
16

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61520-837-1.ch002

Chapter 2

Using Security Patterns to 
Develop Secure Systems

Eduardo B. Fernandez
Florida Atlantic University, USA

Nobukazu Yoshioka
GRACE Center, National Institute of Informatics, Japan

Hironori Washizaki
Waseda University, Japan

Jan Jurjens
Technical University of Dortmund, Germany

Michael VanHilst
Florida Atlantic University, USA

Guenther Pernul
University of Regensburg, Germany

Introduction

We initiated an international collaboration between 
our security groups a few years ago, centered 

on methodologies to build secure systems using 
patterns. We describe here where we are now and 
where we are going. This chapter should be con-
sidered a survey of our work and not an attempt 
to present new work or to introduce in detail the 

Abstract

This chapter describes ongoing work on the use of patterns in the development of secure systems. The 
work reflects a collaboration among five research centers on three continents. Patterns are applied to 
all aspects of development, from domain analysis and attack modeling to basic design, and to all aspects 
of the systems under development, from the database and infrastructure to policies, monitoring, and 
forensics. The chapter, provides an overview of the method of development involving the full range of 
patterns, and describes many recent contributions from the many research threads being pursued within 
the collaboration. Finally, future directions of research in the use of patterns are described.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11548322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


17

Using Security Patterns to Develop Secure Systems

models presented here, for that we refer the reader 
to our previous publications. We also provide a 
section comparing our work to others but again in 
each paper we relate our work to others in more 
detail. In particular, we have worked or we are 
working on:

•	 Secure software development methodol-
ogy: We have worked on a general meth-
odology to build secure systems and have 
produced until now some specific aspects 
of it, which are described below. Of course, 
these aspects have value independently of 
this methodology and can be applied to 
other methodologies or on their own.

•	 Modeling and Classification of security 
patterns: We have tried to provide a pre-
cise characterization of security patterns 
that can be used as a basis for classifica-
tion. A good classification makes the ap-
plication of the patterns much easier along 
the software lifecycle. It also helps under-
stand the nature and value of the patterns. 
Another objective is to identify which pat-
terns are missing.

•	 Misuse patterns: A misuse pattern de-
scribes, from the point of view of the at-
tacker, how a type of attack is performed 
(what units it uses and how), analyzes the 
ways of stopping the attack by enumerat-
ing possible security patterns that can be 
applied for this purpose, and describes how 
to trace the attack once it has happened by 
appropriate collection and observation of 
forensics data. They can be used in the life-
cycle to prevent the occurrence of known 
types of attacks and to evaluate a complet-
ed system.

•	 Characterization and selection of ac-
cess control models: Access control is a 
fundamental aspect of security. There are 
many variations of the basic access control 
models and it is confusing for a software 
developer to select an appropriate model 

for her application. We have defined a way 
to clarify their relationships and a way to 
guide designers in selecting an appropriate 
model.

•	 Databases in secure applications: Most 
applications need to include databases to 
store the persistent information, which 
constitutes most of the information assets 
of the institution. We have studied the ef-
fect of databases on the security of a sys-
tem under development.

The following sections describe these aspects 
in detail.

Secure Software 
Development Methodology

A good methodology for design is fundamental to 
produce secure systems. In Fernandez, Yoshioka, 
Washizaki & Jürjens (2007) we defined some re-
quirements for such a methodology. Principles to 
build secure systems have been defined in some 
classical papers (Saltzer & Schroeder, 1975) and 
textbooks (Viega & McGraw, 2001), patterns 
may apply them implicitly. Specific requirements 
include:

•	 At each stage, there is guidance on where 
to apply and how to select appropriate se-
curity patterns.

•	 There are guidelines for pattern selection 
to satisfy functional requirements or re-
strictions at each stage.

•	 There are guidelines to find vulnerabilities 
and threats in a system.

•	 There are guidelines to select patterns to 
mitigate the identified threats.

•	 The models of the patterns should be rela-
tively detailed and precise, using languag-
es such as UML and OCL to describe the 
solutions.



18

Using Security Patterns to Develop Secure Systems

•	 There should be a clear way to apply for-
malizations at least to specific parts of the 
design.

Based on these requirements we chose object-
oriented design as the most appropriate software 
methodology because of its ability for abstraction, 
well-defined life cycle, intuitive nature, and being 
known by many developers. While it has some 
limitations, the fact that it is a methodology known 
to many developers makes it of practical value.

