PHYSICAL REVIEW B 83, 195318 (2011)

Theory of single electron spin relaxation in Si/SiGe lateral coupled quantum dots
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We investigate the spin relaxation induced by acoustic phonons in the presence of spin-orbit interactions in
single electron Si/SiGe lateral coupled quantum dots. The relaxation rates are computed numerically in single
and double quantum dots, in in-plane and perpendicular magnetic fields. The deformation potential of acoustic
phonons is taken into account for both transverse and longitudinal polarizations, and their contributions to the
total relaxation rate are discussed with respect to the dilatation and shear potential constants. We find that in
single dots the spin relaxation rate scales approximately with the seventh power of the magnetic field, in line with
a recent experiment. In double dots the relaxation rate is much more sensitive to the dot spectrum structure, as it
is often dominated by a spin hot spot. The anisotropy of the spin-orbit interactions gives rise to easy passages,
special directions of the magnetic field for which the relaxation is strongly suppressed. Quantitatively, the spin
relaxation rates in Si are typically two orders of magnitude smaller than in GaAs due to the absence of the
piezoelectric phonon potential and generally weaker spin-orbit interactions.
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I. INTRODUCTION

For more than a decade semiconductor quantum dots have
been in research focus for quantum information processing. '
The experimental control over the electron spin in quantum
dots has seen enormous progress, with lateral gated GaAs
structures demonstrating the state of the art.” Magnetic® and
electric’ coherent spin manipulations have been demonstrated,
while electron spin measurement has been achieved using
spin-to-charge conversion techniques.'? For the latter, double
dots'' have proven especially useful in exploiting the spin
Coulomb blockade.'> However, the GaAs spin qubit seems to
have reached its fundamental limit for coherence due to the
nuclear spins inherent in all III-V semiconductors.'3~13

Materials composed of atoms without nuclear magnetic
moment, such as Si and C, seem a natural solution for the
problem of nuclear-induced decoherence.!®!” That is why
Si-based quantum dots have recently seen a revived interest.
Although the quantum dot technology is not yet as mature
as in GaAs, several perspective setups are being actively
pursued.’®® We note that a spin to charge conversion was
reported recently.?’ In addition to the absence of nuclear spins,
Si seems potentially advantageous because of weaker spin-
orbit interactions, promising less decoherence, and a stronger
g factor, allowing spin control at smaller magnetic fields.

On the other hand, the electron effective mass in Si is
larger than in GaAs, so Si dots must be smaller at a given
orbital energy scale. In addition, and perhaps more seriously,
a major issue for silicon-based quantum computation is the
valley degeneracy of its conduction band electrons.?®? In
the bulk, the conduction band minima are located at the
X valleys, that is, at k, =~ 0.84ky, v =1, ...,6, toward the
six X points of the Brillouin zone, where ko = 27 /ay and
ay = 5.4 A is the lattice constant.’* In a (001)-grown Si
heterostructure the valley degeneracy is partially lifted due
to the presence of the interface and/or due to strain,’! leaving
a twofold conduction band minimum, the £z valleys, which
are separated from the fourfold excited valley states by at
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least 10 meV,?3%32 large enough to neglect the upper four
valleys.?®?%33 The remaining twofold valley degeneracy is
lifted if the perpendicular confinement is asymmetric. Then the
orbital wave functions become symmetric and antisymmetric
combinations of the single valley states,** which are separated
by the energy difference called the ground-state gap®® (or
valley splitting).

In recent years the origin and possible control of the
valley splitting has been in focus. Measurements in silicon
heterostructures reveal a valley splitting of the order of
ueV.33340 On the other hand, theoretical estimates of
perfectly flat structures propose a splitting about three orders
of magnitude larger.*' Taking into account detailed properties
of the interface (e.g., roughness), experiment and theory
come to an agreement,’>3**~#8 and additional (in-plane)
confinement allows the valley splitting to reach values of the
order of meV.*? In Si/SiO, systems, the splitting can even
be tens of meV.**=>! Here we assume that the splitting is
at least 1 meV and we can use the effective single valley
approximation,”>? in which only the lowest valley eigenstate
is considered. This choice is strengthened by the fact that
electron spins in valley-degenerate dots would not be viable
qubits.28:29:52

