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Preface

This thesis is motivated by the steadily increasing interest in the dynamic relation-

ship between the macroeconomy and the real estate sector. One of the main issues in this

respect is to study the investment dynamics in general and real estate investment dynamics

in particular. The bursting of the U.S. housing bubble in 2006 is identi�ed as the point of

origin of the so called subprime crises which led to the collapse of the U.S. �nancial system

and caused negative consequences for the entire global economy. The speculative bubble

in the U.S. housing market, on the other hand, was the result of irrational public enthusi-

asm for housing investments. The accelerating growth in home prices made it attractive to

build homes which lead to an investment boom into real estate. As can be seen in Figure

0.1 the growth of residential investment increased steadily since the end of 2003 until it

peaked in the last quarter of 2005 where residential investment reached a share of 6.3% of

the U.S. GDP, the highest levels since the 1950-51 housing boom.1 ;2 An oversupply of new

homes was the consequence of the investment boom in the housing sector. The originated

disequilibrium in the real estate market brought the home price appreciation to an halt and

prices started to decline in mid-2006. Price declines accelerated in 2007, reaching rates close

to 20 percent at the end of 2008.3 As a result, the boom in the U.S. home construction

industry collapsed. The chronology of the ongoing crisis again indicates the relevance of the

relationship between the housing market and the macroeconomy. Residential investment
1The data are real chain-weight values, logged and Hodrick-Prescott �ltered. Both investment series are

on the left hand scale, the price series is on the right hand scale. For details see the Data Appendix.
2see also Schiller (2008) or Krainer (2009)
3This rate is measured by the annual percentage change of the S&P/Case-Shiller Composite-20 US home

price index, see also Fratianni and Marchionne (2009)
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Figure 0.1: U.S. Business Investment (Non-RESI), Residental Investment (RESI) and
House Prices (Ph)
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is the main economic indicator for the quantity of new housing supplied.4 As described

in the U.S. national income and product accounts, residential investment consists of new

construction put in place, expenditures on maintenance and home improvement, equipment

purchased for use in residential structures and brokerage commissions. The quantity of

residental investment in the U.S. economy is enormous. It has accounted for nearly 30% of

gross private investment and approximately 5% of U.S. GDP in the period 1970 - 2008.

To investigate the dynamics of residential investment and its relationship to the

overall economy, a dynamic stochastic general equilibrium (DSGE) model is introduced in

which a consumption good sector and a housing sector are incorporated. As described in

more detail in Part I, the model is brought to the data in order to evaluate whether it can

account for stylized facts of the U.S. housing economy.

Another much talked real estate topic with respect to the current �nancial crisis is

4see also Krainer (2006)
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the relationship between bank lending, property prices and economic activity. To that end,

the second part of my thesis examines the potential e¤ects of macro-policy and bank lending

shocks on the German real estate sector. In particular, the importance of macroeconomic

factors like credit to real estate construction, residential investment, and gross domestic

product for the dynamics of German commercial real estate prices are analyzed. Since it

is well known, that a single equation setup potentially su¤er from simultaneity problems, a

recursive vector autoregression (VAR) model is employed. The VAR estimation is conduct

for both, aggregate Germany and the largest regional states of Bavaria and Nordrhein-

Westfalen for the period 1975 to 2004.
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Part I

Housing, Time-to-Build, and the

Business Cycle



9

Chapter 1

Introduction

The breakdown of the U.S. �nancial system at the end of 2008 is leading an eco-

nomic downturn with an expected contraction of the world economy of 2.7% in 2009, the

worst global recession in 80 years.1 The collapse of the U.S. real estate market is identi�ed

as the point of origin of the �nancial crisis which led to this unexpected dramatic conse-

quences.2 U.S. house prices have risen three times as fast as real income in the period 1999

- 2006, and have nearly doubled in nominal terms between 2002 - 2006. The halt of house

price in�ation in the mid-2006 together with increasing interest rates led to severe trou-

bles then in the subprime mortgage market and the connected residential mortgage backed

security sector. Rapidly increased mortgage default rates induced the Federal Reserve to

pump enormous amounts of liquidity into the banking sector, which could however not

prevent the collapse of Fannie Mae and Freddie Mac, the two mortgage giants in the U.S.3

1see also: The Economist (2009)
2Dean Baker (2002) is an exception in this respect. He predicted the collapse of the U.S. housing market

and severe consequences for the world economy.
3see also e.g. The Economist (2007a,b, 2008)
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Figure 1.1: Correlation GDP - RESI
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These dramatic events once again demonstrate the close relationship between the real estate

sector and the macroeconomy. Whether the house price bubble, the creation of complex,

nontransparent assets, or the failure of rating agencies to properly evaluate the risk of such

assets weights more heavily for the acceleration of the crisis is still an open issue4.

However, positive and high correlations between residential investment (RESI) and

output (GDP) is robust and concrete. A critical analyses of the relationship between the

housing market and the economy is essential in detecting the dynamic forces of the boom-

bust cycles in the real estate sector as well as in understanding the sources of investment

volatility. Moreover, since property investment is highly correlated with GDP, see also

Figure 1.1, this should also help us to better understand the sources of investment volatility

in other economic sectors as well5.

To that end, I analyze the behavior of property investment and house prices

4see also Fisher and Quayyum (2006)
5The data are quarterly real data from NIPA tables which are logged and Hodrick-Prescott �ltered. The

left scale is for RESI and the right scale for GDP, for more details see the Data Appendix.
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Figure 1.2: Correlation RESI - Non-RESI
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in this part of my thesis. The traditional framework of earlier works on investment and

price volatility in the property sector is a partial equilibrium setup in which investment is

determined by supply conditions (see e.g. Poterba (1984) or Topel and Rosen (1988)). Real

estate developers invest more if prices are high. On the other hand, demand is assumed to

be perfectly elastic since real estate assets must earn a return similar to the market return.

A demand shock will a¤ect future expected returns and move the demand curve along the

supply schedule to a new equilibrium. A drawback of this approach is that it cannot account

for the following stylized facts that are well known especially from U.S. data.

First, residential investment co-moves with investment in business capital (Non-

RESI). In Figure 1.2 we �nd this co-movement for the time span 1970 to 2007. Second,

residential investment is more than twice as volatile as nonresidential investment, a fact

which can be observed in Figure 1.2 as well.

For residential investment we can measure a standard deviation from real, logged
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Figure 1.3: Correlation GDP - Ph
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and Hodrick-Prescott �ltered U.S. data of 10.5 percent, whereas for nonresidential invest-

ment this standard deviation is only 4.1 percent. A third fact, also observable in the �gures,

is the lead of residential investment via business investment and via GDP. By comparing

contemporaneous correlations and two period lead and lag correlations we can measure a 10

percent increase from 0.7 contemporaneous correlation of RESI and GDP to a correlation

of 0.8 if RESI has a two quarter lead via GDP. On the other hand, if RESI has a two period

lead to Non-RESI the correlation is increasing from 0.28 (the contemporaneous correlation)

to 0.63.

And lastly, house prices (Ph) are procyclical and more volatile then output as

shown in Figure 1.3. What we can also observe in this picture too is the bursting of the

real estate bubble in 2006 after a sharp price increase the years ahead.

The objective of this part of my thesis is to build a neoclassical multisector sto-

chastic growth model which is able to account for the business cycle dynamics of the U.S.
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economy in general and for the stylized facts of residential investment and house prices in

particular. In this model a consumption/capital investment good is produced in the �rst

sector. The second sector produces residential structures which are combined with newly

available land to establish the real estate good, i.e. houses. Final goods are produced with

capital and labor rented from a representative household. The output of these goods is

stochastic since �nal goods production is augmented by exogenous productivity shocks. On

the demand side, consumption, housing services and leisure enter the households�utility

function. A representative household maximizes his discounted lifetime utility by deciding

each period how much to work and consume and how to spend savings. Savings can be

invested in a new housing project or in physical capital.

Following Kydland and Prescott (1982), investment in a new housing project takes

several periods (quarters) until it will contribute to the actual housing stock, that is, the

household has to account for a time-to-build (or gestation) period in the real estate sector

before he can occupy a new house. This time-to-build technology is also consistent with the

empirical evidence that it takes around six month to �nish a single unit house and around

nine month for multi family houses on average in the U.S., see also Table 1.1

Table 1.1

                  Months of Construction for New Privately Owned Residental Building  Averages from 1971  2007
Buildings with 1 unit Buildings with 2 units or more

Purpose of construction Number of units in building
Total Built Contractor Owner Total

for sale built built 2 to 4 5 to 9 10 to 19 20 or more
6.1 5.5 5.6 9.4 9.5 7.6 9.0 9.7 12.3

Source: own calculations based on U.S. Census Bureau Construction Statistics data

In the consumption good sector investment adds to the existing capital stock

after one period. This asymmetric time-to-build structure is motivated by the fact that
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capacities in the business sector can be adjusted without building new plants in the short

run if there is a positive supply shock. My modeling is consistent with the available data

on the supply side of the economy in matching length and frequency. I calibrate the model

using aggregate U.S. data from the business and housing sector and produce arti�cial data

from the numerical solutions of the model.

In the next section I give an overview on Real Business Cycle (RBC) models. After

a short description of the evolution of this model class I present the prototype one-sector

RBC model and the model equilibrium. Then I describe the equivalence of the central-

ized and decentralized model formulation and restrictions on preferences and technology

to obtain balanced growth. Afterwards, technicalities like functional forms, steady states

and convergence of variables towards equilibrium are considered. Since my model is dealing

with more then one sector, I give a short overview on multisector RBC models in the second

part of Chapter 2. In Chapter 3, I start with the presentation of my model economy. Sub-

sequently, I de�ne the recursive competitive equilibrium and describe the balanced growth

path and the solution method used. Afterwards, data are described and the calibration

procedure is presented. Results from numerical solutions of the model are presented in

Chapter 4. Initially, steady state values of the model are compared with their real world

equivalences. Afterwards, second moments obtained from the averages of 600 simulations

are presented. Finally, impulse response functions of the model are considered to analyses

the behavior of the model economy as reaction to a transitory technology shock. The last

chapter concludes.
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Chapter 2

Real Business Cycle Models

The point of departure for the so called Real Business Cycle research program

is the interest in analyzing recurrent expansions and contractions (or business cycles) in

aggregate economic activity due to shocks which are real - as opposed to "monetary" - in

origin. In particular, the primary driving force is taken to be shocks to technology, rather

then monetary and �scal policy disturbances.

Business cycles where an active �eld of interest prior to the Great Depression.

Economists such as Ragnar Frisch (1933), Eugen Slutsky (1937) or Joseph Schumpeter

(1942) developed models able to produce short term �uctuations as a result of random shocks

(Frisch and Schlutzky) or technological innovations (Schumpeter). However, the Keynesian

revolution that followed the publication of Keynes�General Theory (1936) shifted away

the basic interest from cycles. Instead, the explanation of economic forces determining real

economic aggregates at a point in time, conditional an past economic history became the

major research topic in mainstream macroeconomics.
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Simultaneous with the appearance of Keynesian macroeconomics a renewed inter-

est in understanding the long-run growth patterns of modern economies came along. Along

with two works of Roy Harrod (1939) and Evsey Domar (1946), Robert Solow (1956) and

Trevor Swan (1956) have developed what is now called the neoclassical growth model. In

the Solow-Swan model three main sources of dynamic growth appear: population growth,

productivity growth and capital formation. The main result of the aforementioned works

is that technological progress is the key factor of long-run growth.

While the trend component of economic activity was explained by growth models,

the cyclical component was analyzed with Keynesian models at the time. In this perspec-

tive, short-run �uctuations in output and employment are mainly driven by variations in

aggregate demand, i.e. in investors�willingness to invest and the consumers�willingness

to consume. Macroeconomic stabilization policy should then focus on the control of aggre-

gate demand so as to �uctuations in economic output. However, a major drawback of this

approach is the possible in�uence of economic policy on the relationships between macroeco-

nomic variables. Estimated reduced-form relationships, the applied versions of Keynesian

business cycle models, could not be expected to be robust to changes in policy regimes or

in the macroeconomic environment.

This critique, initially formulated by Robert Lucas (1976), initiated a revival in

equilibrium business cycle analyses. Lucas called for an alternative to the Keynesian para-

digm in which macroeconomic policy should be analyzed on the base of an explicit micro-

economic structure. Only by carefully modeling consumers and their preferences, �rms and

their technology, the information sets of agents, markets of interaction, and the like, would
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it be possible to derive robust conclusions regarding privat-sector responses to changes in

economic policy. These so called deep parameters are not likely to be a¤ected by changes in

�scal or monetary policy regimes or in the macroeconomic environment and hence, quanti-

tative analyses based on microeconomic underpinnings is more robust to environmental or

regime changes.

Finn Kydland and Edward Prescott (1982) provide the microfoundation approach

to computation in macroeconomics. In a pathbreaking contribution, the authors integrate

economic growth and business cycles into one framework. In their version of a neoclassical

growth model, stochastic technological progress is assumed as the main source of short-run

output variations, since they hypothesize that technological growth might be an important

determinant, not only of long-run development.

Their approach allows the model economy, on the one hand, to grow on average

at a constant exogenous rate. On the other hand, technology shocks induce aggregate

economic variables to �uctuate around their long-run steady state growth path. In contrast

to the Keynesian tradition they rely on Walrasian microeconomic mechanisms with prices,

wages, and interest rates adjusting to clear markets. They thus argue that short periods

of low output growth need not be a result of market failures, but could simply follow from

temporarily slow growth in production technologies. Business cycles are not a disequilibrium

outcome then but an optimal reaction in response to �uctuations in productivity growth.

Kydland and Prescott (1982) demonstrate not only the ability of dynamic general

equilibrium models to account for business cycles, but that one can go way beyond the

qualitative comparison of model properties with stylized facts, the dominant strategy in
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theoretical macroeconomics so far.1 In their "quantitative approach" a model is formulated

in terms of the deep parameters. These parameters necessary to solve the model numerically

are drawn to match a subset of moments in the data. In particular, they choose parameter

values to match certain long-run macroeconomic statistics, such as average postwar interest

rates and average capital-output ratios, and microeconomic data to parametrize preferences.

This calibrated model is used then to produce arti�cial data, i.e. allocation rules for the

model are computed, using these policy functions, a large number of arti�cial time series -

having the same length as the real world data set to be compared with - are computed.2

Each simulation corresponds to a randomly generated series with disturbances drawn from

a known distribution mirroring technological shocks in the model economy. To measure

the models�accuracy, �rst and second moments of the simulated data are compared with

moments from real data.

Kydland and Prescott�s baseline model generates output �uctuations that amount

to around 70 percent of those observed in the postwar U.S. data. However, their 1982 paper

transformed the academic research on business cycles and initiated an extensive research

program. Successively more sophisticated dynamic models of business cycles have been

formulated and numerical analysis of economic models has evolved into a sub�eld of its own

in economic research.3

1"Stylized facts" of economic growth, a term labeled by Nicholas Kaldor (1957) became the benchmarks
of the theory of economic growth. Some of these "stylized facts" of growth are: (i) Real output grows at a
more or less constant rate. (ii) The stock of real capital grows at a constant rate greater than the rate of
growth of labor input. (iii) The growth rate of output and the stock of capital tend to be about the same.

2For a complete description on the numerical solution procedure see e.g. Hansen and Prescott (1995)
3For references and an overview , see Amman, Kendrick and Rust (1996). For an applied treatment on

dynamic general equilibrium models see Heer and Maussner (2005)
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2.1 The Prototype RBC Model

The standard real business cycle model is based upon an economy populated by

identical in�nitely-lived households and �rms.4 This economy is characterized by the ab-

sence of any frictions and by perfect competition in both, output and factor markets. Each

of the households has an endowment of time for each period, t, which it must divide between

leisure, Lt, and work, Nt. The households�time endowment is normalized to unity, that is

Lt+Nt = 1: In addition, households own an initial stock of capital, K0; which they rent to

�rms and may augment through investment.5

2.1.1 Households

Households in this economy are faced with a complex decision problem; given

their initial capital stock, agents have to decide how much labor to supply and how much

consumption and investment to purchase, i.e. a representative consumer chooses in�nite

sequences of consumption fCtg1t=0; labor, fNtg1t=0; and investment, fItg1t=0; in order to

maximize expected lifetime utility

U [C(�); N(�)] = E0

( 1X
t=0

�tu[Ct; 1�Nt]
)

(2.1)

with 0 < � < 1 the agents discount factor. u(�) is assumed to be strictly increasing, concave,

twice continuously di¤erentiable and to satisfy Inada-type conditions that ensure that the

optimal solution for Ct and Nt is always (if feasible) interior6. Note also, that the utility is

assumed to be time-separable; that is the choices of consumption and labor at time t do not

4To be precise, all households live on a continuum of mass 1.
5The basic model presented here is without government.
6For a speci�c de�nition of the Inada condtions see e.g. King et al. (1988)
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a¤ect the marginal utilities of consumption and leisure in any other time period. Agents

maximize their utility subject to the following budget constraint

Ct + It � wtNt + rtKt (2.2)

where wt and rt represents the real wage and the real rental rate of capital in units of output,

respectively. It is assumed that consumers augment their stock of capital by investing some

amount of real output each period, such that investment in period t produces productive

capital in period t+ 1, i.e.

Kt+1 = It + (1� �)Kt (2.3)

where � is the depreciation rate for capital.

2.1.2 Firms

Each period �rms choose capital and labor to maximize pro�ts

max
Kt;Nt�0

fYt � rtKt � wtNtg (2.4)

subject to a constant-returns-to-scale production function

Yt = ZtF (Kt; XtNt) (2.5)

here Yt is the level of output, Zt is a random shock to total factor productivity, and Xt is

"trend" growth restricted to be labor augmenting for reasons to be discussed below.7 The

e¤ects of stochastic technology shocks are the basis for RBC Theory. There are several

common ways of de�ning the stochastic process for technology. One is to assume that the

7The price of output is normalized to one.
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logarithm of Zt follows a �rst-order autoregressive process

lnZt = � lnZt�1 + "t , Zt = Z�t�1e
"t ; (2.6)

0 < � < 1

with "t an exogenous i:i:d:8; standard normally distributed disturbance term with standard

deviation �", and � the measure of persistence for the process.

2.1.3 Equilibrium and First Order Necessary Conditions

To describe an equilibrium in this economy the recursive competitive equilibrium

concept as �rst proposed by Prescott and Mehra (1980) has proven very useful for this

class of models. Firms and households are seen as decision making entities where �rms

have to solve a static maximization problem and individual households a dynamic in�nite

horizon maximization problem. Since utility is assumed to be time-seperable the nature of

the households problem is the same every period and one can solve their in�nite horizon

problem by utilizing its recursive structure: given the beginning-of-period capital stock and

the current productivity shock, choose consumption, labor and investment.

In this decentralized setting we distinguish between individual variables and ag-

gregate variables, the later denoted by a underline bar.

The state variables for the household are St = (Zt;Kt;Kt); and the aggregate

state variables are St = (Zt;Kt): In equilibrium, we know that Kt and Kt will have to be

equal, otherwise the representative consumer would not be representative. But this equality

cannot be imposed on the consumer; prices have to move to make this equality desirable to

8Independent and identically-distributed
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him.

The recursive structure of the households problem �ts naturally into the dynamic

programming approach which is used extensively to solve this kind of optimization prob-

lems.9 Using the established notation the maximization problem of the household can be

stated as the following dynamic programming problem:

V (Zt;Kt;Kt) = max
Ct;Nt;It

fu(Ct; 1�Nt) + �Et[V (Zt+1;Kt+1;Kt+1)jZt]g

s:t: Ct + It � rt(Zt;Kt)Kt + wt(Zt;Kt)Nt;

Kt+1 = It + (1� �)Kt

Kt+1 = It(Zt;Kt) + (1� �)Kt

Zt = Z�t�1e
"t

Ct � 0; 0 � Nt � 1 (2.7)

The value function V (Zt;Kt;Kt) is the households maximum obtainable expected

return over all feasible plans in this economy.

A recursive competitive equilibrium for this economy then consists of

(i) factor price functions wt(Zt;Kt) and rt(Zt;Kt);

(ii) a set of decision rule for households, Ct(Zt;Kt;Kt); Nt(Zt;Kt;Kt); and It(Zt;Kt;Kt);

(iii) a corresponding set of aggregate per capita decision rules, Ct(Zt;Kt); N t(Zt;Kt); and

It(Zt;Kt),

9An extensive treatment of this equilibrium concept can be found in Stocky and Lucas (1989). A excelent
introduction to dynamic programming is from Adda and Cooper (2003).
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(iv) and a value function V (Zt;Kt;Kt);

such that

(a) �rms solve problem (2.4) subject to (2.5);

(b) households solve problem (2.7);

(c) the consistency of individual and aggregate decisions is given, that is

Ct(Zt;Kt;Kt)) = Ct(Zt;Kt); Nt(Zt;Kt;Kt) = N t(Zt;Kt); and It(Zt;Kt;Kt) = It(Zt;Kt),

8 t;

(d) and the aggregate resource constraint, Ct(Zt;Kt)+It(Zt;Kt) = Y t(Zt;Kt); is satis�ed

8 t:

A solution to maximization problem (2.7) must satisfy the following necessary

conditions and resource constraint:

uN (Ct; 1�Nt) = uC(Ct; 1�Nt)wt (2.8)

uC(Ct; 1�Nt) = �EtfuC(Ct+1; 1�Nt+1)[rt+1 + (1� �)]g (2.9)

Ct + It = rtKt + wtNt; (2.10)

uA and FA represents the partial derivatives of u and F with respect to variable

A.10 Equation (2.8) is also known as the intratemporal e¢ ciency condition and (2.9) as the

intertemporal e¢ ciency condition.

