡ 0. To calculate this linearization at q0 ∈ ∂Γ∗ and t0 > 0, we choose a
local parametrization of Γ∗ around q0 with nice properties. More precisely, let U ⊂ Rn+1 be an open
neighbourhood of q0, V ⊂ Rn+1 open and ϕ : U → V a diffeomorphism, such that

ϕ(U ∩ Γ∗) = V ∩
(
Rn+ × {0}

)
with (ϕ(q0))n = 0 .

We set D × {0} := V ∩
(
Rn+ × {0}

)
and let F =

(
ϕ−1

)∣∣
D

, i.e.

F : D −→ Γ∗ ⊂ Rn+1 , x 7→ F (x) . (3.1)

This is a local parametrization extended up to the boundary around q0 with F (x0) = q0 for some x0 ∈ ∂D.
At the fixed point x0, we can demand the following properties.

(A) ∂1F (x0), . . . , ∂nF (x0) is an orthonormal basis of Tq0Γ∗,

(B) ∂1F (x0) = n∂Γ∗(q0), where n∂Γ∗ is the outer unit conormal of Γ∗ at ∂Γ∗ and

(C) (∂1F × . . .× ∂nF ) (x0) = n∗(F (x0)), where we just fix the sign.

The third assumption (C) uses the cross product for n vectors in Rn+1, which in this case due to the
orthonormality of ∂1F (x0), . . . , ∂nF (x0) lies by definition in normal direction and we just want to fix the
sign.
With the parametrization F of Γ∗ we also get a parametrization of Γρ(t) using the diffeomorphism

Φρt : Γ∗ → Γρ(t) with Φρt0(q0) = p0 for p0 ∈ Γρ(t), which we denote by

Gt : D −→ Γρ(t) , Gt(x) := Φρt (F (x)) = Ψ(F (x), ρ(t, F (x))) .

Locally around (t0, p0), the normal n(t, p) = n(t,Φρt (q)) = n(t,Φρt (F (x))) of Γρ(t) is given with the help
of the cross product of n vectors in Rn+1 through

n(t,Φρt (F (x))) =
∂1Gt × . . .× ∂nGt
|∂1Gt × . . .× ∂nGt|

(x) =
∂1Φρt × . . .× ∂nΦρt
|∂1Φρt × . . .× ∂nΦρt |

(F (x)) ,

where ∂i is the partial derivative with respect to xi. To calculate the linearization of the right angle
condition at the outer boundary, we need the following properties of Ψ at w = 0.

Lemma 3.3. With the help of the parametrization F it holds for F (x) = q ∈ Γ∗

(i) Ψ(F (x), 0) = F (x), ∂iΨ(F (x), 0) = ∂iF (x),

and for F (x) = q ∈ ∂Γ∗ we have

(ii) ∂wΨ(F (x), 0) = n∗(F (x)), ∂i∂wΨ(F (x), 0) · n∗(F (x)) = 0.

Additionally, for the fixed F (x0) = q0 ∈ ∂Γ∗ it holds

(iii) (∂1Ψ× . . .× ∂nΨ) (F (x0), 0) = n∗(F (x0)),

(iv)

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
(F (x0), 0) = (−1)∂iF (x0) and
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(v)

(
∂1Ψ× . . .×

i-th pos.

∂̂i∂wΨ × . . .× ∂nΨ

)
(F (x0), 0) =

(
∂i∂wΨ(F (x0), 0) · ∂iF (x0)

)
n∗(F (x0)),

where i = 1, . . . , n in each case.

Proof. This is a direct calculation using the properties of the vector product and the parametrization
F from (3.1) and will be omitted here. �

Now we can show the following linearization of the right angle condition.

Lemma 3.4. The linearization of the right angle condition at the outer boundary for t > 0 and q ∈ ∂Γ∗

is given by

d

dε

(
n(t,Ψ(q, ερ(t, q))) · µ(Ψ(q, ερ(t, q)))

)∣∣∣∣
ε=0

=−∇Γ∗ρ(t, q) · µ(q) + Sq(n∗(q), n∗(q))ρ(t, q) , (3.2)

where S is the second fundamental form of ∂Ω with respect to −µ. Note that n∗(q) ∈ Tq∂Ω because due
to the angle condition for the stationary state Γ∗ the relation n∗(q) · µ(q) = 0 for q ∈ ∂Γ∗ holds true.

Proof. We calculate the linearization at a fixed point q0 ∈ ∂Γ∗ and t0 > 0. Using the above notation
for the parametrization F and Φt we have to calculate

d

dε

[(
∂1Φερt × . . .× ∂nΦερt

)
·
(
µ ◦ Φερt

)
(F (x))

]∣∣∣∣
ε=0

(3.3)

at the fixed point (t0, x0).
For the vector product in the above formula we do firstly some calculations without ε to get

∂iΦ
ρ
t (F (x)) = ∂i

(
Ψ(F (x), ρ(t, F (x)))

)
= ∂iΨ + ∂wΨ ∂iρ , (3.4)

where we used some short notation without variables. Furthermore we observe(
∂1Φρt × . . .× ∂nΦρt

)
=

(
(∂1Ψ + ∂iρ ∂wΨ)× . . .× (∂nΨ + ∂iρ ∂wΨ)

)
=

(
∂1Ψ× . . .× ∂nΨ

)
+

n∑
i=1

∂iρ

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)

+
n∑

i,j=1
i 6=j

∂iρ ∂jρ

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .×
j-th pos.

∂̂wΨ × . . .× ∂nΨ

)
︸ ︷︷ ︸

=0

+ h.o.t.

=
(
∂1Ψ× . . .× ∂nΨ

)
+

n∑
i=1

∂iρ

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
.