In the single valley approximation, the Si dot resembles the
fairly well understood GaAs one. The main goal of this paper
is to carry out a comparison on a quantitative level, providing
realistic values for the electron spin relaxation as available for
GaAs dots.>*™’

The relevant sources of spin relaxation in GaAs quantum
dots in a magnetic field are the electron-phonon couplings
modeled by the piezoelectric and deformation potential
theory.’®>% Since silicon is not piezoelectric, only the defor-
mation potential mechanism remains. From this point of view,
a Si dot is closer to InGaAs than to GaAs, as in InGaAs the
relative importance of the deformation versus the piezoelectric
potential is enhanced due to a larger g factor.’® However,
unlike (In)GaAs, in which transverse acoustic phonons do
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not contribute to the deformation potential coupling, both
transverse and longitudinal acoustic phonons cause spin
relaxation in Si.9°-%* In the present work special attention is
given to the importance of the transverse phonons and to the
role of the dilatation and shear potential constants, E,; and E,
respectively, which parametrize the electron-phonon coupling
strengths.

In Si, the spin relaxation/decoherence rates were computed
perturbatively for single dot single electron® and single®® and
double®’ dot singlet-triplet transitions. Also the spin relaxation
due to the modulation of the electron g factor by the phonon-
induced strain was investigated.®® Experimentally the rates
were measured on quantum dot ensembles,®>’" on a many-
electron quantum dot,”"’> and a few electron quantum dot.”’
We obtain the spin relaxation rates nonperturbatively, using
exact numerical diagonalization, for a wide range of magnetic
fields and interdot couplings. Our results allow us to discuss
regimes beyond the validity of perturbative treatments and to
specify the accuracy of common approximations.

The paper is organized as follows. In Sec. II we define
our model of the double quantum dot, the electron-phonon
interaction, and the spin relaxation. In Sec. III we briefly
review the Si single and double dot spectra, paying attention
to the states’ orbital symmetries. In Sec. IV A we investigate
the spin relaxation in a single dot in an in-plane magnetic
field. Comparing with a recent experiment, we find that (i)
the results of the experiment indicate that the main spin
relaxation channel is the mechanism we study here, and (ii) the
spin-orbit coupling strength of ~0.1 meV A seems realistic for
the Si/SiGe lateral quantum dots. We also present analytical
formulas for the spin relaxation rate in the lowest order of
the spin-orbit interactions. Comparing with exact numerics,
we demonstrate that these formulas are quantitatively reliable
up to modest magnetic fields of 1-2 T. We find that a
further analytical simplification often adopted, the isotropic
averaging of the interaction strengths, leads to a result correct
only within an order of magnitude. In Sec. IVB we deal
with the double dot case and demonstrate that here the spin
relaxation rate is sensitive to the spectral anticrossings (spin
hot spots),”® especially if the magnetic field is perpendicular
to the heterostructure. For in-plane fields, the anisotropy of
the spin-orbit interactions leads to the appearance of easy
passages—magnetic field directions in which the relaxation
rate is quenched by many orders of magnitude.’®>® These
results are analogous to those for GaAs quantum dots. Finally,
we conclude in Sec. V.

II. MODEL

Within the two-dimensional effective mass and effective
single valley approximations a laterally coupled, top-gated
double quantum dot (DQD) in a silicon heterostructure with
the growth direction Z = [001] is described by the Hamiltonian

2K2

H =" £ V() + Sup0 B+ Ho+ Hyo (1)
with m the effective electron mass and r = (x,y) the in-plane
position vector. The vector of the kinetic momentum ZK =
—ihV + eA, with e the proton charge, consists of the canonical
momentum and the vector potential in the symmetric gauge,

PHYSICAL REVIEW B 83, 195318 (2011)

FIG. 1. Orientation of the double dot in the coordinate system
Xx =[100], y = [010]. The potential minima, sketched by two circles,
are parametrized by the position vectors £d or by the distance 2d
and the angle 8. The in-plane magnetic field orientation is given by
the angle y.