We had proposed in the past separate meth-
odologies (Fernandez, Larrondo-Petrie, Sorgente 
& VanHilst, 2006, Jürjens, 2004, Yoshioka, 
2006). We found that they have many common 
and complementary aspects and we proposed a 
combination of them in Fernandez, Yoshioka, 
Washizaki & Jürjens, (2007). This methodology 
appears to satisfy all the requirements described 
above, although it is still not complete. A main 
idea in the proposed methodology is that security 
principles should be applied at every stage of 
the software lifecycle and that each stage can be 
tested for compliance with security principles. 
Another basic idea is the use of patterns at each 
stage. A security pattern describes a solution to a 
recurrent problem and providing a complete set of 
them, appropriately classified, can be very useful 
to developers with little experience on security. 
The methodology includes the following stages:

•	 Domain analysis stage: A business model 
is defined. Legacy systems are identified 
and their security implications analyzed. 
Domain, institutional, and regulatory con-
straints are identified. These constraints 
become policies that apply to the complete 
system and can be defined in the domain 
model in the form of patterns. From busi-
ness goals or institutional points of view, 
assets in the domain are identified. The 
suitability of the development team is as-
sessed, possibly leading to added training. 
This phase is performed only once for each 

new domain. The possible selections for 
specialized database architectures and oth-
er specific platform requirements should 
be determined at this point.

•	 Requirements stage: Use cases define 
the required interactions with the system. 
Applying the principle that security must 
start from the highest levels, it makes sense 
to relate attacks to use cases. Activity dia-
grams indicate access to existing and creat-
ed objects and are a good way to determine 
which data should be protected. Threats 
in each activity define misuse activities, 
which might threaten assets which we need 
to protect. Since many possible threats 
may be identified we should apply risk 
analysis to prune them according to their 
impact and probability of occurrence. Any 
requirements for degree of security should 
be expressed as part of the use cases. We 
then determine which policies would stop 
these attacks. These include aspects such 
as mutual authentication to stop impostors, 
authorization based on roles, need for log-
ging accesses, etc. From the use cases we 
can also determine the needed rights for 
each actor and thus apply a need-to-know 
policy. The security test cases for the com-
plete system are also defined at this stage.

•	 Analysis stage: Analysis patterns can be 
used to build the conceptual model in a 
more reliable and efficient way. The poli-
cies defined in the requirements can now 
be expressed as abstract security models, 
e.g. access matrix, represented as pat-
terns (Schumacher, Fernandez, Hybertson, 
Buschmann, & Sommerlad, 2006). The 
model selected must correspond to the 
type of application; for example, multi-
level models have not been successful 
for medical applications. One can build a 
conceptual model where repeated appli-
cations of a security model pattern real-
ize the rights determined from use cases. 



19

Using Security Patterns to Develop Secure Systems

In fact, analysis patterns can be built with 
predefined authorizations according to the 
roles in their use cases. Instances of pat-
terns for authentication, logging, and se-
cure channels are also applied at this level 
(Fernandez & Yuan, 2007). Note that the 
model and the security patterns should 
define precisely the requirements of the 
problem, not its software solution. UML is 
a good semi-formal approach for defining 
policies, avoiding the need for ad-hoc poli-
cy languages. The addition of OCL (Object 
Constraint Language) can make the ap-
proach more formal. An alternative is the 
use of UMLSec (Jürjens, 2004), which 
adds stereotypes to UML to describe the 
security requirements of the application.

•	 Design stage: When we have found the 
needed policies and added their pattern 
representation to the conceptual model, 
we can select mechanisms that correspond 
to their concrete software realizations. A 
specific security model, e.g. Role-Based 
Access Control (RBAC), is now imple-
mented in terms of software units. Misuse 
patterns at the design level are useful to 
analyze how the attacks operate and the 
security patterns related to the attacks are 
used to implement the policies. User inter-
faces should correspond to use cases and 
may be used to enforce the authorizations 
defined in the analysis stage when users 
interact with the system. Components can 
be secured by using authorization rules for 
Java or.NET components. Security restric-
tions can be applied in the distribution ar-
chitecture; for example, access control for 
web services. Deployment diagrams can 
define secure configurations to be used by 
security administrators. System behavior 
fragments can be used to consider also 
performance aspects. A multilayer archi-
tecture is needed to enforce the security 
constraints defined at the application level. 

In each level we use patterns to represent 
appropriate security mechanisms. Security 
constraints must be mapped between lev-
els. Iteration of the application of misuse 
patterns and security patterns may be use-
ful to remove security holes. The persis-
tent aspects of the conceptual model are 
typically mapped into relational databases. 
The design of the database architecture is 
performed according to the requirements 
from the uses cases for the level of security 
needed and the security model adopted in 
the analysis stage.

•	 Implementation stage: We now reflect in 
the code the security rules defined in the 
design stage. Because these rules are ex-
pressed as classes, associations, and con-
straints, they can be implemented as classes 
in object-oriented languages. In this stage 
one can also select specific security pack-
ages or COTS components, e.g., a firewall 
product or a cryptographic package. Some 
of the patterns identified earlier in the cy-
cle can be replaced by COTS components 
(these can be tested to see if they include 
a similar pattern). Performance aspects 
become now important and may require 
iterations. Attack scenarios derived from 
attack patterns and test cases are useful to 
examine systems to find security holes.

An important aspect for the complete design is 
assurance. We could verify each pattern used but 
this does not verify that the system using them is 
secure. We can still say that since we used a care-
ful and systematic methodology with verified and 
tested patterns, the design should provide a good 
level of security. The set of patterns can be shown 
to be able to stop or mitigate the identified threats 
(Fernandez, Yoshioka & Washizaki, 2009b).



