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ABSTRACT
The rise of the social web shifts personal identity manage-
ment to the online world. As a result, personal information
is persistently available to all of a user’s contacts without
distinguishing between different contexts such as Work and
Leisure. Personal information being available to audiences
outside the intended context violates contextual integrity
and poses a threat to users’ privacy. We argue that a formal
description and a conceptualization of the problem scope is
required to systematically address current challenges of per-
sonal identity management in online social settings. Based
thereupon, we propose assisted social identity management
to support the user in finding segregated audiences among
his contacts as a first step to advance from the current sit-
uation and sketch further improvements. We evaluate our
approach using real-world data, demonstrating the feasibil-
ity of our proposal.
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1. INTRODUCTION
Besides the established services of the WWW – distribu-
tion of information and commercial use – the social web,
consisting of communication and interaction between users
enabled through easily usable applications, has gained im-
portance rapidly [19]. Today it offers an infrastructure for
communication, information and self-expression. Even es-
tablished services on the Internet, such as news portals in-
corporate related features, thus adding to the pervasiveness
of the social web. A current example is the “Like-Button”
introduced by the 500-million user social networking plat-
form Facebook that can be embedded into regular websites
to connect their content with user-generated comments and
recommendations. In enterprise settings, social applications
generate new opportunities such as tapping into new knowl-
edge pools originating from employees connected by social

10th International Conference on Wirtschaftsinformatik,
16th − 18th February 2011, Zurich, Switzerland

networks and assessing potential for innovation through bet-
ter customer integration into the value chain [2].

This rise of relevance and quantity of social web services
has also been accompanied by concerns regarding privacy
and thus raises organizational and legislative implications.
Politicians criticize possible data protection issues, for ex-
ample with services offered by Google and Facebook, and
demand stricter regulation. Similarly, users of the social
web voice demand for more protection of privacy as well.

While this common criticism usually targets enterprises and
their handling of customer data, there is also a need for re-
search regarding the sharing of personal data between users
of the social web. In fact, as the social web is used to shift
personal identity management (IdM) to the online world, the
differences to the offline world pose new challenges. In cur-
rent implementations of the social web, personal information
is available persistently, digitally and thus unchanged. Con-
trary, in the real world, personal information is transient and
and availability is limited to certain settings. Existing no-
tions of privacy, usually involving confidentiality [18] and ac-
cess control [20][5], cannot be applied without modification,
as users of the social web have the desire to selectively share
personal information depending on situation and recipient.
However this demand for personal information on the one
hand being publicly available, but on the other hand not for
the public [16] poses a challenge to users of the social web.
This trade-off between privacy and comfortable disclosure
of personal information is referred to as “privacy paradox”
[13], calling for contextually aware information sharing. Un-
like the real-world, where different contexts such as cowork-
ers and a group of friends are automatically separated by
mere physical and spatial separation, providers of services
for the social web do not distinguish between different con-
texts, thus often exposing the complete digital identity of a
user to her contacts.

Identity management is commonly used in organizations and
enterprises to administrate individuals and control their ac-
cess to resources. On the contrary, social IdM is a user-
centric concept to cope with the challenges of presenting
different facets of the self to different audiences and to keep
those views consistent. In this work, we introduce ways to
improve social IdM by distinguishing between different con-
texts. This enables context-aware segregation of audiences
of the online identity which in turn can be realized by the
possibility to present different values for the same attribute
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to different audiences. The proposal is accompanied by a for-
mal presentation of the problem scope and by a prototype
application aiding the user in managing her online contexts.

The remainder of the paper is structured as follows: In the
next Section, we give an overview of related work in the field
of social IdM and audience segregation. In Section 3, we
show that contextually segregated audiences can be realized
through directed attribute presentation and introduce the
problem scope in a formal fashion. After conceptualizing the
problem scope we propose several approaches to implement
assisted social IdM that support the user in recognizing and
organizing online contexts in Section 4. The prototypical
implementation of two of these approaches and a subsequent
evaluation are presented in the following Section 5. Finally,
in Section 6 we summarize our findings.

2. RELATED WORK
The increasing relevance of the online digital identity has
been recognized by a plethora of research. Nowadays, per-
sonal data resides in a growing number of databases, while
information on the Internet becomes easier to find and harder
to hide [11]. The users’ digital identity is defined as their
attributes and their values [4], while a subset of them consti-
tutes a partial identity as described in [14] and [8]. Cameron
sees the increasing number of personal digital identities as a
problem, as users lose track of their disclosed data [3]. While
presenting different attribute values to different audiences is
related to the concept of partial identities and these notions
are related to our work, these works are mostly concerned
with interaction with service providers, while we focus on
selected disclosure of personal data to contacts in the social
web.

