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A REMARK ON THE RIGIDITY CASE OF THE POSITIVE ENERGY THEOREM

MARC NARDMANN

ABSTRACT. In their proof of the positive energy theorem, Schoen and Yau showed that every asymptotically flat spacelike
hypersurface M of a Lorentzian manifold which is flat along M can be isometrically imbedded with its given second
fundamental form into Minkowski spacetime as the graph of a function Rn → R; in particular, M is diffeomorphic to Rn.
In this short note, we give an alternative proof of this fact. The argument generalises to the asymptotically hyperbolic case,
works in every dimension n, and does not need a spin structure.

1. INTRODUCTION

The rigidity case of the positive energy theorem is the situation when E = |P | holds for the energy E ∈ R and the
momentum P ∈ Rn of an asymptotically flat spacelike hypersurface M of a Lorentzian (n + 1)-manifold (M, g)
with n ≥ 3 which satisfies the dominant energy condition at every point of M . The positive energy theorem says
that then the Riemann tensor of g vanishes at every point of M ; we call this the rigidity statement.
This has been proved by Parker/Taubes [6] in the case when M admits a spin structure — and under the assumption
thatM is 3-dimensional, but the argument generalises to higher dimensions. (The original proof of Witten [10] made
the slightly stronger assumption that (M, g) satisfies the dominant energy condition on a neighbourhood of M .)
Another proof of the positive energy theorem, in particular of the rigidity statement, had been given earlier by
Schoen/Yau [7, 8, 9], without the spin assumption — again assuming n = 3, but the argument can be generalised
to n ≤ 7. More recently, Lohkamp extended their approach to higher dimensions [4]; the details for arbitrary
fundamental forms have not been published yet, however. Schoen has announced a proof in a similar spirit.
Schoen/Yau proved actually more than Parker/Taubes: they showed that in the rigidity case the Riemannian n-
manifold M with its second fundamental form induced by the imbedding in (M, g) can be imbedded isometrically
into Minkowski spacetime Rn,1 = Rn × R as the graph of a function Rn → R, which implies in particular that M
is diffeomorphic to Rn.
It is natural to ask whether one can decouple the proof of imbeddability into Minkowski spacetime from the proof
of the rigidity statement: When we know already — for instance from the Parker/Taubes proof — that g is flat along
M , can we deduce directly that M with its second fundamental form admits an imbedding of the desired form and
is in particular diffeomorphic to Rn?
The aim of the present short article is to show how this can be done in a simple way, independently of the Schoen/Yau
arguments, and with minimal assumptions. Locally, the desired imbeddability follows already from the fundamental
theorem of hypersurface theory due to Bär/Gauduchon/Moroianu [1, Section 7] (which has a short elegant proof).
Since this theorem applies not only to flat metrics but to metrics of arbitrary constant sectional curvature, we can
also consider the case of imbeddings into anti-de Sitter spacetime. An analogue of the Parker/Taubes proof in this
situation is the work by Maerten [5], which requires a spin assumption. He shows in this case that the hypersurface
with its second fundamental form imbeds isometrically into anti-de Sitter spacetime. As Schoen/Yau, he does this
via an explicit construction which is a by-product of the specific method that is used to prove the positive energy
theorem.
The result of the present article, Theorem 1.5 below, applies in a situation when it has already been proved somehow
that along the hypersurface the Gauss and Codazzi equations of an ambient Lorentzian metric of constant curvature
c ≤ 0 are satisfied. The conclusion is that then a suitable isometric imbedding into Minkowski or anti-de Sitter
spacetime exists and is essentially unique, which implies in particular that the hypersurface is diffeomorphic to Rn.
The proof does not require any spin assumption or dimensional restriction.
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Let us adopt the following conventions and terminology. All manifolds, bundles, metrics, maps, etc. are smooth. The
sign convention for the Riemann tensor is Riem(u, v)w = ∇u∇vw − ∇v∇uw − ∇[u,v]w. Lorentzian metrics on
(n+ 1)-manifolds have signature (n, 1) (i.e. n positive=spacelike dimensions, 1 negative=timelike dimension).