20

Using Security Patterns to Develop Secure Systems

Modeling and Classification 
of Security Patterns

A fundamental tool for any methodology based 
on patterns is a good catalog. This catalog should 
be not only complete, covering every stage and 
architectural level, but also organized in such a 
way that the designer can find the right pattern 
at the right moment in the development cycle.

The solution section of a pattern must be 
given in a generic form and be an abstraction of 
best practices. It must also provide enough detail 
and guidance for developers to incorporate them 
in their applications. This implies that the solu-
tion should be expressed as precisely as possible 
and be complemented with textual descriptions 
and examples. As indicated earlier, a good way 
to present the solution is in the form of UML 
models, which are understood by most software 
developers and can be easily converted into ex-
ecutable code. UML models can be enhanced with 
OCL constraints for greater precision (Warmer 
& Kleppe, 2003). Our patterns in Fernandez & 
Pernul (2006) and Morrison & Fernandez (2006) 
are examples of our style. Purely formal defini-
tions of the solution have the problem that most 
software developers cannot understand them. In 
addition, there are many formal notations, with-
out any of them becoming an accepted standard. 
Other authors take the opposite view and prefer 
short (thumbnail) pattern descriptions, indicating 
mostly the general idea of the pattern. This ap-
proach could be useful to provide a perspective 
of what is available for a particular domain and a 
catalog of this type of patterns could complement 
a more detailed catalog to serve as a roadmap. 
A requirement for a pattern is that the solution 
it describes has been used in at least three real 
systems (Buschmann, Meunier, Rohnert, Som-
merlad & Stal, 1996, Gamma, Helm, Johnson & 
Vlissides, 1994). This is consistent with the idea 
of patterns as best practices. However, a pattern 
can also describe solutions that have not been used 
(or have been used only once) but appear general 

and useful for several situations. Because of this, 
we have included sometimes both types: good 
practices patterns and useful solutions patterns.

Patterns can be defined at several levels of ab-
straction. The highest level is typically a principle 
or a very fundamental concept, e.g. the concept 
of Reference Monitor, which indicates that every 
access must be intercepted and checked. Another 
example shows that firewalls, database authoriza-
tion systems, and operating system access control 
systems are special cases of access control systems. 
Figure 1 shows a generalization hierarchy showing 
that a Firewall pattern is a concrete version of a 
Reference Monitor. There are four basic types of 
firewalls, which filter at different architectural 
levels: the Application (User level) Firewall, the 
Proxy Firewall (system application), the State-
ful Firewall, and the Packet Filter Firewall. An 
XML Firewall is a specialized type of Applica-
tion Firewall. One can combine Stateful firewalls 
with Proxy or Packet Filter firewalls to produce 
even more specialized types of firewalls such as 
Stateful Proxy firewall, which combines aspects 
of both Proxy and Stateful firewalls (Schumacher, 
et al., 2006). Descriptions of all these patterns can 
be found in the website of the F.A.U.’s Secure 
Systems Research Group (2009).

We started with an initial classification (Fer-
nandez, Washizaki, Yoshioka, Kubo & Fukazawa, 
2008), where we used three aspects or dimensions 
to classify patterns: the architectural layers where 
the patterns belong, the security concerns consid-
ered by the patterns, and relationships between 
the patterns’ textual descriptions. Figure 2 shows 
some patterns classified according to these crite-
ria. Each column describes some concern; in 
particular we show three concerns: Filtering (us-
ing firewalls), Enforcement of access control 
(using variations of the Reference Monitor), and 
Authentication. Each concern may appear in 
multiple levels; for example, we may authenticate 
at the operating system level or the web service 
level, or the distribution level.



21

Using Security Patterns to Develop Secure Systems

We then developed a multidimensional ap-
proach, which provides a finer classification 
(VanHilst, Fernandez & Braz, 2009a, VanHilst, 
Fernandez & Braz, 2009b). We address pattern 
classification and problem coverage through the 
use of a multi-dimensional matrix of concerns. 
Each dimension of the matrix presents a range of 
concerns along a single continuum, with a simple 
concept defined by two polar opposites, like in-
ternal and external or begin and end. The catego-
ries along each dimension should be easily un-
derstood and represent widely used and accepted 
classifications with respect to that concept. In 
addition to the dimensions mentioned earlier, 
another dimension would be a list of lifecycle 
activities, covering domain analysis, requirements, 
problem analysis, design, implementation, inte-
gration, deployment (including configuration), 
operation, maintenance and disposal. A pattern 
applies to a lifecycle stage if a developer could 
use knowledge from the pattern in performing 
tasks at that stage. Another dimension is compo-
nent source, ranging for completely internal new 

code, to completely external, like a web service. 
In-between categories include legacy code, library 
components, outsourced, and COTS. Response 
to stages of attack is a third dimension, from 
avoidance of an initial intent, through deterrence, 
prevention, detection, mitigation, recovery, and 
investigation (or forensics).