This difference can also be seen when looking at the state of
end-user IdM systems (IMS), which focus mostly on account
management issues such as Single-Sign-On. The need for
IMS offering “context-dependent role and pseudonym man-
agement” has been postulated [1], however, since the iden-
tity of a contact in the social web is usually disclosed, we
see a shift from pseudonym management to context-based
attribute management.

The notion of privacy as contextual integrity was first intro-
duced by Nissenbaum [12] to cope with the challenges of in-
formation technologies processing personal data. She argues
that contextual integrity is a measure of how closely gath-
ering and dissemination of personal information conforms
with the intended context for this information. Privacy is
breached if that personal information is available outside this
context. This requires the user to be free from constraints
on the construction of his identity as stated in the concept
of privacy as practice that is introduced in [7].

To facilitate contextual integrity, audience segregation is a
valuable concept. Originally developed by Goffman [6], it
states that each individual performs multiple and possibly
conflicting roles in everyday life, and it needs to segregate
the audiences for each role, in a way that people from one
audience cannot witness a role performance, that is intended
for another audience and thereby keep a consistent self-
image. In [17] this concept is applied to social networks,
emphasizing the increased complexity of audience segrega-

tion compared to the everyday life.

A few Facebook applications share similarities with the pro-
totypical implementation presented in Section 5.1, which
creates segregated audiences by grouping the user’s contacts
based on their mutual friends. These applications differ from
our work by aiming at a visually appealing presentation of a
user’s network of contacts while this work focuses on finding
disjoint segregated audiences in the context of assisted social
identity management. Friendwheel1 allocates all contacts
on a circle based on their proximity to each other, which
is derived from mutual friend connections. Unlike our ap-
proach however, it doesn’t create disjunct groups of contacts.
TouchGraph2 and Social Graph3 do create disjunct contact
groups. Yet, for all of these implementations, neither the
algorithm, nor the exact input parameters to compute the
friend groups are available. Also, these implementations are
specifically built for the Facebook platform while we aim for
an approach that is agnostic of a particular social network
by solely employing contact relations for finding segregated
audiences.

The social web is increasingly being recognized by EU re-
search projects. Padgets4 acknowledges the relevance of the
social web and harnesses its community knowledge to get
input for policy making while being committed to preserve
participants’ privacy. PrimeLife5 [15][10], a European re-
search project, employs the concept of audience segregation
to develop an advanced social network which allows to de-
fine different social contexts and assign different audiences.
This work differs from ours as we propose means to support
the user in finding segregated audiences within her contacts
while PrimeLife focuses on how to assign contacts to differ-
ent social contexts and thus here audiences must be defined
manually.

3. SEGREGATED AUDIENCES IN SOCIAL
IDENTITY MANAGEMENT

In this section, we explain the need for audience segregation
and directed attribute presentation as a means to implement
it in the social web, followed by a formal definition of the
problem scope.

This work is agnostic to how the online identity is hosted and
how the communication between contacts is organized and
implemented. While possibly enabled through a single so-
cial networking website, other ways to implement social IdM
are also possible, such as distributed solutions. Also, we only
consider other members as a possible audience while privacy
issues regarding entities such as the operator of a social net-
working site or other service providers are out of scope of
this work. Furthermore, we do not consider possible infer-
ences through publicly available information in connection
with shared personal data through linkability.

1http://thomas-fletcher.com/friendwheel/
2http://www.touchgraph.com/TGFacebookBrowser.html
3http://www.mihswat.com/labs/app/facebook-social-
graph/
4Policy Gadgets Mashing Underlying Group Knowledge in
Web 2.0 Media - http://www.padgets.eu
5Privacy and Identity Management in Europe for Life -
http://www.primelife.eu



The research is carried out from the point of view of a per-
son (“user”) interacting with other individuals through an
online social setting. Those other individuals are commonly
viewed as “contacts” or even called “friends”. To construct
an attacker model, one has to see them as privacy-attacking
adversaries that may be able to discover information that
was meant to be kept undisclosed to them. We define the
attacker as “honest but curious”, acting within the rules set
by the services providing the social web, thus only accessing
legitimately available information and not exploiting secu-
rity weaknesses of the site or, for example, weak passwords.
Therefore, the technical protection of the confidentiality of
certain attribute values is out of scope of this work, while
we focus on the assignment of attribute value visibility to
contacts depending on contexts.

3.1 The Need for Segregated Audiences
Successful personal IdM in the social web requires means
to organize one’s identity depending on social contexts and
to act accordingly. The user needs to be supported in rec-
ognizing and distinguishing between different social contexts
online similarly to offline contexts such as work, school, fam-
ily and friends. Like with offline contexts, which each have
a different appropriate and accepted behavior, one must be
able to choose how to present one’s identity depending on
online contexts as well. As one performs multiple and pos-
sibly conflicting roles in various contexts, the need for au-
dience segregation occurs, meaning that different audiences
are kept from witnessing role performances that were meant
for other audiences [6].

