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Abstract. We show that the opacity of a clean multilayer graphene flake
depends on the helicity of the circular polarized electromagnetic radiation.
The effect can be understood in terms of the pseudospin selection rules for
the interband optical transitions in the presence of exchange electron–electron
interactions which alter the pseudospin texture in momentum space. The
interactions described within a semi-analytical Hartree–Fock approach lead to
the formation of topologically different broken symmetry states characterized by
Chern numbers and zero-field anomalous Hall conductivities.
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1. Introduction

Multilayer graphene is a link between one atom thick carbon layers [1] with the peculiar Dirac-
like effective Hamiltonian for carriers [2] and graphite [3], which can be seen as millions of
graphene layers stacked together. Graphene layers placed together do not lie exactly one on top
of each other but are shifted in such a way that only half of the carbon atoms have a neighbor in
another layer and the other half are projected right into the middle of the graphene’s ‘honeycomb
cell’. If the third layer aligns with the first (and the n + 2 layer with the nth), then we arrive
at a more stable arrangement of graphene layers known as the Bernal (or AB) stacking, see
figure 1(a). However, this is not the only possible configuration. One can imagine an alternative
stacking when the third layer aligns with neither the first nor the second but is shifted with
respect to both, see figure 1(b). This arrangement is known as rhombohedral (or ABC) stacking
and is the main topic of this work.

The very first studies of Bernal and rhombohedral graphites [3–7] relying on the tight
binding model have demonstrated the strong dependence of the band structure on stacking
order. Later on, progress in numerical methods made it possible to refine the tight binding
model outcomes using ab initio calculations [8–10]. The seminal transport measurements on
graphene [11] have inspired recent investigations [12–16] on the band structure in a few-layer
graphene having different stacking patterns. The band structure demonstrates a large variety
of behaviors including a gapless spectrum, direct and indirect band gaps and energetic overlap
of the conduction and valence bands even though the number of layers has been limited to
four [12]. Note that the band gap can be induced by an external electric field [16]. The influence
of an external magnetic field (Landau levels) has also been studied extensively [15, 17, 18]. The
electron–electron interactions have been taken into account in [19–23], including the Zeeman
term [24]. There are experimental indications that electron–electron interaction effects play an
important role in a few-layer graphene where charge carriers may exhibit a variety of broken
symmetry states [25–28].

The brief literature review given above illustrates how rich the band structure of multilayer
graphene (and the effects associated with it) can be. Note, however, that among all stacking pos-
sibilities, only the pure ABC arrangement maintains the sublattice pseudospin chirality [29]. In
the simplest case of negligible interlayer asymmetries and trigonal warp the simplified two-band
ABC graphene model leads to the following Hamiltonian close to the neutrality point [29]:

H ν
0 =

(h̄v0)
N

(−γ1)N−1

(
0 (νkx − iky)

N

(νkx + iky)
N 0

)
, (1)

where v0 ≈ 106 ms−1 is the group velocity for carriers in single-layer graphene, γ1 is the hop-
ping parameter, ν = ± is the valley index and N is the number of layers. As one can see from
equation (1), the N -layer and (N + 1)-layer graphene stacks differ, apart from the density of
states, by only the winding number associated with the pseudospin orientation. The pseudospin
texture in the momentum space associated with Hamiltonian (1) and shown in figure 2 is
the main topic of this work. In what follows, we focus on the influence of electron–electron
exchange interactions on the pseudospin texture and its detection by optical means.