As an example of the use of multiple dimen-
sions, the classification of the XACML Access 
Control Evaluator pattern is shown in Figure 3. 
This pattern defines the reference monitor for 
XACML rules. The classification includes the 
dimensions mentioned early and also dimen-
sions for domains and constraints (mechanism, 
human (operator or developer), organizational, 
and regulatory). Distinctions on the Component 
Source dimension were considered not significant 
– hence all are valid. The XACML Access Control 
Evaluator pattern is part of a pattern language 
and is related to an XACML protocol pattern for 
the domain analysis stage, and a more general 
Access Control abstract pattern for the analysis 
stage. Early experience indicates that this clas-

Figure 1. Firewall patterns generalization hierarchy



22

Using Security Patterns to Develop Secure Systems

sification approach is feasible and offers many 
desirable properties. 

We introduced the concept of Dimension Graph 
(DG), to formalize this classification (Washizaki, 
Fernandez, Maruyama, Kubo, & Yoshioka, 2009). 
DGs describe patterns in a multidimensional space 
relating each pattern to a set of dimensions of 

interest, i.e. they formalize the multidimensional 
classification defined earlier. Therefore, DGs are 
useful to understand properties of each pattern, 
and to classify precisely the pattern. DGs can be 
modeled by using details of the target pattern 
documents and expertise in the patterns.

Figure 2. Types of patterns based on levels, concerns, and relationships

Figure 3. Classifications of the XACML access control evaluator



23

Using Security Patterns to Develop Secure Systems

A property of a pattern can be considered as 
a relationship between the pattern and one of all 
possible classification dimensions, such as the 
lifecycle stage (i.e. when to use a pattern) and 
the concern (i.e. what kind of concerns a pattern 
addresses). We defined a metamodel to describe 
the relationships of pattern-to-dimension and 
pattern-to-pattern uniformly. Figure 4 shows a 
metamodel to represent patterns as a UML class 
diagram. The relations of pattern-to-dimension 
and pattern-to-pattern can be modeled uniformly 
at the instance level, by using two associations 
between Element and Relationship, and a gen-
eralization hierarchy whose root is Element. In 
the hierarchy, Element has two children: Pattern 
and Dimension; therefore it is possible to model 
both relationships between patterns and between 
patterns and dimensions. Moreover, it is also pos-
sible to describe relationships between dimensions

In the analysis stage of software development 
we are trying to make the problem precise, we 
are not concerned with software aspects. From a 
security point of view we only want to indicate 
which specific security mechanisms are needed, 
not their implementation. For this purpose, we 
introduced the idea of abstract security patterns 
which define abstract security mechanisms incor-
porating only the fundamental functions of the 
specific mechanism. Abstract patterns can also 

help for classification and systematization of pat-
terns. Figure 5 shows an abstract Authentication 
pattern which defines the basic functions of any 
authentication mechanism. More concrete or 
specialized patterns are defined for specific en-
vironments, e.g. credentials for any types of 
distributed environments (Morrison & Fernandez, 
2006). X.509 certificates for computer distrib-
uted environments, and SAML assertions for web 
services are special types of credentials. The 
specialized patterns all have the basic properties 
of the abstract authentication pattern but they 
perform this authentication process in specific 
ways. This idea can also be used to relate differ-
ent types of patterns as shown in Figure 2 (Figure 
1 was another example, where Firewall ia an 
abstract pattern).

Misuse Patterns

A misuse pattern describes, from the point of view 
of an attacker, a generic way of performing an 
attack that takes advantage of the specific vulner-
abilities of some environment or context. It also 
presents a way to counteract its development as 
well as a way to trace back the information needed 
at each stage of the attack. We introduced this 
concept in Fernandez, Pelaez, & Larrondo-Petrie 

Figure 4. Metamodel for pattern representation



24

Using Security Patterns to Develop Secure Systems

(2007) under the name of attack pattern. Inde-
pendently, the NII group had developed a similar 
concept (Yoshioka, Honiden & Finkelstein, 2004) 
and we merged the two approaches in Fernandez, 
Yoshioka & Washizaki (2009a). We adopted the 
name “misuse” pattern because the name attack 
pattern had already been used for a slightly dif-
ferent concept. A misuse is an unauthorized use 
of information and our emphasis is in how the 
misuse is performed, i.e., the steps of the attack 
and the system units used to perform the misuse.

Figure 6 presents a UML model that describes 
the sections of a misuse pattern. We describe be-
low the components of the Misuse Pattern class, 
which correspond to sections of the template used 
for its desciption.

Intent or thumbnail description: A short 
description of the intended purpose of the pattern 
(which problem it solves for an attacker). The 
context describes the generic environment includ-
ing the conditions under which the misuse may 
occur. This may include minimal defenses present 
in the system as well as typical vulnerabilities of 
the system. The context is specified using a de-

ployment diagram of the relevant portions of the 
system as well as sequence or collaboration dia-
grams that show the normal use of the system.

