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Abstract 

Experimental investigations of self-generated and externally driven non- 
linear current oscillations due to impact ionization of shallow impurities in 
n-type GaAs at low temperatures are presented. The regular relaxation 
oscillations which appear at the onset of breakdown are destabilized by a 
magnetic field normal to the epitaxial layer and multifrequency oscillations 
and chaotic fluctuations following the Ruelle-Takens-Newhouse scenario 
can be found. Driving the self-generated oscillations with an external 
periodic bias voltage quasiperiodicity, mode locking, interaction and 
overlap of mode locked resonances and period doubling can be observed 
depending on frequency and amplitude of the external force. The recon- 
structed return maps, recorded phase diagrams and Devil's staircase agree 
with theoretical predictions based on the circle map and give new evidence 
of the universality of the transition from quasiperiodicity to chaos. 

1. Introduction 

Transitions into chaos due to two competing frequencies 
have been observed in several nonlinear dissipative dynami- 
cal systems [l-111. In all cases the oscillation modes were 
self-generated or induced by an external periodical force. 
Theoretical investigations of this quasiperiodic route to 
chaos are based on the circle map and had led to quantitat- 
ive predictions of universal scaling behaviour [ 12-18]. 
These predictions have been verified in experiments on 
hydrodynamic [ 1-31, electrical [4-61, and solid state 
systems [7-113. 

In semiconductors nonlinear current-voltage character- 
istics, negative differential conductivity, instabilities like self- 
sustained oscillations, bifurcations and the spontaneous 
formation of current filaments are manifestations of the 
nonlinear dynamical properties of the charge carrier trans- 
port. In particular high-purity semiconductors show strong- 
ly nonlinear current-voltage characteristics at temperatures 
where the thermal energy is less than the binding energy of 
residual shallow impurities. 

The nonlinearities are caused by impact ionization of 
shallow impurities which represents the dominant autocat- 
alytic free carrier generation process in extrinsic semicon- 
ductors. At a critical electric field strength an avalanche 
breakdown occurs, similar to the electric breakdown in 
gases. Free carriers gain sufficient energy so that the impact 
ionization rate of shallow impurities exceeds the recombi- 
nation rate for low carrier concentrations. This leads to a 
rapid increase of the current at a practically constant 
voltage indicating a filamentary current flow. At the ava- 
lanche breakdown a strongly ionized thin channel is formed 
in the sample carrying the total current. The growth of 
current at constant voltage is then caused by a proportional 
increase of the ionized volume. In many cases the transition 

from high-ohmic pre-breakdown behavior to filamentary 
current flow is associated with autonomous oscillations. 

The observed current oscillations were analyzed in terms 
of nonlinear dynamics and different routes to chaos could 
be found [19-241. Progress on understanding of these phe- 
nomena on a microscopic basis has been obtained in the 
framework of semiclassical transport theory applying rate 
equation models for the kinetics of the impurities [25]. 

In this paper we summarize briefly the properties of self- 
generated oscillations in n-GaAs epitaxial layers. Attention 
will be drawn on the importance of the spatial degrees of 
freedom of the filament borders and an external magnetic 
field for the occurrence of multifrequency oscillations and 
chaotic fluctuations. Then experimental results of the coup- 
ling of internal oscillation to a periodic drive will be pre- 
sented. Self-sustained oscillations were subjected to a 
periodic voltage added to a constant bias offset. The 
response of the sample to the sinusoidal voltage has been 
measured as function of amplitude and frequency of the 
external force. The results are analyzed in terms of the circle 
map theory. In a control parameter range of regular relax- 
ation oscillations a quasiperiodic transition to chaos has 
been found. These investigations give new experimental evi- 
dence of the universality of the quasiperiodic transition to 
chaos. Both self-sustained oscillations as well as coupling of 
an external periodic driving force to internal oscillations are 
of interest to establish the underlying microscopic physical 
mechanisms. 