Note that the pseudospin lies in the xy-plane as long as its carrier remains in an eigenstate
of H ν

0 . The exchange interactions can turn the pseudospin texture into the out-of-plane phase
with the out-of-plane angle depending on the absolute value of the particle momentum [21,
30–32]. This is due to the huge negative contribution to the Hartree–Fock ground state energy
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Figure 1. (a) Bernal graphite represents graphene layers placed together in
· · · -AB-AB-AB-· · · stacking when the two layers shifted with respect to each
other by 0.142 nm alternate in bulk. (b) Rhombohedral graphite requires three
non-equivalent graphene layers when the two layers are shifted with respect
to the first one by 0.142 and 0.284 nm alternating in · · · -ABC-ABC-ABC-
· · · sequence. Dashed lines are a guide to the eye. Note that only · · · -ABC-
· · · stacking order results in the effective Hamiltonian (1) employed in this paper.

from the valence band (i.e. ‘antiparticle’ states), which cannot be neglected in graphene because
of the zero gap and conduction–valence band coupling via pseudospin. The broken symmetry
states in multilayer graphene with chiral stacking have recently been studied by Zhang et al [21]
using quite general arguments. Spontaneous symmetry breaking can occur in the presence of
exchange electron–electron interactions [32]. Here, we utilize a simplified model which includes
exchange electron–electron interactions but, at the same time, allows transparent half-analytical
solutions. Having this solution at hand we focus on the manifestation of such broken symmetry
states in optical absorption measurements.

Optical absorption via the direct interband optical transitions in monolayer graphene has
been investigated in [33] and shown to be equal to the universal value πe2/h̄c. In the presence
of the electron–electron interactions, the interband absorption can be substantially reduced or
enhanced as compared with its universal value πe2/h̄c just by switching the helicity of the
circularly polarized light [30]. This effect is due to the peculiar pseudospin texture arising from
the interplay between pseudospin–momentum coupling and exchange interactions. To observe
the pseudospin texture in chirally stacked multilayer graphene by optical means the photon
energy must be much smaller than the bottom of the lowest split-off bands γ1 = 0.4 eV. To give
an example, a CH3OH 20 mW laser [34] with wavelength 118 µm (i.e. with an photon energy
of 10.5 meV) safely satisfies this condition.

2. Model

We start from the Coulomb exchange Hamiltonian for chiral carriers, which is given by

H ν
exch(k) = −

∑
κ ′

∫
d2k ′

4π 2
U|k−k′||χ

ν
k′κ ′〉〈χ

ν
k′κ ′| (2)
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Figure 2. Top view of the pseudospin texture for the conduction band in chirally
stacked multilayer graphene calculated from the non-interacting Hamiltonian
(1). The pseudospin orientations in conduction and valence bands for a given
momentum are antiparallel.

with U|k−k′| = 2πe2/ε|k − k′
| and κ ′

= ± being the band index with κ = + for the conduction
band. In order to consider the exchange Hamiltonian for any N on an equal footing, we
assume a strictly two-dimensional (2D) Fourier transform for the Coulomb potential. This is in
contrast to [32], where the interlayer distance d = 0.335 nm has been included in the screening
multiplier exp(−|k − k′

|d). Since the wave vector difference |k − k′
| cannot be larger than the

momentum cut-off of the order of 107 cm−1 employed in our model (see below), the screening
multiplier is always of the order of 1 and can be disregarded here. The intervalley overlap is also
assumed to be negligible, and the eigenstates of H ν

= H ν
0 + H ν

exch can be formulated as 9ν
kκ(r) =

eikr
|χ ν

kκ〉 with spinors |χ ν
k+〉 = (cos ϑk

2 , ν sin ϑk
2 eνN iϕ)T, |χ ν

k−
〉 = (sin ϑk

2 , −ν cos ϑk
2 eνN iϕ)T, and

tan ϕ = ky/kx , where a nonzero out-of-plane pseudospin component corresponds to ϑk 6= π/2.
To diagonalize H ν , the following ν-independent equation for ϑk must be satisfied [30, 35]:

(h̄v0k)N

(−γ1)N−1
cos ϑk +

∑
κ ′

∫
d2k ′

8π 2
κ ′U|k−k′|

[
cos ϑk′ sin ϑk − sin ϑk′ cos ϑk cos(Nϕ′

− Nϕ)
]
= 0.