Problem: From a hacker’s perspective, the 
problem is how to find a way to attack the system 
The forces indicate what factors may be required 
in order to accomplish the attack and in what 
way. The solution describes how the misuse can 
be accomplished and the expected results of the 
attack. UML class diagrams describe the relevant 
portions of the system under attack. Sequence 
or collaboration diagrams show the exchange of 
messages needed to accomplish the attack. State 
or activity diagrams may add further detail. At-
tack patterns which are necessary for the misuse 
are also listed here (an attack pattern is a specific 
action, e.g. a buffer overflow). Known uses: This 
section describes specific incidents where this 
attack has been used. Consequences: Discusses 
the benefits and drawbacks of a misuse pattern 
from the attacker’s viewpoint. The section on 
Countermeasures and Forensics describes the 
security measures necessary in order to stop, 
mitigate, or trace this type of attack. This im-

Figure 5. The authentication hierarchy



25

Using Security Patterns to Develop Secure Systems

plies an enumeration of which security patterns 
are effective against this attack. From a forensic 
viewpoint, it describes what information can be 
obtained at each stage tracing back the attack and 
what can be deduced from this data in order to 
identify this specific attack. Finally, it may indicate 
what additional information should be collected 
at the involved units to improve forensic analysis. 
Each pattern may also carry information about 
the time it takes to apply its solution (Yoshioka, 
Honiden & Finkelstein, 2004). Related Patterns 
(See also): Discusses other misuse patterns with 
different objectives but performed in a similar 
way or with similar objectives but performed 
in a different way. It also considers patterns of 
complementary misuses o patterns of attacks that 
support the misuse. These patterns can be related 
using a misuse pattern diagram.

We have applied this approach to the construc-
tion of a catalog of the most typical attack patterns 
in VoIP (Pelaez, Fernandez, & Larrondo-Petrie, 
2009). We need to expand this catalog to make it 
of more general use. Note that as usual, patterns 
provide only guidelines, not plug-in solutions; that 

is, for each new application the patterns provide 
guidelines about what to expect, where to look, 
and how to start, their solutions must be tailored 
to the specific environment.

Characterization and 
Selection of Access 
Control Models

Access control is a fundamental aspect of secu-
rity. Because of its importance there are many 
variations of the basic access control models, 
emphasizing different aspects. It is confusing 
for a software developer to select an appropriate 
model for her application (Fernandez, Pernul & 
Larrondo-Petrie, 2008). In practice, this confusion 
results in designers adopting only simple models 
and missing the richness of other models. We have 
tried to clarify this panorama through the use of 
patterns. A pattern diagram shows relationships 
between patterns (represented by rectangles with 
rounded corners). In particular, we use pattern 
diagrams to navigate the pattern space. Figure 7 

Figure 6. UML class model for misuse patterns



26

Using Security Patterns to Develop Secure Systems

shows some access control models; for example, 
a Basic Authorization pattern has components 
(s,o,t); making s a role we get the Basic Role-
Based Access Control (RBAC) pattern. Adding 
sessions we obtain Session-based RBAC, and so 
on. A subproduct of our work is the analysis of 
which patterns are available for use and which 
need to be written. The goal here is to provide the 
designer of a secure system with a navigation tool 
that she can use to select an appropriate pattern 
from a catalog of security patterns. Our examples 
show how to compose new access control models 
by adding features to an existing pattern and how 
to define patterns by analogy. The patterns with a 
double border are the ones discussed in (Fernandez 
& Pernul, 2006).

Using our approach of mapping relationships, 
we can study complex models, e.g. Attribute-Based 
Access Control (ABAC), where the attributes of 
the subject and object determine access, and relate 
them to simpler patterns (Priebe, Fernandez, 
Mehlau, & Pernul, 2004). We can combine access 
control with auxiliary functions such as sessions 
(Fernandez & Pernul, 2006). Pattern maps are 
also useful to perform semi-automatic model 
transformations as required for Model-Driven 

Development (MDD). For MDD, they can serve 
as metamodels of possible solutions being added 
at each transformation.

A pattern in the pattern diagram shows how 
it is related to other patterns. We believe that this 
perspective can help developers to align their 
needs with the selection of appropriate access 
control models. The selected access control pat-
tern not only guides the conceptual security of 
the application but later it also guides the actual 
implementation of the model. We can navigate 
the pattern diagram because patterns are compos-
able with respect to features, i.e. adding a feature 
(perhaps embodied by another pattern) produces 
a new pattern with extra features. This aspect of 
their composition can be understood in terms 
of object-oriented models, where a new feature 
implies the addition of a new class or of a class 
attribute.

Our focus on the relationships among ac-
cess control models and patterns has led us also 
to discover the need for new security patterns: 
Subject, Object, Labeled Security, DAC, MAC. 
These are concepts with models for which there 
are no patterns or which are needed to precisely 
represent some aspects of existing patterns. For 

Figure 7. Relationships between access control patterns



27

Using Security Patterns to Develop Secure Systems

example, Labeled Security is necessary to imple-
ment mandatory multilevel models. Access control 
patterns give us also the possibility of evaluating 
commercial products: we can see if the product 
contains the corresponding pattern in its design.

