
Studying the learning of programming using grounded theory to support
activity theory

Maryam Kheir Abadi* and Graham Alsop

Information Systems and Mathematics, Kingston University, Kingston upon Thames, Surrey, UK

(Received 17 May 2011; accepted 20 June 2011)

Teaching programming to first year undergraduates in large numbers is
challenging. Currently, online supported learning is becoming more dominant,
even on face-to-face courses, and this trend will increase in the future. This
paper uses activity theory (AT) to analyse the use of tools to support learning.
Data collection took place during 2008�2010 at Kingston University and
involves over one hundred responses. This has been analysed into activity
systems offering a detailed analysis of the use of a number of tools being used
(in AT these include physical tools, such as technologies including books, and
non-physical tools, such as conversation). When teaching programming to large
numbers of students it is difficult to offer one-to-one attention and the reliance
on such tools becomes more important. For example, in student responses a
good integrated development environment (IDE) is shown to make learning
easier and more enjoyable, whereas a bad IDE makes the learning experience
poor.

Teaching materials, and access to these, were often mentioned positively. These
included online communication, discussion boards and video lectures. Using AT
offers sufficiently rich detail to identify key interventions and aids the redesign of
the learning process. For example, the choice of an IDE for a specific language can
have a larger impact than is initially apparent. This paper will report on the data
collected to show where simple improvements to the use of tools may have a large
impact on students’ abilities to learn programming.

Keywords: learning programming; activity theory; grounded theory

Scope

The communities that have been involved in this research are students, staff and the

researchers. ‘‘Staff’’ is broadly defined as whoever teaches and helps students to

learn. This includes technicians who support students with any difficulty they might

have using software and associated development environments. However, this paper

presents only the analysis of data from two groups of students. Staff experiences will

be reported subsequently.

*Corresponding author. Email: Maryam@kingston.ac.uk

ALT-C 2011 Conference Proceedings 0137

ISBN 978-91-977071-4-5 (print), 978-91-977071-5-2 (online)

2011 Association for Learning Technology. # M.K. Abadi and G. Alsop. This is an Open Access article 57
distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 2.0 UK: England &

Wales licence (http://creativecommons.org/licenses/by-nc-nd/2.0/uk/) permitting all non-commercial use, distribution,

and reproduction in any medium, provided the original work is properly cited. DOI: 10.3402/rlt.v19s1/7801

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ALT Open Access Repository

https://core.ac.uk/display/1154687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Methodology

As Alsop and Tompsett (2002) suggest, the methods that researchers use to collect

data seem unimportant to students and to stakeholders such as lecturers. However, to

achieve accurate and reliable data, the choice of methodology is critical.

Activity theory (AT) was selected because of the nature of the subject being

examined. There are multiple communities involved in looking for the same

outcome. The outcome could for instance be that of passing a specific assessment.

AT allows for a holistic consideration of the multiple perspectives involved. Its

ontology requires different research methods depending on the aspect being

considered. In particular the choice of methodological approach to study the

subject’s activity is key. However, AT does not specify any particular research

methodology to be used. We have chosen to combine it with grounded theory

(GT).
The case studies undertaken here have particular characteristics that need

considering. These include:

. The nature of the subject being examined (learning Programming);

. The number of students involved [in our case the numbers being relatively

small and so qualitative research methods were chosen to ‘provide a rich

description of the students’ behaviours’ (Alsop and Tompsett 2002) during the

research];

. The changes in sample during the research life-cycle; and

. The multiple communities involved in looking for the same outcome (in our

case passing an assessment).

We now present short introductions to AT and GT to clarify why they were chosen

and how they can work together.

Activity theory

Activity theory is a psychological framework used to understand human activities.

AT was introduced by Vygotsky (1896, 1934) and developed by Leont’ev (1981).

Thereafter, many researchers have used AT in various subject areas. For example,

Kuutti (1995) and Nardi (1996) used AT as a potential framework for human

computer interactions and for transforming work in Information Systems. Scanlon

and Issroff (2002, 2005) specifically utilised AT on the use of technology in Higher

Education (HE). Engeström (1999, 2000, 2008) employed AT to examine individual

and social transformation. They also developed the concept of an activity system

(AS) to illustrate AT. Figure 1 illustrates the generic AS.