10It = Kt+1 � (1 � �)Kt is substituted in the resource constraint. The choice variable It is replaced by
Kt+1:
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The optimization problem of �rms yield the following �rst order necessary condi-

tions:

rt = ZtFK(Kt; XtNt) (2.11)

wt = ZtXtFN (Kt; XtNt) (2.12)

i.e. factor prices (stated in terms of output) are equal to the marginal products of factor

inputs. Given constant returns to scale in production, in equilibrium, pro�ts of �rms are

clearly equal to zero.

Under most speci�cations of preferences and production functions the set of ef-

�ciency conditions 2.8 to 2.10 can not be solved analytically11. Consequently, one has to

work with approximation procedures. These procedures typically results in policy rules that

are linear in the state variables Kt and Zt: The �rst step towards an approximate solution

is to choose points to approximate around. The natural choice is the set of points where

the system is in long-run equilibrium - the stable steady state values.

The second step is to express the �rst order conditions in terms of percentage

deviations from the steady state values and then take a linear approximation to each con-

dition. This results in a set of linear di¤erence equations in percentage deviations from the

steady state. There are related ways to state and solve such systems. Two of the classical

methods are from Blanchard and Kahn (1980) - using a Jordan decomposition - and King

and Watson (1998), ( 2002) - using a Generalized Schur decomposition12.

11There are only few exceptions, one is a log-linear utility function and full depriciation of capital each
period. The analytical solution for this case is shown below.
12Other classical references are Farmer (1993), Uhlig (1999), or Klein (2000).
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2.1.4 The RBC Model Formulated as a Ramsey Problem

The decentralized economy presented above is characterized by perfect competi-

tion and is free of frictions. It is straightforward for such a setting to develop a Ramsey

(or social planner) problem with an equivalent equilibrium outcome in terms of Pareto ef-

�ciency. In the static theory of general equilibrium with a �nite dimensional commodity

space the correspondence between a competitive equilibrium and a Pareto e¢ cient alloca-

tion of resources is stated in the Two Fundamental Theorems of Welfare Economics.13 Our

in�nite horizon model has in�nitely many commodities. Nevertheless, as shown by Debreu

(1954), the Pareto optimum as characterized by the optimal in�nite sequences for consump-

tion, labor, and capital will be identical to that in a competitive equilibrium. Furthermore,

factor prices are determined by the marginal products of capital and labor evaluated at the

equilibrium quantities14.

To determine the Pareto optimum, the RBC model from the last section is recast

as the following Ramsey model:

maxE0

" 1X
t=0

�tu[Ct; 1�Nt]
#

subject to :

Ct + It = ZtF (Kt; XtNt) = Yt (2.13)

Kt+1 = It + (1� �)Kt

Zt = Z�t�1e
"t

13see e.g. Mas-Colell et al. (1995)
14For a detailed treatment of the relationship between Pareto optimum and competitive equilibrium for

RBC models, see e.g. Cooley and Prescott (1995).
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with K0 given and "t having the same properties as in equation 2.6. Since, by assumption a

benevolent social planner is choosing allocations we can set up the following value function

V (Zt;Kt) = max
Ct;Nt;Kt+1

fu(Ct; 1�Nt) + �Et[V (Zt+1;Kt+1)]g

s:t: Ct +Kt+1 � ZtF (Kt; XtNt) + (1� �)Kt (2.14)

Zt = Z�t�1e
"t

Note that investment has been eliminated again by using the law of motion for the capital

stock and the control variable It is replaced by Kt+1. A solution to this problem must

satisfy the following necessary conditions and resource constraint:

uN (Ct; 1�Nt) = uC(Ct; 1�Nt)ZtXtFN (Kt; XtNt) (2.15)

uC(Ct; 1�Nt) = �EtfuC(Ct+1; 1�Nt+1)[Zt+1FK(Kt+1; Xt+1Nt+1)

+(1� �)]g (2.16)

Kt+1 = ZtF (Kt;XtNt) +Kt(1� �)� Ct (2.17)

Condition (2.15) represents the consumption - leisure tradeo¤ of the representative

consumer, the intra-temporal e¢ ciency condition. It implies that the marginal rate of

substitution between labor and consumption must equal the marginal product of labor. A

positive productivity shock (represented in Zt) has two e¤ects here. A substitution e¤ect,

i.e. a higher wage increases the incentive to work and thus leisure (1 � N) will decrease.

And a wealth e¤ect, that is, if people feel richer, they want to consume more of both, leisure

and the consumption good. So consumption will increase and labor will decrease. The net

e¤ect of a shock therefore depends on both, the elasticity of substitution between labor and

consumption and on the persistence of the shock.
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Condition (2.16) represents the consumption-saving tradeo¤, an inter-temporal

e¢ ciency condition. This Euler equation tells us for an equilibrium that marginal cost in

terms of utility in investing in more capital (i.e. consuming less) must be equal the expected

marginal utility gain. In other words, it gives the rate at which the consumer is willing to

forego consumption in period t for consumption one period ahead. Condition (2.17) just

states that the resource constraint has to be satis�ed.

To see the relation between Pareto e¢ ciency and intertemporal equilibrium we

just have to consider the �rst-order condition of both, the centralized and the decentralized

model. In the decentralized economy the factor market equilibrium conditions are given by

rt = ZtFK(Kt; XtNt)

wt = ZtXtFN (Kt; XtNt)

Using these conditions to substitute for wt and rt+1 and applying the Euler theorem to

F (�);

Yt = ZtF (Kt; XtNt) = ZtFK(Kt; XtNt)Kt + ZtXtFN (Kt; XtNt)Nt

equations (2.8) to (2.10) reduce to the e¢ ciency conditions of the Ramsey problem, equa-

tions (2.15) to (2.17). Furthermore, since households live on a continuum of mass 1 and

the production technology is linear homogenous, it is guaranteed that there exists both, an

aggregate production function and a representative household. Thus, a benevolent social

planer who solved the Ramsey problem (2.13) could implement this solution in terms of a

competitive equilibrium. On the other hand, the equilibrium allocations of the decentral-

ized economy are optimal in the sense that it maximizes the utility of all households given

the resource constraint of the economy.
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2.1.5 Balanced Growth and Restrictions on Technology and Preferences

The distinguishing features of the basic RBC model - in contrast to the neoclas-

sical growth model - are the household�s labor-leisure choice and the presence of shocks to

technology. These features were added to address a yet simple but fundamental question:

does a model designed to be consistent with long-term economic growth produce the sort

of �uctuations that we associate with the business cycle?

To answer this question we have to restrict the arti�cial economy described on

certain dimensions. Variables like output per capita, investment per capita and consumption

per capita all exhibit (roughly) constant growth rates over time in most industrialized

countries. This fact is taken as evidence of balanced growth15. The concept of a balanced

growth path is the counterpart to a stationary equilibrium in a deterministic Ramsey setting

for stochastic growth models. It is a growth path where the growth rate of capital, output

and consumption are constant.

Thus, the �rst dimension to restrict our arti�cial economy is the growth pattern,

i.e. to have constant - but possibly di¤erent - growth rates on certain key variables. To

achieve this goal, additional restrictions on preferences and technologies are required. Purely

labor augmenting technological progress is the key restriction in the production sector.

Using the common Cobb-Douglas technology this restriction is stated as

Yt = ZtF (Kt; XtNt)

= ZtK
�
t (XtNt)

1�� (2.18)

with � referred to as the capital�s share in output16. The production function (2.18) together
15see e.g. Cooley and Prescott (1995)
16That is, because if capital is paid its marginal product, it will earn that fraction in output since,
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with the accumulation equation (2.3) and the resource constraint (2.2) then imply a constant

growth rate of output, consumption, capital and investment which is equal to the growth

rate of the labor augmenting technical progress

gY = gC = gK = gI = gX (2.19)

with gA denoting one plus the growth rate of a variable A (i.e. At+1=At). Since hours

devoted to work N are bounded by the endowment of time, it cannot grow in equilibrium

and the growth rate has to be zero or

gN = 1: (2.20)

The restriction to labor augmenting technological progress is not su¢ cient to guar-

antee the existence of a balanced growth path when labor supply is endogenous. Also

equation (2.19) and (2.20) describe the technologically feasible growth rates for a balanced

growth path, they will never be an equilibrium outcome if they do not �t with the e¢ ciency

conditions of the representative agents.

To insure compatibility with these conditions the following restrictions have to be

imposed on preferences: (i) the one-period utility function u has to be restricted to the

constant-elasticity functions with respect to consumption; (ii) the income and substitution

e¤ects with respect to the static labor supply decision must be exactly o¤setting17.

Since consumption, output, and capital all grow at a constant rate on the balanced

growth path we know from equation (2.9) that the growth rate of the marginal utility, u1;t+1u1;t
;

is constant on that path. Therefore, the intertemporal elasticity of substitution must be

� Y
K
= r ) �Y = rK:

17see also Heer and Maussner (2005)
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constant and independent of the level of consumption18.

The second condition is required since gN = 1 in equilibrium, but the marginal

product of labor increases in the long-run at rate gZ : Thus, income and substitution e¤ects

of productivity growth must be exactly o¤setting e¤ects on labor supply.19 Following these

conditions the momentary utility function has to be restricted to the following class of

admissible utility functions:

u(C; 1�N) =

8>><>>:
C1��v(1�N) if � 6= 1;

lnC + v(1�N) if � = 1
(2.21)

with 1=� the constant intertemporal elasticity of substitution in consumption. The function

v must be chosen such that u(C; 1�N) is concave20.

2.1.6 Stationary Economies and Functional Forms

Given the restrictions on technology and preferences it is possible now to transform

the economy into a stationary one. The growth rates are used to take transformations of

all variables in the model such that the transformed variables exhibit no trends. This

is a standard procedure in the RBC literature to make the local dynamics around the

steady state of the model economy more amenable to an analysis21. Also for computational

purposes it is more convenient to work with stationary variables. Since all variables (except

Nt) in the neoclassical model grow at the same rate as Xt in equilibrium, the transformation

18This can be seen dirctly by taking the di¤erential of u1;t+1
u1;t

on the balance growth path with respect to

c0; and c0 an arbitrary constant substituted for ct = cogtc in the growth rate of marginal utility.
19Also empirical observations show that time devoted to work is rather constant and real wages increased

in the postwar period.
20Note that for � = 1; and v(1 � N) = A ln(1 � N) we obtain the speci�cation used by Hansen (1985)

without indivisible labor and A a weight for leisure in the utility function. For u(C; 1�N) to be concace v
must be choosen such that uii � 0; and (u11u22 � u212) � 0:
21see e.g. King et al. (1988)
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can be achieved by de�ating these variables by Xt. By denoting transformed variables by

lower case letters we get

y = Y=X; c = C=X; k = K=X; i = I=X

The economy with transformed variables is identical to an economy in which tech-

nological progress is absent and growth rates are zero in the steady state, with two excep-

tions. Since capital accumulation is expressed in di¤erence equation form, this relation is

altered as follows. In the non-transformed economy we have

Kt+1 = It + (1� �)Kt = ZtF (Kt; XtNt)� Ct + (1� �)Kt

and the transformation by division of Xt gives

gXkt+1 = it + (1� �)kt = ZtF (kt; Nt)� ct + (1� �)kt (2.22)

The second relation to be altered potentially is the e¤ective rate of time preference. That

can be seen in the transformed lifetime utility

U =
1X
t=0

�tu(Ct; 1�Nt) =
1X
t=0

�tu(ctXt; Lt)

=

8>>>>>><>>>>>>:

�
X1��
0

�P1
t=0(�

�)t[(c1��t v(Lt)] for � 6= 1

P1
t=0(�

�)t[log(ct) + log(Xt) + v(Lt)] for � = 1

(2.23)

with �� = �(gX)
1��; and �� < 1 is required to guarantee �niteness of lifetime

utility. Since the terms
�
X1��
0

�
and

P1
t=0(�

�)t log(Xt) do not a¤ect the preference orderings

we can make
P1
t=0(�

�)tu[(ct; Lt] the objective by suitable selection of X022.

22e.g. one may set X0 = 1 or
P1

t=0(�
�)t[log(Xt)] = 0 in the preceding expressions, see also King et al.

(2002)
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2.1.7 An Analytical Solution

Given functional forms for production technology and consumer preferences, it

is possible to solve the households problem for the time path of the control variables,

ct; kt+1; Nt. Since our focus is on business cycles we concentrate on shocks to technology

and neglect productivity growth for now, i.e. we set gX = 1: To obtain analytical solutions

we will assume full depreciation of capital within a single period (i.e. � = 1); and use the

following functional forms for production and consumer preferences

yt = ZtF (kt; Nt) = Ztk
�
t N

(1��)
t

u(ct; 1�Nt) = ln ct +A(1�Nt)

These assumptions leads to the subsequent �rst order necessary conditions

ct =

�
(1� �)
A

Zt

�
kt
Nt

���
(2.24)

1

ct
= �Et

"
�

ct+1
Zt+1

�
Nt+1
kt+1

�(1��)#
(2.25)

ct + kt+1 = Ztk
�
t N

(1��)
t (2.26)

To obtain solution equations for this special system one has to note that with a

utility function of the form chosen and complete depreciation, the income and substitution

e¤ects of a wage rate change will just o¤set each other. Thus, the leisure choice will be

una¤ected and consequently it is reasonable to conjecture that Nt will be a constant in the

solution, i.e. Nt = N: Another guess, based on the manner in which Zt and kt enter the

production function, is that ct and kt+1 are proportional to the product Ztk�t : Both guesses

are veri�ed, namely N is a constant in equilibrium given by

N =
(1� �)
(1� ��)A (2.27)
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and the solution equations for ct and kt+1 are given by23

ct = (1� ��)Ztk�t N (1��) (2.28)

kt+1 = ��Ztk
�
t N

(1��) (2.29)

The solutions path for ct; and kt+1 as functions of the models states, kt and Zt, are

optimal decision rules in the sense that they satisfy the e¢ ciency conditions of this model

economy.

The core message of the policy functions is that temporary shocks to Zt not only

e¤ects current consumption, but also alters the next period capital stock, which propagates

the e¤ects of the disturbance. That is, a positive shock to productivity will lead to an

increase in kt and ct for several periods, causing the model to produce cyclical patterns.

Furthermore, if the disturbances are given by a �rst order autoregressive (AR(1)) process,

as assumed in (2.6), then, consumption and the capital stock will follow AR(2) processes.

As noted by McCallum (1989, p. 23), this is a signi�cant result since detrended quarterly

time series of various macroeconomic variables are well described by AR(2) processes for

the U.S. economy. However, a drawback of the simpli�cation to obtain analytical solutions

is the constancy of N , and hence the neutrality of labour via productivity shocks. This is

of course not what we observe in the data.

2.1.8 Steady States and Convergence

A steady state equilibrium for this economy is one in which the technology shock

is assumed to be constant, i.e. Zt = 1 for all t so that there is no more uncertainty in the

23This strategy to �nd solutions is called the method of guess and verify or method of undetermined
coe¢ cients. For further details see e.g. McCallum (1989).



34

system, and the values of capital, labor and consumption are constant, i.e. kt = k; Nt = N

and ct = c for all t24. Imposing these steady state conditions in system (2.24) to (2.26), the

steady state values are found by solving the following steady state equilibrium conditions:

c =

�
(1� �)
A

�
kt
Nt

���
(2.30)

1 = ��

�
N

k

�(1��)
(2.31)

c+ k = k�N (1��) (2.32)

From this equation system we obtain the following steady state equilibrium values:

k = (��)
1

1��
1� �

(1� ��)A

c =
1� �
A

(��)
�

1��

N =
(1� �)
(1� ��)A

The stability conditions of the positive steady states can be seen well from the deterministic

versions of the policy functions (2.28) and (2.29)

ct = g(kt) = (1� ��)k�t N (1��) (2.33)

kt+1 = f(kt) = ��k�t N
(1��) (2.34)

and are shown in Figure 2.1 and 2.2, respectively. Notice in Figure 2.1 that between 0 and

the positive steady state k = 0:0629, the function kt+1 = f(kt) is above the 45 degree line,

so that kt+1 is greater then kt25:

In this range, capital is growing and converges to the positive k: Above the positive

steady-state, the value of the function, f(kt); is less then k, so that capital stock declines,
24For labor we know allready that it is constant in equilibrium, and of course, we could have obtained the

steady-state values shown below from our solution equations. However, I like to demonstrate the procedure
in general here and not only for the pedagogical relevant analytical solutions.
25The steady state values are calculated for parameter values, � = 1

3
; � = 0:99; A = 3:
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Figure 2.1: Convergence of k

converging to the positive k: Thus, regardless of where kt starts, it converges to the steady-

state k:

For consumption the story is somehow similar. In Figure 2.2, between 0 and the

steady-state of k, the function ct = g(kt) is above the 45 degree line, so that consumption

is growing and converging to the positive steady state of k which is in that point equal to

the positive steady state of c = 0:1277: Above the positive steady state, consumption is

decreasing, converging to its deterministic equilibrium value in which c = 2:0432 � k:

Figure 2.2: Convergence of c
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2.1.9 Numerical Solution and Calibration

As mentioned already, there is a limited amount of cases in which RBC models

admit analytical solutions. Therefore, one has to work with numerical solutions. The

approach frequently used to obtain numerical results is to take linear approximations of

e¢ ciency conditions (2.8) to (2.10) around stationary points26. The natural choice for that

points are the one where the system is in long-run equilibrium - the steady state values as

de�ned above. The linearization procedure most popular is a Taylor series expansion. The

linear system obtained can then be solved for policy functions of the endogenous variables.

The next step towards a numerical solution is to assign speci�c values for the

parameters of the model economy. This is done through calibration, which requires more

economic theory and time series of real world data. The goal is to set the parameter

values such that the steady-state behavior of the model is consistent with the long-run

characteristics of economic aggregates and prices. In the given context, one has to choose

values for the set of parameters f�; �; �; �; �g such that the model economy mimics the

actual economy on the dimensions associated with long term growth27.

Having assigned values to the deep parameters one then generates a set of arti�cial

time series from the model. This involves generating many di¤erent series of values of

disturbances to technology. Once the stochastic process for productivity is chosen, an AR(1)

process in our basic model, this job is done by the random number generator of the solution

software. One then feeds these series of normally distributed random numbers into the

26For alternative solution methods on this model class see e.g. Heer and Maussner (2005) or DeJong with
Dave (2007). For a comparsion of various solution methods see e.g. Aruoba et al. (2006).
27An extensive describtion on how to calibrate various parameter values from U.S. data is in Cooley and

Prescott (1995)
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model to yield samples of arti�cial times series for the state variables and control variables

of the model economy. One way to judge the performance of the model is to compare

sample moments of arti�cial model-generated data with those of a real world actual data

set. Typically, the focus of interest are the second moments of main economic aggregates

as well as comovements of these series with output.

As mentioned above, Kydland and Prescott�s (1982) contribution in advancing this

methodology, was a trigger point for a new direction in applied dynamic macroeconomics.

They used a prototype RBC model which departs from the basic setup in two important

ways. First, they introduced a time-to-build restriction for the accumulation of capital.

For the share of output which is not consumed but invested to accumulate, new capital

is getting productive with a four period (one year) lag. An investment project, so to say,

takes four quarters to be �nished, and the costs are spread out evenly over this period28. An

assumption which increases the dimension of the state space and creates larger persistence

to the e¤ects of technology shocks.

Second, they assume higher current utility �ows of leisure the harder an agent has

worked in the past. Using a non-time-separable utility function they consequently obtain a

greater intertemporal substitutability of labor without altering the assumed intertemporal

substitutability of consumption - "something which is needed to explain aggregate move-

ments in employment in an equilibrium model" (Kydland and Prescott, 1982, p. 1351).

In addition, they included inventories as a factor of production. This improves the match

of the model�s series correlation and allowed them to solve the model by linear quadratic

28The costs have not to be evenly spreded, Christiano and Todd (1996), for example, assume a lengthy
planning phase, and the overwhelming part of the project�s costs are spent in the construction phase.
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approximation.

Due to these extensions, the propagation mechanism of shocks in Kydland and

Prescott�s (1982) model is much more pronounced then in the basic setup. Suppose a posi-

tive technology shock occurs, this will increase the current productivity of capital and labor.

The current period becomes more attractive to work and produce, relative to conditions

that are expected in future periods, so both, employment and output rise. It also may

signal high productivity in subsequent periods. This will induce �rms to initiate investment

projects now. The projects started will increase employment and output until they are com-

pleted several periods later and this spreads the e¤ects of the shock forward into the future.

This will remain true even if it turns out for the productivity increase to be transient, since

the investment decision is modeled to be bounded as equally sized tranches over the entire

time-to-build period. Since the capital stock is - possible inappropriately - increased and

workers will be less willing to supply labor in future periods due to extensions in the boom

time, the contingency of a future downturn is already inherent in the investment decision.

For illustrative purpose, Table 2.1 reproduces some simulation results from that

paper. In the table, sample moments with moments implied by the estimated model for

deviations of the indicated series around a �tted trend are compared. In the simulation

underlying these results, the variance of technology shocks was chosen so as to make the

standard deviations (around trend) of real output for the model equal to its value for the

post-war U.S. economy. Table 2.1 shows that the model captures the fact that investment

is much more volatile then output and consumption is less volatile then output. However,

like many RBC models it can not replicate the cyclical behavior of the employment series
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so well.

Table 2.1

Std** Corr*** Std Corr
Real Output 1.80 1.80
Consumption 1.30 0.74 0.63 0.94
Investment 3.10 0.71 6.45 0.80
Hours 2.00 0.85 1.05 0.93

Kydland and Prescott's (1982) Model
U.S. Data* Model

* Quarterly data from 1950:1  1979:2, loged and detrended using the HodrickPrescott filter
** Std is the standard deviation in percentages
*** Corr shows correlations with output

2.2 Multi-Sector RBC Models

Since the implementation of the early RBC models various modi�cations of the

basic setup where introduced to better match business cycle stylized facts. Some of the

more prominent examples in the context of a homogenous output are: the introduction

of indivisible labor as in Hansen (1985), introducing money as initially done by Cooley

and Hansen (1989), the modeling of government consumption shocks as in Christiano and

Eichenbaum (1992), to consider heterogenous agents as in Ríos-Rull (1995), to treat product

markets as imperfect as in Rotemberg and Woodford (1995), or to include habit persistence

of consumers in order to account for the equity premium puzzle, as in Boldrin et al. (2001)29.

