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Sum~nary. The periodic alternation between REM and NREM sleep was ana- 
lyzed. Usually, sleep records of consecutive nights of a subject are regarded to be 
independent events. However, it may be that consecutive nights are realizations 
of a continuously ongoing rhythm. This was tested in the present study. The tempo- 
ral patterns of REM and NREM sleep in sequences of about 30 consecutive nights 
for 3 subjects were analyzed. The results show that only the onset of the first REM 
sleep phase during any one night may be predicted from the sleep onset time, where- 
as a systematic phase shift between consecutive nights was observed in the later 
REM sleep phases. Thus, the onset of later RElff sleep phases is better predicted 
by assuming a rhythm with stable period length which controls the appearance 
of REM sleep phases in successive nights. Under the experimental conditions the 
phase shift was between 5 and i0 rain per 24 hrs for the 3 subjects. The result is 
accordance with Kleitman's basic rest activity cycle (BRAC) hypothesis. 
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The two most  notable features in the appearance of R E ~  sleep 
phases during the course of one night are the increase of the average 
length of the REM sleep phases (Webb, 1971) and the periodic alternation 
between REM and non-REM (NREM) sleep phases (Dement and Kleit- 
man, 1957). In  an appropriate model for the description of the REI~I 

s leep pat terns  against time, therefore a t  least two factors must  be in- 
cluded, corresponding to these features. The work reported here deals 
with the factor which is responsible for the RE1V[ sleep rhythmicity.  
Three hypotheses for the phase control of the REM sleep rhythmici ty  
are compared. 

Analyses of the rhythmici ty  in sleep records are commonly carried 
out for single nights, the results then being averaged over several nights. 
This procedure requires a choice of t ime reference for all recorded nights. 
Proposed t ime references include local t ime (Globus, 1966) and the 
t ime of sleep onset (Luhin, 1974). The use of a particular t ime reference 
system implies the assumption of an entrainment of the R E •  sleep 
rhy thm by  synchronizers which are locked to the respective system. 
Using the above mentioned t ime references, a phase reset according 
to local t ime or to sleep onset t ime respectively is assumed. Consecutive 
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sleep records are t rea ted  as independent observations in a repeated 
experiment. 

A different approach is based on Klei tman 's  hypothesis of the basic 
rest  act ivi ty cycle (BRAC) (Kleitman, 1969). In  this case the R E ~  sleep 
rhy thm is taken to be the result of a periodic process, which is not limited 
to sleep, but  continues throughout  wakefulness. According to the BRAC 
hypothesis a periodic factor which is continuously present in the long 
term, possibly over several successive sleep records, is the synchronizer 
of the REM sleep rhythm.  Under this assumption consecutive sleep 
records have to be t reated as discrete observations of a unique process. 
Therefore, the t ime reference used in an averaging procedure has to be 
chosen in such a way tha t  i t  links together points of equal phase in the 
triggering BRAC process during the recorded nights. A special case 
occurs when the period of the BRAC or R E ~  sleep rhy thm is equal 
to a submultiple of 24 hrs, so tha t  points of equal phase would appear  
to be synchronized with local time. In  all other cases the points of equal 
phase of the REM sleep rhy thm occur with constant t ime shift in con- 
secutive nights. Any analysis must  allow for this feature by  the choice 
of a t ime reference system with a constant t ime shift between successive 
nights. 

The three models for synchronization of REM sleep rhythm,  as 
described above, are investigated in the following. 

Method 
Subjects. The sleep data of 3 subjects were analyzed. Two subjects (BI and KI) 

were male, 24 and 31 years old, the third subject (SI) was female, 20 years old. 
All were healthy unmarried students without sleep problems. They received pay- 
ment for sleeping in the laboratory. 

Desigu and Procedure. The subjeebs slept for 29, 30 and 31 undisturbed conse- 
cutive nights in the laboratory (see Table 1). 

They came to the laboratory about 1 hr before going to bed. Questionnaires 
were filled out and electrodes for EEG, EOG and EMG monitoring were fixed. 
Lights were turned off between 10:30 and 12:00 p. m. 

Table 1. Characteristics of subjects, number of nights and "lights off" time 

8s Sex Age Number of "Lights off" (local time) 
nights M s (rain) 

BI male 24 30 2320 ~ 15 
KI male 31 31 233~ • 37 
SI female 20 29 2330 • 17 

mean. 

s standard deviation. 
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The subjects slept for 7 to 8 hrs in a sound-attenuated, electrically shielded 
room. The adjacent recording room was equipped with an 8- or 12-channel Mingo- 
graf and an Ampex PR 500 tape recorder. At least 2 unipolar vertex EEGs (C 3-A2, 
Cd-A1), 2 unipolar, horizontal EOGs, chin EMG, EKG and an actogram from 
the bedsprings were recorded. 