1.1. Definition (hypersurface data set). A hypersurface data set is a quadruple (M, g,N,K) such that M is a
manifold, g is a Riemannian metric on M , N is a Riemannian line bundle over M (i.e. a real line bundle equipped
smoothly with scalar products on the fibres), and K is a section in Sym2(T ∗M)⊗N →M .
When M is a spacelike hypersurface of a Lorentzian manifold (M, g), then the hypersurface data set induced by the
inclusion M → (M, g) is the hypersurface data set (M, g,N,K) such that g is the restriction of g, such that N is
the normal bundle of M in (M, g) equipped with the restriction of −g as fibre metric, and such that K is the second
fundamental form of M in (M, g).
Let (M, g,N,K) be a hypersurface data set. An isometric imbedding of (M, g,N,K) into a Lorentzian manifold
(M, g) is a pair (f, ι) such that

• f : (M, g)→ (M, g) is an isometric imbedding;
• ι is an isomorphism of Riemannian line bundles from N to the normal bundle N ′ of the spacelike hyper-

surface M ′ := f(M) in (M, g), where the fibre metric on N ′ is the restriction of −g;
• the second fundamental form II ∈ Γ(Sym2T ∗M ′ ⊗ N ′) of M ′ in (M, g) is given by II (f∗v, f∗w) =
ι(K(v, w)) for all x ∈M and v, w ∈ TxM .

An isometric immersion of (M, g,N,K) into (M, g) is a pair (f, ι) such that f : M → M is an immersion, such
that ι is a map whose domain is the total space of N , and such that every x ∈ M has a neighbourhood U for which
(f |U, ι|(N |U)) is an isometric imbedding of (U, g|U,N |U,K|U) into (M, g).

Remark. In most contexts where a spacelike hypersurface M of a Lorentzian manifold (M, g) is considered (e.g. in
the positive energy theorem or discussions of the constraint equations in General Relativity), it is assumed that the
normal bundle of M is trivial (i.e. that g is time-orientable on a neighbourhood of M ), and a unit normal vector field
is fixed. This assumption is often unnecessary, in particular for the rigidity case of the positive energy theorem: We
obtain the triviality of the normal bundle as a conclusion, we do not have to assume it.

1.2. Definition. Let (M, g,N,K) be a hypersurface data set. We denote the fibre scalar product onN by 〈., .〉N . We
define a covariant derivative dN on the Riemannian line bundle N →M by declaring every local unit-length section
to be parallel. We define∇g,N to be the covariant derivative on the vector bundle Sym2T ∗M ⊗N →M induced by
the Levi-Civita connection of g and dN .
Let c ∈ R. (M, g,N,K) satisfies the Gauss and Codazzi equations for constant curvature c iff the equations

c
(
g(u, z)g(v, w)− g(u,w)g(v, z)

)
= Riemg(u, v, w, z)− 〈K(u,w),K(v, z)〉N + 〈K(u, z),K(v, w)〉N ,

0 = −
〈
(∇g,Nu K)(v, w), n

〉
N

+
〈
(∇g,Nv K)(u,w), n

〉
N

hold for all x ∈M and u, v, w, z ∈ TxM and n ∈ Nx.

1.3. Fact. Let (M, g,N,K) be the hypersurface data set induced by the inclusion of a spacelike hypersurfaceM into
a Lorentzian manifold (M, g) which has constant (sectional) curvature c at every point of M . Then (M, g,N,K)
satisfies the Gauss and Codazzi equations for constant curvature c. �

Remark. When the hypersurface data set (M, g,N,K) induced by the inclusion of a spacelike hypersurface M into
a Lorentzian manifold (M, g) satisfies the Gauss and Codazzi equations for constant curvature c, then (M, g) does
in general not have constant curvature c at any point of M . The reason is that the Gauss and Codazzi equations do
not yield information about the curvature components Riemg(n, v, w, n) with v, w ∈ TxM and n ∈ Nx.