An identity in the social web consists of several attributes
and their associated values, while individuals being able to
view certain attribute values are referred to as an audience.
In the online social web, directed attribute presentation is
needed to realize audience segregation. In other words, one
must be able to present different values for the same at-
tribute to different audiences and to hide certain attribute
values from other audiences, thus keeping presented partial
identities consistent. One example that has been brought
up is a teacher that feels the need to hide certain spare time
activities and friends from her student contacts on a social
networking site after irritations about her hobby occurred
[15].

As in real life, audiences need to be disjoint with each con-
tact only seeing the predetermined attribute values and there-
by preserving the integrity of the user’s partial identity. In
case of overlapping audiences, i.e. contacts spanning several
segregated audiences, these contacts are assigned to a newly
created audience. Enforcing this policy raises the problem
of two of the users’s contacts from different segregated audi-
ences possibly exchanging information on the user without
his knowledge and thereby violating the contextual integrity,
which is unsolved even in the real world.

A context, describing each instance in which certain at-
tribute values and a particular audience come together [15],
can be seen as a means to connect sets of attribute values
and their corresponding audiences. Thus, users must be sup-
ported – assisted or automatically – in allocating both on-
line contacts and appropriate attribute-value pairs, thereby
forming a specific context. Figure 1 shows two sample con-
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Figure 1: Two Sample Contexts of User Bob

texts, one for work and one for spare time activities. Some
attributes, such as the salary, are only shown in one con-
text, some, such as the first name have different values in
each context while others are shown in both contexts.

Presently however, directed attribute presentation is not or
only in a limited way implemented in the field of the so-
cial web. We argue that such controls are essential to em-
power users for context-based identity presentation. Cur-
rently, users wishing to customize their digital appearance
to different audiences need to resort to workarounds such
as creating multiple accounts at the same or distinct social
platforms. By doing so, they are showing different sides of
their identity to different audiences and thereby create dis-
tinct contexts. The option to hide certain attributes from a
subset of one’s contacts is already available on some sites,
but does not reach far enough.

There are several reasons for the current lack of more fine-
grained customization possibilities, for example providers of
social platforms may not have seen a need to implement
such features due to a lack of customer interest and busi-
ness value. Also, the complexity of such controls poses a
challenge both for developers and users. We improve the sit-
uation by showing further approaches to segregate audiences
and to enable directed attribute presentation in Section 4.

3.2 A Formal Problem Scope Description
Followingly, we express the notions related to contexts, audi-
ences and directed attribute presentation formally and thus
more precisely to ensure a clear presentation of the problem
scope and to support future work. Firstly, for the user, there
is a set of attributes

A = {a1, a2, ..., an}.

For each of these attributes, the user may enter a set of
values

AVm = {avm1, avm2, ...avmk, ∅}∀m = 1...n.

Always included is the empty value representing that the
attribute is not shown. Note that in current services the
user is restricted to only one attribute value and the empty
value. Further, there is a set of contacts

C = {c1, c2, ..., cp}

denoting user’s contacts in the social web.

For the selected, directed and context-based release of at-
tribute values, the following question must be answered:
Which value avx of the attribute ax is presented to con-
tact c at the time of access? To answer this question, one
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Figure 2: Conceptualization of Current and Proposed State of Social Identity Management

also needs to consider on which information, denoted as i,
the decision should be based, which can by summarized by
a function

f(a, c, i)⇒ av

f can be seen as a view on an attribute and may be in-
voked each time a contact attempts to access an attribute
of the user. Similarly, we define a view V on all of the user’s
attributes as the set of attribute values

F (c, i)⇒ V ⊆ AVq∀q = 1..n.

It returns the set of attribute values a particular contact
may see, thus representing a partial identity of the user.

Before elaborating further on the possible ways to implement
f , we need to consider the previously mentioned audience
segregation. We consider a segregated Audience (SeA) as a
subset of the user’s contacts C, therefore

SeAi = {c1, ..., cr} ⊆ C.

As the purpose of SeAs is to prevent the presentation of
inconsistent partial identities or single attribute values, all
contacts that form a SeA have to be presented with the same
attribute values leading to

f(ax, cy, iy) = f(ax, cz, iz)∀x ⊆ 1..n; cy, cz ⊆ SeA.

