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A charged magnetic microsphere (radius 100 #m) is levitating inside a super- 
conducting niobium capacitor. Because of its charge of about 1 pC, oscilla- 
tions about the equilibrium position can be excited and detected electrically. 
The properties of this oscillator are investigated in order to study the static 
and dynamic forces of magnetic levitation. We find resonance frequencies 
between 200 Hz and 600 Hz. The resonance frequency and the damping are 
amplitude dependent due to nonlinear return forces and nonlinear friction, 
respectively. At small amplitudes the Q value is about 10 6 in vacuum. A de 
field can be applied to change the equilibrium position and consequently the 
resonance frequency. From the data the spatial dependence of the static force 
and of the dynamic stiffness can be determined and an empirical relation 
between both is established. Quite often, we find a hysteretic behavior of the 
static force whereas the stiffness is a reversible function of the position. 
Amplitude dependent damping is observed both in the decay of the free 
oscillations and in the dependence of the amplitude of the forced oscillations 
on the driving force. 

1. I N T R O D U C T I O N  

The physics of magnetic levitation is of considerable interest, both 
from a fundamental point of view and for technical applications. The force 
between a permanent magnet and a type II superconductor is a result of 
shielding currents of and the distribution and possible motion of flux lines. 
It therefore also depends on how the levitation status is prepared, i.e., 
whether the superconductor is cooled in zero field or in the presence of 
the magnet. Because of these complications a detailed quantitative under- 
standing of the measured forces has not yet emerged. In several recent 
experiments on high-Tc superconductors I~ the following general features 
have been observed and seem to be of fundamental significance. The static 
levitation force FI on the magnet as a function of the distance to the super- 
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conducting surface is hysteretic, resulting in a "major hysteresis loop" both 
for the zero-field cooled and the field-cooled levitation. Small reversals of 
the motion of the magnet at various positions lead to "minor hysteresis 
loops" which are steeper than the major loop. From oscillations of the 
magnet alSout its equilibrium position the "dynamic stiffness" moo 2 (m is the 
mass of the magnet and ~o/27~ is the resonance frequency) can be determined 
which is different from the slopes of both major and minor loops. From the 
dynamic stiffness we define a "dynamic force" Fd by dFa/dx = -moo 2. The 
relation between the static force and the dynamic force is not yet known. 

In addition to these two forces the damping of the oscillations of the 
magnet is of interest. If normal conducting material, where eddy currents 
may cause dissipation, is far away from the magnet the damping in vacuum 
will only be due to losses inside the superconductor, i.e., flux motion and 
quasiparticles at finite T/Tc. So far, experimental investigation o f  the 
dissipative effects in levitation has been very scarce. 5 From vibrating super- 
conducting reeds, however, it is known that flux flow can lead to nonlinear 
and hysteretic frictional forces. 6 Therefore, non-viscous damping can be 
expected and has been observed. 5 

In our present work we have made an attempt to study these problems 
experimentally in more detail. Our method consists of an investigation of 
the oscillations of a small permanent magnet levitating inside a super- 
conducting capacitor. The method and its first results have been presented 
earlier, v's Here we wish to communicate a more complete study of the 
static and dynamic forces as well as of the frictional forces which all act on 
the levitating magnet and lead to interesting nonlinearities of the oscillator. 
From the data, we can determine both the dynamic force and the static 
force as a function of the distance between magnet and superconducting 
surface. We find an empirical relation between both forces. Furthermore, 
from the freely decaying oscillations and from the dependence of the 
amplitude of the forced oscillations on the drive we find particular 
power-laws of the velocity dependent frictional forces. 