However, in this section I like to consider multi-sector extensions of the basic RBC

model. Two of the most important empirical shortcomings of one-sector models are: First,

they do not contain a strong enough endogenous mechanism to propagate shocks over time.

For the model to produce sustained �uctuations in output, consumption, investment, etc.,

the shocks to the model must themselves be sustained over time30. Second, the one-sector
29For a comprehensive survey on extensions of the basic RBC model see e.g. Stadler ( 1994), Cooley

(1995), or Gaggl and Steindl (2007).
30This fact was pointed out, for example by Cogley and Nason (1995), and Baxter (1996).
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model is unable to produce realistic comovement in output, investment and labor supply

across di¤erent sectors of the economy.

The pioneering paper in this context is from Long and Plosser (1983). The authors

propose a multi-sector model that exhibits strong sectoral comovement via a production

structure in which any given commodity may be used as an input in the production of

the other commodities, and production of any one commodity requires positive inputs of

other commodities. Long and Plosser obtain an elegant analytical solution to their model

by assuming full depreciation of capital every period and a log - linear momentary utility

function.

The policy functions obtained from their analytical solution indicates that a pos-

itive productivity shock in one sector, leading to an unexpected high output of the com-

modity in this sector at a certain point in time, implies that all productive inputs in this

sector will also be unexpected high. By the assumption of alternative employments for

that commodity, this not only propagates the output shock forward in time, it also spreads

the future e¤ects of the shock across sectors. That is, the induced production possibilities

hypothesis lead to co-movement in consumption, input and output series and to sustained

�uctuations without highly autocorrelated shocks. However, many properties of the model

do not generalize once moved away form the simplifying assumptions to obtain an analytical

solution.

Two other examples with focus on sectoral comovements are from Baxter (1996)

and from Hornstein and Praschnik (1997). Baxter investigates a two-sector, two-factor

equilibrium model of a closed economy in which sector one produces a nondurable, pure
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consumption good and sector two produces a consumer durable as well as the capital good

used in both sectors. The factors of production are homogenous labor which is perfectly

mobile across sectors and capital which is subject to convex adjustment costs.

Baxter�s simulation results indicate an internal propagation mechanism which is

no stronger then in a one-sector model though the model does a good job in replicating the

comovement of main aggregates with output and the positive cross-sectoral correlations of

output, investment, hours and consumption.

Hornstein and Praschnik (1997) are modeling a two-sector model similar to Bax-

ter�s (1996), but without adjustment costs for capital. The linkage of the two sectors in their

framework stems from the potential for nondurable goods to be employed as an interme-

diate input in durable goods production. Their model economy replicates the quantitative

pattern of relative volatilities, and it displays high correlations of variables with GDP on

most dimensions. Furthermore, they are successful in producing observed cross-sectoral

correlations for the U.S. economy with two exceptions - business investment and labor

productivity.

A contribution dealing with the afore mentioned lack of internal propagation of

shocks is published by Benhabib, Perli and Sakellaris (2006). The propagation behavior

of two multi-sector models, a one-capital-good, two-sector model, and a two-capital-goods,

three-sector model are explored in this paper. Persistence is de�ned by the authors as

an increase of output when a positive, non permanent shock �rst hits the economy, and

continues to increase for a few periods after that. Such a hump-shaped impulse response

of output growth is obtained for their two-sector model in which output takes to long back
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to the steady state and autocorrelations of outputs are all positive for the �rst ten lags, i.e.

there is too much, rather then too little persistence.

The idea of having a second investment good to absorb some of the role played

by consumption - for which an unrealistic high intertemporal elasticity of substitution is

assumed in the two-sector model - is the base for an investigation of a three-sector model.

The results presented indicate that this model is able to replicate business cycle stylized

facts of the U.S. economy and to produce hump-shaped impulse responses of output growth.

However, persistence in the three-sector model is still to large even though intertemporal

elasticity of substitution of consumption is reduced to a standard level.

In standard RBC models all economic activity takes place in the market. An ex-

tension of the basic setup is dealing with nonmarket activity of consumers. The rationale for

the hypothesis that nonmarket activity or household production deserves explicit attention

in business cycle modeling stems from the fact that the household sector is sizable, both in

terms of labor and capital inputs used in home production and in terms of home-produced

output31.

The basic idea behind household production in real business cycle theory is that

individuals substitute between home goods and market goods depending on the wage rate.

That is, the market wage measures the opportunity cost of engaging in household activity.

An increase in the wage rate during an economic boom should be accompanied by an in-

crease of both, market work and demand for market goods and a corresponding decrease

in household production. Examples of goods eligible for substitution between market pur-

chase and home production are food preparation, home maintenance (e.g. housecleaning,

31see also Greenwood et al. (1995)
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gardening, repairs, and the like), child care, doing laundry, or �nancial services such as

preparation of income tax returns.

Since Gary Becker (1988), in his 1987 American Economic Association presidential

address, advocated the introduction of home production into macroeconomics, several au-

thors followed that advice in subsequent publications. In particular, the teams of Greenwood

- Hercowitz and Banhabib - Rogerson - Wright show how real business cycles models with

explicit home production sectors are better able to account qualitatively and quantitatively

for several patterns of aggregate economic time series.

Greenwood and Hercowitz (1991) emphasize in their RBC model the role of capital

in household activities to study the allocation of capital and time across a business and a

household sector. Economic activities are described by two production functions, one for

market activities and the other for nonmarket activities. In the �rst, market goods are

produced by a cooperation of market capital (equipment and structures) and labor. In the

second, household capital (consumer durables and residence) and time left over is used to

produce a nontradeable consumption good - the home good.

As standard in this literature, both technologies are subject to stochastic produc-

tivity shocks. Complete symmetry between sectors is skewed by the rule that capital goods

can be produced in the market sector only. As an example of activity in the home sector

one can imagine the production of the good entertainment by the interaction of, say a stereo

and time left from work.

In their simulations the authors compare the performance of a model with unitary

elasticity of substitution in both preferences and household production - the benchmark -
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with a model in which the substitutability between factors in household production is de-

creased. The benchmark model predicts volatilities and autocorrelations in main economic

aggregates which are too low. Furthermore, investments in both sectors react in opposite

directions in contrast to observed comovement in real data. This impact is emerging from

the asymmetries in the two types of capital, since there is a tendency to build up business

capital �rst and household capital after, as a reaction to positive shocks.

However, with higher complementarity in home production the two opposing ef-

fects followed by a technological change - the increase of the marginal product of household

capital and the decline in the shadow price of the home good - do not cancel out each

other any more. Namely, the marginal productivity e¤ect becomes more important relative

to the relative price e¤ect and this results in procyclical investments. Also variations and

�rst-order correlation of the second model are much closer to reality as in the benchmark

case.

Benhabib, Rogerson and Wright (1991) address issues with focus on the labor

market, like procyclical hours allocated to the production of consumption goods. In contrast

to Greenwood and Hercowitz, they incorporate leisure in the utility function. Leisure is

de�ned as net of time allocated to market and nonmarket production. Apart from functional

forms for technology shocks and abstracting from taxation, the setup is related to the

Greewood and Hercowitz model: two production functions, each with factors capital and

labor and a stochastic productivity parameter, investment goods are produced in the market

sector only, and capital is free to move between sectors.

In addition to the motivation already mentioned, the authors refer to reported
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evidence32 that the fraction of nonmarket time devoted for household production is large.

What they are asking and investigating subsequently is the question, whether household

production and market production interact in such a way that technology shocks e¤ecting

both sectors account for a larger fraction of the business cycle, then do those e¤ecting the

market sector alone.

Crucial to this question is the elasticity of substitution in preferences between the

market good and the home good33. The authors set this elasticity equal to �ve, motivated

by a work of Eichenbaum and Hansen (1990) who �nd little statistical evidence against a

hypothesis of perfect elasticity between nondurables and durables. Benhabib et al. (1991)

compare their multi-sector household production model with a standard RBC model and

obtain volatility and correlation results which come close to the one of U.S. aggregate data.

They obtain signi�cant improvements especially for the volatility of output, hours (both

were too low in the benchmark), and investment (which was too high in benchmark). How-

ever, the extended model predicts a correlation of output and hours spent in the production

of market consumption goods of 0.1. Even though the authors show that this correlation

can be turned from a large negative number into this small positive value, simply through

the introduction of home production, the magnitude of this comovement seems much too

low. Another failure of the model is to replicate the comovement of investment in market

and nonmarket capital and the phase shift pattern of these two types of investment34.

To overcome the shortcomings just mentioned, Gomme, Kydland and Rupert

32see Benhabib, Rogerson and Wright (1990)
33Other important parameters in this context are the standard deviation of the home technology shock

and the degree of correlation between both shocks.
34U.S. data reveal that household investment leads the cycle by about one quarter whereas market invest-

ment lags about a quarter, see e.g. Gomme et al. (2001).
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(2001) use a household production model à la Benhabib et al. (1991) and incorporate

a time-to-build technology for the production of market capital. A positive shock to market

productivity induces the future market output to increase due to an increase in current

investment of market capital. But, current home investment will decrease and will rise in

subsequent periods only. The authors argue, that incorporating a time to build technology

will induce home investment to co-move with market investment via two e¤ects.

First, only a fraction of total resources for market investment is needed on impact

of a positive productivity shock with a gestation lag technology. This spreads the response

of market investment over the complete construction period. Second, the costs (in terms

of current consumption and leisure) of increasing the capital stock in the market over the

long run are reduced by gestation lags in market investment. However, their model can

replicate the comovement of the investment series, but can not produce the lead-lag pattern

of business investment and household investment. Furthermore, business investment is more

volatile then household investment in their model, the opposite what we observe in the data.

A multi-sector model closely related to the home - production framework is pro-

vided by Davis and Heathcote (2005). They employ a setup with intermediate goods in

which construction, manufacturing and services are used to produce consumption, business

investment, and structures. Structures are then combined with land to produce homes.

Structures in the model are supplied elastically but not housing, since the availability of

land constraints the production of new houses such that land forces a wedge between house

price and structure costs. To achieve their main goal of making predictions about house

prices and residential investment, Davis and Heathcote assume additionally a labor-intensive
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construction industry, a low depreciation rate for housing, and volatile shocks to the con-

struction industry. On the demand side, consumers have preferences for consumption, for

leisure and for housing owned. Using the model economy, the authors are able to replicate

some of the features of U.S. aggregate data.

In particular, residential investment is positively correlated with consumption,

nonresidential investment and GDP. By the utilization of sectoral technology shocks they

can also explain the high volatility of housing investment in contrast to business investment.

However, these shocks also yield the counterfactual prediction that house prices and housing

investment are negatively correlated. The model can also not account for disproportion-

ately high house prices and for the lead-lag pattern of business investment and household

investment.

A recent extension of the Davis and Heathcote (2005) framework is from Doro-

feenko, Lee, and Salyer (2009). The authors incorporate a �nancial sector with lending

under time varying asymmetric information in a multi-sector real business cycle model with

house production. The motivation to introduce bank lending under uncertainty in a multi-

sector RBC model is twofold. On the one hand, the authors like to capture one of the basic

characteristic of the current �nancial crises, namely, changes in the uncertainty associated

with future events. Second, as the authors document, residential real estate loans account

for approximately 50% of total lending by domestically chartered commercial banks in the

U.S. over the time span from 1996 to 2007.

Dorofeenko et al. �nd that house prices in their model are a¤ected by expected

bankruptcies and the associated agency costs. Since these costs serve as time-varying
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markup, the volatility in this markup translates into increased volatility in house prices.

To that end, the authors model is able to replicate the disproportionally high volatility of

house prices, if the uncertainty in the real estate sector is assumed to be high. Further-

more, housing investment is more volatile then business investment, the magnitude of the

di¤erence depending on the assumed uncertainty in the housing sector. They also obtain

positive correlations of main economic aggregates such as, GDP to consumption and house

prices, and consumption to both types of investment. However, as in Davis and Heathcote

(2005), the presented model can not replicate the comovement of house prices with real

estate investment and the lead-lag pattern of business investment and housing investment.
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Chapter 3

A Multi-Sector RBC Model with

Time-to-Build

3.1 Economic Environment

In this section a multisector real business cycle model is presented in which I in-

troduce a time to build technology in the real estate sector to better match the stylized

facts well known in the US housing market. My model economy is populated by a constant

number of households. For simplicity it is assumed that all household are a continuum

of mass 1. Every household has the same one-period utility function and the same time

t = 0 housing stock and capital stock, respectively. The size of the household grows at an

exogenously given constant gross growth rate �. All variables of the model are expressed

in per-capita terms. In a perfectly competitive market two goods, a consumption/capital

investment (CI) good, and a residential investment (RESI) good are produced. A represen-
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tative household supplies homogenous labor, nit, and rents homogenous capital, kit, to the

CI good sector, i = c, and the RESI sector, i = d1.

3.1.1 Final Goods Production

Both goods are produced with a Cobb-Douglas technology, with yit denoting the

quantity of output in sector i:

yct = k�ct(ztnct)
(1��) (3.1)

ydt = kdt(ztndt)
(1�) (3.2)

Although, technology is Cobb-Douglas in both sectors, production di¤ers with respect to

input shares in production. Namely, these shares di¤er across sectors. In fact, my calibration

will impose � > , re�ecting the fact that the RESI sector is more labor intensive then the

CI sector 2.

The price of the consumption good is normalized to one, each price pit is then the

price of good i in units of the �nal consumption good. Let w and r denote the rental rates

of labor and capital, respectively, in the same units3. Since there is no link of successive

periods on the production side, maximization of the �rm�s present value is equivalent to

1To consider a representative household is a consequence of the assumption stated initially. This as-
sumption states that each individual household is assigend a unique real number m from the invervall [0; 1].
Since all households face the same path of outputs and factor prices by assumption they choose identical
sequences of their decision variables. Let x(m) denote such an arbitrary variable of household m 2 [0; 1] and
put x(m) = �x 8m 2 [0; 1]: Since Z 1

0

x(m)dm =

Z 1

0

�xdm = �x

aggregate and individual variables are indentical.
2To have one sector which is more labor intensive is also a necessary condition to obtain a balanced

growth path in two-sector growth models (see e.g. Uzawa 1961).
3Since the same depriciation rate, �k, is assumed for both types of capital it is consistent to use one

interest rate, r (see also Burmeister and Dobell (1970)).
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maximize one-period pro�ts. For period t they are given by

max
fkit;nitgi2fc;dg

fyct + pdtydt � rtkt � wtntg (3.3)

subject to equations (3.1) and (3.2) and to the constraints

kct + kdt � kt (3.4)

nct + ndt � nt (3.5)

fkit; nitgi2fc;dg � 0 8 t (3.6)

3.1.2 Productivity

The variable zt, represents labour-augmenting technological progress. It consists of

an deterministic component, the trend gross growth rate gz; and the deviations from trend,

ezt; the stochastic component. ezt follows an autoregressive process of order 1 (AR(1)), such
that we obtain the following representation:

ln zt = t ln gz + ln z0 + ln ezt (3.7)

ln ezt = b ln ezt�1 + "t (3.8)

with b the coe¢ cient which captures the autoregressive structure of ez: "t are shocks drawn
independently from a Normal distribution with mean 0 and variance �2".

3.1.3 The Housing Sector

In modeling the housing sector I abstract here from issues concerning the supply

of land. Instead it is assumed that the representative household is endowed each period
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with a constant lot of new land which is sold to the real estate developer. The size of the

lot is normalized to 1 for simplicity. The real estate developer is combining this land, xlt,

with the quantity of new structures purchased, xdt, to produce new houses according to the

following Cobb-Douglas technology

yht = x�dtx
(1��)
lt (3.9)

� denotes the share of residential structure and (1� �) the share of land in the production

of new homes. The real estate developer has to solve the following maximization problem

at each period t

max
xdtxlt

fphtyht � pdtxdt � pltxltg (3.10)

subject to (3.9).

3.1.4 Time-to-Build

The housing stock is accumulated according to a technology introduced by Kyd-

land and Prescott (1982). In each period (quarter of a year) the representative household

launches a new investment project in the housing sector. After J periods this project is

completed and adds to the overall housing stock. The investment costs are spread out over

the entire gestation period. More formally, let sjt; j = 1; 2; :::J; denote the number of hous-

ing projects j periods from completion at time t and it requires the household to pay the

fraction !i of its total costs. At any period, there are j un�nished housing projects and

since output in the real estate sector is the only factor which expands the existing housing
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stock, total investment expenditures equal

yht =
JX
j=1

!jsjt (3.11)

The fraction of resources, !j , allocated to the housing investment project at the jth stage

from completion are taken as exogenously determined �xed parameters such that

JX
j=1

!j = 1 (3.12)

Furthermore, the investment plan is considered as �xed, i.e.

sj;t+1 = sj+1;t; j = 1; 2; :::; J � 1 (3.13)

In equations (3.9) and (3.11) we observe that yht has to ful�ll two restrictions. On the

one hand, the stock of new houses is equal to the amount of new properties produced via

the combination of residental structures and land by real estate developers (equation 3.9).

On the other hand, the stock of new houses can not be larger then the amount consumers

decided to invest in this sector in di¤erent periods. Consider for example J = 2, i.e. two

periods time to build, equation 3.11 reads then

yht = !1s1t + !2s2t

If we update this equation by two periods we get

yh;t+2 = !1s1;t+2 + !2s2;t+2

By the �xed investment plan restriction this can be written as

yh;t+2 = !1s0;t+1 + !2s0t
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such that the stock of new housing in period t + 2 consists of the amount of housing

invested two peroids before (period t) and ready to occupy in t + 2; plus the amount of

housing invested one priod before (period t+ 1) and ready to occupy in t+ 2.

In equilibrium the two amounts of new housing, the production of and the in-

vestment in new properties have to coincide. The overall housing stock consist then of the

housing stock allready existent minus depriciation plus the investment in new housing. This

results in the following law of motion for the housing stock:

�ht+1 = s1t + (1� �h)ht (3.14)

with �h the depreciation rate of the housing stock 4 ;5.

3.1.5 Government

There is a government which imposes proportional taxes on capital income, �k;

net of depreciation, and on labor income, �n. The tax revenue is rebated by a lump-sum

payment, �; to households. Government spending Gt is given by:

Gt = �nwtnt + �krtkt � �k�kkt � �t (3.15)

For simplicity it is assumed from now on that all revenues are rebated back to consumers

by the government, so that government expenditures are set to zero, i.e. Gt = 0.

4Because all variables are in per-capita terms, variables dated t+i are multiplied with population growth
�i.

5It is assumed that structures depreciate once combined with land, this assumption is inherent in the
depriciation rate of the housing stock, see also Davis and Heathcote (2005).
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3.1.6 Households

Each period a representative household derives utility from per-capita consump-

tion, ct, from housing owned, ht, and from leisure, lt = (1 � nt). The amount of labor

supplied per household-member plus leisure can not exceed the period endowment of time.

The total time endowment will be normalized to 1. Utility per household member in period

t is given by:

U(ct; ht; (1� nt)) =
(c
�c
t h

�h
t (1� nt)(1��c��h))1��

1� � (3.16)

The intertemporal elasticity of substitution is denoted by the parameter � (> 0) and is given

by 1=�6:The relative weights in utility on consumption, housing and leisure are determined

by �c and �h and are assumed to be constant
7.

In contrast to �rms, households in this economy face a non-trivial problem because

they have to form expectations over future prices. Households will choose consumption,

spending on new capital, spending on new housing projects, and hours of work. They

receive income from renting out capital and labor at rates rt and wt, respectively, and

from selling land to developers at price, plt. At each date, households try to maximize the

expected discounted value of utility, given their expectations over future prices, subject to

sequences of budged constraints and di¤erent law of motions for capital stocks and housing

stocks, respectively:

max
fct;nct;ndt;kc;t+1;kd;t+1;sJtg

E0

1X
t=0

�t�tU(ct; ht; (1� nt)) (3.17)

6This is the reason why utility functions of the form of (3.16) are also called CES (constant elasticity of
substitution) utility functions.

7Empirical evidence shows that hours worked have remaind constant in the post-World-War-II period
(see e.g. Kydland (1995)). The Consumer Expenditure Survey reports a constant fraction of about 30% for
housing expenditures between 1970 and 2005 in the U.S.
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subject to

ct + it + pht

0@ JX
j=1

!jsjt

1A = (3.18)

(1� �n)wtnt + (1� �k)rtkt + �k�kkt + pltxlt + �t

and the constraints

�kct+1 = ict + (1� �k)kct (3.19)

�kdt+1 = idt + (1� �k)kdt (3.20)

�ht+1 = s1t + (1� �h)ht (3.21)

yht =
JX
j=1

!jsjt (3.22)

it = ict + idt (3.23)

kt � kct + kdt

nt � nct + ndt

sj;t+1 = sj+1;t; j = 1; 2; :::; J � 1 (3.24)

with � < 1 the discount factor, and �k the depreciation rate of business capital. Overall

investment, it, consists of investment in the CI sector, ict, and the RESI sector, idt, respec-

tively. At their decisions, households take as given a set of contingent prices and transfers,

pht; pdt; plt; rt; wt; �t; tax rates �n; �k, the initial stocks of capital, kc0; kd0, the stock of hous-

ing, h0; and housing investments, s10; :::; sJ0; and a probability distribution over possible

future states. In addition, they are faced with the following set of inequality constraints

ct; kt; nt; ht; sjt � 0; nt � 1; 8j and 8t
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and the transversality conditions

lim
t!1

�tEt�tkt+1 = 0 (3.25)

lim
t!1

�tEt�tht+1 = 0 (3.26)

with � the shadow price of consumption (the Lagrangian multiplier). Conditions (3.25)

and (3.26) just state that the expected present values of both, the terminal business capital

stock and the terminal housing stock must approach zero.