In other words, f has to return the same attribute values for
all contacts in the same SeA. In order to prevent contacts
from seeing different and therefore conflicting attribute val-
ues, one contact can only be part of one SeA, thus all SeAs
are disjunct subsets of C. To resolve the case of overlapping
SeAs, they may be split up so that the intersection forms a
new SeA.

We define a context as a set of contacts forming a SeA
and a corresponding consistent set of attribute values that

may be exposed to these contacts, as illustrated in Figure 1.
Thus, F , returning an attribute value set for a given contact
can be used to establish the connection between contacts
and attributes that is necessary to define a context. To
reduce complexity, the problem of defining F can be split
into two tasks represented by Functions G and H, namely
assigning contacts to contexts and the corresponding SeA
(G(c, j) ⇒ SeA) on the one hand and assigning attribute
values to audiences (H(SeA, l)⇒ V ) on the other hand with
j and l being additional information on which the decision
is based on.

One straightforward way to implement G and H are manual
assignments conducted by the user, thus resulting in j and l
being static lists. However, with the complexity arising from
the ever-increasing number of contacts, the abundance of at-
tributes and the added possibility of using multiple values for
each attribute, this task is prone to become tedious at best.
Further, the dynamic nature of the social web would not be
considered. Contacts previously not classified, changes of
contact’s attributes and the nature of the relationship with
them are partly out of control of the user and would require
reconsidering the attribute values released to them. Also,
notions such as SeAs, directed attribute release, contexts
and views may not be intuitive to the average user. These
challenges require an advancement from the current state of
the art both conceptually and as seen in current social web
implementations and are addressed in the following sections.

4. APPROACHES TO DETERMINE SEGRE-
GATED AUDIENCES

In this section, we propose a conceptualization of social IdM,
showing that currently users have to manually deal with the
complexity imposed by the social web. We advance the situ-
ation by proposing assisted social IdM and illustrate several



Table 1: Proposed Audience Segregation Approaches
No. Type Description Required input data j Categorize new

user at time of
access

Com-
binable
with

1 Manual Manual group creation and user assign-
ment

Manual SeAs definition no 2, 3, 4, 5

2 Attribute
Rules

Dynamic assignment based on predefined
attribute rules

Set of Rules yes 1

3 Contact In-
teraction

Analyze past user behavior and interac-
tion

Quantity and quality of past
contact interaction

yes 1, 5

4 Attribute
similarity

Assign new users according to similarity
to predefined and populated classes

Manual SeAs definition,
contact’s attributes

yes 1, 5

5 Contact Re-
lationships

Determine distinct contact groups All contacts’ contact lists yes 1, 3, 4

approaches to support the user.

4.1 Current and Proposed State of Social IdM
Today’s social network landscape consists of many service
providers offering platforms for different contexts such as
leisure (e.g. Facebook) and work (e.g. LinkedIn). How-
ever, the possibilities to cope with multiple contexts within
the same platform are limited, as available possibilities to
enforce audience segregation and ways to exert directed at-
tribute presentation leave much to be desired. This is shown
in Figure 2, in which the current state is illustrated at the
bottom level as Manual Social Identity Management. While
it is already possible for the user to assign contacts to groups
and set attribute visibility based on group membership, all
of these steps have to be performed manually by the user
before the attribute in question is accessed by a contact. It
is currently not possible to show different attribute values
of the same attribute to different contacts. Additionally,
current provider implementations lack default groups with
settings that provide only limited access to personal infor-
mation. A further shortcoming is the lack of transparency
for the user about who has access to which disclosed infor-
mation stemming from large contact group sizes and inap-
propriate tools to visualize audiences. Thus it is difficult
to act appropriately for a given context and thereby main-
tain contextual integrity. As mentioned in Section 3.1, the
common approach to cope with this limited status quo is to
employ workarounds.

We propose improving the current state by managing segre-
gated audiences through directed attribute release, e.g. dis-
playing different attribute values to contacts depending on
the current context. As the transition to the use of differ-
ent attribute values increases the complexity of social IdM
even more, the need for Assisted Social Identity Manage-
ment arises, e.g. the user needs to be supported in creating
and managing groups of contacts that correspond to SeAs
and their respective contexts. As illustrated in the middle
level of Figure 2, this assistance encompasses automatically
generating suggestions for SeAs, namely allocations of the
user’s contacts to groups. Thus, the initial burden of cre-
ating groups from possibly hundreds of contacts is lifted.
The user may then refine these suggestions manually, ap-
prove them and assign attribute values to form a context.
In Section 4.2, we present and discuss four new approaches
to generate SeA suggestions.