Adding Databases to the 
Secure Methodology

A design aspect which is interesting and not much 
studied is the incorporation of databases as part of 
the secure architecture (Fernandez, Jürjens, Yosh-
ioka & Washizaki, 2008). The database system is 
a fundamental aspect for security because it stores 
the persistent information, which constitutes most 
of the information assets of the institution. We 
presented some ideas on how to make sure that 
the database system has the same level of security 
as the rest of the secure application.

An interesting problem in when incorporating 
database management systems is the mapping 
from the conceptual security model (that may 
apply to a collection of DBMSs) to the authoriza-
tion system of a specific database. For example, 
security constraints defined in a conceptual UML 
model defining authorizations in terms of classes 
(Fernandez & Yuan, 2007) must be mapped to an 
SQL-based authorization system which defines 
authorizations in terms of relations. Clearly, 
whatever is defined in the common conceptual 
model must be reflected in the DBMS.

Related Work

A general methodology for developing security-
critical software which has common aspects with 
this methodology has been proposed in Jürjens 
(2004). It makes use of an extension of the Unified 
Modeling Language (UML) to include security-
relevant information, which is called UMLsec. 
The approach is supported by extensive automated 
tool-support for performing a security analysis of 

the UMLsec models against the security require-
ments and has been used in a variety of industrial 
projects (Best, Jürjens, & Nuseibeh, 2007). As 
mentioned earlier, we are incorporating some 
parts of this model in our methodology.

Mouratidis and his group use the Secure Tro-
pos methodology to model security. Their work 
includes modeling requirements (Mouratidis, 
Jürjens & Fox, 2006, Mouratidis & Giorgini, 
2004). They have also considered other stages; 
for example how to test security along the life-
cycle (Mouratidis & Giorgini, 2004). They use 
patterns. However, instead of UML, they use 
special diagrams expressed in a special notation, 
which has its advantages and disadvantages. By 
connecting security requirements to misuse pat-
terns, our approach provides more context on the 
specific threats to a protected resource. However, 
this approach is complementary to ours in several 
respects.

There have been several attempts to classify 
security patterns. Hafiz, Adamczyk & Johnson 
(2007) proposed several classification dimensions 
to organize security patterns. One of these is based 
on security objectives, such as confidentiality, 
integrity, and availability. Their dimensions are 
subsumed in our set of dimensions (concerns). 
Rosado, Gutierrez, Fernandez-Medina, & Piattini 
(2006) related security requirements to security 
patterns, and classified security patterns into just 
two categories: architectural patterns and design 
patterns. Weiss and Mouratidis (2009) have 
looked at the issue of selecting security patterns 
for fulfilling security requirements.

Unfortunately, much of the work by others on 
classifying security patterns has been motivated 
by a desire to create taxonomies with which to 
group or distinguish patterns. As a result, the pro-
posed classifications have dealt with only a few 
dimensions of classification and arranged them 
hierarchically, rather than treating them uniformly 
as independent properties of facets. It is difficult 
with those approaches for users to select and/or 
find appropriate patterns from a number of pat-



28

Using Security Patterns to Develop Secure Systems

terns with any precision, or from the viewpoints 
of both pattern relations and properties. Our 
multidimensional classification is an attempt to 
improve on the other approaches.

Conclusions and Future Work

Although this collaboration has been unstructured 
and between people far apart, it has resulted in 
a significant amount of work. This is due in part 
to the similarities of our interests and objectives. 
On his part, the first author and his group have 
produced a variety of security patterns (Secure 
Systems Research Group, 2009), fundamental 
to the application of the methods proposed here.

Future work includes:

•	 Formalization and model checking. As 
shown by the template of Figure 6 and by 
the templates normally used to describe 
patterns, patterns include textual descrip-
tions as well as precise models. The textual 
descriptions are important for usability, so 
a pattern should not be fully formalized. 
However, the solution section and perhaps 
the related patterns sections can be formal-
ized. How then do we incorporate formal 
methods into our secure methodology? 
We are investigating to augment patterns 
in ways that aid the process of producing 
formally verifiable systems, or at least for-
malizing aspects of systems.

•	 Verification of security. We cannot prove 
formally that a system produced in our ap-
proach is secure, due to the complexity 
of the applications we consider. We can 
however, verify that all identified threats 
are covered. Preliminary ideas are shown 
in Fernandez, Yoshioka & Washizaki 
(2009b).

•	 Tool support. Threat enumeration and the 
application of patterns following an MDA 
approach are highly desirable (Delessy 

& Fernandez, 2008). We need to develop 
tools to make development systematic.

•	 Once we have enumerated the threats of 
a system, we define the policies needed 
to stop or mitigate them. However, it is 
not simple to go from these policies to se-
curity patterns that describe the actual con-
figuration of the system (Braz, Fernandez 
& VanHilst, 2008), this aspect needs more 
work.

•	 Run-time monitoring. How do we mea-
sure if a design is actually keeping a sys-
tem secure? To date, there is little work on 
this topic (Nagaratnam, Nadalin, Hondo, 
McIntosh & Austel, 2005).