Nardi (1996) explains that an activity is the unit of analysis in AT and that the

subject is the person or the group involved in the activity. The object stimulates the

activity and provides goals and directions to the actions. Tools are the artefacts that

can be used in the process of an activity. Other important factors in an AT

framework are rules, communities and the division of labour. The whole result of an

activity is the outcome or objective of the activity.

M.K. Abadi and G. Alsop

58



Combining GT and AT

The choice of AT was justified by reviewing the characteristics of the case being

studied, learning programming using specific tools on undergraduate taught modules

involving multiple communities. We required a rich collection of information to

ensure that AT ontology is described well. Choosing a method to collect the key data

about how and what is used by students in learning and using it to show whether they

have ‘‘learnt programming’’ is a challenge. The decision to focus on a qualitative

approach was driven by several factors: sample size, accommodating researcher bias,

and a changing sample during the research cycle.

Grounded theory

Grounded theory (GT) was first introduced by Glaser and Strauss in social science

almost 50 years ago. GT is an inductive qualitative research method that uses a

systematic approach to constantly compare collected data and analysis. Here

inductive means that there are no initial hypotheses. Accordingly, the researcher

has to be as open minded as possible and design the research questions carefully.

Grounded theory interacts closely with data. Any possible hypothesis or theory is

driven from the data, as Glaser and Strauss suggest:

. . .clearly, a Grounded Theory that is faithful to the everyday realities of the substantive
area is one that has been carefully induced from the data. (1967, p.239)

While Glaser and Strauss (1967) believe that new concepts and reality can be

discovered from the collected data, Corbin (2008) argues that there is no reality out

there waiting to be discovered, rather there are concepts and ideas that can be

invented. She continues that humans do not discover reality. For example, Schwandt

(1998) states that:

. . .constructivist means that human beings do not find or discover knowledge so much
as construct or make it. We invent concepts, models and schemes to make sense of

Figure 1. Generic activity system.

ALT-C 2011 Conference Proceedings

59



experience and, further, we continually test and modify these constructions in light of
new experiences.

Charmaz (2006) also believes that theory is constructed from the data:

Grounded theory involves taking comparisons from data and reaching up to construct
abstractions and then down to tie these abstractions to data. It means learning about the
specific and the general � and seeing what is new in them � then exploring their links to
larger issues or creating larger unrecognized issues in entirety... Grounded Theory
methods can provide a route to see beyond the obvious and a path to reach imaginative
interpretations. (Charmaz, 2006)

GTM is categorized as an inductive method. Induction can be defined as a type of
reasoning that begins with study of a range of individuals’ cases and extrapolates from
them to form a conceptual category. (Charmaz, 2006)

Other methods and approaches were considered. These included action research and

phenomenography. The choice of GT above other methods and approaches appears

to have been sound in the light of the initial outcomes. A further paper on the

methodological issues is in preparation.

Activity theory helped to break down complicated situations and made them

easier to analyse. GT allowed us to have a flexible and open approach to data

collection. It also allowed us to decrease the number of presumptions and hypotheses

which would have limited the possibilities of findings. However, the decision to use

AT implied the need to conform to ontology. This led to data collection using some

of the terms required by AT.

Data collection

Two open-ended questions (adapted from Alsop and Tompsett 2002) were used in

this research. Students were asked to write about their best and worst educational

experiences of learning programming and to specify the tools they used. They were

also asked to summarise their stories in their own words. This was to ensure that the

data received were framed in the language of the ‘students’ rather than the

‘researchers’.

