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Epstein-Barr virus (EBV) replicates in a latent or a lytic 
way in the infected organism, depending on the type and 
level of differentiation of the host cell. The switch 
between latency and lytic replication was previously 
shown, for Burkitt's lymphoma cell lines, to depend on 
the viral BZLF1 gene product. Protein-DNA assays 
were used to identify the cis-acting elements that 
represent the link between regulating signal transduction 
pathways and the viral cascade of gene expression. 
Specific binding of proteins to several sites of the BZLF1 
promoter during latency was shown. Induction of the 
lytic cycle by stimulation with 12-O-tetradecanoyl- 
phorbol 13-acetate abolished the binding of these 

proteins to the distal promoter (positions - 2 2 7  to 
-551) ,  suggesting a functional role for the down- 
regulation of promoter activity during latency. Computer 
analysis identified a multiply repeated sequence motif, 
HI, in this region and exonuclease III footprints 
confirmed that these sites act as specific protein 
recognition sites. Using a set of reporter plasmids we 
were able to demonstrate a negative regulatory effect of 
the HI motif in some B lymphoid cell lines, in contrast 
to epithelial HeLa cells. The HI silencer elements are 
different from other silencer elements described so far in 
respect of their sequence and protein-binding pattern 
during the activation of BZLF1. 

Introduction 

Cell type-specific regulation of latency and productive 
lytic replication is important for the lifelong persistence 
of Epstein-Barr virus (EBV) after primary infection. A 
small proportion of lymphocytes from healthy donors 
contain latently replicating EBV genomes. However, the 
cell cycle-independent replication of viral DNA and 
death of the infected cell, as a consequence of a lytic cycle 
of virus replication, is a rare event. In epithelial tissues 
of the uterine cervix, parotid gland and tongue (Wolf 
et al., 1984; Sixbey et al., 1986; Greenspan et al., 1985; 
Becker et al., 1991; Young et al., 1991), the virus 
replicates and consequently lyses the host cell. The 
product of  the viral reading frame BZLFt (Z'ta, EB1, 
ZEBRA) disrupts latency in Burkitt's lymphoma (BL) 
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cells and leads to viral replication in distinct cell types 
(Countryman et al., 1987; Bogedain et al., 1994). Z'ta 
trans-activates a series of homologous and heterologous 
early viral promoters (Chavrier et al., 1989; Chevallier- 
Greco et al., 1986, 1989; Cox et al., 1990; Kenney et al., 
1989a, b; Lieberman et al., 1990; Rooney et al., 1989) 
and the other immediate early genes BRLF1 (Chevallier- 
Greco et al., 1989) and BI'LF14 (Marschall et al., 1991), 
as well as the BZLF1 promoter itself (Urier et al., 1989; 
Flemington & Speck, 1990b). Hence Z'ta has a pivotal 
role in the transition from latency to lytic replication. 
Control of transcriptional activity by positively as well as 
negatively acting elements has been shown (Flemington 
& Speck, 1990a; Montalvo et al., 1991). In order to 
identify cis-acting elements that mediate the control of ~ 
BZLF1 gene induction by the host, we employed DNA 
binding assays with protein extracts from cells that were 
latently infected and from cells permitting lytic repli- 
cation of EBV. We identified elements that changed 
their pattern of protein binding during gene activation. 
These elements, with a common sequence motif, desig- 
nated HI, were repeated five times (~, fl, ~, 6 and e) 
within the promoter region of the BZLF1 gene. Site- 
directed mutagenesis and transfection assays with re- 
porter constructs demonstrated their functional impor- 
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tance for down-regulation of BZLF1 during latent 
infection. 