Herein the terms h.o.t. contain more than two ∂wΨ in the cross product and therefore they also vanish.
Inserting the last identity into (3.3) for the fixed (t0, x0) with F (x0) = q0, we can do the following
calculation

d

dε

[(
∂1Φερt0 × . . .× ∂nΦερt0

)
·
(
µ ◦ Φερt0

)
(F (x0))

]∣∣∣∣
ε=0

=
d

dε

{[(
∂1Ψ× . . .× ∂nΨ

)
(q0, ερ(t0, q0))

+
n∑
i=1

∂iερ(t0, q0)

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
(q0, ερ(t0, q0))

]
· µ(Ψ(q0, ερ(t0, q0)))

}∣∣∣∣∣
ε=0
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=
d

dε

(∂1Ψ× . . .× ∂nΨ
)

(q0, ερ(t0, q0))︸ ︷︷ ︸
(1)

+
n∑
i=1

∂iερ(t0, q0)

(
∂1Ψ× . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
(q0, ερ(t0, q0))︸ ︷︷ ︸

(2)


∣∣∣∣∣∣∣∣∣∣
ε=0

· µ(Ψ(q0, 0))

+

(∂1Ψ× . . .× ∂nΨ
)

(q0, 0)︸ ︷︷ ︸
(3)

+0

 · ddε µ(Ψ(q0, ερ(t0, q0)))︸ ︷︷ ︸
(4)

∣∣∣∣∣∣∣
ε=0

.

We will consider the above numbered terms separately. For the first one, we calculate

d

dε
(1)
∣∣∣∣
ε=0

=
n∑
k=1

(
∂1Ψ× . . .×

k-th pos.

∂̂w∂kΨ × . . .× ∂nΨ

)
(q0, 0) ρ(t0, q0)

3.3,(v)
=

n∑
k=1

n∗(q0)
(
∂k∂wΨ(F (x0), 0) · ∂kF (x0)

)
ρ(t0, q0) .

Therefore we get

d

dε
(1)
∣∣∣∣
ε=0

· µ(q0) =
n∑
k=1

(
∂k∂wΨ(F (x0), 0) · ∂kF (x0)

)
ρ(t0, q0) (n∗(q0) · µ(q0))︸ ︷︷ ︸

=0

= 0 ,

where we used µ(Ψ(q0, 0)) = µ(q0) due to (2.3) and the angle condition for Γ∗ to conclude n∗ · µ = 0.
For the second term, we observe

d

dε
(2)
∣∣∣∣
ε=0

=
n∑
i=1

∂iρ(t0, q0)

(
∂1Ψ× · · ·×

i-th pos.

∂̂wΨ × · · · × ∂nΨ

)
(F (x0), 0)

3.3, (iv)
= −

n∑
i=1

∂iρ(t0, q0)∂iF (x0) = −∇Γ∗ρ(t0, q0) ,

where the last identity can be seen with the representation of the surface gradient in local coordinates
due to assumption (A) for F at the fixed x0. Taking the scalar product with the normal yields

d

dε
(2)
∣∣∣∣
ε=0

· µ(q0) = −∇Γ∗ρ(t0, q0) · µ(q0) ,

which is the directional derivative −∂µρ(t0, q0) of ρ in direction of the outer unit conormal µ of Γ∗ at
∂Γ∗. Here we used the fact µ(q) = n∂Γ∗(q) on ∂Γ∗, that is the outer unit normal of Ω equals the outer
unit conormal of Γ∗ at ∂Γ∗ due to the angle condition.
For the remaining terms we observe

(3) · d
dε

(4)
∣∣∣∣
ε=0

= (∂1Ψ× · · · ∂nΨ) (F (x0), 0) · d
dε
µ(Ψ(q0, ερ(t0, q0)))

∣∣∣∣
ε=0

3.3, (iii)
= n∗(q0) · ∂(n∗(q0) ρ(t0, q0))µ ,
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where the directional derivative appears by definition with the help of the curve c(ε) = Ψ(q0, ερ(t0, q0)),
which fulfills

c(ε) ∈ ∂Ω , c(0) = Ψ(q0, 0) = q0 and

c′(0) = ∂wΨ(q0, 0) ρ(t0, q0)
3.3, (ii)

= n∗(q0)ρ(t0, q0) .

Due to linearity of the directional derivative, we finally get

(3) · d
dε

(4)
∣∣∣∣
ε=0

=
(
n∗(q0) · ∂n∗(q0)µ

)
ρ(t0, q0) = Sq0(n∗(q0), n∗(q0)) ρ(t0, q0) ,

where S is the second fundamental form of ∂Ω equipped with normal −µ. Note that n∗(q0) ∈ Tq0∂Ω due
to the angle condition for the stationary state Γ∗.
Altogether, the linearization of the boundary condition

n(t,Ψ(q, ρ(t, q))) · µ(Ψ(q, ρ(t, q)) = 0

at the fixed point (t0, q0) yields

0 =
d

dε
(1)
∣∣∣∣
ε=0

· µ(q0) +
d

dε
(2)
∣∣∣∣
ε=0

· µ(q0) + (3) · d
dε

(4)
∣∣∣∣
ε=0

= 0−∇Γ∗ρ(t0, q0) · µ(q0) + Sq0(n∗(q0), n∗(q0)) ρ(t0, q0) ,

Since the fixed point (t0, q0) was arbitrary, we can conclude the above linearization for every q ∈ ∂Γ∗ and
t > 0, which completes the proof of Lemma 3.4. �

Putting the last lemmata together, we get the following linearization of (2.10) around ρ ≡ 0.
∂tρ = −∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ for all t > 0 ,

0 =
(
∂µ − S(n∗, n∗)

)
ρ on ∂Γ∗ for all t > 0 ,

0 = ∂µ

(
∆Γ∗ρ+ |σ∗|2ρ

)
on ∂Γ∗ for all t > 0 ,

ρ(0, q) = 0 in Γ∗ .