2. Experimental 

The measurements were carried out on a 16pm thick 
n-GaAs epitaxial layer of n = 1.3 x 10'4cm-3 electron con- 
centration and p = 8.9 x 104cmZ/Vs mobility at 77 K corre- 
sponding to N ,  = 5.7 x 1014cm-3 donor density at a 
compensation ratio of 77%. The layer was grown on a semi- 
insulating GaAs substrate of 3 x 3mm2 area. At the center 
of two opposite edges of the sample ohmic contacts were 
prepared by alloying Indium spheres of 0.5" diameter. 
The free distance between these two point contacts was 
2 mm. The sample was fixed in the center of a superconduct- 
ing magnet and immersed in liquid helium at 4.2K. A 
mount was used which allowed a precise orientation of the 
sample in the magnetic field. Thermal background radiation 
was suppressed by a cold metallic shield. The sample was 
biased in series with 100 kR load resistor. The voltage drop 
across the sample was measured as a function of time with a 
waveform digitizer. The recorded time series were trans- 
ferred to a computer for further numercial evaluation. 
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3. Self-generated current oscillations dicular to the current. Now complex oscillations can be - 

In n-GaAs without a magnetic field only regular relaxation 
oscillations have been observed which are strictly periodic. 
The frequency of the oscillations rises with increasing bias 
voltage. As a function of the average bias current the oscil- 
lation frequency grows almost linearly from 0.7 MHz at the 
threshold of the instability to 3.5 MHz when a stable current 
filament is abruptly formed. This behavior of the regular 
relaxation oscillations is caused by a repetitive ignition and 
extinction of a current filament and the frequency is deter- 
mined by the charging current of the parasitic capacitance 
in the sample circuit. 

Small magnetic fields of the order of 100mT have a pro- 
nounced effect on the temporal structure of the oscillations 
(Fig. 1). The appearance of complex oscillations, however, 
crucially depends on the orientation of the magnetic field 
vector with respect to the current and the plane of the epi- 
taxial layer. When the magnetic field is parallel to the 
current [Fig. l(a)] only regular oscillations and stable 
current flow have been observed as in the case of B = 0. 
This is the case at least up to 2 T, the highest magnetic field 
that has been applied. Increasing the magnetic field reduces 
the current where the transition from relaxation oscillations 
to a stationary current filament takes place. As a result a 
longitudinal magnetic field stabilizes the filamentary current 
flow [26]  and suppresses oscillations. 

Measurements with the magnetic field in the plane of the 
epitaxial layer and perpendicular to the current are shown 
in configuration Fig. l(b). In this case again only periodic 
relaxation oscillations have been found for magnetic field 
strengths up to about 500mT. At higher magnetic fields 
complex oscillations occur which have not yet been well 
characterized. This oscillations are most probably due to the 
dynamical Hall effect proposed by Hupper and Scholl [27]. 
Here the Lorentz force and the Hall field are normal to the 
plane of the semiconductor. The dynamical Hall effect yields 
purely temporal oscillations and chaotic fluctuations of the 
free carrier density without involving spatial degrees of 
freedom. 

In the third configuration investigated [Fig. l(c)] the 
magnetic field is normal to the epitaxial layer and perpen- 
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Fig 1 Geometrical configurations of the sample surface, the current j and 
the magnetic field B and the resulting oscillations forms at B = l00mT 
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observed depending on the magnehc field and the applied 
bias voltage. Typically Ruelle-Takens-Newhouse scenarios 
and intermittency could be recognized. The significant dif- 
ference to the two previous configurations is that in this case 
a Hall electric field arises in the plane of the semiconductor 
layer. 