A = B,(—y/2,x/2). We neglect the orbital effects of the in-
plane magnetic field component, a good approximation up to
roughly 10T for the usual heterostructures.”* The in-plane
coordinates are chosen to be the crystallographic axes, that is,
£ =[100] and $ = [010]. We use the biquadratic model**”>
for the electrostatic confinement potential,

V(x,y) = sme? min{(r — d)? (r + d)*}, )

where +d denote the positions of two potential minima.
Alternatively, the minima are parametrized by the interdot
distance 2d and the angle between the main dot axis d
and %, denoted by §. Characteristic scales are given by the
confinement energy Ep =hwy and the confinement length
ly = (h/mwy)'/?. The Zeeman energy in Eq. (1) is proportional
to the effective Landé factor g and the Bohr magneton ug,
while ¢ = (0,,0y,0;) is the vector of the Pauli matrices. The
magnetic field is given by B = (B cos y, B sin ¥, B;), where
y is the angle between the in-plane component of B and X.
The geometry is plotted in Fig. 1.

Extrinsic spin-orbit coupling (SOC) leads to additional
terms in the Hamiltonian of two-dimensional systems without
inversion symmetry.> Structure inversion asymmetry arising,
for example, due to an electric field applied along the growth
direction, results in the Bychkov-Rashba Hamiltonian

Hy: = a(UxKy - Uny)a 3

with an electrically tunable coupling parameter «. The bulk
inversion asymmetry of zinc blende semiconductors such as
GaAs is not present in silicon with diamond structure and the
corresponding linear and cubic Dresselhaus interactions are
absent. However, a silicon heterostructure is of C,, symmetry,
so there is also a generalized Dresselhaus term,’%’’

Hy = p(—0: K\ + 0,Ky), “

which is identical to the Dresselhaus Hamiltonian stemming
from the bulk inversion asymmetry in III-V semiconductors.
The parameter B8 depends on the interface (step height)
and well width (number of Si-atomic layers). An alterna-
tive parametrization utilizes the spin-orbit coupling lengths
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lyr = h%/2ma and Iy = h?/2mp. In this work we assume an
asymmetric quantum well along Z with & and § of comparable
strengths.”’

Our parameters for the numerical calculations are as
follows: The system of interest is a (001)-grown SiGe/Si/SiGe
quantum well, where the thin Si layer is sandwiched by
relaxed SiGe with a germanium concentration of about
25%. The bulk electron effective mass of the X valleys is
anisotropic in the directions transverse and longitudinal to
the corresponding k, vector, given by m; = 0.916m, and
m; = 0.191m,, respectively, where m, is the free electron
mass. The in-plane mass of the z valley states is therefore the
transverse mass. Due to the tensile strain (in plane) of the Si
layer the effective mass is slightly increased’® compared to the
unstrained bulk Si and we use m = 0.198m,.”® The effective
Landé factor is g = 24271 and the SOC strengths are set
to be & = 0.05 meV A and 8 = 0.15 meV A, respectively.”’
Our choice is based on results of theoretical tight-binding
calculations of Ref. 77, as experimentally the SOC in silicon
dots has not been measured up to date. We use the confinement
energy Ep = 1 meV equivalent to the confinement length
Iy = 20 nm, which corresponds to realistic dot sizes.”"”

We consider transitions mediated by phonons, with the
accompanying spin flip allowed due to the presence of the spin-
orbitinteractions. In a (001)-grown quantum well, the electron-
phonon coupling for intravalley scattering is the deformation
potential of transverse acoustic (TA) and longitudinal acoustic
(LA) phonons given by®0-6480

: hQ Arpl LIQR —iQR
Hoet =iy 2pve, Palbas® —boue M)
Q.1
with
D()i = Edé%z : Q + EuéaZQz» (6)

where Q = (q,Q.) is the phonon wave vector, Q is its unit
vector, and R = (r,z) is the electron position vector. The
summation includes all polarizations81 L =TA1,TA2, LA,
and ¢, is the corresponding sound velocity. The phonon
annihilation (creation) operator is denoted by b (b and the
polarization unit vector reads &. The mass density is given by p
and V is the volume of the crystal. The deformation potential
strength is set by the dilatation and shear potential constants
Eq and E,, respectively. Note that unlike in GaAs there is no
piezoelectric phonon potential in Si.