Methods 

Cell lines and transfection assays. For transfection assays we used the 
lymphoid EBV-negative BL cell line B JAB, the EBV-positive BL cell 
line Raji, two lymphoid cell lines (LCL), established by spontaneous 
outgrowth (Ru-LCL and Em-LCL) and epithehal HeLa cells. Trans- 
fection of lymphoid cells was achieved by electroporation with a Bio- 
Rad Gene Pulser. Cells (2 x 107) were collected by centrifugation at 
1000g at room temperature~ washed once and resuspended in 
400 lal PBS. The cells were mixed with 100 lal of  DNA solution (50 lag 
of  plasmid DNA in PBS) and incubated for 10rain at room 
temperature. The cells were treated with a pulse of 250 V/960 laF, 
incubated for another 10rain at room temperature and finally 
resuspended in 5 ml RPMI with 10 % fetal calf serum. After 3 to 5 days, 
the culture medium was tested for the presence of  the reporter protein 
hepatitis B virus surface antigen (HBsAg; Marschall et al., 1989). The 
epithelial cell line HeLa was transfected by calcium phosphate 
precipitation as described earlier (Marschall et al., 1989). Promoter 
activities were expressed as percentage activity (the average of  at least 
three independent experiments) in relation to a control construct which 
did not contain EBV inserts. 

Recombinantplasmids andoligonucleotides. The recombinant plasmid 
pEBZ contains the complete promoter region of  BZLFI (Baer et al., 
1984; Skate & Strominger, 1980), from the BamHl site at position 
-551  to the NaeI site at position +13 (relative to the start site of  
transcription). The plasmid was constructed by inserting the 564 bp 
BamHI-NaeI fragment into pUC18 BamHIHincII sites. The pEBZ 
EBV insert was subcloned further, in three fragments, for bandshift 
assays. The proximal 240 bp SphI-SphI fragment was cloned into the 
pUC18 SphI-SphI site, the central 120 bp SphI-BalI fragment was 
cloned into pUCI8  HincII-SphI and the distal 200 bp BalI-BamHI 
fragment into pUC18 BamH1-HincI1. This gave the constructs pZ240, 
pZl20 and pZ200 respectively (Fig. 1). The promoter region from 
positions -551 to -227 ,  relative to the start site of transcription, was 
inserted upstream of  the heterologous early enhancer-promoter of  
simian virus 40 (SV40), which drives the expression of  HBsAg in the 
plasmid pSVHBs (Marschall et aL, 1989). The BamHI-SphI fragment 
of the promoter was treated with T4 DNA polymerase and cloned into 
the EcoRI site of  pSVHBs, which had been blunt-ended with the 
Klenow fragment of  DNA polymerase, to give pSSVHBs. 

Point mutations were introduced into the BZLF1 promoter region 
using modifications of  the PCR techniques reviewed by Higuchi (1990). 
The sites targeted for mutagenesis were the HI c~, fl and 7 sequence 
motifs, identified in the promoter region using the GCG software 
package (Devereux et aL, 1984). The sequences of  each of  the five 
motifs are shown in Fig. 2 (a). The mutations (indicated in bold), which 
effectively inactivate individual motifs from the promoter, resulted in a 
sequence of  5' TAAGCTTG 3" for the HI ~ element, 5" CAAGATTG 3" 
for HI fl and 5' CAAGCTTG 3" for HI ?. The PCR-mutagenesis 
products, designated ~*, fl* and 7' ,  were cut with the restriction 

BamHI Bali S~hI NaeI 
I I " 1  

I I I I 
pZ200 pZ120 pZ240 + 1 

Fig. 1. The location and arrangement of  the three BZLF1 promoter 
fragments and the restriction sites used to excise them. 
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Fig. 2. (a) Sequence of  the different HI elements and the HI consensus 
sequence. (b) Schematic representation of  the BZLF1 promoter, 
showing the H1 motifs that are functional (circles) and non-functional 
owing to mutation (crosses). The plasmid vectors that include the 
various mutations are indicated. 

enzymes SphI and AvaI (for ~*, fl* and ~* +fl*) or Sphl and NdeI (for 
?*). They were then cloned into the recombinant plasmid 
pZAA val/NdeI at the SphI and A vaI, or NdeI sites respectively, to place 
the original sequences of  the proximal part of  the promoter next to the 
mutated elements. The pZAAvaI/NdeI plasmid is identical to the pEBZ 
construct except that the AvaI and NdeI sites have been deleted. 
Finally, SstI-SphI fragments were purified, the SphI site was blunt- 
ended with T4 DNA polymerase, and subcloned into the plasmid 
pSVHBs at SstI and SmaI sites upstream of the SV40 enhancer- 
promoter. The resulting constructs, pSSVHBs~*, pSSVHBsfl*, 
pSSVHBsy* and pSSVHBsc~* +fl*, contained one or two defective HI 
motifs (Fig. 2b). All recombinant reporter plasmids were sequenced 
with an Applied Biosystems automatic sequencer. 