(3.5)

4 Stability analysis

In this section we derive conditions for the asymptotic stability of the zero solution of the linearized
problem (3.5). We first show that (3.5) can be interpreted as a gradient flow with respect to an energy E
given by a bilinear form I. Then we can show that the solution operator A of (3.5) is self-adjoint and we
will study its spectrum. Finally, we describe asymptotic stability through the condition that I is positive
definite.
We generalize the work of Garcke, Ito and Kohsaka [GIK05] from curves to higher dimensions, which is a

non-trivial task as the geometry becomes much more involved. Since the problem (3.5) will be a gradient
flow with respect to the H−1-inner product, we give its definition. We denote by 〈. , .〉 the duality pairing
between the dual space

(
H1(Γ∗)

)′ and H1(Γ∗) and we define the space H−1(Γ∗) by

H−1(Γ∗) :=
{
ρ ∈

(
H1(Γ∗)

)′ | 〈ρ, 1〉 = 0
}
. (4.1)

Definition 4.1. We say that uv ∈ H1(Γ∗) with
∫

Γ∗
uv = 0 for a given v ∈ H−1(Γ∗) is a weak solution of{

−∆Γ∗uv = v in Γ∗ ,
∇Γ∗uv · n∂Γ∗ = 0 on ∂Γ∗ , (4.2)

if and only if uv satisfies 〈v, ξ〉 =
∫

Γ∗
∇Γ∗uv · ∇Γ∗ξ for all ξ ∈ H1(Γ∗).
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For ρi ∈ H−1(Γ∗), i = 1, 2, we introduce the inner product (ρ1, ρ2)−1 :=
∫

Γ∗
∇Γ∗uρ1 ·∇Γ∗uρ2 , called the

H−1-inner product, where uρi is defined as the weak solution of (4.2) with respect to ρi. By definition,
we have the identity

(ρ1, ρ2)−1 = 〈ρ1, uρ2〉 (4.3)

for ρi ∈ H−1(Γ∗). For further use we also introduce the notation V :=
{
ρ ∈ H1(Γ∗) |

∫
Γ∗
ρ = 0

}
.

Definition 4.2. For ρ1, ρ2 ∈ H1(Γ∗) we define

I(ρ1, ρ2) :=
∫

Γ∗

(
∇Γ∗ρ1 · ∇Γ∗ρ2 − |σ∗|2ρ1 ρ2

)
−
∫
∂Γ∗

S(n∗, n∗)ρ1 ρ2 (4.4)

and the associated energy for ρ ∈ H1(Γ∗) by E(ρ) := 1
2I(ρ, ρ).

The next point is to show that the linearized problem (3.5) is the gradient flow of E with respect to the
H−1-inner product (. , .)−1. This means that a solution ρ of (3.5) fulfils

(∂tρ, ξ)−1 = −∂E(ρ(t))(ξ)

for all ξ ∈ H1(Γ∗) with
∫

Γ∗
ξ = 0. Here, ∂E(ρ(t))(ξ) denotes the derivative of E at ρ(t) in direction of ξ.

Because of the definition of E via the bilinear form I, this derivative is given by

∂E(ρ(t))(ξ) = I(ρ(t), ξ) .

To simplify notation, we introduce the following time independent problem.

Definition 4.3. For a given v ∈ H−1(Γ∗) we say that ρ ∈ H3(Γ∗) with
∫

Γ∗
ρ = 0 is a weak solution of

the boundary value problem v = −∆Γ∗
(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ ,

0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗ ,
0 = ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· n∂Γ∗ on ∂Γ∗ ,

(4.5)

if and only if ρ satisfies

〈v, ξ〉 =
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ

for all ξ ∈ H1(Γ∗) and 0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗.

In the case that v ∈ L2(Γ∗) with
∫

Γ∗
v = 0, we obtain from elliptic regularity theory on manifolds that

v = −∆Γ∗
(
∆Γ∗ρ+ |σ∗|2ρ

)
is fulfilled almost everywhere in Γ∗ and ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· n∂Γ∗ = 0 is

fulfilled almost everywhere on ∂Γ∗. The fact that the linearized problem is the gradient flow of E with
respect to the H−1-inner product follows from the next lemma.

Lemma 4.4. Let v ∈ H−1(Γ∗) and ρ ∈ H1(Γ∗) with
∫

Γ∗
ρ = 0 be given. Then ρ is a weak solution of

(4.5) if and only if

(v, ξ)−1 = −I(ρ, ξ)

holds for all ξ ∈ H1(Γ∗) with
∫

Γ∗
ξ = 0.
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Proof. Let ρ ∈ H3(Γ∗) with
∫

Γ∗
ρ = 0 be a weak solution of (4.5). By (4.3) and Definition 4.3, we

deduce for ξ ∈ H1(Γ∗) with
∫

Γ∗
ξ = 0 the identities

(v, ξ)−1 = 〈v, uξ〉 =
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗uξ .

Here, uξ ∈ H1(Γ∗) is the weak solution of (4.2) for the given ξ ∈ H1(Γ∗). Then, by virtue of(
∆Γ∗ρ+ |σ∗|2ρ

)
∈ H1(Γ∗) we see from the definition of the weak solution uξ with

(
∆Γ∗ρ+ |σ∗|2ρ

)
as testfunction ∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗uξ =

∫
Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
ξ .

Now we conclude with integration by parts.