1.4. Notation. Let n, r ≥ 0, let c ∈ R≤0. Let Rn,r denote Rn+r equipped with the semi-Riemannian metric
gn,r :=

∑n
i=1 dx2

i −
∑n+r
i=n+1 dx2

i . We defineMn,1
0 to be Minkowski spacetime Rn,1. For c < 0, we consider the

pseudohyperbolic spacetime Hn,1c :=
{
x ∈ Rn,2

∣∣ gn,2(x, x) = 1
c

}
(which is a Lorentzian submanifold of Rn,2)

and its universal covering $ : Rn × R→ Hn,1c given by (x, t) 7→ (x, cos t
√
|x|2 − 1/c, sin t

√
|x|2 − 1/c), and we

define the anti-de Sitter spacetimeMn,1
c to be Rn × R equipped with the $-pullback metric of the metric on Hn,1c .

(BothHn,1c andMn,1
c have constant curvature c; sometimesHn,1c instead ofMn,1

c is called anti-de Sitter spacetime.)
For c ≤ 0, we define pr : Mn,1

c = Rn × R→ Rn to be the projection (x, t) 7→ x.
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Now we can state the main result (our definition of simply connected includes being connected):

1.5. Theorem. Let n ≥ 0 and c ∈ R≤0, let M be a connected n-manifold which contains a simply connected non-
compact n-dimensional submanifold-with-boundary that is closed inM and has compact boundary, let (M, g,N,K)
be a hypersurface data set which satisfies the Gauss and Codazzi equations for constant curvature c. Assume that
(M, g) is complete. Then:

(i) (M, g,N,K) admits an isometric imbedding (f, ι) intoMn,1
c such that pr ◦ f : M → Rn is a diffeomor-

phism.
(ii) When (f̃ , ι̃) is an isometric immersion of (M, g,N,K) intoMn,1

c , then there is an isometry A : Mn,1
c →

Mn,1
c with f̃ = A ◦ f ; in particular, f̃ is an imbedding.

Remark 1. In the rigidity case of (the asymptotically flat version of) the positive energy theorem, the assumptions
of our theorem are satisfied: The hypersurface data set is induced by the inclusion of M into a Lorentzian manifold
which is flat along M , and thus satisfies the Gauss and Codazzi equations for constant curvature 0. The Riemannian
metric g is complete (this follows from the definition of asymptotic flatness). M contains a compact n-dimensional
submanifold-with-boundary C such that M\(C\∂C) is diffeomorphic to a nonempty disjoint union of copies of
Rn\(open ball) each of which is closed in M (this closedness follows from the completeness of the metric) and
simply connected (because n ≥ 3 is assumed in the positive energy theorem).

Similarly, the assumptions are satisfied in Maerten’s theorem for asymptotically hyperbolic hypersurfaces [5, second
half of the proof of the first theorem in Section 4].

Remark 2. Statement (i) shows that f(M) is the spacelike graph of a function Rn → R. This implies also that f(M)
is an acausal subset ofMn,1

c . (Note that e.g. not every spacelike imbedding f : Rn → Rn,1 is acausal: consider an
imbedding that winds up, i.e. in the direction of increasing time, in a spacelike way like a spiral staircase.)

Remark 3. Theorem 1.5 would clearly be false without the simply-connectedness assumption, even in the case
K ≡ 0: take e.g. (M, g,N,K) to be the hypersurface data set induced by the inclusion of M = Rn−1 × S1 × {0}
into the flat product Lorentzian manifold Rn−1 × S1 × R with R as timelike factor. Then (i) is clearly not true.