While assisted social IdM eases the initial allocation of ex-
isting contacts into groups, there is still room for improve-
ment: Firstly, any suggested group allocation needs to be
verified manually and refined if necessary, as errors would
possibly lead to the unintended release of personal informa-
tion. Also, after user approval, no further information will
be considered for the access definition. Yet, dynamic incor-
poration of new information would be desirable, for example
to prevent a coworker that has left the company from view-
ing work-related attributes. Thus, we propose Automated
Social Identity Management as a next step to improve so-
cial IdM, as shown on the top level in Figure 2. It advances
from assisted social IdM through the following properties:

1. User parametrization of contact allocation:
Rather than having to decide or approve each contact’s
group individually, the user sets parameters for auto-
matic contact allocation.

2. Contact allocation after user interaction:
Unlike as in assisted social IdM, user interaction oc-
curs before contacts are assigned to groups, thus al-
lowing for dynamic contact-to-audience allocation and
incorporation of the most recent available information.
However, this poses high requirements on the algo-
rithm’s reliability.

Besides their adequacy to produce suggestions for SeA, in
Section 4.2, the aforementioned approaches are examined
regarding their use in a possible automated social IdM sce-
nario.

4.2 Approaches to Segregate Audiences
In the following we develop and discuss more advanced ap-
proaches to support the user in creating and managing seg-
regated audiences in order to maintain contextual integrity.
The goal of all approaches is to create disjunct groups of con-
tacts, or, applying the formal notation introduced in Section
3.2, to define parameter j of function G(c, j)⇒ SeA. Table
1 provides an overview of our proposed approaches.

Manual group assignment. This static approach requires
the user to manually cluster her contacts in a reasonable
manner and thereby create segregated audiences. Using



manual assignment, j simply represents the user’s knowl-
edge on each contact, i.e. she has contextual information
about the contact and is therefore able to assign it to an
appropriate segregated audience.

Theoretically, this approach allows for a fine-grained assign-
ment of all contacts. However, with the increasing number of
contacts, the user has to deal with the complexity of overlap-
ping audiences which need to be split up, in order to ensure
consistency of the presented attribute values. Furthermore,
due to the static nature of this approach the user has to re-
consider the classification each time a new contact is added.
In summary, manual assignment is a powerful concept to
create and manage segregated audiences, however due to
its high complexity it needs to be combined with other ap-
proaches that aim at supporting the user. This approach is
implemented in many of today’s social networks and is listed
for reference purposes.

Attribute rules. Employing attribute rules makes use of a
contact’s attributes to assign her to a segregated audience.
In more detail, the user predefines a set of rules that con-
stitute the input j of function G. A simple rule might be
R : {avlastname = Doe} ⇒ SeAFamily to assign each contact
having Doe as the attribute value for the attribute lastname
to the segregated audience Family. More sophisticated rules
are conceivable to get finer-grained segregated audiences. A
set of predefined rules for reoccurring problems could be pro-
vided to the user. As it is possible to create contact groups
using this approach can be employed in assisted social IdM
to make SeA suggestions based on the user’s preferences.

Once a rule set is defined thoroughly, this approach can
operate without further user interaction, hiding all the com-
plexity from the user and allowing for automated social IdM.
New contacts can be classified automatically and segregated
audiences can by created dynamically at access time. How-
ever, the assignment precision of a contact and thereby the
effectiveness highly depends on the quality of the rule set. As
the assignment decision is based on the contact’s attributes,
without further assurance about those attributes (e.g. trust
authority), this approach is vulnerable to a malicious con-
tact that alters his attributes in order to be assigned to a
different segregated audience and thereby seeing different
attributes and attribute values.

Contact Interaction. This approach relies on the user’s
preexisting interaction with her contacts and the fact that
both quality and quantity of interaction depends on the con-
tact’s context. In other words, we propose to analyze both
the frequency and the content of all previous communica-
tion that is available (e.g. private messages, wall postings,
etc.). As an example, a user might frequently communicate
with her best friend using everyday language while she might
have written only few formal messages to her colleague.

In a more formal way, qualitative and quantitative communi-
cation patterns constitute the input j of function G(c, j)⇒
SeA. As a result, function G delivers a set of segregated
audiences that can be further refined by the user. New con-
tacts without any prior interaction must be assigned to a
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Figure 3: Relationships Between Contacts

default group requiring the user to finally assign them.

Besides the use of this approach for SeA suggestions in as-
sisted social IdM, applying it to automated social IdM is
also feasible. For instance, contacts without interactions
in a certain time period could be automatically put into a
group with less access privileges.

Attribute similarity. This approach is based on the as-
sumption that all people in a given context are similar to
some extent or share a common attribute (e.g. the same af-
filiation). We propose to make use of this similarity between
a user’s contacts to create segregated audiences.