(v, ξ)−1 =
∫

Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
ξ = −

∫
Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+
∫
∂Γ∗
∇Γ∗ρ · n∂Γ∗ ξ

= −
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+
∫
∂Γ∗

S(n∗, n∗) ρ ξ = −I(ρ, ξ) ,

where we used the boundary condition ∇Γ∗ρ · n∂Γ∗ = ∂µρ = S(n∗, n∗)ρ on ∂Γ∗ for ρ.
Conversely, assume that ρ ∈ H1(Γ∗) with

∫
Γ∗
ρ = 0 satisfies (v, ξ)−1 = −I(ρ, ξ) for all ξ ∈ H1(Γ∗) with∫

Γ∗
ξ = 0. Now we choose ξ = −∆Γ∗η for a given function η ∈ H3(Γ∗) with ∇Γ∗η · n∂Γ∗ = 0 on ∂Γ∗.

From Definition 4.1 we can write η = uξ and with (4.3) it holds

〈v, η〉 = (v, ξ)−1 = −I(ρ, ξ) = −
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+
∫
∂Γ∗

S(n∗, n∗)ρ ξ

=
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗(∆Γ∗η)− |σ∗|2ρ (∆Γ∗η)

)
+
∫
∂Γ∗

S(n∗, n∗)ρ (∆Γ∗η) .

Since v ∈
(
H1(Γ∗)

)′ we deduce from the above identity and elliptic regularity theory that ρ ∈ H3(Γ∗).
Integration by parts gives then

〈v, η〉 = −
∫

Γ∗

(
∆Γ∗ρ∆Γ∗η −∇Γ∗(|σ∗|2ρ) · ∇Γ∗η

)
+
∫
∂Γ∗

∇Γ∗ρ · n∂Γ∗ ∆Γ∗η − |σ∗|2ρ ∇Γ∗η · n∂Γ∗︸ ︷︷ ︸
=0

−S(n∗, n∗)ρ∆Γ∗η


=
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗η −

∫
∂Γ∗

∆Γ∗ρ ∇Γ∗η · n∂Γ∗︸ ︷︷ ︸
=0

+
∫
∂Γ∗

(∂µρ− S(n∗, n∗)ρ) ∆Γ∗η

=
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗η +

∫
∂Γ∗

(∂µρ− S(n∗, n∗)ρ) ∆Γ∗η .

To show that ρ is a weak solution of (4.5), we choose a sequence gn ∈ C∞(Γ∗) with given boundary data
gn|∂Γ∗ = g with

∫
Γ∗
gn = 0 and which fulfills ‖gn‖L2(Γ∗) → 0 for n→∞. Then we solve the problem

∆Γ∗ηn = gn in Γ∗ ,
∇Γ∗ηn · n∂Γ∗ = 0 on ∂Γ∗
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with additional condition
∫

Γ∗
ηn = 0. A solution fulfills ‖ηn‖H1 → 0, which leads to

0 =
∫
∂Γ∗

(∂µρ− S(n∗, n∗)ρ) g

for arbitrary boundary data g ∈ L2(∂Γ∗). Therefore we conclude with the fundamental lemma that
∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ and we are led to the identity

〈v, η〉 =
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗η (4.6)

for η ∈ H3(Γ∗) with ∇Γ∗η ·n∂Γ∗ = 0 on ∂Γ∗. We can approximate an arbitrary function ϕ ∈ H1(Γ∗) with
such testfunctions η in the H1-norm. Therefore let w.l.o.g. ϕ ∈ C∞(Γ∗) (otherwise we use an additional
approximation ϕn → ϕ in H1(Γ∗) for smooth functions ϕn ∈ C∞(Γ∗)). In a small neighbourhood around
∂Γ∗ we choose an extension u ∈ H3(Γ∗) of ϕ|∂Γ∗ which is extended constantly in normal direction and
fulfills

u = ϕ on ∂Γ∗ ,
∇Γ∗u · n∂Γ∗ = 0 on ∂Γ∗ .

With the notation Γ∗ε := {p ∈ Γ∗ |dist(p, ∂Γ∗ < ε}, where dist is built with the usual metric on a
hypersurface given by the infimum over all length of connecting curves, we choose additionally smooth
cut-off functions ζn ∈ C∞(Γ∗) with

ζn = 1 in Γ∗2
n
, ζn = 0 in Γ∗1

n
and ‖∇Γ∗ζn‖L∞ ≤ n .

Then we set ηn := ϕζn +u(1− ζn), which by definition fulfills ηn ∈ H3(Γ∗) and ∇Γ∗ηn ·n∂Γ∗ = 0 on ∂Γ∗.
Finally, it holds that ηn → ϕ in H1(Γ∗), since on the one hand

‖ηn − ϕ‖L2 ≤ ‖ϕ(ζn − 1)‖L2 + ‖u(1− ζn)‖L2 −→ 0

and on the other hand

‖∇Γ∗ηn −∇Γ∗ϕ‖L2 = ‖∇Γ∗ ((ϕ− u)(ζn − 1)) ‖L2 ≤ ‖∇Γ∗(ϕ− u) (ζn − 1)‖L2 + ‖(ϕ− u)∇Γ∗(ζn − 1)‖L2 .

The first term tends to 0 and for the second one we observe with Σn :=
(

Γ∗1
n

\Γ∗2
n

)
that∫

Γ∗
|(ϕ− u)∇Γ∗(ζn − 1)|2 =

∫
Σn

|(ϕ− u)∇Γ∗ζn|2 ≤
∫

Σn

|ϕ− u|2 ·
∫

Σn

|∇Γ∗ζn|2 .

Now we use that u emerges from ϕ by an extension constant in normal direction and the fact that ϕ is
locally lipschitz continuous to get for q ∈ Σn and some q∗ ∈ ∂Γ∗ the inequality

|ϕ(q)− u(q)|2 = |ϕ(q)− ϕ(q∗)|2 ≤ Ld(q, q∗)2 ≤ L
(

2
n

)2

.