The theorem would also be false without the completeness assumption: small subsets (e.g. diffeomorphic to a ball or
an annulus) of a complete spacelike hypersurface in Minkowski spacetime yield counterexamples.

Remark 4. The theorem does not assume that the Riemannian line bundle N is trivial. But it implies that N is
trivial, because every Riemannian line bundle over Rn is trivial. Note that also this triviality would in general not
hold without the simply-connectedness assumption: flat Rn−1 × S1 admits an isometric imbedding (with K ≡ 0)
into the flat Lorentzian manifold Rn−1 ×M, where M is the Möbius strip, regarded as a line bundle over S1 with
timelike fibres. The normal bundle is not trivial in this case, but all assumptions of Theorem 1.5 except for the
simply-connectedness are satisfied.

Remark 5. A in (ii) is in general neither time orientation-preserving nor space orientation-preserving. (Every isomet-
ric imbedding can be composed with an isometry ofMn,1

c which is space and/or time orientation-reversing.)

Remark 6. In the case c < 0, the theorem holds also with Hn,1c
∼= Rn × S1 and the projection pr′ : Rn × S1 3

(x, t) 7→ x ∈ Rn instead of Mn,1
c and pr. Similarly, Minkowski spacetime Mn,1

0 is the universal cover of a
Lorentzian manifoldHn,10 = (Rn × S1, g0) via the covering q : Rn ×R 3 (x, s) 7→ (x, [s]) ∈ Rn × (R/Z), and the
theorem would hold with Hn,10 and pr′ instead ofMn,1

0 and pr. One can see this either by checking that the proof
of Theorem 1.5 remains valid with these modifications, or directly by applying the theorem and composing maps
M →Mn,1

c with q.

The rest of the article contains the proof of Theorem 1.5.

2. THE FUNDAMENTAL THEOREM FOR HYPERSURFACES

We need the following special case of the fundamental theorem for hypersurfaces due to Bär/Gauduchon/Moroianu
[1, Section 7]:
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2.1. Proposition. Let n ≥ 0 and c ∈ R, letM be a simply connected n-manifold, let (M, g,N,K) be a hypersurface
data set which satisfies the Gauss and Codazzi equations for constant curvature c. Then (M, g,N,K) admits an
isometric immersion intoMn,1

c . When f0, f1 are isometric immersions of (M, g,N,K) intoMn,1
c , then there exists

an isometry A : Mn,1
c →Mn,1

c with f1 = A ◦ f0.

Remarks on the proof. Bär/Gauduchon/Moroianu (BGM) consider the situation when the metric on M has arbitrary
signature and trivial spacelike normal bundle in (M, g) (see the beginning of [1, Section 3]). Since every real line
bundle over a simply connected manifold is trivial (the Stiefel/Whitney classw1(N) ∈ H1(M ; Z2) classifies real line
bundles N →M up to isomorphism), so is our N . To apply the BGM result in our case, we reverse the signs of our
g and c, then use their Corollary 7.5. We obtain existence, and uniqueness up to isometries, of isometric immersions
of the sign-reversed version of (M, g,N,K) into the sign-reversed version of Mn,1

c . This yields existence and
uniqueness up to isometries of isometric immersions of (M, g,N,K) intoMn,1

c .
In this argument we have not applied the BGM result literally, because the sign-reversed version of ourMn,1

c is the
(nontrivial) universal cover of BGM’s M1,n

−c . But the BGM Corollary 7.4, which makes only a local statement, does
not care about the difference, and the BGM Corollary 7.5 then follows from a standard monodromy argument which
works for every geodesically complete manifold of signature (1, n) and constant curvature −c. �

3. QUASICOVERINGS

Let us use the following terminology:

3.1. Definition. Let M,B be n-manifolds. A map φ : M → B is a quasicovering iff it has the following properties:
(i) φ is an immersion (equivalently: it is a local diffeomorphism, i.e., every y ∈M has an open neighbourhood

U such that φ|U is diffeomorphism onto its image).
(ii) The φ-preimage of every connected component of B is nonempty.