This results demonstrate the importance of the Lorentz 
force and the spatial degrees of freedom of the filament for 
the occurrence of multifrequency oscillations and chaos in 
the filamentary current flow regime of thin n-GaAs layers. A 
magnetic field normal to the current flow accumulates space 
charges by the Hall effect in the boundaries of the current 
filament because of the high mobility of the hot electrons in 
the filament. The filament borders in the plane of the thin 
film are movable and represent spatial degrees of freedom of 
the filament dynamics. If these borders are charged due to a 
magnetic field pointing normal to the semiconductor place 
different modes of cyclic generation-recombination pro- 
cesses occur in the filament and at the opposite edges of the 
filament. Coupling of these modes by free carrier drift and 
diffusion yields quasiperiodic and frequency locked oscil- 
lations as well as chaos. If the magnetic field is normal to 
the current but in the plane of the semiconductor charge 
accumulation is on top and bottom of the layer because the 
filament fills the thickness of the film. Boundary oscillations 
are suppressed due to this confinement of free carriers and 
increased free carrier recombination at the interfaces of the 
thin semiconductor layer. Localized fluctuations of carriers 
may still occur as shown with the theory of the dynamic 
Hall effect. If the magnetic field is parallel to the current 
filament no Lorentz force arises and, consequently , the fila- 
mentary current flow stays stationary. 

The complex current oscillations for a magnetic field of 
100mT transverse to the current and normal to the sample 
surface are presented in more detail. Time series have been 
measured for different voltages across the sample in series 
with the load resistor. These data have been used to calcu- 
late power spectra, phase space reconstructions and Poin- 
care sections. Also the fractal dimension d of the attractor 
were evaluated using the method of Grassberger and Pro- 
caccia [28]. The results are shown in Fig. 2. For a voltage of 
1.500 V [Fig. 2(a)] stationary current flow below breakdown 

a1 Ub = 

Z O  5 709 V 
1 

5.102 V 
@ 1  ZO 

1 

1.500 V 
@ 1  ZO 

1 

0 10 20 0 1 2 Attractor Poincar6- 
Time us) Frequency (MHz) section 

Fig. 2. Ruelle-Takens-Newhouse scenario for a transversal magnetic field 
B = 100mT. (a) Stationary current flow breakdown; (b) regular oscillations 
with fundamental frequency f, ; (c) quasiperiodic oscillations withf, andf,; 
(d) chaotic fluctuation with fractal dimension of 3.1. 
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Fig. 3. Time series for fd = 1.097 MHz and V, = 0.82V above the critical 
line. Overlapping and mixing of resonances in an erratic way with fre- 
quency ratios 112, 315 and 417. 

has been observed. Raising the voltage a sequence of three 
Hopf bifurcations occurs which allows to recognize a 
Ruelle-Takens-Newhouse scenario [29]. At 5.102 V [Fig. 
2(b)] a regular relaxation oscillation with one fundamental 
frequency fi arise which proceed into quasiperiodic oscil- 
lations with the two frequenciesf, andf, at 5.213V [Fig. 
2(c)]. The phase portrait and the Poincark section clearly 
show a torus. Finally in Fig. 2(c) at 5.709 V chaotic fluctua- 
tions are displayed with a fractal dimension of 3.1. 

4. Externally driven current oscillations 

In order to investigate externally driven oscillations as a 
function of frequency and amplitude of the driving voltage 
the series circuit of the sample and the load resistor was 
biased with a frequency synthesizer. For all measurements 
the same offset voltage was used and all measurements were 
carried out at zero field because in this case the relaxation 
oscillations are very stable and have low noise. 

For the presentation of the universal scaling properties 
we will follow the circle map model [16]. This one dimen- 
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Fig. 4.  Time series and power spectra for four different driving frequencies 
f, and a driving amplitude V, = 1.OV above the critical line. Transition into 
chaos by three subsequent period doublings after Feigenbaum. 

sional map of the circle onto itself 

0, + =fn(O,) = 0, + R - - sin 2710, mod 1 

can describe quasiperiodicity, mode locking and the tran- 
sition to  chaos of two competing frequencies. The relevant 
control parameters are the ratio R =fdlfo = P / Q  between 
the drive frequency fd and the frequency fo of the self- 
generated oscillation and the amplitude K of the sinusoidal 
nonlinearity, which is related in our experiment to the 
amplitude V, of the external drive. 

Choosing a driving amplitude below the critical line, 
quasiperiodicity and mode locking can be observed. This 
could be measured in the orbits and Poincare sections for 
different parameter sets below the critical line. In the Poin- 
care section the quasiperiodic motion manifests itself as a 
circle and the mode locked motion in points whose number 
is equal to the denominator Q of the frequency ratio P/Q. 