Two variations of employing attribute similarity can be con-
ceived: First, in order to find meaningful segregated audi-
ences among all contacts, unsupervised learning techniques,
such as clustering algorithms can be applied. Without any
user interaction, all contacts are assigned to subsets in a
way that all contacts in one subset share similarities. The
approach is useful to suggest a set of segregated audiences
which the user can adapt and refine and is thus use in as-
sisted social IdM. For example this approach can be used
to discover the segregated audience SeAFellowStudents since
all associated contacts have the same affiliation and are of
similar age.

Second, supervised learning techniques can be used to clas-
sify new contacts based on preexisting groups. In more de-
tail, after the user has defined segregated audiences (e.g.
using one of the other approaches depicted in Table 1), a
classifier is determined and used to suggest the correct seg-
regated audience for any new contact.

For the first variant of the approach the input j of function
G is a vector of attributes that are suitable for similarity
measurement. The second variant additionally requires the
predefined segregated audiences as input value. Machine
learning techniques are a powerful concept to cope with the
high complexity of finding segregated audiences among a
user’s contacts [21]. However as the algorithms lack contex-
tual knowledge the assignment precision is low and therefore
the user has to finally decide upon the classification. Simi-
lar to the rule-based approach, the decision is made upon a
contact’s attribute and is therefore vulnerable to a malicious
contact that changes her attributes in order to be classified
with another context. Thus, the use in automated social
IdM is questionable.



Table 2: Contact Groups from the Test Scenario
No. Name Description Group Size

1 Hometown Contacts from the student’s hometown 3
2 High school year Contacts from a student exchange year spent in the

United States
8

3 Study abroad year Mostly international contacts from a study abroad year
during college

25

4 USA 2 Contacts in the US unrelated to group “High School
Year”

8

5 Summer school Contacts from an international summer school attended
during PhD studies

18

6 University Contacts known through the University 77
7 Other Other contacts not related to groups above 6

Sum 145

Contact Relationships. The rationale of this approach is
that information about a contact’s context is embedded in
the relations this contact has with other contacts. We pro-
pose to employ this inherent property of common social net-
works to arrive at segregated audiences. It can be seen as
a special case of the attribute similarity approach with the
contacts of a contact as the only attributes being considered.

To be more specific, both the user and a specific contact
have relations to other contacts as depicted in Figure 3. It
can be seen that the user’s contacts c1, c2, and c3 have a
relation to each other and thereby form SeA1 = {c1, c2, c3}.
Analogously the contacts c4, c5 constitute SeA2 = {c4, c5}.

We assume that contacts that have relationships among each
other also communicate with one another and possibly about
the user and her attribute values. This approach has the
benefit that it makes communication between members of
different SeA and therefore the discovery of different at-
tribute values by the same contact less likely. However, this
cannot be prevented completely for two reasons: First, not
all relationships in real life are also represented online in
the social web, therefore there may always be links between
contacts that cannot be discovered. Secondly, only allowing
SeA allocations in which there are no links between mem-
bers of different SeAs would be the strictest form of this
approach. It would possibly lead to only a few or one big
SeA, as there are usually relations between contacts from
different contexts such as a user’s friend knowing a user’s
colleague from work (note that the two SeAs in Figure 3
satisfy the requirement). In order to find reasonable segre-
gated audiences it is necessary to allow linkage between the
contacts of two SeAs.

The approach will gain importance even more once the cur-
rent service provider landscape with its distinctive social
networks for different contexts (e.g. Facebook for Leisure-
and LinkedIn for Professional-activities) converges to one
large or several interconnected networks for all contexts.

To arrive at segregated audiences, this approach uses infor-
mation about relations between users and contacts as input
parameter j. The approach can be employed to discover
segregated audiences within the user’s contacts and enable
assisted social IdM, which is demonstrated in Section 5. It is
also conceivable to employ such an approach of automated

social IdM by classifying new contacts based on their rela-
tionships to contacts in existing groups.

5. IMPLEMENTING ASSISTED GROUP
ASSIGNMENT

In this section we evaluate the effectiveness of Contact Rela-
tionships as one of our proposed approaches to discover seg-
regated audiences among a user’s contacts. We first present
our algorithm that implements the function G as introduced
in Section 3.2. Subsequently, we describe the test scenario
based on a test person’s real-world data and employ this
dataset to evaluate our results using a prototype.

5.1 Algorithmic Foundations and Prototypi-
cal Implementation

The test person’s friend list and their connections to each
other were gathered using an application connecting to the
social networking site Facebook. With FQL (Facebook Query
Language6), the site allows applications to access some of the
information visible to their users through a number of avail-
able tables. We queried the table connection to get a list of
the user’s contacts and the table friend to obtain the links
between those contacts.