2. EXPERIMENTAL DETAILS 

Our measuring cell consists of a parallel-plate capacitor made of 
niobium and having a spacing of 1 mm. It contains a piece of SmC% which 
has been ground to spherical shape of 200/tm diameter. From the density 
of the material we calculate that the particle has a mass m = 2.1 • 10 -8 kg. 
From the specified remanence of the material (0.57 Tesla) we estimate that 
the magnetic dipole moment of the sphere is 2 .10  - 6  A - m  2 (assuming a 
homogeneous magnetization). The magnetic field at the surface of the sphere 
therefore varies between 0.4 Tesla on the poles and 0.2 Tesla on the equator. 
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During cool-down a large dc voltage ( ~ 7 0 0 V )  is applied to the bottom 
electrode. This causes a charge of about 1 pC to flow onto the particle and 
it starts moving up and down between the electrodes until the temperature 
has dropped below Tc = 9.2 K. Shielding currents on the superconductor 
repel the magnet and it comes to rest at an equilibrium position where 
gravitation and electrostatic forces are canceled by magnetic forces. This 
position is in general not in the middle of the capacitor, instead the data 
indicate that the particle rests closer to one or the other, of the two 
electrode surfaces. By applying a dc voltage to the capacitor the equilibrium 
position of the magnet can be  varied over a limited range (,~40 pm). 
Although the equilibrium position cannot be measured directly its changes 
due to the dc voltage can be implied from the variation of the frequency 
with which the sphere oscillates, see below. 

The oscillations of the particle are excited and detected by means of 
the electronics shown schematically in Fig. 1. When the particle moves at 
a velocity v normal to the capacitor plates the preamplifier detects a 
current I which is given by 

I = qv/d ( 1 ) 

where q is the charge of the particle and d = 1 mm is the spacing. Assuming 
harmonical vibration the velocity of the oscillating particle is determined 
by the amplitude A and the resonance frequency f = eo/2n, i.e., we have 

I =  q~oA/d (2) 
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Fig. 1. Experimental set-up. The charged magnetic spher e (diameter 0.2 mm) is floating inside 
a superconducting niobium capacitor (diameter 4 mm, spacing 1 mm) at 4.2 K. The switch S 
can be closed for a fixed phase relation between ac drive and oscillation. 
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We usually have q ~ 1 pC and f ~ 300 Hz, hence a current amplitude of 
1 pA corresponds to v ~  1 mm/s and A ~ 0 . 5  #m. The oscillations are 
excited by an ac voltage in the millivolt range. A regulator can be used to 
fix the phase between the oscillations and the generator by nulling one out- 
put channel of the two-phase lock-in amplifier. For  a quantitative analysis 
of the forced oscillations the capacitively coupled pick-up which is super- 
imposed upon the signal of the sphere has to be subtracted numerically by 
standard complex analysis. All data to be presented in this work were 
obtained with an evacuated capacitor at a temperature of 4.2 K. 

3. RESULTS AND DISCUSSION 

3.1. Static and Dynamic  Forces  

Oscillations of the levitating particle can be excited by applying an ac 
voltage to the capacitor. The resonance frequency, which typically lies in 
the range from 200 Hz to 600 Hz, depends on the equilibrium position 
which can be varied by a dc voltage Uac between the capacitor plates, see 
Fig. 2. With no exception, we always obtain a straight line when plotting 
the square of the frequency versus voltage. 9 This empirical result will be of 
significance in our analysis, see below. The sign of the slope depends on the 
sign of the charge and on whether the particle is levitating just above the 
bottom plate or suspending just below the upper plate. In any case, we 
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Fig. 2. Resonance frequency of the magnet as a function of the dc 
voltage between the capacitor plates. We always observe a linear 
dependence of the square of the frequency. The charge of the 
oscillating sphere is q = -1.1 pC. 



Static and Dynamic Forces of Magnetic Levitation 89 

interpret an increase of the resonance frequency as a decrease of the 
distance to the adjacent superconducting surface. 

At each equilibrium position we measure t h e  following typical non- 
linear properties of the oscillations. Firstly, we determine the shift of the 
resonance frequency Af = f - - f o  with increasing amplitude, i.e., 

Af / f  o = - a I  2 (3) 

where f0 is the resonance frequency for I ~  0, and a is positive, i.e., we 
always find a negative shift. Details of the resonance curves have been 
presented earlier,8 here we focus on the dependence of the coefficient a on 
the equilibrium position (i.e., on the voltage or the corresponding 
frequency), see Fig. 3. Simultaneously, we measure the amplitude of the 
second harmonic 12( 0 which varies in proportion to 12: 

12( 0 = ~I 2 (4) 

In Fig. 4 the frequency dependence of e is depicted. 
From the coefficients a and e we can determine the nonlinear 

coefficients c~ and fl of the dynamical return force F at each equilibrium 
position x0: 