Data analysis

In using GT, the collected data were examined closely. In considering each

response, questions were asked such as what has happened and why has it

happened? An AS was built for each response as well as associated notes that

included the researcher’s analysis of the case. The early stages of GT analysis were

then used. This included open coding (whilst keeping in mind AT’s ontology which

includes subject, object, tools, rules, communities and division of labour). In the

first instance, the focus taken was on which tools the students have used and which

communities have been involved in that event. Thereafter, axial coding was

undertaken in two sets; one for the worst experiences and one for the best

experiences. For the former this represents, put in the language of AT, ‘contra-

dictions’ that in an AS need to be overcome for the activity to be successful (the

resulting redesign, again specifically in the language of AT, is known as a ‘shift’ in

an AS.)

M.K. Abadi and G. Alsop

60



Building activity systems

A first year student (Subject), who attends the ‘‘Programming Essential Module’’

(Object) in the first semester, is taken as a starting point. She/he goes to the lecture

and listens to the lecturer who aims to explain the basic concepts of programming in

Java. She/he picks up a handout and annotates it (this represents a Tool in AT terms).

After the lecture, the student has the opportunity to go to the workshop to put the

theory into practice. Here, she/he practices Java in a real environment using several

other Tools (TextPad, the WWW, accessing the internet, notes and books.) She/he

can also receive help from lab assistants (another Community). She/he is interacting

with a machine, reading her/his notes and books and interacting with students,

lecturer and assistants in order to achieve her/his goal (Outcome) of ‘‘learning

programming’’.

As Engeström (1999) suggests in order to achieve a specific outcome there needs

to be a subject, object, rules, tools, division of labour/effort and finally communities.

Figure 2 has been annotated from Engeström to illustrate the example.

In the process of learning programming there are very likely to be problems,

clashes, breaks and difficulties. Engeström (1999), Nardi (1996) and Roussou, Oliver,

and Slater (2007) call these disturbances ‘‘contradictions’’. Analysis of data in this

research aims to identify and clarify these contradictions and help identify how they

can be solved to make the process of learning programming better, more smooth and

enjoyable for students. For example, if the student above begins by writing a simple

program called ‘‘hello world’’ in Java, compiles code and then faces syntax errors,

she/he could either solve the errors with no help or call on help. This reflects the

ability to self-correct or need an intervention from someone else in order to solve the

difficulty.

To move away from a general example to something more specific, we give a

response citing a student’s worst experience:

‘‘While creating a game in C��, using provided engine, I couldn’t get it to do what I
needed. The program compiled fine, so it was down to my logic. The lecturer suggested
using break points to find my mistake � but I could not understand what they were
telling me or if I was using them correctly. This was the most frustrating experience of a

Figure 2. An illustration of the methodology.

ALT-C 2011 Conference Proceedings

61



few while using the visual studio suite � I didn’t like using such a complex program
without understanding how to use it properly, or having a thorough knowledge of the
language beforehand.’’ � ‘‘Not knowing how to use the program’’.

We build up an AS. The coding is shown in Table 1.

Figure 3 shows the AS of the above event.

In this example shifts (improvements) are needed in both the tool and

communication process. The tool seems to be too complex for the student to use.

Why is this the case? It could be because the environment is new or perhaps because

Visual Studio is not a good development tool for programming?

We do not know the answer to the latter question. However, we can investigate

the former question. The problem of a new environment can be solved by a ‘‘short

lived goal directed’’ action (Engeström 1999). A shift in the object of the activity of

learning programming in C�� to ‘‘learn the IDE’’, in this case Visual Studio,

together with a short-term shift in the division of labour by having workshops to

learn the integrated development environment (IDE) instead of writing code/

programming could help. In Figure 4, these shifts have been illustrated.

In contrast to a failed AS, an analysis of a good experience follows. This response

was chosen from one of the set of best educational experiences from the same group

as the previous student. This response, however, was not selected randomly. It was

chosen because this student (Subject) shares the same Object with the randomly

selected one above. However, the description is of a best rather than a worst

educational experience. This shows that the same Object can be the reason for both

good and bad experiences.

‘‘The best educational experience when using a programming tool would be the time
when I had to program a game using C��. Normally i would find this challenging so I
decided to do more independent work using the program such as reading books and
practicing on simple programs. By the time I’d finished I had created what I thought
exceeded my expectations and for which I received a good mark. This was very satisfying
and now I spend longer on independent work.’’ � ‘‘Spending time on a program is
beneficial and is helpful for work’’.