(3)

Here the integration goes over the occupied states. Note that the conduction and valence
states are entangled, and the latter cannot be disregarded even at the positive Fermi energies
assumed below. Thus, in order to evaluate the integrals in equation (3) a momentum cut-off 3 is
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Figure 3. Left panel: the pseudospin out-of-plane angle ϑ(k) for substrate-free
chirally stacked N -layer graphene numerically calculated from equation (4).
Right panel: the total ground state energy difference (5) between the in-plane
and out-of-plane phases for different N . Increasing N makes the out-of-plane
phase more preferable. The ϑ(k) curve for N = 1 differs from the one given
in [30] since we have improved the precision of our calculations here. Note that
the Coulomb interactions are completely unscreened here. The screening is taken
into account in figure 4 by introducing the effective dielectric constant ε which
relates to α∗ as α∗

= e2/(εh̄v0).

necessary. The most natural choice 3 = γ1/h̄v0 corresponds to the energy scale γ1 at which the
split-off bands of bilayer graphene become relevant and our two-band model no longer applies.
Substituting x = k/3 we arrive at

4π

α∗
x N cos ϑk =

∫ 2π

0
dϕ′

∫ 1

kF/3

dx ′x ′
cos ϑk′ sin ϑk − sin ϑk′ cos ϑk cos Nϕ′√

x2 + x ′2 − 2xx ′ cos ϕ′
, (4)

where α∗
= e2/(εh̄v0). The momentum cut-off is assumed to be much larger than the Fermi

momentum kF and, therefore, we can set the lower integral limit to zero. In this case our
outcomes do not depend on the value of 3.

Besides a trivial solution with ϑ0 = π/2 independent of k, there are nontrivial ones
ϑ1 = ϑ(k) and ϑ2 = π − ϑ(k) with ϑ(k) shown in figures 3(a) and 4(a) for different N and
α∗. The solutions ϑ0 and ϑ1,2 represent two phases with different total ground state energies E in

tot
(Eout

tot ) for the in-plane (out-of-plane) pseudospin phase. The difference 1Etot = E in
tot − Eout

tot per
volume is given by

1Etot

h̄v033
= −

gsgν

2π

∫ 1

0
dx ′x ′N+1(1 − sin ϑk′) − α∗

gsgν

32π 3

∫ 2π

0
dϕ

∫ 2π

0
dϕ′

∫ 1

0
dx
∫ 1

0
dx ′

×xx ′
(1 − sin ϑk′ sin ϑk) cos(Nϕ′

− Nϕ) − cos ϑk′ cos ϑk√
x2 + x ′2 − 2xx ′ cos(ϕ − ϕ′)

. (5)

The ground state energy is the same for both valleys and spins and, therefore, equation (5)
contains gs = 2 and gv = 2 for spin and valley degeneracy, respectively. 1Etot has been
evaluated numerically and the resulting 1Etot versus N dependence is shown in figures 3(b)
and 4(b) for suspended and SiO2-placed graphene, respectively. One can see that strong
electron–electron interactions with α∗

= 2 definitely make the out-of-plane phase energetically
preferable for N > 1. For graphene placed on SiO2 substrate the pseudospin out-of-plane phase

New Journal of Physics 14 (2012) 095005 (http://www.njp.org/)

http://www.njp.org/


6

Λ

*α  = 0.8

N=1

N=2

N=5

N=3

N=4

k /

0
0  0.2  0.4  0.6  0.8 1

O
ut

−
of

−
pl

an
e 

an
gl

e
π/4

π/2

Δ
to

t
Λ

0
3

E
   

 / 
hv

 

*α  = 0.8

N

0
 0.002

 0.006

 0.01

 0.014

0  1  2  3  4  5

Figure 4. Left panel: the pseudospin out-of-plane angle ϑ(k) for chirally stacked
N -layer graphene on SiO2 numerically calculated from equation (4). Right panel:
the total ground state energy difference (5) between the in-plane and out-of-plane
phases for different N . The difference is much larger in the case of substrate-free
graphene, see figure 3.

is energetically preferable only for N > 3. Note that the estimates of α∗ for clean monoatomic
graphene flake vary from 2 ([36]) to 2.8 ([37]) and, therefore, even monolayer graphene may
get to the pseudospin out-of-plane phase.