If the driving amplitude is above the critical line K = 1 
the circle map looses invertibility and chaotic behavior 
arises because the orbit jumps between the various overlap- 
ping resonances in an erratic way and a transition to chaos 
takes place. This overlapping can clearly be seen in a time 
series in Fig. 3 where lockings with frequency ratio 1/2, 3/5 
and 4/7 mix. Also a breakup of the invariant two-torus 
occurs which manifests itself by the appearance of wrinkles 
in the Poincare section. 

For K > 1 the map also develops quadratic maxima and 
minima. Iterations of this type of mapping exhibit infinite 
series of period doubling leading into chaos characterized as 
Feigenbaum scenario [30]. As depicted in Fig. 4 by time 
series and power spectra three period doubling cascades 
could be resolved before chaotic fluctuations set in. 

( 27t " >  

5. Return maps 

For the reconstruction of return maps orbits were 
determined from time series by the method of delay coor- 
dinates. Then the Poincare section was divided into sectors 
and the map was constructed from the radian which was 
normalized to 1. This method was chosen because the Poin- 
care section deviates from a circle. The smearing of the 
observed data set is mostly due to noise and drift in the 
experimental system. In the absence of these the points 
should fall on a single curve. 

In Fig. 5(a)-(c) in the first sequence for 0.14V the driving 
voltage was chosen well below the critical line. Here almost 
only quasiperiodic oscillations exist. The almost constant 
gradient in the map is reflected by the homogeneous dis- 
tribution of the intersections and a constant broadening of 
the circle line by noise in the Poincare section. For 0.63V 
narrow below the critical value in Fig. 5(c)-(e) a decrease of 
the gradient at x, = 0 in the return map can be seen. Fur- 
thermore the inhomogeneous distribution of the intersection 
points in the Poincare section and the nonergodic course of 
the space trajectory states the general tendency for mode 
locking. Finally orbit, Poincare section and return map for 
a critical trajectory are plotted in Fig. 5(f)-(h). One can see 
in the return map that the derivative of the curve for x, in 
the range from 0.5 to 1 is almost zero. Also there are regions 
with gradients lower and greater that 1. This manifests itself 
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6. Phase diagrams 

To get an overall view of the system, phase diagrams (fd, G) 
with a resolution of 200*100 points were recorded. The 
numerator P and denominator Q were automatically deter- 
mined by the computer. The maximum resolved numerator 
P was 14 and it was not distinguished between quasi- 
periodic and frustrated chaotic regimes. 

The phase diagrams,in Fig. 6 allow the following conclu- 
sions: There are regimes in the (K, Cl) phase space where the 
winding number assumes rational values corresponding to 
Arnol'd tongues. The widths of the Arnol'd tongues grow 
with increasing amplitude. The sequence of the mode 
locking regimes follows the Farey tree. A critical line exists 
which divide the diagram into two sections. Below the line 
quasiperiodic states (black) and mode locking (colored) 
alternate. Above the line the Arnol'd tongues begin to 
overlap which indicates as chaos (white). At the right border 
of the tongues above the critical line period doubling occurs 

Fig. 5. Reconstructed orbits, Poincare sections and return maps for driving 
fwUenCY fi = 0.700MHz and driving amplitudes: (a) to (C) % = 0 . M  
well below (d) to (f) V, = 0.63V below and (9) to (i) V' = 0.77V at the 
critical amplitude. 

[for example 1/2 (blue) to 2/4 (green) and to 4/8 (lightblue)]. 
Also the self similarity of the Amol'd tongues with locking 
ratios 1/Q can be observed. There is the same structure but 
with different scale for the 1/1, 1/2, 1/3, 1/4 etc. tongues 
(blue). 