(iii) For all paths γ : [0, 1] → B and γ̃ : [0, 1[ → M with φ ◦ γ̃ = γ| [0, 1[, there exists an extension of γ̃ to a
path [0, 1]→M .

We will only be interested in the case B = Rn.
It is easy to see that every covering map (in the smooth category) is a quasicovering. (Recall that a covering map is
defined by the condition that every x ∈ B has an open neighbourhood U such that φ−1(U) is the nonempty union of
open disjoint sets Ui each of which is mapped diffeomorphically onto U by φ.)
Less obviously, every quasicovering is a covering; i.e., the two concepts are equal. I do not know a reference where
this elementary fact is stated explicitly, although I suspect that some exists. In the proof of Theorem 1.5 below we
will be in a situation where it is easy to check that a certain map φ : M → Rn is a quasicovering. If we knew a priori
that it is a covering, then covering theory would imply that it is a diffeomorphism (because Rn is simply connected);
this is what we need.
But the covering property of φ is hard to verify directly: For every x ∈ B, every y ∈ φ−1({x}) has an open
neighbourhood Uy which is mapped diffeomorphically to an open neighbourhood Vy of x. But φ−1({x}) could a
priori be infinite, and we would have to show that the sets Uy can be chosen such that the intersection of the sets Vy
is a neighbourhood of x.
However, one can show directly that every quasicovering φ : M → Rn is a diffeomorphism just by going through the
standard proofs of covering theory and checking that they remain valid, essentially word by word, for a quasicovering.
One can even verify in this way that the classifications of coverings and quasicoverings coincide in general, which
implies that every quasicovering is a covering; but we are not interested in doing that.

3.2. Lemma. Let M,B be connected n-manifolds with B simply connected, let φ : M → B be a quasicovering.
Then φ is a diffeomorphism.

Sketch of proof. As mentioned, we just have to go through some of the standard proofs of covering theory, e.g. as in
[2, Sections III.3–8]. The main steps are as follows.
Step 1: For every path γ : [0, 1]→ B and every z ∈M with φ(z) = γ(0), there exists a unique path γ̃ : [0, 1]→M
with φ ◦ γ̃ = γ and γ̃(0) = z. In order to prove this, consider the set I of all t ∈ [0, 1] such that there exists a unique
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path γ̃ : [0, t] → M with φ ◦ γ̃ = γ|[0, t] and γ̃(0) = z. Clearly 0 ∈ I . Property (i) in the quasicovering definition
implies that I is open in [0, 1]. The closedness of I follows easily from property (iii). Hence I = [0, 1].
Step 2: There exists a continuous map ξ : B → M with φ ◦ ξ = idB . This is a standard monodromy argument: By
property (ii) in the quasicovering definition, there exists a point z0 ∈ M ; let x0 = φ(z0). Every point x1 ∈ B can
be connected to x0 by a path γ, and Step 1 yields a unique path γ̃ in M with φ ◦ γ̃ = γ and γ̃(0) = z0. We have
to prove that ξ(x1) := γ̃(1) does not depend on the choice of γ. This follows from the simply-connectedness of B,
because it is straightforward to verify that homotopic choices of γ yield the same γ̃(1). It remains to check that the
resulting map ξ : B →M is continuous, which is also straightforward. (Cf. e.g. [2, proof of Theorem III.4.1].)
Step 3: ξ ◦ φ = idM holds. The set S := {z ∈M | ξ(φ(z)) = z} is nonempty because it contains z0.
Let z ∈ M . There exists an open neighbourhood U0 of z in M such that φ|U0 is a diffeomorphism onto its image.
There exists an open neighbourhood U1 of ξ(φ(z)) in M such that φ|U1 is a diffeomorphism onto its image. Since
W ′ := φ(U0)∩φ(U1) is a neighbourhood of φ(z) = φ(ξ(φ(z))) in B, there exists a connected open neighbourhood
W of φ(z) whose closure in B is contained in W ′. The sets Vi := (φ|Ui)−1(W ) are nonempty, connected, and open
in φ−1(W ). They are also closed in φ−1(W ): the closure of Vi in M is contained in (φ|Ui)−1(W ′), and we have
(φ|Ui)−1(W ′) ∩ φ−1(W ) = (φ|Ui)−1(W ). Thus V0 and V1 are connected components of the manifold φ−1(W ),
hence either equal or disjoint.
The set V := V0 ∩ (ξ ◦ φ)−1(V1) is an open neighbourhood of z in M . If x = ξ(φ(x)) holds for some x ∈ V , then
ξ(φ(x)) ∈ V0 ∩ V1 and thus V0 = V1. In that case y = ξ(φ(y)) holds for every y ∈ V : the points y and ξ(φ(y)) lie
both in V1 and have the same φ-image, and φ|V1 is injective.
Therefore S and M\S are open in M : if one of these sets contains z, then it contains the neighbourhood V of z.
Since M is connected, we obtain S = M . This completes the proof of Step 3.