The HI 6 sequence motif was used as a probe in several experiments. 
The motif  was incorporated into the central region of  a double- 
stranded oligonucleotide, oligo-Z120HI. This oligonucleotide was 
created by annealing two complementary single-stranded sequences, 
5" G A T C C A C T A G A G T C C A T G A C A G A G G A T T T G A A T C T G G -  
ACTCG 3' and 5' GATCCGAGTCCAGATTCAAATCCTCTGTC-  
ATGGACTCTAGTG Y, both of  which contain 5'-terminal BamHI 
sites. They were purified by PAGE, denatured for l0 rain at 95 °C and 
annealed in 10 mM-Tri~HC1 pH 8'0, 1 mM-EDTA and 150 Mm-NaCI 
at room temperature. The resulting double-stranded oligonucleotide 
has Y-protruding BamHI ends. It was purified by gel electrophoresis 
and end-labelled with [~-3~P]ATP. 

Labelling of DNA fragments and oligonucleotides. For band shift 
assays, the subcloned DNA fragments were excised from the re- 
combinant plasmids with the restriction enzymes BamHI and HindIII, 
purified by agarose gel electrophoresis and end-labelled with 
[7-32P]ATP and T4 polynucleotide kinase (5' end-labelling kit, 
Boehringer Mannheim). For footprint assays the recombinant plasmids 
were linearized at one restriction site, dephosphorylated with calf 
intestinal phosphatase and end-labelled with [7-32P]ATP. The T4 
polynucleotide kinase was then inactivated by heat and the insert was 
excised with a second restriction enzyme, to yield an asymmetrically 
Y-end-labelled fragment, which was then purified by agarose gel 
electrophoresis. 
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Nuclear extracts. These were prepared by a modification of the 
procedure described by Dignam et al. (1983). Cells (108) were harvested 
by centrifugation (600 g for 10 min at 4 °C), washed twice with PBS, 
resuspended in 5 packed-cell volumes of buffer I (10 mM-HEPES, 
1 mM-MgC12, 10 mM-KC1, 0"5 mM-DTT, 0.5 mM-PMSF pH 7"9) and 
incubated on ice for 5 rain. Thereafter the nuclei were prepared by a 
few strokes with an all-glass Dounce homogenizer, monitored by 
microscopy. The nuclei were washed three times in buffer I (100 g for 
10 min at 4 °C), the pellet was resuspended in 300 ~tl buffer II (20 mM- 
HEPES, 25% glycerol, 420 mM-NaC1, 1-5 mM-MgCI~, 0.5 mM-PMSF, 
0-5mM-DTT) and the proteins eluted for 30rain on ice. The 
supernatant was clarified by centrifugation (25000 g for 30 min at 4 °C) 
and aliquots were stored at -80 °C. Further purification and 
fractionation of the protein extracts was achieved by chromatography. 
DNA-binding proteins were enriched on a heparin-agarose column 
(Sigma) and fractionated further on an ion-exchange column (S 
Sepharose HP, Pharmacia). 