Inherent in the budget constraint (3.18) is the assumption that new business cap-

ital (kc;t+1; kd;t+1) can only be produced in the consumption good sector, an assumption

important to break the symmetry between the CI sector and the RESI sector to get a

dynamics di¤erent from the single-good case.

3.2 The Recursive Competitive Equilibrium

In this section a recursive competitive equilibrium is de�ned in the line of Stocky

et al.(1989). Time subscripts are dropped in standard fashion, i.e. a prime for a variable

denotes next periods value. Our economy is populated by a continuum of households of

mass 1. Although we have this measure of households, we have to distinguish between

economy wide state variables, f	; zg, and decision variables, �; over which the household
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has no control, and individual state variables,  , and decision variables, �, de�ned as

	 � fKc;Kd; S1; S2; :::; SJ�1;H;Xlg

� � fC;Nc; Nd; SJ ;K 0
c;K

0
dg

 � fkc; kd; s1; s2; :::; sJ�1; h; xlg

� � fc; nc; nd; sJ ; k0c; k0dg

In a recursive competitive equilibrium, prices8 and transfers, fph; pd; pl; r; w; �g, and decision

variables are functions of the economy-wide state variables f	; zg:So lets assume that these

variables can be expressed as functions of the economywide state variables, i.e. we have

prices, ph = Ph(	; z); pd = Pd(	; z); pl = Pl(	; z); r = R(	; z); w = W (	; z); transfers,

� = �(	; z); and control variables, c = C(	; z); nc = Nc(	; z); nd = Nd(	; z); sJ =

SJ(	; z); and suppose that kc; kd; and h evolve in equilibrium according to the laws of

motion k0c = Kc(	; z); k
0
d = Kd(	; z); h

0 = H(	; z); and z evolves according to equations

(3.7) and (3.8).

3.2.1 The Household Sector

Each period the representative household chooses its consumption level, ĉ; capital

stocks k̂0c; k̂
0
d; housing investment, ŝJ ; and time allocated to work, n̂c;and n̂d, so as to solve

the following dynamic programming problem:

V ( ;	; z) = max
�̂
fU(ĉ; h; (1� n̂c � n̂d)) + �E[V ( 0;	0; z0)]g (3.27)

8As allready stated, the price of the consumption good is normalized to 1.
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subject to

ĉ+ �k̂0c + �k̂
0
d + Ph(	; z)

0@J�1X
j=1

!jsj + !J ŝJ

1A+ �Ph(	; z)h0
� [1 + (1� �k)(R(	; z)� �k)](k̂c + k̂d) + (1� �n)W (	; z)(n̂c + n̂d)

+Pl(	; z)xl + Ph(	; z)(s1t + (1� �h)ht) + �(	; z) (3.28)

and to the equations for technological progress, (3.7) and (3.8), and k0c = Kc(	; z); k
0
d =

Kd(	; z); h
0 = H(	; z):9

3.2.2 The Production Sectors

Each sector consists of a large number of identical �rms. Since I assume constant

returns to scale technologies for all �rms the scale of each �rm operating is indeterminate,

and the production sector can be represented by three price-taking �rms. Two of these

representative �rms (the CI good producer and the RESI good producer) hire labor,eni, and
capital, eki, to maximize their pro�ts �i; i 2 fc; dg

�c = maxekc;encfyc �R(	; z)ekc �W (	; z)encg (3.29)

�d = maxekd;endfPd(	; z)yd �R(	; z)ekd �W (	; z)endg (3.30)

subject to their production technologies:

yct = F c(ekc; enc; z) (3.31)

ydt = F d(ekd; end; z) (3.32)

9The �rst order necessary conditions of the households dynamic programming problem for the calibrated
model are given in Appendix B. The steady state equations can be found there as well.
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and the following constraints:

ekc + ekd � ek
enc + end � en

feki; enigi2fc;dg � 0

The representative real estate developer is buying the RESI good, xd, and is combining it

with land, xl, to produce new houses, yh, so as to maximize pro�ts �h

�h = max
xd;xl

fPh(	; z)yh � Pd(	; z)xd � Pl(	; z)xlg (3.33)

subject to the production technology:

yh = F h(xd; xl) (3.34)

Due to the underlying assumptions, these optimization problems yields zero pro�ts for all

�rms and the following factor prices

r = F c1 (
ekc; enc; z) = pdF

d
1 (
ekd; end; z) (3.35)

w = F c2 (
ekc; enc; z) = pdF

d
2 (
ekd; end; z) (3.36)

pd = phF
h
1 (xd; xl) (3.37)

pl = phF
h
2 (xd; xl) (3.38)

where Fi stand for the partial derivative with respect to the i� th argument of the function

F . Furthermore, we need the condition that government transfers are a function of economy

wide states

� = �(	; z) (3.39)
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3.2.3 De�nition

A competitive recursive equilibrium for this economy is a set of allocation rules,

c = C(	; z); nc = Nc(	; z); nd = Nd(	; z); k
0
c = Kc(	; z); k

0
d = Kd(	; z); sJ = SJ(	; z);

and pricing and transfer functions, ph = Ph(	; z); pd = Pd(	; z); pl = Pl(	; z); r =

R(	; z); w =W (	; z); � = �(	; z); such that:

i) households solve problem (3.27), taking as given the aggregate state in the econ-

omy f	; zg; and the form of the functions Ph(�); Pd(�); Pl(�); R(�); W (�); �(�); Kc(�);

Kd(�); H(�); with the equilibrium solution of the problem satisfying ĉ = C(	; z); n̂c =

Nc(	; z); n̂d = Nd(	; z); k̂
0
c = Kc(	; z); k̂

0
d = Kd(	; z); ŝJ = SJ(	; z);

ii) �nal good producers solve problems (3.29) and (3.30), and satisfy conditions (3.31)

and (3.32), taking as given f	; zg; and the functions, R(�); W (�); Pd(�); with the

equilibrium solution of the problem satisfying ekc = kc; ekd = kd; enc = Nc(	; z); end =
Nd(	; z);

iii) real estate developers solve problem (3.33), and satisfy condition (3.34) , taking as

given f	; zg; and the functions Ph(�); Pd(�); Pl(�):

iiii) the goods markets for the consumption/investment good, for housing, for residental
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structures, and for land clear each period, implying that

c+ ic + id + ph

0@ JX
j=1

!jsj

1A = yc + phyh (3.40)

�h0 = s1 + (1� �h)h (3.41)

yh =
JX
j=1

!jsj (3.42)

xd = yd (3.43)

xl = 1 (3.44)

where

ic = k0c � (1� �k)kc

id = k0d � (1� �k)kd

3.3 Balanced Growth and Solution Method

For most industrialized countries it is well known that in the long-run the majority

of economic quantities is not stable. For example, output per capita, capital per worker,

and productivity is growing over time.

However, long-run growth of various economic variables occurs at rates that are

roughly constant within economies. These observations, also known as the "stylized facts"

of economic growth became the point of departure for applied business cycle research.10 The

theoretical counterpart to these empirical observations is the concept of the balanced-growth

path, a situation in which quantities in the model grow at constant - but possible di¤erent

10Labeld this way by Nicholas Kaldor (1957)
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- non-negative rates.11 Since preferences and production functions all have Cobb-Douglas

functional forms we know that a balanced growth path exists for our model economy.12

Denoting one plus the growth rate of a variable X as gx (i.e. Xt+1=Xt) it is shown in

Appendix C that we have the following gross growth rates for the variables of the model:

gz = gc = gkc = gkd = gk =

gyc = gpdyd = gphyh = gic =

gid = gi = gw = g�

gnc = gnd = gn = r = 1

gxl = ��1

gyh = gh = gs1 = gs2 = g�zg
1��
xl

These gross rates state that the trend growth of the variables c; kc; kd; k; yc; pdyd; phyh; ic;id; i; w;�

are all equal to gz; the trend growth of technology. On the other hand, for variables for

which land is a relevant factor of production, the growth rate is a weighted product of

productivity growth and trend growth of land. These rates re�ect the fact that land is in

�xed supply and thus, if more new structures are produced they have to be combined with

a constant quantity of land.

In order to get a stationary model economy the next step is to use these trend

growth rates to transform all variables in the economy such that the transformed variables

exhibit no trends. This transformation involves dividing all variables in the system by their

11Another terminology for the same concept is steady state growth or dynamic euqilibrium (see also Barro
and Sala-i-Martin (2004), chapter 1).
12As noted allready above, the restriction of one sector which is more labor intensive is assumed to be

satis�ed in the model. For a general reference on restriction on preferences and production in one-sector
models consistent with balanced growth see also King et al. (1988).
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respective growth rates, i.e. for a generic old variable xt; with gross growth rate gx; the

stationary transformation �xt is given by

�xt =
xt
gtx

(3.45)

Having made the system stationary, the next step is to �nd steady state values of the model

without technology shocks. Given these steady state values, the �rst-order conditions of

the system are then linearized near the steady state. A popular linearization procedure

also used here is the Taylor series expansion. The associated system of linear di¤erence

equations can then be solved numerically using standard dynamic-programming methods.

In fact, I use a generalized Schur factorization to get the policy functions for the system.

Technical details can be found in Appendix D.

3.4 Calibration and Data

In order to calculate steady state values and simulated data I have to assign values

to various parameters of the model. To this end, parameter values are assigned according

to economic theory, a priory information and estimates for economic aggregates and prices.

Data are taken basically from the National Income and Product Accounts (NIPA) tables

and Fixed Asset tables, both published by the U.S. Department of Commerce.

The model period is one quarter of a year. The population growth rate is set to

0.59% per quarter, the average rate of growth of hours worked in the private sector between

1970 and 2007, which is the sample period.
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3.4.1 Consumption

Consumption is taken from the NIPA tables 1.5.5 "Gross Domestic Product, Ex-

panded Detail", the series personal consumption expenditure (including expenditure for

housing services) and government consumption are added since in the model it is assumed

that government consumption is zero. The series is transformed into real terms by convert-

ing it with the equivalent series from "Price Indexes for Gross Domestic Product, Expanded

Detail", NIPA table 1.5.4.

3.4.2 House Prices

Data one house prices are taken from the Freddie Mac Conventional Mortgage

Home Price Index13. To calculate the relative price of houses, this price index is divided by

the NIPA price index for Personal Consumption Expenditure.

3.4.3 Total Fixed Investment

Total �xed investment is divided into residential �xed investment, and business

�xed investment (also nonresidential �xed investment in the text) from NIPA tables 1.5.5.

Business �xed investment is the additive of nonresidential �xed investment, non-defense

government investment, state and local government investment and consumer durables.

Residential investment is gross private domestic residental investment Both investment se-

ries are adjusted to real terms by the respective price indices from NIPA.

13This price index is constructed so as to account for changes in the quality of houses over time.
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3.4.4 Aggregate Stocks and Depreciation of Capital and Housing

To calibrate the total "productive" capital stocks of the model, i.e. the empirical

equivalence to capital stock, k, in the model, NIPA estimates of nonresidential �xed private

capital stock are added with NIPA estimates of non-defense federal government stocks,

state and local government stocks, and consumer durables. For the housing stock, h; NIPA

estimates of residential �xed private capital are added with NIPA estimates of residential

�xed government capital14. By employing the depreciation of �xed assets series I calculate

the annual depreciation rates for capital, �k = 0:0703, and for housing, �h = 0:0155: From

the adjusted NIPA data I get a housing stock which is 1:3 times GDP.

3.4.5 Productivity and Preference Parameters

Capital shares in both industries are derived as 1 minus the ratios from compen-

sations in that industry over the nominal value added of that industry minus the nominal

proprietors income in that industry15. The average capital shares I get for the period 1970

to 2007 is � = 0:317; for the consumption good sector and  = 0:197; for the RESI good

sector16. These estimates imply that the RESI sector is more labor intensive then the con-

sumption good sector. The calibration for the land shares follows Davis and Heathcote

(2005) who estimate the land share in the production of new homes by 10.6% which gives

� = 0:896.

A critical parameter which can not be determined from time series alone is the pa-

14From the "Fixed Assets Accounts Tables" of U.S. Department of Commerce.
15See also Cooley and Prescott (1995) or Davis and Heathcote (2005).
16For the RESI sector I computed industrie compensation as the additive of compensation in the real

estate sector and the construction sector.
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rameter of relative risk aversion �: Microeconomic studies do not provide clear-cut evidence

across heterogenous population characteristics in this respect. However, if homogeneity is

assumed, Browning, Hansen and Heckman (1999) argue for a � slightly above one. I decide

to use � = 2 which implies a smoother consumption pro�le of agents than with the widely

used logarithmic preferences. The discount factor beta is set to a value of � = (1=1:066)
1
4 ;

which indicates an annual interest rate of 6.6%, the average of the fed funds rate for the

sample period.

The preference parameters �c and �h are set such that agents spend around 25%

of their time endowment working17, and such that the ratio of the housing stock to GDP

is 1:3, the average ratio found in the data for our sample period. This yields values for

�c = 0:35; and �h = 0:051:

3.4.6 Tax Rates

The constant tax-rate on capital income is set such that on the balanced growth

path the ratio of the nonresidential capital stock to output is as close as possible to the

average ratio found for the 1970 to 2007 data period. This ratio is 1.932, and the tax rate

is set to �k = 0:15: For the tax rate on labor income the value range in the literature is

between 25% (Greenwood et al. 1995) and 40% (Lucas 1990). I decide to stay in between

these extremes, and set it to � l = 0:33:

17This is equivalent to a working time of 42 hours per week.



68

3.4.7 Solow Residual

As in Greenwood and Hercowitz (1991) I assume no sector speci�c shocks but one

shock process for the overall economy. To calculate the multifactor productivity growth or

Solow residual, it requires data on real output, the real capital stock and hours worked.

With respect to the relative size of both sectors these calculations are carried out by using

real GDP (net of housing), data on real �xed nonresidential private capital and total work

hours employed by nonresidential factor inputs. Using these date the annual Solow residual

is derived from:

log(zt) =
1

1� � [log(yct)� � log(kct)� (1� �) log(nct)]

Given my estimates for the share values, I calculate the time-series path of the annual

logarithm of the technology shocks for the period 1970 to 2007. To estimate the rate of

growth of the technology shock, I regress the log shocks on a constant and a time trend.

From this procedure I obtain an annual growth in technology of 2.56% which gives us a

quarterly gross growth rate of gz = 1:0064.

Having calculated these growth rates, the logged detrended residuals of this esti-

mate, which is equivalent to log(ez) in the model, is regressed on its own past value to get
the autocorrelation coe¢ cient of the ez series, this gives the annual AR coe¢ cient. However,
I am working with quarterly data. Unfortunately, OSL estimates of these AR coe¢ cients

are biased since NIPA annual estimates are arithmetic averages over quarterly estimates

(expressed at annual rates). So, to determine quarterly AR coe¢ cients out of annual data

we are confronted with an endogeneity problem. Therefore I use Generalized Method of

Moments (GMM) estimation and employ as instrument the t�3 value of the annual logged
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detrended residuals18. The annual estimate from GMM is found to be, ba = 0:532. Taking

residuals of this estimate gives us the empirical equivalence to the models "0s, which has a

standard deviation of �";a = 0:0303: From these annual estimates we can construct quar-

terly estimates for the AR coe¢ cient and the standard deviation of the residuals which are

given by b = 0:853 and �" = 0:022619.

3.4.8 Time-to-Build Technology

Concerning the time-to-build technology, the Length of Time for New Residential

Construction series of the U.S. Census Bureau indicates average construction periods in

between 6 months (single unit dwellings) and around 9 months (multiple unit dwellings) on

average for the time span from 1971 - 2007. These numbers lead me to set the time-to-build

period for housing projects to two quarters, i.e. J = 2, and each period an equal amount

of resources has to be invested to an project so that !i = 1
2 for j = 1; 2:

For a summary of the chosen parameter values see Table 3.1.

18see also Davis and Heathcote (2000)
19A detailed description of this procedure is in the Data Appendix.
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Table 3.1

 Basline Parameters
Value Definition

η 1.005925 Population growth
Preferences
   β 0.983 Discount factor
σ 2 Coefficient of relative risk aversion

   μc 0.35 Consumption’s share in utility
   μh 0.051 Housing’s share in utility
   (1 μc  μh) 0.599 Leisure’s share in utility
Production
   α 0.317 Capital’s share in CI sector
   γ 0.197 Capital’s share in RESI sector
   (1 θ) 0.106 Land’s share in new housing
   δk 0.0176 Depreciation rate of capital
   δh 0.00388 Depreciation rate of housing
   gz 1.0064 Productivity growth
Time to build
   J 2 Number of project periods
   ωj 1/J Fraction of resources used at stage j
Government
   G 0 Government spending
   τk 0.15 Tax rate on capital income
   τn 0.33 Tax rate on labor income
Shocks
   ρ 0.853 Autocorrelation of innovations
   σε 0.0226 SD of innovations
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Chapter 4

Results

Prior to stating results from the simulations of the calibrated model, I have to

de�ne some new variables in order to match with their empirical equivalences. NIPA private

consumption includes an imputed value for rents from owner-occupied housing. Thus private

consumption expenditures are given by

PCt = ct + qtht

with qt a rental rate on housing, de�ned such that households are indi¤erent to renting a

marginal unit of housing, i.e.

qt =
Uh(ct;ht; (1� nt))
Uc(ct;ht; (1� nt))

Since the cost of raw land is not imputed in NIPA estimates of GDP the value of newly

build houses is not included in the models overall output. To be consistent with the NIPA

the value of residential investment is added to GDP instead. This gives us the following



72

de�nition for the overall output1:

GDPt = yct + pdtydt + qtht

4.1 First Moments

As a �rst attempt in evaluating the model accuracy a comparison of varies macro-

economic ratios along the balanced growth path is made. The real world equivalences are

averages of ratios of variables as displayed in Table 4.12. We observe that the ratios of the

model match the U.S. ratios properly. In particular, the model reproduces the observed

shares of consumption, residential investment, and nonresidential investment in GDP very

well. So, the �rst moments indicate that the model starts out of a steady state well in

relation to observed long-run patterns of macroeconomic aggregates in the U.S.

TABLE 4.1

                      Properties of steady state: Ratios to GDP %
Data 1970  2007 Model*

Capital stock (k) 193.2 160.7
Housing stock (h) 129.9 130.0
Private consumption (PC) 78.6 71.3
Nonresidental investment (NonRESI) 17.8 15.1
Residental investment (RESI) 4.3 4.1
* Since some data are availabe only annualy the model is adjusted to the same frequency here.

4.2 Second Moments

To determine whether the model economy is capable of accounting for some of the

facts regarding the behavior of housing in the United States, simulations are run for two

versions of the model; the benchmark model with no explicit modeling for the gestation lag,3

1see also Davis and Heathcote (2005)
2The description of the data is given in Table A.1 in Appendix A.
3In this version of the model w1 is set to 1, and w2 is set to 0.
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and the model with a two quarter time-to-build period. A set of second moments measuring

the business cycle properties of the simulated data is presented in Table 4.2. Both models

can account for most of the facts we �nd in the data at business cycle frequencies. However,

the model with time to build is doing much better in all respects concerning the real estate

sector. In particular, in the benchmark model nonresidential investment is much more

volatile then residential investment. In the time to build model, both investment volatilities

are overestimated, but the relative volatilities of the series are similar to what we observe

in the data, i.e. residential investment is twice as volatile as nonresidential investment.4

Concerning house prices, in the data we observe a disproportionally high house

price volatility. The benchmark model is producing a standard deviation (SD) of house

prices lower then the standard deviation of GDP, but the time to build model is able to

approximate this house price feature quite properly. The correlations of GDP with con-

sumption and house prices are reproduced by both models. The correlation of consumption

to nonresidential investment is the only measure for which the benchmark model is pro-

ducing more accurate results then the time to build version. However, the correlations of

residential investment to both, consumption and house prices are replicated with the wrong

sign from the benchmark model, but the time to build version is doing well here. The

correlation of business investment and output is reproduced similary well by both model

versions.
4Both investment series are very sensitive to the low depriciation rates for captial and housing. For

example, if these rates are doubled, the volatilites of both series decrease by about 40 percent.



74

Table 4.2

           Business Cycle Properties
Data (1970  2007) Benchmark Model  TimetoBuild Model

% SD (relative to GDP)
       GDP 1.52 1.72 1.61

       PC 0.72 0.51 0.66

       Labor (n) 0.96 0.91 0.98

       NonRESI 2.73 6.64 7.47

       RESI 6.88 1.34 12.74

       House prices (Ph) 1.30 0.89 1.71

Correlations
       PC, GDP 0.86 0.62 0.55

       Ph, GDP 0.58 0.57 0.68

       PC, NonRESI 0.58 0.30 0.05

       PC, RESI 0.79 0.06 0.36

       Ph, RESI 0.45 0.03 0.33

Leadlag Correlations i =2 i = 0 i = 2 i =2 i = 0 i = 2 i =2 i = 0 i = 2

       NonRESI(ti), GDP(t) 0.37 0.80 0.84 0.34 0.77 0.49 0.31 0.71 0.43

       RESI(ti), GDP(t) 0.80 0.70 0.27 0.21 0.34 0.55 0.12 0.24 0.30

       NonRESI(ti), RESI(t) 0.16 0.28 0.63 0.45 0.50 0.20 0.48 0.54 0.17
Statistics are averages over 600 simulations, each of length 152  periods, the length of the data sample. Prior to
computing statistics, all variables are transformed from their stationary representations back into nonstationary
representations incorporating trend growth. Finally, all variables are logged and HodtrickPrescott filtered.