This leads to the following coding (Table 2) and AS (Figure 5) developed in the same

way as the previous example.

Figure 5 shows the AS of the above event.

Table 1. An activity system coding.

Subject Student
Object Game design
Tool Visual Studio (VS � an IDE from Microsoft to develop programs in

C��)
Community Student and the lecturer
Division of labour
(DoL)

Student writes the codes and lecturer helps to find errors

Outcome Confusion, frustration, student did not understand and not happy to
use a complex program

Note: Researcher’s interpretation: It seems that the student is not comfortable with the tool (VS), and finds
it a to be a complex program. Despite seeking help she/he still does not understand the problem. Is it
because the problem has not been fully explained or is it too hard for the student to digest? This student
would prefer to understand the concepts before using it in the provided IDE. She/he summarises the story:
‘‘Not knowing how to use the program’’

M.K. Abadi and G. Alsop

62



Subsequently, ASs were built for each response and these were then categorised.

In GT, Corbin (2008) call this process ‘‘identify concepts from data’’. In other words,

labelling data with specific words and terms, adding commentary about data analysis,

stating comparisons and investigating ideas that appear in data. The result of this

process for the failed ASs is shown in Figure 6.

Since the students were asked to summarise their stories, those summaries guided

the researcher to label each response and then classify these into groups. Knowledge,

structure, tools and programming languages are the four main categories that were

driven from the data.

Knowledge contradictions are mostly related to syntax and materials. Some of

the students found the syntax, taught for the specific programming language, hard

to learn or too much for the duration of the semester. Some other students pointed

out that the materials available for the modules did not cover the harder

assignments.

Figure 3. A specific activity system.

Figure 4. Modified activity system.

ALT-C 2011 Conference Proceedings

63



Tools are another contradiction in the process of learning programming for these

students. IDEs specifically seem to be limited for the work they do. Students also

highlighted that some of the IDEs in use are not helpful in terms of solving errors.

The same analysis is applied to the positive experiences in Figure 7, which

illustrates the best educational experiences.

Conclusions

There are two main conclusions. Firstly, using AT with GT has led to the

identification of contradictions that require shifts to lead to successful ASs that

ensure that students are better able to learn programming. These are that:

1. The choice of IDE is important. Simple IDEs do not provide the required

feedback to ensure adequate problem solving.

2. It seems that the tools are not as important as the behaviour/motivation of

the student toward learning. Utilising all available tools (such as books,

IDEs, online videos, search engines, Blackboard, Study Space, etc.) can

Figure 5. Associated activity system.

Table 2. A further activity system coding.

Subject Student
Object Game design
Tool Books
Community Student
Division of labour (DoL) More independent work and reading books
Outcome Good grade, satisfaction and encouragement

Note: Researcher’s interpretation: From previous experience the student knew that she/he might have
problems with designing the program, that is why she/he decided to do more independent work, study
more, read related books to improve his/her ability to design the game. The student summary is clear:
‘‘Spending time on a program is beneficial and is helpful for work’’.

M.K. Abadi and G. Alsop

64



increase the motivation to learn. These tools make it easier to learn

independently of location and time.

3. The communities involved in the activity of learning programming are

another high priority in the responses. The better the level of communication,

the more rewarding the activity. The interactions between communities

Figure 7. Analysis of positive activity systems.

Figure 6. Analysis of failed activity systems.

ALT-C 2011 Conference Proceedings

65



include: student�student, student�lecturer, student�helpers and student�
technicians. The involvement of technicians is critical because most of the

technical problems occur the first few times that students begin to use a new

environment.

4. A large mixed group does not help to support learning. Designing a suitable

lecture/workshop for even the majority of a large diverse set of students is

very difficult. Examining all students’ programming knowledge before the

first programming module is one possible solution to enable streaming or, at
least, offering more targeted support/advice.