DNA-protein binding assays. Frozen nuclear protein extracts were 
diluted with binding buffer without NaC1 (50 mM-HEPES pH 7.9, 
1 mM-EDTA, 1.5 mM-MgC12, 5 mM-DTT, 10% glycerol) to the op- 
timum NaCI concentration of 200 mM. In band shift assays, 2 to 5 ~tg 
of nuclear proteins were preincubated for 30 rain, in binding buffer 
containing 150 mM-NaCI to a volume of 24 ~tl, with 2-0 ~tg of dAdT to 
reduce non-specific binding of proteins and with increasing concentra- 
tions of specific competitor DNA. Next, 1 ng (approximately 8 fmol) 
of 3Zp-labelled probe was added and incubated for 15 min. After 
electrophoresis in a 4 % polyacrylamide gel, the DNA was visualized by 
autoradiography. For footprint assays 2 x 104 c.p.m. (Cerenkov counts) 
of asymmetrically 32p-end-labelled DNA was incubated with increasing 
concentrations of protein, to a volume of 38 ~tl, using the same 
conditions as for gel retardation. Then 2 ~tl of 0.1 M-MgCI~ and 175 
units of exonuclease III (Boehringer Mannheim) were added and 
incubated for 10 min at 37 °C so that the DNA fragments were digested 
unidirectionally, starting at their 3' ends. Proteins bound to DNA 
caused the enzyme to stop, yielding DNA fragments with distinct sizes 
relative to the 5' label (Hennighausen & Lubon, 1987). The reaction 
was stopped with 150 pl of 0.5 % Sarcosyl, 10 mM-EDTA, 0.4 M-NaC1, 
2.5 ~tg/pl glycogen, extracted once with phenol-chloroform-isoamyl 
alcohol, precipitated with ethanol and separated by electrophoresis in 
a 6% sequencing gel in 0.5 × TBE. 

Results 

Proteins bind specifically during latent replication to the 
distal promoter of  BZLF1 

Cont ro l  o f  B Z L F  1 gene t ranscr ip t ion  is one possible way 
to control  viral replication. It  has been shown earlier that  

negative (Monta lvo  et al., 1991) as well as positive 
(F leming ton  & Speck, 1990a, b) regulatory elements 

control  the activity of this gene. We compared  b inding  of 
prote in  in the regulatory region of  BZLF1 in latent ly 
infected cells and  cells permissive for lytic replication. To 
visualize specific b ind ing  of regulatory factors, the region 

from - 5 5 1  to +13 ,  relative to the start of  the 
t ranscr ipt ion,  was subcloned in three fragments  which 
were designated Z200 (distal region), Z120 (central 

region) and  Z240 (most proximal  region), according to 
their length in bp, (Fig. 1). Fig. 3 shows the fo rmat ion  

of several p r o t e i n - D N A  complexes after incuba t ion  of 
these p romote r  fragments  with crude nuclear  extracts. 

EBV-negative B JAB cells and  EBV-positive, latently- 
infected Raji  cells were compared  to 12-O-tetradecanoyl-  

phorbo l  13-acetate (TPA)-s t imula ted  Raji  cells, which 
are a model  for cell types suppor t ing  the lytic replicat ion 

of EBV. In  latent ly infected Raji  cells a specific complex 

is visible with fragments  Z120 and  Z200 (lanes 5 and  12). 

Wi th  extracts of EBV-negative B JAB cells only a very 
faint  specific complex is visible with both  fragments  

(lanes 3 and  10). Compet i t ion  of  protein  b ind ing  with 
pUC18 D N A  AluI fragments  did no t  weaken the b ind ing  

of these proteins to the labelled D N A .  W h e n  b inding  was 

competed specifically with the unlabel led homologous  
fragment ,  the indicated specific bands  disappeared (lanes 

4 and  11). The specific complexes with fragments  Z120 

and  Z200 did no t  form with protein  extracts f rom TPA-  
treated cells (lanes 7 and  14). The most  proximal  
f ragment  Z240 also showed specific p r o t e i n - D N A  

complexes bu t  these complexes were unal tered  after T P A  
t rea tment  (lanes 15 to 20). With  all p romote r  fragments,  

addi t ional  non-specific p r o t e i n - D N A  complexes were 

visible that  were insensitive to T P A  t rea tment  (compare 
lane 4 with lane 6 and  lane 11 with lane 13). These results 

demonst ra te  specific b ind ing  of cellular factors dur ing  
latent,  bu t  no t  dur ing  lytic, replicat ion in the distal 