Note that it is possible to choose either the same or opposite solutions for two valleys. The
former choice breaks the parity invariance, whereas the latter one does so with the time reversal
symmetry [30]. In what follows, we consider possible manifestations of these solutions in the
optical absorption measurements on multilayer graphene.

3. Optical absorption

We assume that an electromagnetic wave is propagating along the z-axis perpendicular to the
graphene plane. It can be described by the electric field E = E0 exp(ikzz − iωt), where kz is
the wave vector and ω is the radiation frequency. For our purpose, it is more convenient to
characterize the electromagnetic wave by its vector potential A = A0 exp(ikzz − iωt), where
A0 = icE/ω. The relation between E and A is unambiguous since A is always in the xy-plane,
resulting in a gauge with div A = 0. The interaction Hamiltonian can then be written in the
lowest order in A as

H ν
int =

(νh̄v0k)N

k(−γ1)N−1

eN

h̄c

(
0 e−νiϕ(N−1)(Ax − iν Ay)

eνiϕ(N−1)(Ax + iν Ay) 0

)
. (6)

The total absorption P can be calculated as a ratio between the total electromagnetic power
absorbed by graphene per unit square Wa = h̄ω

∑
ν

∫
d2k
4π2 w(k+, k−) and the incident energy flux

Wi = ω2 A2/4πc. The probability to excite an electron from the valence band to an unoccupied
state in the conduction band w(k+, k−) can be calculated using Fermi’s golden rule

w(k+, k−) =
2π

h̄
|〈k + |H ν

int|k−〉|
2δ(Ek+ − Ek− − h̄ω).

Because of normal incidence there is zero momentum transfer from photons to electrons. What
is important is that the interband transition matrix elements of H ν

int turn out to be sensitive to
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the light polarization and pseudospin orientations in the initial and final states. In particular,
for linear polarization with Ax = A cos ϕpol and Ay = A sin ϕpol the probability of exciting an
electron with a given momentum reads

w(k+, k−)|ν=+ =
π

h̄

(
eN

h̄c
A

)2
(h̄v0)

2N k2N−2

(−γ1)2N−2
δ(Ek+ − Ek− − h̄ω)

×
[
1 + cos2 ϑk − sin2 ϑk cos(2ϕ − 2ϕpol)

]
. (7)

Note that w(k+, k−) does not depend on the valley index ν. The total optical absorption P
is not sensitive to the particular orientation of the polarization plane since the ϕpol-dependent
term is integrated out in this case. In contrast, if we assume a circular polarization fulfilling
Ax = ±iA/

√
2, Ay = A/

√
2, then the interband transition probability for K-valley can be

written as

w(k+, k−)|ν=+ =
4π

h̄

(
eN

h̄c
A

)2
(h̄v0)

2N k2N−2

(−γ1)2N−2

{
sin4 ϑk

2

cos4 ϑk
2

}
δ(Ek+ − Ek− − h̄ω). (8)

Here, the multipliers sin4(ϑk/2) and cos4(ϑk/2) are for two opposite helicities of light, and
for K′-valley they are interchanged. If the out-of-plane pseudospin polarization is chosen to be
opposite in two valleys, then this helicity dependence survives the integration over momentum
and summation over the valley index, resulting in the helicity-sensitive total absorption which
reads

P =
16N 2

h̄ω

πe2

h̄c

(h̄v0)
2N

(−γ1)2N−2

∫ 3

0
dkk2N−1

{
sin4 ϑk

2

cos4 ϑk
2

}
δ(Ek+ − Ek− − h̄ω). (9)