The steps 2 and 3 show that φ is a homeomorphism. Since it is a local diffeomorphism, it is a diffeomorphism. �

4. A PROPOSITION

Recall that a map f : M → N from a manifold M to a Lorentzian manifold (N,h) is spacelike iff for every x ∈M
the image of Txf : TxM → Tf(x)N is spacelike; here the subspace {0} of Tf(x)N counts as spacelike.

4.1. Lemma. Let n ≥ 0 and c ∈ R≤0, let w : [0, 1[→Mn,1
c be a spacelike path such that pr ◦w : [0, 1[→ Rn has

finite euclidean length. Then w has finite length.

Proof. For y ∈ Mn,1
c = Rn × R, the map Typr : TyMn,1

c = Rn × R → Tpr(y)Rn = Rn is given by (u,w) 7→ u.
We claim that |v|Mn,1

c
≤ |(Typr)(v)|eucl holds for allMn,1

c -spacelike v. This is obvious for c = 0: |(u,w)|2Mn,1
0

=

|u|2eucl − w2 ≤ |u|2eucl = |(Typr)(u,w)|2eucl. For c < 0, we have |(u,w)|2Mn,1
c

= gn,2
(
Ty$(u,w), Ty$(u,w)

)
(cf.

Notation 1.4), where Ty$(u,w) ∈ T$(y)Hn,1c ⊆ Rn × R2 has the form (u, b(y, u, w)) for some b(y, u, w) ∈ R2.
Thus |(u,w)|2Mn,1

c
= |u|2eucl − |b(y, u, w)|2eucl ≤ |u|2eucl = |(Typr)(u,w)|2eucl. This proves our claim.

We obtain length(w) =
∫ 1

0
|w′(t)|dt ≤

∫ 1

0

∣∣Tw(t)pr(w′(t))
∣∣
eucldt =

∫ 1

0
|(pr ◦ w)′(t)|eucldt = length(pr ◦ w). �

We say that a map f : (M, g) → (N,h) from a Riemannian manifold to a Lorentzian manifold is long iff it is
spacelike and for every interval I ⊆ R and every path w : I →M , the g-length of w is finite if the h-length of f ◦w
is finite. For example, every spacelike isometric immersion is long.

4.2. Proposition. Let n ≥ 0 and c ∈ R≤0, let (M, g) be a nonempty connected complete Riemannian n-manifold, let
f : (M, g)→Mn,1

c be a long immersion. Then f is a smooth imbedding, and pr◦ f : M → Rn is a diffeomorphism.