References

Best, B., Jürjens, J., & Nuseibeh, B. (2007). Model-
Based Security Engineering of Distributed Infor-
mation Systems Using UMLsec. In Proceedings 
of the 29th International Conference on Software 
Engineering (pp. 581-590). New York: ACM.

Braz, F., Fernandez, E. B., & VanHilst, M. (2008). 
Eliciting security requirements through misuse 
activities. In Proceedings of the 19th International 
Workshop on Database and Expert Systems Ap-
plications (pp. 328-333). Los Alamitos, CA: IEEE 
Computer Society.

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., & Stal, M. (1996). Pattern-Oriented 
Software Architecture: Vol. 1. A System of Pat-
terns. West Sussex, England: John Wiley & Sons.

Delessy, N., & Fernandez, E. B. (2008). A pattern-
driven security process for SOA applications. In 
Proceedings of the 3rd International Conference 
on Availability, Reliability, and Security (pp. 416-
421). Washington DC: IEEE Computer Society.



29

Using Security Patterns to Develop Secure Systems

Fernandez, E. B., Jürjens, J., Yoshioka, N., & 
Washizaki, H. (2008). Incorporating database 
systems into a secure software development 
methodology. In Proceedings of the 2008 19th 
International Conference on Database and Expert 
Systems Application (pp. 310-314). Washington 
DC: IEEE Computer Society.

Fernandez, E. B., Larrondo-Petrie, M. M., Sor-
gente, T., & VanHilst, M. (2006). A Methodology 
to Develop Secure Systems Using Patterns. In 
Mouratidis, H., & Giorgini, P. (Eds.), Integrating 
Security and Software Engineering: Advances 
and Future Vision (pp. 107–126). Hershey, PA: 
IDEA Group.

Fernandez, E. B., Pelaez, J. C., & Larrondo-Petrie, 
M. M. (2007). Attack patterns: A new forensic 
and design tool. In P. Craiger & S. Shenoi (Eds.) 
Advances in Digital Forensics III: Proceedings 
of the Third Annual IFIP WG 11.9 International 
Conference on Digital Forensics (pp. 345-357). 
Berlin, Germany: Springer.

Fernandez, E. B., & Pernul, G. (2006). Patterns 
for session-based access control. In Proceedings 
of the Conference on Pattern Languages of Pro-
grams. Hillside Group. Retrieved November 25, 
2009, from http://hillside.net/plop/2006/.

Fernandez, E. B., Pernul, G., & Larrondo-Petrie, 
M. M. (2008). Patterns and pattern diagrams for 
access control. In S. Furnell; S.K. Katsikas, & 
A. Lioy (Eds.) LNCS 5185: Trust, Privacy and 
Security in Digital Business: 5th International 
Conference on Trust and Privacy in Digital Busi-
ness (pp. 38-47). Heidelberg, Germany: Springer.

Fernandez, E. B., Washizaki, H., Yoshioka, N., 
Kubo, A., & Fukazawa, Y. (2008). Classify-
ing security patterns., In Y. Zhang, G. Yu, & E. 
Bertino (Eds.) LNCS 4976 Progress in WWW 
Research and Development: Proceedings of the 
10th Asia-Pacific Web Conference (pp. 342-347). 
Heidelberg, Germany: Springer.

Fernandez, E. B., Yoshioka, N., & Washizaki, H. 
(2009a). Modeling misuse patterns. In Proceed-
ings of the International Conference on Avail-
ability, Reliability and Security (pp. 566-571). Los 
Alamitos, CA: IEEE Computer Society.

Fernandez, E. B., Yoshioka, N., & Washizaki, 
H. (2009b). Security patterns and quality. In H. 
Washizaki, N. Yoshioka, E.B.Fernandez, & J. 
Jürjens (Eds.) Proceedings of the Third Interna-
tional Workshop on Software Patterns and Quality 
(pp. 46-47). ), in conjuction with OOPSLA 2009. 
Retrieved November 25, 2009 from http://grace-
center.jp/downloads/GRACE-TR-2009-07.pdf.

Fernandez, E. B., Yoshioka, N., Washizaki, H., 
& Jürjens, J. (2007). Using security patterns to 
build secure systems. Proceedings of the 1st In-
ternational Workshop on Software Patterns and 
Quality, Retrieved November 25, 2009, from 
http://apsec2007.fuka.info.waseda.ac.jp/parts/
W3SPAQu.pdf.

Fernandez, E. B., & Yuan, X. Y. (2007). Securing 
analysis patterns. In D. John and S.N. Kerr (Eds.) 
Proceedings. of the 45th ACM Southeast Confer-
ence (pp. 288-293), New York: ACM.

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. M. (1994). Design Patterns: Elements of Reus-
able Object-Oriented Software. Reading, MA: 
Addison-Wesley Professional.

Hafiz, M., Adamczyk, P., & Johnson, R. E. (2007). 
Organizing security patterns. IEEE Software, 
24(4), 52–60. doi:10.1109/MS.2007.114

Jürjens, J. (2004). Secure Systems Development 
with UML. Heidelberg, Germany: Springer.