F/m = --o~(Xo)(X - Xo) - -  ~(Xo)(X - Xo) 2 - -  f l ( X o ) ( X  - -  XO) 3 (5) 

(Note that this return force is the third order Taylor expansion of the 
dynamic force F d at the equilibrium position Xo. ) It is known, l° that (5) 
leads to an amplitude dependent frequency shift 

Af/fo = (3fl/8O9o 2 - 5cx2/12¢o 4) A 2 (6) 

i i i i I i ~ i i I + + i 
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Fig. 3. The coefficient a of the amplitude dependent frequency 
shift, see Eq. (3), at various resonance frequencies depending on 
the applied dc voltage. 
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Fig. 4. The coefficient s of the amplitude dependent second- 
harmonic, see Eq. (4), at various resonance frequencies. 

and  to a second-harmonic  ampl i tude A2m being given by 

Azo~ = (e/6~o 2) A 2 (7) 

Hence,  f rom ~(m2) and a(o3~) we can determine e(~o 2) and  fl(¢02), if the 
charge q of  the sphere is known.  The  de terminat ion  of q will be discussed 
in the Appendix.  In the following we use the measured  value q = -1 .1  pC. 
Because ~0o 2, e, and/~  are given by the first, second and third derivative of 
F a at every equil ibrium posit ion x = Xo, the following relations must  hold: 

d o ~ / d x  = 2e (8) 

d e / d x  = 3fi (9) 

and therefore 
de 2 de de &o 2 de 
& o  2 - dc9~" 2e  = dco~ d x  - d x  - 3fl (10) 

We find a linear dependence of g2 on (.0 2 and a constant  /J, in agreement  
with (10). F r o m  (8) we can calculate the spatial  dependence o2 (x )  by 
solving for Ax between two ~o 2 values and the corresponding :¢ values: 

Ax 
0)22 - ~21 = (2e2 + 2e l ) -  -~- + • • - (11 ) 

neglecting higher order  terms because /3 = const. The result is shown in 
Fig. 5. The  total  var ia t ion of the equil ibrium posi t ion due to the dc voltage 
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Fig. 5. Spatial variation of the resonance frequency calculated 
from Eq. (11). (The position x = 0  is arbitrary.) 

is only abou t  25 #m. Larger  variat ions require larger voltages than  the 
_+800 V in this experiment.  The spatial  resolution, however,  is very high: 
a frequency resolution of 10 m H z  corresponds  to a spatial  resolution of 
3 nm. F r o m  cog(x) we can convert  the measured  frequency dependences of 
the Taylor  coefficients ~ and fl into spatial dependences.  Fur thermore ,  we 
can compute  the dynamic  force to third order  accuracy by a numerical  
integrat ion 11: 

Ax Ax2 6 Ax3 
AFd/m = (co2 + coo22). -2- + (2oq -- 2~2) -]-6- q- (6fil q- f12) l ~  (12) 
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Fig. 6. Variation of the dynamic force on the levitating magnet 
calculated from Eq. (12). (The zero-points are arbitrary.) 
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see Fig. 6, where we choose Fa = 0 at an arbitrary value of x. (Note that Fd 
is defined only within an arbitrary additive constant.) Because of the 
constant values of/~ the dynamic force has terms up to third power in x 
over our accessible spatial interval. 

Next, we analyze the static levitation force Ft which together with the 
external forces mg (gravitation) and qg (6 = Udc/d is the external electro- 
static field) determines the equilibrium position: 

f , (x)  + m~, + qff =O (t3) 

From the field dependent frequency (Fig. 2) and the spatial dependence of 
the frequency (Fig. 5) we obtain Fl(x)  from (13), see Fig. 7. It is obvious 
that the static force has less spatial variation than the dynamic force, i.e., 
the dynamic stiffness is larger than the slope of the static force. From Fig. 2 
we empirically find ~ to vary linearly with field. Therefore, we make the 
following Ansatz: 

co2(g) = o32 o - c(mg + qC) (14) 

where coco and c are constants. Inserting (13) we obtain 

(15) 

(16) 

or 

1 dFd(x ) = COCo + cFl(x)  
m dx 

I I I 

0 
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Fig. 7. Variation of the static levitation force calculated from 
Eq. (13). 
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Equations (15) or (16) establish an empirical relation between both forces. 
At present, we have no physical model from which (16) could be deduced 
rigorously. It is interesting to note, however, that Eq. (15) is reminiscent of 
a vibrating string whose frequency squared is proportional to the tension. 