Proof. The map φ := pr ◦ f is an immersion, because for every x ∈ M the image of Txf : TxM → Tf(x)Mn,1
c is

spacelike and Tf(x)pr maps every spacelike subspace of Tf(x)Mn,1
c injectively to Tpr(f(x))Rn (since ker(Tf(x)pr) =

{0} × R ⊆ Rn × R = Tf(x)Mn,1
c is timelike). We claim that φ is a quasicovering.

Let γ : [0, 1]→ Rn and γ̃ : [0, 1[→M be paths with φ ◦ γ̃ = γ| [0, 1[. The path pr ◦ f ◦ γ̃ = γ| [0, 1[ in Rn has finite
euclidean length because γ has finite euclidean length. By Lemma 4.1, f ◦ γ̃ has finite length. Since f is long, γ̃ has
finite g-length.
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We choose a sequence (tk)k∈N in [0, 1[ which converges to 1. Since γ̃ has finite g-length, there is no ε > 0 such
that ∀k0 ∈ N : ∃k, l ≥ k0 : distg(γ̃(tk), γ̃(tl)) ≥ ε. Thus (γ̃(tk))k∈N is a Cauchy sequence in (M, g). Completeness
implies that it converges to some point x ∈ M . We extend γ̃ to [0, 1] by γ̃(1) = x. Using that φ maps a neigh-
bourhood of x ∈M diffeomorphically to its image, we obtain φ(γ̃(1)) = φ(limk→∞ γ̃(tk)) = limk→∞ φ(γ̃(tk)) =
limk→∞ γ(tk) = γ(1) and deduce the smoothness of the extended γ̃ from γ = φ ◦ γ̃.
This shows that φ is a quasicovering, as claimed. By Lemma 3.2, φ is a diffeomorphism. Since φ is injective, so is f .
Moreover, f is proper, i.e., f−1(C) is compact for every compact set C ⊆ Mn,1

c . That’s because pr(C) and thus
(pr ◦ f)−1(pr(C)) are compact and f−1(C) is a closed subset of (pr ◦ f)−1(pr(C)).
Since every proper injective immersion is a smooth imbedding, the proof is complete. �

Remark. We will apply Proposition 4.2 only in a situation where we know already that M is simply connected. But
that information would not simplify the proof.

5. PROOF OF THEOREM 1.5

5.1. Lemma. Let n ≥ 0, let M be a connected n-manifold which contains a simply connected noncompact n-di-
mensional submanifold-with-boundary that is closed in M and has compact boundary. Then every covering map
π : Rn →M is a diffeomorphism.

Proof. When a connected 1-manifold M contains a noncompact subset which is closed in M , then M is diffeomor-
phic to R. Thus the lemma is true for n = 1. The case n = 0 is even simpler. Now we assume n ≥ 2. Let Z be a
simply connected noncompact n-submanifold-with-boundary ofM which is closed inM and has compact boundary.
Since Z is simply connected, the submanifold-with-boundary π−1(Z) of Rn is the disjoint union of connected
components Z̃i such that π|Z̃i : Z̃i → Z is a diffeomorphism. In particular, each Z̃i has compact boundary. Thus the
boundary of π−1(Z) is a disjoint union of countably many compact nonempty connected (n− 1)-manifolds Σj . No
connected component Z̃i of π−1(Z) is compact, because otherwise π(Z̃i) = Z would be compact.
For each j, the Jordan/Brouwer separation theorem (cf. [3] for a simple proof) implies that Rn\Σj has precisely two
connected components. Since n ≥ 2, precisely one of these two components is relatively compact in Rn (namely
the unique component whose closure in the one-point compactification Sn = Rn ∪ {∞} of Rn does not contain the
point∞); we call it interiorj and denote the closure of the other component by exteriorj .
We claim that for each j, π−1(Z) is contained in exteriorj . Assume not. Then π−1(Z) ∩ interiorj 6= ∅. Either
a connected component of π−1(Z) is contained in interiorj , or π−1(Z) touches Σj from the interior (that is, U ∩
interiorj ∩ π−1(Z) 6= ∅ holds for every neighbourhood U of Σj in Rn). Since Σj is a boundary component of
π−1(Z), the latter alternative implies that Σj has a neighbourhood U with U∩(exteriorj\∂ exteriorj)∩π−1(Z) = ∅.
In each case, there exists a connected component Z̃i of π−1(Z) which is contained in the closure of interiorj . Since
π−1(Z) is closed in Rn (because Z is closed in M ), this Z̃i is compact. This contradiction proves our claim.
Thus π−1(Z) is contained in