Unfortunately, the model can not account for two striking features noted in the

introduction, namely that residential investment co-moves with business investment, and

that residential investment strongly leads the business cycles. My results indicate that non-

residential investment and property investment show negative correlations, a result which

is expected in this class of model, since pro�table investment opportunities in one sector

should lead to a decrease of investment in the other sector. Still, in the data we observe a

co-movement. The second puzzle is the lead of residential investment to GDP and business

investment. At this stage, however, I have to conclude that real estate construction lags

alone can not account for the lead-lag pattern of sector speci�c investments.
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Figure 4.1: Impulse Responses I
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4.3 Impulse Responses

The behavior of the model economy as reaction to technology shocks is another

interesting domain to consider. The standard procedure in this respect is to examine the

impulse response functions of several key variables due to an one standard deviation tech-

nology shock (i.e. a shock of �" = 0:0226).

For the two sector economy we observe in Figure 4.1 that a positive productivity

shock to the system results in an increase of employment in the more labor intensive real

estate sector. Since a positive shock to labor productivity is shifting the (downward sloping)
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Figure 4.2: Impulse Responses II
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labor demand schedule for both sectors outwards,5 equilibrium in the labor market requires

higher wages and, as a result, households supply more labor in the more labor intensive

RESI sector. Capital on the other hand is decreasing in both sectors since the real rental

rate of capital is decreasing as a reaction to the shock. Thus, the immediate impact of

the shock is an increase of the real wage, and of both, output and the labor supply in the

RESI sector. As a consequence, the output in the consumption good sector is decreasing

on impact.

In Figure 4.2, we can observe that investment in housing, s2, is increasing on

impact. Potentially, the increase in real income raises the demand for housing. If consumers

5see euqation (10.14) in Appendix B.
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like to move in a new property two periods from now, they have to decide for the investment

today. The stock of new houses is raising with a time lag as described by the law of motion

for housing. Firms observe the increase in the demand for housing and their demand for

land increases, thus the price for land, pl, starts to rise too. As a reaction to the increase

of the housing stock, the price for real estate, ph, is decreasing temporarily. In order to

�nance the new demand for housing, agents consume a little bit less initially, thus personal

consumption expenditures, PC, are decreasing on impact. What we observe in general is,

that a shock to productivity leads to short-term deviations from equilibrium. But, most of

the variables are back to their balanced path after a few periods.
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Chapter 5

Conclusions

This part of my thesis investigates the role of time-to-build for explaining aggregate

�uctuations in general and patterns of residential investment in particular. To this end, I

analyse a multisector real business cycle model with a consumption/capital investment (CI)

good sector and a real estate sector. The CI sector is modeled as usual: the representative

household decides how much to consume and how much to invest in physical capital to be

productive in the next period. In contrast, the housing sector is restricted by a time-to-build

technology. That is, households have to decide for investments in housing today which can

be occupied half a year later. This asymmetric modeling of the economic domains in my

model is motivated be the inability of the housing sector to adjust capacities in the short

run and has the adventage of adding one more piece of reality to the arti�cial economy.

To obtain qualitative and quantitative results, respectively, the model economy is

calibrated to U.S. data. A linearized version of the model is solved via a generalized Schur

decomposition. The policy functions obtained are used to perform Monte Carlo experiments
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to approximate business cycle moments. In addition, impulse response functions are con-

sidered to analyze the behavior of the model economy as reaction to transitory technology

shocks.

First moments from the long-run equilibrium solution of the model indicate a

reasonable point of departure of the model economy when contrasted with the ratios from

real world equivalences. The comparison of second moments from U.S. data and the arti�cial

economy is done for two di¤erent model versions, the two-sector model without time-to-

build - the benchmark model - and the two-sector model with a gestation period. Both

version can account for most of the facts found in the data. However, the model with

a gestation lag is performing much better in re�ecting the real estate sector. Namely,

the model with time-to-build can account for the following stylized facts: i) residential

investment is twice as volatility as nonresidential investment; ii) house price volatility is

disproportionally high in comparison to GDP; iii) hours worked show a volatility nearly

similar to the volatility of output, and consumption is less volatile then output; iv) house

prices and residential investment comove positively; v) GDP and both, consumption and

house prices show positive correlations; vi) personal consumption expenditure show positive

comovement with residential investment and nonresidential investment, respectively; and

vii) business investment and output are highly correlated.

Both versions, unfortunately can not account for the positive co-movement of resi-

dential investment and GDP, and of residential and nonresidential investment. Additionally,

my model versions are not able to account for the lead-lag structure of investments in the

housing sector and the business sector. The failure of my model to replicate these facts
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stems potentially from a missing link between capital in the real estate sector and business

capital. There are several ways to establish such an interrelation, e.g. by introducing in-

termediate goods like in Davis and Heathcote (2005) or by modeling capital in real estate

sector as a complementary input in market production, like in Fischer (2007).1 However, I

decided to keep the model as simple a possible in order to test if a time-to-build speci�cation

in the housing sector alone can account for the co-movement puzzle, the relative volatility

puzzle and the lead-lag structure of residential and nonresidential investment, respectively.

1Fischer�s (2007) model is a home production model with household capital a complementary input in
market production.
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Part II

German Commercial Property

Prices and Bank Lending
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Chapter 6

Introduction

Interest in modeling the relationship between the macroeconomy and the real

estate economy has risen steadily in the last ten years with a proliferation of macroeconomic

models that highlight the role of �nancial intermediaries in business cycle activity. With

variations on this theme referred to as models of the credit channel, agency cost models, or

�nancial accelerator models, the common element is that lending activity is characterized

by asymmetric information between borrowers and lenders. As a consequence, interest rates

may not move to clear lending markets (as in models with moral hazard and adverse selection

elements) or �rms�net worth may play a critical role as collateral in in�uencing lending

activity (as in models with agency costs): borrowers��nancial positions a¤ect their external

�nance premiums and thus their overall cost of credit. While debate on the empirical

support for these models continues, there is little doubt that, as a whole, they have improved

our understanding of �nancial intermediation and broadened the scope of how monetary

policy, through the impact of interest rates on �rms�net worth, can in�uence macroeconomic



83

performance.1

The objective of this chapter is to study the potential e¤ects of macro-policy and

bank shocks on the German real estate sector. In particular, I estimate a structural vector

autoregression (SVAR) model using both aggregate German and two largest regional states

of Bavaria and Nordrhein - Westfalen (NRW) data for commercial property, bank loan,

and other macro-policy variables from 1975 to 2004. Numerous authors have examined the

e¤ects of bank loans and general price level shocks on both residential and commercial real

estate variables with a bag of non-resolute results (e.g. Iacoviello (2005), Davis and Zhu

(2004), Tsolacos and McGough (1999), Ho¤man (2002)). A variety of techniques have also

been used to examine these relationships. Econometric models and time series approaches

have both been employed. Among the previous studies, it is well known that analysis

that employs a single equation setup (Goodhard, 1995) potentially su¤er from simultaneity

problems. Consequently, I use a VAR approach to analyze the dynamic relationship between

bank lending (CR), commercial property prices (PP), investment in construction (INV), and

Gross Domestic Product (GDP) for Germany, Bavaria, and NRW.

The commonly used VAR model in most real estate economics applications uses an

identi�cation which implies the system being modeled has a recursive structure: variables

a¤ect each other in the order speci�ed by the modeler. This recursive structure implies

that the variable at the top of the ordering will have a contemporaneous e¤ect on all

the variables in the model, and that the variable at the bottom of the ordering will have a

contemporaneous e¤ect on itself only. Most evaluations of the importance of this assumption
1The credit channel literature is large and continues to expand. Some prominent contributions are:

Williamson (1987), Bernanke and Gertler (1989, 1990), Bernanke, Gertler, and Gilchrist (1999), Kiyataki
and Moore (1997), Carlstrom and Fuerst (1997), Cooper and Ejarque (2000), and Dorofeenko, Lee and
Salyer (2007). Walsh (1998) presents an overview, both theoretical and empirical, of the literature.
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have relied on changing the order in the recursive speci�cation and examining the impact

on the model. In this work, since the objective is to analyze the e¤ect of bank loans for

commercial real estate sector on property prices, the principal ordering of variables2 is the

gross domestic product (in aggregate as well as for regional level), aggregate investment, the

amount of bank loans to commercial real estate sector, and property prices. This ordering

makes economic sense, in that it can be thought of as corresponding to an ordering of

"increasing endogeneity": Commercial real estate decision makers are more likely to have

a large impact on commercial property prices than on the gross domestic product.3

The empirical results initial show that on the aggregate level, bank (credit) loan

shocks have a small but positive e¤ect on property prices up to about eight periods and

a negative e¤ect afterwards. Other macro (e.g. GDP and Investment) shocks have the

expected e¤ect on the prices: a positive investment shock decreases prices whereas a positive

shock to income increases prices in the medium-run. These e¤ects are reinforced in the

variance decomposition analysis. We observe that nearly 70% of the variance in property

prices comes from price shocks initially. However, after a while shocks in bank loans start

to gain importance in explaining volatility in property prices. The share is increasing up to

nearly 30%. Shocks to the GDP and investment have a weak or less meaningful impact on

the forecast error variance of commercial property prices.

In regard to the regional level the empirical results indicate somewhat di¤erent

e¤ects. From the impulse response analysis of Bavaria, we observe a negative response of

prices to a shock in credits. Moreover, from the variance decomposition analysis we also get

2For the Identi�cation Restricion, the Cholesky factorization is used to orthogonalize the residuals.
3Since this particular ordering is assumed the estimated model is a structural VAR, described in more

detail below.
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a di¤erent picture at the regional level. First, the proportion of the variance in prices due to

shocks in prices is much lower initially, and is decreasing sharply to around 20% after three

periods. Second, shocks to income seems to have much more in�uence on the variance of

prices then for Germany (GDP starting form 33%, reaching a peak of 65% after 3 periods

and staying at a level of more then 50% after 10 periods). And lastly, credit volatility seems

not so sensitive to price shocks as observed on the national level. In contrast, for NRW

property price shocks seem to explain some of the variance in bank loans.

The next section provides a short description of the data set as well as the German

commercial property development. Section seven introduces a linkage between the macro-

economy, bank lending and real estate with a brief review of previous studies. Section eight

then outlines VAR models and the role of identi�cation restrictions. The empirical analysis,

results and some discussion of their implications are also reported in this section. The �nal

section concludes part II.
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Chapter 7

Data and Related Literature

7.1 Data Description

All variables are real using the consumer price index. I use annual series from

1975 to 2004 for Germany and from 1980 to 2004 for Bavaria and NRW. For the aggregate

German data, commercial property prices is an index series form Bulwien AG, Germany.

Bank lending data corresponds to credit in real estate construction form the Deutsche Bun-

desbank. For the measure of aggregate economic activity, I use investment in construction

from the Federal Statistical O¢ ce of Germany, and gross domestic production obtained

from the International Financial Statistical O¢ ce.

For Bavaria, commercial property prices are again from Bulwien AG. I take an

average of the eight largest cities in the region. Bank lending is de�ned as the commercial

credits in construction form, which is obtained from the regional bank "Landeszentralbank

Bayern" (LZB). As a proxy for investment in construction, I use the order in�ow in the

construction sector from the LZB. Bavarian GDP is obtained from the State O¢ ces for
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Statistics of Baden-Würtenberg and Bayern (Statistischem Landesamt Baden-Würtenberg,

and Bayrischen Landesamt für Statistik and Datenverarbeitung).

Commercial property prices for NRW are constructed as an average of prices of

the twelve largest cities in the region, prices are from the Bulwien AG. For the remaining

series the same proxies are used as for Bavaria and are taken from the State O¢ ce for Sta-

tistics of Nordrhein-Westfalen (Landesamt für Datenverarbeitung und Statistik Nordrhein-

Westfalen).

7.2 German Commercial Property Development

Figure 7.1: Germany - Plot of Commercial Property Prices (PP) against Bank Lending
(CR), Investment in Construction (INV), GDP
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Figure 7.1 shows some of the data in annualized form to exhibit the cyclical pat-

terns most clearly. The main series to be explained is the German commercial property

price index in relation to the amount of bank loans.1 The property prices peaked whereas

the bank loan was at the trough in 1992 (two years after the German uni�cation). The

1All time series are in logs and detrended using the Hodrick-Prescott �lter.
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bank loan peaked in 1999 and took a steep downturn. Until 1999, there is a clear negative

correlation between the bank loans and property prices. The last panel in �gure 7.1 shows

the co-movement between the GDP (proxy for real income) and prices. Since investment in

construction is a component of GDP and is known to be highly correlated with output the

second panel shows a similar pattern2.

Figure 7.2: Bavaria - Plot of Commercial Property Prices (PP) against Bank Lending (CR),
Investment in Construction (INV), GDP.
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Figure 7.3: NRW - Plot of Commercial Property Prices (PP) against Bank Lending (CR),
Investment in Construction (INV), and GDP
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2The correlation for Germany is 86%.
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Figure 7.2 shows the regional level time series for Bavaria, where we observe a

similar picture to the aggregate level. Again, property prices peaked two years after the

German uni�cation and bank loans were at a through. For investment and output we

observe the same co-movement with prices as at the national level.

For Nordrhein - Westfalen (NRW), in Figure 7.3 we observe similar swings for commercial

property prices. The co-movement for prices, investment and income is very distinctive for

this region.

Concerning the stability of the data in use, the Augmented Dicky-Fuller (ADF) unit-root

test is applied. As a lag-length selection criterion the Schwarz Information Criterion (SIC)

was chosen. The tests in Table 7.1 indicate that all variables are stationary for Germany,

Bayern, and NRW.3

Table 7.1: ADF Unit Root Test

Germany Bavaria NRW
Level Pvalue Level Pvalue Level Pvalue

PP 4.40 0.00 3.26 0.00 4.27 0.00
CR 2.79 0.01 3.70 0.00 2.57 0.01
INV 2.78 0.01 2.80 0.01 2.94 0.00

GDP 3.11 0.00 3.20 0.00 3.58 0.00
PP = Commercial Property Prices, CR = Bank Lending in the RESector, INV = Investment
in Construction in the RESector

7.3 Macroeconomics, Bank Lending and Real Estate Linkage

In recent years a number of theoretical models that highlights the role of a �nancial

accelerator in propagating and amplifying macroeconomic shocks has further casted doubts
3Enders (1995), for example, shows that the power of the unit root tests is very limited when sample size

is small at a lower frequency. Moreover, Sims (1980), for example, argues against di¤enencing variables even
if the variables contain a unit root, because the goal of VAR analysis is to determine the interrelationship
among variables and not to determine the parameter estimates.
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on aggregate technology shocks in the standard real business cycle model as the driving force

in business activities.4 This literature addresses the question �can credit constraints and

(or) asymmetric information between borrows and lenders propagate and amplify business

cycles?� Although the theoretical contributions have improved our understanding of the

propagation mechanism, the lack of empirical support has led many to question the relevance

of �nancial accelerator type models.5

Empirical support for or against credit channel e¤ect in real estate literature is,

however, less prominent. Among few is Davis and Zhu (2004), who study on the bank

lending and property prices, both for the commercial and the residential sector. In their

commercial real estate paper, they develop a reduced form theoretical model, based on the

�nancial accelerator framework. The model suggests that bank lending is closely related

to commercial property prices, and their interaction can develop cycles given plausible

assumptions (e.g. lags of supply and property evaluation based on current prices). Their

study of 17 di¤erent countries shows a strong link of commercial property prices to credit in

commercial property in the countries that have experienced banking crises linked to property

losses in 1985-95. They found a signi�cant impact of prices on bank credit. However, the

impact in the reverse direction is less clear. In addition, they found GDP to be an important

factor for commercial property prices and bank credits. Peng, Cheung and Leung (2001)

also report similar result for Hong Kong: they state that excessive bank lending was not

the main reason for the boom and bust cycle of the Hong Kong residential property market.

4Financial accelerator models are usually clasi�ed into two catergories: agency costs models and credit
constraint models.

5See, for example, Kocherlakota (2000), Cooper and Ejarque (2000), and Cordoba and Ripoll (2004) for
a negative stance on the role that �nancial sector plays in the actual economy. Carlstrom and Fuerst (1997)
and Dorofeenko, Lee and Salyer (2007) are the only few that document the empirical relevance for �nancial
acceleration.
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Ho¤man (2004) uses both time series and panel data estimation and distinguishes between

long and short run causality. In 15 out of 20 cases, he �nds that long-run causality goes

from property prices to bank lending. He also states that property price bubbles are rather

caused by property prices then by bank lending. Short-run causality is going in both

directions, which supports the theoretical argument of self-reinforcing cycles in property

markets. Gerlach and Peng (2004) �nd a similar result as in Peng, Cheung and Leung(2001)

for residential properties in the Hong Kong market. They have large contemporaneous

correlation between bank lending and property prices, but they argue their results (of an

Vector Error Correction Model) suggest that the direction of in�uence goes from prices to

credits rather than converse.
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Chapter 8

Vector Autoregression (VAR) and

Empirical Analysis

This section begins with a brief introduction to a recursive structural VAR that

the empirical analysis is based on. Then some results and some of their implications are

discussed.

8.1 VAR

As outlined brie�y below, VAR models are a form of dynamic simultaneous equa-

tions model. As in any simultaneous equations exercise, the VAR model requires identi-

�cation restrictions to interpret the model in a causal framework. The approach in VAR

modeling is to develop a statistical model before the imposition of identi�cation restrictions.

In VAR the dependent variables are, by de�nition, all endogenous variables and the
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independent variables are lagged observations of all variables in the system.1 All variables

a¤ect each other through a system of lags. This allows the data to provide a representation

of the changes in the system without "zero restrictions" ( i.e. restricting the coe¢ cient of

some explanatory variables in an equation to zero) as required in traditional simultaneous

equation techniques. While VAR models do not impose zero restrictions on the parame-

ters in the traditional simultaneous equation fashion, the model does require identi�cation

restrictions to provide information on the response of system variables to shocks.

Traditional econometric modeling of a simultaneous system would require the con-

struction of a structural model using theory and the placement of restrictions on this struc-

tural model in order to be able to identify the parameters of the structural model from the

reduced form or statistically estimated model. Typically, the reduced form is based on a

reduced parameter space and the identifying restrictions are used to derive the structural

parameters (see for example Sims, 1980). The VAR approach uses the set of lags of all of the

endogenous variables in each behavioral equation as the reduced form. The economic struc-

ture is identi�ed using the covariance matrix of the residuals to place identifying restrictions

on the matrix of contemporaneous coe¢ cients. For example, the Cholesky decomposition

of the covariance matrix results in orthogonal behavioral shocks and a contemporaneous

coe¢ cient structure that implies a recursive ordering between variables. A VAR imposing

this error structure is also known as structural VAR (SVAR).2

While both the SVAR approach and traditional econometric approaches require

identi�cation restrictions, the nature of these restrictions are quite di¤erent. The traditional

1Where they are considered to be important, exogenous (or deterministic) variables may be included in
the set of independent variables in the system.

2see e.g. Enders (1995) or Lütkepohl and Krätzig (2004).
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approaches tend to place little emphasis on lags in equations while the SVAR approach em-

phasizes it. The traditional approach places strict interpretations on the parameters of each

equation while the SVAR approach interprets the system as a whole and analyzes responses

to the behavioral shocks. The traditional approach uses zero restrictions on parameters

for identi�cation while the SVAR approach uses the covariance matrix of the reduced form

residuals and the assumption of orthogonal behavioral shocks to establish identi�cation.

In VAR models, the statistical model is developed �rst and then the structural model is

identi�ed. This approach is opposite to that followed in traditional econometrics and is

favoured by some statistical theorists.

The SVAR model begins with a dynamic equation system of the form

pX
s=0

B(s)Y (t� s) = �(t) (8.1)

where Y (t) and �(t) are k � 1 vectors and B(s) is a k � k matrix of coe¢ cients for each

time period (s) previous to current time (t) with B(0) having only unity entries on its main

diagonal.3 Equation (8.1) relates the observable data Y (t) to sources of variation in the

economy �(t). The shocks in �(t) are assumed to represent behaviorally distinct sources of

variation that drive the economy over time. The vector �(t) has an expected value of zero

and an assumed diagonal covariance matrix, D. The covariance matrix is assumed to be

diagonal so that individual shocks (�(t)) apply to only one behavioral equation at a time.

Thus we can evaluate the e¤ect of shocks to each behavioral equation on each variable in

the system.

3The constant is ignored in this exposition for notational convenience.
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Equation (8.1) can be rewritten in autoregressive form as

A(L)Y (t) = "(t) (8.2)

The matrix A(0) = I;and A(L); L � 1 represents the lag. Equations (8.2) is the autore-

gressive equation system which is estimated given an assumption on the lag length. It is

the reduced form model. The reduced form errors, "(t); are linear combinations of the

structural errors, �(t); and have covariance matrix 
:

Since all the variables are related in the system, it is not possible to disentangle

the e¤ects of one variable on another using the reduced form representation. However,

one could orthogonalize the shocks of a SVAR system as follows: Rewrite equation (2) as

QA(L)Y (t) = Q"(t); where Q is a matrix, and call the new matrices C(L)Y (t) = e(t)

with C(L) = QA(L) and e(t) = Q"(t): The new system will then have the properties

C(0) = Q; E(e(t)e(t)0) = Q
Q0: The new system and the old one are observationally

equivalent (so long as Q is not singular). In particular, a convenient choice for Q is a Q

such that Q�1Q�10 = 
: With this Q, E(e(t)e(t)0) = Q
Q0 = I: Thus, it makes the shocks

orthogonal. One way to construct such a Q is via the Choleski decomposition. The Choleski

decomposition produces a lower triangular matrix Q�1; and thus a lower triangular Q. This

implies that, for example, in a 2� 2 equation the second variable is not included in the �rst

equation, but the �rst variable is included in the second equation.