(a) Z 120 Z200 Z240 

c BJAB Raji c BJAB Raji BJAB Raji 

TPA - - - + + + + . . . .  + + 

pUCI8 - + + - + - + + - + + - + - + 

Z120 + -  + - + - 

Z200 + - + + -  

Z240 + - + + -  

1 2 3 4 5 6 7 8 91011121314 151617181920 

Fig. 3. Band shift experiment with the distal region of the BZLF1 
promoter and nuclear extracts from EBV-negative B JAB cells and 
EBV-positive Raji cells. Specific protein-DNA complexes (lanes 5 and 
12) are indicated by arrowheads. When extracts from TPA-stimulated 
cells were used these complexes disappeared (lanes 7 and 14). Use of 
nuclear extracts from unstimulated or TPA-stimulated Raji cells, as 
well as specific (Z120 and Z200) or non-specific (pUC18) competition, 
is indicated above the respective lanes. The pattern of protein complexes 
was not altered after TPA stimulation with fragment Z240 (lanes 15 to 
20). 
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CCAGCCACTTGACCCGGCCCCCGCAGTAACCCCCGAGGCAAGTCATCTGTTGGAGGACCC 
10372 t  . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

TGATGAAGAAACCAGTCAGGCCGTGAAGGCCCTAAGGGAGATGGCTGACACTGTTATTCC 
103661  . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

- 4 6 5  ACTACTTCTTTGGTCAGTCCGGCACTTCCGGGATTCCCTCTACCGACTGTGACAATAAGG 

CCAGAAGGAGGAAGCAGCCATATGTGC~ACAGATG(IACCTGAGCCACCCGCCCCCTCGTGG 
I0360t . . . . . . . . .  + . . . . . . . . .  + . . . . . . .  b = ¥ ~ = = = f  . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

-405 GGTCTTCCTCCTTCGT~TATAC~CCTGTCTACCTGGACTCGGTGGGCGGGGGAGCACC 

CCATTTGGACGAACTGACCACAACACTAGAGTCCATCxACAGAGGA~TTGAATCTGGACTC 
103541 . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . .  t=¥=:::='____+ ......... + 

-345 GGTA-AACCTGCTTGACTGGTGTTGTGATCTCAGGTACTGTCTCCTAA.ACTTAGACCTGAG 

10348 t  

- 2 8 5  

CCCCCTGACCCCCGAACTTAATGAAATCTTGGATACATTTCTAAATGATGAATGTCTGCT 
. . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

GGGGGACTGGGGGCTTGAATTACTTTAGAACCTATGTAAAGATTTACTACTTACAGACGA 

10342  t 

- 2 2 5  

GCATGCCATGCATATTTCAACTGGGCTGTCTATTTTTGACACCAGCTTATTTTAGACACT 
. . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

CGTACGGTACGTATA/hAGTTGACCCGACAGATAAAAACTGTGGTCGAATAAAATCTGTGA 

TCTGAAAACTGCCTCCTCCTCTTTTAGAAACTATGCATGAGCCACAGGCATTGCTAATGT 
10336 t  . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + 

-165 AGACTTTTGACGGAGGAGGAGAAAATCTTTGATACGTACTCGGTGTCCGTAACGATTACA 

ACCTCATAGACACACCTAAATTTAGCACGTCCCAAACCATGACATOACAGAGGA]G.'GCTGG 
10330 l  . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . .  ~=~ '~ ' ~ ' = t ' _  . . . .  + 

-105 TGGAGTATCTGTGTGGATTTAAATCGTGCAGGGTTTGGTACTGTAGTGTCTCCTCCGACC 
+i 

TGCCTTGGC~..TT~GGGAGATGTTAGACAGGTAACTCACTAAAC7 
103241  . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . . . . .  + . . . . . .  

- 4 5  ACGGAACCGAAATTTCCCCTCTACAATCTGTCCATTGAGTGATTTG< 

Fig.4.Sequen~e~theupstreamregu]at~ryregi~n~theBZLF~reading~ame.TheHIe~ementsthathavebeenidenti~edby~mputer 
analysisandconfirmedbyprotein-DNA bindingassaysaredepictedasboxes. 

promoter region of BZLF1, indicating a functional role 
for the down-regulation of this promoter during latency. 