We further implemented a prototype to derive segregated
audiences within the social networking site dataset and eval-
uated the effectiveness of our approach. The prototype is
available for download and testing on our website7. For eval-
uation purposes it allows for manual creation of segregated
audiences (cf. Manual approach in Table 1) that serve as a
test set. The tool contains an algorithm implementing the
Contact Relationship approach to find segregated audiences
among a user’s contacts and a matching algorithm to eval-
uate the result against the predefined test set (see Figure
4). Furthermore we included a simulator to rapidly deter-
mine the optimal initialization parameters for the Contact
Relationship algorithm.

The prototype groups the test person’s contacts into classes,
using the relationships among them as a criterion, based on
the assumption that contact groups with a high number of
relationships among them also belong together semantically

6http://developers.facebook.com/docs/reference/fql/
7http://www-ifsresearch.wiwi.uni-regensburg.de/paper/wi/



Figure 4: Our Prototype (Screenshot)

and thus form a possible context. A“relationship”is a binary
property derived from the “is friend” property that popular
social networking sites employ.

For clustering, we employed a heuristic that uses the Jac-
card index [9] – a frequently used distance metric – to cal-
culate the similarity between two contacts. First, it calcu-
lates a matrix containing similarities between any combina-
tion of two contacts based on the overlap of their contact
sets employing the Jaccard similarity coefficient. Thus, two
contacts with a high number of mutual contacts receive a
high similarity value. Next, representatives for the first two
classes are selected, with the first one being the contact with
the highest number of similarity values that exceed a prede-
fined threshold and the second one being the contact that
has the lowest similarity to the first representative. Further
class representatives are chosen based on the maximal dis-
tance to all existing representatives as a criterion, until the
distance of the next possible representative falls below the
previously chosen threshold. Next, all remaining contacts
are assigned to classes based on their similarity to the class
representatives. The threshold greatly influences the out-
come of the algorithm, as the number of created classes is
directly related to it. In Section 5.3, a detailed discussion
on the optimal threshold determination is provided.

In terms of machine learning, this approach is a type of un-
supervised classification, as it requires no prior training of
the algorithm by the user. Note that the existence of a con-
nection between two contacts does not weigh more towards
their similarity value than any other mutual contact they
have. Also, only the existence of connections and thus mu-
tual friends influence the outcome, not their absence. This

Figure 5: Threshold Determination

matches the nature of the data set, in which instances where
two contacts have no connection far outweigh the number of
connections.

5.2 Test Scenario
For evaluation, we obtained actual user data containing 145
contacts and their relationships from a PhD-student’s social
network account and created SeAs automatically using the
algorithm. Then, we compared this output to a manual
assignment that the test person was asked to create.

The test person was asked to classify his contacts into se-
mantically meaningful groups similar to real-life contexts to
the best of his knowledge, leading to the allocations pre-
sented in Table 2. Groups such as the international sum-
mer school and study abroad year containing contacts from
various countries and with differing affiliations show that a
classification algorithm cannot be realized trivially by only
using these attributes for classification.

5.3 Evaluation
We employed a cluster to classes evaluation methodology
[21], i.e. the test person was asked to create a set of opti-
mal segregated audiences, as shown in Table 2. The manual
classification was then compared to the classes our algorithm
created. In more detail, starting with the largest manually
created group the most similar automatically created group
was chosen for evaluation and a similarity value was deter-
mined based on member overlap. If the algorithm created
more groups than defined in the manual classification, the
smallest manually created group was compared to a backup-
group, that was created of all members of the residual auto-
mated groups.

As mentioned before, the quality of the results highly de-
pends on the similarity threshold the algorithm uses to cre-
ate classes of segregated audiences. To determine the opti-
mal threshold we employed a simulator implemented in our
prototype, calculating the average cluster to classes simi-
larity for each threshold between 0 and 100 percent. The
results for are depicted in Figure 5. As explained in the
previous paragraph, if the algorithm finds more classes than



Table 3: Classification Results
No. SeAman SeAman

Members
SeAaut

Members
Sim.

1 University 77 52 0.633
2 Study abroad

year
25 23 0.846

3 Summer
school

18 17 0.842

4 High school
year

8 8 1.000

5 USA 2 8 10 0.800
6 Other 6 14 0.111
7 Hometown 3 23 0.000

Weighted similarity 0.631

in the test set, a backup class is created. This is shown by
the red line, which is capped at the number of user-defined
classes. The optimal threshold is not at peak A, as the algo-
rithm only creates two classes with that threshold, whereas
at peak B the number of found classes equals the number of
classes in the test set and thus peak B denotes the optimal
threshold.