⋂
j exteriorj (which is by definition equal to Rn if the index set is empty). The two sets

are even equal, for otherwise a boundary component Σj of π−1(Z) would meet the interior of
⋂
j exteriorj , which is

not possible because Σj = ∂ exteriorj is contained in the boundary of
⋂
j exteriorj .

We claim that
⋂
j exteriorj is connected. To show this, consider x, y ∈

⋂
j exteriorj . We modify the straight path γ

in Rn from x to y on each interval [a, b] it spends in interiorj for some j: since γ(a), γ(b) lie in Σj , we can replace
γ|[a, b] by a path in Σj from γ(a) to γ(b). This yields a path from x to y in

⋂
j exteriorj and thus proves our claim.

Hence π−1(Z) is connected, and π maps π−1(Z) diffeomorphically to Z. The connectedness of M implies that π is
a one-sheeted covering, i.e. a diffeomorphism. �

Remark. In applications to positive energy theorems, one has much more information than is assumed in Lemma
5.1: one knows that M (of dimension n ≥ 3) is noncompact and contains a compact n-dimensional submanifold-
with-boundary C such that each connected component Y of M\C is diffeomorphic to Sn−1 × ]0, 1[; the closure Z
in M of each of these ends Y is a submanifold-with-boundary of M which is diffeomorphic to Sn−1 × [0, 1[ and
thus satisfies the assumptions of the lemma. But all this additional information would not help much in the proof.
For instance, π−1(C) could a priori still be noncompact; this makes arguments involving ends difficult.
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Proof of Theorem 1.5. Let π : M̃ → M be the universal covering of M , let g̃ := π∗g, let Ñ be the pullback bundle
π∗N over M̃ , and define K̃ = π∗K ∈ Γ(Sym2T ∗M̃ ⊗ Ñ) by K̃(v, w) = K(π∗v, π∗w) ∈ Nπ(x) = (π∗N)x for all
x ∈ M̃ and v, w ∈ TxM̃ . Since (M, g,N,K) satisfies the Gauss and Codazzi equations for constant curvature c, so
does (M̃, g̃, Ñ , K̃). Being the pullback of a complete metric by a covering map, g̃ is complete.
Proposition 2.1 tells us that there exists an isometric immersion (f, ι) of (M̃, g̃, Ñ , K̃) intoMn,1

c ; and that any two
such immersions differ by an isometry ofMn,1

c . Proposition 4.2 implies that f is an isometric imbedding and that
pr ◦ f : M̃ → Rn is a diffeomorphism. We identify M̃ with Rn via pr ◦ f .
Lemma 5.1 shows that the covering π : Rn → M is a diffeomorphism. (M̃, g̃, Ñ , K̃) and (M, g,N,K) can be
identified via π, and the theorem follows. �

Remark 1. The proof here is similar to the work of Maerten [5, second half of the proof of the first theorem in Section
4] (which deals with the case c < 0 on a spin manifold) insofar as both employ the universal covering of M and
argue that it is one-sheeted. Maerten uses apparently a statement similar to Lemma 5.1 at the end of his proof, but
does not give a reference or spell out the details.

Remark 2. The proof of the positive energy theorem in [6] yields already the information that the hypersurface M
has only one end in the rigidity case. The arguments above provide a second, independent proof that M has only one
end.
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