3.2. Hysteresis of the Static Levitation Force 

So far, we have investigated about 50 oscillators carrying different 
charges and having different resonance frequencies. All of them have 
qualitatively the same dynamic behavior as described above. The static 
properties, however, can differ in a very remarkable way: about 60% of 
our oscillators exhibit hysteretic behavior in the O92o(Udc) diagram, as 
shown in Fig. 8. After increasing the voltage up to + 1000 V (point B) we 
observe that a reduction of the voltage causes COo 2 to drop along a different 
path to point C, where the slope changes back to the initial one. At point D 
( - 1 0 0 0 V )  the voltage is reversed again and ~o 2 increases slowly until 
point A is reached. Further increase of the voltage changes O~o 2 back to 
point B. This loop ABCDA is observed for counter-clockwise circulation. 
If the voltage is reversed earlier (i.e., before + 1000 V or -1000 V are 
reached) new paths which are parallel to BC or DA are observed between 
the limiting lines AB or CD. All these shallower paths are perfectly revers- 
ible whereas the steep limiting lines AB and CD can be observed only for 

~ 6  

5 

D I  I t I I 

-1000 -500 0 500 1000 
Udc (v) 

Fig. 8. Hysteretic behavior of the resonance frequency 
(i.e., of the equilibrium position). Branches AB and CD 
are irreversible whereas BC and DA are reversible. The 
charge of this oscillator is q = +1.1 pC. 
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increasing or decreasing frequency, respectively. Stability checks over many 
hours reveal that the frequency of the irreversible lines is slowly drifting 
into the original loop. Although the drift (,-~0.1 Hz/hour) is slowing down 
in time it never really stops. (This behavior is probably related to the 
known logarithmic relaxation of the magnetization.) Thus the hysteresis 
loop appears to shrink gradually, probably into a single stable and 
reversible line. 

Another most remarkable property of the hysteresis loop is that the 
nonlinear dynamical properties (amplitude dependent frequency shift a in 
(3) and second-harmonic coefficient e in (4)) are found to depend only on 
COo 2 and not on the particular branch of the loop. This implies that the 
dynamical force is a continuous single-valued function of the position 
without any hysteretic behavior. Going through the same analysis as 
described in the previous chapter we obtain from the data of Fig. 8 the 
hysteresis loop of the static force Ft, see Fig. 9. Note that the reversible 
paths are now the steeper ones because 

dco~_dco~_ .--=dx 2~(x) .__dx (17) 
do* dx do* do* 

which means that a small slope in Fig. 8 is equivalent to a small change of 
position, i.e., to a stiff static force. Finally, it should be mentioned that the 
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Fig. 9. Hysteretic static force resulting from the data of 
Fig. 8. Note that F~ is much stiffer on the reversible paths 
than on the irreversible ones. The dynamic stiffness, which 
is not hysteretic, has intermediate values, see text. (The 
position x = 0 is arbitrary.) 
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dynamical stiffness -dFd/dX is larger than the slope of F t along the irre- 
versible branches AB and CD, but smaller than the slopes of the reversible 
sections BC and AD. This behavior agrees with earlier experiments on 
bigger magnets above high-Tc superconductors 1-4 as discussed in the 
Introduction. 

3.3. Frictional Forces 

The damping mechanisms can be studied either by recording the time 
dependence of the amplitude of the freely decaying oscillations or by 
analyzing the amplitude of the forced oscillations as a function of the drive. 
The usual case of a linear frictional force Ff oc v leads to an exponential 
decay of the free oscillations and to a linear increase of the amplitude of the 
forced oscillations with the amplitude of the external driving force 
Fext =qgac sin(e~t), where gac= Uac/d. This behavior was observed only at 
small amplitudes A ~ 1/~m [8].  For  larger amplitudes nonlinear friction 
Ff oc Ivl  r with 1 < r ~< 2 is observed. It is easy to show (see Appendix) that 
this nonlinear friction leads to an amplitude which increases as U]/r and to 
a decay of the free oscillations with time t being given by A -{r-  1) oct. 