The site that mediates specific binding of protein during 
latency & multiply repeated in the promoter of BZLF1 

Band shift competition experiments with the three 
subfragments showed that all three would compete for 
specific complex formation. This was in contrast to 
competition with pUC18 DNA (data not shown), 
suggesting a binding site for the protein is present on 
each of these fragments. Sequence analysis of the 
promoter region using GCG software (Devereux et al., 
1984) detected a multiply repeated sequence. This motif, 
designated the HI element, with the consensus sequence 
5' ACAGA(T/G)G(A/G)3 '  was found three times in 
region Z200, once in region Z240 and once in Z120 (Fig. 
4 and Fig. 2 a). Footprint experiments were performed to 
test whether these sites were occupied by proteins in 
latently infected cells. In agreement with another report 
(Montalvo et al., 1991), no clear footprinting was 
possible in this region using crude nuclear extracts. 

Exonuclease III footprints were therefore employed. 
These are much more sensitive than DNase I assays 
(Vogel et al., 1989) because each bound protein molecule 
theoretically yields a positive signal. The results of the 
footprint assays are depicted in Fig. 5, in relation to the 
location of the HI sequences identified by computer 
analysis. Using increasing concentrations of protein, 
binding was detected at various distances from the 3' end 
of the DNA. On each of the fragments used in band shift 
assays, proteins bound to one HI sequence. These sites 
specifically bound proteins from unstimulated lympho- 
cytes and have been described, in part, previously 
(Flemington & Speck, 1990a, b). Indeed, the HI motif 
did function as a specific binding site, and in latently 
infected Raji cells three (~, 6 and e) of the five elements 
were bound by protein. 

To confirm that the HI elements were involved in the 
formation of TPA-sensitive protein-DNA complexes, 
protein fractions from unstimulated and TPA-stimulated 
Raji cells were tested for the ability to bind to the HI 
sequence motif using the probe oligo-Z120HI. Crude 
nuclear extracts were divided into two fractions by 
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Fig. 5. Exonuclease III footprint assay (a) with the BZLF1 promoter region from positions -551  to + 13 and nuclear extracts from 
latently infected EBV-positive Raji cells. Boundaries of protein DNA complexes are indicated by arrowheads and the nucleotide 
positions relative to the transcriptional start site are given beside the lanes. Also included are a control without protein but with 
exonuclease ( -p ro te in ) ,  a control without exonuclease ( - E x o I I I )  and a sequencing lane ( A +  G). The lanes marked ExoIII are 
exonuclease digests with increasing amounts of  protein. The extreme right-hand assay is a duplicate of  its neighbour, using a shorter 
exposure time. (b) A diagram of the upstream regulatory region of  BZLF 1. The regions between exonuclease III stops, which are bound 
by proteins, are depicted as bars. ZI, ZII and ZIII are regulatory elements described previously (Flemington & Speck, 1990a, b). 

heparin-agarose and ion exchange column chromato- 
graphy. Fig. 6 shows that in latently infected cells only 
(lanes 1 and 2) a protein in fraction I bound to the HI 
motif, but did not bind after TPA treatment (lane 3), nor 
to the larger fragment Z120 (lane 6). In fraction II 
however, there were proteins that bound to the larger 
Z120 fragment after TPA stimulation (lanes 7 and 8) but 
did not bind to the HI motif (lanes 4 and 5). 

HI  elements act as negative regulatory silencer elements 

As the pattern of protein binding points towards a 
silencing mechanism during latency, we constructed 
reporter plasmids with site-specific mutations in the HI 
motif  to investigate their regulatory influence. The results 
are shown in Table 1. When the intact region from 
positions -551 to - 2 2 7  was tested upstream of the 
heterologous enhancer-promoter in the EBV-negative 

B JAB cell line, a 60 % decrease in promoter activity was 
observed. In none of the other tested cell lines was a 
comparable influence detected. Each of the four muta- 
tions abolished the negative regulatory effect, suggesting 
a contribution of each of the destroyed elements to the 
silencing function in this cell line. Interestingly, muta- 
tions fl*, y* and ~* +fl* not only abolished the negative 
regulation, but increased the promoter activity from 40 
to 144% (relative to the control) in BJAB cells. Similar 
results were observed for the Raji cell line, where 
mutation of the HI elements fl, y and ~ plus fl 
reproducibly increased the promoter activity to about 
160%. Raji cells showed no repression of activity with 
the intact distal region; a mutation in the ~ HI element 
had no influence and activity remained at 100% of the 
control. With the two LCLs however, strong activation 
occurred with mutation fl* and ~*, of up to 217 % in Ru- 
LCL and up to 302% in Em-LCL. The ~* mutation 
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Oligo-Zl20HI Z120 