Together with |∇Γ∗ζn|2 ≤ n2 we get finally∫
Γ∗
|(ϕ− u)∇Γ∗(ζn − 1)|2 ≤ C 1

n2
n2

(∫
Σn

1
)2

−→ 0 .

With this approximation we can write (4.6) with arbitrary testfunctions ϕ ∈ H1(Γ∗), which yields that
ρ is a weak solution of (4.5). We remark that this part of the proof strongly differs from the curve case
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in [GIK05]. �

The next steps consist in showing that the linearized operator is self-adjoint and to study its spectrum.
This linearized operator corresponding to (3.5) is given by

A : D(A) −→ H ,

with {
D(A) = {ρ ∈ H3(Γ∗) | (∂µ − S(n∗, n∗)) ρ = 0 on ∂Γ∗ and

∫
Γ∗
ρ = 0} ,

H = {ρ ∈
(
H1(Γ∗)

)′
| 〈ρ, 1〉 = 0}

(4.7)

by

〈Aρ, ξ〉 :=
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ . (4.8)

Then we can relate the boundary value problem (4.5) to the problem of finding a ρ ∈ D(A) with Aρ = v.
By Lemma 4.4 we also have for all ξ ∈ H1(Γ∗) with

∫
Γ∗
ξ = 0 the identity (Aρ, ξ)−1 = −I(ρ, ξ).

Lemma 4.5. The operator A is symmetric with respect to the inner product (. , .)−1.

Proof. For ρ, ξ ∈ D(A) we have

(Aρ, ξ)−1 = −I(ρ, ξ) = −I(ξ, ρ) = (Aξ, ρ)−1 = (ρ,Aξ)−1 ,

so that A is symmetric. �

The spectrum of A is related to the functional I with the help of the inner product (. , .)−1. In fact, for
an eigenfunction ρ ∈ D(A) to the eigenvalue λ of A, it holds

λ (ρ, ξ)−1 = (Aρ, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ H1(Γ∗) with
∫

Γ∗
ξ = 0. The next point is to show boundedness of eigenvalues of A from above.

Therefore we need the following two lemmata.

Lemma 4.6. For all δ > 0 there exists a Cδ > 0, such that for all functions ρ ∈ V the inequality

‖ρ‖2L2(∂Γ∗) ≤ δ ‖∇Γ∗ρ‖2L2(Γ∗) + Cδ ‖ρ‖2−1

holds.

Proof. Assume by contradiction that there exists δ > 0 such that we can find a sequence (ρ̃n)n∈N ⊂ V
such that

‖ρ̃n‖2L2(∂Γ∗) > δ ‖∇Γ∗ ρ̃n‖2L2(Γ∗) + n ‖ρ̃n‖2−1 .

In particular we observe ‖ρ̃n‖L2(∂Γ∗) > 0 for all n ∈ N. Therefore, we get for the scaled functions
ρn = ρ̃n

(
‖ρ̃n‖L2(∂Γ∗)

)−1 by multiplying with
(
‖ρ̃n‖L2(∂Γ∗)

)−2 the inequality

1 > δ ‖∇Γ∗ρn‖2L2(Γ∗) + n ‖ρn‖2−1 .

This implies

‖ρn‖2−1 <
1
n
−→ 0 as n→∞ and ‖∇Γ∗ρn‖2L2(Γ∗) <

1
δ
.
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Since
∫

Γ∗
ρn = 0, we conclude from Poincaré’s inequality that ρn is bounded uniformly in H1(Γ∗).

Therefore it converges weakly for a subsequence ρn ⇀ ρ in H1(Γ∗) to some ρ ∈ H1(Γ∗). Due to
0 = (ρn, 1)L2 → (ρ, 1)L2 =

∫
Γ∗
ρ we observe

∫
Γ∗
ρ = 0. Furthermore from the compact embedding{

ρ ∈ H1(Γ∗) |
∫

Γ∗
ρ = 0

}
↪→ H−1(Γ∗) we see the strong convergence ρn → ρ in H−1(Γ∗). By unique-

ness of the limit and ‖ρn‖H−1 → 0 we get finally ρ = 0. So we have ρn ⇀ 0 in H1(Γ∗) By another
compact embedding H1(Γ∗) ↪→ L2(∂Γ∗) we see ρn → 0 in L2(∂Γ∗), which at last contradicts the fact
‖ρn‖L2(∂Γ∗) = 1 for all n ∈ N. �

Lemma 4.7. There exist positive constants C1 and C2, such that

‖ρ‖2H1(Γ∗) ≤ C1 ‖ρ‖2−1 + C2 I(ρ, ρ)

for all ρ ∈ V .

Proof. With an analogue argumentation as in the previous lemma we get the following inequality. For
all δ > 0 there exists a Cδ > 0, such that

‖ρ‖2L2(Γ∗) ≤ δ ‖∇Γ∗ρ‖2L2(Γ∗) + Cδ ‖ρ‖2−1

holds for all ρ ∈ V . To this end, we just need the compact embedding H1(Γ∗) ↪→ L2(Γ∗) instead of
H1(Γ∗) ↪→ L2(∂Γ∗). Now we obtain with the help of the above inequality and Lemma 4.6

I(ρ, ρ) =
∫

Γ∗
|∇Γ∗ρ|2 −

∫
Γ∗
|σ∗|2 ρ2 −

∫
∂Γ∗

S(n∗, n∗) ρ2

≥ ‖∇Γ∗ρ‖2L2(Γ∗) − ‖|σ
∗|2‖L∞(Γ∗) · ‖ρ‖2L2(Γ∗) − ‖S(n∗, n∗)‖L∞(∂Γ∗) · ‖ρ‖2L2(∂Γ∗)