Using a threshold of 13.5 percent similarity, Table 3 depicts
the classification results for our algorithm and the cluster
to classes evaluation against the predefined set (cf. Ta-
ble 2). The similarity of each pair of classes (manual and
automated) is weighted with its average number of mem-
bers resulting in an overall class similarity of 63.1 percent.
This means the automatically created classes overlapped the
manually created classes by 63.1 percent in average with the
average being weighted using the class sizes.

As Table 3 shows, the result quality highly depends on the
contact group. For example, for the classes Study abroad
year and Summer school there is a high similarity between
manually and automatically created classes. This can by ex-
plained by the high interconnection between the group mem-
bers and their distance to other groups. As the algorithm
highly depends on interconnections between group members,
the results are less optimal for other contact groups like
Hometown. As the members in this group do not know each
other, this explains the algorithm’s inability to find an ap-
propriate segregated audience for that group.

The results clearly demonstrate the feasibility of automated
finding of segregated audiences within a set of contacts which
can be further refined by the user and thereby implement
assisted social IdM.

A further evaluation comparing our approach with the re-
lated Facebook applications mentioned in Section 2 would be
desirable. Yet, due to the different nature of the approaches,
one could not rule out misleading findings. Friendwheel does
not produce any contact groups, thus providing no results
that could be compared. For the other two approaches, due
to the limited available documentation, one cannot assess if
they consider any other input parameters besides the con-
tact’s relationships among each other. Also, we consider a
clear understanding of the employed algorithms as a precon-
dition before comparing outputs in a meaningful way.

A

B
most 

intimate 
least

intimate

Attribute Values

Figure 6: Audience Distribution

If such a comparative evaluation were carried out, it would
have to be performed on exactly the same input data, ideally
by adding the other application to the test user’s Facebook-
profile. The cluster to classes evaluation could then be ap-
plied to compare the resulting classes to the manually cre-
ated user groups, yielding a similarity value that would be
easy to compare.

5.4 Ideas for improvement
While our implementation has shown the feasibility of as-
sisted social IdM, there are various angles on which both
the algorithm and the general idea of assisted IdM can be
improved.

The presented algorithm produces promising and usable re-
sults, yet there are various other clustering approaches [21]
with a number of possible settings and parameters which al-
low for further research on their suitability in this problem
setting. Furthermore, using other input attributes in ad-
dition to the contact’s mutual friends opens up future work
opportunities to further optimize our approach. Still, groups
such as Summer School (cf. Table 2) show that members
of valid segregated audiences may have little or nothing in
common besides mutual friends.

The focus of the demonstrator lays on the assignment of
contacts to groups, corresponding to function G described
in Section 3.2. For a full specification of contexts in social
IdM however, an assignment of attributes to contexts is also
necessary. The attribute-to-context assignment could hap-
pen after the assignment of users to contexts, however there
could be interdependencies. For example, adding a certain
attribute visibility to a context may require reconsidering
the assigned contacts and splitting the group, as only some
of the corresponding contacts were meant to see the new at-
tribute. To provide fully assisted social IdM, suggestions for
attribute allocations should be presented as well.

The algorithm is capable of classifying contacts into seman-
tically associated groups based on their mutual contacts.
However, while this classification is valid and corresponds
to the user’s classification, as demonstrated by similarity
values up to 100%, the user might still prefer to share dif-



ferent information with members of one group. For exam-
ple, there may be both loose acquaintances met in a student
club, as well as members that have grown to be deep friends.
This is illustrated in Figure 6, in which the circles represent
classes of attribute values, with the most intimate values,
such as sexual preferences, located in the center and the
least intimate values located in the outer circle. Contacts,
represented by dots are placed on those circles corresponding
to the user’s willingness to share personal information with
them. As one can see, groups like group A cause problems
for audience segregation, as they cover multiple attribute
classes. Groups similar to group B are more suitable, as
they only cover a small range of attribute classes.

6. CONCLUSIONS
The pervasiveness of the social web poses many challenges
for future research, especially in the field of privacy. Unlike
the real-world, where personal information is ephemeral, in
the online-world, this information is almost infinitely avail-
able while new information is added constantly increasing
the existing complexity of managing different identities con-
sistently. This permanency of information poses a great
challenge for personal social IdM, since we are no longer
free in constructing our identities because contradictory in-
formation may be available online. While the social web
provides the platform for social IdM to everyone, regardless
their technical expertise, privacy controls to raise awareness
of implications using the social web and support the users
in constructing and managing different identities are still in
their infancy.

In this paper we propose assisted social IdM as a means to
advance from the current state. In more detail, we provide
a conceptualization of current and future social IdM and
its formal foundations. Building on that, we propose sev-
eral approaches to segregate audiences, which is a necessary
step to disclose personal information within its belonging
context. Our proposal is backed by a prototypical imple-
mentation and an evaluation that prove the applicability of
the approach.
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