We define the single electron spin relaxation rate, which is
the inverse of the spin lifetime 77, as the sum of the transition
rates from the upper Zeeman split ground state, called Fg
in the following, to all lower-lying states W with opposite
spin. Each individual transition rate is evaluated using Fermi’s

golden rule in the zero-temperature limit,%>%7
T 0, ..2 2
Cspin = "oV QXA: o [Dg|” [My | 81y — wq), @)

where My = (FST|eiQ‘R|\II¢) is the matrix element for the
corresponding initial and final states and hw, is the en-
ergy difference between these states. We evaluate Eq. (7)
numerically using the parameters p = 2.3 x 10 kg/m* and
¢ =5x10°>m/s for TA and ¢; = 9.15 x 10° m/s for LA
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phonons. The choice of deformation potential constants is not
unique.®> We use E; =5eV and E, =9 eV according to
Ref. 83, noting that other combinations, such as (E4, E,) =
(1.1,6.8)eV,% (1.13,9.16)eV, and (—11.7,9)eV.,** appear
alternatively. The needed electron wave functions and energies
are obtained numerically as an eigensystem of the Hamiltonian
in Eq. (1), which we diagonalize with the method of finite
differences using Dirichlet boundary conditions. The magnetic
field is included via the Peierls phase and the diagonalization
is carried out by the Lanczos algorithm. Typically we use a
grid of 50 x 50 points, which results in a relative precision in
energy of 107> in zero magnetic field.

III. SINGLE ELECTRON STATES

A. Energy spectrum in zero magnetic field

In order to understand the details of the spin relaxation in sil-
icon DQDs, we review briefly their electronic properties in zero
magnetic field, including their group theoretical classification,
the influence of SOC, and the most important quantities for
experiments. The Hamiltonian Eq. (1) for B = 0 and without
SOC has C, ® SU(2) symmetry. We can then label the orbital
states according to the irreducible representations I';, i =
1,...,4 of the Abelian point group C,,, noting that each state
is doubly spin degenerate due to the SU(2) symmetry. This is
done in Fig. 2, where the energy spectrum vs the interdot dis-
tance in units of /y is plotted. Note that the potential V, Eq. (2),
was chosen such that the states converge to Fock-Darwin
states® in the limit of zero or infinite interdot distance. In
the following we focus on the intermediate region where the
interdot distance is comparable to the confining length. This
is typically the region of experimental interest, as well as the
one in which numerics becomes indispensable. Here we find
several level crossings which may be lifted in the presence
of SOC. Such anticrossings, also called spin hot spots,’* are
of great importance for spin relaxation as we will see later.
However, the linear SOC terms [Egs. (3) and (4)] do not
lead to level repulsion in the first order although allowed by

energy [meV]

0 I 2 3 4 5
interdot distance 2d/] N

FIG. 2. (Color online) Calculated energy spectrum of the Si
double quantum dot with respect to the interdot distance at zero
magnetic field. The states are labeled (colored) according to the
irreducible representations I'; of C,,. On the right-hand side we
give the highest orbital momentum of associated single dot states
(Fock-Darwin states). The tunneling energy 7 is also shown.
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symmetry.®> We conclude that in zero magnetic field the DQD
spectrum of silicon does not exhibit relevant spin hot spots.

For many applications including quantum dot spin qubits,
the important physics happens at the bottom of the spectrum.
We denote the spin-degenerate ground state as I'y = I's and
the first excited state as I'y = ', to indicate the symmetry
under inversion I,,. The energy difference between these
states is parametrized by the tunneling energy,®> T = (E5 —
Eg)/2, a characteristic quantity for DQDs directly measurable
experimentally.®® Note that within the single valley approxi-
mation we assumed a valley splitting of at least 1 meV, which
exceeds 2T at all interdot distances.

Using a linear combination of single dot orbitals®
(LCSDO) we can approximate the exact wave functions by
analytical expressions. Let W, ;(r) be the Fock-Darwin state
(omitting spin), where n is the principal and / the orbital
quantum number.?* Then the lowest orbital eigenstates of
the DQD can be approximated using the Fock-Darwin states
centered at the potential minima as

s = Ny [Wo,0(r +d) + Wo,o(r — d)],
Lo = N_[Woor+d) — W o(r—d)].

®)

Here N, are normalization constants. Calculating the eigenen-
ergies as the expectation values of the Hamiltonian, Eq. (1), for
zero magnetic field and without SOC, we obtain the tunneling
energy as plotted in Fig. 3. It is in excellent agreement with the
exact numerical result. In the limit of large interdot distances
the leading order reads

T ~ Eg—e—e /", )

b l()
which is a good approximation if 2d /Iy > 2.5.