≥
(

1− δ1 ‖S(n∗, n∗)‖L∞(∂Γ∗)

)
· ‖∇Γ∗ρ‖2L2(Γ∗) − ‖|σ

∗|2‖L∞(Γ∗) · ‖ρ‖2L2(Γ∗)

− ‖S(n∗, n∗)‖L∞(∂Γ∗) · Cδ1 ‖ρ‖2−1

≥
(

1− δ1‖S(n∗, n∗)‖L∞(∂Γ∗) − δ2 ‖|σ∗|2‖L∞(Γ∗)

)
· ‖∇Γ∗ρ‖2L2(Γ∗)

−
(
‖|σ∗|2‖L∞(Γ∗) Cδ2 + ‖S(n∗, n∗)‖L∞(∂Γ∗) Cδ1

)
· ‖ρ‖2−1 .

With the help of the Poincaré inequality on V and by choosing δ1 and δ2 small enough, we get the
assertion. �

With the previous two lemmata we show boundedness from above for the eigenvalues of A.

Lemma 4.8. Let λ be an eigenvalue of A. Then the following inequality holds

λ ≤ C1

C2
,

where C1 and C2 are the positive constants of the above Lemma 4.7.

Proof. Let ρ ∈ D(A) be an eigenvector to the eigenvalue λ, which in particular means ρ 6= 0. It holds
λ (ρ, ρ)−1 = (Aρ, ρ)−1 = −I(ρ, ρ). Assuming that λ > C1

C2
, we would have

0 = I(ρ, ρ) + λ (ρ, ρ)−1 > I(ρ, ρ) +
C1

C2
(ρ, ρ)−1 ≥

1
C2
‖ρ‖2H1(Γ∗) > 0 ,

which is a contradiction. �

Now we are able to show that A is self-adjoint with respect to the (. , .)−1 inner product. Therefore we
use a property that implies the equivalence of symmetry and self-adjointness from [Weid76].
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Lemma 4.9. The operator A is self-adjoint with respect to the (. , .)−1 inner product.

Proof. We use the following theorem of operator theory. If there exists an ω ∈ R, such that

im(ω Id−A) = H−1(Γ) ,

the properties symmetry and self-adjointness of A are equivalent, see for example [Weid76].
So we have to show that there exists an ω ∈ R, such that for given f ∈ H−1(Γ∗) there exists a ρ ∈ D(A)

with ωρ−Aρ = f . This means that ρ ∈ H3(Γ∗) is a weak solution of the boundary value problem ∆Γ∗
(
∆Γ∗ρ+ |σ∗|2ρ

)
+ ωρ = f in Γ∗ ,

∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ ,
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· n∂Γ∗ = 0 on ∂Γ∗ .

(4.9)

The weak formulation consists in finding a ρ ∈ H3(Γ∗) with ∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ and∫
Γ∗
−∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ + ω

∫
Γ∗
ρ ξ = 〈f, ξ〉

for all ξ ∈ H1(Γ∗). Due to 〈f, 1〉 = 0, inserting ξ ≡ 1 in this equation yields
∫

Γ∗
ρ = 0, so that a solution

ρ really belongs to D(A). To obtain such a solution ρ, we use the minimization problem

F (ρ) :=
1
2

∫
Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫
∂Γ∗

S(n∗, n∗) ρ2 +
ω

2
‖ρ‖2−1 −

∫
Γ∗
uf ρ → min

under all ρ ∈ H1(Γ∗) with
∫

Γ∗
ρ = 0. Here, uf ∈ H1(Γ∗) is the weak solution of (4.2) with respect to

f ∈ H−1(Γ∗). With the help of Lemma 4.7 we can show that F is coercive for large ω and therefore there
exists a unique minimizer ρ ∈ V , which is characterized by the first variation of F through

0 =
d

dε
F (ρ+ εv)

∣∣∣∣
ε=0

=
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗v − |σ∗|2ρ v

)
−
∫
∂Γ∗

S(n∗, n∗)ρ v + ω (ρ, v)−1 −
∫

Γ∗
uf v ,

where v ∈ V is arbitrary. By the Definition of uρ in (4.2) and the identity (4.3), we observe that
ω (ρ, v)−1 = ω 〈v, uρ〉 = ω

∫
Γ∗
uρ v. Since in the above equation the testfunctions v have to fulfill the

constraint
∫

Γ∗
v = 0, the identity is the weak version of the boundary value problem{

−
(
∆Γ∗ρ+ |σ∗|2 ρ

)
+ ωuρ + λ = uf in Γ∗ ,

∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ . (4.10)

Here the Lagrange-multiplier λ is given through

λ =
1
|Γ∗|

(∫
Γ∗

(
|σ∗|2 ρ− ω uρ + uf

)
+
∫
∂Γ∗

S(n∗, n∗)ρ
)
.

Since uρ and uf are in H1(Γ∗), we obtain from elliptic regularity theory that ρ ∈ H3(Γ∗). Therefore
we can differentiate the first line in (4.10) and take the L2-inner product with ∇Γ∗ξ for some arbitrary
ξ ∈ H1(Γ∗) to obtain

−
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2 ρ

)
· ∇Γ∗ξ + ω

∫
Γ∗
∇Γ∗uρ · ∇Γ∗ξ =

∫
Γ∗
∇Γ∗uf · ∇Γ∗ξ .

With the Definition of the weak solutions uρ and uf from (4.2) we finally get

−
∫

Γ∗
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2 ρ

)
· ∇Γ∗ξ + ω

∫
Γ∗
ρ ξ =

∫
Γ∗
〈f, ξ〉
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for all ξ ∈ H1(Γ∗). So together with the boundary condition from (4.10), we found a ρ ∈ D(A) with
ωρ−Aρ = f , provided ω > C1

C2
, where C1 and C2 are the positive constants from Lemma 4.7. �

In the following theorem we give a stability criterion for the zero solution of the linearized operator A.