The absorption strongly depends on helicity as long as the radiation frequency is much smaller
than the band split-off energy. This regime corresponds to the excitation of electrons with
comparatively small momenta, where the angle ϑk is close to zero, see figures 3(b) and 4(b).
In the in-plane phase with ϑk = π/2 the total absorption does not depend on light polarization,
and in the non-interacting limit it is equal to

P = N
πe2

h̄c
. (10)

At N = 1 it acquires the universal value πe2

h̄c , as expected [33].
The experiment proposed here is similar to that discussed recently in [38], suggesting

to detect broken symmetry states in graphene placed on the substrate by polar Kerr rotation
measurements, i.e. by analyzing the elliptical polarization of reflected radiation. In this paper,
however, we propose to reach the same goal by comparing the opacity for two orthogonal light
polarizations, which appears to be the simpler strategy.

Alternatively, one can characterize broken symmetry states in terms of the topological
Chern numbers [39] given by

nν
±

=
1

2π

∫
d2k∇k × Aν

±
(11)

with Aν
±

= i〈χ ν
k±

|∇k|χ
ν
k±

〉. This approach is routinely used in the theory of topological
insulators [40] and originated from the description of quantized Hall conductances. A nontrivial
band topology has also been found in graphene [41, 42] where the band gap was opened via
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spin–orbit coupling characterized just by a constant (i.e. wave vector independent) mass term
rather than by exchange interactions described by a more complicated Hamiltonian (2).

Note that in our case here ∇k × Aν
±

contains a term proportional to δ(k) which occurs due
to the singularity in Aν

±
∝ k−1, but does not contribute to nν

±
as long as ϑk = 0 at k → 0. Thus,

for the conduction band electrons we have

nν
+ = −

νN

2

∫ ϑ(3)

ϑ(0)

dϑk sin ϑk. (12)

Assuming the out-of-plane pseudospin polarization to be opposite in two valleys it follows that
the total Chern number for conduction electrons just equals N . On the other hand, the total Chern
number is zero as long as the out-of-plane pseudospin component is the same in both valleys.
Thus, the two out-of-plane solutions are topologically different even though they correspond
to the band gap of the same size. The topologically nontrivial case with n 6= 0 corresponds to
broken time reversal symmetry, leading to the existence of a zero-field Hall current [30].

The only question is whether the time reversal broken states really occur in clean graphene
samples. A more in-depth analysis performed by Nandkishore and Levitov [22, 38] suggests that
this is the case at least for bilayer graphene. On the other hand, Jung et al [31] demonstrate that
the intervalley exchange coupling favors parallel pseudospin polarization in opposite valleys
breaking the parity invariance. In this case, the total absorption does not depend on the radiation
helicity but the two valleys are occupied differently by the photoexcited carriers, which might
be a useful effect for valleytronics [43]. Note that the strain effects may also change the band
structure topology in bilayer [44] and probably multilayer graphene. This might be an issue
in suspended samples, where mechanical deformations can occur easily. There is, however,
experimental evidence [28] for the fact that it is the electron–electron interaction rather than the
strain that is responsible for the band structure reconstruction.

4. Conclusion

We have demonstrated that the polarization-sensitive optical absorption predicted in [30] for
single-layer graphene can be found in chirally stacked carbon multilayers within a broader
range of parameters. This is due to the enhancement of the interaction effects in multilayer
graphene with a larger number of layers. The conditions necessary for the observation of the
polarization-dependent optical absorption can be summarized as follows. (i) Graphene samples
must be prepared as clean as possible. It would be better to utilize suspended samples in order
to isolate the interacting electrons from the environment with a large relative permittivity.
(ii) The exchange interactions must break the time reversal invariance rather than the parity.
This situation corresponds to the topologically nontrivial state with the Chern number equal
to N . (iii) Finally, the low-frequency radiation is necessary to excite the electrons with smaller
momenta having larger out-of-plane pseudospin components and to preclude the influence of
split-off bands.

In addition, we would like to mention the possible existence of a zero-field Hall current in
the slightly doped graphene samples where the time reversal invariance is broken as described
above.
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