Scoring. All sleep records were scored visually by one or two scorers in 30 sec 
time epochs according to the criteria of Rechtschaffen and Kales (1968). For the present 
investigation only R E ~  sleep was distinguished from the other sleep stages 1, 2, 3 
and 4. Thus each 30 see epoch was either scored REM or NREM. Any N R E ~  
activity shorter than 5 rain which appeared during REM sleep was also scored 
RE~.  The recorded data were therefore reduced to blocks of R E ~  and N R E ~  
epochs. 

Computational Procedures. The following procedures were used to obtain data 
for an intra-individual comparison of the three suggested models for synchroni- 
zation of the R E ~  sleep rhythm. 

The proposed models are (1) synchronization of the t~EM sleep rhythm to 
local time, (2) synchronization to a continuing BRAC process, and (3) synchroni- 
zation to the respective time of sleep onset for each night. For each model, all 
sleep records were referred to the appropriate time referenco system. The REI~I 
sleep frequency at time t is defined as the number of nights during which REM 
sleep was scored at  time t, divided by the total number of nights. This function 
is smoothed using a moving average over 45 min. 

For model (1) where the time coordinate system is local time, the corresponding 
REM sleep frequency function is denoted as rl(t) in the following. 

With model (2) the period of the driving BRAC process is unknown, and there- 
fore the expected time shift for successive nights between points of equal phase 
must be estimated from the observed data. For this purpose a time coordinate 
system was used in which successive sleep records were shifted by a constant amount 
against local time. This time shift was used as the parameter to generate a set 
of frequency functions. The one function which best displays the periodicity of 
the REM sleep phases could than be determined from this set of functions. The 
time shift from the selected function was taken as the estimate for the actual time 
shift between points of equal phase in the REM sleep process. This REh[ sleep 
frequency function is denoted as r2(t ), 

In  model (3) each sleep record was shifted against local time according to time 
of sleep onset, so that all sleep onset times were positioned at  zero. The REM sleep 
frequency function r3(t ) was calculated using this time coordinate system. 

Results 

The resul t s  of  the  d a t a  analys is  for  sub jec t  B I  a re  shown in Figs .  
1 - -3 .  

I n  Fig .  1 the  R E M  sleep d a t a  a re  p resen ted  according  to  the  local  
t ime  model .  Fig.  1 a shows the  t empora l  p a t t e r n  of  the  R E M  sleep phases  
in  each night .  The  x-ax is  represents  t ime  in inc rements  of  30 see. The  
30 n igh ts  a re  d i sp l ayed  in  the i r  n a t u r a l  order .  R E M  phases  a re  i nd i ca t ed  
b y  solid lines, N R E M  phases  are  lef t  b lank .  The  d o t  a t  the  lef t  end  of  
each p a t t e r n  m a r k s  t he  sleep onse t  t i m e - - w h i c h  is defined as t he  first  
30 sec epoch of  sleep s tage  1. 
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Distribution of REN periods in 30 consecutive nights of S B I 
according to clock time. 

Fig. 1 a and b. Distribution of REI~ sleep periods in 30 consecutive nights of 
subject BI according to local time. (a) Arrangement of the 30 nights in their natural 
order from top to bottom. REM sleep periods are black, I~RE~ sleep periods are 
left blank. The dot at the left end of each night marks the first sleep stage 1 epoch 

(sleep onset). (b) Smoothed REM sleep frequency function rz(t ) 

Fig. 1 b contains the R E •  sleep frequency function rl(t ). The increase 
in REM sleep frequency with increasing sleeping t ime is obvious, l~ow- 
ever, a certain amount  of information in the raw data  in Fig. i a is lost 
due to this summation procedure. In  Fig. 1 a a pa t te rn  of  oblique stripes 
can be recognized in which the REM frequency appears to oscillate. 
This feature of the data  is lost m Fig. l b .  

Fig. 2 shows the same data  set. Here, the data  are related to a t ime 
coordinate system with a t ime shift of ~ 5.0 rain between consecutive 
nights [model (2)]. The resulting smoothed frequency function is striking- 
ly periodical, The t ime shift of -F 5.0 rain between consecutive nights 
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Distribution of REN periods in 30 consecutive nights of S B ! 

according to a shift of 5 rain per night. 

Fig.2 a and b. Distribution of REM sleep periods in 30 consecutive nights of 
subject BI, with a time shift of 5.0 min per night. (a) Arrangement of the nights 
in their natural order from top to bottom. (b) Smoothed RE~I sleep frequency 

function r2(t ) 

turned out to yield the best representation of the periodicity within 
a set of shift values ranging from --10 to -~ 14 min with a stepwidth 
of 0.5 min. 

The estimated phase shift for this subject is therefore 5.0 min per 
day. 

I n  Fig. 3 the same data are arranged taking sleep onset in each night 
as the common reference point [model (3)]. The resulting REM frequency 
function r3(t ) shows both the overall REM sleep frequency increase and 
the refractory interval of about  70 rain after sleep onset; this is followed 
by  a steep increase due to the first REM sleep phase. 

A comparison of Figs. 2 and 3 leads to the conclusion tha t  onset 
of the first REM sleep phase is correlated with sleep onset, while the 
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Distribution of REH periods in30  consecutive nights of _S B I 
according to sleep onset. 