In principle SOC terms affect the tunneling energy. How-
ever, it was shown®’ that this correction is of fourth order in the
spin-orbit strengths o and/or 8. For our parameters here it is of
the order of peV and therefore negligible for all experimental
purposes.

L1

tunneling energy T [meV]

10 ' \ ' | ' | ' —
0 1 2 3 4 5
interdot distance 2d/10

FIG. 3. Calculated tunneling energy vs interdot distance for zero
magnetic field calculated by exact numerical diagonalization (dotted
line), exact LCSDO formulas (thin solid line), and leading order
approximation [Eq. (9), thick solid line]. The tunneling energy for a
finite perpendicular magnetic field (B, = 2 T, dashed line) is given
for comparison.
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FIG. 4. Calculated energy spectrum of the DQD with interdot
distance 2d /[y = 2.5 plotted against the perpendicular magnetic field.
The thick line indicates Fg , the lowest state with opposite spin
polarization to that of the ground state.

B. Energy spectrum in nonzero magnetic field

In a perpendicular magnetic field without SOC the group
of the Hamiltonian becomes the Abelian point group C,. The
only remaining symmetry operator is the total inversion /., and
the one-dimensional irreducible representations have either
symmetric or antisymmetric base functions. The spectrum
of a DQD in the perpendicular magnetic field is plotted in
Fig. 4. The Zeeman interaction lifts the spin degeneracy and
the ground state, denoted as e, is spin polarized. Up to a
certain magnitude of B, (about 1.5 T for 2d/ly = 2.5; see
Fig. 4), the first excited state is I‘T, and the spin relaxation is
the transition between these two wave functions with the same
orbital parts and opposite spins. For larger magnetic fields the
Zeeman splitting exceeds the orbital excitation energy and the
first excited state is Fi, which has the same spin polarization
as the ground state. For even higher fields more states fall
below Fg, which all contribute to the spin relaxation. Note
that the level spacings of interest at moderate magnetic fields
are smaller than the assumed valley splitting, which again
justifies the single valley approximation.

Within the LCSDO the single dot wave functions acquire a
phase when shifted. The building blocks in Eq. (8) now read
W, (r £d)exp[xieB.r - (Z x d)/2h] and we can repeat the
computation of the tunneling energy with the result plotted
in Fig. 3. One can see that the perpendicular magnetic field
reduces the tunneling energy. This can be understood qualita-
tively as the renormalization of the confinement length, which
is replaced by the effective (magnetoelectric) confinement
length I, where 11;4 =l MEE lg * with the auxiliary quantity
l¢ = (2i/B,e)"/?. The tunneling energy simplifies in the limit
of large interdot distances to

T ~ Eo_d s e~ QI =1315")

Vi 1

Note that for B, = 0 we have I3 = [ and we obtain the results
of Sec. IIT A.
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IV. SPIN RELAXATION

A. Single quantum dot

Before we proceed to DQDs, we first discuss a single quan-
tum dot in an in-plane magnetic field, B = Bj(cos y, sin y,0),
which already features anisotropies and relaxation rate spikes
due to spin hot spots, as we will see. Removing the linear
SOC terms in Eq. (1) by a unitary transformation,’”%® the
relaxation proceeds due to a spin-orbit-induced effective
magnetic field,*%

Bzeffz_B” x cosy smy +y siny  cosy ’
lbr ld lbr ld
(11

which is perpendicular to the external magnetic field. The
matrix element My, in Eq. (7) is proportional to this effective
magnetic field, which results in the spin relaxation rate being
proportional to the squared and inverse effective spin-orbit
coupling length L,%6-88

L2 =12 4172 = 2sinQy) I 117" 12)

which is anisotropic since it depends on y. However, the
anisotropy disappears if one of the SOC lengths is domi-
nant, particularly for 8 = 0. Thus, experimental verification
of anisotropic single dot spin relaxation would verify the
existence of the generalized Dresselhaus term, Eq. (4). The
anisotropy is strongest if Iy, = Iy, with the maximal rate at
y = 135° and the minimal rate at y = 45°.