In Fig. 10 a free decay is depicted which can be described by nonlinear 
friction with r = 1.5 at large amplitudes as can be seen from the linear 

100 . . . .  1.0 

I 0.8 1 
(pA) I -/2 

0.6 

10 ( p A  -1/2) 

0.4 

0.2 

1 ' ' i , 0 
0 100 200 300 400 500 

t (s) 
Fig. 10. Free decay of the oscillation. Left scale is the usual 
semi-logarithmic plot; small amplitudes decay exponentially. 
Right scale: same data plotted on a 1-0.5 reciprocal scale; note 
the straight-line behavior at large amplitudes. The charge of 
this oscillator is q = - 1 . 3  pC and the resonance frequency is 
fo = 340 Hz. 
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Fig. l l .  Forced oscillation amplitude versus drive; same 
oscillator as in Fig. 10. The slope of the straight line 
indicates a U°; 66 law, which is in agreement with the 
nonlinear friction deduced from Fig. 10. 

increase of 1-0.5 and by linear friction at low amplitudes where ln(I) has a 
straight-line behavior. The corresponding response of the forced oscillator 
at large drive is shown in Fig. 11. The amplitude is found to increase as 
U°i 66 in agreement with the free decay in Fig. 10. In the regime of linear 
friction we obtain the Q-value from the decay time z in Fig. 10: 

O)17 
Q = -~- = 1.8- 105 

This yields the coefficient 2 of the linear frictional force F / =  - m 2 v  from 
)L = 0 ) / Q - - - 2 / - c  = 1 . 8 . 1 0 - 2 s  -1 .  In the Appendix it is shown how the friction 
coefficient can be determined from the data in case of a nonfinear frictional 
force. 

In general, each oscillator had its own nonlinear friction 1 < r ~< 2. 
Rather often a quadratic dependence r = 2 could be observed, as reported 
earlier. 7,s The origin of this variation is probably due to the particular dis- 
tribution of shielding currents and flux lines in the superconductor close to 
the magnet. Eddy currents in the quasiparticle system (note that T/T ,  = 
4.2/9.2---0.46) are generated by the time-dependent magnetic field of the 
oscillating magnet. They give rise to linear damping. In addition, motion of 
flux lines will cause dissipation, which is known to be viscous (i.e., linear) 
for small displacements and hysteretic (i.e., nonlinear) for large-amplitude 
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oscillations because of irreversible jumps of the flux lines, 6'12 leading to an 
amplitude dependent damping with 1.1 ~< r ~< 2. 

The damping of the oscillating magnet can be influenced by changing 
the equilibrium position with a static electric field. The following general 
features were Observed. Pushing the magnet closer to the superconducting 
surface (as indicated by an increase of the resonance frequency) leads to 
more linear friction: at large amplitudes the values of r tend to decrease 
towards r =  1, and the small-signal Q-values drop, e.g., from 10 6 t o  10 5 

when the frequency is changed from 170 Hz to 300 Hz. 13 It is plausible that 
this behavior is caused by the increase of the time-dependent magnetic field 
at the niobium surface. A quantitative description of the measured dissipa- 
tion in terms of the above mechanisms, however, appears to be rather 
complicated and is presently not available. Further experiments, including 
a variation of T/Tc, are needed to shed more light on the damping effects. 

4. CONCLUSION 

Our experimental results demonstrate the profound differences between 
static and dynamic forces on the levitating magnet. An empirical relation 
between these forces is established: the dynamic stiffness is a linear function 
of the static force. In addition, while the static force may be hysteretic the 
dynamic force is always found to be reversible within the investigated 
interval of equilibrium positions. 

The attenuation of the oscillations of the magnet about its equilibrium 
position gives evidence of nonlinear friction at large amplitudes which may 
be attributed to irreversible flux motion. In agreement with vibrating reed 
experiments 6 we find nonlinear frictional forces which can be described by 
power laws of the velocity (or amplitude) v r up to r = 2. At low amplitudes 
we find linear friction which may be caused by viscous effects in the flux 
lattice and by normal eddy currents. A quantitative description of the 
dissipation is not yet available. 