Fig.3 a and b. Distribution of REM sleep periods in 30 consecutive nights of 
subject BI according to sleep onset. (a) Arrangement of the nights in their natural 

order from top to bottom. (b) Smoothed RE1K sleep frequency function r3(t ) 

appearance of later REM sleep phases is bet ter  described by  a model 
with constant phase shift between consecutive nights. 

The data  sets of the other subjects were processed in the same way. 
With a variable t ime shift according to the above stated procedure 
50 REM sleep frequency functions were computed for each subject. 

meaningful comparison of these functions was restricted, on amount  
of the t ime shift, to tha t  t ime in which the records of all nights overlapped. 
This amounted to a length of 250 rain. 

Fig. 4 shows two measures resulting from this comparison. The plots 
from left to right correspond to subjects BI,  SI and K I  respectively. 
In  Fig. 4a  the measure A(s) of t h e  periodic component  in each REM 
frequency function is plot ted against the t ime shift in increments of 
0.5 tuba. A(s) is the minimum amplitude difference between adjacent 
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extreme values  for each REM frequency funct ion obtained for the 
different t ime shifts s. The ampli tudes  are expressed in percent of the  
mean  ampl i tude  of  the  REM frequency function.  
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In ~ig. 4b a measure P(s) of the period stability of the periodic 
component in the REM frequency function is plotted against time 
shifts s. The measure P(s), with a resolution of 5 rain units, is the vari- 
ability in the set of period estimates obtained from the peak-to-peak 
and trough-to-trough measures within the 250 min interval. 

A comparison of these measures for the three subjects yields the 
following findings. For subject BI the best representation of the period 
is obtained for shift values of about 5 rain per day. At s ~ 5.0 rain 
per day A(s) = 99~ and P(s) = 5 rain. For subject SI the best de- 
scription of the periodic is obtained for a shift of about 8 min per day. 
At s = 8.5 rain A(s )=  980/0 and P(s)-----0 rain. From the results for 
subject KI, the measure A has no single distinct maximum, however 
for a time shift of 5 rain per day the period estimate is constant and 
reaches a local maximum, at s -~ 5.0 rain with A(s) ---- 650/0 and P(s) ----- 
0 rain. 

Discussion 

The main result of this investigation is the evidence for a drift of 
the REM sleep rhythm in successive sleep records. This observation 
supports the assumption of a synchronization of the REM sleep rhythm 
to an ultradian oscillation. This is consistent with Kleitman's BRAC 
hypothesis, according to which a continuous periodic process operates 
throughout sleep and wakefulness. The constant phase shift of the REM 
sleep rhythm, observed in sleep recordings of 30 consecutive nights, 
suggests that the BRAC period is stable. Under the reported experi- 
mental conditions for all 3 subjects, phase shifts in the range of 5 to 
10 rain per 24 hrs were found. Comparable phase shifts in the appearance 
of penile erections in sleep of different nights were reported in this journal 
almost 30 years ago by Ohlmeyer and Brilmayer (1947). They reported 
that the mean duration of the erection cycle during sleep (Ohlmeycr 
et al., 1944) was not an integral submultiple of 24 hrs and consequently 
they assumed a phase shift of the underlying process against local time. 

Until now the BRAC hypothesis for the adult has been supported 
by similarities between period estimates from data in sleep experiments 
(REiV[ sleep rhythm) and period estimates of other ultradian rhythms 
from data of awake subjects, e.g. oral activity (Friedman and Fisher, 
1967 ; Oswald et al., 1970), EEG measures (Sterman et al., 1972 ; Stevens 
et al., 1971), and special patterns of EOG activity (Othmer et al., 1969). 
The reported investigation presents another approach to test the BRAC 
hypothesis. The observed systematic drift of the REH sleep rhythm 
may be explained by the assumption of a persistent driving process 
with stable peliod. 
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Model (1), which assumes a phase coupling of the REM sleep rhy thm 
with local time, is not  supported by  the reported experiment. An optimal 
0-min t ime shift of the REM sleep rhy thm was not  observed in the 3 
subjects. 

The results of the experiment support  the assumption tha t  the two 
factors which control the appearance of l%EM sleep phases, i.e. sleep 
onset [model  (3)] and BRAC [model (2)], are restricted to different 
times during each night. This result is in accord with observations on 
the organization of REM sleep in monkeys (Kripke, 1973, pp. 317--318). 
In  all sleep records sleep onset is followed by  a 40--70 rain t ime interval 
without REM sleep and the onset of the first REM sleep phase is still 
determined by  the t ime of sleep onset. Thus REM sleep control by BRAC 
obviously requires tha t  the subject be freed from the influences of external 
t ime givers for some time. This condition holds after the subject has 
passed the first sleep cycle. 

We thank Mrs. Mechthild B~r for scoring of the sleep records, Dr. Laverne 
Johnson and coworkers for critical reading of a first version of this paper and Mr. 
Andy Clarke for checking the English version of the paper. 
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