Figure 5 displays the numerical results for the spin and
orbital relaxation rates with y = 135°. The TA and LA phonon
contributions to the total spin relaxation rate (solid black line)
are given to clarify their relative importance. We find that the
rate for magnetic fields up to about 5 T essentially results from
the TA phonons. They do not depend on E, since the scalar

--- orbital relaxation rate
— TA and LA phonons

— TA phonons only
— LA phonons only

7 .
- B (fitted to experiment)
@ cxperiment

relaxation rate [1/s]

vl vl vl ol o ol o ol ol

\ \ \ \ ‘
2 5 10

[—

3 4
magnetic field [T]

FIG. 5. (Color online) Spin relaxation rates of a single electron
in a single quantum dot vs in-plane field for y = 135°. The total rate
(solid black line) and its contributions of the TA phonons (solid red
line) and the LA phonons (solid blue line) are shown. The spin hot
spot at B ~ 8.3T causes the spin relaxation rate to increase up to
the orbital relaxation rate (dash-dotted line). The three dots give the
experimental data of Ref. 71 fitted by a B curve (dotted line).

PHYSICAL REVIEW B 83, 195318 (2011)

product in D}, Eq. (6), vanishes. An important observation
is the strong enhancement of the total spin relaxation rate at
B ~ 8.3 T. This is due to a spin hot spot which appears at
a point at which the Zeeman splitting is equal to the level
spacing of the Fock-Darwin states. The anticrossing induces
a strong mixing of the spin states which abets spin relaxation.
The spikes appear with equal height for any in-plane field
orientation y as here the rate is given by the orbital relaxation
rate®® (dash-dotted line), which is independent of y.

In Fig. 5 we also plot the spin relaxation rate as measured
in Ref. 71. First, the observed power dependence corresponds
to the coaction of spin-orbit interactions and deformation
phonons.>® The energy conservation forbids a direct electron-
nuclear spin flip-flop in finite magnetic fields. This process
becomes allowed if accompanied by the emission of a phonon,
yielding a relaxation rate proportional to B3.”" Second, the
order of magnitude agreement indicates that our choice of the
spin-orbit strength is realistic, even though a direct fitting is
not possible (the angle y was not reported and the dot was not
in a single electron regime).

We now derive analytic formulas for the spin relaxation
rate valid for weak in-plane magnetic fields. Treating the spin-
orbit coupling perturbatively, we are able to evaluate Eq. (7)

analytically. The total rate I'gpjn = I’ g{n +T i“p’?n is given by the
contributions (A" = TA,LA)
278
Yo M ) 7
1—‘spin = DA’WL (gusBy)'. (13)
The energy parameter Df, reads
Dy = 55 E. (14)
and
Dis = 8;+ 3B+ 3585 (15)

for the transverse and longitudinal branches, respectively.
The weak versus strong magnetic field limit is determined
by the conditions & <« 1 and &, > 1, respectively, where
&, = gugBlg/(hc)).® Here, the crossover &, =1 is found
at By = 1.4 T for transverse and B = 2.6 T for longitudinal
acoustic phonons. Comparing with the exact numerics, we find
that the error of the value of Eq. (13) is less than 10% up to
B = 0.8 Tfor TA and up to B = 2 T for LA phonons. In any
case, the error is less than 5% if B < 0.5 T.

The integral in Eq. (7) can be performed analytically only
exceptionally, such as in the single dot case. Therefore, one
often employs isotropically averaged deformation potentials to
simplify the treatment.®>%3! This amounts to averaging Dél’
Eq. (6), over phonon directions distributed uniformly in three
dimensions,

D4 — (D) = - / |DoldS2. (16)
Here it leads to Eq. (13) with
Dhyio = 2D = &E. (17

for the transverse and

2 LAVZ _ =2 | 24— 1=2
DLAJSO =(DQ > =8, + 5848, + 58, (18)
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FIG. 6. Ratio of the relaxation rate of the approximations and
the exact numerics vs in-plane magnetic field. The low-B-field limit,
represented by Eqs. (14) and (15), is shown by the solid lines, and
the numerically evaluated isotropic average approximation, Eq. (16),
by the dashed lines. The contributions of the TA and LA phonons are
given in the top and bottom panels, respectively. The magnetic field
isin plane and y = 135°. The constant line at 1 (dotted) is a guide to
the eye.

for the longitudinal contribution to the total rate. For our
choice of parameters, we get (D(TIA) =3.29eV and (D(LQA) =
8.44 eV. Comparing Egs. (17) and (18) with Egs. (14) and
(15), we find that the averaging, Eq. (16), leads to rates which
are 2.3 (TA) and, for our parameters, 1.4 (LA) times larger
than the actual rates. Note that if we use instead of Eq. (16)
the averaged deformation potentials as reported in Ref. 63, we
obtain relaxation rates that differ in the low-B-field limit from
Egs. (14) and (15) by a factor of 3.4 for the TA and 3.2 for the
LA contribution.