Further experiments are planned to investigate the levitational forces 
at different temperatures and in external magnetic fields. Of course, various 
substrates, including high-Tc superconductors, will also be used. In addi- 
tion to studying the physics of magnetic levitation these oscillators can be 
applied for low temperature viscometry in helium because of their low 
residual damping. 15 Furthermore, they can be used for investigating critical 
velocities and vorticity in superfluid helium. 16 
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A P P E N D I X  1 

We calculate the time dependent amplitude of the freely decaying 
oscillations due to a nonlinear drag force F f =  - m 7 2  12[ r -  a by standard 
techniques. The equation of motion is 

2 + COZx = f ( x ,  2 )  

where 

f ( x ,  2 )  = - ~ z x  2 - f i x  3 - ~2 121 "-1 

Using the Ansatz x = A cos ~9 the time dependence of the amplitude A can 
be found from 14 

: i -  1 f]~ 
2rcCOo f ( A  cos 0, -ACOo sin 0) sin 0 dO 

The only contribution comes from the drag force and gives 

2re ]sin 0l r 1 sin: 0 d0 

which can be written as 

A -TCO;-~ fo _ A ~ sin,-+ t 0 d0 = - C , A  r 
g 

where 

and 

C , = ~CO "o- l G r 

G r = -  sin ~+1 ~ d~h 
7~ 

The solution of the differential equation is (for r > 1) 

A - ( r -  1)(t) = ( r -  1) Cr t + const. (A1) 

In case of a quadratic frictional force r = 2 this gives 

A l(t) = A-1(0) + (47COo/3~)t 

The stationary amplitude of the forced oscillations is most easily 
calculated from the energy balance. At resonance the external driving force 
Text and the velocity 2 =  --Acoo sin COot are in phase, i.e., (for q >  0) 

U~7¢ " 
Fex, = - q  - -~  sm COo t 
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Therefore, the energy balance can be expressed simply by 

-~ Fex t . x . d t  = - T  F f  . Aa . d t  

from which we find 

99 

A~= (q/2dTme)'oG~) . Uac (A2) 

If we express the amplitude A in (A1) and (A2) by the measured current 
I (see Eq. (2)) we finally obtain for the free oscillations 

I (~-l)(t)=I-(~ 1)(0)+Dt (A3) 

where 

O : ( r -  1)yGr(q/d) - ( r - x )  

and for the forced oscillations we get 

i :  b. v 2  

b = [(q/d) r+ ' /27mGr] 1/r 

(A4) 

where 

From measurements of the coefficients b and D we can determine the 
friction coefficient 7 and the charge q of the magnetic sphere. For the case 

--1 of a quadratic friction, e.g., a typical value is 7 ~ 1 m 
A similar analysis can be performed to calculate the frequency shift, 

see Ref. 14. The second-order result is given by Eq. (6). Effects of the drag 
force on the frequency shift are completely negligible in all of our cases. 

APPENDIX 2 

At the end of the experiment we measure the charge of the magnet by 
heating the capacitor above T c and integrating the current pulse when the 
magnet falls down to the lower electrode. This charge is actually only the 
fraction xo /d  of the real charge, where x0 is the equilibrium position 
measured from the bottom electrode. Because we can determine the charge 
also from (A3) and (A4), the equilibrium position Xo can be implied. The 
result, however, is not very accurate because the spacing d of the capacitor 
is only a factor of 5 larger than the diameter of the sphere and the charge 
probably is correct only within 10%. Nevertheless, we get reasonable 
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values  0 < xo/d < 1 which  tell us whe the r  the  m a g n e t  is l ev i ta t ing  above  the 
lower  e lec t rode  or  s u s p e n d i n g  be low the u p p e r  one.  The  same c o n c l u s i o n  
can  be reached  f rom the  sign of the m e a s u r e d  charge  a n d  the s lope of  the  
co~(Udc) l ines (Fig. 2), because  a n  increase  of  the f r equency  is u n d e r s t o o d  
as a n  e q u i l i b r i u m  pos i t i on  closer to the ad j acen t  surface. 
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