Theorem 4.10.

(i) The spectrum of A consists of countable many real eigenvalues.

(ii) The initial value problem (3.5) is solvable for initial data in H−1(Γ∗).

(iii) The zero solution of (3.5) is asymptotically stable if and only if the largest eigenvalue of A is
negative, in short notation σ(A) < 0.

Proof. ad (i). We want to show that for some λ ∈ R, the operator (λ I −A)−1 : H → H exists and is
compact. For λ > C1

C2
, where C1 and C2 the positive constants from Lemma 4.7 we showed surjectivity of

λ I−A : D(A) −→ H in the last Lemma 4.9. Since every eigenvalue µ ∈ σ(A) fulfills µ ≤ C1
C2

from Lemma
4.8, we see from the identity σ(λ I −A) = λ−σ(A) for the spectrum that there exists no eigenvalue zero
of λ I −A provided λ > C1

C2
. For a linear operator this means in particular that it is injective.

Continuity of the resolvent

(λ I −A)−1 : H −→ D(A)

for λ > C1
C2

can be seen by observing that

(λ I −A)−1 (f) = ρ ⇔ (λ I −A) (ρ) = f ,

which means that ρ ∈ D(A) is a weak solution for the boundary value problem (4.9) with ω = λ. Solutions
of this problem fulfill an inequality

‖ρ‖H3(Γ∗) ≤ C ‖f‖H−1(Γ∗) ,

which gives continuity of the resolvent. Since the embedding D(A) ↪→ H−1(Γ∗) is compact, we get by
composition a compact operator (λ I −A)−1 : H −→ H, provided λ > C1

C2
. Together with the self-

adjointness of A from Lemma 4.9, we get the claim (i) with the help of an abstract operator theorem
from the book of Kato [Kat95].
ad (ii) and (iii). Existence and stability of the problem

Find ρ(t) ∈ D(A) , such that ∂tρ(t) = A(t)

can be treated with the theory of analytic semigroups as in the book of Lunardi [Lun95]. �

The next lemma, which follows with classical arguments from Courant and Hilbert [CH68], gets together
eigenvalues of A and properties of the bilinear form I.

Lemma 4.11. Let

λ1 ≥ λ2 ≥ λ3 ≥ . . .

be the eigenvalues of A (taken multiplicity into account).

16



(i) For all n ∈ N, the following description of the eigenvalues holds

λn = inf
W∈Σn−1

sup
ρ∈W\{0}

− I(ρ, ρ)
(ρ, ρ)−1

,

−λn = sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I(ρ, ρ)
(ρ, ρ)−1

,

where Σn is the collection of n-dimensional subspaces of V and W⊥ is the orthogonal complement
with respect to the (. , .)−1 inner product.

(ii) The eigenvalues λn depend continuously on S(n∗, n∗) and |σ∗| in the L∞-norm.

Proof. The first part follows with the help Courant’s maximum-minimum principle from [CH68] and
the second part follows due to the structure of I,

I(ρ, ρ) =
∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫
∂Γ∗

S(n∗, n∗)ρ2 dHn−1 ,

from which the continuous dependence can be seen directly. �

Now we can describe the eigenvalue λ1 in the above lemma more explicitly.

Remark 4.12. For the largest eigenvalue λ1 of A we have the description

−λ1 = min
ρ∈V \{0}

I(ρ, ρ)
(ρ, ρ)−1

. (4.11)

From Theorem 4.10 we have asymptotic stability of the zero solution of the linearized equation (3.5) if
and only if λ1 < 0. This leads to the following main conclusion.

Theorem 4.13. The zero solution of the linearized equation (3.5) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ V \{0}, where I(ρ, ρ) =
∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫
∂Γ∗

S(n∗, n∗)ρ2 dHn−1.

5 Example

In this section, we consider an explicit given geometry. This means we will specify a region Ω together
with a hypersurface Γ∗ lying inside Ω and touching the boundary at a right angle. Γ∗ will be a stationary
solution of (2.1) and we want to determine a characteristic behaviour concerning the linearized stability
of Γ∗. For a, c > 0 we let Ω = {(x, y, z) ∈ R3 | x

2

a2 + y2

a2 + z2

c2 < 1} be surrounded by the ellipsoid

∂Ω = E = {(x, y, z) ∈ R3 | x
2

a2
+
y2

a2
+
z2

c2
= 1} .

A parametrization of E is given by f : [0, π] × [0, 2π] −→ E, f(u, v) = (a sinu cos v, a sinu sin v, c cosu).
We consider a stationary solution Γ∗ of the surface diffusion equation (2.1) given by

Γ∗ = {(x, y, 0) ∈ R3 |x2 + y2 ≤ a2} .

Γ∗ is a circle in the (x, y)-plane lying inside the ellipsoid E with boundary

∂Γ∗ = {(x, y, 0) ∈ R3 |x2 + y2 = a2} = {f(
π

2
, v) | v ∈ [0, 2π]} ,
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that touches E at a right angle.
To decide on linearized stability of Γ∗, we have to examine due to Theorem 4.13 the positivity of

I(ρ, ρ) =
∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫
∂Γ∗

S(n∗, n∗)ρ2

for all ρ ∈ H1(Γ∗)\{0} with
∫

Γ∗
ρ = 0.