Fraction I II I II 
I 1 [ l ~ [ 
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Fig. 6. Band shift experiment showing latency-specific binding of 
protein to the HI sequence motif, using two purified protein fractions 
(I and II). The arrow indicates the specific complex of the HI motif 
oligo-Z120HI with protein in latently infected cells (lanes 1 and 2), 
which did not bind after TPA treatment (lane 3). Lanes 4 to 8 are 
controls described in the text. 

resulted in the strongest enhancement of  promoter  
activity (up to 280 % in Ru-LCL and 760 % in Em-LCL) 
and there was no negative effect of  the unmutated distal 

region. These results demonstrate that the H I  elements 
are negative regulatory silencing elements under appro- 
priate conditions, depending on the indivdiual cell line 
and also confirm the presence of positive regulatory 
elements located in the promoter  region between 
positions - 2 2 7  and - 5 5 1 ,  described earlier by 
Montalvo et al. (1991). In HeLa  cell line, neither an effect 
of  the intact distal promoter  nor of  the different H I  
mutations could be measured. 

D i s c u s s i o n  

We have identified a sequence motif, HI,  that is repeated 
five times in the promoter  region of  BZLF1 (Fig. 4). 
Band shift assays with specific oligonucleotides and 
exonuclease I I I  footprints showed that there are cellular 
proteins in latently EBV-infected lymphoid cells that 
bind to the H I  motif. In the distal region of  the promoter  
(Z 120 and Z200) these sites showed loss of  bound protein 
following TPA treatment, indicating a role in repression 
of the BZLF1 promoter  during latency. Cloning of  the 
distal promoter ,  f rom positions - 5 5 1  to - 2 2 7 ,  in front 
of  the heterologous SV40 enhancer-promoter  in a 
reporter plasmid and in vitro mutagenesis of  individual 
HI  elements showed that the H I  elements confer a 
negative regulatory influence on the downstream pro- 
moter. 

Flemington & Speck (1990a) have shown that the 
proximal region of  the promoter ,  but not the distal 
region, contains regulatory elements that directly re- 
spond to TPA in EBV-negative cell lines and that are 
directly involved in promoter  activation. However, they 
could not identify the H I  silencer elements which down- 
regulate stimulatory elements nearby. This H I  mech- 
anism is cell line-dependent and functions only very 
poorly in EBV-negative lymphoid B JAB cells and in 
EBV-positive Raji cells, and not at all in epithelial HeLa  
cells. After TPA treatment the HI  elements lose their 
negative regulatory effect. We assayed HI  function by 
inactivation of  these elements without TPA stimulation 
of  the cells and thereby demonstrated H I  activity during 

Table 1. Regulatory activity of the promoter region of the BZLF1 reading frame in different cell lines 

Construct* HBsAg expression (%)t 

Cell line p S V H B s  p S S V H B s  pSSVHBs-~* pSSVHBs-fl* pSSVHBs-F* pSSVHBs-c~*/¢* 

BJAB 100 40 (10){ 100 (19) 144 (26) 123 (44) 122 (17) 
Raji 100 116 (7) 102 (3) 160 (10) 154 (44) 152 (35) 
LCL-Em 100 164 (57) 760 (28) 211 (26) 302 (73) 650 (6) 
LCL-Ru 100 119 (2) 280 (16) 197 (24) 217 (10) 233 (42) 
HeLa 100 92 (3) 88 (6) 98 (6) 88 (4) 96 (6) 