Given a stable SVAR, the autoregressive representation can be used to �nd the

moving average representation which expresses the level of a particular variable as a function

of the error process. Transforming the reduced from model (8.1) into a moving average
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representation results in:

Y (t) = 	(L)�(t) (8.3)

with

	(L) = A(L)�1B(0)�1

=
1X
s=0

	(s)Ls

Moreover, this moving average representation is the impulse response function (IRF), which

describes the e¤ect of shocks to the behavioral relations on variables in the system. The

IRF summarizes the dynamic multipliers as implied by our identi�cation. A shock may be

represented by the placement of the value unity in one element of the vector �(t): The IRF

provides the response of all variables in the system to this unit shock.

The moving average representation can also be used to decompose the forecast

error variance of one of the variables in the system into portions attributable to each element

in Y (t). Using the autoregressive structure of the SVAR model, the conditional expectation

of Y (t+h) given Y (t); Y (t�1); � � � ; can be determined. These are the h-step ahead forecasts

of the series Y (t). The forecast error covariance can also be established since it depends only

on information up to time t. Forecast error decompositions are derived from the result that

the contribution of each variable to the forecast error is linear thus allowing the evaluation

of each separate variable�s impact on the forecast error. This linearity of forecast errors

results from the orthogonalization procedure used in SVAR models explained above.

The forecast error variance decompositions provide a useful measure of the strength

of explanation between variables at di¤erent forecast horizons. Interpreted together with

IRFs, decompositions can provide valuable insight into the dynamics of variables under
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investigation.

8.2 Empirical Results and Implications

The SVARs are estimated for 1975 to 2004 for Germany and for 1980 to 2004 for

Bavaria and NRW. As mentioned allready above, all time series are in logs and detrended by

the Hodrick-Prescott �lter. A system was selected with one lag for both the aggregate and

regional models. For diagnostic purpose, we �nd that the SVAR(1)�s estimates are stable

for Germany and Bavaria but SVAR(2)�s estimates are statistically more appropriate for

NRW. Moreover, the residuals are checked for autocorrelation, conditional heteroscedasticity

as well as for the deviations for the Gaussian assumption, as proposed by Johanson (1995).

For the Identi�cation Restriction the Cholesky factorization is used to orthogonal-

ize the residuals. The Cholesky Ordering is speci�ed as follows: GDP, INV, CR, PP. To

see what this ordering implies consider the structural errors �(t) in relation to the reduced

form errors "(t) :

"(t) = ��(t)

with � = B(0)�1; and ij the elements in �: Using this notation the ordering implies the

following structure for the contemporaneous residuals:

"GDP;t = �GDP;t (8.4)

"INV;t = 21�GDP;t + �INV;t (8.5)

"CR;t = 31�GDP;t + 32�INV;t + �CR;t (8.6)

"PP;t = 41�GDP;t + 42�INV;t + 43�CR;t + �PP;t (8.7)
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Hence, we can observe that a shock to GDP e¤ects all other variables contemporaneously,

a shock to investment in construction e¤ects bank lending and property prices contempora-

neously, and a shock to credits does the same for property prices. The economic reasoning

for this ordering is the well known fact, that income can have immediate impacts on credits,

investment and prices, whereas this is not so obvious in the other direction.4

8.2.1 Germany: Impulse Response Analyses and Variance Decomposi-

tion

The impulse responses for Germany are shown over 10 periods in Figure 8.1. On

the national level, we observe that a one-standard deviation shock to credits has a small

positive e¤ect on property prices up to about eight years, and afterwards the response gets

negative. This could imply that in the �rst periods prices are increasing due to a weaker

conditions in the credit market, but the result of persistence in high prices probably lead

to an over-supply of properties and subsequently a downward pressure on prices.

However, we see a negative e¤ect of credits due to an increase in prices. This

result could imply that commercial properties are not an important component in the

portfolio of German banks and so they do not react as expected to an increase in property

prices. For Investment and GDP, we have the expected impulse responses: a positive shock

to investment decreases prices, and a positive shock to income will increase prices in the

medium-run.

The reaction of investment to a positive price shock is also as expected, it leads to

4Also the impulse responses are not very sensitive to the ordering. Additionally, I tried other orderings,
but the pattern of the responses do not change.
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Figure 8.1: Germany - Impulse Responses from SVAR(1)

                                  Innovation to
Responses of        PP              CR INV GDP
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Variables: PP  Commercial Property Prices, CR  Bank Lending, INV  Investment in Construction.
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an increase in commercial property investment for some periods.

From the forecast error variance decomposition in Figure 8.2, we observe that

initially nearly 70% of the variance in property prices comes from a shock in this prices.

However, after some periods shocks in credits for commercial properties start to gain im-

portance in explaining volatility in commercial property prices, the share is increasing up to

nearly 30%. For the variance decomposition of credits we can observe the opposite pattern.

Within three to four periods price shocks help to explain nearly one third of credit volatility,

a result which strongly supports the hypothetical interrelation of price and credits. For the

investment volatility in the commercial property sector the variance decomposition indicates

a minor role of price shocks and a dominant role of income shocks.
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Figure 8.2: Germany - Variance Decompositon from SVAR(1)
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8.2.2 Bavaria: Impulse Response Analyses and Variance Decomposition

The Cholesky Ordering for Bavaria is the same as for Germany. I also tried

di¤erent orderings and the pattern of the responses do not change (the correlations of the

VAR residuals are here from -0.43 to 0.57)

For the impulse responses for Bavaria in Figure 8.3, we obtain di¤erent results

than for the national level. Figure 8.3 shows a negative response of property prices to a

shock in credits. Since the credit series represents credit outstanding we can not distinguish

whether this e¤ect is due demand or supply. The demand side argument is that credits will

increase if property prices moves up and therefore demand will increase since new loans are

available. Thus, prices will rise further. But here we see that a positive shock to credits

has a negative e¤ect on prices. Thus, a supply side e¤ect also needs to be examined.

Here we see an immediate impact of prices (which is by de�nition possible due to
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Figure 8.3: Bavaria - Impulse Responses from SVAR(1)

                                  Innovation to
Responses of        PP              CR INV GDP
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Variables: PP  Commercial Property Prices, CR  Bank Lending, INV  Investment in Construction.
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Figure 8.4: Bavaria - Variance Decompositon from SVAR(1)
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the Cholesky ordering we impose). Since we have this immediate impact we can argue that,

if prices go down due to an increase in credits this comes from the supply side, because if

more credits are available the supply of properties will increase due to increase in investment

in commercial properties, therefore the prices will decline.This supply side argument is also

supported by the positive response of credits due to a price shock. If prices move up the

default risk of banks decreases and therefore credit supply is increased.

From the variance decomposition, in Figure 8.4, we also get a di¤erent picture on

the regional level. First, the proportion of the variance in prices due to shocks in prices

is much lower (only about 57% at the �rst period). Second, the forecast error variance is

decreasing sharply to around 20% after three periods. Third, shocks to income seems to

have much more in�uence on the variance of prices then for Germany.(GDP starting form

33%, reaching a peak of 65% after 3 periods and staying at a level of more then 50% after

10 periods). And lastly, credit volatility seems not so sensitive to price shocks as observed

on the national level.

8.2.3 Nordrhein - Westfalen: Impulse Response Analyses and Variance

Decomposition

For the last region under investigation, Nordrhein - Westfalen (NRW), we observe

in the �rst column of Figure 8.5, that a price shock leads to an increase of property prices

for two periods. After that, prices show small swings around the equilibrium level. For the

response of credits to shocks in price, there is an immediate decrease.

This indicates that there is a contemporaneous e¤ect of prices on credits (which is

possible due to the ordering implied). For the same time span as for the price increase we
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Figure 8.5: NRW - Impulse Responses from SVAR(2)

                       Innovation to
Responses of        PP              CR INV GDP
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Variables: PP  Commercial Property Prices, CR  Bank Lending, INV  Investment in Construction.
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observe an increase in credits as well. When prices start to fall, the bank lending decreases,

but then it increases before property prices start to rise again. This is a puzzling reaction,

since (with the construction lag in mind) it could indicate a causal direction form credits

to prices. For Investment and GDP we observe similar patterns as above.

In column two, a credit shock leads to a decrease of property prices again. The

di¤erence here is the reaction of bank lending to a credit shock. For NRW we observe an

increase of credits after four periods. Property prices, on the other hand, increase with one

lag. Again, this is a reaction which was not expected since this could tell us that prices

increase due to an increase in credits.

The variance decomposition for NRW in Figure 8.6 indicates that the regional

GDP is the most important variable for property prices and bank lending in this country.
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Figure 8.6: NRW - Varaince Decomposition from SVAR(2)
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In contrast to Bavaria, shocks to property prices seem to explain some of the variance in

bank loans.
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Chapter 9

Conclusion

This part of my thesis investigates the importance of some macroeconomic factors,

in particular bank shocks, on the dynamics of German commercial real estate prices for both,

national and regional levels. The results can be summarized as follows. On the aggregate

level, bank (credit) loan shocks have a small but positive e¤ect on property prices up to eight

periods and negative e¤ect afterwards. Other macro (e.g. GDP and Investment) shocks

have the expected e¤ect on the prices: a positive investment shock decreases prices whereas

a positive shock to income increases prices. These e¤ects are reinforced in the variance

decomposition analysis. We observe that most of the variance in property prices comes from

a shock to itself. Thus, the shocks to other variables have a weak or less meaningful impact

on the forecast error variance of commercial property prices. In regards to the regional

level, the empirical results indicate somewhat di¤erent e¤ects. From the impulse response

analysis, one can observe a negative response of prices to a shock in credits. Moreover, from

the variance decomposition analysis we also get a di¤erent picture at the regional level.
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As much as I would like to draw a resolute conclusion and lesson from this study,

one has to acknowledge that the empirical results are highly dependent on the availability

of the commercial real estate data in Germany. One could, however, draw a plausible

conclusion that there is a long-lasting link (either positive or negative) between bank loans

and property prices in Germany. The feedback from property prices to credit growth is

strongest in places with a greater prevalence of variable rate mortgages and more market-

based property valuation practices for loan accounting.
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Chapter 10
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Appendix Part I

10.1 Appendix A

10.1.1 Data

Table A.1

             Data Sources Table
Variable* Source** Computation

GDP NIPA Chainweighted GDP (Tables 1.1.3 line 1.1.5., lines 1, respectively)

PC NIPA Chainweighted aggregate of personal consumption expenditures

 (Tables 1.5.4 and 1.5.5, lines 2, respectively) and government  consumption

expenditures (same Tables, lines 50 plus lines 53, respectively)

NonRESI NIPA Chainweighted aggregate of nonresidential fixed investment

(Tables 1.5.4 and 1.5.5, lines 23, respectively),  nondefense

government  investment (same Tables lines 51, respectively), state durables

and local government investment (same Tables, lines 54, respectively) and

consumption expenditures on consumer durables  (same Tables, lines 3, respectively)

RESI NIPA Chainweighted residential fixed investment (Table 1.5.4 and 1.5.5, lines 33, respectively)

Total labor BLS Aggregate hours worked in private industries

House prices CMHPI, NIPA Conventional Mortgage Home Price Index (CMHPI, USA) divided by the price

 index for personal  consumption expenditures (NIPA, Table 2.3.4, line 1)

Capital NonRESI FAT Chainweighted aggregate of nonresidential fixed private capital stocks (Tables 1.1 and 1.2 ,

 lines 4, respectively), nondefense federal government stocks (Tables 7.1.A&B, 7.2.A&B,

 lines 30, respectively) state and local government stocks (same Tables, lines 41, respectively)

and stocks of consumer durables (Tables 1.1 and 1.2, lines 13, respectively)

Capital RESI FAT Chainweighted aggregate of residential fixed private capital stocks (Tables 1.1 and 1.2, lines 7,

respectively) and residential fixed government capital (same Tables, lines 12, respectively)
* With the exception of the labor series and house prices, all variables are real chainweighted variables with the base year 2000.

**NIPA = National Income and Product Accounts Tables, Bureau of Economic Analysis; BLS =  Bureau of Labor Statistics, U.S. Department of Labor; CMHPI = Conventional Mortgage Home Price Index,

Freddie Mac; FAT = Fixed Asset Tables, Bureau of Economic Analysis.
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10.1.2 Solow Residual

To get the real output data net of housing, the quantity indices of GDP and housing

(NIPA Table 1.5.4, line 1 and 13) are multiplied by the 2000 nominal values respectively

(NIPA Table 1.5.5, lines 1 and 13). The real housing series is subtracted from GDP yielding

real output net of housing in chain-weighted 2000 U.S. Dollars. The real nonresidential

(Non-RESI) capital stock is constructed by the respective quantity indices multiplied by

2000 nominal values from the Fixed Asset Tables (see the Data Sources Table) . The labor

supply series is taken from NIPA Table 6.9B "Hours Worked by Full-Time and Part-Time

Employees by Industry" and is calculated as annual hours worked in domestic industry

minus hours in �nance, insurance and real estate. Using these date the annual Solow

residual is derived from:

log(zt) =
1

1� � [log(yct)� � log(kct)� (1� �) log(nct)]

Given my estimates for the share values, I calculate the time-series path of the annual loga-

rithm of the technology shocks for the period 1970 to 2007. To estimate the rate of growth

of the technology shock, I regress the log shocks on a constant and a time trend. From this

procedure I get an annual growth in technology of 2.56% which gives us a quarterly gross

growth rate of gz = 1:0064

Having calculated these growth rates, the logged detrended residuals of this estimate, which

is equivalent to log(ez) in the model, is regressed on its own past value to get the autocorre-
lation coe¢ cient of the ez series, this gives the annual AR coe¢ cient. However, I am working
with quarterly data. Unfortunately, OSL estimates of these AR coe¢ cients are biased since

NIPA annual estimates are arithmetic averages over quarterly estimates (expressed at an-
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nual rates). So, to determine quarterly AR coe¢ cients out of annual data we are confronted

with an endogeneity problem. Therefore I use GMM estimation and employ as instrument

the t�3 value of the annual logged detrended residuals. The annual estimate from GMM is

found to be, ba = 0:532. Taking residuals of this estimate gives us the empirical equivalence

to the models "0s, which has a standard deviation of, �";a = 0:0303: These GMM estimates

(and also the biased OLS estimates) can then be converted into quarterly terms by the

relationship1

b = b1=4a

with ba the annual AR coe¢ cient and b the quarterly analog. So we get a quarterly co-

e¢ cient of b = 0:853: To derive the corresponding standard deviations for innovations to

quarterly logged detrended residuals note that

"t =
1

4

4X
q=1

êt;q =
1

4
[�4Beet] (10.1)

where q stand for the quarter in period t, �4 is a 1 � 4 vector of the element 1, ee0t =
[et�1;2; et�1;3; et�1;4; et;1; et;2; et;3; et;4]; the elements in the ee0t vector are unobserved quarterly
errors, and

B =

266666666664

b3 b2 b 1 0 0 0

0 b3 b2 b 1 0 0

0 0 b3 b2 b 1 0

0 0 0 b3 b2 b 1

377777777775
(10.2)

If we assume that the innovations to the quarterly log detrended residuals are independently

distributed over time, then the variance of unobserved quarterly errors can then computed

1see also Davis and Heathcote (2000) for this and the following.
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via the relationship2

E("2t ) = �2";a =
1

16
[�4BB

0�04]E(e
2
t;q) (10.3)

so if we plug in our numbers we get

�2";a = 1:7744�2" )

�" = 0:0226

with �2" = E(e2t;q):

2I assume E(et;q) = 0 8 t; q
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10.2 Appendix B

10.2.1 First Order Conditions

Goods Production

yct = k�ct(ztnct)
(1��) (10.4)

ydt = kdt(ztndt)
(1�) (10.5)

yht = y�dtx
1��
lt (10.6)

The price of the consumption good is normalized to one, each price pit is then the

price of good i in units of the �nal consumption good. Let w and r denote the rental rates

of labor and capital, respectively, in the same units. Since there is no link of successive

periods on the production side, maximization of the �rm�s present value is equivalent to

maximize one-period pro�ts, for period t they are given by

� = max
fkit;nitgi2fc;dg;xlt

fyct + phtyht � rtkt � wtnt � pltxltg (10.7)

subject to equations 10.4 and 10.6 and to the constraints

kct + kdt � kt (10.8)

nct + ndt � nt (10.9)

fkit; nitgi2fc;dg; xlt � 0 (10.10)
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From 10.7 we get the following �rst order necessary conditions (FOC�s)

@�

@kct
: �

yct
kct

= rt (10.11)

@�

@nct
: (1� �) yct

nct
= wt (10.12)

@�

@kdt
: pht�

yht
kdt

= rt (10.13)

@�

@ndt
: pht(1� )�

yht
ndt

= wt (10.14)

@�

@xlt
: pht(1� �)

yht
xlt

= plt (10.15)

and we get the following relation for prices:

pd = �ph
yh
yd

(10.16)

In addition, the full employment conditions are:

nct + ndt = nt

kct + kdt = kt

xlt = 1

Households

To get the FOC�s the value function formulation for the model with two periods

time to build can be written as

V ( t; zt) = max
�t
fU(ct; ht; (1� nct � ndt)) + �Et[V ( t+1; zt+1)]

+�t[(1 + (1� �k)(rt � �k))(kct + kdt) + (1� �n)wt(nct + ndt) + pltxlt

+pht(s1t + (1� �h)ht) + �t � pht(!1s1t + !2s2t)

�ct � �kc;t+1 � �kd;t+1 � �phtht+1]g
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with the vectors of state variables ( t) and control variables (�t) de�ned as:

 t � fkct; kdt; s1t; ht; xltg

�t � fct; nct; ndt; s2t; kc;t+1; kd;t+1g

and zt the state variable of the shock process. For our convenience I rewrite the utility

function here:

U(ct; ht; (1� nt)) =
(�ut)

1��

1� �

with

�ut � (c�ct h
�H
t (1� nt)(1��c��h))

Having de�ned the variables we get the following �rst order necessary conditions

for the consumers problem

@V

@ct
:
�c
ct
(�ut)

1�� = �t (10.17)

@V

@s2t
: �ph;t+1�t+1 = ��t+1ph;t+1!1 + �tpht!2

@V

@ht+2
: �ph;t+1�t+1 = ��1�2

�
�h
ht+2

(�ut+2)
1�� + �t+2ph;t+2(1� �h)

�

taken these two FOC�s together we get:

�h
ht+2

(�ut+2)
1�� =

�

�2
�tpht!2 +

�

�
�t+1ph;t+1!1 � �t+2ph;t+2(1� �h) (10.18)

@V

@nct
:

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� = �t(1� �n)wt (10.19)

@V

@ndt
:

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� = �t(1� �n)wt (10.20)

@V

@kc;t+1
: �Et[�t+1(1 + (1� �k)(rt+1 � �k))] = ��t (10.21)

@V

@kd;t+1
: �E[�t+1(1 + (1� �k)(rt+1 � �k))] = ��t (10.22)
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@V

@�t
: ct + �kc;t+1 + �kd;t+1 + pht(!1s1t + !2s2t) + �phtht+1 =

(1 + (1� �k)(rt � �k))(kct + kdt) + (1� �n)wt(nct + ndt) + pltxlt

+pht(s1t + (1� �h)ht) + �t (10.23)

@V

@pht
: �ht+1 = k�dt (zdtndt)

(1�)�x
(1��)
lt + s1t +

(1� �h)ht � (!1s1t + !2s2t) (10.24)

10.2.2 FOC with E¢ ciency Conditions from Goods Production

Using the e¢ ciency conditions from the goods production we get the following

expressions for 10.19 to 10.22

@V

@nct
:

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� = �t(1� �n)(1� �)

yct
nct

(10.25)

@V

@ndt
:

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� = �tpht(1� �n)�(1� )

yht
ndt

(10.26)

@V

@kc;t+1
: �Et[�t+1[(1� �k)�

yc;t+1
kc;t+1

+ (1� �k) + �k�k]] = ��t (10.27)

@V

@kd;t+1
: �E[�t+1[�(1� �k)ph;t+1

yh;t+1
kd;t+1

+ (1� �k) + �k�k]] = ��t (10.28)

E¢ ciency condition 10.23 can also rewritten as

ct + �kc;t+1 + �kd;t+1 + pht(!1s1t + !2s2t) + �phtht+1

= (1� �k)[�yct + pht�yht] + (1� �n)[(1� �)yct + (1� )�phtyht]

+((1� �k) + �k�k)[kct + kdt]

+(1� �)phtyht + pht(s1t + (1� �h)ht) + �t (10.29)
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10.2.3 Steady State Equations

From the FOC�s we get the following equilibrium balanced growth path equations,

where t0s subscripts for time are omitted here:

�c
c
(�u)1�� = � (10.30)

�h
h
(�u)1�� = �ph�[�

�2!2 + �
�1!1 �

1

�
(1� �h)] (10.31)

(1� �c � �h)
(1� nc � nd)

(�u)1�� = �(1� �n)(1� �)
yc
nc

(10.32)

(1� �c � �h)
(1� nc � nd)

(�u)1�� = �(1� �n)(1� )�ph
yh
nd

(10.33)

(1� �k)�
yc
kc

=
�

�
� (1� �k)� �k�k (10.34)

(1� �k)ph�
yh
kd

=
�

�
� (1� �k)� �k�k (10.35)

yc + phyh = c+ [� � (1� �k)](kc + kd) + (� � (1� �h))phh (10.36)

(� + �h � 1)h = yh (10.37)

(� + �h � 1)h = s2 (10.38)

pl = ph(1� �)yh (10.39)

pd = �ph
yh
yd

(10.40)

� = �n((1� �)yc + ph(1� )�yh) +

�k(�yc + ph�yh)� �k�k(kc + kd) (10.41)

yc = k�c n
1��
c (10.42)

yd = kdn
(1�)
d (10.43)

yh = y�d (10.44)
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10.3 Appendix C

10.3.1 Growth Rates

From (10.17) we get:

�c
ct
(�ut)

1�� = �t

�c
ct+1

(�ut+1)
1�� = �t+1 )

�t+1
�t

=
ct
ct+1

(
�ut
�ut+1

)1�� ,

g� =
(g�u)

1��

gc
(10.45)

with Xt+1
Xt

= gx; the gross growth rate of variable X:

Since the amount of time devoted to work has to be between zero and one, the

only feasible constant growth rate for labor n is zero, that is the gross growth rate is gn = 1.