The isotropic average approximation becomes exact if the
matrix element | M4 | is independent of the phonon direction.
Howeyver, this directional invariance is not fulfilled in lateral
dots which are strongly anisotropic in the perpendicular
versus the in-plane direction. To assess the quality of the
approximations, we compare the corresponding relaxation
rates with the exact numerical result in Fig. 6 for magnetic
fields up to 10 T. Our measure is the ratio between the rates of
the approximation and of the numerics, which we plot for the
TA and LA contributions separately. The parameters in Fig. 6
are identical to those in Fig. 5. We find that the analytical results
(solid lines) deviate significantly from numerics for fields
beyond the low-B-field limit. The especially large discrepancy
at around 8.3 T, where the ratio is close to zero, stems from the
fact that the analytic approximation assumes no level crossings
of the initial state. Thus, it accounts for neither spin hot spots
nor the transition into excited states. Equations (17) and (18)
result in curves parallel to Eqs. (14) and (15), but shifted
by the discrepancy factors 2.3 and 1.4 for the TA and LA
contributions (not shown). Numerical evaluation of the spin
relaxation rates via Eq. (7) using the average of Eq. (16) leads
to a discrepancy represented by the dashed line. We find that
even in highly anisotropic [two dimensional (2D)] lateral dots,
the discrepancy factor is only of the order of 1. It is therefore
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expected to be legitimate to use the isotropic averaging also
for more complicated dot geometries, such as the double dot,
or a biased dot, where it can lead to significant simplifications.

B. Double quantum dot

We now move to the DQD case, where we take 2d as a
variable parameter, noting that it could stand for either the
actual separation between two dots or a gate-tunable coupling
between dots a fixed distance apart. From the experimental
point of view, it is more convenient to characterize a double
quantum dot via the tunneling energy. We plot our results with
respect to the interdot distance and give also the corresponding
tunneling energy at zero magnetic field computed numerically
(Fig. 3, dotted line).

The spin relaxation rate in a DQD as a function of both the
interdot distance in units of /y and the perpendicular magnetic
field is shown in Fig. 7. We find that the plotted area is
dominated by the spikes which come from spin hot spots and
that there are no easy passages, that is there is no possibility
for a fixed magnetic field to change the interdot distance from
zero to infinite without passing through any of these peaks. For
small fields, here B, < 3 T, we have only one relevant spike,
which comes from the anticrossing of Fg and Ff\ (see Fig. 4).
For larger magnetic fields, crossings with higher orbital states
occur which may but need not lead to spin hot spots, depending
on the symmetry of the crossing states.

If the field is applied in the plane, the spin relaxation
depends on the orientation of the magnetic field with respect
to the crystallographic axes because of the interplay between
Bychkov-Rashba and generalized Dresselhaus SOC. Once we
rotate the coordinate system by & around Z, the effective
Zeeman field, Eq. (11), reads>®>8

B = — By [1,," cos(y — &) — 17 sin(y + )]

(19)
~[7—1 - -1
+ B [Ly, sin(y —8) — I cos(y + 9)],
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FIG. 7. (Color online) Calculated spin relaxation rate in a DQD
with tunable interdot distance in a perpendicular magnetic field. The
rate is given in inverse seconds by the color with the scale on the
right. The y axis is calibrated in interdot distance (left) and tunneling
energy at B = 0 (right).
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FIG. 8. (Color online) Calculated spin relaxation rate in a DQD as
a function of the interdot distance and the orientation of the in-plane
magnetic field (B = 4 T). The rate is given in inverse seconds by the
color with the scale on the right. The y axis is calibrated in interdot

distance (left) and tunneling energy at B = 0 (right). The dot’s main
axis is along [100].