Secondly, in choosing AT as the framework, there was an implied need to find an

appropriate approach to collect and aid the analysis of data, which needed also to be

compatible with AT. GT was chosen to complement AT. Using GT offered

sufficiently rich detail to identify key interventions and ways to redesign the learning

process. AT helps to clarify any contradictions in an AS and provides a means to

design changes/shifts to solve these contradictions. Using AT with a series of
developing ASs can show the history of contradictions, changes and shifts during the

process of learning. This aids the development, knowledge, structure and design of a

better learning environment for the future. As Engeström (2000) argues, there is never

a finished product in the learning process since there is always a moving target.

References

Alsop, G., and C. Tompsett. 2002. Grounded theory as an approach to studying students’ uses
of learning management systems. ALT-J 10, no. 2: 63�76.

Corbin, J., and A.L. Strauss. 2008. Basic of qualitative research, techniques and procedure for
developing grounded theory, 3rd ed. London: SAGE.

Charmaz, K. 2006. Constructing grounded theory, a practical guide through qualitative analysis.
London, Thousand Oaks: SAGE.

Engeström, Y. 1999. Activity theory and expansive design. http://projectsfinal.interaction
ivrea.org/2004-2005/SYMPOSIUM%202005/communication%20material/ACTIVITY%20
THEORY%20AND%20EXPANSIVE%20DESIGN_Engestrom.pdf (accessed June 2009).

Engeström, Y. 2000. Activity theory as a framework for analyzing and redesigning work.
Ergonomics 43, no. 7: 960�74.

Engeström, Y. 2008. Enriching activity theory without shortcuts. Interacting with Computers
20, 2: 256�9. Perseus Digital Library. www.elsevier.com/locate/intcom

Glaser, B.G., and A.L. Strauss. 1967. The discovery of grounded theory, strategies for qualitative
research. Aldine Pub. Co: Weildenfield and Nicolson

Kuutti, K. 1995. Activity theory as a potential framework for human computer interaction
research, context and conciseness, 2 vols. 17�44. Cambridge, MA: MIT Press.

Leont’ev, A.N. 1981. Activity and consciousness in the development of mind, selected works of
Aleksei Nikolaevich Leontyev. Trans. M. Kopylova and ed. A. Blunden. http://marxists.org/
archive/leontev/works/development-mind.pdf (accessed 5 July, 2010).

Nardi, B.A. 1996. Studying context: A comparison of activity theory, situated action modules,
and distributed cognition, 4 vols. 35�52. Cambridge, MA: Massachusetts Institute of
Technology.

Roussou, M., M. Oliver, and M. Slater. 2008. Exploring activity theory as a tool for evaluating
interactivity and learning in virtual environments for children. Congnition Technology &
Work 10: 141�53.

Scanlon, E., and Issroff, K. 2002. Educational technology: The influence of theory. Journal of
Interactive Media in Education 6, p. 1�13. [www-jime.open.ac.uk/2002/6]

Scanlon, E., and K. Issroff. 2005. Activity theory and higher education: Evaluating learning
technologies. Journal of Computers and Learning 20, no. 6: 430�9.

M.K. Abadi and G. Alsop

66

http://projectsfinal.interactionivrea.org/2004-2005/SYMPOSIUM%202005/communication%20material/ACTIVITY%20THEORY%20AND%20EXPANSIVE%20DESIGN_Engestrom.pdf
http://projectsfinal.interactionivrea.org/2004-2005/SYMPOSIUM%202005/communication%20material/ACTIVITY%20THEORY%20AND%20EXPANSIVE%20DESIGN_Engestrom.pdf
http://projectsfinal.interactionivrea.org/2004-2005/SYMPOSIUM%202005/communication%20material/ACTIVITY%20THEORY%20AND%20EXPANSIVE%20DESIGN_Engestrom.pdf
http://www.elsevier.com/locate/intcom
http://marxists.org/archive/leontev/works/development-mind.pdf
http://marxists.org/archive/leontev/works/development-mind.pdf
http://www-jime.open.ac.uk/2002/6