7. Scaling structure of the devil's staircase 

In order to characterize the set of quasiperiodic states where 
the transition from quasiperiodicity to chaos takes place it is 
necessary to determine the critical line. The critical line is 
given as a lower limit for the occurrence of period doubling 
and the appearance of overlapping mode locked resonances. 
With this criteria several critical amplitudes were deter- 
mined by hand and the whole critical line was calculated by 
linear interpolation. Now the Devil's staircase could be 
recorded automatically by computer with a frequency 
resolution of 6000 steps and distinguishing the mode locked 
oscillations up to a maximal numerator of P = 40. 

In the so measured Devil's staircase (Fig. 7) it was pos- 
sible to resolve 312 different steps. The inset is a part of the 
whole staircase but plotted with higher resolution. This 
experimental staircase shows a very high self similarity and 
is almost identical to the staircase calculated from the criti- 
cal circle map. 

To demonstrate the self-similarity of the staircase in more 
detail the width A(P/Q) of the steps of the staircase are 

in stretching and folding of the attractor and in an inhomo- 
geneous distribution of the intersection points in the Poin- 
car& section. A reconstruction of the return map above the 
critical amplitude was not possible because of the immediate 
overlapping of mode locked resonances. 

Fig. 6. Experimental phase diagrams for drive amplitude V, and frequency 
&. The maximum resolved numerator P was 14 and it was not distin- 
guished between quaiperiodic and chaotic regimes. Coloring is as follow: 
Quasiperiodic regimes are black, chaotic regimes white and the mode 
locked regimes are: color (P): blue (1). green (2), red (3). lightblue (4). pink 
(5), yellow (6). The critical line in (a) (upper diagram) was plotted from the 
measured Devil's staircase in Fig. 2 by hand and then the quasiperiodic 
regime below was colored black. Diagram (b) is a part of (a) but recorded 
with higher resolution. 
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Fig. 7 .  Experimental Devil's staircase with 312 resolved mode locking 
steps. The inset shows the self-similarity. 
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Fig. 8. (a) Width of the mode locking steps versus winding number. Note 
the self-similarity of the diagram with the inset. (b) Plot of log,, N(r )  us. 
log,, (llr) for the critical circle map (solid line) and for the experimental 
Devil’s staircase (points). 

plotted versus P/Q in Fig. 8(a). The inset in this figure shows 
again the self-similarity. This is also illustrated in the har- 
monic sequence 1/Q. 

Besides the self-similarity the staircase should be com- 
plete. The staircase is called complete, - when the mode 
locked intervals cover the entire 0 axis. This can be tested 
after Jensen et al. [16] by calculating the total width S(r) of 
all steps which are larger than a given scale r .  This yields the 
space between the steps 1 - S(r)  and one can get the 
number of holes by 

which scales like ( l / r )D.  The exponent D is the fractal. dimen- 
sion of the Cantor set of quasiperiodic intervals which is the 
complementary set to the mode locked intervals on the R 
axis. 

In Fig. 8(b) the results from the measured staircase are 
plotted in a log-log scale as points together with the results 
from the circle map for D = 0.87 plotted as solid line. There 
is a good agreement for small l/r of the calculated points 
with the solid line. The discrepancy for big l /r  i.e. for small 
quasiperiodic holes may be caused by drift in the experi- 
mental system. From this the fractal dimension of the 
Cantor set of the quasiperiodic states at the measured 
Devil’s staircase can be determined giving D = 0.87 in good 
agreement with the circle map theory. 

8. Summary 

The self-generated current oscillations in n-GaAs were 
briefly described and the importance of the Lorentz force 

and the spatial degrees of freedom of the current filament 
for multifrequency oscillation were emphasized. 

Driving the self-generated oscillations with an external 
periodic voltage quasiperiodicity, mode locking, overlap of 
resonances and period doubling could be observed depend- 
ing on frequency and amplitude of the external force. The 
driven oscillations were characterized by return maps, high 
resolution phase diagrams and the Devil’s staircase and it 
was shown that the staircase is self similar and complete. 
From this the fractal dimension of the Devil’s staircase 
could be determined to D = 0.87 in good agreement with 
the circle map theory. 

These results give new experimental evidence of the uni- 
versality of the transition from quasiperiodicity to chaos. 
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