But this does also imply that the only admissible constant growth rate for both, nc and nd

has to be zero. Otherwise, if labor in one sector would grow then it would have to shrink

in the other sector until no more labor is used in that sector. Thus we can state that

gnc = gnd = gn = 1 (10.46)

If labor is growing at a rate of zero then leisure is growing at the same rate as well, i.e.

g(1�n) = 1:

From the commodity resource constraint of the consumption good sector (net of

taxes, since they can be substituted out),

ct + �kc;t+1 = yct + (1� �k)kct
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dividing this equation by kct we obtain

ct
kct

+ �
kc;t+1
kct

=
yct
kct

+ (1� �k) (10.47)

from the FOC for kc;t+1 we know that (expectation operator omitted)

1

(1� �k)�

�
�t
�t+1

�

�
� (1� �k)� �k�k

�
=
yc;t+1
kc;t+1

since �t
�t+1

= gc
(g�u)��1

; and we assume that all grow rates are constant we know the right

hand side (r.h.s.) of this equation is constant, i.e.

1

(1� �k)�

�
gc

(g�u)��1
�

�
� (1� �k)� �k�k

�
� C1 =

yc;t+1
kc;t+1

(10.48)

where C1 stands for constant which is of course the same in period t. If we plug that in

(10.47) we obtain

C1 + (1� �k)� �gkc =
ct
kct

(10.49)

since we know that the left hand side (l.h.s ) of (10.49) is constant we can conclude that

the r.h.s. must be constant as well. Thus consumption, ct; and capital in the consumption

good sector, kct; must grow at the same rate, i.e.

gc = gkc

From (10.48) we know that since gyc = gkc it is also true that gyc = gc. So it

follows immediately that the growth rate of overall investment it is also the same since

ct + it = yct ,

it
ct

=
yct
ct
� 1)

gi = gc
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From (10.25) we know that

(1� �c � �h)(�ut)1��nct
(1� �n)(1� �)(1� nt)

= �tyct

and the update for one period is given by

(1� �c � �h)(�ut+1)1��nc;t+1
(1� �n)(1� �)(1� nt+1)

= �t+1yc;t+1

dividing the later equation by the former gives

(1� nt)
(1� nt+1)

nc;t+1
nct

�
�ut+1
�ut

�1��
=

�t+1
�t

yc;t+1
yct

,

gnc(g�u)
1��

g(1�n)
= g�gyc ,

(g�u)
1��

g�
= gc = gyc

A similar growth rate can be obtained for phtyht since from (10.26) and the one period

updated equation we obtain

(g�u)
1��

g�
= gc = gphyh

thus phtyht is growing at the same rate as ct:

Using the production function of the consumption good sector (equ. 10.11) we

obtain

gyc = �gkc + (1� �)gz

since gnc = 1: And since gyc = gkc we can conclude that

gz = gyc = gkc

From (10.22) we know that
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�� gc
(g�u)1��

� (1� �k)� �k�k
�(1� �k)

= C2 =
ph;t+1yh;t+1
kd;t+1

with C2 stands for a constant. From that we can conclude that

gkd = gphyh :

To show the growth rates of investment in the di¤erent sectors I use the law of

motion for the capital stocks in sector j = c; d

kj;t+1 = ijt + (1� �k)kjt ,

kj;t+1
kjt

=
ijt
kjt

+ (1� �k),

gkj � (1� �k) =
ijt
kjt

since the l.h.s. is constant at the steady state we conclude that

gic = gkc = gid = gkd = gz:

If we consider e¢ ciency condition (10.11)

�
yct
kct

= rt )

gr = 1

since yc and kc grow at the same rate. From condition (10.13)


pdtydt
kdt

= rt

we can then conclude that

gpdyd = gkd :
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From condition (10.12)

(1� �) yct
nct

= wt

we obtain that gw = gyc , since gnc = 1:

For the growth rate of new houses h we get:

�ht+1 = s1t + (1� �h)ht )

ht+1
ht

=
s1t
ht
+ (1� �h),

gh � (1� �h) =
s1t
ht
)

gh = gs1

since the l.h.s. is constant by de�nition. If we update the last equation one period we also

get gs2 = gh: From the resource constraint

yht = !1s1t + !2s2t

we can see that it must hold that

gyh = gh:

From e¢ ciency condition (10.15) we know that

pht(1� �)yht = pltxlt

so, we see that

gphyh = gplxl :
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From the production function for yh (equ. 10.6) we obtain

gyh = g�ydg
1��
xl

The growth rate of yd can be obtained from the production function of the RESI good

ydt = kdt(ztndt)
(1�) )

gyd = gkdg
(1�)
z ,

gyd = gz

since kd and z grow at the same rate, and labor is growing at gross rate of 1.

Since land is in �xed supply and the population is growing by the rate �; land per

capita is shrinking over time by the rate

gxl = ��1:

Concerning government spending, since it is assumed that Gt = 0; for all t we are

interested in the growth rate of the transfer �t:

�t = �nwtnt + �krtkt � �k�kkt ,

�t
kt

=
�nwtnt
kt

+ �k(rt � �k)

Since we know that the growth rate of r and n is zero and w and k are growing at the same

rate, it must be that � is growing at the same rate as k: So, we obtain

g� = gz:

To conclude, we have the following gross growth rates:

gz = gc = gkc = gkd = gk = gyc = gpdyd = gphyh =

gic = gid = gi = gs1 = gs2 = gw = g�
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gnc = gnd = gn = r = 1

gxl = ��1

gyh = gh = gs1 = gs2 = g�zg
1��
xl

gph =

�
gz
gxl

�(1��)
gpl =

gz
gxl
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10.4 Appendix D

10.4.1 Solution Procedure

The �rst-order conditions derived above constitutes a system of stochastic dif-

ference equations. Since the Schur factorization used to solve the system is designed for

�rst-order systems I have to de�ne new variables to transform equation 10.18. To that end

I de�ne

h1t = ht

h2t = h1;t+1 )

h2;t+1 = ht+2

x1t = �tpht

x2t = x1;t+1 )

x2;t+1 = �t+2ph;t+2

�u1t = �ut

�u2t = �u1;t+1 )

�u2;t+1 = �ut+2

Using these new variables and substituting out for �t by the relation �t = X1t
pht

we obtain

the following system of �rst-order stochastic di¤erence equations (written in the ordering
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as used to solve the system in Matlab, and expectation operators omitted)

�c
ct
(�ut)

1�� =
x1t
pht

(10.50)

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� =

x1t
pht
(1� �n)(1� �)

yct
nct

(10.51)

(1� �c � �h)
(1� nct � ndt)

(�ut)
1�� = x1t(1� �n)�(1� )

yht
ndt

(10.52)

plt = pht(1� �)
yht
xlt

(10.53)

pdt = �pht
yht
ydt

(10.54)

xlt = 1 (10.55)

yct = k�ct(ztnct)
(1��) (10.56)

ydt = kdt(ztndt)
(1�) (10.57)

yht = y�dtx
(1��)
lt (10.58)

yht = (!1s1t + !2s2t) (10.59)

�h2t = s1t + (1� �h)h1t (10.60)

�u1t = c
�c
t h

�h
t (1� nct � ndt)(1��c��h) (10.61)

�t = �n[(1� �)yct + (1� )�phtyht]

+�k[�yct + �phtyht]� �k�k[kct + kdt] (10.62)

�
x1t
pht

= �[
x1;t+1
ph;t+1

[(1� �k)�
yc;t+1
kc;t+1

+ (1� �k) + �k�k]] (10.63)

�
x1t
pht

= �[
x1;t+1
ph;t+1

[�(1� �k)ph;t+1
yh;t+1
kd;t+1

+ (1� �k) + �k�k]] (10.64)

h2t = h1;t+1 (10.65)

s2t = s1;t+1 (10.66)



126

ct + �kc;t+1 + �kd;t+1 + pht(!1s1t + !2s2t) + �phth2t

= yct + phtyht + (1� �k)[kct + kdt] + pht(s1t + (1� �h)h1t) (10.67)

x2t = x1;t+1 (10.68)

�u2t = �u1;t+1 (10.69)

�h
h2;t+1

(�u2;t+1)
1�� =

�

�2
x1t!2 +

�

�
x2t!1 � x2;t+1(1� �h) (10.70)

zt = z�t�1 (10.71)

This system of equations is log-linearized around the steady state such that we obtain a

system of linear stochastic di¤erence equations which can be stated as the following system:3

Cuut = Cx�

2664 xt

�t

3775+ Czzt (10.72)

Dx�Et

2664 xt+1

�t+1

3775+ Fx�
2664 xt

�t

3775 = DuEtut+1 + Fuut

+DzEtzt+1 + Fzzt (10.73)

with ut the vector containing the variables determined within period t as linear functions of

the model�s state variables, this is the vector fct; nct; ndt; plt; pdt; xlt; yct; ydt; yht; s2t; h2t;

�t; �u1tg: Then we distinguish between three kind of state variables: those with given initial

conditions build the vector xt = fkct; kdt; h1t; s1tg; those variables whose initial values may

be chosen freely, the vector �t = fx1t; x2t; �u2t; phtg; and the purely exogenous stochastic

variable zt:
3There are several ways to state and solve such a system. Classical references in this context are e.g.

Blanchard and Kahn (1980), Farmer (1993), Uhlig (1999) and King and Watson (2002). However, I follow
here closely the presentation of Heer and Maussner (2005), Chapter 2.
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10.4.2 The Reduced System

The system (10.72)-(10.73)can be reduced and rewritten as:

Et

2664 xt+1

�t+1

3775 =W

2664 xt

�t

3775+Rzt (10.74)

with:

W = �(Dx� �DuC�1u Cx�)
�1(Fx� � FuC�1u Cx�) (10.75)

R = (Dx� �DuC�1u Cx�)
�1

�[(Dz +DuC�1u Cz)� + (Fz + FuC
�1
u Cz)] (10.76)

and Etzt+1 = bzt (10.77)

with b the AR coe¢ cient for the shock process. This system is solved via Schur factorization

written as:

S = T�1WT (10.78)

with S an upper triangular matrix. The absolute values of the eigenvalues ofW are assumed

to appear in ascending order on the main diagonal of S. To obtain a unique solution, n(x)

eigenvalues must have modulus smaller then unity and n(�) eigenvalues must have modulus

greater than one, with n(y) denoting the dimension of vector y: The transformation matrix

T is known to have the following properties:

T 0 = T�1

TT 0 = TT�1 = I
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so S is the given by:

S =

2664 Sxx Sx�

0 S��

3775

=

2664 T xx T x�

T�x T��

3775
2664 Wxx Wx�

W�x W��

3775
2664 Txx Tx�

T�x T��

3775 (10.79)

We can de�ne new variables as:2664 ext
e�t
3775 =

2664 T xx T x�

T�x T��

3775
2664 xt

�t

3775 (10.80)

so we write the dynamic system (10.74) as:

Et

2664 ext+1
e�t+1

3775 =
2664 Sxx Sx�

0 S��

3775
2664 ext
e�t
3775+

2664 Qx

Q�

3775 zt (10.81)

with

Q = [Qx; Q�]
0 = T�1R (10.82)

To solve the system (10.81) we consider the second line �rst:

Ete�t+1 = S��e�t +Q�zt (10.83)

Since this is a system of e� alone the solution is given by:
e�t = �zt (10.84)

The rows of the matrix � are computed in the following steps: we take the matrix S��,

which is upper triangular with its eigenvalues, �i, on the diagonal being larger then one in
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modulus. In our case we have �t = (x1t; x2t; �u2t; pht)0; so we have a matrix S�� of the form:

S�� =

266666666664

�1 s12 s13 s14

0 �2 s23 s24

0 0 �3 s34

0 0 0 �4

377777777775
(10.85)

Since we have the conditions for eigenvalues ful�lled, we know that the last line of (10.83)

is a stochastic di¤erence equation in the single variable pht :

Eteph;t+1 = �4eph;t + q4zt (10.86)

where q4 is the fourth element in Q�. Given the sequence

fEteph;t+�g1�=0
is bounded, we know that the sequence�

1

��
Eteph;t+��1

�=0

will converge to zero. Since all variables are percentage deviations from the steady state,

we know that this price sequence is bounded and thus, the solution to equation (10.86) is

given by

epht = �4zt

with �4 the fourth element in �: To �gure out this element we substitute this solution into

equation (10.86):

Et(�4zt+1) = �4�4zt + q4zt ,

(�4b� �4�4)zt = q4zt ,

�4(b� �4)zt = q4zt
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because of (10.77). This then gives us the solution to the unknown element �4 :

�4 = q4(b� �4)�1

since b < 1 by assumption. Thus, we have the solution to the last row in (10.83) given by :

epht = q4(b� �4)�1zt (10.87)

This result is used for the solution of the third row of (10.83):

Ete�ut+1 = �3e�ut + s34epht + q3zt
= �3e�ut + s34q4(b� �4)�1zt + q3zt

again we substitute the solution, e�ut = �3zt; updated one period on the l.h.s. to get:

Et(�3zt+1) = �3�3zt + s34q4(b� �4)�1zt + q3zt ,

�3bzt = �3�3zt + s34q4(b� �4)�1zt + q3zt )

�3 = (s34q4(b� �4)�1 + q3)(b� �3)�1

so we get the solution for e�ut as:
e�ut = (s34q4(b� �4)�1 + q3)(b� �3)�1zt (10.88)

Repeating the steps from above we �nd the solutions for the remaining variables of system

(10.83).

10.4.3 Policy Functions for �t

Given the solution for e�t we can use system (10.80) to �nd the solutions for �t in

terms of xt and zt: The second part of (10.80) is given by:

e�t = T �xxt + T
���t (10.89)
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together with (10.84) this gives:

�zt = T �xxt + T
���t )

�t = �(T ��)�1T �x| {z }
J�x

xt + (T
��)�1�| {z }
J�z

zt , (10.90)

�t = J�xxt + J�zzt:

10.4.4 Policy Functions for xt+1

The �rst part of of (10.74) can be written as:

xt+1 =Wxxxt +Wx��t +Rxzt

with (10.90) this gives:

xt+1 = Wxxxt +Wx�((T
��)�1�zt � (T ��)�1T �xxt) +Rxzt

= (Wxx �Wx�(T
��)�1T �x)| {z }

Jxx

xt + (Wx�(T
��)�1�+Rx)| {z }
Jxz

zt: (10.91)

10.4.5 Policy Functions for ut

It is assumed that equation (10.72) can be solved for ut; i.e.

ut = C�1u Cx�

2664 xt

�t

3775+ C�1u Czzt: (10.92)
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Using the solutions for xt and �t we get from (10.92) the following policy function for the

vector ut :

ut = C�1u Cx�

2664 xt

J�xxt + J�zzt

3775+ C�1u Czzt ,

= C�1u Cx�

2664 In(x)
J�x

3775
| {z }

Jux

xt +

0BB@C�1u Cx�
0n(x)�n(z)

J�z

+ C�1u Cz

1CCA
| {z }

Juz

zt (10.93)

with In(x) the identity matrix of dimension n(x) and 0n(x)�n(z) the null matrix of dimension

n(x)� n(z):
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10.5 Appendix E

10.5.1 Matlab Code for the DSGE Model

Two-sector RBC model with a 2-period time to build in the RE sector

clear all;

(1)Parameter Description� � � � � � -%

tic;

alfa = 0.317;

gama = 0.197;

teta = 0.894;

mc = 0.35;

mh = 0.052017;

beta = (1/1.066)^0.25;

dk = 0.0703/4;

dh = 0.0155/4;

%annual population growth is 2.36%

eta = 1 + (0.005925);

tk = 0.15;

tn = 0.33;

w1 = 1/2; w2 = w1;

b = 1-mc-mh;

roh = 0.853;

sigma = 0.0226;
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nue = 2;

gz = 1.0064;

gzz = gz + eta -1;

%� � -SS values calculated by the function SSgov_2_per_ces

x0 = [0.27; 1.1; 0.73; 0.78; 0.15; 0.02; 0.34; 0.02;0.03; 0.5];

options=optimset(�LargeScale�, �on�, �MaxFunEvals�,10000);

[x,fval] = fsolve(@SSgov_2_per_ces,x0,options);

Cs = real(x(1));

Ls = real(x(2));

Hs = real(x(3));

Phs = real(x(4));

Ncs = real(x(5));

Nds = real(x(6));

Kcs = real(x(7));

Kds = real(x(8));

S2s = real(x(9));

Us = real(x(10));

U1s = Us; U2s = Us; Ycs = (Kcs^alfa)*(Ncs^(1-alfa)); Yds = (Kds^gama)*(Nds^(1-gama));

Yhs = Yds^teta; Pds = teta*Phs*(Yhs/Yds); Pls = Phs*(1-teta)*Yhs;

Ups = tn*((1-alfa)*Ycs + Phs*(1-gama)*teta*Yhs) + tk*(alfa*Ycs + Phs*teta*gama*Yhs)

- dk*tk*(Kcs + Kds);



135

qs = (Cs/Hs)*(mh/mc); Ys = Ycs + Phs*Yhs; Xls = 1; Ics = (eta -(1-dk))*Kcs; Ids = (eta -(1-dk))*Kds;

Is = Ics + Ids; Ks = Kcs + Kds; PCs = Cs+qs*Hs; Ns = Ncs + Nds; GDPs = Ycs + Pds*Yds + qs*Hs;

Pros = GDPs/Ncs; RESIs = Phs*S2s; Ihs = RESIs; Xs = Ls*Phs; X1s = Xs; X2s = Xs; H1s = Hs;

H2s = Hs; S1s = S2s ; Zs = 1; Zds = Zs; Zcs = Zs;

%� � � � -System FOC�s� � � -

%de�nition of variables, X is at time t, X1 at t+1, X2 = t+2, etc.

syms U11 U21 C1 Nc1 Nd1 L1 Pl1 Ph1 Yh1 Yc1 Yd1 Xl1 H11 H21 Pd1 Kc1 Kd1 S11 S21 X11

X21 Z1 Up1 ;

syms U1 U2 C Nc Nd Pl Xl H1 Kc Yh Yc Yd Kd H2 S1 S2 Ph X1 Pd X2 L Z r w Up;

Q1 = (mc/C)*(U1^(1-nue)) - (X1/Ph);

Q2 = (b/(1-Nc-Nd))*(U1^(1-nue)) - (X1/Ph)*(1-tn)*(1-alfa)*(Yc/Nc);

Q3 = (b/(1-Nc-Nd))*(U1^(1-nue))- X1*(1-tn)*(1-gama)*teta*(Yh/Nd);

Q4 = Pl - Ph*(1-teta)*(Yh/Xl);

Q5 = Pd - Ph*teta*(Yh/Yd);

Q6 = Xl - 1;

Q7 = Yc - (Kc^alfa)*((Nc*Z)^(1-alfa));

Q8 = Yd - (Kd^gama)*((Z*Nd)^(1-gama));

Q9 = Yh - (Yd^teta)*(Xl^(1-teta));

Q10 = Yh - w1*S1 - w2*S2;

Q11 = eta*H2 - S1 - (1-dh)*H1;

Q12 = Up - tn*((1-alfa)*Yc + Ph*(1-gama)*teta*Yh)- tk*(alfa*Yc + Ph*gama*teta*Yh)

+ dk*tk*(Kc + Kd);



136

Q13 = U2 - (C1^mc)*(H2^mh)*((1-Nc1-Nd1)^b);

Q14 = beta*((X2/Ph1)*((1-tk)*alfa*(Yc1/Kc1) + (1-dk) + tk*dk)) - (eta*(X1/Ph));

Q15 = beta*((X2/Ph1)*((1-tk)*Ph1*gama*teta*(Yh1/Kd1) + (1-dk) + tk*dk)) - (eta*(X1/Ph));

Q16 = H2 - H11;

Q17 = S2 - S11;

Q18 = ((1-dk) + tk*dk)*(Kc + Kd) + (1-tk)*(alfa*Yc + Ph*gama*teta*Yh) + (1-tn)*((1-alfa)*Yc +

Ph*(1-gama)*teta*Yh) + Ph*(1-teta)*Yh + Up - C - eta*Kc1 - eta*Kd1 - Ph*(w1*S1 + w2*S2)

+ Ph*(S1 +(1-dh)*H1)- eta*Ph*H2;

Q19 = X2 - X11;

Q20 = (mh/H21)*(U21^(1-nue)) - eta*(beta^(-2))*X1*w2 - eta*(beta^(-1))*X2*w1 + X21*(1-dh) ;

Q21 = U2 - U11; %U1

Q22 = log(Z1) - roh*log(Z);

control_eq = [Q1; Q2; Q3; Q4; Q5; Q6; Q7; Q8 ; Q9; Q10; Q11; Q12;Q13];

state_eq = [Q14; Q15; Q16;Q17];

prices = [Q18; Q19;Q20;Q21];

shocks = Q22;

eq = [control_eq; state_eq; prices; shocks];

% � � � � � � [3] Linearization proc � � � � � � � � %

xx = [C1 Nc1 Nd1 Pl1 Pd1 Xl1 Yc1 Yd1 Yh1 S21 H21 Up1 U21 Kc1 Kd1 H11 S11 Ph1 X11 X21 U11