Morrison, P., & Fernandez, E. B. (2006). The 
credential pattern. In Proceedings of the Confer-
ence on Pattern Languages of Programs. Hillside 
Group. Retrieved November 25, 2009, from http://
hillside.net/plop/2006/.



30

Using Security Patterns to Develop Secure Systems

Mouratidis, H., & Giorgini, P. (2004). Analysing 
security in information systems. Presented at the 
Second International Workshop on Security in 
Information Systems, Porto Portugal. Retrieved 
November 25, 2009, from http://www.dit.unitn.
it/~pgiorgio/papers/ICEISWorkshop04.pdf

Mouratidis, H., Jürjens, J., & Fox, J. (2006). 
Towards a Comprehensive Framework for 
Secure Systems Development. In LNCS 4001: 
Proceedings of the 18th Conference on Advanced 
Information Systems, (pp. 48-62). Heidelberg, 
Germany: Springer.

Nagaratnam, N., Nadalin, A., Hondo, M., Mc-
Intosh, M., & Austel, P. (2005). Business-driven 
application security: From modeling to managing 
secure applications. IBM Systems Journal, 44(4), 
847–867. doi:10.1147/sj.444.0847

Pelaez, J., Fernandez, E. B., & Larrondo-Petrie, M. 
M. (2009). Misuse patterns in VoIP. Security and 
Communication Networks. Wiley InterScience. 
Retrieved November 25, 2009 from http://www3.
interscience.wiley.com/journal/122324463/
abstract.

Priebe, T., Fernandez, E. B., Mehlau, J. I., & Pernul, 
G. (2004). A pattern system for access control. In 
C. Farkas and P. Samarati (Eds.) Research Direc-
tions in Data and Applications Security XVIII: 
Proceedings of the 18th. Annual IFIP WG 11.3 
Working Conference on Data and Applications 
Security (pp. 25-28). Amsterdam, Netherlands: 
Kluwer Academic Publishers.

Rosado, D. G., Gutierrez, C., Fernandez-Medina, 
E., & Piattini, M. (2006). Security patterns related 
to security requirements. In E. Fernandez-Medina 
and M. Inmaculada (Eds.) Security in Informaiton 
Systems: Proceedings of the 4th International 
Workshop on Security in Information Systems. 
Setúbal, Portugal: INSTICC Press.

Saltzer, J. H., & Schroeder, M. D. (1975). The 
protection of information in computer systems. 
Proceedings of the IEEE, 63(9), 1278-1308. 
Retrieved November 25, 2009 from http://web.
mit.edu/Saltzer/www/publications/protection/
index.html

Schumacher, M., Fernandez, E. B., Hybertson, 
D., Buschmann, F., & Sommerlad, P. (2006). Se-
curity patterns: Integrating security and systems 
engineering. Hoboken, NJ: John Wiley & Sons.

Secure Systems Research Group. (2009). Florida 
Atlantic University. Retrieved November 25, 2009 
from http://security.ceecs.fau.edu/

VanHilst, M., Fernandez, E. B., & Braz, F. (2009a). 
A multidimensional classification for users of se-
curity patterns. Journal of Research and Practice 
in Information Technology, 41(2), 87–97.

VanHilst, M., Fernandez, E. B., & Braz, F. 
(2009b). Building a concept grid to classify 
security patterns. In H. Washizaki, N. Yoshioka, 
E.B.Fernandez, & J. Jürjens (Eds.) Proceedings 
of the Third International Workshop on Software 
Patterns and Quality (pp. 34-39). Tokyo:NII. 
Retrieved November 25, 2009 from http://grace-
center.jp/downloads/GRACE-TR-2009-07.pdf.

Viega, J., & McGraw, G. (2001). Building secure 
software: How to avoid security problems the right 
way. Boston: Addison-Wesley.

Warmer, J., & Kleppe, A. (2003). The object 
constraint language (2nd ed.). Boston: Addison-
Wesley.

Washizaki, H., Fernandez, E. B., Maruyama, K., 
Kubo, A., & Yoshioka, N. (2009). Improving the 
classification of security patterns. In Proceedings 
of the International Workshop on Database and 
Expert Systems Applications (pp. 165-170). Los 
Alamitos, CA: IEEE Computer Society.



31

Using Security Patterns to Develop Secure Systems

Weiss, M., & Mouratidis, H. (2008) Selecting 
security patterns that fulfill security requirements, 
Proceedings of the 16th IEEE International Con-
ference on Requirements Engineering (RE’08), 
IEEE Computer Society, pp. 169-172

Yoshioka, N. (2006, March 29). A development 
method based on security patterns. Presented at 
National Institute of Informatics. Tokyo, Japan.

Yoshioka, N., Honiden, S., & Finkelstein, A. 
(2004) Security patterns: A method for construct-
ing secure and efficient inter-company coordina-
tion systems. In Proceedings of the Eighth IEEE 
International Enterprise Distributed Object 
Computing Conference (pp. 84-97). Los Alamitos, 
CA: IEEE Computer Society.