A straightforward calculation gives |σ∗|2 = 0 for the squared norm of the second fundamental form and
S(n∗, n∗) = a

c2 for the second fundamental form of ∂Ω with respect to the inwards pointing unit normal
(−µ) of Ω. With this results the bilinear form from Theorem 4.13 reduces to

I(ρ, ρ) =
∫

Γ∗
|∇Γ∗ρ|2 −

a

c2

∫
∂Γ∗

ρ2 . (5.1)

To determine the minimum of I we proceed in an analogue manner as in Courant and Hilbert [CH68].
By using the fact that Γ∗ is a flat disc in R3 with radius a > 0, we can replace the bilinear form (5.1) by
the following one.

I(ρ, ρ) =
∫
Ba(0)

|∇ρ|2 − a

c2

∫
∂Ba(0)

ρ2 , (5.2)

where Ba(0) is the ball in R2 with center 0 and radius a > 0, and ρ ∈ H1(Ba(0)) with
∫
Ba(0)

ρ = 0. Note
that ∇ is the usual gradient in R2. We can simplify the bilinear form (5.2) further by introducing polar
coordinates (r, ϑ) to get

I(ϕ,ϕ) =
∫ 2π

0

∫ a

0

(
(∂rϕ)2 +

1
r2

(∂ϑϕ)2

)
r dr dϑ− a

c2

∫ 2π

0

(ϕ(a, θ))2
a dϑ , (5.3)

where ϕ = ρ ◦Π for polar coordinates Π(r, ϑ) with ϕ ∈ H1((0, 2π)× (0, a)) and
∫ 2π

0

∫ a
0
ϕ r = 0. Here we

used the transformation rule |∇ρ|2 = (∂rϕ)2 + 1
r2 (∂ϑϕ)2.

If we now want to solve the minimization problem

I(ϕ,ϕ) −→ min , ϕ ∈ H1((0, 2π)× (0, a)) and
∫ 2π

0

∫ a

0

ϕ r = 0 , (5.4)

we can assume for ϕ a Fourier series expansion as

ϕ(r, ϑ) =
1
2
f0(r) +

∞∑
n=1

(fn(r) cos(nϑ) + gn(r) sin(nϑ)) , (5.5)

for functions f0, fn and gn. Due to the volume constraint we observe that
∫ a

0
f0(r) r dr = 0. At the

boundary of Ba(0), formula (5.5) gives for r = a

ϕ(a, ϑ) =
1
2
f0(a) +

∞∑
n=1

(fn(a) cos(nϑ) + gn(a) sin(nϑ)) .

Differentiating (5.5) with respect to r and ϑ, inserting it into formula (5.3) for I(ϕ,ϕ) and using the
orthogonality of the trigonometric functions, we deduce the following expression for I.

I(ϕ,ϕ) =π
∫ a

0

(f ′0(r))2 r dr + π

∞∑
n=1

∫ a

0

(
(f ′n(r))2 +

n2

r2
(fn(r))2

)
r dr (5.6)

+ π

∞∑
n=1

∫ a

0

(
(g′n(r))2 +

n2

r2
(gn(r))2

)
r dr − a2

c2
π(f0(a))2 − a2

c2
π

∞∑
n=1

(fn(a))2 − a2

c2
π

∞∑
n=1

(gn(a))2 .
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Due to this structure we can minimize instead of I also the series of problems given by∫ a

0

(f ′0(r))2 r dr − a2

c2
(f0(a))2 −→ min , (5.7)∫ a

0

(
(f ′n(r))2 +

n2

r2
(fn(r))2

)
r dr − a2

c2
(fn(a))2 −→ min for n ∈ N , (5.8)∫ a

0

(
(g′n(r))2 +

n2

r2
(gn(r))2

)
r dr − a2

c2
(gn(a))2 −→ min for n ∈ N . (5.9)

The first line (5.7) can be minimized at once by f ′0 = 0, and therefore f0(r) ≡ c for some constant c. Due
to the constraint

∫ a
0
f0(r) r dr = 0, we observe f0(r) ≡ 0 and in particular f0(a) = 0. So the first line will

yield the minimal value 0.
For n > 0, we must have fn(0) = 0, otherwise the function n2

r2 (fn(r))2r = n2

r (fn(r))2 from (5.6) would
have a pole at r = 0 that is not integrable. Therefore we can rewrite the integral in (5.8) as follows.∫ a

0

(
(f ′n)2 +

n2

r2
(fn)2

)
r dr =

∫ a

0

(
f ′n −

n

r
fn

)2

r + 2nfn f ′n dr =
∫ a

0

(
f ′n −

n

r
fn

)2

r dr + n(fn(a))2 ,

so that the above minimization problem for fn reads as∫ a

0

(
f ′n −

n

r
fn

)2

r dr +
(
n− a2

c2

)
(fn(a))2 −→ min for n ∈ N .

The minimum is attained if f ′n − n
r fn = 0, which gives fn(r) = cnr

n for some constant cn. The minimal
value is then given by (

n− a2

c2

)
(fn(a))2 .

Analogous calculations for gn yield finally the minimal value of I given by

π

∞∑
n=1

(
n− a2

c2

)(
(fn(a))2 + (gn(a))2

)
. (5.10)

With this minimal value we can give the following result about linear stability of Γ∗.

Lemma 5.1. With the above notations we get the following result for Γ∗.

(i) If c > a, Γ∗ is linearly asymptotically stable.

(ii) If c < a, Γ∗ is linearly asymptotically instable.

Proof. If c > a, we see that
(
n− a2

c2

)
≥
(

1− a2

c2

)
> 0 and the above minimal value is positive.

If on the other hand c < a, we choose f1(a) = g1(a) = 1
2 and fn(a) = gn(a) = 0 for n > 1, so that the

above minimal value simplifies to

π

(
1− a2

c2

)
< 0 .

Using Theorem 4.13 yields the proof. �
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