where the tilted axes are such that X is parallel to d. Since
the first excited orbital state 'y transforms like ¥, only the
first term in Eq. (19) can lead to spin hot spots for moderate
magnetic fields in the intermediate regime. As an example,
we plot in Fig. 8 the spin relaxation rate in a DQD aligned
along [100] (6 = 0°) in a magnetic field By = 4 T varying the
orientation y and the interdot distance. A sharp peak occurs at
2d/ly = 1.8 butis intermittent at y, = 18° where the first term
of Eq. (19) vanishes. Note that this angle, defining the easy
passage, depends on the SOC lengths and is thus sample and
setup dependent. An experimental determination of the easy
passage angle would provide information about the relative
SOC strengths via the relation tan y, = «/f.
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FIG. 9. (Color online) Calculated spin relaxation rate in a DQD
as a function of the interdot distance and the orientation of the in-plane
magnetic field (B = 4 T). The rate is given in inverse seconds by the
color with the scale on the right. The y axis is calibrated in interdot
distance (left) and tunneling energy at B = 0 (right). The dot’s main
axis is along [110].
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Equation (19) shows that the easy passage depends also
on the DQD orientation with respect to the crystallographic
axes. We note that for a DQD with the main axis along the
[110] direction (6 = 45°), the corresponding field orientation
of the easy passage is universal (y, = 135°), independent of
the SOC strengths. We plot the spin relaxation rates for this
case in Fig. 9 for completeness.

V. CONCLUSIONS

We investigated the spin relaxation of a single electron
confined in a quantum dot in a laterally gated Si/SiGe
heterostructure. We considered the spin relaxation to be an
inelastic transition in which a spin flip is enabled by the
presence of spin-orbit interactions, while the energy difference
between the initial and final states, arising from the applied
magnetic field, is removed by an acoustic phonon. We studied
relaxation rates by varying the interdot coupling from strong
(a single dot regime) to negligible (a double dot regime), as
well as by varying the strength and orientation (in plane or
perpendicular) of the magnetic field.

We adopted the single valley, effective mass, and two-
dimensional approximations, within which our results are
numerically exact. Whereas the latter two are known to
be well justified for lateral quantum dots, the single valley
approximation breaks down once the valley splitting drops
below the orbital energy scale, ~meV, and additional states
appear in the lowest part of the dot spectrum. Concerning
the spin relaxation, however, these states are irrelevant as the
matrix elements for the phonon-induced intervalley transitions
are greatly suppressed. This is so because long-wavelength
phonons, which arise due to the small transition energy
(¢ £0.1 nm~! at 3 T), are ineffective in coupling states with
disparate Bloch wave functions (k, ~ 10 nm™'); see Eq. (2)
in Ref. 28 and the discussion therein.

We found that the spin relaxation in Si dots is roughly
comparable to that in GaAs, although it bears certain dif-
ferences; namely, in the single dot the relaxation rate in Si
is proportional to B’, being due to the deformation phonon
potential, in contrast to the B> dependence in piezoelectric
GaAs. We compared our theory with experimental data, which
confirm the magnetic field power dependence and show that
the spin-orbit strengths of the order of 0.1 meV A are to
be expected in Si/SiGe quantum dots. We also derived an
analytical expression for the relaxation rate treating the spin-
orbit interactions in the lowest order. We find it an excellent
approximation to the numerics up to magnetic fields of 1-2 T.
A further simplification, the isotropic averaging, makes the
analytical result differ from the exact one by a factor of the
order of 1.

We showed that in the double dot the relaxation rate is
a much more complicated function of the magnetic field
and the interdot coupling, the two parameters most directly
controllable experimentally. This is due to the fact that the
rate is strongly influenced by spin hot spots, which occur at
much lower magnetic fields in the double dot compared to the
single dot. The anisotropy of the spin-orbit interactions leads to
rates dependent on the magnetic field direction with respect to
the crystallographic axes. In a double dot, where the rotational
symmetry of the potential is broken but the reflection symmetry
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is preserved, this anisotropy results in the appearance of easy
passages—special directions of the external magnetic field
which assure a strong suppression of the relaxation rate. From
these directions the ratio of the spin-orbit strengths can be
found. Compared to GaAs, in Si the easy passage position
relates directly to the linear spin-orbit strengths without being
influenced by the spin-orbit interaction cubic in momenta.
Finally, we observed that, compared to GaAs, the
spin relaxation rates in Si are typically 1-2 orders of

PHYSICAL REVIEW B 83, 195318 (2011)

magnitude smaller, as a result of the absence of the piezo-
electric phonon interaction and generally weaker spin-orbit
interactions.
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