Z1 C Nc Nd

Pl Pd Xl Yc Yd Yh S2 H2 Up U2 Kc Kd H1 S1 Ph X1 X2 U1 Z];

jopt = jacobian(eq,xx);
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%� � � � � Evaluate each derivative at the SS

% time t:

C = Cs; Nc = Ncs; Nd = Nds; Pl = Pls; Xl = Xls; S1 = S1s; H1 = H1s; H2 = H2s; Yh = Yhs;

Kc = Kcs; Kd = Kds; S2 = S2s; Pd = Pds; Up=Ups; Yc = Ycs; Yd = Yds;

L = Ls; Ph = Phs; Z = Zs; X1 = X1s; X2 = X2s; U1 = Us; U2 = Us;

% time t+1:

C1 = Cs; Nc1 = Ncs; Nd1 = Nds; Pl1 = Pls; Xl1 = Xls; S11 = S1s; H11 = H1s; H21 = H2s;

Up1 = Ups; Kc1 = Kcs; Kd1 = Kds; S21 = S2s;Yc1 = Ycs; Yd1 = Yds;

Ph1 = Phs; Z1 = Zs; X11 = X1s; X21 = X2s; Pd1 = Pds;

Yh1 = Yhs; U11 = Us; U21 = Us;L1 = Ls;

coef = eval(jopt);

vo = [Cs Ncs Nds Pls Pds Xls Ycs Yds Yhs S2s H2s Ups U2s Kcs Kds H1s S1s Phs X1s X2s U1s Zs] ;

TW = [vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo; vo;vo; vo];

nu = 13; %# of controls = (C, Nc, Nd, Pl, Pd, Xl, Yc, Yd, Yh, S2, H2, Up U2)

nx = 4; %# of predetermined states = ( Kc, Kd, H1, S1)

nL = 4; %# of non-pred. states = (X1, X2, Ph, U2)

nz = 1; %# of shocks = z

nxL = nx + nL; nCxL = nu + nxL; nCz = nCxL+nz;

na = nu+nx+nL+nz;

A1 = (-coef(:,1:na)).*TW; %Matrix of derivatives at ss times ss in t+1

A0 = (coef(:,na+1:2*na)).*TW; %Matrix of derivatives at ss times ss in t

Cu = A0(1:nu,1:nu);
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CxL = A0(1:nu,nu+1:nCxL);

Cz = A0(1:nu,na);

Fu = A0(nu+1:nCxL,1:nu);

FxL = A0(nu+1:nCxL,nu+1:nCxL);

Fz = A0(nu+1:nCxL,na);

Du = A1(nu+1:nCxL,1:nu);

DxL = A1(nu+1:nCxL,nu+1:nCxL);

Dz = A1(nu+1:nCxL,na);

ut1 = inv(Cu)*CxL;

ut2 = inv(Cu)*Cz;

D1 = (DxL - (Du*(inv(Cu))*CxL));

F1 = (FxL - (Fu*(inv(Cu))*CxL));

D2 = (Dz + (Du*(inv(Cu))*Cz));

F2 = (Fz + (Fu*(inv(Cu))*Cz));

Pi = roh;

W = -(inv(D1)*F1);

R = (inv(D1))*((D2*Pi)+F2);

kappa = condeig(W);

[T S M]= cschur(W,6);

lambda = diag(S); %eigenvalues of W

lambda = abs(lambda);

Ti = (T�);
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TLxi = (Ti(nx+1:size(Ti,1), 1:nx));

TLLi = (Ti(nx+1:size(Ti,1), nx+1:size(Ti,2)));

TLLii = inv(TLLi);

temp = Ti*R;

q1 = (temp(1:nx,:));

q2 = (temp(nx+1:size(temp,1),:));

nz = size(Cz,2);

phi = zeros(n1,nz);

sLL = (S(nx+1:size(S,1), nx+1:size(S,2)));

i = n1;

while i > 0

j=i+1;

temp = zeros(1,nz);

while j <= n1

temp = temp + sLL(i,j)*phi(j,:);

j = j+1;

end

phi(i,:) = (q2(i,:)+temp)*inv(roh-sLL(i,i)*eye(nz));

i = i-1;

end

%Policy functions for lamda(t)(L(t)), as functions of x(t) and z(t)

JLx = -TLLii*TLxi;
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JLz = TLLii*phi;

JLx = real(JLx);

JLz = real(JLz);

%Policy functions of x(t+1) as functions of x(t), z(t) and the solutions for L(t)

Jxx = T(1:nx,1:nx)*S(1:nx,1:nx)*inv(T(1:nx,1:nx));

Jxz = W(1:nx,nx+1:size(W,2))*JLz + R(1:nx,:);

Jxx = real(Jxx);

Jxz = real(Jxz);

%Policy functions for u(t) as functions of x(t),z(t) and the solutions for L(t)

Jux = ut1*vertcat(eye(nx),JLx);

Juz = ut1*vertcat(zeros(nx,nz),JLz)+ ut2;

Jux = real(Jux);

Juz = real(Juz);

n = 500;

ns =600

eps = sigma.*randn(n,ns);

z = zeros(n,ns);

H1 = zeros(n+1,ns); H2 = H1; Kc = zeros(n+1,ns); S1 = H1; S2 = H1;

Kd = zeros(n+1,ns); C = z; Nc = z; Nd = z; Ph = z; Pl = z; Xl = z; Up = z;

X1 = z; X2 = z; Yc = z; Yd = z; Ic = z; Ih = z; I = z; r = z; w = z;

Yh = z; Pd = z; GDP = z; PC = z; RESI = z; q = z; Y = z; K = z; Id = z; z(1) = 0; N =z;

H2(1)= 0; H3(1)=0; S1(1)=0; S2(1)=0; S3(1)=0; H1(1)= 0; Kc(1) = 0; Kd(1) = 0; Pro = z;
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for it = 1:ns

for t = 1:n

for j = 2:n

z(j,it) = roh*(z(j-1,it))+(eps(j,it));

end

%policy functions for prices (Ph, X1, X2,U1) and states (Kc, Kd, H1,S1)

Ph(t,it)= JLx(1,1)*Kc(t) + JLx(1,2)*Kd(t) + JLx(1,3)*H1(t) + JLx(1,4)*S1(t)+ JLz(1,1)*z(t,it);

X1(t,it)= JLx(2,1)*Kc(t) + JLx(2,2)*Kd(t) + JLx(2,3)*H1(t) + JLx(2,4)*S1(t)+ JLz(2,1)*z(t,it);

X2(t,it)= JLx(3,1)*Kc(t) + JLx(3,2)*Kd(t) + JLx(3,3)*H1(t) + JLx(3,4)*S1(t)+ JLz(3,1)*z(t,it);

U1(t,it)= JLx(4,1)*Kc(t) + JLx(4,2)*Kd(t) + JLx(4,3)*H1(t) + JLx(4,4)*S1(t)+ JLz(4,1)*z(t,it);

Kc(t+1,it)= Jxx(1,1)*Kc(t)+ Jxx(1,2)*Kd(t)+ Jxx(1,3)*H1(t) + Jxx(1,4)*S1(t) + Jxz(1,1)*z(t,it);

Kd(t+1,it)= Jxx(2,1)*Kc(t) + Jxx(2,2)*Kd(t)+ Jxx(2,3)*H1(t) + Jxx(2,4)*S1(t) + Jxz(2,1)*z(t,it);

H1(t+1,it)= Jxx(3,1)*Kc(t) + Jxx(3,2)*Kd(t)+ Jxx(3,3)*H1(t) + Jxx(3,4)*S1(t) + Jxz(3,1)*z(t,it);

S1(t+1,it)= Jxx(4,1)*Kc(t) + Jxx(4,2)*Kd(t)+ Jxx(4,3)*H1(t) + Jxx(4,4)*S1(t) + Jxz(4,1)*z(t,it);

%policy functions for variables determined within one period C, Nc, Nd, Pl, Pd, Xl,

Yc,Yd Yh S2, H2, Up, U2

C(t,it)= Jux(1,1)*Kc(t) + Jux(1,2)*Kd(t)+ Jux(1,3)*H1(t) + Jux(1,4)*S1(t) + Juz(1,1)*z(t,it);

Nc(t,it)= Jux(2,1)*Kc(t) + Jux(2,2)*Kd(t)+ Jux(2,3)*H1(t) + Jux(2,4)*S1(t) + Juz(2,1)*z(t,it);

Nd(t,it)= Jux(3,1)*Kc(t) + Jux(3,2)*Kd(t)+ Jux(3,3)*H1(t) + Jux(3,4)*S1(t) + Juz(3,1)*z(t,it);

Pl(t,it)= Jux(4,1)*Kc(t) + Jux(4,2)*Kd(t)+ Jux(4,3)*H1(t) + Jux(4,4)*S1(t) + Juz(4,1)*z(t,it);

Pd(t,it)= Jux(5,1)*Kc(t) + Jux(5,2)*Kd(t)+ Jux(5,3)*H1(t) + Jux(5,4)*S1(t) + Juz(5,1)*z(t,it);

Xl(t,it)= Jux(6,1)*Kc(t) + Jux(6,2)*Kd(t)+ Jux(6,3)*H1(t) + Jux(6,4)*S1(t) + Juz(6,1)*z(t,it);
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Yc(t,it)= Jux(7,1)*Kc(t) + Jux(7,2)*Kd(t)+ Jux(7,3)*H1(t) + Jux(7,4)*S1(t) + Juz(7,1)*z(t,it);

Yd(t,it)= Jux(8,1)*Kc(t) + Jux(8,2)*Kd(t)+ Jux(8,3)*H1(t) + Jux(8,4)*S1(t) + Juz(8,1)*z(t,it);

Yh(t,it)= Jux(9,1)*Kc(t) + Jux(9,2)*Kd(t)+ Jux(9,3)*H1(t) + Jux(9,4)*S1(t) + Juz(9,1)*z(t,it);

S2(t,it)= Jux(10,1)*Kc(t) + Jux(10,2)*Kd(t)+ Jux(10,3)*H1(t) + Jux(10,4)*S1(t) + Juz(10,1)*z(t,it);

H2(t,it)= Jux(11,1)*Kc(t) + Jux(11,2)*Kd(t)+ Jux(11,3)*H1(t) + Jux(11,4)*S1(t) + Juz(11,1)*z(t,it);

Up(t,it)= Jux(12,1)*Kc(t) + Jux(12,2)*Kd(t)+ Jux(12,3)*H1(t) + Jux(12,4)*S1(t) + Juz(12,1)*z(t,it);

U2(t,it)= Jux(13,1)*Kc(t) + Jux(13,2)*Kd(t)+ Jux(13,3)*H1(t) + Jux(13,4)*S1(t) + Juz(13,1)*z(t,it);

%Variables determined residually

q(t,it) = C(t,it)- H1(t,it);

RESI(t,it) = Ph(t,it) + w1*S1(t,it) + w2*S2(t,it);

Ih(t,it) = RESI(t,it);

Id(t,it) = eta*(Kds/Ids)*Kd(t+1,it)- (1-dk)*(Kds/Ids)*Kd(t,it);

Ic(t,it) = eta*(Kcs/Ics)*Kc(t+1,it) - (Kcs/Ics)*(1-dk)*Kc(t,it);

Y(t,it) = (Ycs/Ys)*Yc(t,it)+ (Phs*Yhs/Ys)*(Ph(t,it) + Yh(t,it));

GDP(t,it) = (Ycs/GDPs)*Yc(t,it) + ((Pds*Yds)/GDPs)*(Pd(t,it)+ Yd(t,it))+((qs*Hs)/GDPs)*(q(t,it)+H1(t,it));

PC(t,it) = (Cs/PCs)*C(t,it) + ((qs*Hs)/PCs)*q(t,it)+ ((qs*Hs)/PCs)*H1(t,it);

K(t,it) = (Kcs/Ks)*Kc(t,it) + (Kds/Ks)*Kd(t,it);

I(t,it) = (Ycs/Is)*Yc(t,it)-(Cs/Is)*C(t,it);

N(t,it) = (Ncs/Ns).*Nc(t,it) + (Nds/Ns).*Nd(t,it);

r(t,it) = Yc(t,it) - Kc(t,it);

w(t,it) = Yc(t,it) - Nc(t,it);

L(t,it) = X1(t,it) - Ph(t,it);
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end

end

%All series are transformed into trending series by adding the trend growth of productivity

and population, taking logs and then removing the trend by the HP �lter

o2 = n - 152;

%I like to have here that 152 periods are left for the quarters from 1970 to 2007 = 4x38 = 152

o1 = n - o2;

r = r(o2:n-1,:); w = w(o2:n-1,:); L = L(o2:n-1,:); Ph = Ph(o2:n-1,:);H1 = H1(o2:n-1,:);H2 = H2(o2:n-1,:);

Kc = Kc(o2:n-1,:); Kd = Kd(o2:n-1,:);K = K(o2:n-1,:); C = C(o2:n-1,:);Nc = Nc(o2:n-1,:);

Nd = Nd(o2:n-1,:); N = N(o2:n-1,:); Pl = Pl(o2:n-1,:);Xl = Xl(o2:n-1,:);X2 = X2(o2:n-1,:);

S1 = S1(o2:n-1,:);S2 = S2(o2:n-1,:); Ic = Ic(o2:n-1,:); Ih = Ih(o2:n-1,:);I = I(o2:n-1,:);

Y = Y(o2:n-1,:); Yc = Yc(o2:n-1,:);Yh = Yh(o2:n-1,:); Up =Up(o2:n-1,:); Yd = Yd(o2:n-1,:);

GDP = GDP(o2:n-1,:);PC = PC(o2:n-1,:); q = q(o2:n-1,:);Pd = Pd(o2:n-1,:); Id = Id(o2:n-1,:);

nss = ns;

nn = o1;

for itt = 1:nss

for tt = 1:nn

PC(tt,itt) = (log(PC(tt,itt)+ gz^tt));

C(tt,itt) = (log(C(tt,itt)+ gz^tt));

GDP(tt,itt) = (log(GDP(tt,itt)+ gz^tt));

c(tt,itt) = (log(Ic(tt,itt)+ gz^tt));

Id(tt,itt) = (log(Id(tt,itt)+ gz^tt));
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Ih(tt,itt) = (log(Ih(tt,itt)+ gz^tt));

I(tt,itt) = (log(I(tt,itt)+ gz^tt));

Yc(tt,itt) = (log(Yc(tt,itt)+ gz^tt));

Yd(tt,itt) = (log(Yd(tt,itt)+ gz^tt));

Y(tt,itt) = (log(Y(tt,itt)+ gz^tt));

Kc(tt,itt) = (log(Kc(tt,itt)+ gz^tt));

Kd(tt,itt) = (log(Kd(tt,itt)+ gz^tt));

K(tt,itt) = (log(K(tt,itt)+ gz^tt));

L(tt,itt) = (log(L(tt,itt)+ gz^tt));

w(tt,itt) = (log(w(tt,itt)+ gz^tt));

q(tt,itt) = (log(q(tt,itt)+ gz^tt));

K(tt,itt) = (log(K(tt,itt)+ gz^tt));

Pl(tt,itt) = (log(Pl(tt,itt)+ gz*eta));

Ph(tt,itt) = (log(Ph(tt,itt)+ ((gz*eta)^(1-teta))^tt));

Pd(tt,itt) = (log(Pd(tt,itt)+ 1));

Nc(tt,itt) = log(Nc(tt,itt)+ 1);

Nd(tt,itt) = log(Nd(tt,itt)+ 1);

N(tt,itt) = log(N(tt,itt)+1);

r(tt,itt) = log(r(tt,itt)+1);

Yh(tt,itt) = (log(Yh(tt,itt)+ ((gz^teta)*((1/eta)^(1-teta)))^tt));

S1(tt,itt) = (log(S1(tt,itt)+ ((gz^teta)*((1/eta)^(1-teta)))^tt));

S2(tt,itt) = (log(S2(tt,itt)+ ((gz^teta)*((1/eta)^(1-teta)))^tt));
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H1(tt,itt) = (log(H1(tt,itt)+ ((gz^teta)*((1/eta)^(1-teta)))^tt));

H2(tt,itt) = (log(H2(tt,itt)+((gz^teta)*((1/eta)^(1-teta)))^tt));

end

end

C = real(C) - real(hp�lter(C,1600)); PC = real(PC) - real(hp�lter(PC,1600));

GDP = real(GDP) - real(hp�lter(GDP,1600)); Ic = real(Ic) - real(hp�lter(Ic,1600));

Id = real(Id) - real(hp�lter(Id,1600)); Ih = real(Ih) - real(hp�lter(Ih,1600));

I = real(I) - real(hp�lter(I,1600)); Ph = real(Ph) - real(hp�lter(Ph,1600));

Pl = real(Pl) - real(hp�lter(Pl,1600)); Pd = real(Pd) - real(hp�lter(Pd,1600));

Yc = real(Yc) - real(hp�lter(Yc,1600)); Yh = real(Yh) - real(hp�lter(Yh,1600));

Yd = real(Yd) - real(hp�lter(Yd,1600)); Y = real(Y) - real(hp�lter(Y,1600));

Kc = real(Kc) - real(hp�lter(Kc,1600)); Kd = real(Kd) - real(hp�lter(Kd,1600));

K = real(K) - real(hp�lter(K,1600)); Nc = real(Nc) - real(hp�lter(Nc,1600));

Nd = real(Nd) - real(hp�lter(Nd,1600)); N = real(N) - real(hp�lter(N,1600));

S1 = real(S1) - real(hp�lter(S1,1600)); S2 = real(S2) - real(hp�lter(S2,1600));

H1 = real(H1) - real(hp�lter(H1,1600)); H2 = real(H2) - real(hp�lter(H2,1600));

L = real(L) - real(hp�lter(L,1600)); N = real(N) - real(hp�lter(N,1600));

q = real(q) - real(hp�lter(q,1600)); K = real(K) - real(hp�lter(K,1600));

r = real(r) - real(hp�lter(r,1600)); w = real(w) - real(hp�lter(w,1600));

%this commands calculate the means and SD of each collum of the matrixes

La = mean(L); Lb = std(L); Pha = mean(Ph); Phb = std(Ph); H1a = mean(H1); H1b = std(H1);

H2a = mean(H2); H2b = std(H2); Kca = mean(Kc); Kcb = std(Kc); Kda = mean(Kd); Kdb = std(Kd);
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Ka = mean(K); Kb = std(K); S1a = mean(S1); S1b = std(S1); S2a = mean(S2); S2b = std(S2);

Ca = mean(C); Cb = std(C); Nca = mean(Nc); Ncb = std(Nc); Nda = mean(Nd); Ndb = std(Nd);

Na = mean(N); Nb = std(N); X1a = mean(X1); X1b = std(X1); X2a = mean(X2); X2b = std(X2);

Pla = mean(Pl); Plb = std(Pl); Xla = mean(Xl); Xlb = std(Xl); Ica = mean(Ic); Icb = std(Ic);

Iha = mean(Ih); Ihb = std(Ih); Yca = mean(Yc); Ycb = std(Yc); Yha = mean(Yh); Yhb = std(Yh);

ra = mean(r); rb = std(r); wa = mean(w); wb = std(w); Ya = mean(Y); Yb = std(Y);

Ia = mean(I); Ib = std(I); Ida = mean(Id); Idb = std(Id); Upa = mean(Up); Upb = std(Up);

Yda = mean(Yd); Ydb = std(Yd); GDPa = mean(GDP); GDPb = std(GDP); Pda = mean(Pd);

Pdb = std(Pd); qa = mean(q); qb = std(q); PCa = mean(PC); PCb = std(PC);

%The following function "Mean_Std_f" gets the means and std�s of all series, the function is in

a separeta �le named Mean_Std_f

[C_bar, PC_bar, Yc_bar, Yd_bar, Yh_bar, Y_bar, GDP_bar, Ic_bar, Id_bar, Ih_bar, I_bar,

Kc_bar, Kd_bar, K_bar, S1_bar, S2_bar, H1_bar, H2_bar, Pd_bar, Ph_bar, Pl_bar,

Nc_bar, Nd_bar, L_bar, q_bar, w_bar, r_bar, N_bar Pro_bar, C_std, PC_std, Yc_std,

Yd_std, Yh_std, Y_std, GDP_std, Ic_std, Id_std, Ih_std, I_std, Kc_std, Kd_std, K_std,

S1_std, S2_std, H1_std, H2_std, Pd_std, Ph_std, Pl_std, Nc_std, Nd_std, L_std, q_std,

w_std, r_std, N_std, Pro_std ]

= Mean_Std_2per(Ca, PCa, Yca, Yda, Yha, Ya, GDPa, Ica, Ida, Iha, Ia, Kca, Kda, Ka, S1a,

S2a, H1a, H2a, Pda, Pha, Pla, Nca, Nda, La, qa, wa, ra, Na, Proa, Cb, PCb, Ycb, Ydb, Yhb, Yb,

GDPb, Icb, Idb, Ihb, Ib, Kcb, Kdb, Kb, S1b, S2b, H1b, H2b, Pdb, Phb, Plb, Ncb, Ndb, Lb, qb, wb,rb,

Nb, Prob );

YY = [C_bar PC_bar Yc_bar Yd_bar Yh_bar Y_bar GDP_bar Ic_bar Id_bar Ih_bar I_bar Kc_bar
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Kd_bar K_bar S1_bar S2_bar H1_bar H2_bar Pd_bar Ph_bar Pl_bar Nc_bar Nd_bar L_bar q_bar

w_bar r_bar N_bar Pro_bar; C_std PC_std Yc_std Yd_std Yh_std Y_std GDP_std Ic_std Id_std

Ih_std I_std Kc_std Kd_std K_std S1_std S2_std H1_std H2_std Pd_std Ph_std Pl_std Nc_std

Nd_std L_std q_std w_std r_std N_std Pro_std ]�;

YYY = [(YY(:,1)./GDP_bar), (YY(:,2)./GDP_std)];

toc
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