* The plasmids designated pSS have mutated versions of the promoter (Fig. 1). 
"~ Percentage activity in relation to the positive control plasmid pSVHBs. 
~: Figure in parentheses is the s.p.; at least three assays were performed for each result. 
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latent infection. Furthermore, these experiments show 
that the activity of positive regulatory elements is 
controlled by the HI silencer during latency in some cell 
lines. Taking into account the results of Flemington & 
Speck (1990 a), the target elements that are suppressed by 
the HI motifs are not directly stimulated by TPA. TPA 
sensitivity concerns silencer inactivation but not in- 
duction of the positive elements, which seem to be 
regulated in a TPA-independent way. In the EBV- 
negative B JAB cell line, the presence of the intact distal 
promoter, from position -227 to -551, decreased 
activity of the SV40 enhancer-promoter to about 40 %. 
In all other cell lines tested, whether lymphoid or 
epithelial, no silencing function of the intact distal 
upstream region was observed. A likely explanation for 
this difference is the weak activity of positive control 
elements in B JAB cells, which results in a stronger 
suppression by the silencer elements. The model of a 
negative and a positive regulatory module also explains 
the results obtained in Raji cells. In these cells we could 
demonstrate binding of protein to the HI sequences (Fig. 
3), but inactivation of these sites had only a slight effect 
on the activity of a downstream promoter (Table 1) 
because the positive regulatory target elements were 
inactive. Experiments to identify the trans-acting cellular 
proteins that interact with these positive and negative 
regulatory cis-acting elements are in progress. 

The HI elements ~, fl and 7 are different from some of 
the negative regulatory elements located in the proximal 
region of the promoter from - 227 to + 13 described by 
Flemington & Speck (1990a). They also differ from a 
48 bp silencer described by Montalvo et al. (1991). Fig. 7 
shows the HI elements ]~ and y in relation to the 48 bp 
silencer. The inverted repeat sequences on the right side 
of the 48 bp silencer are identical to the HI fl and y but 
there are two important properties of HI that 
distinguishes the two silencers. Firstly, mutation of the 
most distal HI element, e, blocks the observed silencer 

I II 

I I [ NdeI ] HI7 

• < > <  
[ S R E  I 

HIfl 

Fig. 7. Schematic drawing of the distal promoter of BZLF1. The area 
containing the 48 bp silencer element described previously (Montalvo 
et al., 1991) partially overlaps with the HI elements, but they are not 
functionally identical. Regions I and II are protein-bound elements of 
the silencer region described earlier (Montalvo et al., 1991) as are the 
inverted repeats, indicated by arrows, which are important for activity. 
SRE denotes a serum response element overlapping region II, the right 
inverted repeat pair and one HI element. 

activity on the tested EBV promoter fragment in B JAB 
cells, Ru-LCL and Em-LCL, hence a negative regulatory 
effect is clearly demonstrated. This element is located at 
a considerable distance from the 48 bp silencer. Secondly, 
the HI mechanism does not function in HeLa cells, as 
described for the 48 bp silencer. Since our reporter 
constructs, irrespective of any HI mutations, show very 
high levels of activity in the HeLa cell line, we believe 
that this results from inactive HI silencer modules and 
active enhancer elements. Observations of different 
patterns of protein binding in this cell line are in 
accordance with this hypothesis (F. Schwarzmann, N. 
Prang, B. Reichelt, B. Rinkes, S. Haist, M. Marschall & 
H. Wolf, unpublished results). Therefore there is evi- 
dence that, in epithelial cells, lytic replication of EBV 
may be significantly influenced by non-functional HI 
elements releasing suppression of the enhancing modules. 

In conclusion, we have identified a new type of 
silencing sequence motif, HI, in the promoter of the 
BZLF 1 gene, which is involved in the down-regulation of 
this lytic trans-activator in latently infected lymphoid 
cells. The proximity of the HI motif to other protein 
binding regions, identified by footprinting, and to 
binding motifs for other regulatory cellular factors like 
YY1 (Seto et al., 1991), SRE (Gualberto et al., 1992; 
Treisman, 1986) and AP1 (Rauscher et al., 1988) suggests 
that the HI binding factor works through protein- 
protein interactions or by steric hindrance exerted on 
binding sites in the proximity. 

The authors wish to thank Barbara Oker and Barbara Hottentrfiger 
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Forschungsgemeinschaft DFG grant Fa138. 
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